

On Parallelization of

Categorical Data Clustering

Bahareh Badiei

A Thesis

in

The Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

May 2023

© Bahareh Badiei, 2023

CONCORDIA UNIVERSITY

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Bahareh Badiei

Entitled: On Parallelization of Categorical Data Clustering

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (M. Comp. Sc.)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

Dr. Sudhir Mudur

_____________________________________ Examiner

Dr. Tristan Glatard

_____________________________________ Examiner

Dr. Sudhir Mudur

_____________________________________ Supervisor

Dr. Dhrubajyoti Goswami

_____________________________________ Supervisor

Dr. Nematollaah Shiri

 Approved by __

 Dr. Lata Narayanan, Chair of Department

__

Dr. Mourad Debbabi, Dean of Faculty of Engineering and Computer Science

iii

Abstract

On Parallelization of Categorical Data Clustering

Bahareh Badiei

We study parallelization of categorical data clustering algorithms in an MPI platform.

Clustering such data has been a daunting task even for sequential algorithms, mainly due to the

challenges in finding suitable similarity/distance measures. We propose a parallel version of the

k-modes algorithm, called PV3, which maintains the same clustering quality as produced by the

sequential approach while achieving reasonable speed-ups. PV3 is programmed to ensure

deterministic processing in a parallel environment. To produce better clustering results, we then

develop an initialization method called Revised Density Method (RDM) based on the notion of

density. Additionally, we develop variants of the RDM method to further enhance its performance.

we then study effective ways to parallelize RDM and its variants. To further exploit parallelism

opportunities, we develop an Ensemble Parallelizing Process (EPP) framework. This framework

can be used with any desired initialization/clustering algorithms with different levels of

parallelism. Using our different RDM initialization techniques along with the PV3 algorithm in

the EPP framework, we then build an RDM realization of EPP, called RDM EPP. The result of

our numerous experiments using benchmark categorical datasets indicate the quality metric of

RDM EPP to be among the top three sequential k-modes based clustering algorithms. In terms of

speed up, the results indicate to be 7 times faster for some datasets, though much larger datasets

are required for a more comprehensive scalability study of RDM EPP.

iv

Acknowledgements

I would like to express my gratitude to my esteemed professors, Dr. Dhrubajyoti Goswami

and Dr. Nematollaah Shiri, for their unwavering support throughout my academic journey,

particularly during my pregnancy and postpartum period. Their understanding and flexibility have

been instrumental in enabling me to continue with my studies without undue difficulty.

I also would like to extend my heartfelt appreciation to my beloved husband, Homam

Hosseini, whose tireless support, encouragement, and commitment to my success have had an

important role in making the completion of this thesis possible. Without his invaluable assistance

and belief in my abilities, I would not have been able to achieve this milestone in my academic

career.

v

1. Table of Contents

List of Figures .. vii

List of Tables .. viii

Chapter 1. Introduction ... 1

1.1. Clustering Categorical Data ... 1

1.2. Thesis Motivation .. 1

1.3. Thesis Contributions .. 2

1.4. Thesis Outline .. 3

Chapter 2. Background, Concepts, and Definitions .. 4

2.1. Clustering Algorithms .. 4

2.2. Review of the K-Modes Algorithm ... 5

2.3. Clustering Validation Metrics .. 7

2.4. Parallel Computing .. 8

2.6. Summary .. 10

Chapter 3. Related Work ... 12

3.1. Cao’s Algorithm ... 12

3.2. Khan and Ahmad’s Algorithms ... 13

3.4. K-PbC Algorithm ... 16

3.5. Other K-Modes Based Clustering Algorithms ... 17

3.6. Parallel K-Means Using MPI ... 19

3.7. Parallel K-Means Based on Spark ... 21

3.8. Parallel K-Modes Based on MapReduce ... 21

3.9. A Cluster Ensemble Framework for Categorical Data .. 22

Chapter 4. Proposed Solution Techniques.. 23

4.1. Parallel Algorithm Version 1 (PV1) .. 23

4.2. Parallel Algorithm Version 2 (PV2) .. 26

4.3. Parallel Algorithm Version 3 (PV3) .. 28

4.4. RDM Algorithm and Variants.. 31

vi

4.4.1. RDM Initialization Method ... 32

4.4.2. GLMD RDM Initialization ... 34

4.4.3. SCAV RDM Initialization .. 36

4.4.4. PRM RDM Initialization ... 37

4.4.5. SIG RDM Initialization ... 38

4.4.6. SIG-SCAV RDM Initialization ... 38

4.5. Parallel RDM Initialization and Parallel V3R (PV3R) .. 39

4.6. Parallel SIG RDM Initialization .. 41

4.7. Proposed Solution Framework (EPP) .. 43

4.8. Summary .. 45

Chapter 5. Experiments and Results ... 46

5.1. Datasets for Experimental Evaluations .. 46

5.2. Parallel K-Modes (PV1, PV2, PV3, and PV3R) .. 46

5.2.1. Speed-up ... 47

5.3. RDM .. 51

5.3.1. RDM vs. Cao .. 52

5.3.2. RDM, its Variants and RDM Ensemble .. 54

5.3.3. RDM Ensemble vs. Other Algorithms .. 56

5.3.4. RDM Realization of EPP (RDM EPP) ... 61

5.4. Summary .. 64

Chapter 6. Conclusion and Future Works ... 66

Reference ... 68

Appendix .. 72

Appendix A: Accuracy, Precision, and Recall of Compared Algorithms ... 72

vii

2. List of Figures

Figure 3.1 Three MPI Processes Holding the Categorical data objects of Cluster 𝐶1 20

Figure 4.1 PV1’s Schema for k = 2 and p = 2 .. 23

Figure 4.2 PV2’s Schema for k = 2 and p = 3 .. 26

Figure 4.3 PV3’s Schema for k = 2 and p = 3 .. 28

Figure 4.4 EPP Schematic... 43

Figure 4.5 RDM Realization of EPP (RDM EPP) .. 44

Figure 5.1 Maximum Speed-up Comparison Between PV1, PV2, PV3, and PV3R 48

Figure 5.2 PV2’s Speed-up ... 49

Figure 5.3 PV3’s Speed-up ... 50

Figure 5.4 PV3R’s Speed-up .. 51

Figure 5.5 Accuracy of RDM vs. Cao .. 52

Figure 5.6 Precision of RDM vs. Cao ... 53

Figure 5.7 Recall of RDM vs. Cao ... 54

Figure 5.8 Accuracy of Compared Algorithms ... 57

Figure 5.9 Precision of Compared Algorithms ... 59

Figure 5.10 Recall of Compared Algorithms .. 60

Figure 5.11 SIG RDM's Speed-up (a Close Approximation of RDM EPP’s Speed-up) 64

file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433161
file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433162
file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433163
file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433164
file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433165
file:///C:/Users/Bahareh/Desktop/Badiei_MA_S2023-B.docx%23_Toc136433166

viii

3. List of Tables

Table 3.1 Cluster C1 ... 16

Table 3.2 Cluster C2 ... 16

Table 4.1 Categorical Dataset ... 29

Table 4.2 Frequency Table of C1.. 29

Table 4.3 Frequency Table of C2.. 29

Table 4.4 Density-Object_List in the First Iteration ... 33

Table 5.1 Experimental Datasets .. 46

Table 5.2 Speed-up ... 47

Table 5.3 PV2’s Speed-up vs. #Processes .. 49

Table 5.4 PV3’s Speed-up vs. #Processes .. 50

Table 5.5 PV3R’s Speed-up vs. #Processes .. 50

Table 5.6 Accuracy of RDM vs. Cao .. 52

Table 5.7 Precision of RDM vs. Cao .. 53

Table 5.8 Recall of RDM vs. Cao ... 54

Table 5.9 Accuracy of RDM’s Variants and RDM Ensemble .. 55

Table 5.10 Precision of RDM’s Variants and RDM Ensemble .. 55

Table 5.11 Recall of RDM’s Variants and RDM Ensemble ... 56

Table 5.12 Accuracy of Compared Algorithms .. 57

Table 5.13 Precision of Compared Algorithms... 58

Table 5.14 Recall of Compared Algorithms ... 60

Table 5.15 Lymphography - RDM EPP for Best p = 5 ... 61

Table 5.16 Vote - RDM EPP for Best p = 8 ... 62

Table 5.17 Breast cancer - RDM EPP for Best p = 8 .. 62

Table 5.18 Car evaluation - RDM EPP for Best p = 9 .. 62

Table 5.19 Chess - RDM EPP for Best p = 10 .. 63

Table 5.20 Mushroom - RDM EPP for Best p = 10 .. 63

Table 5.21 Nursery - RDM EPP for Best p = 10 .. 63

Table A.1 Accuracy of Compared Algorithms ... 72

Table A.2 Precision of Compared Algorithms .. 73

Table A.3 Recall of Compared Algorithms .. 73

1

1. Chapter 1. Introduction

1.1. Clustering Categorical Data

Clustering is an unsupervised data mining technique which tries to put similar or

homogenous (based on a similarity measure) unlabeled data objects into a group or cluster. The

goal is to form clusters with as much intra-cluster similarity and inter-cluster dissimilarity as

possible. By doing so, we can obtain meaningful knowledge about the data through identifying

hidden patterns in it which can then be used in numerous application areas such as social network

analysis [1], biological data analysis [2], dynamic trend detection [3], data summarization [4], and

collaborative filtering [5], to name a few.

Categorical data is a type of data which can be divided into categories or groups. These

categories are based on qualitative characteristics such as hair color, gender, and etc. Clustering

categorical datasets is a challenging and subjective task due to its nature as there is no agreed

universal distance/dissimilarity measure for such data (e.g., Euclidean distance is widely used for

numerical data clustering). Looking at the data from different perspectives may change the way

we cluster our data. A very simple example is clustering different cars based on their price, gas

consumption, trim, or brands. In this case, different clustering results may be acceptable, and the

choice depends on the user’s application.

1.2. Thesis Motivation

Considering the vast amount of real-life data in today’s applications, we need suitable tools

and techniques to be able to extract valuable knowledge from it. This data could be numerical,

categorical, or mixed numerical and categorical. Many clustering algorithms have been proposed

to address this need. One of the most popular partitional clustering algorithms for categorical data

is k-modes due to its linear complexity and simplicity. K-modes is an extension of the k-means

algorithm. K-means is a method proposed to cluster numerical data while k-modes work with

categorical data. In this research, we investigate parallelization of categorical data clustering,

motivated by the repetitive nature of the k-modes algorithm which makes it a suitable candidate to

be parallelized. On top of that, with the increasing amount of produced data, we wish to take

advantage of available computing resources to speed-up the clustering process.

Similar to k-means, the resulting clustering quality in k-modes is affected by the selection

of initial modes or centroids – a poor selection can yield poor results. Partitional clustering

algorithms, in general, assume a given number of clusters [6] as input and select k random initial

cluster centers called centroids. Using a dissimilarity measure, a k-modes algorithm forms clusters

around these initial centroids and then tries to refine them in an iterative process to increase

homogeneity inside the clusters and heterogeneity between clusters. The problem though is that in

most cases, different initial centroids lead to different final results which are not the global optima

but only local optima based on the initial centroids selected. In addition, producing different results

in different runs make the results of k-modes less stable. To overcome this issue, numerous k-

2

modes initialization algorithms have been proposed for traditional sequential clustering of

categorical data, most notably k-PbC [7], Khan and Ahmad’s [8], and Cao’s [9] Algorithm. As

part of this research, we adopt some of these initialization methods and develop parallelization

algorithms for categorical data clustering.

1.3. Thesis Contributions

The main contributions of this thesis are as follows:

1. Exploring different ways of parallelizing the k-modes algorithm, and proposing the PV3

algorithm which is designed to produce the same clustering quality as produced by the

sequential counterpart while achieving a reasonable speed-up in a parallel environment.

2. Proposing a new algorithm called Revised Density Method (RDM) to address the issue of

the k-modes’ random initialization which as discussed affects the clustering quality. We

then extend RDM and develop different versions of it.

3. Parallelizing RDM, and plugging it into PV3 to introduce a new parallel algorithm, called

PV3R, which is a parallel k-modes clustering algorithm with non-random initialization.

4. Proposing an Ensemble Parallelizing Process (EPP) framework which allows us to

integrate multiple clustering solutions. This, in turn, improves clustering quality for

categorical data. This framework has two levels of parallelism: one horizontally at the

breadth level, and the other vertically at the depth.

5. Building an RDM realization of EPP framework (RDM EPP) which allows us to combine

and use all our previously developed techniques including different RDM initialization

methods, and the PV3 clustering algorithm. The quality of RDM EPP’s clustering result

(RDM ensemble) is better than all individual RDM variants, and stands among the top

three best k-modes based clustering algorithms while enjoying easy implementation and

parallelization.

6. Parallelizing two variants of RDM algorithm called SIG RDM and SIG-SCAV RDM

which contributes significantly in achieving a reasonable overall speed-up for our RDM

realization of EPP (RDM EPP).

7. Conducting numerous experiments to evaluate the quality of RDM, its variants, and RDM

ensemble. We also evaluate the RDM EPP’s speed-up. For these experiments, the standard

benchmark datasets from UCI Machine Learning Repository [22] have been used.

3

1.4. Thesis Outline

The rest of this thesis report is organized as follows. Chapter 2 presents background

knowledge, basic concepts, and techniques related to data clustering and parallel computing.

Chapter 3 is a review of the related work. Chapter 4 elaborates on the implementation of various

versions of parallel k-modes in MPI platform, a new initialization method for k-modes (RDM) and

some of its variants, parallel RDM (PV3R), parallel SIG RDM, the EPP framework, and finally its

RDM realization (RDM EPP) which receives inputs from the aforementioned k-modes clustering

outputs. In chapter 5, we report the results of our numerous experiments carried to evaluate the

performance of the individual components mentioned above as well as RDM EPP. Finally in

chapter 6, we provide concluding remarks and discuss possible future research directions.

4

2. Chapter 2. Background, Concepts, and Definitions

2.1. Clustering Algorithms

There is a variety of proposed clustering algorithms. Each tries to tackle the clustering issue

in its own unique way. In what follows, we begin with a classification of some of their approaches

and discuss their pros and cons.

• Partitional Clustering Algorithms

The family of partitional clustering algorithms, also called centroid-based, usually

receive a user-defined parameter, k, as the number of partitions or clusters. They then divide

the dataset into k clusters, each initially assigned a centroid as its representative. This centroid

can either be a virtual data object or a real object. In an iterative process, the goal is to move

the objects between the clusters to a point where the total distance between the data objects

and their corresponding centroids reaches a threshold, or no data object can change its

membership anymore [41].

The main advantages of partitional clustering algorithms are [8]:

1. Fast (linear complexity in the number of data objects).

2. Fairly scalable.

3. Easy to implement.

4. Guaranteed convergence.

Major drawbacks of partitional clustering algorithms are [41]:

1. High sensitivity to the centroids assigned in the initialization phase and sensitivity to

outliers.

2. The need to specify the number k of clusters, as there may be no prior knowledge of the

correct value.

k-means and k-modes are well-known examples of such algorithms. The k-modes

algorithm was employed to analyze the clustering of categorical data in this report.

• Density-Based Clustering Algorithms

These algorithms divide the dataset space into high density regions (clusters) separated

by low density ones. A basic example of this kind of clustering is the DBSCAN algorithm

which has two input parameters: minPts and eps (ε). The first parameter, minPts is the

minimum number of data objects in a region which is required to be considered as a cluster,

and the second parameter is a distance measure used for locating data objects in a neighborhood

or the maximum radius of the neighborhoods [42].

There are two main concepts in this method: density reachability and density

connectivity. Density reachability is when a data object is reachable from another, if it lies

5

within the ε distance. Density connectivity, on the other hand, is when a data object is reachable

via a sequence of other reachable data objects. The collection of such data objects forms a

cluster [42].

Based on these definitions, there are three types of data objects considered in DBSCAN

clustering: core, border, and noise. A core data object, d, is an object with at least minPts many

data objects within the radius ε from d. A border data object is an object with at least one core

object at distance ε, and a noise data object is neither a core nor a border [42].

DBSCAN uses these definitions in an iterative process to perform the clustering and

produce the final results. Density-based algorithms can identify clusters with arbitrary shape

and handle datasets with high dimensionality. In addition, they do not need repeated executions

to produce the output. That said, their main drawback is requiring the user defined parameters

(minPts and ε). While partitional algorithms also need a user defined parameter k, the required

parameters in density-based algorithms are less intuitive and more difficult to provide [41].

• Hierarchical Clustering Algorithms

In these algorithms, clusters are formed in a hierarchical manner. Hierarchical

clustering algorithms are further classified into two main categories: agglomerative and

divisive. In the former, which is a bottom-up approach, we start by putting each data object in

a separate cluster and then proceed to merge these clusters until we obtain a single one. On the

other hand, in a divisive or a top-down approach, we start by one cluster which is the input

dataset and then repeatedly divide it into smaller clusters [41].

The main advantages of this type of clustering algorithms are as follows: first, they

need no user input. Second, they do not need to be executed multiple times because their results

are stable. The main disadvantage though is the lack of scalability which makes them

inefficient and expensive to use for clustering large datasets [41].

In the next section, we will review the k-modes algorithm which is a partitional

clustering algorithm adapted to work with categorical data.

2.2. Review of the K-Modes Algorithm

K-modes is a partitional clustering algorithm specifically designed for clustering

categorical data. It is, in fact, an adapted version of the k-means algorithm which differs in two

key aspects: the dissimilarity measure employed (Euclidean distance in k-means and Hamming

distance in k-modes), and the usage of modes instead of means within the k-modes algorithm.

Modes simply refer to the most frequent attribute values for each attribute category.

• Preliminaries

a) Hamming Dissimilarity (Distance) Measure

This is a simple dissimilarity measure which counts the total number of mismatches

between the attribute categories of two data objects [10], assigning equal importance or

6

weight to each category of attributes.

Let X and Y be two categorical data objects described by m categorical attributes:

X = {𝑥1, 𝑥2,…, 𝑥𝑚}

Y = {𝑦1, 𝑦2,…, 𝑦𝑚}

The distance between them is defined as follows:

d (X , Y) = ∑ 𝛿(𝑚
𝑗=1 𝑥𝑗 , 𝑦𝑗) (1)

Where 𝛿(𝑥𝑗 , 𝑦𝑗) = {
0, (𝑥𝑗 = 𝑦𝑗)

1, (𝑥𝑗 ≠ 𝑦𝑗)

b) Cost Function in K-Modes

As mentioned earlier, in every partitional clustering algorithm, we need the number

of clusters, k, as the input parameter to start with. K-modes is no exception. So, we have k

clusters, and for each cluster, we define a centroid. Suppose, Q = {𝑞1, 𝑞2,…, 𝑞𝑘} is the set

of modes. Using Equation 1, the cost function would be [10]:

E(Q) = ∑ ∑ 𝑑(𝑜𝑖, 𝑞𝑗)𝑛
𝑖=1

𝑘
𝑗=1 (2)

Where 𝑜𝑖 is the 𝑖𝑡ℎ data object in a total of n objects, and 𝑞𝑗 is the corresponding cluster

centroid to which 𝑜𝑖 belongs. The aim in k-modes algorithm is to minimize the cost

function in Equation 2.

• K-Modes Steps

K-modes was first introduced by Huang in 1997 [10]. The steps are as follows:

1. Select an initial cluster centroid for each of the k clusters.

2. Go through the data objects one at a time, and put them in a cluster that has the closest

centroid to the data object in question. Update the cluster centroid after allocation of the

data objects, and re-compute k new modes (centroids) for all the clusters.

3. Calculate the dissimilarity measure again, this time, between the new centroids and data

objects, and allocate the data objects to the closest cluster based on their distance from the

corresponding centroid. Update the cluster centroids.

4. Repeat step 3 until either the memberships of the data objects in clusters do not change, or

we reach a certain threshold for the cost function in Equation 2.

7

2.3. Clustering Validation Metrics

There are three types of validation metrics for evaluating clustering quality: internal,

external, and relative validation metrics. The first type measures the quality of clustering results

based on the notation of compactness (intra-cluster distance) and separation (inter-cluster

distance). The second type compares the results of the clustering to some priori knowledge

indicated by experts or ground truth. It is used to choose the most suitable clustering algorithm for

a given dataset [7]. The third type measures the quality of clustering results by using different

parameter values for the same clustering algorithm [7].

In this thesis research, three types of external validation metrics were used to measure and

compare the produced results’ clustering quality to those of the others including: accuracy,

precision, and recall.

• Accuracy

Accuracy measures how close the clustering result is to the ground truth. It is defined

as the proportion of all the correctly clustered data objects to the total number of objects in a

dataset [7].

AC =
∑ 𝑇𝑃𝑖

𝑘
𝑖=1

𝑛
 (3)

In Equation 3, 𝑇𝑃𝑖 is the number of true positive (correctly classified) members of

cluster i, and n is the total number of objects in a dataset.

• Precision

Precision measures how close the clustered data objects are to each other. It is defined

as the proportion of all the correctly classified objects in a cluster to the total number of objects

in the same cluster. To calculate the precision of a clustering result, we compute the average

of the precisions of all the clusters [7].

 PR =

∑ (
𝑇𝑃𝑖
𝑛𝑖

)𝑘
𝑖=1

𝑘
 (4)

Where 𝑛𝑖 is the number of data objects in cluster i.

• Recall

Recall is the proportion of correctly classified data objects in a cluster to the total

number of the relevant data objects. In other words, recall indicates how successful the

8

algorithm performed in finding all the relevant data objects of suitable clusters. To calculate

recall, we compute the average of the recalls of all the clusters [7].

RE =

∑ (
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
)𝑘

𝑖=1

𝑘
 (5)

Where the false negative for cluster i or 𝐹𝑁𝑖 is the number of all the relevant data objects in

cluster i that were incorrectly classified across all clusters other than cluster i.

2.4. Parallel Computing

This section will provide an overview of parallel computing, which is closely connected to

and utilized within the context of this report.

• Distributed Memory Systems

Distributed memory architecture is one of the diverse parallel computing platforms

available. In a distributed memory system, every process has its own local private memory

which can be on the same physical machine and/or across any number of machines [11]. The

communication between processes is explicit and hence, the programmer is responsible for

determining the parallel tasks and exploiting parallelism using the subroutines in the libraries.

Among various types of distributed memory systems, we have used the Beowulf cluster which

is designed to provide cost-effective parallel computing capabilities by utilizing commodity

hardware and open-source software.

• MPI Programming Model

 Message Passing Interface (MPI) model is the most popular scheme in the distributed

memory platform [18]. It is a standard and portable means of exchanging messages between

the nodes in a distributed memory architecture which we have used in implementing our

parallel algorithms.

Below are some of the advantages of the MPI model [37]:

1. MPI is known for its ability to keep its processes alive during the running of the system. In

addition, there is no need to read the data several times from the disk. This quality makes MPI

suitable for iterative jobs.

2. MPI does not need a server to control the data transfer between the contributors. This leads to

accessibility of the resources by other contributors in the network [38].

3. MPI is scalable, i.e., it has the ability to add nodes dynamically without performance

degradation.

Here are some main drawbacks of the MPI model:

9

1. MPI suffer from security issues and require high bandwidth usage [37].

2. Since the responsibility of coding in parallel is fully on the programmers, it can be a double-

edged sword. Consequently, one can write a code that executes but not efficiently, or it can

make the programmer more aware of the load balancing or communication issues in a parallel

environment which can lead to better parallel algorithms’ design [12].

• SPMD and MPMD

In Single Program Multiple Data (SPMD) model, different processes execute the same

program on different data. The focus is on performing the same operations on a dataset.

In Multiple Program Multiple Data (MPMD) model, different processes execute

different programs on different data.

We have employed both of these models in our parallel designs.

• Decomposition

One of the very first steps in designing a parallel program is deciding on how to divide

the work between the processing elements. There are two basic methods to do that:

domain/data decomposition and functional decomposition. The former refers to dividing the

computational work among multiple processors through distributing the data associated with

the problem [13], and the latter is the process of identifying functionally distinct but

independent computations [14].

In this research, we have extensively utilized the concept of domain decomposition in

our parallel designs.

• Sources of Overhead in Parallel Programs

By using more processes, we expect to have a better performance proportional to the

number of processes. But in reality, this almost never happens due to the overheads. Overhead

in parallel programs is the lost time which parallel tasks spend on doing different things other

than useful work. In parallel computing, we encounter a range of overhead sources. In the

following sections, we highlight the major ones which we tried to address in our parallel

implementations.

a) Inter-Process Communication

Apart from embarrassingly parallel models (zero communication needed between

the processes), parallel processes often need to communicate to perform their task. To

improve the parallel processing performance, we need to decrease the frequency and the

amount of these communications if and when possible.

10

b) Idling

Idling happens for a number of reasons such as load imbalance, synchronization, or

presence of a serial section in the program. In such situations, parallel resources are not

used effectively which leads to poor performance.

c) Load Imbalance

Load imbalance refers to uneven distribution of data or work among processes.

Even when we start with evenly distributed data among the processes, we may face the

load imbalance issue along the way due to the design of the parallel algorithm and how it

proceeds.

• Amdahl’s Law

Amdahl’s law serves as a vital principle in parallel computing, guiding developers in

making informed decisions about parallelization strategies and resource allocation. It defines

the maximum speed-up that can be achieved by parallelizing a program, taking into account

the portion of the code that remains sequential [44].

According to Amdahl’s law, the overall speed-up is limited by the proportion of the

program that cannot be parallelized, due to the overhead involved in coordinating parallel

tasks, communication between processors, I/O, and etc.

The formula is:

Speed-up =
1

(1−𝑃) + (
𝑃

𝑁
)
 (6)

Where P is the proportion of the program that can be parallelized, N is the number of

processors, and 1-P is the sequential proportion.

2.6. Summary

In this chapter, we first discussed the most widely used clustering algorithms’

classifications alongside their pros and cons. Next, we did a review of the k-modes algorithm

which is a type of partitional clustering algorithm developed for categorical data. We then

presented the most popular clustering validation metrics to compare the clustering quality

produced by different clustering algorithms. Precision, recall, and accuracy were reviewed. We

use these metrics to compare the clustering quality of our algorithms with other clustering

techniques which will be mentioned in the next chapter.

In the rest of this chapter, we provided a brief overview of distributed memory systems

and its widely adopted MPI programming model. Additionally, we reviewed the SPMD and

11

MPMD parallel computing models, which, alongside MPI, are utilized in our parallel

implementations. Also, given the iterative nature and structure of the k-modes algorithm, it is

well-suited for parallelization using SPMD and MPI. In Chapter 4, we delve into the

implementation specifics of parallelizing the k-modes algorithm.

12

3. Chapter 3. Related Work

What have been explored in this thesis can be looked at from different perspectives:

sequential categorical data clustering, parallelization of categorical data clustering, and finally

clustering categorical data using the ensemble technique.

In this chapter, we first discussed the works related to sequential categorical data

clustering from Section 3.1 to Section 3.5. Cao’s algorithm [9] of k-modes’ initialization is the

main algorithm that we adopted to build a new k-modes’ initialization method called Revised

Density Method (RDM) discussed in chapter 4. We used Ahmad and Dey’s [16], He’s [19], and

also Huang’s [10] algorithms for categorical distance measurement in our implementations.

Khan’s [8] method for identifying the prominent attributes is also utilized in our work for the

same purpose. From Section 3.4 to Section 3.5, other state-of-the-art k-modes based clustering

algorithms are reviewed briefly. We compared our clustering quality with all their results in

chapter 5.

The second half of this chapter is designated to parallel clustering algorithms and an

ensemble technique for clustering categorical data. All these algorithms have some features in

common with what we have done, either in the type of the data they work with, their clustering

algorithm, or even the parallel computing model.

3.1. Cao’s Algorithm

Cao [9] introduced a new initialization method to improve the quality of the k-modes

clustering algorithm. This method is based on the notation of object’s average density and the

distance between the objects.

The average density Dens(x) of the object x = [𝑥1, 𝑥2,…, 𝑥𝑚] in domain U (the non-empty

set of objects) is as follows:

Dens(x) =
∑ 𝐷𝑒𝑛𝑠𝑎(𝑥)𝑎∈𝐴

𝑚
 (1)

Where m is the number of attributes, A is the set of attributes, and 𝐷𝑒𝑛𝑠𝑎(x) is the density of object

x with respect to a
th

 attribute, and is defined as:

𝐷𝑒𝑛𝑠𝑎(𝑥) =
𝑓(𝑥𝑎)

|𝑈|
 , 1≤ 𝑎 ≤ m (2)

Where f (𝑥𝑎) is the frequency of attribute value 𝑥𝑎 in domain U.

13

This method starts by choosing the object with the highest average density as the first initial

center. The idea is, the denser an object, the better chance it has, to be the centroid of an initial

cluster because clearly, it has more data objects around it.

For the remaining centroids, it not only considers the average density of an object, but also

the distance between the object and the previously chosen centroids. It aims to choose objects with

as much average density as possible, and as far away as possible from the previous centroids. This

way, it avoids choosing an object in close vicinity of the previous centers, or an outlier as the next

initial center.

Algorithm 1: Initialization method for k-modes algorithm [9]

Input: The dataset D and k, where k is the desired number of clusters.

Output: Centers /centroids

1. Centers = ∅

2. For each 𝑥𝑖 ∈ U, calculate Dens(𝑥𝑖), Centers = Centers ∪ {𝑥𝑖}, where 𝑥𝑖 satisfies Dens(𝑥𝑖1
) =

𝑚𝑎𝑥𝑖=1
|𝑈|

{ Dens(𝑥𝑖)}, the first cluster center is selected.

3. Find the second cluster center, Centers = Centers ∪ {𝑥𝑖2
}, where 𝑥𝑖2

satisfies d(𝑥𝑖1
, 𝑥𝑚) × Dens(𝑥𝑖2

)

= 𝑚𝑎𝑥𝑖=1
|𝑈|

{ d(𝑥𝑖1
, 𝑥𝑚) × Dens(𝑥𝑖)| 𝑥𝑚 ∈ Centers}, go to step 4.

4. If | Centers | ≤ k, then go to step 5, otherwise go to step 6.

5. For any 𝑥𝑖 ∈ U, Centers = Centers ∪ {𝑥𝑖3
}, where 𝑥𝑖3

satisfies d(𝑥𝑖3
, 𝑥𝑚) × Dens(𝑥𝑖3

) =

max{𝑚𝑖𝑛𝑥𝑚
{ d(𝑥𝑖, 𝑥𝑚) × Dens(𝑥𝑖)}| 𝑥𝑖 ∈ U},go to step 4.

6. End.

As you can see in the lines 3 and 5 of this algorithm, the product d(𝑥𝑖, 𝑥𝑚) × Dens(𝑥𝑖)

plays a key role in choosing the initial centroids. d(𝑥𝑖, 𝑥𝑚) is the distance between the objects 𝑥𝑖

and 𝑥𝑚, and Dens(𝑥𝑖) is the density of object 𝑥𝑖. The problem with this approach is that there is

no control over the contribution of this product’s factors. Even an outlier can be chosen as one of

the centroids because it is at a high distance from previous centroids.

We have adopted the Cao’s algorithm in our work to solve its initialization issue which we

will discuss in Section 4.4.1. In our approach, RDM, the average density of an object is prioritized

over its distance from previously chosen centroids. In chapter 5, we compare the clustering quality

of RDM and Cao’s method in details.

3.2. Khan and Ahmad’s Algorithms

In this section, we review two similar and closely related works by Khan’s [8] and Ahmad

and Dey’s [16].

Khan proposes a method of initialization for k-modes by identifying different types of

attributes (Vanilla, Prominent, and Significant) in the dataset, and then looking at the data objects

from different perspectives created by those attributes [8]. This algorithm generates cluster strings

14

for each data object based on these different perspectives and includes them in the initial clusters

if their cluster string is identical or similar. Finally, it calculates the modes of each initial cluster

to produce the non-random initial cluster centers (also called centroids) for k-modes algorithm.

• Vanilla Attributes

This method considers all the attributes (m) present in the data and generates M

clustering views that will be used in the clustering process [8].

• Prominent Attributes

Prominent attributes are those with less than or equal attribute values to the number of

clusters, k. Due to fewer attribute values per cluster, these attributes possess higher

discriminatory power and will play a significant role in deciding the initial cluster centers as

well as the cluster structures [15].

Algorithm 2: Identification of Prominent attributes

Input: D = data objects, n = number of data objects, A = Set of attributes in the data, number of

attributes in D: m = |A|, p = number of Prominent attributes = 0

Output: P = set of Prominent attributes

1. P = ∅

2. for i = 1 → m do

3. if number of distinct attribute values in 𝐴𝑖 > 1 && 𝐴𝑖 ≤ k then

4. Add 𝐴𝑖 to P

5. Increment p

6. end if

7. end for

8. if p = 0 || p = m then

9. use all attributes as Prominent

10. else

11. use the set P as the Prominent attributes

12. end if

• Significant Attributes

Unlike in numerical data, calculating the distance between two categorical values has

posed challenges as there is no straight-forward method. In 2007, Ahmad and Dey [16]

proposed an unsupervised learning method to calculate the distance between two distinct

values of an attribute. This method is based on the overall distribution of the value pair and

their co-occurrence with other attributes.

After computing the distance between each pair of values belonging to an attribute,

they calculate the average of all these distances and assign the resulting numeric value as the

15

significance of the intended attribute. Khan has used their method to identify the most

significant attributes based on the number of prominent attributes, that is, if there are x

prominent attributes, they choose the top x most significant attributes based on the calculated

significance value.

Algorithm 3: Computing the attributes’ significance

Input: D = dataset, n = number of data objects, A = Set of attributes of D, and number of attributes

in D: m = |A|

Output: S = set of Significant attributes, PD = set of triplets (i, (x, y), Θ), where i is the number of

the attribute, (x, y) is a pair of distinct values of 𝐴𝑖, and Θ is their distance.

1. S = ∅ , PD = ∅

2. for each attribute 𝐴𝑖 do

3. for each pair of categorical attribute values (x, y) do

4. Sum = 0

5. for every other attribute 𝐴𝑗 do

6. 𝜃(i, x, y) = max (p (w | x) + p (~w | y) – 1)

7. where w is a subset of jth attribute values

8. Sum = Sum + θ(i, x, y)

9. end for

10. Θ =
𝑆𝑢𝑚

(𝑚−1)
, distance Θ between x and y values of attribute 𝐴𝑖

11. end for

12. calculate the average of all the pair distances of 𝐴𝑖 and assign it as its significance

13. end for

Where:

p (w | x) is the probability that if attribute 𝐴𝑖’s value is x, then attribute 𝐴𝑗 has values from the

subset w.

p (~w | y) is the probability that if attribute 𝐴𝑖’s value is y, then attribute 𝐴𝑗 does not have

values from the subset w.

We have used the concept of prominent attributes in PRM RDM which we are going

to discuss in Section 4.4.4. Also, Ahmad and Dey’s method of calculating the distance between

attribute values has been used in SIG RDM and SIG-SCAV RDM (Section 4.4.5 and Section

4.4.6).

3.3. He’s Algorithm on Dissimilarity Measure

When k-modes algorithm was first introduced by Huang [10], a simple hamming distance

was used to enable k-means to work with categorical data (Section 2.2, part a). He [19] improved

this dissimilarity measure by taking into account the frequency of attribute values of the mode

16

(center) and not only the attribute value of the mode. To clarify this, let us consider the following

example:

𝑄1 and 𝑄2 are centers of clusters 𝐶1 and 𝐶2.

Now suppose there is a data object X = [G, M, T] which we want to assign to one of these

two clusters. For this purpose, we calculate its distance from the cluster centers. Using the

hamming distance, we obtain 𝑑1 (X, 𝑄1) = 𝑑1 (X, 𝑄2) = 0 + 0 + 1 = 1, and hence, we cannot decide

to which cluster, X should be assigned.

The author extended the hamming distance to solve this problem as follows:

𝑑2 (X , 𝑄𝑙) = ∑ ∅(𝑚
𝑗=1 𝑥𝑗, 𝑞𝑗,𝑙) (3)

Where ∅(𝑥𝑗 , 𝑦𝑗) = {
1 − (|𝑥𝑗,𝑙|/|𝐶𝑙|), (𝑥𝑗 = 𝑞𝑗)

1, (𝑥𝑗 ≠ 𝑞𝑗)

In equation 3:

1. 𝑄𝑙 is the mode of cluster l

2. 𝑞𝑗,𝑙 is the jth attribute value of 𝑄𝑙.

3. |𝑥𝑗,𝑙| is the number of objects with attribute value equal to 𝑥𝑗 in cluster 𝐶𝑙.

4. |𝐶𝑙| is the number of objects in cluster 𝐶𝑙.

Using the extended distance above, we have:

𝑑2 (X, 𝑄1) = (1-3/3) + (1-3/3) + 1 = 1

𝑑2 (X, 𝑄2) = (1-2/3) + (1-2/3) + 1 ≈ 1.67

Consequently, with respect to these distances, data object X is assigned to cluster 𝐶1.

We used and studied this extended distance measure in some of our initialization

algorithms (all RDM variants except SIG RDM and SIG-SCAV RDM).

3.4. K-PbC Algorithm

By looking at a dataset of data objects as a transaction dataset containing items bought by

a customer, Dinh and Huynh propose the Pattern Based Clustering (k-PbC) algorithm [7]. K-PbC

Data object A1 A2 A3

𝐃𝟏 G M R

𝐃𝟐 G M H

𝐃𝟑 G M L

𝑸𝟏 G M R

Data object A1 A2 A3

𝐃𝟒 G M F

𝐃𝟓 X M E

𝐃𝟔 G B S

𝑸𝟐 G M F

Table 3.1 Cluster C1 Table 3.2 Cluster C2

17

adapts the Maximal Frequent Itemset Mining (MFIM) algorithm to identify initial non-random

clusters. MFIM was proposed to discover association rules between two sets of items, or two data

objects as in our context. The method finds the groups of attribute values which frequently co-

occur in the datasets [17].

• FI and MFI

Frequent itemsets (FIs) are attribute values which occur in a dataset more than a certain

number of times called minimum support (minsup). Maximal frequent itemsets (MFIs) are FIs

that have no frequent superset, that is, MFIs are the largest FIs [7].

• How it Works

In the initialization phase of k-PbC, the MFIM algorithm is used to identify the top k

MFIs from the transaction dataset. For this, it uses the FPMAX algorithm to construct an MFI-

tree to find all MFIs. This tree resembles the FP-tree (Frequent Pattern tree) structure which in

fact, is the data structure of the popular FP-growth (Frequent Pattern growth) algorithm – an

efficient algorithm for mining frequent itemsets using association rules.

To the best of our knowledge, k-PbC is the best available initialization algorithm for k-

modes which we have used to compare with our proposed RDM initialization method.

3.5. Other K-Modes Based Clustering Algorithms

In this section, we review six other clustering algorithms briefly. Dinh and Huynh [7] have

compared their k-PbC algorithm’s performance with them. In our experiments, we also have

compared our initialization methods’ performance (RDM and RDM Ensemble) with these

algorithms.

Two of these six algorithms, i.e., k-means++ and k-means|| work only with numerical

datasets. One-hot encoding has been used to allow them to work with categorical datasets [7].

a) K-Means++

This method was invented by Arthur et al. [21] to improve the k-means clustering

method through non-random initialization. For the first initial centroid, k-means++ chooses a

random object, and then for the rest of the centroids, it selects the data objects with the

maximum probability proportional to their squared distance from previously selected

centroids, i.e., the centroid with the least distance from the data objects is chosen for this

purpose. Having determined the initial centroids, k-means++ then proceeds with the clustering

phase similar to the basic k-means algorithm which is the same as the k-modes algorithm

18

mentioned in Section 2.2 (starting from step 2). The only difference is that instead of re-

computing modes, it finds the means of the newly-formed clusters.
One drawback of this method is its sequential approach to selecting k centroids which makes

it unscalable in dealing with large datasets or datasets with a large number of clusters.

b) K-Means||

Bahmani et al. [22] adapted k-means++ algorithm to solve its scalability issue which

achieves approximation guarantees to k-means, i.e., it guarantees to find a solution in

polynomial time same as k-means. Then, they parallelized it using MapReduce. K-means|| is

faster than k-means++ because it performs fewer iterations for choosing initial centroids by

sampling O (k) data objects as centroid candidates, as opposed to choosing just one, in each

iteration using a non-uniform distribution. The number of iterations is almost equal to O (log

n), where n is the number of data objects in the dataset.

Using sampling, they choose some data objects as centroid candidates. The algorithm

then assigns weights to these objects and reclusters these weighted data objects to obtain k

centers [22]. The sample set is much smaller than the real dataset. For the purpose of re-

clustering, k-means|| uses any provable approximation algorithm such as k-means++ [22].

k-means|| improves both the quality and runtime of k-means.

c) K-Representatives (K-Reps)

In 2004, San et al. [23] proposed a method to cluster categorical data by altering k-

means to use random initialization for forming cluster centroids. It replaces addition and

multiplication operations with Cartesian product and union operations, in order to form “cluster

centers” based on the notion of means in the numerical setting [23]. This algorithm replaces

the means in k-means by representatives for each cluster. A representative of cluster C, Q =

[𝑞1, 𝑞2,…, 𝑞𝑚] is defined as follows:

𝑞𝑗 = {(𝑐𝑗, 𝑓𝑐𝑗
) | 𝑐𝑗 ∈ 𝐷𝑗} (4)

Where m is the number of attributes, 𝐷𝑗 is the set formed of categorical values of attribute j,

and 𝑓𝑐𝑗
 is the relative frequency of 𝑐𝑗 in cluster C.

 The dissimilarity measure between an object 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2,…, 𝑥𝑖𝑚] and a

representative Q, is defined as follows:

d (I, X) = ∑ ∑ (𝑓𝑐𝑗𝑐𝑗∈𝐷𝑗

𝑚
𝑗=1 . 𝛿(𝑥𝑗, 𝑐𝑗)) (5)

Where 𝛿 is the simple 0,1 dissimilarity measure from Equation 1, Section 2.2.

19

d) K-Centers, Mod-2, and Mod-3

In 2013, Chen et al. [27] proposed an algorithm similar to k-means called k-centers to

cluster categorical data which uses a kernel-based method to form cluster centers using a

Bayes-type probability estimator. In addition, they use a technique to assign weights to each

attribute to measure its individual contribution in the cluster. The distance between cluster

centers and objects is estimated by using the simple matching as an indicator function to

represent each data object by a set of vectors and the Euclidean norm to quantify the

dissimilarity [7].

In 2016, Nguyen et al. [25] changed k-centers algorithm (Mod-3). They did so by using

a modified cluster representation based on a kernel density estimate concept of cluster centers

for categorical objects. As for the dissimilarity measure, an Information Theoretic Based

Dissimilarity measure (ITBD) was used.

In 2019, Nguyen et al. [24] modified k-centers algorithm using Information Theoretic

Based Dissimilarity measure (ITBD) instead of the Euclidean norm metric (Mod-2). This

ITBD takes the underlying distribution of the categorical attributes into consideration and is

used to calculate the distance between the categorical data objects and the cluster centers.

It is worth noting that all these three methods use random initialization, and both Mod-

2 and Mod-3 have been proved to outperform k-centers’ quality.

e) CD-Clustering

In [26], Nguyen et al. proposed a method called CD-Clustering or Community

Detection clustering which tries to solve the issue of k-modes’ random initialization. This

algorithm uses the Louvain community detection technique to build an unweighted graph and

detect highly cohesive groups of nodes. It then chooses the top k communities, sorted in

descending order by their size, to define k modes.

To be able to choose highly cohesive groups or communities, this algorithm uses the

hamming distance (Section 2.2) and a threshold R which is defined by the number of clusters,

k and the distance distribution.

One shortcoming of this algorithm is that when the inter/intra clusters’ gap and the

number of clusters k are both small, it cannot detect the communities well [7]. However, the

main drawback of Nguyen et al.’s method is its quadratic complexity which limits its

application to datasets of 50,000 data objects or less [26].

3.6. Parallel K-Means Using MPI

In [28], Joshi proposed a parallel k-means algorithm using MPI which achieved reasonable

speed-ups especially for large datasets. The algorithm first divides the data evenly among all the

available processors, and then the master process chooses k random initial centroids and broadcasts

them to other processes. Each process then enters the phase of calculating the distance between its

own data objects and these centroids and decides which of the k clusters’ centroids is closer to

each data object.

20

At the end of each iteration, two communications must take place: updating the centroids

and summing up the Mean Squared Error (MSE) across all the processes.

MSE serves as a termination condition which is satisfied, if it reaches a certain amount or

does not change anymore.

In parallel k-means, to re-compute the centroids at the end of each iteration, each process

needs to just sum up all the corresponding dimensions of its local data objects in cluster 𝐶𝑖 and

then, do a collective reduce on this sum and the 𝐶𝑖’s local number of data objects. This process is

done to calculate the global mean for each cluster 𝐶𝑖. As a result, updating the centroids (global

means of each cluster) is straight-froward and not challenging as parallel k-modes. The reason lies

in the nature of numerical data. The step in which, all the processes sum up their corresponding

dimensions is where parallel k-means differs drastically from parallel k-modes. In k-means, a

simple sum-up on all the corresponding attribute values’ sums is sufficient and can produce the

global sum across all the processes for each attribute category. Whereas in parallel k-modes, after

computing modes for each attribute category in each process locally, in order to calculate the

global mode for each attribute, we cannot simply calculate the mode of these modes. The reason is

that the collective number of each attribute value in each category can be more than its individual

number in one process, and it can affect our decision to calculate the correct modes/centers, to a

high extent. So, we need to find a way to share this extra information among the processes while

trying not to lose the efficiency of the parallel k-modes. In the next chapter, we propose the PV3

algorithm for this purpose (Section 4.3).

To give an example of the complexity of MPI k-modes, Figure 3.1 is presented. Assuming,

we have 3 MPI processes, all holding the data objects of cluster 𝐶1. While the mode of modes in

this example is equal to “A” with the overall frequency of 4, the cluster 𝐶1’s real global mode

across all the processes is “B” with the overall frequency of 6:

Data object A1

𝐃𝟏 A

𝐃𝟐 A

𝐃𝟑 B

𝑸𝟏 A

𝑃1

Data object A1

𝐃𝟒 B

𝐃𝟓 B

𝐃𝟔 B

𝐃𝟕 B

𝐃𝟖 H

𝑸𝟏 B

𝑃2

Data object A1

𝐃𝟗 B

𝐃𝟏𝟎 I

𝐃𝟏𝟏 A

𝐃𝟏𝟐 A

𝑸𝟏 A

𝑃3

𝐶1 𝐶1 𝐶1

Figure 3.1 Three MPI Processes Holding the Categorical data objects of Cluster 𝐶1

21

3.7. Parallel K-Means Based on Spark

In [43], Wang et al. propose an improved parallel k-means algorithm based on Spark

distributed computing framework. The Canopy clustering algorithm is employed to determine the

optimal value of k, which represents the number of clusters. Additionally, the selection of initial

centroids is performed using the weighted density method to mitigate the influence of outliers on

the final clustering outcomes. To measure dissimilarity, a weighted Euclidean distance is utilized.

Experimental results obtained from UCI datasets demonstrate that the enhanced k-means algorithm

not only enhances the quality of clustering but also reduces the average iteration count. Moreover,

the parallel computing performance is evaluated in a Spark cluster environment with multiple

nodes, revealing a reduction in the algorithm's execution time.

3.8. Parallel K-Modes Based on MapReduce

Tao et al. [29] implemented k-modes algorithm on Hadoop using MapReduce parallel

computing model. However, their implementation focused on the original k-modes algorithm

without addressing its initialization issue, which significantly affects the quality of clustering

results.

They improved the process of k-modes: when allocating categorical objects to clusters, the

number of each attribute value in clusters is updated, so that the new modes of clusters can be

computed after reading the whole dataset once [29].

Step 1. Firstly, k random data objects are chosen to serve as the initial centroids. Then, p

map tasks are defined, and the data is divided between them evenly. Each map task stores the data

objects in the form of key-value pairs as <cluster_id, object>.

Step 2. In the next step, each map calculates the distance between each object and centroid

to decide the new memberships and updates the cluster id for each data object. In addition, the

number of each attribute value in clusters are updated to avoid reading the data one more time for

the purpose of re-computing the centroids.

Step 3. Once the new modes/centers are calculated by reading the clusters’ information

written by p maps and choosing the item with the maximum frequency, the distance between the

new and the old modes is measured. If this distance is more than some threshold, the algorithm

returns to step 2. Otherwise, it goes to step 4.

Step 4. k reduce tasks are defined which generate k clusters in the output files using the

information from the p maps.

The algorithm showed good speed-ups when clustering large datasets [29].

22

3.9. A Cluster Ensemble Framework for Categorical Data

In [30], He et al. showed that cluster ensemble and clustering categorical data are the same

problem due to the extensive commonalities between them. In other words, clustering categorical

data is an optimization problem from the viewpoint of cluster ensemble [30].

Their ensemble algorithm (ccdByEnsemble) has used three hypergraph-model based algorithms

namely CSPA, HGPA, and MCLA, adapted from Strehl et al. [33, 34].

• CSPA: cluster-based similarity partitioning algorithm is simply evolved around an n×n binary

similarity matrix in which, “1” indicates the two objects are in the same cluster, and “0” means

they are in different clusters. From this similarity matrix, a similarity graph is generated. They

then use the METIS algorithm [35] to partition this graph into clusters.

• HGPA: In this Algorithm, each cluster is represented by a hyperedge with the same weights,

and the data objects are the vertices with the same weights too. HMETIS algorithm [36] is then

used to partition this hypergraph such that the sum of weights the hyperedge cut is minimized

[30].

• MCLA: Similar to HGPA, in this algorithm, each cluster is represented as a hyper-edge. It starts

by forming hyper-edges which are more than the number of clusters, based on some relations

[34]. Then, in the next stages, the algorithm groups and collapses related hyper-edges. This

process terminates until there are k clusters left.

He et al. evaluated their cluster ensemble algorithm on 4 UCI datasets (Vote, Breast cancer,

Zoo, and Mushroom) using clustering accuracy measure. They employed the aforementioned three

methods and selected the best results for each dataset.

As we will see later in section 4.4.7, the accuracy of our RDM Ensemble is significantly

higher (20%) for the Mushroom and Zoo datasets, and it is less accurate for the datasets Breast

cancer (6% poorer) and Vote (2% poorer).

23

4. Chapter 4. Proposed Solution Techniques

In this chapter, we first present ideas of different designs and developments which we

explored for parallelizing the k-modes algorithm. These attempts led us to our proposed solution,

the PV3 algorithm. In our work, we considered the Single Program Multiple Data (SPMD) using

Message Passing Interface (MPI) on a distributed memory platform. The three solution versions

developed, include PV1, PV2, and PV3, where the first two paved the way for the final solution,

PV3. Section 4.1 to Section 4.3 provide details of them.

In Section 4.4, we introduce RDM which we adopted from the Cao’s algorithm for the

initialization step of our solution. We then incorporated this adopted RDM in various initialization

solutions to improve it and developed different RDM variants.

In Section 4.5, through parallelizing RDM and plugging it in PV3, PV3R is designed. In

Section 4.6, we present details of parallelization of another RDM variant (SIG RDM), and finally

in Section 4.7, we propose a solution framework called Ensemble Parallelizing Process (EPP) for

categorical data clustering parallelization. We then use all our RDM variants and the PV3

algorithm to build a realization of EPP to produce RDM ensemble clustering result.

In this thesis, the projects were implemented using the C++ programming language with

the GNU C++ Compiler (version 11.3.0). Also, the implementation leveraged the parallel

computing capabilities provided by Open MPI (version 4.1.2) for efficient distributed processing.

4.1. Parallel Algorithm Version 1 (PV1)

Our first goal was parallelizing the k-modes clustering algorithm using MPI. An intuitive

solution was to view each cluster as a process (processing element) responsible for the

computations of that cluster. As the standard sequential k-modes clustering is an iterative process

in which data are exchanged among the clusters at the end of each iteration, the view adopted

above induces that the corresponding processes perform exchanging data at the end of each

iteration to synchronize (Figure 4.1). The advantages and disadvantages of this view are as follows.

Figure 4.1 PV1’s Schema for k = 2 and p = 2

𝐶1

𝐶2

𝑷𝟏

𝑷𝟐

24

The advantages are:

1. Being easy and straight-forward to implement.

2. Having a real image of what is happening in other processes due to the fact that we are

transferring data objects among the processes or clusters.

3. Obtaining the same quality of sequential algorithm in parallel environment which means if

we can find a way to improve the quality of the sequential algorithm, we can easily

reproduce its clustering results using the parallel version algorithm.

The disadvantages are:

1. We should use only the number of processes equal to the number of clusters, and hence,

any additional resources available would remain unused.

2. Load imbalance is more likely to happen in this version, especially when we have uneven

distribution of the data objects in the real clusters.

3. High communication cost. Since data objects are being exchanged among the processes in

each iteration, the communication cost could be very high, hence, resulting in poor

performance.

Algorithm 1: Parallel Version 1 (PV1)

Input: D = data objects, n = number of data objects, k = number of clusters, p = number of

processes: 𝑃𝑖, i ∈ {1, …, k}

Output: k clusters of D

1. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = -1

2. for each 𝑃𝑖 , i ∈ {1, …, k} do

3. read (𝑑𝑖):
𝑛

𝑘
 distinct data objects from D.

4. end for

5. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

6. while 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1 ≠ 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 do

7. for each 𝑃𝑖 , i ∈ {1, …, k} do

8. 𝑚𝑖 = find_mode (𝑑𝑖)

9. send 𝑚𝑖 to other processes and receive other processes’ modes to build M = {𝑚1, …, 𝑚𝑘}

10. re_cluster (𝑑𝑖, M)

11. send/receive the farthest/closest data objects to/from other processes after reclustering

based on the closest_cluster_index produced by function re_cluster.

12. 𝐸_𝑙𝑜𝑐𝑎𝑙 1= E_local_calculator_single (𝑑𝑖, 𝑚𝑖)

13. end for

14. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1

15. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

16. end while

17. each process 𝑃𝑖 produces its corresponding 𝐶𝑖 and stops.

25

In line 8, for the function find_mode, we simply find the most frequent attribute value of

each attribute category in each process’s share of data.

In line 10, function re_cluster is used to find the distances between the data objects and the

new centroids in each iteration in order to find the closest centroid for each object:

Function 1: re_cluster

Input: 𝑑𝑖 = each 𝑃𝑖’s share of data, M = set of all cluster modes

Output: closest_cluster_index array with
𝑛

𝑝
 indices for objects in 𝑑𝑖

1. min_dist = max_float

2. for each 𝑥𝑗 ∈ 𝑑𝑖 do

3. for each 𝑚𝑙 ∈ M do

4. 𝑑𝑗𝑙 = find_distance (𝑥𝑗, 𝑚𝑙)

5. if 𝑑𝑗𝑙 < min_dist then

6. min_dist = 𝑑𝑗𝑙

7. closest_cluster_index[j] = l

8. end if

9. end for

10. end for

In line 4 of Function 1, for the function find_distance, we have used the He’s distance

measure of Section 3.3.

Function 2: E_local_calculator_single

Input: 𝑑𝑖 = each 𝑃𝑖’s share of data, 𝑚𝑖 = each process/cluster’s mode

Output: E_local: sum of all distances between each data object 𝑥𝑗 and its corresponding mode

𝑚𝑖.

1. E_local = 0

2. for each 𝑥𝑗 ∈ 𝑑𝑖 do

3. E_local = E_local + find_distance (𝑥𝑗, 𝑚𝑖)

4. end for

26

4.2. Parallel Algorithm Version 2 (PV2)

As mentioned earlier, the main shortcoming of the PV1 algorithm was being bound to the

number of clusters when employing processes. It is a big issue, especially when it comes to large

datasets because we cannot use our parallel resources in an efficient way. To support this view, we

designed algorithm Parallel Version 2 (PV2) which we view as a stepping stone to develop Parallel

Version 3 (PV3), details of which will be provided in the following section.

Unlike PV1, in PV2, we can use as many processes as desired, and each process may also

hold data objects from other clusters. PV2 starts by assuming that each processing element has

data objects which belong to all clusters and divides its own share of data into k distinct clusters.

In other words, each process clusters its share of data as done in a single sequential version, and

once each processing node completes an iteration step, the local cluster modes of processes are

exchanged among them before starting the next iteration step (Figure 4.2).

The advantages of this approach are:

1. Load balance. Each process’s load balance is going to stay the same throughout the whole

clustering process because the data objects are not exchanged unlike in PV1.

2. Fast. Due to the fact that the amount of exchanged data in each iteration is small, this

version is fast.

3. Efficient use of the resources. Since we are not bound to the number of clusters in using

processes, we are free, in principle, to use as many processes as desired.

𝐶1

𝐶2

𝐶1

𝐶2

𝐶1

𝐶2

L
o

ca
l

C
lu

st
er

 M
o

d
es

𝑷𝟏

𝑷𝟐

𝑷𝟑

Figure 4.2 PV2’s Schema for k = 2 and p = 3

27

Clearly, the main drawback of PV2 is lack of exchanged information among the

processes, and by increasing the number of employed processes, the data becomes more

fragmented (since only local modes are exchanged between the processes). This leads to poor

clustering result in particular when using more processes. This issue undermines the whole

purpose of this version which was removing the limitation on the number of processes. The steps

of PV2 is described in Algorithm 4, as follows:

Algorithm 2: Parallel Version 2 (PV2)

Input: D = data objects, n = number of data objects, k = number of clusters, p = number of

processes 𝑃𝑖, i ∈ {1, …, p}

Output: k clusters of D

1. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = -1

2. for each 𝑃𝑖 , i ∈ {1, …, p} do

3. read (𝑑𝑖):
𝑛

𝑝
 distinct data objects from D with the size 𝑛𝑖.

4. randomly divide 𝑑𝑖 into k local clusters with equal size of
𝑛𝑖

𝑘
 to build 𝐶𝑖 = { 𝐶𝑖1,…,𝐶𝑖𝑘}.

5. end for

6. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

7. while 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1 ≠ 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 do

8. for each 𝑃𝑖 , i ∈ {1, …, p} do

9. 𝑀𝑖= find_modes (𝐶𝑖), 𝑀𝑖 = {𝑚𝑖1,…, 𝑚𝑖𝑘}

10. send 𝑀𝑖 to other processes and receive other processes’ 𝑀𝑖

11. calculate mode of modes, M = {𝑚1,…, 𝑚𝑘}, using all the 𝑀𝑖s of all processes.

12. re_cluster (𝐶𝑖, M)

13. move objects locally between clusters based on their new cluster indices.

14. 𝐸_𝑙𝑜𝑐𝑎𝑙 1= E_local_calculator_modes (𝐶𝑖, M)

15. end for

16. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1

17. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

18. end while

19. each process 𝑃𝑖 sends its k clusters to Master (𝑃0) and stops.

20. Master outputs the integrated clusters.

In line 9, function find_modes is used to find the most frequent values of each attribute

category in all the k clusters of a process’s share of data 𝑑𝑖.

A description of function re_cluster in line 12 is given in Function 1 of Section 4.1.

In line 14, E_local_calculator_modes is the cost function which sums up all the distances

between the data objects in a cluster and their corresponding centroid as follows:

28

Function 3: E_local_calculator_modes

Input: k local clusters of each process: C = {𝐶1,…,𝐶𝑘}, Mode of modes of all clusters in all the

processes: M = {𝑚1, …, 𝑚𝑘}

Output: E_local: sum of all the distances between each data object 𝑥𝑗 and its corresponding mode

𝑚𝑖.

1. sum_E_local = 0

2. for each 𝑚𝑖 ∈ M, i ∈ {1, …, k}

3. for each 𝑥𝑗 ∈ 𝐶𝑖

4. sum_E_local = sum_E_local + E_local_calculator_single (𝑥𝑗, 𝑚𝑖)

5. end for

6. end for

4.3. Parallel Algorithm Version 3 (PV3)

As mentioned, in PV1, we had a limitation on the number of processes. To solve that, we

designed PV2 but at the cost of losing quality especially when using more processes. Our attempts

to overcome the issues of PV1 and PV2 brought us to the design of the parallel algorithm version

𝐶1

𝐶2

𝐶1

𝐶2

𝐶1

𝐶2

L
o

ca
l

F
re

q
u

en
cy

 T
a

b
le

s

𝑷𝟏

𝑷𝟐

𝑷𝟑

Figure 4.3 PV3’s Schema for k = 2 and p = 3

29

3, PV3. In this version, we can use as many processes as we want unlike in PV1 but not at the cost

of losing quality unlike in PV2.

PV3 works the same as PV2 but the only difference is in the amount of exchanged

information. At the end of each k-modes’ iteration, instead of exchanging local modes, every

process exchanges its frequency table which, in fact, is a full summary of the data objects it is

holding (Figure 4.3). This frequency table consists of the number of each attribute value of each

attribute category in each cluster. For example, Table 4.1 is a categorical dataset with three

attributes and 5 objects in two clusters 𝐶1 and 𝐶2:

Cluster name Data object Attibute1 Attribue2 Attribute3

𝑪𝟏 D1 H C E

𝑪𝟏 D2 H C F

𝑪𝟏 D3 T C F

𝑪𝟐 D4 T K F

𝑪𝟐 D5 T D F

Table 4.1 Categorical Dataset

The frequency tables for the two clusters in Table 4.1 are as follows:

PV3 is basically a middle ground between PV1 and PV2. Similar to PV1, we do not lose

any data while we are not slow (only a summary of what each process has, is exchanged, not the

data objects themselves). Similar to PV2, we can use as many processes as we would like but not

at the cost of information loss.

𝑪𝟏: Attribute1 H T

 2 1

 Attribute2 C

 3

 Attribute3 E F

 1 2

𝑪𝟐: Attribute1 T

 2

 Attribute2 K D

 1 1

 Attribute3 F

 2

Table 4.2 Frequency Table of C1 Table 4.3 Frequency Table of C2

30

Algorithm 3: Parallel Version 3 (PV3)

Input: D = data objects, n = number of data objects, k = number of clusters, p = number of

processes 𝑃𝑖, i ∈ {1, …, p}

Output: k clusters of D

1. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = -1

2. for each 𝑃𝑖 , i ∈ {1, …, p} do

3. read (𝑑𝑖):
𝑛

𝑝
 distinct data objects from D.

4. randomly divide 𝑑𝑖 into k local clusters with equal size of
𝑛𝑖

𝑘
 to build 𝐶𝑖 = { 𝐶𝑖1,…,𝐶𝑖𝑘}.

5. end for

6. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

7. while 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1 ≠ 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 do

8. for each 𝑃𝑖 , i ∈ {1, …, p} do

9. 𝑓𝑖= frequency_table_builder (𝐶𝑖)

10. send 𝑓𝑖 to other processes and receive other processes’ 𝑓𝑖.

11. integrate all the 𝑓𝑖s to build the global frequency table F.

12. calculate real global modes M = {𝑚1,…, 𝑚𝑘}from global F.

13. re_cluster (𝐶𝑖, M)

14. move objects locally between clusters based on their new cluster indices.

15. 𝐸_𝑙𝑜𝑐𝑎𝑙 1= E_local_calculator_modes (𝐶𝑖, M)

16. end for

17. 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 0 = 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1

18. All processes collectively sum all the 𝐸_𝑙𝑜𝑐𝑎𝑙 1 up and store it in 𝐸_𝑔𝑙𝑜𝑏𝑎𝑙 1.

19. end while

20. each process 𝑃𝑖 sends its k clusters to Master (𝑃0) and stops.

21. Master outputs the integrated clusters.

Function re_cluster in line 13 is defined in Function 1 of Section 4.1.

In line 9, the function frequency_table_builder builds the frequency table of each process

as follows:

31

Function 4: frequency_table_builder

Input: k local clusters of each process: C = {𝐶1,…,𝐶𝑘}, A = Set of attributes in the data, number

of attributes in the dataset: m = |A|

Output: frequency table of each process = f

1. for each 𝐶𝑖 ∈ C do

2. for each 𝐴𝑗, j ∈ {1, …, m} do

3. for each 𝑋𝑙 ∈ 𝐶𝑖 do

4. find the count of all distinct values of 𝐴𝑖 and add it to f

5. end for

6. end for

7. end for

4.4. RDM Algorithm and Variants

After several attempts to parallelize the k-modes algorithm, we noted an issue which is

inherent to the nature of any partitional algorithm such as k-modes. Even for PV1 and PV3, in

which no information loss is guaranteed, our results are non-deterministic and suffer from the

random initialization phase of the k-modes algorithm. This means, the order of the input data

objects which affects the initial seeding of the k-modes algorithm can change the resulting clusters

drastically in each run of the algorithm.

Numerous studies have been conducted to solve the random initialization issue of the k-

modes algorithm over the years [7, 8, 9, 26, 39, 40]. We studied and used some of them to build

the RDM initialization method and its variants. The Cao’s algorithm [9] is adopted to build RDM

which its details are presented in the next section. The method to identify prominent attributes in

categorical data objects [15] is used to build a variant of RDM called PRM RDM in Section 4.4.4.

Ahmad’s algorithm [16] for calculating distance between unique value pairs of a categorical

attribute is incorporated to build SIG RDM and SIG SCAV RDM in Sections 4.4.5 and 4.4.6

respectively.

In Section 3.1, we reviewed Cao’s algorithm [9] in which the author introduced a method

for initialization in the k-modes algorithm based on the density of data objects and their distance.

We have adopted Cao’s algorithm in our work to improve clustering quality of the k-modes.

In Cao’s initialization method described as Algorithm 1 of Section 3.1, it first chooses the

object with the highest density as the first initial center using Equation 1. As for the second

centroid, the object with the maximum density and distance from the first centroid is chosen. This

is done by calculating the product (multiplication) of the density of the object and its distance from

the first centroid and then, finding the object with the maximum value of this product. If k > 2

(number of clusters), for the remaining initial centroid(s), Cao uses a Max-Min approach to decide

which object(s) is/are more fitted. This is done also by calculating the product of the object’s

32

density and its distance from the previous centroids. In other words, the main criterion and the

beating heart of Cao’s method is calculating this multiplication:

Distance from previous centroid(s) × Density of the object

One problem with this approach is that if the distance factor is much higher than the

density, the density can be overwritten by the distance, and as a result it may negatively affect the

decision about the initial clusters. For example, if there is an object x with low density which is

very distant from our previous centroids (such as an outlier), the algorithm fails to realize and may

choose x as the next initial centroid.

To solve this issue, we have adopted Cao’s algorithm and proposed the Revised Density

Method (RDM) method introduced in the next section.

4.4.1. RDM Initialization Method

Our very first attempt to solve the discussed issue of Cao’s method [9] was RDM. This

algorithm tries to prioritize the density factor, i.e., instead of calculating the product of density and

distance for which we have no control over the contribution of its factors, in each iteration, we

choose the highest density object as our centroid and then calculate its distance from all the other

remaining objects. We then take the average of all these distances and put the objects whose

distances are at most this average in the cluster of the corresponding centroid. The goal here is to

form primary dense clusters around our core objects (the centroids) to help us identify better or

real initial clusters.

Algorithm 4: RDM Initialization

Input: D = data objects = {𝑋1 , 𝑋2,…, 𝑋𝑛 }, n = number of data objects, k = number of clusters

Output: k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘

1. calculate the density for each data object and put the pair (Density, Object) in Density-Object_List

sorted in descending order by density with size n.

2. for i = 1 → k do

3. 𝑄𝑖 = Density-Object_List [0] //Object with highest density as centroid 𝑄𝑖.

4. sum = 0

5. for each 𝑋𝑗 ∈ Density-Object_List do

6. distance = find_distance (𝑋𝑗, 𝑄𝑖)

7. sum = sum + distance

8. end for

9. ave_dist = 𝑠𝑢𝑚 𝑛 − 1⁄

10. for each 𝑋𝑗 ∈ Density-Object_List do

11. distance = find_distance (𝑄𝑖, 𝑋𝑗)

12. if distance ≤ ave_dist then

13. add 𝑋𝑗 to 𝐶𝑖 and remove it from Density-Object_List.

33

14. n = n - 1

15. end for

16. end for

17. if Density-Object_List is not empty then

18. calculate the modes of all the newly formed initial clusters and assign the remaining objects to

the closest cluster based on their distance from the clusters’ modes.

19. produce the final k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘.

For details of calculating the density of each object in line 1, please refer to Equations 1

and 2 in Section 3.1.

In line 6, for the function find_distance, we used the hamming distance described in part a

of Section 2.2.

In line 12, to find the distance between the modes and the remaining unassigned objects,

we used the He’s distance measure mentioned in Section 3.3. Finally, the Density-Object_List in

line 1 is a map between the data objects and their density which are sorted based on the density

values in descending order:

𝑂𝑏𝑗𝑒𝑐𝑡1 𝐷𝑒𝑛𝑠𝑖𝑡𝑦1

𝑂𝑏𝑗𝑒𝑐𝑡2 𝐷𝑒𝑛𝑠𝑖𝑡𝑦2

. .

. .

. .

𝑂𝑏𝑗𝑒𝑐𝑡𝑛−1 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑛−1

𝑂𝑏𝑗𝑒𝑐𝑡𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑛

Table 4.4 Density-Object_List in the First Iteration

As can be seen in the algorithm of RDM, by choosing the highest density object in each

iteration (and not just in the first step as done in Cao’s method) we have prioritized the object

density over the distance measure.

We have used 15 benchmark datasets from the UCI Machine Learning Repository [22] to

evaluate the performance of our algorithms. The results of our experiments (Tables 5.6, 5.7, and

5.8 in Section 5.3.1) indicate that RDM improves the clustering quality for almost 60% of these

datasets in terms of accuracy, precision, and recall. For one dataset (Soybean), the performance

result remained the same (with 100% accuracy, precision, and recall). For the rest, Cao’s algorithm

performed better.

34

We explored different solution ideas and techniques to improve RDM. In what follows, we

present the ones that showed more promise to produce better results.

4.4.2. GLMD RDM Initialization

In the first modification of RDM, called Global Mode RDM (GLMD RDM), the goal was

to eliminate the chance of a border data object to be selected as a centroid. Since in each iteration,

the highest density object is chosen as the next centroid, a border object may be chosen [40]. We

tried to solve this issue by changing the method for choosing the centroids (𝑄𝑖s) in each round, as

follows. Instead of only assigning the highest density data object as the centroid of our next cluster

as in RDM, we calculate the global mode of all the current data objects present in each iteration

and then among a list of candidates for the next centroid (a set of high-density objects), we choose

the object with the maximum distance from the current global mode. For the list of candidates, we

use a heuristic approach. First, we examine our Density-Object_List to find the approximate

position of the first big density gap. After recognizing at which index, this gap happens, we put all

the data objects before the gap index in the candidate list for the next centroid. In the next step, we

choose the farthest candidate from the current global mode as our centroid.

Algorithm 5: GLMD RDM Initialization

Input: D = data objects = {𝑋1 , 𝑋2,…, 𝑋𝑛 }, n = number of data objects, k = number of clusters

Output: k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘

1. calculate the density for each data object and put the pair (Density, Object) in Density-Object_List

sorted in descending order by density with size n.

2. for i = 1 → k do

3. find the mode of Density-Object_List as the Current_global_mode.

4. idxOfFirstDensGap = find_first_gap_index (Density-Object_List).

5. go through the Density-Object_List and put all the objects before the idxOfFirstDensGap in the

Candidates_list.

6. max_distance = 0

7. for each 𝑋𝑗 ∈ Candidates_list do

8. distance = find_distance (𝑋𝑗, Current_global_mode)

9. if distance > max_distance then

10. max_distance = distance

11. 𝑄𝑖 = 𝑋𝑗

12. end for

13. sum = 0

14. for each 𝑋𝑗 ∈ Density-Object_List do

15. distance = find_distance (𝑋𝑗, 𝑄𝑖)

16. sum = sum + distance

17. end for

35

18. ave_dist = 𝑠𝑢𝑚 𝑛 − 1⁄

19. for each 𝑋𝑗 ∈ Density-Object_List do

20. distance = find_distance (𝑄𝑖, 𝑋𝑗)

21. if distance ≤ ave_dist then

22. add 𝑋𝑗 to 𝐶𝑖 and remove it from Density-Object_List.

23. n = n - 1

24. end for

25. end for

26. if Density-Object_List is not empty then

27. calculate the modes of all the newly formed initial clusters and assign the remaining objects to

the closest cluster based on their distance from the clusters’ modes.

28. produce the final k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘 and stop.

In line 4, the function find_first_gap_index finds the first large density gap in the Density-

Object_List as follows:

Function 5: find_first_gap_index

Input: Density-Object_List, n = Density-Object_List’s size

Output: idxOfFirstDensGap

1. sum = 0

2. for i = 1 → (n – 1) do

3. gap = Density-Object_List[i] - Density-Object_List[i+1]

4. add gap to Gaps array

5. sum = sum + gap

6. end for

7. ave_gap = 𝑠𝑢𝑚 𝑛 − 1⁄

8. idxOfFirstDensGap = n

9. for i = 1 → (n – 1)

10. if Gaps[i] > ave_gap then

11. idxOfFirstDensGap = i

12. break

13. end for

The GLMD RDM’s clustering quality results in terms of accuracy, precision, and recall are

presented in Tables 5.9, 5.10, and 5.11 in Section 5.3.2.

36

4.4.3. SCAV RDM Initialization

second average RDM or SCAV was our next attempt to improve RDM by choosing fewer

but closer data objects to the centroids. With this approach, we hoped to form smaller but denser

neighborhoods around the centroids to enable them to attract more similar data objects into their

clusters in the following stages of the algorithm.

In RDM, in each iteration, we calculate the average distance between the centroid and all

the data objects still present in our Density-Object list. Next, to form initial clusters around the

centroid, we put, in the corresponding cluster, all the data objects whose distance is at most this

average. Let us call the set of these objects M. At this stage, RDM is finished with forming one

cluster and continues to find the next one, if any. But as for the SCAV RDM, it does not simply

put the objects present in M, in the cluster. This algorithm calculates a second average distance on

all of M’s data objects and then puts all the objects whose distance is at most this second average

in the corresponding cluster. The steps are formally presented in the following algorithm:

Algorithm 6: SCAV RDM Initialization

Input: D = data objects = {𝑋1 , 𝑋2,…, 𝑋𝑛 }, n = number of data objects, k = number of clusters

Output: k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘

1. calculate the density for each data object and put the pair (Density, Object) in Density-Object_List

sorted in descending order by density with size n.

2. for i = 1 → k do

3. 𝑄𝑖 = Density-Object_List [0] //Object with highest density as centroid 𝑄𝑖.

4. 𝑠𝑢𝑚1 = 0

5. for each 𝑋𝑗 ∈ Density-Object_List do

6. distance = find_distance (𝑋𝑗, 𝑄𝑖)

7. add the distance and its corresponding object 𝑋𝑗 to Distance-Object_List.

8. 𝑠𝑢𝑚1 = 𝑠𝑢𝑚1 + distance

9. end for

10. ave_dist = 𝑠𝑢𝑚1 𝑛 − 1⁄

11. for each 𝑋𝑗 ∈ Distance-Object_List do

12. distance = Distance-Object_List [𝑋𝑗]

13. 𝑠𝑢𝑚2 = 0

14. m = 0 //m is the size of set M.

15. if distance ≤ ave_dist then

16. 𝑠𝑢𝑚2= 𝑠𝑢𝑚2 + distance

17. add 𝑋𝑗 to the set M.

18. m = m + 1

19. end for

20. sec_ave_dist = 𝑠𝑢𝑚2 𝑚⁄ - 1

21. for each 𝑋𝑗 ∈ M do

37

22. distance = find_distance (𝑋𝑗, 𝑄𝑖)

23. if distance ≤ sec_ave_dist then

24. add 𝑋𝑗 to 𝐶𝑖 and remove it from Density-Object_List.

25. n = n - 1

26. end for

27. end for

28. if Density-Object_List is not empty then

29. calculate the modes of all the newly formed initial clusters and assign the remaining objects to

the closest cluster based on their distance from the clusters’ modes.

30. produce the final k initial clusters 𝐶1, 𝐶2,…, 𝐶𝑘 and stop.

Our evaluation results in terms of accuracy, precision, and recall are shown in Tables 5.9,

5.10, and 5.11 in Section 5.3.2.

4.4.4. PRM RDM Initialization

Prominent RDM (PRM RDM) was our next endeavor to improve RDM by trying to

improve the distance measure of RDM. We used the prominent attribute concept mentioned in

Section 3.2 for calculating the pair-wise distance between data objects. The idea here was the fact

that prominent attributes (attributes with values less than or equal to the number of clusters) have

more discriminatory power over other attributes because of their nature [15].

In this method, the indices of the prominent attributes are first identified, but instead of

including all the attributes in the distance calculation, we only use the prominent ones. In the cases

where the attributes are all prominent or none are so, it performs like the old way, and Hamming

distance is used for all the attribute values of two objects.

The pseudo-code for the PRM RDM algorithm is exactly the same as that of RDM provided

in Section 4.4.1 except for function find_distance in line 6 which is replaced by find_distance_prm

defined as follows:

38

Function 6: find_distance_prm

Input: A = set of attributes in the data, number of attributes: m = |A|, P = set of prominent attributes’

indices, first data object: 𝑋1 = {𝑥11, 𝑥12,…, 𝑥1𝑚}, second data object: 𝑋2 = {𝑥21, 𝑥22,…, 𝑥2𝑚}

Output: Distance between 𝑋1and 𝑋2.

1. Distance = 0

2. for i = 1 → m do

3. if i ∈ P then

4. if 𝑥1𝑖 ≠ 𝑥2𝑖 then

5. Distance = Distance + 1

6. end for

The PRM RDM method’s results in terms of accuracy, precision, and recall are presented

in Tables 5.9, 5.10, and 5.11 in Section 5.3.2.

4.4.5. SIG RDM Initialization

The distance measurement in the prominent RDM method did not work very well. So, we

looked for better ways to measure distance between the data objects. We used Ahmad and Dey’s

method [16] to calculate the distance between each value pair of each attribute. Significance RDM

(SIG RDM) works the same as RDM but instead of using the function find_distance in line 6, it

uses the triplets produced by Algorithm 3 of Section 3.2 to find the unique distance for each pair

of attribute values.

The SIG RDM method’s clustering quality results are presented in Tables 5.9, 5.10, and

5.11 in Section 5.3.2.

4.4.6. SIG-SCAV RDM Initialization

In this method, we combined the SCAV algorithm (Section 4.4.3) with the SIG algorithm.

So, for distance measurement, we use the significance method mentioned in previous section but

similar to the SCAV method, we do not stop at the first average distance. We proceed further to

calculate a second one and then form the initial clusters around our chosen centroids.

The SIG-SCAV RDM method’s clustering quality results are presented in Tables 5.9, 5.10,

and 5.11 in Section 5.3.2.

39

4.5. Parallel RDM Initialization and Parallel V3R (PV3R)

After exploring ways to improve clustering quality, and producing repeatable and

deterministic clustering results using the RDM and its different variants’ initialization techniques,

we used these produced initial clusters by RDM in PV3. The same clustering results as in the

sequential k-modes with RDM initialization were produced in parallel environment. So, while we

were able to maintain the same clustering quality, we could benefit from running the program in

parallel. So, if we use better initial clusters by RDM or any other state-of-the-art clustering

initialization methods for k-modes, we can expect the same clustering quality produced by PV3 as

in the sequential version.

we then parallelized RDM’s initialization process which helped us reach up to 2.4 times

speed-up using 8 processes in the initialization phase. Although the sequential RDM algorithm is

fairly simple and fast, and the gained speed-up of its parallelization was not very significant, its

parallelizing process allowed us to build the parallel mainframe for other RDM variants such as

SIG RDM which is the most time-consuming RDM variant.

The parallel RDM’s steps are formally presented in the following algorithm:

Algorithm 7: Parallel RDM initialization

Input: D = data objects, n = number of data objects, k = number of clusters, p = number of

processes 𝑃𝑖, i ∈ {1, …, p}

Output: k initial clusters of D

1. for each 𝑃𝑖 , i ∈ {1, …, p} do

2. read (𝑑𝑖):
𝑛

𝑝
 distinct data objects from D.

3. end for

4. for each 𝑃𝑖 , i ∈ {1, …, p} do

5. 𝑓𝑖_nc = frequency_table_nc_builder (𝑑𝑖)

6. send 𝑓𝑖_nc to other processes and receive other processes’ 𝑓𝑖_nc

7. integrate all the 𝑓𝑖_nc from all processes to build the global frequency table F_nc.

8. calculate the density for each object based on F_nc and put the pair of (Density, Object) in

Density-Object_List_Local sorted in descending order by density.

9. end for

11. for each 𝑃𝑖 , i ∈ {1, …, p} do

12. for m = 1 → k do

13. if 𝑃𝑖 has still data objects left in Density-Object_List_Local then

14. 𝑚𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 = Density-Object_List_Local [0] // Object with highest density in 𝑃𝑖.

15. send 𝑚𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 to other processes and receive other processes’ candidates.

16. choose the candidate with maximum density as the next centroid 𝑄𝑚.

17. sum_local = 0

18. for each 𝑋𝑗 ∈ Density-Object_List_Local do

19. distance = find_distance (𝑋𝑗, 𝑄𝑚)

40

20. sum_local = sum_local + distance

21. end for

22. send my sum_local to other processes and receive other processes’ sum_local.

23. send the current size of my available objects as 𝑛𝑚 to other processes’ and receive other

processes’ 𝑛𝑚s.

24. sum all the sum_locals to build sum_global.

25. sum all the 𝑛𝑚s to build the total size of all the available data objects in iteration m or 𝑁𝑚.

26. ave_dist = 𝑠𝑢𝑚_𝑔𝑙𝑜𝑏𝑎𝑙 𝑁𝑚⁄ - 1

27. for each 𝑋𝑗 ∈ Density-Object_List_Local do

28. distance = find_distance (𝑄𝑚, 𝑋𝑗)

29. if distance ≤ ave_dist then

30. add 𝑋𝑗 to 𝐶𝑖𝑚 (cluster mth of process i) and remove it from Density-Object_List_Local.

31. end for

32. end for

33. end for

34. if Density-Object_List_Local is not empty then

35. for each 𝑃𝑖 , i ∈ {1, …, p} do

36. 𝑓𝑖 = frequency_table_builder (𝐶𝑖) //𝐶𝑖 = { 𝐶𝑖1,…,𝐶𝑖𝑘} all the clusters of 𝑃𝑖

37. send 𝑓𝑖 to other processes and receive other processes’ 𝑓𝑖.

38. integrate all the 𝑓𝑖s to build the global frequency table F.

39. Calculate real global modes M = {𝑚1,…, 𝑚𝑘}from global F.

40. assign the remaining objects to the closest cluster based on their distance from the clusters’

modes.

41. end for

42. each process 𝑃𝑖 sends its clusters 𝐶𝑖 = { 𝐶𝑖1,…,𝐶𝑖𝑘} to Master (𝑃0).

43. Master integrate all these clusters and produce the final k initial clusters.

In line 5, frequency_table_nc_builder function builds a local frequency table of what a

process has without considering any local clusters.

In line 8, for calculating the density of each object, please refer to Equations 1 and 2 of

Section 3.1.

In line 19, for the function find_distance, we have used the hamming distance of part a in

Section 2.2.

In line 40, to find the distance between the modes and the remaining objects, we have used

the He’s distance measure in Section 3.3.

41

Function 7: frequency_table_nc_builder

Input: 𝑑𝑖 = each 𝑃𝑖’s share of data, A = Set of attributes in the data, number of attributes: m = |A|

Output: frequency table of each process which is not clustered = f_nc

1. for each 𝐴𝑗, j ∈ {1, …, m}

2. for each 𝑋𝑖 ∈ 𝑑𝑖

3. find the count of all distinct values of 𝐴𝑖 and add it to f_nc

4. end for

5. end for

By plugging in the parallel implementation of RDM in PV3, we built parallel V3R (PV3R).

This version works the same as PV3 but with non-random initialization seeds produced from

parallel RDM.

In the next chapter, we will compare the performance of all the parallel versions (PV1,

PV2, PV3, and PV3R) in terms of speed-up for the 15 UCI benchmark datasets we used in our

experiments.

4.6. Parallel SIG RDM Initialization

As already mentioned in Section 4.4.5, SIG RDM initialization is evolved around

calculating the distance between every unique value pair of each attribute in relation to every other

attribute’s distinct values. This process is highly time-consuming and therefore was a great

opportunity to exploit our parallel resources. So, we parallelized Ahmad and Dey’s algorithm [16]

mentioned in Section 3.2.

One of our main challenges was to design a parallel algorithm that could work with the

least amount of communication possible between the processes. Referring to line 6 of Algorithm

3 in Section 3.2, the main computation of this method is to calculate p (w | x) and p (~w | y), where

(x, y) is a value pair of attribute 𝐴𝑖 which we want to calculate their distance, and w is a subset of

distinct values of other attributes. To do so, we proposed the idea of partial tables in which, instead

of calculating the amount of these probabilities, the count of each relevant occurrence of these

values in a process is stored. So, for example, for the pair (x, y) of attribute 𝐴0, we formed a table

with columns for each distinct value of attribute 𝐴1, counted and stored the related occurrences in

our partial table. We repeated the same process for all the other pairs and all the other distinct

values of other attributes (𝐴2, 𝐴3,…, 𝐴𝑚). In the communication phase, we exchanged these partial

tables between the processes, traversed them, and summed up all the relevant occurrences to make

one complete table. Using this table, we then computed the probabilities and calculated the unique

distance between each unique pair of every attribute.

42

Algorithm 8: Parallel computation of the distance between each value pair of an attribute

Input: D = data objects, n = number of data objects, k = number of clusters, p = number of

processes 𝑃𝑖, i ∈ {1, …, p}

Output: PD = set of triplets (i, (x, y), Θ), where i is the number of the attribute, (x, y) is the pair of

distinct values of 𝐴𝑖 and Θ is their distance.

1. for each 𝑃𝑖 , i ∈ {1, …, p} do

2. read (𝑑𝑖):
𝑛

𝑝
 distinct data objects from D.

3. end for

4. for each 𝑃𝑖 , i ∈ {1, …, p} do

5. for each attribute 𝐴𝑖 do

6. for each pair of categorical attribute values (x, y) do

7. for every other attribute 𝐴𝑗 do

8. 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑡𝑎𝑏𝑙𝑒(i, x, y, w) = {# (w | x), # (~w | y), # x, # y)}

9. where w is a subset of jth attribute values and # is equivalent to count of.

10. end for

11. end for

12. end for

13. send my partial_table and receive others’ partial_table to build the complete_table.

14. for each attribute 𝐴𝑖 do

15. for each pair of categorical attribute values (x, y) do

16. Sum = 0

17. for every other attribute 𝐴𝑗 do

17. build 𝜃(i, x, y) = max (p (w | x) + p (~w | y) – 1) from complete_table.

18. end for

19. Θ =
𝑆𝑢𝑚

(𝑚−1)
, distance Θ between x and y values of attribute 𝐴𝑖

20. end for

21. end for

22. end for

Combined with parallel RDM initialization, we developed Parallel SIG RDM Initialization

which reduced the processing time of distance calculation between each pair of an attribute. This

resulted in an improvement of maximum 8.8 times speed-up with 9 processes for our largest dataset

Nursery with 12,960 records.

We parallelized SIG-SCAV RDM using the parallel SIG RDM algorithm. The pseudo-

code is similar to Algorithm 8 except for a small change in forming the initial clusters around the

chosen centroids, as discussed in Algorithm 6 of Section 4.4.3.

43

4.7. Proposed Solution Framework (EPP)

In this section, we present a framework for categorical data clustering parallelization.

Ensemble Parallelizing Process (EPP) framework uses all the different components which we

developed and introduced in the previous sections in order to produce better clustering quality

while enjoying parallelism.

Figure 4.4 shows a generic schematic of this framework:

EPP receives a dataset x as the input and produces k clusters as the output. A unique

index number is assigned to each data object to track it throughout the whole process. These

indexed objects are clustered using n different clustering/initialization algorithms (𝐴1, 𝐴2, …,

𝐴𝑛) producing n clustering results (𝐶𝑅1, 𝐶𝑅2, …, 𝐶𝑅𝑛). Each 𝐶𝑅𝑖 either contains the same or a

different cluster label for each data object. To integrate all these labels for a single object, the

ensemble process uses a majority-based approach by assigning the most frequent label to each

data object. After obtaining the dominant cluster label for all the objects in the same way, EPP

produces the final k clusters as the output (𝐶1, 𝐶2,…, 𝐶𝑘). As previously mentioned, clustering

categorical data is a subjective task as there is no universal dissimilarity measure for it. As a

result, this consensus approach which takes into account the decision of the majority can lead

into better overall clustering result.

Looking at Figure 4.4 of EPP, it is seen that we can parallelize this framework in two

levels: vertically and horizontally. Our clustering/initialization algorithms can be run

independently of each other. In other words, they are embarrassingly parallel (horizontal

Figure 4.4 EPP Schematic

Dataset x
 𝐴1

 𝐴2

 𝐴𝑛

Ensemble

 𝐶𝑅1

 𝐶𝑅2

 𝐶𝑅𝑛

 𝐶𝑅𝐼𝑁𝑇

C1
𝐶1

𝐶𝑘

𝐶2

44

parallelization). On the other hand, each clustering/initialization algorithm 𝐴𝑖 can be parallelized

too (vertical parallelization).

We used our 6 different RDM initialization techniques mentioned from Section 4.4.1 to

4.4.6 as initialization algorithms, and then the PV3 which is a parallel k-modes based clustering

algorithm (Section 4.3) was used to cluster these 6 different initial clusters produced by different

versions of RDM. In the last step, we used the majority-based ensemble technique to produce the

final clustering result which we refer to it as RDM ensemble, in the rest of this report. Figure 4.5

shows our realization of EPP:

The RDM ensemble’s quality in terms of average accuracy (Table 5.9 in Section 5.3.2)

are better than all the individual RDM initializations. It improves the initial RDM for 10 out of

15 datasets, remains similar in 3, and performs a bit worse in 2 datasets. RDM ensemble showed

better clustering performance in terms of precision (Table 5.10) and recall (Table 5.11)

comparing to each individual RDM too.

It is worth mentioning that among the 6 used RDM versions, 3 of them are fully

parallelized: RDM (Section 4.5), SIG RDM, and SIG-SCAV (Section 4.6). We have not

parallelized the GLBMD, SCAV, and PRM RDMs, and this is not a problem because the most

intensive and time-consuming calculations belong to SIG and SIG-SCAV RDMs. As a result, the

maximum elapsed time is one of their timings in an embarrassingly parallel architecture as in

EPP.

EPP is a flexible framework, i.e., we can use it with different initialization/clustering

algorithms, and with different levels of parallelism. For example, we can use the previously-

produced initial clusters by different k-modes based sequential clustering algorithms, such as k-

𝑆𝐶𝐴𝑉 𝑅𝐷𝑀 & 𝑃𝑉3
 𝐶𝑅𝑆𝐶𝐴𝑉

𝑃𝑅𝑀 𝑅𝐷𝑀 & 𝑃𝑉3
 𝐶𝑅𝑃𝑅𝑀

𝑆𝐼𝐺 𝑅𝐷𝑀𝑷 & 𝑃𝑉3
 𝐶𝑅𝑆𝐼𝐺

𝑆𝐼𝐺 − 𝑆𝐶𝐴𝑉 𝑅𝐷𝑀𝑷 & 𝑃𝑉3
 𝐶𝑅𝑆𝐼𝐺−𝑆𝐶𝐴𝑉

Dataset x

Ensemble

 𝐶𝑅𝐺𝐿𝑀𝐷
𝐺𝐿𝑀𝐷 𝑅𝐷𝑀 & 𝑃𝑉3

𝑅𝐷𝑀𝑷 & 𝑃𝑉3
 𝐶𝑅𝑅𝐷𝑀

 𝑅𝐷𝑀 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

C1 𝐶1

𝐶𝑘

𝐶2

Figure 4.5 RDM Realization of EPP (RDM EPP)

45

PbC, or we can parallelize these algorithms to produce these initial clusters. Then, in both of

these cases, we can use the PV3 algorithm as the main clustering algorithm as done in Figure 4.5,

and obtain the same clustering result (CRs) as in the sequential algorithm. We can even use

different clustering algorithms other than k-modes based algorithms, such as DBSCAN as our

different 𝐴𝑖s, and then perform the ensemble process to obtain the final clustering result, 𝐶𝑅𝐼𝑁𝑇.

All these algorithms can either be parallelized or not.

As seen in Figure 4.5, the RDM EPP is a Multiple Program Multiple Data (MPMD)

model. EPP is inherently a multiple program model, but what can make its RDM realization, a

multiple data model is the fact that we are using different initialization algorithms (various RDM

versions) to produce different initial clusters on the same dataset which can be considered as

multiple data feeding into the EPP framework.

 In Section 5.3.3, RDM ensemble’s clustering quality is compared to other state-of-the-art

clustering algorithms. We can observe that RDM ensemble has comparable clustering quality to

other state-of-the-art k-modes clustering algorithms, and stands among the top three best, to the

best of our knowledge.

4.8. Summary

In this chapter, we first explored parallelization of the k-modes clustering algorithm using

Message Passing Interface (MPI). After exploring different ideas and techniques and choosing

the best approach (PV3) in terms of both quality and speed-up, we tried to produce better

clustering results which were deterministic by working on the seeding of the sequential

algorithm. The sequential RDM initialization algorithm, and some of its variants were introduced

for this purpose.

After improving and maintaining the clustering quality in the initialization phase of the k-

modes algorithm, we parallelized these initialization techniques. First, we parallelized RDM

algorithm which was a necessary first step to parallelize other RDM variants. The reason is that

RDM variants are fairly similar to each other and only differ in small details such as calculating

the distance between the data objects. We then parallelized SIG RDM and SIG-SCAV RDM

algorithms which helped us achieve good speed-ups in the initialization phase of the k-modes

algorithm.

In the penultimate section of this chapter, we presented an Ensemble Parallelizing

Process (EPP) framework for parallelizing categorical data clustering. EPP is a flexible

framework which can produce better clustering quality while providing different levels of

parallelism. We then plugged in all the techniques and algorithms developed and mentioned in

this chapter to build an RDM realization of EPP (RDM EPP). The clustering quality of the

output (RDM ensemble) is among the top three best k-modes based clustering algorithms to the

best of our knowledge.

46

5. Chapter 5. Experiments and Results

In this chapter, we present the datasets utilized for evaluating the proposed parallelization

solutions for clustering categorical data. This is followed by the explanation of the carried-out

experiments to evaluate the performance and the results.

5.1. Datasets for Experimental Evaluations

We used 15 bench mark categorical datasets with different characteristics from the UCI

Machine Learning Repository [22] in our performance evaluation experiments. Table 5.1 provides

information about these datasets.

Dataset # Clusters # Instances # Attributes

1 Balance scale 3 625 4

2 Breast cancer 2 699 9

3 Car evaluation 4 1,728 6

4 Chess 2 3,196 36

5 Dermatology 6 366 34

6 Lung cancer 3 32 56

7 Lymphography 4 148 18

8 Mushroom 2 8,124 22

9 Nursery 5 12,960 8

10 Solar flare 3 1,066 12

11 Soybean 4 47 35

12 Splice 3 3,190 60

13 Tic-tac-toe 2 958 9

14 Vote 2 435 16

15 Zoo 7 101 17

Table 5.1 Experimental Datasets

5.2. Parallel K-Modes (PV1, PV2, PV3, and PV3R)

In this section, we measure and report the performance of different parallelization methods

developed, in terms of speed-up. We have obtained these figures by running our programs on a

Linux based Beowulf cluster named Apini available at Concordia University.

The quality has been excluded from these comparisons because the algorithms PV1, PV2,

and PV3 use the original k-modes algorithm with random initialization. Conducting a quality-wise

comparison between them would be irrelevant since each algorithm starts from distinct random

initial clusters in every run, which are not equivalent to those of the other algorithms. On the other

47

hand, the PV3R algorithm demonstrates an identical clustering quality to that of the RDM

algorithm, due to their shared initialization technique. The clustering results of the RDM

algorithm, including accuracy, precision, and recall can be found in Tables 5.9, 5.10, and 5.11

within Section 5.3.2.

5.2.1. Speed-up

Since speed-up is meaningful in the number of processes (p) used, it would be quite

meaningless to calculate the average speed-up produced on different number of processes. As a

result, for the purpose of comparison, we have used the maximum speed-up for each version.

For each dataset, we ran algorithms PV2, PV3 and PV3R 100 times with different number

of processes ranging from 2 to 80 (maximum available processes) to measure the average elapsed

time for every one of these algorithms. We report the maximum speed-up obtained in Table 5.2.

For PV1, since we only used a certain number of processes, equal to the number of clusters k, we

ran the experiment 100 times with k processes and reported only one speed-up.

#Instances Speed-up (MAX) PV1 PV2 PV3 PV3R

32 Lung cancer 2.67 1.00 0.76 0.71

47 Soybean 2.83 1.31 1.06 1.38

96 Zoo 4.10 1.46 1.11 1.47

148 Lymphography 3.60 1.71 1.33 1.32

366 Dermatology 1.10 2.94 3.06 2.47

434 Vote 1.15 3.33 3.33 2.37

624 Balance scale 3.50 3.50 4.67 2.22

698 Breast cancer 1.29 5.80 2.42 2.64

958 Tic-tac-toe 0.81 1.62 2.10 4.45

1,066 Solar flare 2.46 5.21 3.44 4.15

1,728 Car evaluation 3.15 8.73 12.00 3.70

3,190 Splice 1.03 5.66 6.44 4.84

3,196 Chess 0.52 6.35 11.27 7.71

8,192 Mushroom 0.15 8.13 10.54 9.68

12,960 Nursery 0.52 12.13 10.10 9.22

Table 5.2 Speed-up

48

Figure 5.1 Maximum Speed-up Comparison Between PV1, PV2, PV3, and PV3R

a) Relatively Small Datasets

As per Figure 5.1, In small datasets, PV1 has almost the best speed-up among all other

versions. In comparison with PV3R, it has been expected because in PV3R, more work (the

initialization process) is done and the extra effort to form better initial clusters in parallel is simply

not worth it. Also in small datasets, PV2 cannot benefit much by using an increased number of

processes due to the large overhead of data exchange incurred at every iteration.

PV3 and PV1, on the other hand, have an almost equal speed-up due to their nearly identical

approach. We should also mention that when the size of the input dataset is small, using fewer

processes works better, in general, in terms of speed-up. This is because in this case, by increasing

the number of processes, we are unwillingly adding on the communication cost while each process

does less computation, and this can negatively affect the speed-up and efficiency.

b) Relatively Large Datasets

As seen in Figure 5.1, PV3 is the fastest in working with relatively large datasets while we

expected PV2 to have the best speed-up among all the versions. When we examine the results more

carefully, we notice that the number of iterations in PV3 is less than that of PV2. Again, since PV2

suffers from information loss along the way, in particular for large datasets when using more

processes, this can lead to doing more work, and it increases the number of iterations for k-modes.

PV1 is very slow as expected because it is bound to using only a certain number of

processes, and that turns into a major issue in working with large datasets.

PV3R has an acceptable speed-up in comparison to any other PVs. While it is not as high

as PV3 and PV2 because of the time it takes to do the initialization, PV3 starts off from better

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Datasets

Speed-up (MAX)

PV1 PV2 PV3 PV3R

49

initial clusters which helps it to converge faster, and that in turn makes up for the total elapsed

time.

c) Speed-up vs. Number of Processes (p)

To have a general picture of the relation between the size of the dataset, number of

processes, and speed-up, we picked seven UCI datasets with sizes from small to large and

measured the maximum speed-up for PV2, PV3, and PV3R. PV1 has been excluded from this

experiment because of its limitation of using different number of processes.

Figure 5.2 PV2’s Speed-up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

S
p

ee
d

-u
p

#Processes

PV2

Lymphography Vote Breast cancer Car evaluation Chess Mushroom Nursery

#Instances
 #Processe

Datasets
2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

148 Lymphography 1.13 1.44 1.64 1.64 1.64 1.71 1.71 1.20 1.20 1.20 1.16 1.16 0.80 0.72 0.55

434 Vote 1.25 2.14 2.50 2.50 2.73 3.33 3.33 2.73 2.73 2.73 2.73 2.73 1.58 0.79 0.60

698 Breast cancer 1.66 2.90 3.41 4.14 4.83 5.27 5.80 5.27 5.27 5.27 4.46 5.27 2.90 1.53 1.07

1,728 Car evaluation 2.00 3.20 5.65 4.57 4.92 5.82 7.38 5.19 5.65 6.19 5.65 8.73 6.62 0.91 0.60

3,196 Chess 1.31 1.27 1.41 1.96 2.55 3.08 3.54 3.03 3.65 3.62 4.73 5.44 6.35 4.91 3.14

8,192 Mushroom 1.53 2.32 1.67 4.19 3.46 2.99 2.85 4.25 2.64 3.29 3.58 4.96 7.99 8.13 4.74

12,960 Nursery 1.89 3.25 4.20 5.65 6.41 6.92 7.65 7.14 7.00 6.83 8.83 10.17 12.13 3.89 3.49

Table 5.3 PV2’s Speed-up vs. #Processes

50

Figure 5.3 PV3’s Speed-up

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

S
p

ee
d

-u
p

#Processes

PV3

Lymphography Vote Breast cancer Car evaluation Chess Mushroom Nursery

#Instances
 #Processe

Datasets
2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

148 Lymphography 0.92 1.16 1.24 1.33 1.16 1.24 1.20 0.97 0.80 0.75 0.72 0.75 0.49 0.14 0.13

434 Vote 1.15 1.88 2.14 2.73 2.73 3.33 3.00 2.31 2.31 1.31 2.00 1.76 0.97 0.17 0.15

698 Breast cancer 1.38 1.93 2.15 2.42 2.23 2.15 2.15 1.76 1.66 1.49 1.53 1.38 0.53 0.20 0.18

1,728 Car evaluation 1.70 3.00 8.00 4.17 4.68 5.05 9.14 4.47 4.68 6.62 4.36 12.00 7.38 1.59 0.51

3,196 Chess 1.35 2.50 6.84 4.47 3.60 5.06 6.72 11.27 6.72 4.71 4.68 6.96 5.44 4.85 1.40

8,192 Mushroom 1.09 3.48 2.52 6.16 3.58 7.26 6.87 5.29 4.87 6.78 5.37 10.54 7.78 2.22 1.67

12,960 Nursery 2.11 3.07 4.74 5.66 6.05 8.47 8.05 6.78 8.01 8.09 10.10 9.48 8.81 2.91 2.53

Table 5.4 PV3’s Speed-up vs. #Processes

#Instances
 #Processe

Datasets
2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

148 Lymphography 0.91 1.21 1.32 1.16 1.12 1.12 0.97 0.91 0.85 0.78 0.74 0.74 0.45 0.07 0.06

434 Vote 1.32 2.14 2.65 2.05 2.14 1.96 2.37 1.88 1.80 1.67 1.61 0.83 0.40 0.11 0.09

698 Breast cancer 1.27 2.00 2.28 2.44 2.64 2.64 2.64 2.13 2.06 1.94 1.83 1.83 1.10 0.21 0.16

1,728 Car evaluation 1.36 2.50 2.53 3.08 3.19 3.49 3.70 3.25 3.03 2.94 3.14 3.14 1.85 0.30 0.23

3,196 Chess 1.45 2.61 3.43 4.18 4.98 5.72 6.32 5.47 5.60 6.08 6.81 7.71 6.67 1.84 1.42

8,192 Mushroom 1.44 2.60 3.44 4.32 5.06 5.72 6.56 5.97 6.21 6.48 7.71 9.10 9.68 2.84 2.24

12,960 Nursery 1.33 2.79 3.40 4.22 5.40 5.74 6.49 6.07 5.40 6.32 6.66 9.22 7.51 1.67 1.35

Table 5.5 PV3R’s Speed-up vs. #Processes

51

Figure 5.4 PV3R’s Speed-up

After examining Tables 5.3, 5.4, 5.5, and their corresponding charts, we noted that in all our

parallel versions, the maximum speed-up happens in smaller number of processes when working

with smaller datasets while for larger datasets, we have the highest speed-ups when using higher

number of processes. This is reasonable because when working with small datasets, using a large

number of processes leads to more communication overhead while there is not much computation

to outweigh overhead and vice versa.

Another point which stands out by looking at and comparing the data and the charts is that

the curves for PV3R are almost smooth and predictable while it is not the case for PV2 and PV3.

The reason lies in the initialization phase of PV3R. As already mentioned in chapter 4, with non-

random initialization of k-modes, we can produce deterministic and better clustering results which

do not change and are not order-dependent. As a result, the amount of work (the number of

iterations) does not change in different runs, hence explaining why there are not as many peaks and

valleys in PV3R’s corresponding chart.

On the other hand, PV2 and PV3 use random initialization, and that leads to lack of

predictability of the number of the iterations for k-modes to converge. This, in turn, affects the

elapsed time and consequently speed-up.

5.3. RDM

As mentioned before in Section 4.4.1, RDM is an adopted version of Cao’s algorithm

which prioritizes density over distance in order to produce better initial clusters. In this section,

we first compare the performance of RDM and its parent algorithm Cao. Then, we compare RDM

with the results of the other RDM variants. Next, we compare the quality of RDM ensemble to

other state-of-the-art k-modes based algorithms for clustering. These results include accuracy,

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2 3 4 5 6 7 8 9 10 12 14 16 32 64 80

S
p

ee
d

-u
p

#Processes

PV3R

Lymphography Vote Breast cancer Car evaluation Chess Mushroom Nursery

52

precision, and recall which were obtained from running 10 different algorithms on 15 UCI datasets.

Dinh and Huynh [7] collected all these results which we used for the purpose of comparison too.

The winner in all these comparisons is k-PbC algorithm [7] which as mentioned in Section

3.4 uses an FP-tree (Frequent Pattern tree) to mine frequent patterns of attribute values to form

initial clusters.

It is worth mentioning that even though k-PbC yields better quality than other algorithms

in terms of accuracy, precision, and recall, its clustering quality is not significantly different, if not

comparable to, those of the other algorithms. For example, when comparing the accuracy of k-PbC

and the next best algorithm (CD-Clustering algorithm apart from RDM ensemble or RDM), in 8

datasets, their difference is in the hundredth decimal places, and in 2 datasets, it is in the thousandth

decimal places. Only in 4 datasets, this difference is in one decimal place (10%).

5.3.1. RDM vs. Cao

To compare the quality of RDM and Cao, we used accuracy, precision, and recall in our

experiments. As can be seen in Table 5.6, RDM is better in accuracy for 8 datasets and is the same

to Cao’s algorithm in 1 dataset:

Datasets Cao RDM

Balance scale 0.3760 0.4454

Breast cancer 0.9113 0.8653

Car evaluation 0.4936 0.3403

Lung cancer 0.5313 0.5938

Chess 0.5663 0.5673

Dermatology 0.5874 0.5109

Lymphography 0.3514 0.5135

Mushroom 0.8754 0.8902

Nursery 0.3673 0.3147

Solar flare 0.5432 0.4747

Soybean-small 1.0000 1.0000

Splice 0.4009 0.3282

Tic-tac-toe 0.6106 0.6837

Vote 0.8644 0.8714

Zoo 0.6733 0.9583

Table 5.6 Accuracy of RDM vs. Cao

Figure 5.5 Accuracy of RDM vs. Cao

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Accuracy

RDM Cao

53

Datasets Cao RDM

Balance scale 0.3282 0.4072

Breast cancer 0.9292 0.9068

Car evaluation 0.3826 0.3235

Lung cancer 0.5468 0.6435

Chess 0.5796 0.5699

Dermatology 0.5604 0.3877

Lymphography 0.2698 0.4281

Mushroom 0.9019 0.9056

Nursery 0.2978 0.3062

Solar flare 0.3381 0.3384

Soybean-small 1.0000 1.0000

Splice 0.4518 0.3011

Tic-tac-toe 0.5859 0.6635

Vote 0.8568 0.8668

Zoo 0.5996 0.9472

Table 5.7 Precision of RDM vs. Cao

Figure 5.6 Precision of RDM vs. Cao

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Precision

RDM Cao

54

Datasets Cao RDM

Balance scale 0.3228 0.3920

Breast cancer 0.8773 0.8071

Car evaluation 0.4875 0.3257

Lung cancer 0.5507 0.5675

Chess 0.5537 0.5583

Dermatology 0.5260 0.3889

Lymphography 0.2955 0.6971

Mushroom 0.8709 0.8868

Nursery 0.2273 0.2495

Solar flare 0.4310 0.4080

Soybean-small 1.0000 1.0000

Splice 0.4379 0.2971

Tic-tac-toe 0.5917 0.6759

Vote 0.8730 0.8865

Zoo 0.6233 0.9544

Table 5.8 Recall of RDM vs. Cao

Figure 5.7 Recall of RDM vs. Cao

RDM’s precision and recall are better in 9 out of 15 datasets and are the same as Cao’s in

1 dataset according to Tables 5.7 and 5.8.

5.3.2. RDM, its Variants and RDM Ensemble

In this section, the accuracy, precision and recall of RDM along with its 5 other variants

and finally RDM ensemble (RDM EPP’s output) are presented:

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Recall

RDM Cao

55

Datasets
RDM

[9]

GLMD RDM

[40]
SCAV RDM

PRM RDM

[15]

SIG RDM

[16]

SIG-SCAV

RDM [16]
RDM Ensemble

Balance scale 0.4454 0.4467 0.4125 0.4443 0.4683 0.4799 0.5224

Breast cancer 0.8653 0.8653 0.8653 0.8653 0.9728 0.7593 0.8653

Car evaluation 0.3403 0.3441 0.3332 0.3379 0.3421 0.3534 0.3652

Lung cancer 0.5938 0.5313 0.5313 0.5938 0.4688 0.4688 0.6875

Chess 0.5673 0.5760 0.5917 0.5673 0.5200 0.5760 0.5760

Dermatology 0.5109 0.4699 0.7760 0.5082 0.6421 0.6421 0.6011

Lymphography 0.5135 0.5068 0.5000 0.4527 0.4662 0.4054 0.6081

Mushroom 0.8902 0.8902 0.8902 0.8902 0.8983 0.8983 0.8902

Nursery 0.3147 0.3249 0.3085 0.3127 0.3371 0.3134 0.3613

Solar flare 0.4747 0.4747 0.4578 0.4803 0.4625 0.4053 0.4925

Soybean-small 1.0000 0.7021 0.8445 1.0000 1.0000 1.0000 1.0000

Splice 0.3282 0.3580 0.4154 0.3254 0.4749 0.4370 0.4169

Tic-tac-toe 0.6837 0.6837 0.6701 0.6837 0.6159 0.6207 0.6263

Vote 0.8714 0.8719 0.8664 0.8719 0.8733 0.8756 0.8733

Zoo 0.9583 0.8542 0.7708 0.9583 0.7132 0.6725 0.9063

Average Accuracy 0.624 0.593 0.616 0.619 0.617 0.594 0.653

Table 5.9 Accuracy of RDM’s Variants and RDM Ensemble

Datasets
RDM

[9]

GLMD RDM

[40]
SCAV RDM

PRM RDM

[15]

SIG RDM

[16]

SIG-SCAV

RDM [16]
RDM Ensemble

Balance scale 0.4072 0.3775 0.3982 0.4102 0.4409 0.4436 0.4624

Breast cancer 0.9068 0.9068 0.9068 0.9068 0.9663 0.7790 0.9068

Car evaluation 0.3235 0.3220 0.3294 0.3219 0.3261 0.3176 0.3381

Lung cancer 0.6435 0.6852 0.5278 0.6435 0.5261 0.4471 0.7269

Chess 0.5699 0.5699 0.5945 0.5699 0.5125 0.5811 0.5799

Dermatology 0.3877 0.3880 0.7055 0.3880 0.5620 0.5889 0.3880

Lymphography 0.4281 0.4530 0.4494 0.4175 0.3224 0.3562 0.4423

Mushroom 0.9056 0.9056 0.9056 0.9056 0.9170 0.9170 0.9056

Nursery 0.3062 0.3176 0.3049 0.3042 0.3256 0.3052 0.3589

Solar flare 0.3384 0.3385 0.3390 0.3393 0.3387 0.3295 0.3397

Soybean-small 1.0000 1.0000 0.8495 1.0000 1.0000 1.0000 1.0000

Splice 0.3011 0.2587 0.4258 0.2979 0.5217 0.4313 0.3855

Tic-tac-toe 0.6635 0.5365 0.6556 0.6635 0.6149 0.6095 0.6123

Vote 0.8668 0.8673 0.8626 0.8672 0.8677 0.8697 0.8684

Zoo 0.9472 0.7465 0.6035 0.9472 0.5548 0.5023 0.7465

Average Precision 0.600 0.578 0.591 0.599 0.586 0.565 0.604

Table 5.10 Precision of RDM’s Variants and RDM Ensemble

56

Datasets
RDM

[9]

GLMD RDM

[40]
SCAV RDM

PRM RDM

[15]

SIG RDM

[16]

SIG-SCAV

RDM [16]
RDM Ensemble

Balance scale 0.3920 0.3715 0.3837 0.3944 0.3824 0.3913 0.4005

Breast cancer 0.8071 0.8071 0.8071 0.8071 0.9743 0.8057 0.8071

Car evaluation 0.3257 0.2987 0.3304 0.3235 0.3221 0.3181 0.3498

Lung cancer 0.5675 0.6046 0.5581 0.5675 0.4684 0.5031 0.6749

Chess 0.5583 0.5583 0.5846 0.5583 0.5099 0.5668 0.5673

Dermatology 0.3889 0.4059 0.7037 0.3874 0.5989 0.5778 0.4620

Lymphography 0.6971 0.6398 0.6828 0.4194 0.3662 0.3918 0.6204

Mushroom 0.8868 0.8868 0.8868 0.8868 0.8946 0.8946 0.8868

Nursery 0.2495 0.2860 0.2547 0.2559 0.2912 0.2782 0.3117

Solar flare 0.4080 0.4159 0.4854 0.4929 0.4870 0.1357 0.4970

Soybean-small 1.0000 1.0000 0.8527 1.0000 1.0000 1.0000 1.0000

Splice 0.2971 0.2813 0.4415 0.2941 0.4929 0.4533 0.3815

Tic-tac-toe 0.6759 0.5401 0.6698 0.6759 0.6269 0.6200 0.6228

Vote 0.8865 0.8870 0.8824 0.8869 0.8869 0.8888 0.8880

Zoo 0.9544 0.8115 0.6479 0.9544 0.5745 0.5454 0.8115

Average Recall 0.606 0.586 0.611 0.594 0.592 0.558 0.619

Table 5.11 Recall of RDM’s Variants and RDM Ensemble

As seen, the quality of RDM ensemble is better than individual RDMs, in general. It has a

higher average accuracy, precision, and recall for all the benchmark datasets we used in our

experiments. In addition, it has a higher number of best accuracies, precisions, and recalls in all

the datasets compared to individual RDM algorithms.

5.3.3. RDM Ensemble vs. Other Algorithms

In this section, RDM ensemble’s quality is compared with the top 2 best state-of-the-art k-

modes based clustering algorithms, namely CD-Clustering and k-PbC. The inclusion of Cao's

algorithm in our comparisons is attributed to its role as our primary algorithm.

A full comparison between RDM ensemble and 10 state-of-art k-modes based clustering

algorithms is presented in Appendix A, Tables A.1 to A.3.

57

Datasets Cao CD-Clustering k-PbC RDM ensemble

Balance scale 0.3760 0.4129 0.5680 0.5224

Breast cancer 0.9113 0.9514 0.9614 0.8653

Car evaluation 0.4936 0.3125 0.3640 0.3652

Lung cancer 0.5313 0.5938 0.6875 0.6875

Chess 0.5663 0.5156 0.5047 0.5760

Dermatology 0.5874 0.8552 0.9645 0.6011

Lymphography 0.3514 0.5000 0.5946 0.6081

Mushroom 0.8754 0.7244 0.8861 0.8902

Nursery 0.3673 0.4156 0.4492 0.3613

Solar flare 0.5432 0.4343 0.5901 0.4925

Soybean-small 1.0000 1.0000 1.0000 1.0000

Splice 0.4009 0.7260 0.7746 0.4169

Tic-tac-toe 0.6106 0.6044 0.6326 0.6263

Vote 0.8644 0.8713 0.8805 0.8733

Zoo 0.6733 0.8218 0.8911 0.9063

Average Accuracy 0.610 0.649 0.717 0.653

Table 5.12 Accuracy of Compared Algorithms

Figure 5.8 Accuracy of Compared Algorithms

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Accuracy

D
at

as
et

s

Accuracy

RDM ensemble K-PbC CD-Clustering Cao

58

As can be seen in Table 5.12 and Figure 5.8, after k-PbC, RDM ensemble has a higher

number of best accuracies. K-PbC has the best accuracies in 10 (out of 15) datasets while RDM

ensemble has the best accuracies in 6 datasets.

Regarding the average accuracy, k-PbC is the best while RDM ensemble and CD-clustering

algorithms stand in the second and third places, respectively.

Datasets Cao CD-Clustering k-PbC RDM ensemble

Balance scale 0.3282 0.3751 0.4825 0.4624

Breast cancer 0.9292 0.9470 0.9517 0.9068

Car evaluation 0.3826 0.3125 0.3704 0.3381

Lung cancer 0.5468 0.5980 0.7421 0.7269

Chess 0.5796 0.5162 0.5095 0.5799

Dermatology 0.5604 0.7543 0.9612 0.3880

Lymphography 0.2698 0.4724 0.4752 0.4423

Mushroom 0.9019 0.7990 0.9000 0.9056

Nursery 0.2978 0.6494 0.4352 0.3589

Solar flare 0.3381 0.3377 0.3425 0.3397

Soybean-small 1.0000 1.0000 1.0000 1.0000

Splice 0.4518 0.7198 0.7815 0.3855

Tic-tac-toe 0.5859 0.5746 0.6396 0.6123

Vote 0.8568 0.8670 0.8762 0.8684

Zoo 0.5996 0.5688 0.7503 0.7465

Average Precision 0.575 0.633 0.681 0.604

Table 5.13 Precision of Compared Algorithms

59

Figure 5.9 Precision of Compared Algorithms

As seen in Table 5.13 and Figure 5.9, k-PbC has the highest number of best precisions (11

out of 15 datasets) and after that, RDM ensemble algorithm stands in the second place with 3 best

precisions.

As for the average precision, k-PbC, CD-clustering, and RDM ensemble are the 3 best

algorithms, respectively.

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Precision

D
at

as
et

s
Precision

RDM ensemble k-PbC CD-Clustering Cao

60

Datasets Cao CD-Clustering k-PbC RDM ensemble

Balance scale 0.3228 0.3540 0.4673 0.4005

Breast cancer 0.8773 0.9550 0.9656 0.8071

Car evaluation 0.4875 0.4114 0.4465 0.3498

Lung cancer 0.5507 0.6208 0.6900 0.6749

Chess 0.5537 0.5162 0.5091 0.5673

Dermatology 0.5260 0.8189 0.9679 0.4620

Lymphography 0.2955 0.6255 0.5579 0.6204

Mushroom 0.8709 0.7151 0.8829 0.8868

Nursery 0.2273 0.2569 0.3370 0.3117

Solar flare 0.4310 0.4775 0.4467 0.4970

Soybean-small 1.0000 1.0000 1.0000 1.0000

Splice 0.4379 0.7722 0.8421 0.3815

Tic-tac-toe 0.5917 0.5785 0.6538 0.6228

Vote 0.8730 0.8863 0.8960 0.8880

Zoo 0.6233 0.6860 0.7860 0.8115

Average Recall 0.578 0.645 0.697 0.619

Table 5.14 Recall of Compared Algorithms

Figure 5.10 Recall of Compared Algorithms

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Balance scale

Breast cancer

Car evaluation

Lung cancer

Chess

Dermatology

Lymphography

Mushroom

Nursery

Solar flare

Soybean-small

Splice

Tic-tac-toe

Vote

Zoo

Recall

D
at

as
et

s

Recall

RDM ensemble k-PbC CD-Clustering Cao

61

As shown in Table 5.14 and Figure 5.10, k-PbC has the highest number of best recalls (9

datasets). RDM ensemble (with 5 datasets) stand in the second place, and CD-clustering and Cao

(both with 2 datasets) stand in the third place.

As for average recall, k-PbC has the highest amount, CD-clustering and RDM ensemble

are the next best ones, in order.

5.3.4. RDM Realization of EPP (RDM EPP)

In this section, we will see the elapsed time for each part of the RDM EPP (Figure 4.5)

versus its sequential counterpart. The parallel elapsed times are the shortest times that have been

measured while using a certain number of processes (p), and we refer to it as the best p.

We used 7 datasets for our measurements based on their sizes from small to large in order to

present a better picture of how the size of a dataset will affect the speed-up.

To have a complete vision, we divided the elapsed time spent for each different clustering

to complete, into two parts: initialization (RDM variants) and clustering (PV3). The initialization’s

elapsed times are the times that each different RDM variant takes to build the initial clusters, and

the clustering’s elapsed times are the times that the PV3 algorithm needs to cluster a dataset after

starting off a certain set of initial clusters produced by each RDM variant. The ensemble time or

the integration time (t_ensemble) is the same for both sequential and parallel. We did not

parallelize the ensemble process because due to its simplicity, it is already very fast, and perhaps

its parallelization benefits may not be worth it.

As already mentioned in Sections 4.5 and 4.6, RDM, SIG RDM, and SIG-SCAV RDM

initializations have been parallelized, and we have measured the time they take for each dataset.

On the other hand, GLBMD, SCAV, and PRM RDMs have not been parallelized, and we do not

have any measured timings for them. This is not a problem because the most intensive and time-

consuming calculations belong to SIG and SIG-SCAV RDMs. As a result, the maximum elapsed

time is one of their timings. So, in an embarrassingly parallel framework as in EPP, it does not

make any difference if we had the elapsed times for the three mentioned algorithms or not.

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Lymphography - 148

t_initialization (seq) 5 6 5 5 637 635

t_initialization (par) 7 - - - 421 419

t_clustering (seq) 18 27 23 18 89 31

t_clustering (par) 26 18 10 25 18 18

t_ensemble 1

T_seq 24 - - - 729 667

T_par 34 - - - 440 438

Speed-up 0.71 - - - 1.65 1.52

Table 5.15 Lymphography - RDM EPP for Best p = 5

62

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Vote - 434

t_initialization (seq) 11 12 11 11 195 199

t_initialization (par) 8 - - - 76 79

t_clustering (seq) 25 25 17 25 27 42

t_clustering (par) 9 9 5 9 9 6

t_ensemble 1

T_seq 37 - - - 223 242

T_par 18 - - - 86 86

Speed-up 2.06 - - - 2.59 2.81

Table 5.16 Vote - RDM EPP for Best p = 8

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Breast cancer - 698

t_initialization (seq) 20 21 20 20 11,075 10,978

t_initialization (par) 13 - - - 5,834 5,796

t_clustering (seq) 34 34 54 35 222 236

t_clustering (par) 13 13 21 13 28 30

t_ensemble 4

T_seq 58 - - - 11,301 11,218

T_par 30 - - - 5,847 5,813

Speed-up 1.93 - - - 1.93 1.92

Table 5.17 Breast cancer - RDM EPP for Best p = 8

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Car evaluation – 1,728

t_initialization (seq) 24 28 24 24 315 322

t_initialization (par) 12 - - - 76 80

t_clustering (seq) 135 136 157 146 259 201

t_clustering (par) 20 24 75 31 73 65

t_ensemble 10

T_seq 169 - - - 584 533

T_par 42 - - - 159 155

Speed-up 4.02 - - - 3.67 3.44

Table 5.18 Car evaluation - RDM EPP for Best p = 9

63

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Chess - 3196

t_initialization (seq) 183 204 174 187 11,388 11,397

t_initialization (par) 100 - - - 2,997 2,945

t_clustering (seq) 1,067 532 540 938 419 839

t_clustering (par) 214 104 106 214 105 100

t_ensemble 19

T_seq 1,269 - - - 11,826 12,255

T_par 333 - - - 3,121 3,064

Speed-up 3.81 - - - 3.79 4.00

Table 5.19 Chess - RDM EPP for Best p = 10

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Mushroom – 8,192

t_initialization (seq) 396 428 384 386 261,882 261,154

t_initialization (par) 120 - - - 47,062 46,986

t_clustering (seq) 825 819 825 1,449 4,000 2,788

t_clustering (par) 123 121 164 218 410 290

t_ensemble 52

T_seq 1,273 - - - 265,934 263,994

T_par 175 - - - 47,225 47,302

Speed-up 7.27 - - - 5.60 5.58

Table 5.20 Mushroom - RDM EPP for Best p = 10

Datasets - #Instances Detailed Times (ms) RDM GLBMD SCAV PATT SIG SIG_SCAV

Nursery – 12,960

t_initialization (seq) 237 284 242 236 8,488 8,345

t_initialization (par) 74 - - - 965 904

t_clustering (seq) 2,248 2,271 2,266 2,227 2,235 2,264

t_clustering (par) 382 385 342 275 381 387

t_ensemble 85

T_seq 2,570 - - - 10,808 10,694

T_par 467 - - - 1,431 1,376

Speed-up 5.50 - - - 7.55 7.77

Table 5.21 Nursery - RDM EPP for Best p = 10

64

Figure 5.11 SIG RDM's Speed-up (a Close Approximation of RDM EPP’s Speed-up)

Figure 5.11 shows the speed-up measurements in SIG RDM method while clustering 7

datasets with different sizes. We have chosen SIG RDM because it is one of the most time-

consuming parts in RDM EPP. The other most time-consuming part is SIG-SCAV RDM which

has an almost identical performance, in terms of speed-up, to SIG RDM. As said before, since EPP

is an embarrassingly parallel framework, its total speed-up depends on its slowest component (SIG

RDM). So, in reality, the total speed-up of the whole RDM EPP is almost equal to SIG RDM’s

speed-up (Figure 5.11).

As seen in Figure 5.11, the maximum speed-up of 7.55 obtained, was for the Nursery

dataset with 12,960 instances (the largest dataset) using 10 processes while the least speed-up of

1.65 obtained, was for the smallest dataset, i.e., Lymphography with 148 instances using 5

processes. We can expect that when working with larger datasets, we obtain better speed-ups.

5.4. Summary

In this chapter, we first compared the performance of our different parallel algorithms.

Quality-wise, PV3R stood first which was expectable. The reason is in the non-random

initialization phase of this algorithm. With regard to speed-up, PV3 was the fastest among all. The

superiority of PV3 over PV1 and PV3R was clear, and besides, it even outperformed PV2. This

shows that speed-up can be affected by clustering quality too. Thus, if we use better algorithms

(with less information loss and better, more effective communication between the processes), we

can be hopeful that the overall amount of work may even decrease which in turn, helps with the

clustering speed. On the other hand, with increasing the amount of communication between

processes, our speed-up decreases. So, being able to maintain the quality while not losing much

1.65

2.59
1.93

3.67 3.79

5.60

7.55

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

S
p

ee
d

-u
p

Datasets

SIG RDM's Speed-up

P = 10P = 9

P = 10

P = 10

P = 8
P = 8

P = 5

65

speed-up is similar to walking a tightrope and should be handled in such a way that these two do

not interfere with one another and instead can help each other.

We then compared RDM and Cao’s methods and showed that with our modification, better

clustering quality was produced for most datasets. Then, by combining all our RDM variants’

results in EPP framework (RDM EPP), RDM ensemble clustering results were produced which

had comparable clustering quality to other state-of-the-art k-modes clustering algorithms, and

stood among the top three best, to the best of our knowledge.

Finally, we presented the timing details of RDM EPP’s different components. We saw that

with increasing the size of the dataset, we can expect higher speed-ups in its most time-consuming

parts, and as a result in RDM EPP, in general.

66

6. Chapter 6. Conclusion and Future Works

Better and faster tools are needed in this era of information explosion in order to gather

knowledge from data and use their underlying potential. Clustering is a key intermediate step for

many other applications to gain valuable insight. Most clustering algorithms do not work

efficiently when dealing with large amounts of data. To add to the complexity, real-life data is

mostly categorical or a mixture of categorical and numerical.

In this thesis, we tried to address the issues of clustering categorical data in an MPI parallel

environment using k-modes algorithm. Dealing with categorical data is inherently challenging

because of its nature as there is no straight-forward way of measuring the dissimilarity between

two categorical data objects. Parallelizing it, on the other hand, exacerbate the whole situation

because we cannot easily manage the k-modes’ communications between the parallel components

while not losing much speed-up. To tackle this problem, we proposed the PV3 algorithm after

several attempts which could help us achieve this goal by benefiting from the idea of frequency

tables.

By introducing RDM initialization algorithm, we could reach stability in our clustering

quality, and by combining our RDM variants in an EPP framework with PV3 as the main vertical

parallel clustering structure, we could maintain the quality while being faster. This implies that by

replacing any state-of-the-art initialization techniques for k-modes instead of RDM, we can

guarantee their sequential clustering quality while achieving speed-up too. On the other hand, the

EPP framework is a generic consensus and embarrassingly parallel structure which provides us

with flexibility in either the type of the clustering algorithms we use or the level of parallelism

(Section 4.7).

In the future, and for the purpose of improving what have been done, this thesis problem

can be looked at from two different angles: clustering quality and parallel speed-up.

As for clustering quality:

• we can point out the dissimilarity measure for categorical data. In our work, we have used

others’ methods with small or no changes for measuring distance between the categorical

data objects, while new ways or even modifying the available ones remain to be explored.

• Another area that can be explored is the use of ensemble technique. As discussed in Section

4.7, we have integrated the end clustering results of different initialization/clustering

algorithms to build the 𝐶𝑅𝐼𝑁𝑇 in a voting manner (Figure 4.4). Another method of using

the ensemble can be by integrating the initial clusters produced by different initialization

algorithms in the beginning. In other words, we could do the voting process of ensemble

before entering the clustering phase, build one set of integrated initial clusters, and then

perform our clustering algorithm (k-modes in our case) on this set.

67

And as for parallel speed-up:

• We have used the frequency table concept in PV3 to decrease the amount of

communication between MPI processes, other ideas or methods can be explored. For

example, using gossip protocol comes across as an interesting topic in relation to k-modes

clustering.

• Also, we can improve the k-modes algorithm’s performance by calculating the modes and

the frequency tables on the fly through updating them when adding a new object to each

cluster as suggested by Tao in [29].

Due to the multidimensionality of the research problem, there are a great many ways to

improve the parallel clustering of categorical data, some of which have been mentioned here. With

the gained insight and knowledge from working on this subject, in the future, we would like to

study GPU-Based parallelization of clustering categorical data.

68

7. Reference

[1] J. Chen, X. Lin, Q. Xuan, and Y. Xiang, “FGCH: a fast and grid based clustering

algorithm for hybrid data stream,” Appl Intell, vol. 49, no. 4, pp. 1228–1244, Apr. 2019,

doi: 10.1007/s10489-018-1324-x.

[2] T. Deng, D. Ye, R. Ma, H. Fujita, and L. Xiong, “Low-rank local tangent space

embedding for subspace clustering,” Information Sciences, vol. 508, pp. 1–21, Jan. 2020,

doi: 10.1016/j.ins.2019.08.060.

[3] M. Mojarad, S. Nejatian, H. Parvin, and M. Mohammadpoor, “A fuzzy clustering

ensemble based on cluster clustering and iterative Fusion of base clusters,” Appl Intell,

vol. 49, no. 7, pp. 2567–2581, Jul. 2019, doi: 10.1007/s10489-018-01397-x.

[4] H. Wang, Y. Yang, B. Liu, and H. Fujita, “A study of graph-based system for multi-view

clustering,” Knowledge-Based Systems, vol. 163, pp. 1009–1019, Jan. 2019, doi:

10.1016/j.knosys.2018.10.022.

[5] Y. Zhang, Y. Yang, T. Li, and H. Fujita, “A multitask multiview clustering algorithm in

heterogeneous situations based on LLE and LE,” Knowledge-Based Systems, vol. 163,

pp. 776–786, Jan. 2019, doi: 10.1016/j.knosys.2018.10.001.

[6] L. Bai, J. Liang, C. Dang, and F. Cao, “A cluster centers initialization method for

clustering categorical data,” Expert Systems with Applications, vol. 39, no. 9, pp. 8022–

8029, Jul. 2012, doi: 10.1016/j.eswa.2012.01.131.

[7] D.-T. Dinh and V.-N. Huynh, “k-PbC: an improved cluster center initialization for

categorical data clustering,” Appl Intell, vol. 50, no. 8, pp. 2610–2632, Aug. 2020, doi:

10.1007/s10489-020-01677-5.

[8] S. S. Khan and A. Ahmad, “Cluster center initialization algorithm for K-modes

clustering,” Expert Systems with Applications, vol. 40, no. 18, pp. 7444–7456, Dec. 2013,

doi: 10.1016/j.eswa.2013.07.002.

[9] F. Cao, J. Liang, and L. Bai, “A new initialization method for categorical data

clustering,” Expert Systems With Applications, vol. 36, no. 7, pp. 10223–10228, 2009,

doi: 10.1016/j.eswa.2009.01.060.

[10] Z. Huang, “A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in

Data Mining,” in In Research Issues on Data Mining and Knowledge Discovery, 1997,

pp. 1–8.

[11] B. Barney, Livermore Computing (retired), D. Frederick and LLNL, “Introduction to

Parallel Computing Tutorial,” https://hpc.llnl.gov/documentation/tutorials/introduction-

parallel-computing-tutorial##References (accessed Jan. 23, 2023).

[12] A. Grama, A. Gupta, G. Karypis and V. Kumar, “Analytical Modeling in Parallel

Programs,” in introduction to Parallel Computing, 2nd ed. Publisher: Addison Wesley,

2003, ch. 5, pp. 244.

[13] T. George and V. Sarin, “Domain Decomposition,” in Encyclopedia of Parallel

Computing, D. Padua, Ed. Boston, MA: Springer US, 2011, pp. 578–587. doi:

10.1007/978-0-387-09766-4_291.

[14] R. Buyya, C. Vecchiola, and S. T. Selvi, “Chapter 6 - Concurrent Computing: Thread

Programming,” in Mastering Cloud Computing, R. Buyya, C. Vecchiola, and S. T. Selvi,

https://doi.org/10.1007/s10489-018-1324-x
https://doi.org/10.1016/j.ins.2019.08.060
https://doi.org/10.1007/s10489-018-01397-x
https://doi.org/10.1016/j.knosys.2018.10.022
https://doi.org/10.1016/j.knosys.2018.10.001
https://doi.org/10.1016/j.eswa.2012.01.131
https://doi.org/10.1007/s10489-020-01677-5
https://doi.org/10.1016/j.eswa.2013.07.002
https://doi.org/10.1016/j.eswa.2009.01.060
https://doi.org/10.1007/978-0-387-09766-4_291

69

Eds. Boston: Morgan Kaufmann, 2013, pp. 171–210. doi: 10.1016/B978-0-12-411454-

8.00006-1.

[15] S. S. Khan and A. Ahmad, “Cluster Center Initialization for Categorical Data Using

Multiple Attribute Clustering.,” in MultiClust@ SDM, 2012, pp. 3–10.

[16] A. Ahmad and L. Dey, “A method to compute distance between two categorical values of

same attribute in unsupervised learning for categorical data set,” Pattern Recognition

Letters, vol. 28, no. 1, pp. 110–118, Jan. 2007, doi: 10.1016/j.patrec.2006.06.006.

[17] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le, “A survey of

itemset mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 7, no. 4, p. e1207, 2017.

[18] Z. Dafir, Y. Lamari, and S. C. Slaoui, “A survey on parallel clustering algorithms for Big

Data,” Artif Intell Rev, vol. 54, no. 4, pp. 2411–2443, Apr. 2021, doi: 10.1007/s10462-

020-09918-2.

[19] Z. He, S. Deng, and X. Xu, “Improving K-Modes Algorithm Considering Frequencies of

Attribute Values in Mode,” in Computational Intelligence and Security, vol. 3801, Y.

Hao, J. Liu, Y. Wang, Y. Cheung, H. Yin, L. Jiao, J. Ma, and Y.-C. Jiao, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 157–162. doi: 10.1007/11596448_23.

[20] D. Dua and C. Graff, “UCI Machine Learning Repository.” University of California,

Irvine, School of Information and Computer Sciences, 2017. [Online]. Available:

http://archive.ics.uci.edu/ml.

[21] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,”

Stanford, 2006.

[22] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable K-

Means++.” arXiv, Mar. 28, 2012. Accessed: Dec. 26, 2022. [Online]. Available:

http://arxiv.org/abs/1203.6402

[23] O. M. San, V.-N. Huynh, and Y. Nakamori, “An alternative extension of the k-means

algorithm for clustering categorical data,” Int. J. Appl. Math. Comput. Sci., Vol. 14, No.

2, 241–247, 2004.

[24] T.-H. T. Nguyen, D.-T. Dinh, S. Sriboonchitta, and V.-N. Huynh, “A method for k-

means-like clustering of categorical data,” Journal of Ambient Intelligence and

Humanized Computing, pp. 1–11, 2019.

[25] T.-H. T. Nguyen and V.-N. Huynh, “A k-Means-Like Algorithm for Clustering

Categorical Data Using an Information Theoretic-Based Dissimilarity Measure,” in

Foundations of Information and Knowledge Systems, vol. 9616, M. Gyssens and G.

Simari, Eds. Cham: Springer International Publishing, 2016, pp. 115–130. doi:

10.1007/978-3-319-30024-5_7.

[26] H. H. Nguyen, “Clustering Categorical Data Using Community Detection Techniques,”

Computational Intelligence and Neuroscience, vol. 2017, pp. 1–11, 2017, doi:

10.1155/2017/8986360.

[27] L. Chen and S. Wang, “Central Clustering of Categorical Data with Automated Feature

Weighting,”. in: IJCAI, 2013, pp 1260–1266.

https://doi.org/10.1016/B978-0-12-411454-8.00006-1
https://doi.org/10.1016/B978-0-12-411454-8.00006-1
https://doi.org/10.1016/j.patrec.2006.06.006
https://doi.org/10.1007/s10462-020-09918-2
https://doi.org/10.1007/s10462-020-09918-2
https://doi.org/10.1007/11596448_23
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1203.6402
https://doi.org/10.1007/978-3-319-30024-5_7
https://doi.org/10.1155/2017/8986360

70

[28] M. N. Joshi, “Parallel k-means algorithm on distributed memory multiprocessors,”

Computer, vol. 9, 2003.

[29] G. Tao, D. Xiangwu, and L. Yefeng, “Parallel k-modes algorithm based on MapReduce,”

in 2015 Third International Conference on Digital Information, Networking, and

Wireless Communications (DINWC), Moscow, Russia, Feb. 2015, pp. 176–179. doi:

10.1109/DINWC.2015.7054238.

[30] Z. He, X. Xu, and S. Deng, “A cluster ensemble method for clustering categorical data,”

Information Fusion, vol. 6, no. 2, pp. 143–151, Jun. 2005, doi:

10.1016/j.inffus.2004.03.001.

[31] Z. He, X. Xu, and S. Deng, “Squeezer: An efficient algorithm for clustering categorical

data,” J. Comput. Sci. & Technol., vol. 17, no. 5, pp. 611–624, Sep. 2002, doi:

10.1007/BF02948829.

[32] D. Cristofor and D. A. Simovici, “Finding median partitions using information-

theoretical-based genetic algorithms.,” J. Univers. Comput. Sci., vol. 8, no. 2, pp. 153–

172, 2002.

[33] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for

combining multiple partitions,” Journal of machine learning research, vol. 3, no. Dec,

pp. 583–617, 2002.

[34] A. Strehl, Relationship-based clustering and cluster ensembles for high-dimensional data

mining. The University of Texas at Austin, 2002.

[35] G. Karypis and V. Kumar, “A fast and high-quality multilevel scheme for partitioning

irregular graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392,

1998.

[36] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph

partitioning: Application in VLSI domain,” in Proceedings of the 34th annual Design

Automation Conference, 1997, pp. 526–529.

[37] Z. Dafir, Y. Lamari, and S. C. Slaoui, “A survey on parallel clustering algorithms for Big

Data,” Artif Intell Rev, vol. 54, no. 4, pp. 2411–2443, Apr. 2021, doi: 10.1007/s10462-

020-09918-2.

[38] D. S. Milojicic et al., “Peer-to-peer computing.” Technical Report HPL-2002-57, HP

Labs, 2002.

[39] F. Jiang, G. Liu, J. Du, and Y. Sui, “Initialization of K-modes clustering using outlier

detection techniques,” Information Sciences, vol. 332, pp. 167–183, Mar. 2016, doi:

10.1016/j.ins.2015.11.005.

[40] L. Bai, J. Liang, C. Dang, and F. Cao, “A cluster centers initialization method for

clustering categorical data,” Expert Systems with Applications, vol. 39, no. 9, pp. 8022–

8029, Jul. 2012, doi: 10.1016/j.eswa.2012.01.131.

[41] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Ann. Data.

Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015, doi: 10.1007/s40745-015-0040-1.

[1]

https://doi.org/10.1109/DINWC.2015.7054238
https://doi.org/10.1016/j.inffus.2004.03.001
https://doi.org/10.1007/BF02948829
https://doi.org/10.1007/s10462-020-09918-2
https://doi.org/10.1007/s10462-020-09918-2
https://doi.org/10.1016/j.ins.2015.11.005
https://doi.org/10.1016/j.eswa.2012.01.131

71

[42] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering in spatial

databases: The algorithm gdbscan and its applications,” Data mining and knowledge

discovery, vol. 2, pp. 169–194, 1998.

[43] Z. Wang, A. Xu, Z. Zhang, C. Wang, A. Liu, and X. Hu, “The Parallelization and

Optimization of K-means Algorithm Based on Spark,” in 2020 15th International

Conference on Computer Science & Education (ICCSE), Delft, Netherlands: IEEE, Aug.

2020, pp. 457–462. doi: 10.1109/ICCSE49874.2020.9201770.

[44] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31,

no. 5, pp. 532–533, 1988.

72

8. Appendix

Appendix A: Accuracy, Precision, and Recall of Compared

Algorithms

Datasets k-means++ k-means|| k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC RDM ensemble RDM

Balance scale 0.5168 0.5376 0.4497 0.4342 0.3760 0.4192 0.4310 0.4323 0.4129 0.5680 0.5224 0.4454

Breast cancer 0.9585 0.9585 0.7043 0.8949 0.9113 0.6323 0.9576 0.9570 0.9514 0.9614 0.8653 0.8653

Car evaluation 0.2789 0.3177 0.3592 0.3811 0.4936 0.3576 0.3725 0.3831 0.3125 0.3640 0.3652 0.3403

Lung cancer 0.5313 0.5938 0.5188 0.5400 0.5313 0.4375 0.5022 0.4922 0.5938 0.6875 0.6875 0.5938

Chess 0.5116 0.5116 0.5465 0.5367 0.5663 0.7040 0.5279 0.5385 0.5156 0.5047 0.5760 0.5673

Dermatology 0.7404 0.5874 0.5375 0.7161 0.5874 0.6175 0.7280 0.7404 0.8552 0.9645 0.6011 0.5109

Lymphography 0.3176 0.3919 0.4379 0.5301 0.3514 0.5068 0.5433 0.5341 0.5000 0.5946 0.6081 0.5135

Mushroom 0.7093 0.7093 0.7291 0.7897 0.8754 0.8288 0.7474 0.7682 0.7244 0.8861 0.8902 0.8902

Nursery 0.2409 0.2275 0.3324 0.3161 0.3673 0.2804 0.3165 0.3128 0.4156 0.4492 0.3613 0.3147

Solar flare 0.4540 0.4540 0.4524 0.5087 0.5432 0.6463 0.5526 0.5579 0.4343 0.5901 0.4925 0.4747

Soybean-small 0.7234 0.7447 0.7657 0.8834 1.0000 0.9787 0.9070 0.8666 1.0000 1.0000 1.0000 1.0000

Splice 0.3937 0.3937 0.4054 0.5430 0.4009 0.4279 0.6496 0.6741 0.7260 0.7746 0.4169 0.3282

Tic-tac-toe 0.5585 0.5679 0.5675 0.5605 0.6106 0.6347 0.5625 0.5598 0.6044 0.6326 0.6263 0.6837

Vote 0.8690 0.5678 0.8622 0.8751 0.8644 0.8506 0.8764 0.8764 0.8713 0.8805 0.8733 0.8714

Zoo 0.7723 0.7129 0.6868 0.6986 0.6733 0.8614 0.7601 0.7524 0.8218 0.8911 0.9063 0.9583

Average Accuracy 0.572 0.552 0.557 0.614 0.610 0.612 0.629 0.630 0.649 0.717 0.653 0.624

Table 8.1 Accuracy of Compared Algorithms

73

Datasets k-means++ k-means|| k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC RDM ensemble RDM

Balance scale 0.4896 0.5394 0.3993 0.4276 0.3282 0.3609 0.4177 0.4238 0.3751 0.4825 0.4624 0.4072

Breast cancer 0.9571 0.9571 0.7163 0.9182 0.9292 0.5535 0.9466 0.9459 0.9470 0.9517 0.9068 0.9068

Car evaluation 0.2789 0.2843 0.2868 0.3488 0.3826 0.2415 0.3407 0.3440 0.3125 0.3704 0.3381 0.3235

Lung cancer 0.5333 0.6902 0.5349 0.5937 0.5468 0.4468 0.5726 0.5515 0.5980 0.7421 0.7269 0.6435

Chess 0.5110 0.5110 0.7018 0.5416 0.5796 0.5312 0.5326 0.5425 0.5162 0.5095 0.5799 0.5699

Dermatology 0.7583 0.5782 0.5077 0.6603 0.5604 0.6841 0.6696 0.6589 0.7543 0.9612 0.3880 0.3877

Lymphography 0.3147 0.3378 0.3906 0.4659 0.2698 0.4226 0.4750 0.4599 0.4724 0.4752 0.4423 0.4281

Mushroom 0.7740 0.7740 0.7496 0.8018 0.9019 0.8688 0.7586 0.7781 0.7990 0.9000 0.9056 0.9056

Nursery 0.2323 0.2195 0.2905 0.2995 0.2978 0.2304 0.2954 0.2930 0.6494 0.4352 0.3589 0.3062

Solar flare 0.3381 0.3381 0.3355 0.3400 0.3381 0.3361 0.3415 0.3403 0.3377 0.3425 0.3397 0.3384

Soybean-small 0.7569 0.7708 0.7576 0.8769 1.0000 0.9773 0.9060 0.8522 1.0000 1.0000 1.0000 1.0000

Splice 0.3377 0.3377 0.4095 0.5960 0.4518 0.4260 0.6655 0.6898 0.7198 0.7815 0.3855 0.3011

Tic-tac-toe 0.5509 0.5509 0.5540 0.5521 0.5859 0.6071 0.5604 0.5597 0.5746 0.6396 0.6123 0.6635

Vote 0.8636 0.5433 0.8573 0.8705 0.8568 0.8484 0.8724 0.8724 0.8670 0.8762 0.8684 0.8668

Zoo 0.6948 0.5383 0.5523 0.5788 0.5996 0.7390 0.6518 0.6193 0.5688 0.7503 0.7465 0.9472

Average Precision 0.559 0.531 0.536 0.591 0.575 0.552 0.600 0.595 0.633 0.681 0.604 0.600

Table A.2 Precision of Compared Algorithms

Datasets k-means++ k-means|| k-modes k-reps Cao Khan Mod-2 Mod-3 CD-Clustering k-PbC RDM ensemble RDM

Balance scale 0.4585 0.4905 0.3852 0.4039 0.3228 0.3541 0.3957 0.4009 0.3540 0.4673 0.4005 0.3952

Breast cancer 0.9506 0.9506 0.6951 0.8535 0.8773 0.5336 0.9637 0.9632 0.9550 0.9656 0.8071 0.8539

Car evaluation 0.3554 0.2960 0.3034 0.3794 0.4875 0.2499 0.3650 0.3639 0.4114 0.4465 0.3498 0.3436

Lung cancer 0.5581 0.6168 0.5350 0.5380 0.5507 0.4470 0.4595 0.4512 0.6208 0.6900 0.6749 0.5342

Chess 0.5110 0.5110 0.6962 0.5389 0.5537 0.5540 0.5296 0.5394 0.5162 0.5091 0.5673 0.4858

Dermatology 0.7649 0.5182 0.4735 0.6811 0.5260 0.6165 0.6960 0.6943 0.8189 0.9679 0.4620 0.3758

Lymphography 0.3425 0.3765 0.4569 0.5746 0.2955 0.4451 0.5438 0.5328 0.6255 0.5579 0.6204 0.4154

Mushroom 0.7002 0.7002 0.7256 0.7858 0.8709 0.8228 0.7472 0.7686 0.7151 0.8829 0.8868 0.8833

Nursery 0.2061 0.1885 0.2581 0.2551 0.2273 0.2044 0.2516 0.2426 0.2569 0.3370 0.3117 0.2097

Solar flare 0.4841 0.4841 0.3924 0.4884 0.4310 0.4379 0.4923 0.4807 0.4775 0.4467 0.4970 0.5002

Soybean-small 0.7574 0.7721 0.7691 0.8786 1.0000 0.9853 0.9006 0.8567 1.0000 1.0000 1.0000 1.0000

Splice 0.3366 0.3366 0.4205 0.6163 0.4379 0.4472 0.7015 0.7291 0.7722 0.8421 0.3815 0.4044

Tic-tac-toe 0.5560 0.5555 0.5579 0.5559 0.5917 0.6129 0.5652 0.5644 0.5785 0.6538 0.6228 0.5552

Vote 0.8822 0.5431 0.8751 0.8898 0.8730 0.8672 0.8921 0.8920 0.8863 0.8960 0.8880 0.8914

Zoo 0.7080 0.5498 0.5936 0.6129 0.6233 0.7648 0.6503 0.6494 0.6860 0.7860 0.8115 0.7662

Average Recall 0.571 0.526 0.543 0.603 0.578 0.556 0.610 0.609 0.645 0.697 0.619 0.574

Table 8A8.3 Recall of Compared Algorithms

