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Abstract

Hybrid Wearable Signal Processing/Learning via Deep Neural Networks

Soheil Zabihi, Ph.D.

Concordia University, 2023

Wearable technologies are gaining considerable attention in recent years as a po-

tential post-smartphone platform with several applications of significant engineer-

ing importance. Wearable technologies are expected to become more prevalent in

a variety of areas, including modern healthcare practices, robotic prosthesis control,

Artificial Reality (AR) and Virtual Reality (VR) applications, Human Machine Inter-

face/Interaction (HMI), and remote support for patients and chronically ill patients at

home. The emergence of wearable technologies can be attributed to the advancement

of flexible electronic materials; the availability of advanced cloud and wireless commu-

nication systems, and; the Internet of Things (IoT) coupled with high demand from

the tech-savvy population and the elderly population for healthcare management.

Wearable devices in the healthcare realm gather various biological signals from the

human body, among which Electrocardiogram (ECG), Photoplethysmogram (PPG),

and surface Electromyogram (sEMG), are the most widely non-intrusive monitored

signals. Utilizing these widely used non-intrusive signals, the primary emphasis of the

proposed dissertation is on the development of advanced Machine Learning (ML), in

particular Deep Learning (DL), algorithms to increase the accuracy of wearable de-

vices in specific tasks. In this context and in the first part, using ECG and PPG bio-

signals, we focus on development of accurate subject-specific solutions for continuous

and cuff-less Blood Pressure (BP) monitoring. More precisely, a deep learning-based

framework known as BP-Net is proposed for predicting continuous upper and lower

bounds of blood pressure, respectively, known as Systolic BP (SBP) and Diastolic BP

(DBP). Furthermore, by capitalizing on the fact that datasets used in recent litera-

ture are not unified and properly defined, a unified dataset is constructed from the
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MIMIC-I and MIMIC-III databases obtained from PhysioNet. In the second part, we

focus on hand gesture recognition utilizing sEMG signals, which have the potential

to be used in the myoelectric prostheses control systems or decoding Myo Armbands

data to interpret human intent in AR/VR environments. Capitalizing on the recent

advances in hybrid architectures and Transformers in different applications, we aim

to enhance the accuracy of sEMG-based hand gesture recognition by introducing a

hybrid architecture based on Transformers, referred to as the Transformer for Hand

Gesture Recognition (TraHGR). In particular, the TraHGR architecture consists of

two parallel paths followed by a linear layer that acts as a fusion center to integrate

the advantage of each module. The ultimate goal of this work is to increase the

accuracy of gesture classifications, which could be a major step towards the develop-

ment of more advanced HMI systems that can improve the quality of life for people

with disabilities or enhance the user experience in AR/VR applications. Besides im-

proving accuracy, decreasing the number of parameters in the Deep Neural Network

(DNN) architectures plays an important role in wearable devices. In other words, to

achieve the highest possible accuracy, complicated and heavy-weighted Deep Neural

Networks (DNNs) are typically developed, which restricts their practical application

in low-power and resource-constrained wearable systems. Therefore, in our next at-

tempt, we propose a lightweight hybrid architecture based on the Convolutional Neu-

ral Network (CNN) and attention mechanism, referred to as Hierarchical Depth-wise

Convolution along with the Attention Mechanism (HDCAM), to effectively extract

local and global representations of the input. The key objective behind the design of

HDCAM was to ensure its resource efficiency while maintaining comparable or better

performance than the current state-of-the-art methods.
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Chapter 1

Overview of the Thesis

1.1 Introduction

With the advancement of flexible electronic materials, the cloud and wireless system,

the Internet of Things (IoT), multimedia devices and smartphones, along with the

high demand of the elderly population for health care management, the emergence

of wearable medical devices has a significant and widespread impact on people’s lives

to monitor their personal health information in real-time [1–3]. Collecting various

parameters of the human body makes these technologies strong support tools for

physicians to provide continuous assessment of critical physiological parameters or

to identify precursors of major adverse effects [4]. In addition, wearable technologies

have the potential to be used in out-of-hospital settings, resulting in continuous mon-

itoring solutions and real-time feedback on people’s health status [4–6]. Moreover,

due to the cost-effective habitual data collection in a discrete manner for longitudinal

periods in any environment, the power of wearable devices as a practical and clini-

cally useful technology to assist in the diagnosis, treatment, and care of the patient

is becoming evident. As a result, they are becoming increasingly popular in several

areas of modern healthcare practices, particularly in the provision of care services,

ambulatory monitoring in the healthcare setting, and remote support for the reha-

bilitation of patients and chronically ill patients at home. To date, many wearable

healthcare devices collect biometric data from the human body, such as blood glucose
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levels, body temperature, electroencephalogram (EEG), electrocardiograms (ECGs),

photoplethysmogram (PPG), and electromyograms (EMG), to provide valuable in-

formation in the field of healthcare and sports [3, 7–9].

1.2 Development of Wearable Technologies

The increasing usage of fitness trackers and health-related wearables, as well as the

world’s growing population of tech-savvy individuals, have resulted in a booming

market for wearable technology in recent years. As a piece of evidence, according

to the recent report from the International Data Corporation (IDC) [10] in March

2022, the worldwide wearables market set/hit a new record high in the fourth quarter

of 2021, with sales reaching 171 million units, 10.8% percent higher than the same

quarter in 2020. New innovations and ongoing demand for health and fitness tracking

devices, as well as hearables helped the market maintain its momentum. Shipments

for the full year 2021 totaled 533.6 million units, representing an increase of 20%

over 2020. According to the recent report of IDC in March 2023, however, shipments

for the full year 2022 were down 7.7% compared to 2021, marking the first year of

decline for the category due to challenging macroeconomic conditions and difficult

comparisons to the strong results of 2021. Despite the downturn, overall shipments

of 492.1 million units in 2022 were well above 2020 and 2019 levels. This tempting

and growing market has led the prominent industry including Apple Inc., Fitbit Inc.,

Samsung, Xiaomi Global Community, and Huawei Device Co., to play an important

role in the development of wearable technology.

In recent years, the usage of wearable technology has experienced significant

growth, driven by a variety of factors. One of the key factors that have contributed

to the growth of wearable technology usage is the increasing consumer awareness

of health and wellness. People are becoming more proactive about managing their

health and fitness, and wearable devices are seen as an effective tool to help them

achieve their goals. With the rise of chronic diseases such as diabetes and heart

disease, wearable devices are also being used to monitor and manage these condi-

tions, providing patients with greater control over their health. Furthermore, the
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increasing popularity of wearable devices has led to the development of a wide range

of specialized applications and services. These include fitness and wellness apps, re-

mote patient monitoring systems, and mobile health platforms, which enable users

to track their health data, communicate with healthcare professionals, and receive

personalized health coaching.

Another factor that has opened up new avenues for the growth of this industry is

the emergence of smart homes and the Internet of Things (IoT). With the increasing

number of connected devices in the home, wearable devices can now communicate with

other devices, such as smart scales and blood pressure monitors, providing a more

holistic view of a user’s health. Moreover, the IoT has enabled wearable devices to

connect to the cloud and access advanced analytic and machine learning algorithms.

This means that wearable devices can now process and analyze large amounts of

health data and provide more accurate and actionable insights to users.

Another major driver of the wearable technology market is the growing demand

for remote monitoring solutions, particularly in healthcare. Wearable devices have the

potential to be used to monitor patients remotely, providing healthcare professionals

with real-time data on a patient’s health status. This is particularly useful for patients

with chronic conditions, who require regular monitoring and management of their

health. With the rise of telemedicine and virtual care, wearable devices are expected

to play an even greater role in the future of healthcare.

In addition to the factors mentioned earlier, advancements in technology have

played a significant role in the growth of wearables. Miniaturization and increased

processing power have allowed for the creation of smaller, more powerful wearable

devices that can collect and analyze a greater amount of data. This has led to the

development of wearable devices with advanced sensors, which enable the collection

of more detailed and accurate data.

As the market for wearable technology continues to grow, devices are becoming

increasingly sophisticated, offering new features and functionalities that enhance their

usefulness and ease of use. For example, wearable devices can now track not just basic

metrics like steps taken and calories burned, but also more complex data such as heart

rate variability, blood oxygen levels, and even sleep quality. Wearable devices are also
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becoming more user-friendly, with improved design and ease of use, making them more

appealing to a broader range of users.

The cloud and wireless systems have played a crucial role in the evolution of

wearable medical devices, as they allow for real-time monitoring of patient health

data by healthcare providers. With the integration of Artificial Intelligence (AI) and

Machine Learning (ML) algorithms, healthcare providers can analyze the collected

data more effectively, identify patterns, and make timely interventions to prevent or

manage chronic conditions. AI and ML algorithms can also predict the likelihood of

future health events, such as hospital readmissions or emergency room visits based

on patient data, enabling healthcare providers to take proactive measures to prevent

such events from occurring. Additionally, the use of cloud and wireless systems has

made it easier for healthcare providers to access patient data from anywhere, at

any time, which can be particularly useful in emergency situations. Overall, the

combination of cloud and wireless systems, along with AI and ML, has the potential

to revolutionize healthcare delivery, making it more patient-centered, efficient, and

effective, ultimately leading to better patient outcomes and reduced healthcare costs.

The widespread adoption of multimedia devices and smartphones has created

a massive market for wearable medical devices that can communicate with these

devices, offering patients a convenient way to monitor their health data and share it

with healthcare providers. The increasing computation power of these devices has

allowed for the development of more sophisticated wearable medical devices, such as

smartwatches or fitness trackers, which can collect and analyze various health metrics,

such as heart rate, blood pressure, and sleep patterns, among others. This has enabled

patients to monitor their health more accurately and to make more informed decisions

regarding their lifestyle and healthcare needs.

Overall, the concept of wearable technology continues to be hot due to the growing

technology and science, increasing interest in the use of wearable technology, the great

demand for monitoring systems for assisted living and eldercare, and the participation

of leading companies in the development of wearable technology. The increasing

adoption of wearable technology is poised to have a significant impact on the way

people monitor and manage their health, and on the broader healthcare industry as

a whole. As wearable devices continue to evolve and become more integrated with
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other devices and systems, they have the potential to transform the way healthcare is

delivered, leading to better outcomes, greater efficiency, and more personalized care.

1.3 Challenges of Wearable Technologies

Along with the advancements, several challenges need to be addressed to ensure the

continued growth and adoption of wearable technology. One of the most significant

challenges is battery life, as the devices require more energy to operate, leading to

shorter battery life, which can be especially problematic for devices that are worn

constantly. Design and comfort are also critical issues to ensure that wearable tech-

nologies are both functional and aesthetically pleasing, particularly when it comes to

integrating sensors and other components into a compact form factor.

Data privacy and security are significant concerns in the field of wearable tech-

nology, particularly in the healthcare industry, as these devices collect and transmit

sensitive health data. Patients who use wearable devices to track their health data

need to trust that their information is secure and private. However, wearable devices

can be vulnerable to hacking or data breaches, potentially putting patients’ personal

health information at risk. Therefore, it is crucial to implement appropriate security

measures to protect patients’ data from unauthorized access or breaches.

Interoperability and integration are also major challenges in the adoption of wear-

able technologies in healthcare. Many different types of wearable devices are available

in the market, with varying capabilities and data formats. This can make it difficult

to integrate wearable devices into existing healthcare workflows and systems, limiting

their usefulness and potential impact. Standardization can help address this issue by

ensuring that devices are interoperable and can communicate with each other seam-

lessly, making it easier to integrate wearable technologies into existing healthcare

workflows and systems.

Ensuring the accuracy and reliability of wearable devices is crucial to their adop-

tion and usefulness. Inaccurate readings can lead to frustration and distrust among

users, making it less likely for them to continue using the device or to trust the data

5



it collects. Additionally, inaccurate readings can lead to incorrect diagnoses or rec-

ommendations, potentially harming the patient’s health outcomes. There are several

challenges in ensuring the accuracy and reliability of wearable devices. Environmen-

tal factors, such as temperature and humidity, can affect the performance of sensors

and other components, leading to inaccurate readings. Individual factors, such as

differences in body types and movement patterns, can also affect the performance of

wearable devices, making it challenging to develop one-size-fits-all solutions. To over-

come these challenges, wearable technology manufacturers need to invest in research

and development to improve the accuracy and reliability of their devices. This can

include developing more advanced sensors and algorithms that can better account

for individual and environmental factors. Additionally, manufacturers can work with

healthcare providers and other stakeholders to validate the accuracy and reliability

of their devices through clinical studies and other validation processes. Ensuring the

accuracy and reliability of wearable devices is essential to their adoption and suc-

cess, particularly in healthcare applications where the data collected by these devices

can have a significant impact on patient outcomes. By overcoming the challenges

associated with accuracy and reliability, wearable technologies can continue to play

a critical role in improving patient health and well-being.

The challenge of a lack of understanding is also a significant obstacle to user adop-

tion and engagement of wearable technology, particularly for the senior population.

Wearable devices often come with complex interfaces and a range of features and

functions that may be confusing or overwhelming for users who are not familiar with

the technology. This lack of understanding can create a barrier to adoption and limit

engagement, as users may not be aware of the full range of benefits that wearable

devices can offer. Additionally, wearable technology can be perceived as intimidating

or even invasive, particularly for users who are not accustomed to using digital de-

vices. This perception can further contribute to the challenge of user adoption and

engagement, as users may feel hesitant to use the devices and unsure about how to

integrate them into their daily routines. Addressing this challenge will require in-

novative solutions that simplify interfaces and make wearable devices more intuitive

and user-friendly. Additionally, education and training programs can help users bet-

ter understand how to use their devices and integrate them into their daily routines,

which can help to increase engagement and drive adoption.
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Addressing these challenges will require ongoing innovation, investment, and col-

laboration from manufacturers, and policymakers. While there are challenges, the

potential of wearable technology to transform sports science, entertainment, HMI

systems, and healthcare is significant. As wearable devices continue to evolve and

become more integrated with other devices and systems, it is likely that we will see

even greater innovation and new applications of wearable technology in the future.

1.4 Research Objectives

Wearable technologies are network devices that collect data and track activities to

prevent diseases and emergency health hazards by reminding the wearer or caregiver

to take appropriate action [11,12]. In short, the performance of wearable devices can

be divided into the following tasks: measurement, analysis, storage, transmission,

and operation. In practical clinical applications, wearable devices, in addition to

ensuring the accuracy of signal measurement, must also have accurate analysis and

processing of the data provided. The analysis might take place on the device itself or

at a remote location such as the cloud or a smartphone. Integrating with the cloud,

wearable devices have enormous potential in supplying big data, which encourages

and facilitates the utilization of Machine Learning algorithms for novel outcomes. As

a result of this, and in light of the significant advances in deep learning, there has been

a surge of interest in the development of intelligent algorithms capable of inferring

valuable information from collected physiological biosignals using Machine Learning

techniques such as statistical classification and Deep Neural Networks (DNNs) [13].

Designing wearable devices is a multidisciplinary task and requires the efforts of

scientists to study all aspects of the field to facilitate the consumer experience by im-

proving these devices in various aspects, such as battery stability, useful service life,

accurate sensor design, low power consumption, analysis accuracy, and more. The

primary emphasis of this dissertation is on the development of modern ML algorithms

based on DNNs to increase the accuracy of wearable devices in specific tasks. The

most widely monitored signals in a medical setting, i.e., electrocardiogram (ECG),

photoplethysmogram (PPG), and electromyogram (EMG) biosignals [9] are used in
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this thesis. Specifically, the main research objectives of this thesis are aimed at utiliz-

ing sEMG biosignals for hand gesture recognition and ECG and PPG biosignals for

blood pressure monitoring. In this context, the thesis targets achieving the following

main research objectives:

• Improving the Overall Accuracy : The first objective of this dissertation is

to improve the overall accuracy of wearable devices for the mentioned tasks.

Achieving this goal can lead to more precise data analysis, allowing for earlier

detection and treatment of health problems. For instance, ML algorithms can

help to improve the accuracy of blood pressure monitoring to identify changes

in blood pressure patterns that may indicate the presence of health problems.

This can lead to earlier detection and treatment of health issues, potentially

saving lives and reducing healthcare costs. Similarly, accurate hand gesture

recognition using sEMG bio-signals can help individuals control devices with

greater precision and ease, improving their overall experience.

• Reducing Complexity of DNN Architectures : Overall, computation re-

duction in wearable devices can have a significant impact on their battery life

and real-time processing. By minimizing the computational load, wearable de-

vices can process data in real-time, providing instant feedback to the user, which

can improve the user’s experience and motivate them to maintain healthy habits.

In addition, by reducing the amount of computation required by a wearable de-

vice, it can reduce the amount of power consumed and extend the battery life.

This reduction can be achieved in several ways, such as optimizing algorithms,

reducing the complexity of machine learning models, and minimizing the num-

ber of sensors and data collection.

• More Representative Feature Extraction in DNNs : Feature extraction

is the process of identifying the relevant features or characteristics of the bio-

signal that are essential for the tasks at hand. More precisely, by identifying and

extracting the most relevant features, DNNs can better capture the underlying

physiological processes and discriminate between different signals. This, in turn,

can lead to improved performance in wearable devices. Therefore, it is essential

to continuously work on developing more efficient feature extractions that can

reduce computation in wearable devices without compromising their accuracy.
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1.5 Thesis Contributions

As previously stated, the primary objective of this thesis is to leverage widely used

bio-signals, i.e., ECG, PPG, and sEMG, to carry out non-invasive blood pressure

estimation and hand gesture recognition tasks. By leveraging the capabilities of PPG

and ECG bio-signals, we aim to develop a novel and efficient technique for accu-

rately estimating blood pressure without the need for traditional cuff-based methods.

Additionally, we aim to design a hand gesture recognition system based on sEMG

signals that can be used in various fields such as healthcare, sports, and entertain-

ment, to name a few. In the following, we delve into the specific contributions of the

dissertation in each of the sub-domains.

First, this dissertation aims to develop an efficient framework for continuous,

cuff-less, and alignment-free Blood Pressure (BP) estimation by capitalizing on re-

cent advancements in deep neural networks. We focus on designing deep learning

architectures fed by raw ECG and PPG, unlike the common methods in BP esti-

mation literature which use engineered and pre-defined physiological features as the

first building block of their recommended approaches. By utilizing raw signals (ECG

and PPG) as inputs, without hand-crafted extraction of features, we explore the real

potential of deep learning in the utilization of intrinsic features (deep features) of

the input signals. Moreover, the basic building block of the proposed architecture is

Dilated Causal Convolutions, therefore, it can be categorized as a Temporal Convo-

lutional Network (TCN) instead of a Recurrent Neural Network. TCN architecture

provides several advantages over RNNs such as faster training with lower memory

requirements and more stable training because of avoiding the problem of gradient

vanishing/explosion. Furthermore, by capitalizing on the significant importance of

continuous blood pressure monitoring and the fact that datasets used in recent lit-

erature are not unified and properly defined, a benchmark data set is constructed

from the MIMIC-I and MIMIC-III databases from the PhysioNet database to provide

a unified base for evaluation and comparison of deep learning-based blood pressure

estimation algorithms.

Second, we conducted our research focusing on Hand Gesture Recognition (HGR)

utilizing Surface-Electromyogram (sEMG) signals. This is due to its unique potential
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for decoding wearable data to interpret human intent for immersion in Mixed Re-

ality (MR) environments. Recent studies on sEMG-based hand gesture recognition

have primarily focused on deep neural network models that employ a single path for

gesture recognition. Unfortunately, these models overlook the spatio-temporal char-

acteristics of sEMG signals, which can lead to a lack of satisfactory generalization

feature extraction and poor performance. To improve the accuracy of sEMG-based

hand gesture recognition, it is necessary to design models that take into account the

spatio-temporal nature of the signals. This can be achieved through the incorporation

of multi-path architectures resulting in more advanced feature extraction. In partic-

ular, capitalizing on the recent success of Transformers in various fields of Machine

Learning [14–17], we aim to examine its applicability and potential for sEMG-based

hand gesture recognition. The proposed method, referred to as the Transformer for

Hand Gesture Recognition (TraHGR), increases the accuracy of sEMG decoding for

the classification of hand movements. The framework being proposed utilizes two

parallel paths for both special and spatio-temporal feature extraction, which is then

followed by linear layers integrating the output of these two paths resulting in more

representative features for different numbers of hand movements. Considering both

the spatial and temporal characteristics of the signals, the proposed framework re-

sulted in better accuracy in sEMG-based hand gesture recognition systems, which

has the potential to greatly benefit fields such as human-computer interaction and

rehabilitation engineering.

Finally, despite extensive research in this area and the fact that academic re-

searchers achieve high classification accuracy in laboratory conditions, there is still

a gap between academic research in sEMG pattern recognition and commercialized

solutions [18]. In this context, one of the objectives for reducing the gap is to focus

on the development of DNN-based models that not only have high recognition ac-

curacy but also have minimal processing complexity, allowing them to be embedded

in low-power devices such as wearable controllers [19, 20]. The existing solutions so

far rely on complicated and heavy-weighted Deep Neural Networks (DNNs), which

have restricted practical application in low-power and resource-constrained wearable

systems. Therefore, in another attempt, we propose a light-weighted hybrid archi-

tecture (named HDCAM) based on Convolutional Neural Network (CNN) and atten-

tion mechanism to effectively extract local and global representations of the input.
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Furthermore, the model is trained based on a hybrid loss function consisting of two-

fold: (i) Cross Entropy (CE) loss which focuses on identifying the helpful features to

perform the classification objective, and (ii) Supervised Contrastive (SC) loss which

assists to learn more robust and generic features by minimizing the ratio of intra-class

to inter-class similarity.

1.6 Organization of the Thesis

In Chapter 1 (this chapter), we provided an overview and a summary of important

contributions made in the thesis. The rest of the thesis is organized as follows:

• Chapter 2 provides a literature review on Blood Pressure estimation, as well

as the sEMG-based hand gesture recognition approaches.

• In Chapter 3, the details and experiments of the proposed deep learning solu-

tions for continuous, cuff-less, and alignment-free BP estimation are provided.

Furthermore, a benchmark dataset is introduced, with the potential to serve

as a unified base for the evaluation and comparison of deep learning-based BP

estimation algorithms.

• In Chapter 4, we concentrate on our proposed deep learning-based solution

based on Transformer architecture to improve the HGR accuracy based on

sEMG signals.

• In Chapter 5, the details of the HDCAM architecture is provided which

gains the advantages of both Transformers- and CNN-based models to create a

lightweight and low-latency network for HGR tasks using sEMG signals.

• In Chapter 6, we conclude the dissertation and the potential future works are

discussed.
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Chapter 2

Literature Review

Wearable technologies are gaining traction as a possible post-smartphone platform.

Wearable devices have various benefits over smartphones, including being smaller,

lighter, and, most crucially, being able to be worn by the consumer. As a result, these

technologies are increasingly being used in areas such as healthcare, robotic prosthesis

control, VR/AR, and mining personal data (i.e., life-logging, quantified-self) [21,22].

As stated previously in Chapter 1, the objective of this project is to leverage bio-

signals including ECG, PPG, and sEMG, which are among the most commonly used

bio-signals in wearable devices, for cuff-less Blood Pressure (BP) estimation and hand

gesture recognition tasks. As a result, the emphasis in this chapter is on providing an

overview of cuff-less BP estimation methods. Furthermore, we present an overview

of advanced deep neural network (DNN)-based methodologies for sEMG-based hand

gesture detection algorithms.

2.1 Cuff-less Blood Pressure estimation

An alarming population aging is widely expected in the near future partially due

to recent advancements in biomedical health technologies. According to a recent

publication by the United Nations [23], the number of seniors over the age of 60 is

expected to double by 2050, even it is projected that the population of seniors will
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be more than the population of minors/youth at ages 10-24 by 2050. Consequent

to this inevitable worldwide population aging trend is a significant increase in age-

related health issues, in particular cardiovascular conditions. According to the World

Health Organization report and on a global scale, cardiovascular diseases account for

approximately 17 million loss of lives annually, which accounts for one-third of the

total deaths around the world. Of these, complications of hypertension account for 9.4

million loss of lives annually. These facts call for an urgent quest to develop advanced

continuous monitoring, efficient diagnosis, and timely treatment of cardiovascular

conditions.

Generally speaking, BP can be described as the pressure applied by blood to the

arteries (wall of the blood vessels) ranging between two limits, i.e., a maximum value

named Systolic Blood Pressure (SBP) to a minimum value referred to as the Diastolic

Blood Pressure (DBP). When an individual’s SBP exceeds 140 mmHg and their dias-

tolic blood pressure DBP rises above 90 mmHg, they are diagnosed with hypertension.

This condition is characterized by abnormally high blood pressure levels, which can

lead to a variety of health problems such as heart disease, vision loss, stroke, and kid-

ney failure, to name a few. Therefore, it is crucial to monitor blood pressure regularly

and seek medical attention if levels are consistently above the normal range. Early

detection and diagnosis of hypertension can help patients receive accurate treatment

and manage the condition, leading to a reduction in the overall mortality rate for

those affected by hypertension. While regular BP checkups are recommended by

physicians for seniors, this typically can not be achieved due to complications of hu-

man activities and the fast pace of modern lifestyle, furthermore, historical data shows

that on average 20% of seniors have higher measured BP at clinics in comparison to

the relaxed home environment. Consequently, continuous and in-home monitoring

of BP [24]- [27] via utilization of advanced Biological Signal Processing (BSP), Arti-

ficial Intelligence (AI) and Machine Learning (ML) techniques [28]- [33] becomes of

paramount importance, especially with the growing popularity of wearable devices.

In Section 2.1.1, we provide an overview of recent literature in this domain.
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2.1.1 Review of the Literatures on Blood Pressure Estimation

In general, when it comes to measuring BP, commonly, either a cuff-based approach

is utilized, which provides upper arm BP measurements, or one resorts to cuff-less

(possibly invasive) solutions. Upper arm BP monitoring can provide users with an

indirect and non-continuous BP measurement technique by using an inflatable cuff

and stethoscope. Such cuff-based methods suffer from several drawbacks including:

(i) Being inconvenient and unhealthy, especially in public places; (ii) Requiring proper

training prior to utilization; (iii) Not being ideal for self-use and long-term monitoring

of BP, and; (iv) Being incapable of providing continuous BP measurements [34]. Cuff-

less BP monitoring [35], on the other hand, eliminates the common uncomfortable

factors associated with the former category and has the potential to continuously

provide BP estimates without using any inflatable cuff.

Recently, there has been a surge of interest towards the goal of performing contin-

uous BP monitoring via Physiologically Inspired Models [36]- [39] in particular pulse

transit time (PTT) and pulse arrival time (PAT). The PAT, sum of PTT and pre-

ejection period, is considered as the main marker of BP for development of cuff-less

BP estimation algorithms due to its simple measurement procedure. The PAT [40,41]

is defined as the time required for a heartbeat to transfer to a body peripheral and has

a tight relationship (correlation) to the BP. The existing correlation between PAT and

BP, although well established, is highly non-linear depending on several uncertain fac-

tors varying across different individuals and over time [42,43]. PTT involves simulta-

neous measurement of ECG and PPG along with other variables such as the patient’s

size, weight, and age. Consequently, possible temporal misalignment of the PPG and

ECG signals results in incorrect values for these temporal features, therefore, incor-

rect results of the downstream investigations, i.e., BP estimation. Therefore, there

have been different attempts [38, 39, 44] to construct alignment/calibration methods

between multimode signals to account for such variations. We categorize these ap-

proaches as “Alignment-based ” models, where the focus is on extracting meaningful

features to be fed to processing and learning models. Such models, however, are

applicable only for use in short intervals such as exercise tests.

Existing methods for cuff-less and continuous BP estimation can be classified into

15



the following two main categories:

(i) Hand-crafted Regression-based Models: Models belonging to this category

are developed by extracting hand-crafted features and exploiting various conventional

BSP and ML algorithms such as decision trees (DT), support vector regression (SVR),

shallow neural networks, and Bayesian linear regression (BLR) to name but a few.

Typically, PPG and ECG signals are used jointly [34, 45] to extract PAT features to

construct a regression model for estimating the BP. In Reference [46], for instance, a

linear regression model (i.e., the SVR) is coupled with a radial basis function (RBF)

kernel, and a single hidden layer neural network with a linear output to estimate

the BP. A key drawback of the aforementioned conventional methods is that such

models rely heavily on the extraction of hand-crafted features, such as PAT, and

directly map the given input into the target value while ignoring the critical temporal

dependencies in the BP dynamics. This could be considered as the root of the long-

term inaccuracy of such models, which, in turn, results in a lack of robustness due

to strong dependencies on the alignment parameters and the choice of hand-crafted

features to describe the signal for subsequent regression [47]. Lack of robustness due

to frequent alignment requirements in such models translates into accuracy decay

over time.

(ii) Deep Learning-based Models: While research works on hand-crafted and

regression-based models are extensive, deep-learning-based BP estimation [48, 49] is

still in its infancy. In deep-learning models, commonly, hand-crafted features (e.g.,

extracted PAT features) are fed to neural network models such as long short-term

memory (LSTM) models, recurrent neural networks (RNN), convolutional neural net-

works (CNN), or bidirectional RNN (BRNN). For instance, Reference [48] proposed

to formulate BP prediction as a sequence learning problem, and proposed a deep RNN

model, which is targeted for multi-day continuous BP prediction. The RNN model

works with a set of seven representative hand-crafted features extracted from ECG

and PPG signals. Another recent example is Reference [50], where the authors pro-

posed a waveform-based Artificial neural network (ANN)-LSTM model. The model

consists of a hierarchical structure where the lower hierarchy level uses ANNs to ex-

tract the required features from the ECG/PPG waveforms, while the upper hierarchy

level uses stacked LSTM layers to learn the time-domain variations of the features
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extracted in the lower hierarchy level.

In most of the studies presented so far, before extracting the deep features, rep-

resentative hand-crafted features of input signals are first selected/extracted, which

are then used to train a deep neural network. In other words, such methods ignore

the real potential of deep learning in utilizing the intrinsic features (deep features) of

the input signals. In this context, recently, different studies [51]- [56] have proposed

end-to-end deep networks for BP estimation from PPG and ECG signals. Such exist-

ing end-to-end models are, typically, developed based on small datasets and/or used

a single ECG lead, which only allows development of simple architectures. In other

words, due to the availability of small training sets, complex end-to-end networks

can not be developed. Furthermore, datasets used in recent literature are not unified

and properly defined, which makes evaluations and comparisons difficult. Commonly

a subset of MIMIC-I or MIMIC-III databases from PhysioNet is used without pro-

viding details on the training, validation, and test sets rendering reproducibility and

fair comparisons impossible. For instance, in Reference [51], the authors used dif-

ferent deep learning techniques including Fully Connected Neural Network, LSTM,

Wavenet, Wavenet + LSTM, and Resnet + LSTM for BP estimation. The experi-

ments were, however, carried out based on only 40 patients from the MIMIC database,

which is not enough for constructing an end-to-end model that can be used more gen-

erally. Similarly, in Reference [52], the authors estimated continuous blood pressure

by using an adaptive weight learning-based multitask deep learning framework. The

blood pressure estimation, however, is only performed based on a single lead (lead II)

of EGG signals [52]. Generally speaking, using single-lead ECG signals [52] makes it

difficult to evaluate the generality of the obtained results. Along a similar path, in

Reference [53], the authors developed a convolution-based deep autoencoder (DAE)

model for predicting Arterial Blood Pressure (ABP) from the raw PPG signals. A

total of 1, 227 records are derived from MIMIC-II database [54], however, the number

of patients is not mentioned. The records are divided into three categories based

on the range of the BP values, after which, 60% of each category is considered for

the training set, 20% for the validation, and the remaining is used as the test set.

Although all samples of each record only appear in the train, validation, or the test

set, there is no evidence that the records are from different patients, noting that in

the MIMIC II database [54], for each patient multiple records are available. After
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training the model, 80 seconds (i.e., 10, 000 samples) from the test set is used for

penalization, resulting in a Mean Absolute Error of 7.945 and 4.114 for Systolic BP

and Diastolic BP, respectively.

In Reference [55], the authors developed and validated a continuous non-invasive

BP prediction using PPG signals. More specifically, in Reference [55], pulse wave

morphology is analyzed, and then an ML method is used to describe the relation-

ship between BP-indicators and BP. A probabilistic generative model is constructed

based on Deep Belief Network Restricted Boltzmann Machine feed-forward neural

network [55] to estimate Systolic BP and Diastolic BP. Proprietary data is used to

train and validate their proposed model resulting in the Mean Error (ME) of −2.98

and −3.65 for Systolic BP and Diastolic BP, respectively. In Reference [56], an end-to-

end deep learning architecture is proposed using only raw signals without the process

of extracting features to improve BP estimation. The proposed model consisted of a

convolutional neural network, a bidirectional gated recurrent unit, and an attention

mechanism. A total of 15 subjects were recruited for the study and 70 percent of the

data for each subject was used for training, 10% for validation, and the remaining

20% for testing. In this study [56], the data of each subject is divided into windows

of 5 seconds and only one forecast is made for SBP and DBP for the whole segment.

In other words, the target labels for SBP and DBP correspond to the end of each

segment [56], which is the common approach in BP estimation task.

2.2 sEMG-based Hand Gesture Recognition

Generally speaking, Surface Electromyogram (sEMG) datasets can be collected based

on “sparse multichannel sEMG” or “High-Density sEMG (HD-sEMG)”. The latter

records the electrical activity of muscles by two-dimensional arrays of closely-spaced

electrodes, extracting both temporal and spatial changes of muscle action potentials.

The advantages of this technique include the ability to obtain a large amount of

data and more robustness to electrode changes [57–59]. Despite advantages of HD-

sEMG, its utilization leads to structural complexity [60,61], while adoption of sparse

multichannel sEMG signals requires fewer electrodes making it the common modality
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of choice for incorporation into wearable devices [57, 62]. Therefore, development of

DNN models based on sparse sEMG signals has gained significant recent importance.

However, more efforts are needed to bridge the gap between academic research and

clinical solutions in this area [18].

sEMG-based Hand Gesture Recognition (HGR) is regarded as a promising ap-

proach for a wide range of applications, including myoelectric control prosthesis [19,

63–65], virtual reality technologies [66,67], Human-Computer Interactions (HCI) [68],

and rehabilitative gaming systems [69]. sEMG signals contain electrical activities of

the muscle fibers that can be employed to decode hand gestures and thereby enhance

immersive HMI wearable systems for immersion in Mixed Reality (MR) environ-

ments [18, 70]. In healthcare, sEMG is used to diagnose and treat neuromuscular

disorders such as muscular dystrophy, cerebral palsy, and spinal cord injuries. It can

also be used to control prosthetic limbs, allowing amputees to perform daily tasks

and regain independence. sEMG can provide valuable information about muscle acti-

vation patterns, allowing clinicians to develop targeted treatment plans and monitor

progress over time. In sports science, sEMG is used to measure muscle activation

during physical activity, providing insights into muscle function and performance. It

is also used in rehabilitation and injury prevention programs to help athletes recover

from injuries and maintain optimal physical health. In robotics, sEMG is used for

the development of robotic exoskeletons and other assistive technologies, allowing

users to control devices using their muscle activity. This technology has promising

applications in rehabilitation and mobility assistance. In HMI/HCI, sEMG is used

for gesture recognition and control of computer interfaces, allowing users to control

devices and applications using natural hand movements. This technology has the

potential to improve accessibility and ease of use for individuals with disabilities.

Overall, sEMG technology has a wide range of applications, and ongoing advance-

ments in machine learning and signal processing techniques are making it even more

powerful and versatile. Consequently, there has been a surge of interest in the de-

velopment of Deep Neural Networks (DNNs) and Machine Learning (ML) models to

identify hand gestures using sEMG signals. In Section 2.2.1, we provide an overview

of recent literature in this domain.
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2.2.1 Review of the Literatures on Myoelectric Control Sys-

tem

Typically, sparse sEMG signals are used in systems with only 2-8 channels to ob-

tain descriptive spectrotemporal features to determine the intended motion for the

control of the prosthesis. Early systems used electrodes carefully placed over ag-

onist/antagonist muscle groups to control a single Degree of Freedom (DoF) on a

power prosthesis. Issues with noise and spatial resolution prevent this technique from

extending well into multi-DoF systems [71]. To enhance the performance, multiple

sensors can be used to detect the intended DoF and the intensity of the activation.

This modification is named as proportional control which has been used for multi-

degree of freedom control of prostheses [18]. This type of direct/proportional control

is incredibly robust and remains the basis for most if not all control paradigms in

clinical use today. However, studies have shown that sEMG amplitude is non-linearly

related to muscle output force, especially when there is variation in joint angle [72].

Thus, amplitude-based direct control systems tend to result in disproportionate and

non-intuitive limb motions, which is believed to contribute to the high incidence of

upper limb-powered prosthesis abandonment [72]. Pattern Recognition control tech-

niques have emerged as potential solutions to utilize sEMG signals for high precision,

multi-DoF control, although further work is necessary for these to become practical

for clinical use.

More recently, sEMG signals have been collected with arrays of closely-located

high density (HD) electrodes for use in classification systems and Motor Unit Action

Potentials (MUAPs) Decomposition. When used with an ML-based pattern recog-

nition algorithm, data from HD-sEMG arrays can accurately differentiate between a

greater number of classes than a traditional 8 electrode setup [73]. HD-sEMG classi-

fication systems have also been shown to have increased robustness to electrode shift,

temporal variation, and electrode failure [71,73]. This approach can offer greater spa-

tial resolution and more comprehensive information about muscle activity, making it

ideal for research and clinical applications that require detailed muscle analysis. How-

ever, HD-sEMG systems can be expensive, bulky, and require significant processing

power to manage the large amounts of data generated. Moreover, some studies with
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HD-sEMG systems have found that the relationship between accuracy and the num-

ber of electrodes is not necessarily a monotonic function, and increasing the number

of electrodes beyond an optimal point can cause the system to lose accuracy due to

increased noise and over-fitting. Thus one use of HD-sEMG arrays is to select opti-

mal electrode placement [71]. Other studies record data with the full array but only

utilize a subset of the electrode channels for the control algorithm.

Although high-density sEMG (HD-sEMG) has been shown to offer higher spatial

resolution and more detailed information about muscle activity than sparse sEMG

data collection, the use of sparse sEMG data collection has its own set of advantages.

One of the primary benefits of sparse sEMG is that it can significantly reduce the com-

plexity of wearable devices, making them more accessible, smaller, and practical for

a wider range of applications. Additionally, sparse sEMG data collection can reduce

the amount of processing power and storage required to analyze the data, making

it easier to implement real-time signal processing and control algorithms. Finally,

sparse sEMG can be more comfortable for users as it requires fewer electrodes, and

they can be placed in more convenient locations, reducing the risk of skin irritation

or discomfort. Overall, both approaches have their own set of advantages and limita-

tions, and the choice of which method to use depends on the specific requirements of

the application. and the decision on which technique to use ultimately relies on the

specific needs of the application

The existing researches on prosthetic myoelectric control focus primarily on tra-

ditional ML approaches as a common strategy for HGR [74]. In general, the de-

veloped methods for classifying hand movements can be classified into the following

two main categories: (i) Traditional approaches based on Machine Learning (ML)

architectures [75–79]; and (ii) DNN-based techniques [57, 58, 64, 79, 80, 83, 84, 92, 96].

The common approach to perform Hand Gesture Recognition (HGR) in traditional

methods (Case (i)) is to extract hand-crafted (engineered) features to train classical

ML models such as Linear Discriminant Analysis (LDA), Support Vector Machine

(SVM), and Random Forests (RF). More specifically, in such methods, handcrafted

features, in the time domain, frequency domain, or time-frequency domain [58], are

first extracted by human experts, which are then fed to a classifier. Extraction and
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feature selection, however, can affect the overall performance [85], as such some re-

searchers [57] have explored and integrated several classical feature sets that provide

multi-view of sEMG signals to achieve higher gesture recognition accuracy. On the

other hand, different classifiers such as SVM, LDA, RF, and Principal Components

Analysis (PCA) are utilized in the literatures [78, 79, 85–87] to increase the discrimi-

nating power of the model and improve gesture recognition performance.

Although the traditional ML-based approaches have shown strong potential for

HGR task, more recently, there has been a great deal of interest in using deep-

learning architectures (Case (ii)) to process multi-channel sEMG signals and increase

the discrimination power of the model. In particular, it has been shown [79] that the

automatic feature extraction used in deep learning architecture can lead to higher

classification accuracy compared to their classical counterparts. This achievement

was the starting point for considering CNN as a promising approach in the context

of sEMG data classification [64,84,88]. In [59], authors proposed a CNN architecture

to extract spatial information from sEMG signals and perform HGR classification.

CNN-based architectures [57, 59, 88, 89] are common approaches for hand movement

classification, where sEMG signals are first converted into images and then used

as input for CNN-based architectures. However, the nature of sEMG signals is se-

quential, and CNN architectures only take into account the spatial features of the

sEMG signals. Therefore, in recent literature [20, 61, 90, 91], authors proposed using

recurrent-based architectures such as Long Short Term Memory (LSTM) networks to

exploit the temporal features of sEMG signals. On the other hand, it is suggested

in [58,92–94] to use hybrid models (CNN-LSTM architecture) instead of using a single

model to capture the temporal and spatial characteristics of sEMG signals. Although

recent academic researchers are improving the performance by using RNNs or hybrid

architectures, the sequence modeling with recurrent-based architectures has several

drawbacks such as consuming high memory, lack of parallelism, and lack of stable gra-

dient during the training [65, 96]. It is demonstrated in [95] that sequence modeling

using RNN-based models does not always outperform CNN-based designs. Specifi-

cally, CNN architectures have several advantages over RNNs such as lower memory

requirements and faster training if designed properly [95]. Therefore, in the recent lit-

erature [65,96–98], the authors took advantage of 1-D Convolutions developed based
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on the dilated causal convolutions, where the sequence of sEMG signals can be pro-

cessed as a whole with lower memory requirement during the training compared to

RNNs. Convolution operation in CNNs, however, has two main limitations, i.e., (i) it

has a local receptive field, which makes it incapable of modeling global context, and;

(ii) their learned weights remain stationary at inference time, therefore, they can-

not adapt to changes in input. Attention mechanism [14] can mitigate both of these

problems. Consequently, the authors in the recent research papers [19, 63, 99–101]

used the attention mechanism combined with CNNs and/or RNNs to improve the

performance of sEMG-based HGR. The attention mechanism’s major disadvantage

is that it is often computationally intensive. Therefore, a carefully engineered de-

sign is required to make attention-based models computationally viable, especially

for low-power devices.

Worth noting that one inherent problem in the sEMG-based hand gesture recog-

nition task is the time- and user-dependent nature of the sEMG signal [102]. In

other words, due to physiological differences in muscle activities from one user to an-

other, a pre-trained model on existing users (source) cannot be expected to perform

well on a new user (target) [103, 104]. In addition, various electrophysiological and

user-related variables can affect sEMG signals. These include muscle fatigue [105],

changes in electrode-skin impedance due to perspiration/humidity [106], electrode

displacement [107], and user-related issues such as variations in contraction intensity,

hand orientations, and arm postures [108]. As a result of these changes, the accuracy

of a pre-trained model on source data may degrade when testing on the target user

due to the domain shift. To this end, domain adaptation methods are highly rec-

ommended in this field of study, where learning algorithms involve some techniques

to transfer information from the source to the target domain despite the existence

of a distribution mismatch among them. As a result, Transfer Learning (TL) tech-

niques in upper-limb hand motion estimates have received a lot of attention in recent

years [109–114]. Furthermore, in [99], as a domain adaptation methodology, a novel

Few-Shot learning method is introduced with the objective of inferring the desired

output based on just one or a few observations from the target domain, resulting in

a promising performance for unseen user hand gesture recognition.
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Table 2.1: Maximum path lengths, per-layer complexity, and the minimum number
of sequential operations for different layer types. n is the sequence length, d is the
representation dimension, k is the kernel size of convolutions and r the size of the
neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

2.3 Brief Review on the Complexity of Common Deep

Neural Network Layers

Deep Neural Networks (DNNs) consist of various layers that perform specific oper-

ations on the input data. Each layer has its own computational complexity, which

influences the overall efficiency and performance of the network. Understanding the

computational complexity of different layers in deep neural networks is crucial for

designing efficient models. In this section, we review the complexities of common

layers, including self-attention layers, recurrent layers, and convolutional layers. Ta-

ble 2.1 provides an overview to summarize the complexities of these layers, the table

is borrowed from Ref. [14].

CNNs are widely used for capturing spatial patterns in data. The complexity of

a single convolutional layer depends on the kernel width (k) and the sequence length

(n). When k < n, a single layer fails to connect all input and output positions. To

achieve complete connectivity, a stack of O(n/k) convolutional layers is required for

contiguous kernels. In the case of dilated convolutions, O(logk(n)) layers are needed.

However, this increases the length of the longest paths between positions in the net-

work. Although convolutional layers are generally more computationally expensive

than recurrent layers, techniques like separable convolutions can significantly decrease

the complexity to O(k · n · d + n · d2). However, this will reduce the representation

power on convolutional layers.
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RNNs are particularly suitable for handling sequential data. The computational

complexity of recurrent layers is O(n), as they require sequential operations. How-

ever, RNNs have certain drawbacks, including high memory consumption, lack of

parallelism, and unstable gradients during training. These limitations can impact

their performance, especially in tasks with longer sequences.

Transformers have gained prominence due to their exceptional performance in var-

ious applications. The complexity of Transformers primarily lies in their self-attention

layers. A self-attention layer connects all positions in a sequence with a constant num-

ber of sequentially executed operations (O(1)). This makes self-attention layers faster

than recurrent layers when the sequence length (n) is smaller than the representation

dimensionality (d). However, for tasks involving very long sequences, the compu-

tational performance of self-attention can be improved by restricting attention to a

neighborhood of size r around each output position. This modification increases the

maximum path length to O(n/r).
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Chapter 3

Cuff-less and Non-invasive Blood

Pressure Estimation

This chapter focuses on development of deep learning-based architecture for contin-

uous and cuff-less blood pressure (BP) monitoring. In this regard, a robust deep

learning-based framework is proposed for computation of low latency and continuous

upper and lower bounds on the systolic and diastolic BP. Referred to as the BP-Net,

the proposed framework, shown in Fig. 3.1, is a novel convolutional architecture that

provides longer effective memory while achieving superior performance due to the

incorporation of casual dilated convolutions and residual connections. It is worth

mentioning that in the realm of blood pressure estimation, the prevailing approach

has been the utilization of RNN-based models. However, our research endeavors to

introduce a novel paradigm by adopting a different architectural foundation - Tem-

poral Casual Convolution. This choice stems from the notable advantages offered by

this architecture, which justifies the departure from the commonly employed RNN-

based models. By leveraging the strengths of Temporal Causal Convolutions, our

model brings forth faster and fewer memory requirements during training times. An-

other crucial advantage of Temporal Causal Convolutions is their ability to address

the problem of gradient vanishing or explosion, which can hinder training and limit

the performance of RNN-based models. By avoiding this issue, our model benefits

from enhanced training stability, ensuring more consistent and reliable convergence
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during the learning process. By harnessing the strengths of Temporal Causal Con-

volutions, our model offers a promising approach to blood pressure estimation. We

anticipate that these advantages will translate into improved accuracy and robustness

compared to the prevalent RNN-based models. Through our research, we aim to push

the boundaries of performance and contribute to advancing the field of blood pres-

sure estimation through the adoption of Temporal Causal Convolutions as a viable

alternative to RNN architectures. To utilize the real potential of deep learning in

extraction of intrinsic features (deep features) and enhance the long-term robustness,

the BP-Net uses raw Electrocardiograph (ECG) and Photoplethysmograph (PPG)

signals without extraction of any form of hand-crafted features as it is common in

existing solutions. By capitalizing on the fact that datasets used in recent literature

are not unified and properly defined, a benchmark dataset is constructed from the

MIMIC-I and MIMIC-III databases [115, 116] obtained from PhysioNet. The pro-

posed BP-Net is evaluated based on this benchmark dataset demonstrating promis-

ing performance and showing superior generalizable capacity. The proposed BP-Net

architecture is more accurate than canonical recurrent networks and enhances the

long-term robustness of the BP estimation task. The proposed BP-Net architecture

addresses key drawbacks of existing BP estimation solutions, i.e., relying heavily on

extraction of hand-crafted features, such as pulse arrival time (PAT). Finally, the

constructed BP-Net dataset provides a unified base for evaluation and comparison of

deep learning-based BP estimation algorithms.

The BP-Net architecture proposes a novel convolutional architecture for esti-

mating BP. After denoising the photo-plethysmograph (PPG) and electrocardiogram

(ECG) signals, the pre-processed signals are provided as inputs to the designed convo-

lutional architecture, i.e., excluding the need for feeding the models with hand-crafted

features, therefore, intrinsic deep features of the PPG and ECG signals are being used.

In brief, our main contributions for BP estimation can be summarized as follows:

• Most of the existing data-driven methodologies proposed for cuff-less BP estima-

tion depend on extraction of specific hand-crafted features such as pulse arrival

time (PAT) [36–44]. Capitalizing on recent evidence that neural networks can

extract the necessary features automatically without the need for complex fea-

ture engineering, we propose a convolutional architecture model that extracts

27



Figure 3.1: The architecture of proposed BP-Net.
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necessary features automatically using raw ECG and PPG waveforms. The

proposed model is able to estimate BP with high accuracy in an end-to-end

manner.

• The proposed BP-Net provides longer effective memory while achieving superior

performance in comparison to recurrent neural networks due to the incorpora-

tion of casual dilated convolutions and residual connections.

• In the studies presented so far, the lead of ECG signal is not considered (i.e., the

BP is estimated based on one type of ECG lead). The availability of different

leads of ECG signals (which are not the same for every subject) makes it difficult

to evaluate the generality of the obtained results. To address this problem, and

also to show the generality of the proposed model, we use different leads of ECG

signals such as I, II, III, V, AVR, and MCL.

• By capitalizing on the significant importance of continuous BP monitoring and

the fact that datasets used in recent literature are not unified and properly de-

fined, a benchmark data set is constructed from the MIMIC-I and MIMIC-III

databases from PhysioNet to provide a unified base for evaluation and compar-

ison of deep learning-based BP estimation algorithms.

The rest of the Chapter is organized as follows: The proposed BP-Net architecture

is presented in Section 3.1. Section 3.2 presents the experimental results for the

evaluation of the proposed framework based on real constructed datasets. Finally,

Section 3.3 concludes this chapter.

3.1 The BP-Net Framework

In the proposed method, estimation of the SBP and the DBP is performed auto-

matically via extraction of deep features from raw ECG and PPG signals without

incorporation of any form of hand-crafted PAT features. To achieve this goal, we

approach the BP estimation problem as a sequence modeling task. Before describing

the architecture of the proposed BP-Net, in what follows, first we provide a brief

overview of the constructed dataset utilized to develop the proposed BP-Net.
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3.1.1 BP-Net Dataset

As stated previously, in this Chapter, we introduce a unified and properly defined

benchmark dataset given the significant importance of continuous BP monitoring

and the fact that recent research works to train and test their algorithms on datasets

of their choice, impeding a fair judgment between their solutions. Capitalizing on

this issue, we aim to provide a platform with a reference dataset, where different

algorithms can be evaluated and compared by utilizing the same training set to opti-

mize new processing algorithms, and the same test dataset to be used to measure the

associated performance. Despite the differences, all existing studies share a common

validation procedure in which experiments are conducted on a proprietary database

containing a fewer number of subjects with reference to our work, therefore, it is dif-

ficult to evaluate the generality of the obtained result. For this purpose, we increased

the number of subjects (293 individuals).

The BP-Net dataset is collected from the Multi-parameter Intelligent Monitor-

ing for Intensive Care (MIMIC) [115] provided by the PhysioNet server. MIMIC-I

database contains PPG, multi-lead ECGs, and arterial blood pressure (ABP) signals

at 125 samples per second with 8 bit precision. Data is derived from 90 patients

monitored in the medical, surgical, and cardiac intensive care units (ICU) of different

hospitals [115]. The requirement set forward to construct the BP-Net dataset is to

have concurrent PPG, ECG, and ABP signals, therefore, out of the 90 available sub-

jects, we were able to collect data from 56 patients. To further increase the number

of subjects, MIMIC-III [116] database, which is an update to the common MIMIC-

II [54], is also used as the second source for data preparation. The MIMIC-III contains

data associated with a large number of different hospitals for distinct patients in ICU

between 2001 and 2012. Similar to MIMIC-I, signals were sampled at the frequency

rate of 125 Hz with 8 bit accuracy [115]. We have collected data from 237 patients

who had simultaneous PPG, ECG, and ABP from this dataset resulting in a total

of 293 subjects in the BP-Net dataset. In terms of duration, the size of the data is

140.43 hours, where we have a total of 653 records for 293 subjects. The ground truth

SBP and DBP values are extracted from an identical ABP signal. Then, these beat-

to-beat SBP and DBP data points are interpolated using Piecewise Cubic Hermite
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Table 3.1: Information about the type of available ECG leads, their duration, and the number of
available records.

ECG Lead I II III V AVR MCL Not-Available

Number of Records 14 183 24 139 149 9 138

Duration (Hour) 3.11 40.57 5.33 30.77 32.32 1.93 26.39

minimum) values of a segmented BP signal. In other words, in these prior works,

an approximation approach is used to form a ground truth label for each segment

resulting in a constant SBP (DBP) representing the whole segment. In our approach,

instead of using a constant SBP (DBP) for each segment, we used interpolation to

have a continuous signal. A potential drawback with prior approaches is that the

BP signals are, typically, contaminated by artifact noise, which can lead to incorrect

ground truth SBP (DBP) extraction. This, in turn, would reduce the BP estimation

accuracy of the learning model. Potential effects of artifact noise are reduced by

rejecting outliers through the incorporated interpolation approach.

As stated previously, in the existing studies, to the best of our knowledge, the

lead of ECG signal is not considered, i.e., the BP is estimated based on one lead of

ECG. The availability of different leads of ECG signals makes it difficult to evaluate

the generality of the obtained results. To address this problem, and also to show

the generality of the proposed model, different leads of ECG signals are included

in the dataset. Table 3.1 presents details about the type of available ECG leads,

their duration, and the number of records associated with each lead. Finally, the

constructed BP-Net dataset is available through the link provided in Reference [126].

3.1.2 The BP-Net Architecture

We consider the problem of BP estimation from ECG and PPG signals collected

from Ns = 293 number of subjects, where ECG, PPG, and ABP data associated

with subject l, for (1 ≤ l ≤ Ns), each has a total of T (l) number of samples. We

define an ECG vector x(l)(t) = [X
(l)
1 , . . . , X

(l)
t ]T consisting of samples from ECG

time-series collected from the lth subject from the starting time (t = 1) to time (t ≤
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T (l)). Note that x(l)(t) is a vector representing all ECG samples available for the lth

subject. Similarly, we define a PPG vector p(l)(t) = [P
(l)
1 , . . . , P

(l)
t ]T representing PPG

measurements collected from the lth individual upto and including time (t ≤ T (l)).

Finally, vector b(l)(t) = [B
(l)
1 , . . . , B

(l)
t ]T represents the BP values from time instant 1

to T (l).

The goal of the BP-Net architecture is to learn a nonlinear function h(x(l)(t),p(l)(t))

that takes as input ECG x(l)(t) and PPG p(l)(t) sequences and provides a predicted

value B̂(t) for the BP at time t. The target of the network is to minimize the cost func-

tion L
(

B(t),h
(

x(l)(t),p(l)(t)
))

between all the results of the hypothesized functions

h(·) with ECG and PPG input sequences, and the actual output B(t). The Mean

Square Error is used for the cost function. In what follows, we describe different

aspects of the proposed BP-Net architecture.

Casual Convolutions : A basic aspect of the proposed BP-Net architecture is that

we want to make sure that the output B̂(t) estimated at time step t depends only on

previous and current input samples (i.e., ECG x(l)(t) and PPG p(l)(t) sequences) and

not on any “future” values. In other words, while during the training phase, we have

access to future values of the input signals (ECG and PPG sequences), a network

trained by using such information can not be practically used to provide real-time

predictions due to information leakage. To address this issue, one needs to implement

causal filters within a deep learning architecture. The basic approach in this regard

is to train the model with no causality restrictions and, during the implementation

phase, mask out those regions of the feature maps that are derived from future input

values. This masking approach can be achieved by setting the associated parts of the

filter kernel to zero at each stochastic gradient descent (SGD) update. This approach

is, however, costly in terms of required/wasted computational resources as, more or

less, half of the multiplication and addition operations are wasted. In the BP-Net

architecture, we utilize an alternative approach, i.e., the Causal Convolutions [127]

are incorporated within the BP-Net architecture. Fig. 3.3 illustrates one example

of casual convolutions. In causal convolutions, by capitalizing on the translation-

equivalence property of the convolution, the input signal is first shifted and padded

by the kernel size and then the introduced shifting is removed.

For long sequences, architectures with causal convolutions are much faster to train
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Figure 3.3: Causal Convolution.

than RNNs due to the absence of recurrent connections. However, one of the main

drawbacks of the CNN-based models is the limited receptive field. For example, in

Fig. 3.3, the receptive field of the neurons at the output layer is only 4, i.e., they see

effects from up to four previous input samples (limited history size). For increasing

the receptive field in casual convolutions, very deep networks or large filters should be

applied, which are not generally feasible approaches. To address this issue, therefore,

dilated convolutions [128] are used within the BP-Net architecture as described below.

Dilated Convolutions: Dilated convolutions are used as an effective way to enlarge

the receptive field within the BP-Net without losing resolution as shown in Fig. 3.4.

Consider a 1-D time series x ∈ R
Nx and a 1-D Kernel K : {0, 1, . . . , R− 1} → R with

size R. Discrete dilated convolution operation D(p) on the pth element of vector x

with dilation rate L is defined as follows

D(p) ≜ (x ∗L K)(p) =
R−1
∑

i=0

K(i)× x(p− L× i), (1)

where dilated convolution is denoted by ∗L, and (p− L× i) refers to elements of the

input vector x prior to time pth element. Fig. 3.4 provides an illustration of dilated

convolution. The dilation rate (L) is a design parameter, and dilated convolution

becomes similar to the regular convolution with a dilation rate of L = 1. Generally
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Figure 3.4: Dilated Causal Convolution.

speaking, in dilated convolution, the receptive field of a kernel K with size R is

expanded to R + (R− 1)(L− 1) with dilated stride of L.

Residual Connections: In theory, by stacking more layers, we expect that the

network achieves lower training error and learns better, however, in practice, it is

very challenging to train very deep neural networks due to the vanishing and ex-

ploding gradient problems. In other words, by adding more layers to a deep neural

network, accuracy gets saturated and then degrades promptly. This problem is called

“degradation”, which was introduced by [129]. In [129], the authors, addressed the

degradation problem by adding shortcut connections to the network referred to as

“residual connections”. In this case, by skipping over some layers, information passes

into the network. Fig. 3.5(a) shows a sample of “Identity Block” which is a stan-

dard block used in ResNets. An identity Block is used when the input and output

dimensions of the block are the same. If the block’s input and output dimensions

do not match, another type of ResNets block called “Resnet Convolutional Block” is

employed to match dimensions by using 1×1 convolutions as illustrated in Fig. 3.5,

ϕ represents the activation function, which applied on the element-wise addition of

residual mapping function (F ) and the input (x).

BP-Net Structure and Hyperparameters Settings: Inspired by Reference [95],
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Figure 3.5: Residual learning (a) Identity block. (b) Convolutional block.

the residual block as a basic block is used for the network structure. As shown in

Fig. 3.1, this block consists of two dilated casual convolutions and two nonlinear

activation functions (ELU) [130]. Moreover, dropout [131] for regularization, and

weight normalization [132] are used in this block. We use Adam optimizer as the

optimization algorithm with the learning rate set to 0.001. The learning rate changes

in a cycle with the length of 100 epochs. After 20 epochs, we divide the learning rate

by 2, but after 100 epochs instead of dividing by 2, we multiply it by 14.4. Therefore,

the learning rate at the beginning of each cycle will be 90% of the learning rate at

the beginning of the previous cycle. This novel approach of creating a learning rate

helps to avoid being stuck in local minimums while speeding up the training process.

These models are trained with a mini-batch size of 64. The exact structure of the

proposed BP-Net network is as follows:

• PPG and ECG signal as inputs are separately fed to a 1×1 convolutions layer

with 32 kernels, and then the concatenated channel-wise results are fed to the

first residual block.

• Six residual blocks are stacked in the proposed architecture with the following

characteristics:

– All the dilated causal convolutions have kernel size of 5.

– The dilation factor (L) is doubled for every layer, i.e., 1, 2, 4, 8, 16, and

32.

– For Residual block 1 to 6, the number of kernels are 32, 32, 64, 64, 128,

and 256, respectively.

• The output of the sixth block is fed to a 1×1 convolution layer with 256 kernels

followed by an ELU activation function, (1×1) convolution layer with 2 kernels,

and again an ELU activation function.
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(MAE), are used given by

RMSE =

√

√

√

√

1

n

n
∑

j=1

|Bj − B̂j|2, and MAE =
1

n

n
∑

j=1

|Bj − B̂j|, (2)

where Bj is the actual observed BP, whereas B̂j determines its corresponding pre-

dicted value. Table 3.2, summarizes the average RMSE and MAE results obtained

from averaging individual RMSE and MAE values corresponding to each subject (293

subjects). Table 3.2 also illustrates the combined MAE and RMSE results obtained by

stacking together the target signals of all the subjects. The overall results presented

in Table 3.2 show exceptional performance of the proposed BP estimation framework

especially for estimating the DBP.

Table 3.2: The RMSE/MAE between ground truth BP(SBP, DBP) and estimated BP in the
proposed model.

Data Split Average RMSE Average MAE RMSE MAE
Train:Validation:Test (mmHg) (mmHg) (mmHg) (mmHg)

SBP
7 : 1 : 2

3.03 ± 1.97 2.59 ± 1.78 3.59 2.57

DBP 1.58 ± 1.19 1.33 ± 1.03 1.97 1.32

SBP
4 : 2 : 4

3.59 ± 2.19 3.05 ± 2.02 4.16 3.02

DBP 1.79 ± 1.16 1.48 ± 0.99 2.12 1.47

SBP
2 : 2 : 6

3.90 ± 2.84 3.25 ± 2.51 4.72 3.21

DBP 1.97 ± 1.47 1.61 ± 1.25 2.41 1.59

We would like to point out that one general issue in BP estimation task is the time-

and user-dependent nature of the ECG, PPG, and blood pressure signals. Variations

in the probability distribution of these biomedical signals across different subjects

make the experience gained on an unseen person difficult. Therefore, domain adapta-

tion methods are highly recommended in this field of study, where learning methods

focus on transferring information between a source and a target domain despite the

existence of a distribution mismatch among them. However, in this study, training

of the network is fully supervised, therefore, following previous studies [48,50,52,56],

the data for each patient was divided into train, validation, and test sets. We con-

sider this as a limitation for our current study and a future direction of research. It is

worth mentioning that, even in subject-independent training approaches [34,50,53], it
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Table 3.3: Comparison with state-of-the-art researches.

Author Data Used Data Split Model Signal

Error

Train:Validation:Test SBP DBP

Kachuee et al. [34]
MIMIC II

1000 subjects
10 min

8 : 1 : 1
classical ML
(AdaBoost)

ECG, PPG MAE: 11.17 MAE: 5.35

Su et al. [48]
Proprietary data

84 subjects
10 min

7 : 1 : 2
Deep Learning

(LSTM)
ECG, PPG RMSE: 3.73 RMSE: 2.43

Tanveer et al. [50]
MIMIC 1
39 subjects

7 : 1 : 2
Deep Learning

(LSTM + ANN)
ECG, PPG

MAE: 0.93
RMSE: 1.27

MAE: 0.52
RMSE: 0.73

Eom et al. [56]
Proprietary data

15 subjects
30 min

7 : 1 : 2
Deep Learning

(CNN + Bi-GRU + Attention)
ECG, PPG, BCG MAE: 4.06 MAE: 3.33

Qin et al. [53]
MIMIC II

1227 records

Categorize records
into 3 classes

(Normal,
Prehypertension,
Hypertension)

For Each Class → 6 : 2 : 2

Deep Autoencoder
(DAE) model

PPG MAE: 7.95 MAE: 4.11

Fan et al. [52] MIMIC II 8 : 1 : 1
Deep Learning

(Res2Net)
ECG (lead II)

MAE: 7.69
RMSE: 12.30

MAE: 4.36
RMSE: 6.88

Paviglianiti et al. [51]
MIMIC

40 subjects
-

Deep model
(ResNet+LSTM)

ECG (lead V), PPG
MAE: 4.12
RMSE: 5.68

MAE: 2.23
RMSE: 2.97

This study
MIMIC

293 subjects
140.43 hours

7 : 1 : 2

Deep model
(TCN)

PPG
ECG (Multi-Lead I, II, III, V, AVR, MCL)

MAE: 2.59
RMSE: 3.03

MAE: 1.33
RMSE: 1.58

4 : 2 : 4
MAE: 3.05
RMSE: 3.59

MAE: 1.48
RMSE: 1.79

2 : 2 : 6
MAE: 3.25
RMSE: 3.90

MAE: 1.61
RMSE: 1.97
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findings are presented in Table 3.3, allowing for a comprehensive comparison and

analysis of different approaches in the field. While it may not be fair to directly

compare models based on their error metrics due to the variability in data, Table 3.3

sheds light on the diverse data sources, number of subjects, total duration of data,

and methodologies employed in the recent literature, providing valuable insights for

researchers and practitioners seeking to enhance blood pressure estimation through

machine learning techniques. In what follows we discuss and compare the proposed

BP-Net with its state-of-the-art counterparts:

• As shown in Table 3.3, the authors in the previous studies [48,50,51,56] trained

and validated their model on a few numbers of subjects (e.g., 15, 39, 40, or

84) which is not enough for establishing a model that can potentially be used

broadly for general subjects. While we extend the number of subjects to 293

patients with a total duration of 140.43 hours of data.

• In the studies presented so far such as References [51,52], the lead of ECG signal

is not considered, i.e., the BP is estimated based on a single lead of ECG. The

availability of different leads of ECG signals makes it difficult to evaluate the

generality of the obtained results. As stated previously in subsection 3.1.1, to

address this problem the prepared dataset consists of different leads of ECG

signal, and a single model is trained using all leads of ECG signal.

• It is worth mentioning that the basic building block of the proposed BP-Net

architecture is Dilated Causal Convolutions, therefore, it can be categorized as

a Temporal Convolutional Network (TCN) instead of RNN. TCN architecture

provides several advantages over RNNs such as faster training with lower mem-

ory requirements and more stable training because of avoiding the problem of

gradient vanishing/explosion. Performance of temporal convolutional and re-

current architectures are evaluated in Reference [95], where it was shown that

TCN architecture outperforms canonical RNNs across a comprehensive suite

of tasks and datasets. Consequently, by inheriting these characteristics of the

TCN, the proposed BP-Net architecture is expected to be more accurate than

its counterparts developed based on canonical recurrent networks. To further

support this conclusion, Table 3.3 also compares performance of the proposed
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BP-Net architecture with RNN-based approaches [48, 50, 51, 56]. It can be ob-

served that even when the size of the training set is decreased, BP-Net has

comparable performance to that of the RNN-based models.

3.3 Conclusion

In this chapter, we proposed a deep learning-based architecture (named as BP-Net)

for continuous, cuff-less, and alignment-free BP estimation, which utilizes raw ECG

and PPG signals as inputs, unlike the common methods in BP estimation litera-

ture, which use engineered and pre-defined physiological features as the first building

block of their recommended approaches. By utilizing raw signals (ECG and PPG)

as inputs, without hand-crafted extraction of features, we explore the real potential

of deep learning in the utilization of intrinsic features (deep features) of the input

signals. In addition, a benchmark data set is being prepared that has the potential to

provide a unified framework for the evaluation and comparison of deep learning-based

BP estimate techniques. The dataset is publicly available via the link provided in

Reference [126].
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Chapter 4

Improving Accuracy for Hand

Gesture Recognition

In recent years, there has been a growth of interest in developing deep learning-based

approaches for HGR, which show encouraging classification results [58, 89]. In par-

ticular, deep learning techniques provide an effective venue to automatically extract

features from sEMG data and improve gesture recognition accuracy compared to their

classical counterparts. However, many of the existing deep learning approaches in-

volve only a single model, which may not effectively extract representative features

and can cause a reduction in performance. In this chapter, we address this gap by

designing a Transformer-based hybrid solution that has great potential for extracting

special and spatio-temporal representation to improve HGR accuracy. In particular,

capitalizing on the recent success of Transformers in various fields of Machine Learn-

ing [15–17, 133], we aim to examine its applicability and potential for sEMG-based

hand gesture recognition. More precisely, the Transformer-based models offer several

advantages over RNN- and CNN-based deep neural networks. Firstly, the Trans-

former model has a self-attention mechanism that allows it to capture long-range

dependencies in the input data more effectively than RNNs, which are prone to the

vanishing gradient problem. This makes it particularly suitable for sEMG-based hand

gesture recognition, as it enables the model to capture temporal dependencies and

complex patterns in sequential electromyography signals. Secondly, Transformers are
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inherently parallelizable, making them more efficient to train and evaluate compared

to RNNs, which rely on sequential computation. This parallelism can be crucial for

real-time hand gesture recognition applications, where low latency is desired. Lastly,

the Transformer architecture does not have any spatial assumptions like CNNs, which

makes it more flexible for capturing non-local relationships in the sEMG signals. This

is beneficial as sEMG data can exhibit complex spatial patterns that may not be cap-

tured effectively by CNNs. Therefore, given the ability of Transformers to capture

long-range dependencies, their parallelizable nature, and their flexibility in handling

non-local relationships, they are a well-justified choice for sEMG-based hand gesture

recognition tasks.

As illustrated in Fig. 4.1, our proposed framework for hand movement recognition,

referred to as the Transformer for Hand Gesture Recognition (TraHGR), incorporates

two parallel paths, namely the Special Transformer Network (SNet) and the Feature

Transformer Network (FNet), followed by a linear layer. This approach is designed

to effectively process special-temporal data in the form of surface electromyography

(sEMG) signals. Specifically, the SNet network is responsible for extracting features

from each sensor, while the FNet network focuses on extracting spatio-temporal fea-

tures from the input sEMG data. The outputs of both paths are then integrated

using a linear layer, resulting in a more comprehensive representation that augments

the discriminating power of the model and enhanced the overall performance of the

hand movement recognition task.

It is worth noting that sEMG signals are special-temporal data, which means that

they contain information about both the spatial location of the sensors and the tem-

poral changes in muscle activation over time. Therefore, an effective hand movement

recognition model needs to take into account both types of features to accurately

classify different hand movements. The proposed TraHGR framework achieves this

by leveraging the strengths of both the SNet and FNet networks, resulting in a more

accurate classification model for sEMG-based hand movement recognition.

The performance of the proposed TraHGR framework is evaluated using the sec-

ond Ninapro database [87,134] referred to as DB2, which is a publicly available dataset

that provides sparse multi-channel sEMG signals from various hand movements simi-

lar to those obtained in real-life conditions. The sEMG signals in the DB2 dataset are
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Figure 4.1: The proposed TraHGR architecture consists of two parallel paths (SNet
and FNet). Each segment of sEMG signals X is divided into N non-overlapping patches.
The TraHGR uses the SNet path to get the special patches while simultaneously the FNet
is utilized to consider the featural patches including both special and temporal information.
In both SNet and FNet, the patches are mapped linearly into the model dimension D. We
refer to the output of this step as łPatch Embeddingž. Then, a łclass tokenž is prepended
to the sequence of patch embeddings which is őnally used for the classiőcation purpose.
The łPositional Embeddingž is added to the łPatch Embeddingž to retain the positional
information. The result is fed to the Transformer encoder consisting of L layers, each layer
consisting of Multi-head Self Attention (MSA) and Multi-Layer Perceptron (MLP) modules.
Finally, we add the output of the SNet and FNet class tokens to get the őnal representation,
which then acts as the input to the linear layer.

measured in real-life conditions from 40 healthy users, each performing 49 gestures.

Thus, Ninapro dataset enables development of innovative DNN-based recognition
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solutions for HGR tasks. We conduct an extensive set of experiments to test and val-

idate the proposed TraHGR architecture and compare its achievable accuracy with

several recently proposed HGR classification algorithms based on the same datasets.

Results show that the proposed TraHGR framework provides superior performance

over all its counterparts on the DB2 dataset and its sub-exercises. More specifi-

cally, The DB2 dataset is presented in three sub-exercises; i.e., DB2-B (17 gestures),

DB2-C (23 gestures), and DB2-D (9 gestures). TraHGR classifies a high number (49)

of gestures with a high accuracy. More specifically, compared with the proposed ar-

chitectures in the recent state-of-the-art studies, TraHGR improves the recognition

accuracies to 86.18% on DB2 (49 gestures), to 88.91% on the DB2-B (17 gestures),

to 81.44% on DB2-C (23 gestures), and to 93.84% on the DB2-D (9 gestures).

The rest of the Chapter is organized as follows: In Section 4.1, we describe the

details of the proposed TraHGR architecture. The experiments and results are pre-

sented in Section 4.2. Finally, the conclusion is presented in Section 4.3.

4.1 The TraHGR Framework

This section provides a detailed explanation of the TraHGR architecture that has

been proposed for hand gesture recognition. The architecture is designed based on

the Transformers in which the attention mechanism is employed. The attention mech-

anism has been used in previous studies [58,83,99] in conjunction with CNNs and/or

recurrent-based architectures for HGR task. However, the proposed Transformer-

based architecture relies solely on attention mechanisms and outperforms the previous

studies in which CNN, RNN, and hybrid architectures (e.g., attention-based hybrid

CNN-RNN) have been adopted. The overall proposed architecture is illustrated in

Fig. 4.1, which is inspired by the Vision Transformer (ViT) [17], in which each in-

put is divided into patches, and the network is supposed to perform label prediction

based on the sequence of patches. The patching mechanism is a technique used in

transformers to reduce computational requirements and enhance the ability to cap-

ture features of long sequences. As shown in Fig. 4.1, the proposed TraHGR consists

of a SNet path implemented in parallel with a FNet path followed by a linear layer,
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which acts as the fusion center combining the extracted features from each of the two

parallel paths in order to classify the hand gestures. In the following, we will further

elaborate on the details of the proposed TraHGR architecture.

4.1.1 Patching and Embedding

In this sub-section, we focus on the input of the Transformer encoder, which is a

sequence of embedded patches. As illustrated in Fig. 4.1, the embedded patches are

constructed from patch embeddings and position embeddings, which are described

below.

Patching: Even though sEMG data is naturally time-series data, the patching mech-

anism is still utilized in our approach for feeding the data to transformers. This is be-

cause the transformer model has a quadratic growth in computation with the length

of the input sequence. By dividing the input sequence into smaller, i.e., fixed-size

patches, we can reduce the computational requirements of the transformer model,

making it more efficient and effective from both the memory consumption and com-

putation perspective.

Each input from the sEMG signal segmentation phase is denoted by X ∈ R
S×w×C ,

where S shows the number of sensors in the DB2 dataset, w shows the number of

samples of electrical activities of muscles obtained at the rate of 2 kHz for a window

of 200ms, 150ms, or 100ms, and C denotes the number of channels of the sEMG

signals. We split each segment of sEMG signals X into non-overlapping patches

Xp = {xi
p}Ni=1. More specifically, each segment X ∈ R

S×w×C is divided into N non-

overlapping patches in which each patch is flattened. We represented the sequence of

these flattened patches with Xp ∈ R
N×(P1.P2.C), where (P1, P2) shows the size of each

patch, and N = S.w/(P1.P2) represents the length of this sequence, i.e., the number

of patches. As shown in Fig. 4.1, we applied two types of patching:

• Special Patching: Here, the size of each patch is (1, w); therefore, the number

of patches is N = S. We refer to this patching technique as Special Patching

because each patch contains information from only one of the sensors in the

dataset for a sequence with a length of w. Therefore, Special Patching as
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the first building block of the SNet path provides temporal changes in muscle

activation over time at each patch corresponding to a specific sensor.

• Featural Patching: We set the size of each patch to (S, S), i.e., P1 = P2 = S,

therefore, the number of patches is N = w/S. We refer to this type of patching

as Featural because each patch contains the information of all S sensors for a

sequence with a length of S. Therefore, both spatial and temporal information

are included in a Featural patch. The Featural patches are provided as the

input only to the FNet layer as shown in Fig. 4.1.

Patch Embeddings: As shown in Fig 4.1, after patching mechanisms are applied to

the input data, a linear mapping is applied to create the embedding vectors form each

patch. To achieve this, a shared matrix E ∈ R
(P1.P2.C)×D is used to linearly project

each patch xi
p to a D dimensional vector (as shown in Eq. (3)). It is important to

note that both Special and Featural Patching have their own corresponding projection

matrix. The output of this projection is known as the “patch embeddings”.

Class Token: Similar to the BERT framework [16], a trainable embedding is prepended

to the sequence of patch embeddings (Z0
0 = xclass) with the goal of capturing the

meaning of the entire segmented input as a whole. More specifically, the class token’s

embedding after the last Transformer encoder layer (Z0
L) is used for classification

purposes (Eq. (11)).

Position Embeddings: As HGR based on sEMG signals is a time-series processing

task, the order of data is an essential part of sequence modeling. Recurrent-based

architectures such as LSTM inherently consider signal order, however, Transformers

do not process the input sequentially and combine the information of all the elements

through an attention mechanism. Therefore, there is a need to encode the order

of each element in the sequence. This is where positional embedding comes in. In

fact, position embedding allows the network to determine where a particular patch

came from. There are several ways to retain position information at the Transformer

input, e.g., Sinusoidal positional embedding, 1-dimensional positional embedding,

2-dimensional positional, and Relative positional embeddings embedding [17, 133].

Following [17], we used the standard trainable 1-dimensional positional embeddings.

As shown in Fig. 4.1, position embeddings indicated by Epos ∈ R
(N+1)×D is added to
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the patch embeddings. The formulation which governs patch and position embeddings

is as follows

Z0 = [xclass;x
1
pE;x

2
pE; . . . ;x

N
p E] + Epos. (3)

where [; ] represents concatenation operation. The output of Eq. (3) is fed as an input

to the Transformer encoder.

4.1.2 Transformer Encoder

The Transformer encoder takes the Z0 as an input. This block is inspired by the main

Transformer encoder introduced in [14], which treats all embedded patches as tokens.

As illustrated in Fig. 4.1, the Transformer encoder consists of L layers. Each layer

contains two modules, namely the Multihead Self-Attention (MSA) and a Multi-Layer

Perceptron (MLP) module, i.e.,

Z
′

l = MSA(LayerNorm(Z(l)−1)) +Z(l)−1,
(l) = 1 . . .L (4)

Zl = MLP(LayerNorm(Z
′

(l))) +Z
′

(l) ,
(l) = 1 . . .L (5)

It is worth noting that a layer-normalization [135] is used before MSA and MLP

modules, and the residual connections are applied to address degradation problem.

The MLP module consists of two linear layers in which the first layer is followed by

Gaussian Error Linear Unit (GELU) activation function. Moreover, the MSA module

is defined based on the Self-Attention (SA) mechanism, which is discussed next.

Self-Attention (SA): The SA mechanism [14] measures the pairwise similarity of

each query and all the keys and obtains a weight for each value. Finally, the output

is computed based on the weighted sum over all values. In particular, if we define an

input Z ∈ R
N×D consisting of N vectors, each of length D, the three matrices, i.e.,

Queries Q, Keys K, and Values V , are calculated as follows

[Q,K,V ] = ZWQKV , (6)
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where WQKV ∈ R
D×3Dh denotes the trainable weight matrix and Dh shows the length

of each vector in Q, K, and V . To measure the weights for V , the dot-product of

Q and K is calculated, then scaled with
√
Dh. These weights are converted to the

probabilities P ∈ R
N×N using the softmax function as follows

P = softmax(
QKT

√
Dh

). (7)

Finally, the output of the SA mechanism is computed as follows

SA(Z) = PV . (8)

By using the attention mechanism, the model pinpoints a piece of specific information

in the input sequence.

Multihead Self-Attention (MSA): Here, the SA mechanism is used for h times

in parallel, allowing the architecture to pinpoint specific pieces of information in

the input sequence for each head differently. In particular, each head has its own

trainable weight matrix. The final matrix in the MSA mechanism is a projection of

the concatenated outputs of the h heads, which is formulated as follows

MSA(Z) = [SA1(Z);SA2(Z); . . . ;SAh(Z)]WMSA, (9)

where WMSA ∈ R
h.Dh×D. Here, Dh is set to D/h to keep the number of parameters

constant when h changes.

4.1.3 TraHGR’s Output

As shown in Fig. 4.1, the TraHGR consists of two paths, i.e., SNet and FNet. For

each path, the aforementioned calculations (Eqs. (3)-(9)) are performed in parallel.

Then, the predicted class labels of each path is calculated based on its corresponding

Z0
L as follows

ypath = Linear(LayerNorm(Z0
L)path), (10)
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Table 4.1: The number of parameters in different variants of FNet, SNet, and TraHGR
architectures with respect to the number of layers, model dimension (D), and the number
of heads (h) and MLP size in Transformer Encoder. The number of parameters (#Params)
is reported for window sizes 200ms, 150ms, and 100ms.

Model #Layers (L) Model dimension (D)
MLP size

#Heads (h)
#Params

200ms 150ms 100ms 200ms 150ms 100ms

TraHGR-Base 1 32 128 4 83,731 74,259 63,603

TraHGR-large 2 64 256 4 316,051 297,107 275,795

TraHGR-Huge 1 144 720 8 846,579 803,955 756,003

SNet 1 144 720 8 472,513 431,041 384,385

FNet 1 144 720 8 366,673 365,521 364,225

SNet-Huge 1 200 1084 1120 1162 8 846,733 803,569 756,611

FNet-Huge 1 224 1176 1085 1102 8 846,377 803,726 756,247

where path ∈ {SNet,FNet}. Finally, the output of the TraHGR is calculated based

on the sum of Z0
L in the SNet and FNet as follows

y = Linear(LayerNorm[(Z0
L)SNet + (Z0

L)FNet]). (11)

It is worth mentioning that ySNet, yFNet, and y are used for TraHGR training. More de-

tails are provided in the subsection 4.2.1. This completes description of the proposed

TraHGR architecture, next, its performance is evaluated through several experiments.

4.2 Experiments and Results

In this section, we evaluate the performance of the proposed TraHGR architecture

through a series of experiments. In all experiments, the Adam optimizer [136] was

used with the learning rate of 0.0001 and the weight decay of 0.001. Moreover,

the batch size is set to 512. Table 4.1 shows the different configurations of the

hyperparameters in the TraHGR architecture resulting in different variants of the

model denoted by TraHGR-Base, TraHGR-large, and TraHGR-Huge. These variants

are then used for training and evaluation purposes with different window sizes of

100ms, 150ms, and 200ms. Moreover, we evaluated the performance of a single deep

model (SNet or FNet) when they are trained independently. In Table 4.1, the number
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Table 4.2: Comparing different variants of TraHGR. The average accuracy of hand gesture
recognition across all subjects in the DB2 (49 gestures) dataset for different variants of
TraHGR architecture on several window sizes (200ms, 150ms, and 100ms).

Model
Accuracy ± STD

200ms 150ms 100ms

TraHGR-Base 78.60 ± 6.03 77.54 ± 5.99 76.17 ± 6.09

TraHGR-large 83.58 ± 5.48 82.58 ± 5.60 81.30 ± 5.87

TraHGR-Huge 86.18 ± 4.99 85.43 ± 5.24 84.13 ± 5.21

of parameters (Params) is calculated for DB2 (49 gestures) while this number will be

less for DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures).

4.2.1 Loss Function

The loss function L of TraHGR consists of the following three components

L = LSNet + LFNet + LTraHGR, (12)

where the first term LSNet is loss of the SNet path in the proposed TraHGR architec-

ture. More specifically, the cross-entropy loss is considered for measuring classification

performance using the SNet’s output ySNet (Eq. (10)) and the target values. Simi-

larly, the second term LFNet is the cross-entropy loss computed using the second path

(FNet) of the TraHGR architecture where FNet’s outputs yFNet (Eq. (10)) are con-

sidered. Finally, the last term LTraHGR is calculated using the TraHGR’s output y

(Eq. (11)).

4.2.2 Evaluation of the Proposed TraHGR Architecture

This subsection provides evaluations on the prediction performance of the proposed

hybrid transformer-based architecture. In this regard, first, we compare different
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Table 4.3: Comparison of architectures with the same structure. The average accuracy
of hand gesture recognition across all subjects in the DB2 (49 gestures) dataset for FNet,
SNet, and TraHGR-Huge architectures on several window sizes (200ms, 150ms, and 100ms).
As shown in Table 4.1, the network structure in SNet and FNet is not changed compared
to the TraHGR-Huge structure.

Model
Accuracy ± STD

200ms 150ms 100ms

TraHGR-Huge 86.18 ± 4.99 85.43 ± 5.24 84.13 ± 5.21

SNet 83.39 ± 5.44 82.81 ± 5.60 81.43 ± 5.88

FNet 80.72 ± 5.82 80.05 ± 6.03 79.38 ± 6.15

Table 4.4: Comparison of architectures with the same scale. The average accuracy of
hand gesture recognition across all subjects in the DB2 (49 gestures) dataset for SNet-Huge,
FNet-Huge, and TraHGR-Huge architectures on several window sizes (200ms, 150ms, and
100ms). As shown in Table 4.1, the number of parameters in SNet-Huge and FNet-Huge is
on the same scale as TraHGR-Huge.

Model
Accuracy ± STD

200ms 150ms 100ms

TraHGR-Huge 86.18 ± 4.99 85.43 ± 5.24 84.13 ± 5.21

SNet-Huge 83.80 ± 5.78 83.25 ± 5.34 82.21 ± 5.45

FNet-Huge 81.10 ± 5.68 80.44 ± 5.48 79.94 ± 5.83

variants of the TraHGR architecture and show the effect of different hyperparameters

(e.g., number of layers, model dimension, MLP size, and number of heads) on the

overall accuracy. Then, to demonstrate the performance of the hybrid transformer,

we also compare the TraHGR architecture with single deep models, i.e., SNet and

FNet, and their Huge versions.

Table 4.2, 4.3, and 4.4 show HGR recognition accuracy, which is averaged over

all subjects for the test set. From Table 4.2, it can be observed that the pro-

posed TraHGR-Huge architecture outperformed other TraHGR architecture variants
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performance of the proposed architectures for DB2 (49 gestures) and its three sub-

exercises, i.e., B, C, and D are shown. It can be observed that for both window

sizes of 200ms and 150ms achieving a high accuracy for DB2-C is more challenging

than DB2-B and DB2-D subsets. More specifically, DB2-C consists of 23 grasping

and functional movements for which everyday objects like a bottle and knife are

presented to the user for grasping, in order to mimic daily-life actions such as opening

a bottle or cutting something [137]. Therefore, the performance reduction in the DB2-

C subset is not far from expectation as the muscle groups which are predominantly

used during movements of DB2-C are more complicated than basic hand posture and

wrist movements in DB2-B and finger force patterns in DB2-D subsets.

As shown in Table 4.1, when comparing the number of trainable parameters in

SNet and FNet against the different variants of proposed TraHGR architectures,

TraHGR-large, although smaller, has the closest number of trainable parameters to

these single networks. More precisely, for window sizes 200ms and 150ms, SNet has

approximately 1.5× more parameters than TraHGR-large, and FNet is almost 1.2×
larger. For the window size of 100ms, both single networks have almost 1.3× more pa-

rameters than TraHGR-large. However, as shown in Table 4.2 and 4.3, TraHGR-large

has comparable performance to SNet, and it outperforms FNet, showing that a hybrid

model with fewer number of parameters is capable to extract more generic represen-

tations resulting in comparable or even better performance compared to larger single

networks, SNet and FNet. According to Table 4.1, the network structure in SNet

and FNet is completely different than TraHGR-large. Therefore, we conducted a

new experiment in which the structure of the single and hybrid networks remained

unchanged. To do so, we can compare the performance of TraHGR-Huge against the

SNet and FNet (see Table 4.1). As shown in Table 4.3, the TraHGR-Huge outper-

forms the single deep models (SNet and FNet) when the structure of the networks

is preserved. However, since the number of trainable parameters is TraHGR-Huge

is considerably larger than SNet and FNet, the performance improvement could be

conducted due to the TraHGR-Huge capacity to represent more complex hypothesis

space. As a result, we conducted new experiments in which the number of parameters

for new variants of SNet and FNet architectures is expanded to be on the same scale

as TraHGR-Huge. Specifically, to increase the number of parameters in new variants

of SNet and FNet, we began by increasing model dimension D and stopped just before
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exceeding the number of parameters in TraHGR-Huge. Then, the size of the MLP

layer in the transformer encoder is enlarged to fill the remaining gap in terms of the

number of parameters as much as possible, resulting in SNet-Huge and FNet-Huge

architectures. Detailed information about the structure of different variants of these

single networks and their number of parameters are provided in Table 4.1. As shown

in Table 4.4, TraHGR-Huge significantly outperforms SNet-Huge and FNet-Huge ar-

chitectures while they are all in the same scale.

As shown in Table 4.3 and 4.4, although the number of trainable parameters in

SNet-Huge and FNet-Huge are significantly increased compared to SNet and FNet,

their average recognition accuracy improvement for different window sizes is not sig-

nificant. As a result, since the single networks were not capable to achieve high

performance even with massive parameters expansion and given the outstanding per-

formance of TraHGR-Huge architecture, it can be concluded that the hybrid approach

integrates the advantages of two parallel paths to model better and more generic rep-

resentation resulting in performance improvement. It is worth mentioning that for

hybrid models such as TraHGR-Base, TraHGR-large, and TraHGR-Huge, the clas-

sification accuracy is calculated using the output of Eq. (11), while for single deep

models such as SNet and FNet this number is computed using the output of Eq. (10).

4.2.4 Statistical Analysis

Following [99,138], we considered each user as a separate dataset and conduct Wilcoxon

signed-rank test [139]. To do so, given that we have 40 users, for each model we will

have 40 accuracies resulting from each user’s test set. Having accuracies for each

model, we performed statistical analysis on the effectiveness of the observations for

DB2 (49 gestures) For the window size of 200ms.

According to the results shown in Fig. 4.3, the difference in accuracy between

TraHGR-Huge and other proposed architectures such as TraHGR-Base, TraHGR-large,

SNet, and FNet, for window sizes 200ms were considered statistically significant by

the Wilcoxon signed-rank test. Worth to mention that, in Fig. 4.3, the p-value of

significance is considered 0.05 and the annotated ∗ mark represents p ≤ 0.05. Fig. 4.3

illustrates the performance distribution across 40 users for each proposed model.
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other 25% of users fall into the higher part of the box. As shown in Fig. 4.3, The

boxplot corresponding to TraHGR-Huge compared to other counterparts is shifted

up. In other words, TraHGR-Huge has improved the performance of all users. Fur-

thermore, when comparing different TraHGR variations, it is clear that increasing

the number of parameters led to an increase in accuracy due to the models’ enhanced

capacity to extract more generic representations. However, increasing the number of

parameters does not have a significant improvement on the SNet and FNet as shown

in the Fig. 4.3, “ns” stands for not significant, i.e., 0.05 < p-value ≤ 1.

For evaluating the robustness of the proposed approach, in particular, 100 MC

runs are performed where at each run sensor measurements are contaminated by

additive Gaussian noise based on a specific level of signal-to-noise ratio (SNR). MC

simulation results (100 times and SNR = 25 dB) for the proposed TraHGR-Huge

is 85.68% ± 5.32%, while without MC simulation (Table 4.2) the accuracy for the

same model is 86.18% ± 4.99%. The achieved accuracy shows a remarkably stable

performance of the proposed model.

4.2.5 Position-Wise Cosine Similarity

As illustrated in the proposed TraHGR architecture in Fig. 4.1, each patch in the

in SNet only consists of the temporal information of one sensor for the length of

window size (e.g., 200ms, 150ms). As a result, the positional embeddings represent

their associated sensors. Therefore, as shown in Fig. 4.4, the position-wise cosine

similarity of the positional embedding vectors in the SNet captures the mutual corre-

lation/entanglement of the sensors in the hand movements. As depicted in Fig. 4.4,

the sensory information is highly correlated for the TraHGR-Base as the smallest

network, when the network gets larger (left to right) and the sequence length gets

longer (down to up), the network’s capacity to cherry-pick the sensors to associate is

increased.

On the other hand, each patch in FNet consists of both temporal and spatial in-

formation. As illustrated in Fig. 4.1, unlike the patching mechanism in SNet, there is

temporal information flow from one path to another in the FNet patching mechanism
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not adequately infer the concept of positions. As a result, it is reasonable to deduce

that the window size has a direct influence on the transformer encoder’s ability to

infer position information.

4.2.6 Comparison with existing deep learning approaches

Table 4.5 provides a comparison between our proposed approach TraHGR-Huge and

the available methodologies, which shows the superiority of our architecture over the

experimental results obtained from the state-of-the-art researches [57, 58, 79, 86–88].

This comparison was evaluated based on the same settings for the DB2 (49 gestures)

dataset and its sub-exercises, i.e., DB2-B (17 gestures), DB2-C (23 gestures), and

DB2-D (9 gestures). The Ninapro database was collected from 40 users. Each user

performs 49 movements in which each movement is repeated 6 times, each time lasting

for 5 seconds, followed by 3 seconds of rest. The sEMG signals were gathered using

the Delsys Trigno Wireless EMG system with 12 wireless electrodes, sampled at 2

kHz. The DB2 dataset was presented in three exercises B, C, and D, which consist

of different types of movements. In particular, Exercises B, C, and D consist of 17,

23, and 9 movements, respectively.

According to the recommendations in [140], the window size should be less than

300ms to meet the acceptable delay time for myoelectric control systems. Therefore,

in this study, we segmented sEMG signals with three windows, i.e., 200ms, 150ms,

and 100ms, to fulfill the mentioned limitation. As shown in Table 4.5, our proposed

approach TraHGR-Huge achieved higher accuracy than the existing methodologies

evaluated based on DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures),

DB2-D (9 gestures), with different time window sizes. More specifically, we compared

the proposed architecture with both advanced DNNs and classical ML approaches.

For instance, Reference [79] showed the average classification accuracy obtained

using all the classical methods such as SVM, RF, KNN, and LDA on the DB2 (49

gestures) dataset is 60.28%. They achieved the highest gesture recognition accuracy

for RF which is 75.27%. Moreover, in Reference [86], they achieved the recognition
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Table 4.5: Comparison between our methodology (TraHGR-Huge) and previous works [20,
57,58,79,86,88,137].

Method Database
Window size

200ms 150ms 100ms

CNN [57] DB2 (49 gestures) 83.70 82.70 81.10

Attention-based Hybrid CNN-RNN [58] DB2 (49 gestures) 82.20 - -

CNN [88] DB2 (49 gestures) 78.86 - -

CNN [86] DB2 (49 gestures) 78.71 - -

CNN [79] DB2 (49 gestures) - 60.27 -

SVM [86] DB2 (49 gestures) 77.44 - -

RF [137] DB2 (49 gestures) 75.27 - -

RF [78] DB2 (49 gestures) 72.25 - -

TraHGR-Huge DB2 (49 gestures) 86.18 85.43 84.13

CNN + Dilated LSTM [20] DB2-B (17 gestures) 79.00 - -

CNN [86] DB2-B (17 gestures) 82.22 - -

CNN [88] DB2-B (17 gestures) 83.79 - -

SVM [86] DB2-B (17 gestures) 81.07 - -

TraHGR-Huge DB2-B (17 gestures) 88.91 88.14 -

CNN [86] DB2-C (23 gestures) 72.62 - -

SVM [86] DB2-C (23 gestures) 71.08 - -

TraHGR-Huge DB2-C (23 gestures) 81.44 79.99 -

CNN [86] DB2-D (9 gestures) 89.54 - -

SVM [86] DB2-D (9 gestures) 88.56 - -

TraHGR-Huge DB2-D (9 gestures) 93.84 93.58 -

accuracy of 77.44% using SVM over all the movements. In addition, the recogni-

tion accuracy of 72.25% is reported in Reference [78] for the RF classifier. For DNN
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architectures, on the other hand, the best detection accuracy is reported in Refer-

ence [57] using CNN, which is 83.70%. As shown in Table 4.5, for a window size

of 200ms, our proposed architecture achieved 86.18% classification accuracy which is

2.48% higher than the state-of-the-art DNN approach and 8.74% higher than state-

of-the-art classical ML method. Moreover, it can be observed that for other window

sizes, the classification accuracy of our proposed approach achieved better gesture

recognition performances than its counterparts. For example, when the window size

is set to 100ms, our proposed approach TraHGR-Huge was able to achieve gesture

recognition accuracy of 84.13%, but using the proposed approach of [57], the accu-

racy of 81.1% is achieved. It should be noted that the accuracy of 84.13% obtained

by TraHGR-Huge with a window size of 100ms is still higher than the case where

the window size in Reference [57] has doubled, i.e., 200ms. We also evaluated and

compared our proposed method for DB2-B (17 gestures), DB2-C (23 gestures), and

DB2-D (9 gestures) with the previous studies [86, 88], which demonstrates the supe-

riority of our hybrid Transformer-based framework.

Authors in [20] introduced a hybrid CNN-LSTM model achieving 79% average ac-

curacy on the window size of 200ms as shown in Table 4.5. They reduced the number

of parameters in the proposed model using dilated LSTM, resulting in 1, 102, 801 pa-

rameters for 17 gesture classifications. However, as shown in Table 4.5, TraHGR-Huge

outperforms [20] for 17 gesture classification with less number of parameters (832, 659).

4.2.7 Transfer Learning Impact on TraHGR Performance

In this experiment, The 5th Ninapro database [78], referred to as the DB5, is used for

the ease of comparison with Ref. [114]. The DB5 dataset is recorded with two Thalmic

Myo-armbands recording muscular activity at a rate of 200Hz. The DB5 dataset, in

particular, consists of signals collected from 10 users executing 52 actions/movements.

Each movement in the DB5 dataset is repeated 6 times, each lasting for 5 seconds fol-

lowed by 3 seconds of rest. The DB5 dataset is provided in three sets of exercises [78].

In this work, we only consider data collected by the lower armband in DB5 in the

second exercise of the DB5 to follow the same criteria in [114] and also have a fair

comparison. Moreover, out of 6 movement repetition for each target user, following
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Table 4.6: The average accuracy of hand gesture recognition across all subjects in the second
experiment of Ninapro DB5 dataset on the window size of 260ms. The average accuracy is
reported on 5 and 6 repetitions for all models in Ninapro DB5 dataset.

Repetitions (Rep.) Used for

Training/Fine-tuning

Accuracy ± STD

ConvNet [114] ConvNet+TL [114] TraHGR-Huge TraHGR-Huge+TL

Rep. 1, 2, 3, 4 66.30 ± 3.77 68.98 ± 4.09 71.21 ± 1.99 74.63 ± 2.52

Rep. 1, 2, 3 61.91 ± 3.94 65.16 ± 4.46 66.82 ± 2.07 69.01 ± 2.77

Rep. 1, 2 55.65 ± 4.38 60.12 ± 4.79 58.68 ± 2.81 62.07 ± 2.70

Rep. 1 46.06 ± 6.09 49.41 ± 5.82 51.33 ± 2.93 53.42 ± 3.31

[114], the first four repetitions are used to fine-tune the pre-trained network, and the

last two repetitions serve as the test set.

Table 4.6 shows the average accuracy on the second experiment of the Ninapro

DB5 dataset. As shown in Table 4.6, the TraHGR-Huge outperforms ConvNet [114]

whether the training process of the network is involved with the TL stage or solely

trained for each user. In Table 4.6, the networks without TL training stage are in-

dependently trained for each user. However, to integrate TL techniques into the

training process, we conducted a typical TL method to utilize the knowledge learned

in the source domain to promote the learning process in a target domain. Specifically,

given a user as the target, in the first stage, the training sets of the remaining nine

participants/users are employed to pre-train the TraHGR-Huge network. Then, to

fine-tune the pre-trained network, the weights of the SNet and FNet in TraHGR-Huge

are maintained intact by freezing them, and the non-frozen parts of the network are

updated using one, two, three, or four repetitions of the target data (see Table 4.6).

As shown in Table 4.6, using transfer learning as a domain adaptation approach is con-

ducted to performance improvement of both the TraHGR-Huge and ConvNet models

compared to their corresponding user-specific trained models. When comparing our

transformer-based model to ConvNet with convolutional structure, we can infer that

TraHGR-Huge achieves higher accuracies, demonstrating the proposed model’s ability

to extract more useful representations from raw sEMG data.
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to the case where the loss function has only one component (Eq. (13)).

4.3 Conclusion

In this chapter, we proposed a hybrid architecture based on the Transformers for the

task of hand gesture recognition. We have shown that the proposed hybrid archi-

tecture could augment the power of model discrimination resulting in a significant

performance improvement in the task at hand. Moreover, we investigated the ability

of Transformers for sEMG-based hand gesture recognition as such they revolutionized

other fields and applications such as NLP, CV, and speech recognition. In this re-

gard, we compared TraHGR results with traditional ML approaches and DNN-based

techniques and demonstrated the outstanding performance of the proposed architec-

ture. However, one major drawback of transformers, especially for wearable devices,

is their high computational requirements. This high computational requirement can

be a significant challenge for embedding the models in wearable devices, which typ-

ically have limited processing power and battery life. Running a transformer model

on a wearable device can quickly drain its battery and cause performance issues. To

address this issue, we have explored new architecture to reduce the computational

requirements of transformers, which is provided in the next chapter.
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Chapter 5

Light-weight CNN-Attention based

Architecture for sEMG-based Hand

Gesture Recognition

Despite extensive research in this area and the fact that academic researchers achieve

high classification accuracy in laboratory conditions, there is still a gap between aca-

demic research in sEMG pattern recognition and commercialized solutions [18]. For

instance, one of the main obstacles in current prosthesis devices is the lack of feedback

provided to the user regarding the prosthesis’s position or the forces being applied.

This can make the control process difficult and less precise for the user, leading to

less natural and less efficient interaction with the device. To develop a user-friendly

and reliable prosthesis control, providing feedback is crucial [18, 141,142]. Moreover,

there are challenges related to the wearability and portability of the sEMG-based sys-

tems, as well as the ease of use, and the robustness against the variations in muscle

activation patterns, which may affect the performance of the systems [143]. Aca-

demic researches often focus on developing advanced and sophisticated algorithms to

improve the performance of sEMG-based prosthesis control, but these methods may

be too complex or too expensive to be practical for industrial use from the time and

computation perspective [19, 63–65]. All these factors contribute to the existing gap
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between academic research in sEMG pattern recognition and commercialized solu-

tions, and further research and development are needed to overcome these limitations

and improve the performance and usability of sEMG-based systems for practical ap-

plications. In this context, the primary goal of this study is to reduce the gap by

developing DNN-based models that not only have high recognition accuracy but also

have minimal processing complexity, allowing them to be embedded in low-power

devices such as wearable controllers [19, 20]. Furthermore, the designed DNN-based

models should be based on the minimum number of electrodes while estimating the

desired gestures within an acceptable delay time [18, 55]. Consequently, we develop

the novel Hierarchical Depth-wise Convolution along with the Attention

Mechanism (HDCAM) model for HGR based on sparse sEMG signals to fill this

gap by meeting criteria such as improving the accuracy and reducing the number

of parameters. The HDCAM is developed based on the Ninapro [87, 144] database,

which is one of the most well-known sparse multi-channel sEMG benchmark datasets.

Although recent academic researchers are improving the performance by using Re-

current Neural Networks (RNNs) or hybrid CNN-RNN architectures [20,61,90,92–94],

the sequence modeling with recurrent-based architectures has several drawbacks such

as consuming high memory, lack of parallelism, and lack of stable gradient during the

training [65, 96]. It is demonstrated [95] that sequence modeling using RNN-based

models does not always outperform CNN-based designs. Specifically, CNN archi-

tectures have several advantages over RNNs such as lower memory requirements and

faster training if designed properly [95]. Therefore, in the recent literature [65,96–98],

the authors took advantage of 1-D Convolutions developed based on the dilated causal

convolutions, where the sequence of sEMG signals can be processed as a whole with

lower memory requirement during the training compared to RNNs. Convolution oper-

ation in CNNs, however, has two main limitations, i.e., (i) it has a local receptive field,

which makes it incapable of modeling global context, and; (ii) their learned weights

remain stationary at inference time, therefore, they cannot adapt to changes in in-

put. Attention mechanism [14] can mitigate both of these problems. Consequently,

the authors in the recent research papers [19, 63, 99–101] used the attention mecha-

nism combined with CNNs and/or RNNs to improve the performance of sEMG-based

HGR. The attention mechanism’s major disadvantage is that it is often computation-

ally intensive, necessitating a carefully engineered design to ensure computational
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The small version of the proposed HDCAM with 58, 441 parameters achieves 83.54%

top-1 classification accuracy on Ninapro DB2 dataset with 18.87× less number of

parameters compared to the previous approach [20].

5.1 The Proposed HDCAM Architecture

The primary objective of this study is to build a lightweight hybrid architecture

that successfully combines advantages of Attention- and CNN-based models for low-

powered devices. In what follows, the HDCAM architecture is explained in detail,

and then the training objectives are described.

5.1.1 Overview of HDCAM Architecture

In the proposed framework, a sliding window strategy with the window size of W ∈
{150, 200, 250, 300ms} is adapted to use the multi-variate temporal sEMG informa-

tion, resulting in dataset D = {(Xi, yi)}Ni=1. More specifically, yi ∈ R is the label

assigned to the ith segmented sequence Xi ∈ R
L×C . Here, L is the length of the

segmented sequential input corresponding to the number of samples obtained at a

frequency of 2 kHz for a window of size W , and C denotes the number of channels

in the input segment corresponding to the number of input features/sensors. As il-

lustrated in Fig. 5.2, the HDCAM framework has a hybrid design based on CNN and

the “Multi-Head Self-Attention (MHA) mechanism” to reap the advantages of both

methods for designing a lightweight architecture for low-power devices.

As shown in Fig 5.2(a), the overall HDCAM architecture consists of four dif-

ferent stages, the first three for multi-scale feature extraction and the last one for

classification. HDCAM is made up of two primary components, namely “Hierar-

chical Depth-wise Convolution (HDConv)” encoder and “Multi-Head Self-Attention

(MHSAtten)” encoder, where the former and latter aim to model the local and global

information in the sequential input, respectively. Formally, for a given segmented

sequential input Xi ∈ R
L×C , HDCAM begins with the Stem layer. More specifically,

the Stem layer serves as a patching mechanism for the input Xi which applies a 10×1
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respectively. In the final stage, a Global Average Pooling (GAP) operation is used

to reduce the feature maps’ dimension followed by a Linear layer for classification.

When Supervised Contrastive (SC) loss is adopted to training model the output of

the GAP layer, denoted by zi ∈ R
C3 , is used as the input Xi representation, further

discussed in section 5.1.4. Here, Ck refers to number of channels in kth stage, for

k ∈ {1, 2, 3}.

5.1.2 HDConv Encoder

As shown in Fig. 5.2(b), the proposed HDConv block combines depth-wise convolution

with a hierarchical structure to extract local features at multi-scales. The proposed

multi-scale feature extractor is inspired by the Res2Net [145] module, which combines

features with different resolutions. Different from the Res2Net module, we omitted

the first point-wise convolution layer and added a 3×1 depth-wise convolution to the

first branch. Also, the number of active branches in the hierarchical convolutional

structure is dynamic and varies depending on the stage. In HDConv module, input

feature maps of shape L×C is evenly splitted into s subsets/scales, denoted by xi of

shape L×C/s, where i ∈ {1, 2, . . . , s}. Then, 3× 1 depth-wise convolution, denoted

by DwConvi, is applied on each subset xi after combining with the previous branch

output features, denoted by yi−1. Generally, we can write the output features of each

branch yi as follows

yi =







DwConvi(xi) i = 1

DwConvi(xi + yi−1) 2 ≤ i ≤ s
(14)

As shown in Fig 5.2(b) and Eq. (14), the hierarchical structure allows each depth-wise

convolution DwConvi receive the information from all previous splits, {xj, j ≤ i}.

The output feature maps of all branches are concatenated and passed through an

LN followed by point-wise convolution to enrich the multi-scale local representation,

and finally, Gaussian Error Linear Unit (GELU) activation is used for adding non-

linearity to the model. For information flow through the network hierarchy, residual

connection is used in HDConv encoder. The HDConv encoder can be represented as
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follows

Xout = Xin + LinearGELU(LN(HDwConv(Xin))) (15)

where Xin and Xout are the HDConv input and output feature maps, both of shape

L × C, LinearGELU is point-wise convolution followed by GELU non-linearity LN

is Layer Normalization, and HDwConv is hierarchical depth-wise convolution oper-

ation. Finally, it worth to note that in order to expand the receptive field in the

deeper layers of the network, the number of active branches (Bi in Fig 5.2(b)) in

HDConv Encoder is increased from Stage 1 to Stage 3 for the proposed model.

5.1.3 MHSAtten Encoder

In [14], the authors showed that the attention mechanism allows a model to present

global information in a given input sequence. Furthermore, attention-based architec-

tures [19,63,99–101] have shown promising performance in the context of sEMG-based

HGR by extracting particular bits of information from the sequential nature of the

sEMG signals. However, most of these models are still heavy-weight to be used in

resource-constrained devices. Hence, in the proposed HDCAM architecture, we de-

signed a hybrid architecture that combines convolutions and attention mechanism

advantages. Specifically, due to spatial inductive biases in convolution operation, the

CNN-based encoder (HDConv) assists our hybrid model to learn local representations

with fewer parameters than solely attention-based models. However, to effectively

learn global representations, we also used an attention-based encoder (MHSAtten).

Since computation in the MHA has quadratic relation to input size, we only used

the MHSAtten encoder in the second and third stages of the HDCAM to efficiently

encode the global representation, where the length of the sequential feature maps are

1/20 and 1/40 of the original input of the network, respectively. The MHSAtten

encoder can be represented as follows

Xout = LinearGELU(LN(Xin +MHA(LN(Xin)))) +Xin (16)

where Xin and Xout are the MHSAtten input and output feature maps, both of shape

L×C, LinearGELU is point-wise convolution followed by GELU non-linearity LN is

Layer Normalization, and MHA is Multi-Head Self-Attention mechanism. In MHA,
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the input feature maps Xin of shape L × C are passed through a Linear projection

to create Queries Q, i.e., a matrix with the same shape as the input feature maps.

Then, Queries Q is evenly splitted into h subsets, denoted by qi of shape L × C/h,

where i ∈ {1, 2, . . . , h} and h is number of the heads. In parallel, the same approach

has been applied to construct Keys and Values subsets, i.e., ki and vi. Finally, on

each head, the attention block measures the pairwise similarity of each qi and all kh

to assign a weight to each vh. The entire operation is

Ah = Softmax(
qhk

T
h√
d

)vh, (17)

where d=C/h denotes the dimension of kh and qh subsets. Then concatenation of

attention feature maps of all heads is projected to get the final attention maps of the

MHA mechanism, i.e., MHA(Xin)=Linear(Concat(A1, A2, . . . , Ah)). This completes

the description of the proposed HDCAM architecture, next, we present the training

objectives of the proposed model.

5.1.4 Training Objectives

For model training, we employ a hybrid loss that consists of two-fold: (i) Cross

Entropy (CE) loss which focuses on identifying the helpful features to perform the

classification objective, and (ii) Supervised Contrastive (SC) loss which assists to

learn more robust and generic features by minimizing the ratio of intra-class to inter-

class similarity.

Cross Entropy (CE) Loss: To train a classifier by CE loss, the predicted proba-

bility of each sample Xi is compared to the actual expected value yi, and a loss is

calculated to penalize model weights θ based on how far the prediction is from the

actual expected value. Given a training batch B = {(Xi, yi)}|B|i=1, the CE is formulated

as

LCE = − 1

|B|

|B|
∑

i=1

yilog pθ(yi|Xi) (18)

where pθ(yi|Xi) is predicted class probability by the classifier. Although CE loss is

the most commonly used objective function to adjust weights of deep classification
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models, it has several known issues, such as the lack of robustness to noisy labels [146]

and the possibility of inefficient margins [147]. Hence to mitigate these limitations

inspired by recent works [148, 149], we added SC loss [150] as a regularization term

to the conventional CE objective function.

Supervised Contrastive (SC) Loss: The SC loss is intended to increase the simi-

larity between features resulting from positive sets while simultaneously driving away

features of the negative sets. Following [150], to form positive and negative sets, we

leverage label information. For instance, given a training batch B = {(Xi, yi)}|B|i=1,

for a sample Xi (i.e. anchor), the anchor set is all samples in the batch except Xi,

and the positive set is composed of the samples that are in the same class as Xi, i.e.,

samples with the label yi. Accordingly, the negative set is defined by the samples

that are in the anchor set but not in the positive set. To compute the SC loss, we

first embed inputs in lower dimension space to get the representations, denoted by

z⋆. Then, the SC loss can be computed by

LSC = − 1

|B|
∑

∀i∈I

log

∑

∀p∈P(i) exp(zi · zp)
∑

∀a∈A(i) exp(zi · za)
(19)

where · denotes the dot product operation, I = {1, 2, . . . , |B|} indicates indices of

all samples in the batch, i ∈ I is the index of the anchor, A(i) ≡ I\{i} represents

the indices of all batch samples but the anchor, and P(i) = {p ∈ A(i) : yi = yp}
is positive set composed of the indices of samples sharing the same class. In our

framework, the output feature maps of the GAP layer in stage 4 are used as the

representations z⋆ of the inputs (see Fig. 5.2(a)).

Hybrid Loss: According to [150], using the conventional SC loss requires two distinct

training stages for a classification problem: first, learning the representations using

SC loss, and second, training classifier on top of the learned representations with the

CE loss. However, SC loss generally demands a relatively high batch size in order

to get acceptable and stable performance, while this is not the case for CE loss.

Therefore, to take the advantages of both CE and SC losses, we jointly trained the

HDCAM with the weighted sum of them as follow

LH = LCE + λLSC (20)
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where λ is a weighting coefficient for balancing the losses. Using weighted sum of

losses, we can have end-to-end training and learn more general and robust represen-

tation due to the minimization of the intra- to inter-class similarity ratio.

5.2 Experiments and Results

The proposed HDCAM is trained and tested using the second Ninapro dataset [87]

referred to as the DB2, which is the most commonly used sparse sEMG benchmark.

For a fair comparison, as well as following the recommendations of the database [87]

and previous literature [19,20,94,99], we considered two repetitions (i.e., 2 and 5) for

testing and the remaining repetitions for training. The DB2 dataset is presented in

three sets of exercises (B, C, and D). Following [19,20,94], the focus is on Exercise B

which consists of 17 hand movements.

5.2.1 Results and Discussions

In this section, a comprehensive set of experiments is conducted to evaluate the perfor-

mance of the proposed HDCAM architecture. Table 5.1 represents the sequence of the

HDConv and MHSAtten encoders along with design information of the extra-extra

small (XXSmall), extra-small (XSmall), and small (Small) versions of the model. As

shown in Table 5.1, the type, number, and sequence of the component blocks in the

overall model architecture (illustrated in Fig. 5.2) are maintained across all HDCAM

architecture variants. The differentiation between the XXSmall, XSmall, and Small

models lies in the number of output channels present in each stage. Since the number

of active branches (s) and attention heads (h) in the HDConv and MHSAtten en-

coders is proportional to the number of output channels of the corresponding stage, we

maintained the fundamental rule for all model variants, which requires having at least

eight channels per-head/per-branch. Additionally, the maximum allowed number of

heads/branches is set to four. All models were trained using the Adam optimizer at

a learning rate of 10−4. We trained HDCAM with only using CE loss (Eq. 18), and

also with hybrid loss (Eq.20) in which we empirically set to λ = 0.25. Furthermore,
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Table 5.1: HDCAM Architecture variants. Description of the models’ layers with
respect to kernel size, and output channels, repeated n times. We use a hier-
archical structure in HDConv Encoder to extract multi-scale local features. Also,
MHSAtten Encoder is used to extract global representations of the feature maps.

Layer (n) #Layers Kernel Size
Output Channels

XXSmall XSmall Small

S
ta

ge
1 Stem 1 10× 1 16 24 24

HDConv Encoder 1 3× 1 16(s = 2) 24(s = 3) 24(s = 3)

S
ta

ge
2

Downsampling 1 2× 1 24 32 32

HDConv Encoder 2 3× 1 24(s = 3) 32(s = 4) 32(s = 4)

MHSAtten Encoder 1 − 24(h = 3) 32(h = 4) 32(h = 4)

S
ta

ge
3

Downsampling 1 2× 1 32 48 64

HDConv Encoder 4 3× 1 32(s = 4) 48(s = 4) 64(s = 4)

MHSAtten Encoder 1 − 32(h = 4) 48(h = 4) 64(h = 4)

Global Avg. Pooling 1 − 32 48 64

Linear 1 1 17 17 17

Model Parameters 20, 689 40, 281 58, 441

during training, the number of samples for each class in a batch is set to 32, leading to

a balanced batch of size 544 samples. In the following sections, we conducted several

experiments to evaluate our proposed HDCAM model. It is worth mentioning that

in certain experiments, models were exclusively trained using CE loss to exclude the

influence of the SC loss on the outcomes.

Impact of Contrastive Loss

Table 5.2 illustrates the average recognition accuracy of different variants of HDCAM

over all subjects with and without SC loss function involvement in model training. It

can be observed that the performance of all variants of HDCAM for all window sizes is

improved when SC loss was involved in training. For instance, the best performance is

archived for Small model with a window size of 300 ms in Table 5.2 which is 82.91%,
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Table 5.2: Accuracy of HDCAM variants trained with hybrid loss (λ=0.25) and only
CE loss over different window sizes (W ).

Model ID XXSmall XSmall Small XXSmall XSmall Small

Loss LH = LCE + λ ∗ LSC LCE

W
=

15
0

m
s Accuracy (%) 80.82 82.01 82.44 80.53 81.51 82.21

STD (%) 6.6 6.2 6.3 6.9 6.6 6.7

W
=

20
0

m
s Accuracy (%) 81.34 82.66 82.86 81.10 81.77 82.28

STD (%) 6.7 6.7 6.5 6.8 6.8 6.6

W
=

25
0

m
s Accuracy (%) 81.73 82.82 83.13 81.26 82.17 82.57

STD (%) 6.8 6.6 6.6 6.8 6.7 6.6

W
=

30
0

m
s Accuracy (%) 82.03 83.23 83.54 81.73 82.61 82.91

STD (%) 6.6 6.8 6.3 6.7 6.6 6.5

while this value increased by 0.63% when SC is used along with CE loss. These

performance improvements demonstrate the usefulness of the SC loss in improving

the quality of the learned representation.

The Model’s Dimension

This experiment analyzes the recognition accuracy of the HDCAM by varying the

number of channels in each stage, yielding XXSmall, XSmall, and Small models. In

this regard, Table 5.2 shows the results for all variants of the proposed architecture

for different window sizes. For the same arrangement of component layers, it can be

seen from Tables 5.1 and 5.2 that the accuracy of the model is improved by increasing

the dimensions of the stages regardless of training with hybrid loss or sole CE loss.

More specifically, the dimension of the stage 3 is the only difference between the

XSmall and Small architectures, resulting in more informative high-level features in

the Small model, which leads to better performance. Comparing XXSmall versus two

other variants, the dimension of all stages has reduced leading to lower performance.

From Table 5.1 and 5.2, it can be observed that there is a trade-off between the

complexity of the model and the accuracy.
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The Effect of Window Size

As shown in Table 5.2, sliding window strategy with window of size

W ∈ {150, 200, 250, 300ms} is adapted to evaluate the performance of the HDCAM.

It is worth mentioning that W is required to be under 300 ms to have a real-time re-

sponse in peripheral human machine intelligence systems [55]. Comparing outcomes

in each column of Table 5.2 shows that increasing window size (W ) led to better

performance for all model variants for both losses. According to this observation, the

proposed HDCAM architecture is capable of extracting/utilizing information from

longer sequences of inputs. For instance, for XXSmall, XSmall, and Small architec-

tures, increasing W from 150 ms to 300 ms resulted in accuracy improvements of

1.21%, 1.22%, and 1.1% when trained with hybrid loss, respectively, These values are

changed to 1.2%, 1.1%, and 0.7% when models are trained withe sole CE loss. Al-

though the number of parameters for a specific version of the model does not change

for different W , larger W leads to longer sequential feature maps in the second and

third stages, which leads to more memory requirements in the attention mechanism.

We would like to emphasize that our proposed hybrid architecture is still far superior

to the sole attention-based approach since the sequence lengths in the second and

third stages are significantly decreased, as previously noted.

Comparison with State-of-the-Art (SOTA)

All of the SOTA methods mentioned in Table 5.3 are trained by the CE loss. In

Table 5.3, HDCAM is compared with recent SOTA recurrent (Dilated LSTM) [20],

convolutional (CNN), hybrid LSTM-CNN [94], and hybrid attention-CNN [19] mod-

els on Ninapro DB2 dataset [87]. Overall, our model demonstrates better accuracy

versus the number of parameters compared to other methods regardless of training

objective function. As shown in Table 5.3, for the window size of 200 ms, all vari-

ants of the proposed model outperform other SOTA approaches with and without SC

loss. For instance, our XXSmall model has 53.3 times less parameter than Dilated

LSTM, but obtains a 2.1% (2.34%) gain in the top-1 accuracy when trained with

sole CE loss (hybrid loss). Compared to the best performing TC-HGR model (Model

4), our XXSmall and Small models trained with CE loss improve the accuracy for
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0.38% and 1.56% with 4.59 and 1.62 times less number of parameters, respectively.

Moreover, as shown in Table 5.3, for the window size of 300 ms, XSmall and Small

variants of HDCAM, trained with CE loss, obtain 82.61% and 82.91% top-1 accu-

racy respectively, both surpassing all previous SOTA methods with fewer number of

parameters (see Fig. 5.1). Dilation-based LSTM [20], as the previous SOTA model

on DB2 dataset, reached 82.4% top-1 accuracy with 1, 102, 801 number of param-

eters, while our XSmall model attains better accuracy (82.61%) with only 40, 281

parameters, i.e., 27.38 times fewer. It is worth noting that our Small model achieved

82.91% top-1 accuracy with 58, 441 parameters trained with CE loss. Small model

reaches a new SOTA performance even with sole CE loss training that demonstrates

the effectiveness and the generalization of our design.

In Table 5.4, the computation reduction of the proposed model is investigated.

More specifically, Table 5.4 provides average inference time for different variants of

the HDCAM and TC-HGR. It is important to note that the processing time can vary

depending on the hardware used. In this study, we utilized a GeForce GTX 1080

Ti Graphics Cards to obtain the average inference computation time of each model

per input sample. The results, as shown in Table 5.4, demonstrate that the inference

computation time of all variants of the HDCAM model are smaller in comparison

to computation times the TC-HGR model variants, while improving performance as

shown in Table 5.3.

Effectiveness of the Multi-scales Local Representation

To extract multi-scale local features, we integrated depth-wise convolution (DwConv)

with a hierarchical structure in the proposed HDConv encoder. The hierarchical

structure besides the multi-scale feature extraction increases the receptive field in a

single block. As shown in Table 5.5, replacing the “hierarchical” DwConv structure

in HDConv with a standard DwConv layer degrades the accuracy in all variants of

HDCAM, indicating its usefulness in our design. As an example, the top-1 accuracy

of the Small model decreased by 0.56% in its non-hierarchical variant.
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Table 5.3: Comparing the performance of the proposed HDCAM models with state-
of-the-art (SOTA) models on Ninapro DB2 dataset [87]. Our model in the number
of parameters and accuracy outperforms the SOTA models.

Model Model’s Variant
W = 200 ms W = 300 ms

Parameters↓ Accuracy↑ (%) Parameters↓ Accuracy↑ (%)

Dilated LSTM [20]

4-layer 3rd Order Dilation 1, 102, 801 79.0 1, 102, 801 82.4

4-layer 3rd Order Dilation (pure LSTM) _ _ 466, 944 79.7

LSTM-CNN [94]

CNN _ _ ≈ 1.4M 77.30

Hybrid LSTM-CNN _ _ ≈ 1.1M 81.96

TC-HGR [19]

Model 1 49, 186 80.29 52,066 80.84

Model 2 68, 445 80.63 72, 285 81.59

Model 3 69, 076 80.51 67, 651 80.95

Model 4 94, 965 80.72 92, 945 81.65

HDCAM (CE loss)

XXSmall 20,686 81.10 20,686 81.73

XSmall 40, 281 81.77 40, 281 82.61

Small 58, 441 82.28 58, 441 82.91

HDCAM (Hybrid loss)

XXSmall 20,686 81.34 20,686 82.03

XSmall 40, 281 82.66 40, 281 83.23

Small 58, 441 82.86 58, 441 83.54

Table 5.4: Comparing average process time of different variants of HDCAM and TC-
HGR for hand gesture recognition on window size of 200 ms. The process times are
reported in millisecond (ms).

Model Model’s Variant Process Time Per-Sample ↓ (ms)

TC-HGR [19]

Model 1 3.094

Model 2 3.305

Model 3 3.425

Model 4 3.540

HDCAM

XXSmall 2.317

XSmall 2.626

Small 2.859
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Table 5.5: Evaluating the effectiveness of the multi-scales local representation extrac-
tion in the HDConv encoder for window size 300 ms. For Hierarchical models, the
scale values (s) for each stage are provided in Table 5.1. For Non-hierarchical models,
s is equal to 1 at all stages.

HDConv Encoder
Accuracy (%)

XXSmall XSmall Small

Hierarchical structure 81.73 82.61 82.91

Non-hierarchical structure 81.27 82.21 82.35

Importance of Using MHSAtten Encoders

To examine the importance of MHSAtten encoder, we conducted two ablation studies

using this encoder at different stages of the network for W=300 ms. In Table 5.6,

we kept the total number of HDConv and MHSAtten encoders fixed to [1, 3, 5] for

experiment 1 to 4. While in experiment 5 to 8, the number of HDConv encoder is

set to [1, 2, 4] for all stages, and MHSAtten encoder is progressively added to the end

of stages. According to both experiments, adding the MHSAtten encoder gradually

in the last two stages increases accuracy and the number of parameters. In addition,

adding a global MHSAtten encoder to the first stage is not beneficial since the features

in this stage are not mature enough. When at least one MHSAtten encoder is used

in the network architecture, the best trade-off between accuracy and the number of

parameters obtained for the Small model in both experiments, the highlighted rows in

Table 5.6. Furthermore, we conducted another experiment to investigate the impact

of using the MHSAtten encoder at the beginning (after downsampling) versus the end

of each stage on the HDCAM architecture. As shown in Table 5.7, better performance

is achieved by using the MHSAtten encoder as the final block of the stages. In other

words, it is more beneficial to encode global representations after extracting local

representations rather than the other way around.
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Table 5.6: Evaluating the impact of using MHSAtten encoder at a different stage of
the network for the window size of 300 ms. The listed values show the number of the
corresponding encoder in stages 1 to 3 in order. Highlighted rows indicate the Small
model.

ID: Model Configuration Accuracy↑ (%) Parameters↓
1 : HDConv = [1, 3, 5],MHSAtten = [0, 0, 0] 81.56 37, 673

2 : HDConv = [1, 3, 4],MHSAtten = [0, 0, 1] 82.45 54, 249

3 : HDConv = [1, 2, 4],MHSAtten = [0, 1, 1] 82.91 58, 441

4 : HDConv = [0, 2, 4],MHSAtten = [1, 1, 1] 82.26 60, 817

5 : HDConv = [1, 2, 4],MHSAtten = [0, 0, 0] 81.93 31, 785

6 : HDConv = [1, 2, 4],MHSAtten = [0, 0, 1] 82.55 52, 969

7 : HDConv = [1, 2, 4],MHSAtten = [0, 1, 1] 82.91 58, 441

8 : HDConv = [1, 2, 4],MHSAtten = [1, 1, 1] 82.48 61, 585

Table 5.7: Evaluating the impact of using MHSAtten encoder at the beginning vs.
end of each stage for the window size of 300 ms.

MHSAtten Encoder
Accuracy (%)

XXSmall XSmall Small

Fist block of Stage (MHSAtten = [0, 1, 1]) 81.31 82.37 82.70

Latest block of Stage (MHSAtten = [0, 1, 1]) 81.73 82.61 82.91

5.3 Conclusion

In this chapter, a novel resource-efficient architecture, referred to as the HDCAM,

is developed for HGR from sparse multichannel sEMG signals. In comparison to

SOTA methods, HDCAM is more effective in terms of both parameters and perfor-

mance. Its lightweight design is a key step toward incorporating DNN models into

wearable for immersive HMI. HDCAM is developed by effectively combining the ad-

vantages of Attention-based and CNN-based models for low-powered devices. Specifi-

cally, HDCAM is empowered with convolution and attention-based encoders, namely

HDConv and MHSAtten, to efficiently extract local and global representations of

the input sEMG sequence. We showed that by proper design of convolution-based

architectures, we not only can extract a multi-scale local representation but also can

increase the receptive field in a single block.

85



Chapter 6

Conclusion and Remaining Works

Given the significant advancements made in the domain of wearable technologies,

there has been a surge of interest in the development of intelligent algorithms capable

of inferring valuable information from physiological biosignals collected from these

devices using Machine Learning (ML) techniques, especially Deep Neural Networks

(DNNs) [13]. To date, many wearable devices collect biomedical data from the human

body, including Electrocardiogram (ECG), Photoplethysmogram (PPG), and surface

Electromyogram (sEMG) biosignals, which are among the most widely monitored

signals in clinical settings [9]. Utilizing these widely used signals and capitalizing on

the significant advances in deep learning, the primary focus of the proposed thesis

is on the development of advanced ML algorithms based on DNNs to increase the

accuracy of wearable devices in specific applications.

An inevitable increase in the population of seniors makes continuous BP monitor-

ing essential as it provides invaluable information about individuals’ cardiovascular

conditions. In Chapter 3, we first identified two key drawbacks associated with the

existing continuous BP estimation models, i.e., (i) Relying heavily on extraction of

hand-crafted features, i.e., ignoring the real potential of deep learning in utilization

of the intrinsic features (deep features) and instead using representative hand-crafted

features prior to extraction of deep features, and; (ii) Lack of a benchmark dataset

for evaluation and comparison of developed deep learning-based BP estimation al-

gorithms. To alleviate these issues, we proposed an efficient algorithm, referred to
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as the BP-Net, based on the deep learning techniques for the continuous, cuff-less,

and alignment-free prediction of systolic and diastolic BP. In the proposed BP-Net

architecture, raw ECG and PPG signals are utilized without extraction of PAT fea-

tures to explore the real potential of deep learning in utilization of intrinsic features

(deep features). The proposed BP-Net architecture is more accurate than canoni-

cal recurrent networks in the BP estimation task. Moreover, by capitalizing on the

significant importance of continuous BP monitoring and the fact that datasets used

in recent literature are not unified and properly defined, a benchmark data set is

constructed from the MIMIC-I and MIMIC-III databases to provide a unified base

for evaluation and comparison of deep learning-based BP estimation algorithms. The

proposed BP-Net architecture is evaluated based on this benchmark dataset demon-

strating promising results. The dataset can be accessed through the link provided in

Reference [126].

To further improve potential applicability of the prepared dataset, several avenues

for future research could be explored, including:

• Extending the dataset by extracting and including relevant clinical information

for the patients (such as age and gender). These updates will be appended to

the dataset, which can be accessed via the link provided in Reference [126].

• Furthermore, adding more labels, such as annotating Heart Rates (HR) of pa-

tients from collected ECG records, which would allow us to investigate a new

set of Neural Networks for HR prediction using ECG or even PPG signals,

with extremely useful applications in healthcare wearable devices, particularly

in clinical and fitness industries. More specifically, the early and correct diag-

nosis of cardiac abnormalities (such as Atrial Fibrillation (A-fib), Tachycardia,

Bradycardia, and Pause) can increase the chances of successful treatments or

possibly allow the caregiver to take appropriate action in an emergency.

• One general challenge in BP estimation task is the time- and user-dependent na-

ture of the ECG, PPG, and blood pressure signals. Variations among the prob-

ability distribution of these biomedical signals across different subjects make

the experience gained on an unseen person difficult. Therefore, domain adap-

tation methods are highly recommended in this field of study, where learning
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methods focus on transferring information between a source and a target do-

main despite the existence of a distribution shift among them. In this study,

the training of our network is fully supervised. Therefore, following previous

studies [48,50,52,56], the data for each patient is divided into train, validation,

and test sets. We consider this as a limitation for our current study and a future

research direction.

In Chapter 4, by capitalizing on the fact that sEMG signals have found techni-

cal applications in the development of HMI systems such as VR/AR environments

and neural rehabilitation devices, including multifunction prostheses, we proposed

investigation of Transformers-based architectures’ capacity to improve the analysis

of sparse sEMG signals and bridge the gap between recent academic research and

clinical/industrial settings. In this context, we presented our proposed architecture

based on the Transformers (named as TraHGR), which achieved state-of-the-art per-

formance in the most common dataset (DB2 (49 gestures)) for sEMG-based hand

gesture recognition. While Transformers have shown promise for hand gesture recog-

nition, their high computational demands present a challenge when it comes to em-

bedding these models in wearable devices. Wearables have limited processing power

and battery life, which makes it difficult to run transformer models without causing

performance issues or draining the battery. One possible solution is to rely on cloud

services to offload the computational burden. However, to tackle the challenge of di-

rectly embedding transformer models into wearable devices, alternative architectures

could be explored to reduce the computational requirements of transformers while

still achieving high performance.

In Chapter 5, we introduce a novel light-weight architecture, the HDCAM, for

hand gesture recognition (HGR) using sparse multichannel sEMG signals. The key

objective behind the design of HDCAM was to ensure its resource efficiency while

maintaining comparable or better performance than the current state-of-the-art meth-

ods. By using a lightweight design, the HDCAM aims to enable the integration of

deep neural network models into wearable devices for human-machine interaction.

The architecture leverages the benefits of both attention-based and CNN-based mod-

els, specifically by utilizing the HDConv and MHSAtten encoders to extract both

local and global representations of the input sEMG sequence in an efficient manner.
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The HDCAM represents a significant step forward in the development of low-power

HGR models for wearable applications.

There are several avenues for future research that can be pursued to further im-

prove the performance of sEMG-based hand gesture recognition:

• One possible direction is to explore the potential of incorporating additional

modalities, such as accelerometers or gyroscopic sensors, to enhance the accu-

racy of hand gesture recognition. This approach can potentially provide comple-

mentary information to sEMG signals and further improve the model’s ability

to recognize complex hand movements.

• The impact of various factors on the distribution of sEMG signals, such as the

time variability between days and the type of amputation, were not explored in

this thesis but represent important areas for future investigation. Additionally,

the misplacement or displacement of sensors can also significantly influence the

distribution of sEMG signals, which remains an open research question yet to be

addressed. Therefore, these limitations of the current study highlight promising

directions for future research.

• A potential research direction could be exploring the capabilities of spatio-

temporal Transformers for HGR tasks by leveraging the high-resolution spatio-

temporal data provided by High-Density sEMG (HD-sEMG) signals compared

to those obtained from sparse electrodes. The recent release of HD-sEMG

datasets such as [151,152] can facilitate this research. Utilizing spatio-temporal

Transformers enables the extraction of both local and long-range temporal fea-

tures from the HD-sEMG records, leading to a more comprehensive under-

standing of the signal patterns and potentially improving HGR performance.

Furthermore, developing novel pooling mechanisms that encourage the network

to focus on representative frames and drop non-informative features along the

temporal dimension could be a promising direction to reduce computation and

optimize the spatio-temporal model.

• It is worth noting that some studies with HD-sEMG systems have found that

the relationship between accuracy and the number of electrodes is not neces-

sarily a monotonic function, and increasing the number of electrodes beyond

an optimal point can cause the system to lose accuracy due to increased noise
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and over-fitting. Thus one use of HD-sEMG arrays is to select optimal elec-

trode placement [71]. Other studies record data with the full array but only

utilize a subset of the electrode channels (frames) for the control algorithm.

To enhance the performance of the spatio-temporal model, instead of discard-

ing some information such as using only odd frames, an intriguing direction

would be to explore novel pooling mechanisms. These mechanisms would not

only enable the network to concentrate on essential frames but also eliminate

unimportant features/frames along the temporal dimension, thereby reducing

computation. This could potentially be a fruitful area for future research to

improve the spatio-temporal model

• Finally, the use of Transformers-based architecture to develop an adaptive learn-

ing method with a focus on increasing the robustness of sEMG classifiers and

improving inter-subject accuracy will be an interesting direction for our future

research. More specifically, for a future direction utilize contrastive learning for

learning subject-independent representation, resulting in a more robust model

for sEMG classifiers. In general, contrastive learning is usually applied in the

field of unsupervised learning [156–158], which allows deep models to learn an in-

formative representation by attracting positive pairs from an anchor and pulling

negative pairs away from it [156]. To this end, developing a new strategy that

uses contrastive learning to develop subject-independent representations by in-

creasing the similarity of features resulting from different subjects but belonging

to the same class could be a valuable contribution.
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