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Abstract 

A Model-Based System Engineering Approach to Support System Architecting Activities in 

Early Aircraft Design 

Nikta Tabesh 

 

The aviation industry aims to reduce its environmental footprint and meet ambitious environmental 

targets, prompting the exploration of novel aircraft concepts and systems, such as hybrid-electric 

or distributed propulsion. These emerging technologies introduce complexity to aircraft system 

architectures, requiring innovative approaches to design, optimization, and safety assessment, 

particularly for system architecting. Several aspects of system architecting specification and 

evaluation are typically performed separately, using different people and a mix of manual and 

model-based processes. Connecting these activities has the potential to make the design process 

more efficient and effective. This thesis explores how a Model-Based Systems Engineering 

(MBSE) specification environment can be structured and enriched to enable a better bridge to 

Multidisciplinary Design Analysis and Optimization (MDAO) and Model-Based Safety 

Assessment (MBSA) activities. The proposed MBSE approach focuses on enhancing system 

specifications, particularly for unconventional system architectures, which typically feature 

greater variability in early design stages. Using the ARCADIA/Capella MBSE environment, a 

multi-level approach is proposed to structure the system architecture specification. In addition, a 

catalogue of modeling artifacts is established to facilitate the development of various hybrid-

electric system configurations. The MDAO link mechanism is demonstrated with an example from 

the collaborative AGILE4.0 project. Two test cases demonstrate the implementation of the 

approach: a hybrid-electric propulsion system and associated sub-systems for the overall approach 

and the landing gear braking system for the model-based Functional Hazard Analysis (FHA), as 

an example of an MBSA activity. Overall, this thesis helps improve the integration and 

collaboration between engineers working on MBSE, MDAO, and MBSA. This better integration 

will help to reduce the development time and risk. Therefore, the presented thesis contributes to a 

more efficient aircraft development process, enabling the industry to tackle the emerging needs of 

unconventional aircraft systems and their integration. 
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1 Introduction 

 

The aviation industry has seen an increase in passenger numbers and aircraft operations frequency, 

raising many environmental concerns in the last decade [1]. The resurgence of passengers after the 

slowdown from the COVID-19 pandemic is expected to reach pre-pandemic levels in due course 

[2], [3]. Aviation still accounts for 2.8% of CO2 emissions [4], and the industry aims to reduce its 

environmental impact by committing to reducing net global aviation carbon emissions by 50% by 

2050 relative to the carbon emissions produced in 2005 [5], [6]. Reducing carbon emissions is a 

significant step towards achieving sustainability in the aviation sector. This has led to the 

exploration of novel aircraft concepts and systems, such as hybrid-electric and distributed 

propulsion, which promise to deliver a new generation of efficient and environmentally friendly 

aircraft. These emerging technologies introduce complexity to aircraft system architectures, 

requiring innovative approaches to design, optimization, and safety assessment [7], [8]. This 

research explores (1) a Mode-Based System Engineering (MBSE) approach for novel aircraft 

system architecture design, (2) a bridge to Multidisciplinary Design and Optimization (MDO) 

environment for aircraft system sizing, and (3) an integration to Model-Based Safety Assessment 

activities for system evaluation at the conceptual design stage. This thesis is conducted in 

collaboration with the Bombardier Inc., Canadian  industrial partner in the European Union-funded 

project “AGILE4.0: Towards cyber-physical collaborative aircraft development” (2019-2023) [9]. 

This chapter presents the background and motivation for the conducted research, followed by the 

objectives and the scope of this thesis. 

 

1.1 Background and Motivation 

Aircraft manufacturers are focused on exploring new technologies to help meet environmental, 

emissions, and sustainability targets. Furthermore, adopting new technologies also gives 

manufacturers an advantage in a competitive market. These new technologies focus on electrifying 

aircraft systems and propulsion system architectures. One of the potential solutions is to use 

electricity to power aircraft for thrust production, system loads, or a combination of both. While 

fully electric aircraft is a promising technology, it requires further development of battery 
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technologies, and the energy density of electric power sources is lower than fuel, making it difficult 

to achieve the same endurance. Hence, Hybrid-electric (HE) aircraft combines the advantages of 

conventional and all-electric propulsion systems while maintaining high-performance capabilities 

and is seen as an intermediate step toward fully electric aircraft [10], [11]. HE propulsion and 

distributed electric propulsion system architectures, X-57 NASA [12], are being explored in the 

industry as Pratt and Whitney project 804 [13]. Hydrogen electric aircraft have been studied in 

academia, and recent test flights of hydrogen fuel cell-powered aircraft have shown promising 

results [14]. Therefore, the trend towards developing hybrid-electric aircraft is expected to 

continue to grow as technology advances and becomes more efficient, cost-effective, and widely 

adopted. 

Studies have also been conducted on larger aircraft models that incorporate hybrid-electric 

propulsion systems, such as the Boeing SUGAR Volt [15], NASA STARC-ABL, and ES Aero 

ECO-150 [16]. In addition, smaller aircraft, such as regional and commuter aircraft that carry 19-

30 passengers on routes up to 500, are considered to be suitable for hybridization [17]. The focus 

of recent studies has been to assess the effects of hybridization on these aircraft and to determine 

the advantages of different types of hybrid electric propulsion system architectures. The DO-228 

has been used in conceptual studies and as a technology testbed for hybridization in this aircraft 

category [18]. 

However, these new technologies feature complex interactions, especially in the case of electrified 

propulsion architectures. Ultimately, aircraft manufacturers need to ensure that they can reduce 

their time to market for new aircraft to remain competitive. Thus, the aircraft development process 

needs to be adapted to deal with the additional complexity inherent in new technologies. Therefore, 

new methods and tools are required to help design and develop aircraft featuring these 

technologies.  

 

1.2 Aircraft Development Process and Need for New Methods and Tools 

The aircraft development process typically consists of three stages: conceptual, preliminary, and 

detailed design [19]. In conceptual design, the top-level aircraft requirements derived from market 

and stakeholder studies are used to obtain the aircraft's initial weights and performance metrics. 
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At this stage, decisions about the initial aircraft concept are made, such as the selection of the 

aircraft configuration and technological decisions. The conceptual design phase of aircraft design 

is important as it allows for exploring various design options and evaluating practical 

considerations regarding aircraft integration and manufacture. Investing more effort into this phase 

can help reduce rework and costs in later design stages. Optimal design choices must be made in 

this phase, and tools for early evaluation of aircraft concepts should be adopted. 

Multidisciplinary Design Analysis and Optimization (MDAO) is becoming more prevalent in the 

industry for both exploring innovative aircraft designs and improving conventional designs. 

MDAO is now a widely adopted tool during the conceptual design stage of aircraft development 

[20]–[22]. This thesis uses an MDAO framework to analyze the aircraft to determine its key 

performance parameters. Aircraft configurations are evaluated based on performance and the 

ability to meet stakeholder requirements.  

A step further in the design process is the preliminary design, where the aircraft design is expanded, 

and the system architectures such as the flight control system, landing gear system, environmental 

control system, and other systems are developed further. During this phase, the specification is 

refined to include more detailed requirements and characteristics, such as the aircraft's size, weight, 

range, speed, and payload capacity. The preliminary design phase also includes the selection of 

major systems and components, such as the engine, avionics, and landing gear. Finally, in detailed 

design, component-level design takes place. The specification is further refined and expanded to 

include detailed design drawings, schematics, and engineering analyses. The detailed design phase 

involves the development of detailed engineering plans for the aircraft, including the design of 

individual components and subsystems. This is followed by system integration, testing, and 

manufacturing from the end of detail design. 

The overall aircraft development process follows a rigorous systems engineering approach that is 

prescribed by the SAE Aerospace Recommended Practice ARP4754 [23] guideline “Development 

of Civil Aircraft and Systems.” Safety is held as paramount in the development process, and the 

ARP4761 [24] standard prescribes a detailed safety assessment process that happens in parallel 

with the development of the aircraft and its systems. Therefore, the aircraft development process 

will expect detailed consideration for safety and systematic design to integrate new technologies 

according to the ARP4754 [23]. Identifying safety concerns through the formal safety assessment 
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process necessitates modifications to the architecture or configuration of the aircraft. This can 

result in significant costs and penalties associated with development time. Thus, with the added 

complexity of hybrid and distributed electric propulsion architectures, it is important to capture 

aspects of safety and systems architecting in early design stages, such as conceptual design. By 

addressing safety concerns at each level of the design process, the safety features are incorporated 

throughout the entire design of the aircraft and its systems.  

The V-model in Figure 1-1 shows the integration between the safety and aircraft development 

process in a simplified manner, adapted from [23]. Requirements are organized into three levels: 

aircraft level, system level, and component level. The aircraft level requirements pertain to the 

overall performance and characteristics of the aircraft, such as payload, range, speed, and weight. 

At this level, safety requirements are generated from the aircraft Functional Hazard Assessment 

(FHA) based on the functions of the aircraft. The FHA is a systematic process that identifies 

potential hazards associated with the aircraft's functions and assesses the risk associated with each 

hazard. Safety requirements are also generated from other safety analyses listed in Figure 1-1. 

System-level requirements are derived from aircraft-level requirements and are specific to the 

design of individual systems. System-level safety requirements are generated from the system 

FHA that are decompositions of the aircraft-level safety requirements. Component-level 

requirements are further derived from system-level requirements and influence the design or 

selection of individual components that make up the system. Safety requirements at this level are 

all aspects of the individual components that contribute to meeting the safety objectives associated 

with the system FHA classifications. 

Validation is performed between each level of requirements to ensure that the correct system and 

specifications are being developed. Once the system is integrated, its design is verified against the 

requirements at each level to ensure that it has been built correctly and meets the specifications. 

As the design process progresses, more detail is added to the aircraft specification at each stage. 

This thesis focuses on aircraft development and safety integration activities during the conceptual 

design stage. 
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Figure 1- 1: Safety integration to the aircraft development process, adapted from [17] 

In classic conceptual design methods, the system architecture and its impact on the overall weight 

and performance of the aircraft are not directly considered. Typically, a system architecture is 

fixed based on experience from past aircraft programs or supplier data, and the impact of the 

architecture is evaluated using semi-empirical approaches [25]. Recent developments have 

resulted in more advanced systems architecting techniques that allow the architecture to be used 

as input to the conceptual level MDAO processes. Some of these methods have been developed as 

part of the AGILE4.0 project, where aspects of system architecture, certification regulation, and 

safety have been considered in a conceptual MDAO framework [26]. The objective of the 

AGILE4.0 project was to develop the next generation of Multidisciplinary Design and 

Optimization (MDO) processes for aircraft, with the aim to significantly decrease aircraft 

development costs and time-to-market, yielding greener, more affordable aircraft solutions. The 

AGILE Paradigm has been established as a blueprint for MDO, promoting collaboration among 

design teams with diverse expertise [22]. The general idea behind the AGILE MDAO workflow 

is to allow people from different organizations and specializations to link their tools to MDAO. 
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The results of these analyses could result in changes being made to the system's architecture to 

meet the aircraft's high-level requirements. 

 

1.2.1  Systems Architecting Process 

The system architecting is the process of characterizing a system by analyzing its components and 

interactions to address a particular requirement, as outlined by the system specifications. The 

output is a conceptual model of the system, which details its components, interactions, and ability 

to accomplish a series of functions. According to [27], system architecting is defined as “activities 

of defining, documenting, maintaining, improving, and certifying proper implementation of an 

architecture.” In essence, the system architecting process involves making decisions that define a 

system architecture and its subcomponents. These decisions typically rely on a combination of 

quantitative and qualitative criteria to assess the feasibility, readiness, and capability of the 

resulting system architecture to satisfy requirements [28]. The system architecture is crucial for 

designing and evaluating novel aircraft concepts, especially those that involve hybrid-electric, 

distributed propulsion, and advanced or more electrical subsystem architectures. Here, the system 

architecting process is subdivided into three sub-activities, according to [29], as shown in Figure 

1-2:  

1. System architecture definition 

2. System architecture representation 

3. System architecture evaluation 

System architecture definition refers to the process of designing and specifying the structure and 

behavior of a system. It involves identifying and defining a system's various components and 

subsystems, their interconnections and interfaces, and the functions they perform. System 

architecture definition also includes defining the overall system requirements, constraints, and 

performance objectives. 

System architecture representation is how the design of system architecture is documented, 

communicated, and visualized. It involves creating a graphical or textual model that captures the 

key elements and relationships of the system architecture, including its components, functions, 

interfaces, and interactions. Architecture representation carries information about different aspects 
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of the design process, such as sizing, technological choices, and system specifications. An 

illustration that focuses on decomposing a system into its constituent parts enables the assessment 

of safety and redundancy factors. In brief, architectural representation eliminates vagueness in the 

definition of system architecture, fosters a common comprehension of the architecture, and creates 

valuable data about the system for employment in the design process.  

System architecture evaluation can be defined as the process of assessing and analyzing a system 

architecture design to determine whether it meets the system requirements and objectives. It 

involves examining the architecture from various perspectives, such as functionality, performance, 

reliability, safety, maintainability, and cost. System architecture evaluation aims to identify any 

weaknesses, risks, or opportunities for improvement in the design and ensure that the architecture 

is feasible, efficient, and effective in meeting the system requirements. 

The system architecture process serves as a blueprint for the development of the system, providing 

a framework for the design, implementation, testing, and maintenance of the system throughout 

its lifecycle. Usually, system architectures are filtered, created, and examined using different forms 

of representation such as model-based system engineering artifacts, 2D drawings and schematics, 

and 3D models that show the internal arrangement of components in the system architecture.  

 

Figure 1- 2: Stages in the system architecting process for design space exploration 

The current system architecting process is not based on a unified source of information; it uses a 

mix of manual and model-based approached. Therefore, the traceability when dealing with system 
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design changes is limited, which can then impact the overall time and cost-effectiveness of system 

architecture. To advance the efficiency and effectiveness of system architecture, a central model-

based specification approach is seen as promising to drive system development. This central 

model-based specification should capture all aspects of aircraft system architecture and support 

different viewpoints and analyses throughout the development process.  There is a trend to improve 

the current system architecting process. As part of the AGIE 4.0 project, Boggero et al. [30] try to 

address the shortcoming of the traditional system architecting method by presenting a model-based 

approach. 

A model-based approach provides characteristics and capabilities to ensure the system's 

development remains traceable, and it facilitates the generation of various system perspectives, 

comprehensive reports, and assorted documentation. Most importantly, this methodology enables 

tracking and accurate reflection of modifications in the system design within the system model. 

Emphasizing the representation of an aircraft system within its conceptual design, the architectural 

representation requires particular characteristics to effectively handle its inherent complexity. 

These imperative attributes include clarity for comprehensible understanding, traceability for 

accountable changes, systematic organization for logical structure, extensibility for future 

scalability, assessment capabilities for effective evaluation, encapsulation for maintaining the 

integrity of system components, and visualization for a clear, graphical representation [31].  

Model-Based System Engineering (MBSE) is an advanced development methodology becoming 

more prevalent in the aeronautical industry [32]. It is seen as a solution to the complex system 

architecting process by allowing for more efficient capture of the technical design process. Using 

a common reference system model, MBSE can drive the system architecture, increase process 

coherence, and improve traceability throughout the system development. Mainly, MBSE 

applications in system architecting are in preliminary design [33], [34].  

However, MBSE should be ideally used during the conceptual design phase, when the aircraft's 

requirements, system architecture, and feasibility are being conceptualized [29], [35]. During this 

phase, the overall vision and concept of the aircraft are established as limited information about 

subsystems is available, allowing greater design flexibility. By introducing MBSE during the 

conceptual design phase, the development team can create a system model that captures the 

system's requirements, functional behavior, and architecture. This model serves as a central 
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knowledge repository and provides a holistic view of the system, enabling better communication 

and collaboration among the stakeholders. Many of the most important design decisions are made 

during conceptual design, making it an ideal time for system architects to develop modeling 

artifacts to capture system requirements in the form of an architecture that can be updated as the 

design progresses through subsequent stages. 

 

1.2.2 The need for system architecture consideration in conceptual MDAO and MBSA 

One of the main difficulties in the current aircraft development processes is that MDAO and MBSE 

are carried out as separate activities that use distinct tools and require specific knowledge. Despite 

this, both processes aim to translate customer requirements into viable solutions. If a more 

comprehensive assessment of aircraft systems architecture is integrated into future MDAO 

frameworks, the specification of these architectures should originate from a systematic MBSE 

process. Additionally, it is preferable that the architectures that are examined and assessed during 

the conceptual design phase are smoothly transitioned into later design stages to minimize 

expenses and avoid unnecessary modifications. 

Regarding safety assessment, the current approach still heavily depends on elaborate safety 

assessment procedures and does not generate a system architecture specification model that 

incorporates the findings of previous safety analyses. It is necessary to conduct more of the safety 

processes recommended by ARP 4761 during conceptual design and combine the results of these 

analyses in a system architecture model. This model can then be used during preliminary design, 

where the most recent advances in Model-Based Safety Assessment (MBSA) can be utilized to 

carry out detailed safety assessment activities as the architecture specification evolves. 

In summary, the aircraft development process can be improved by exploring aircraft systems 

architectures early on. However, a key gap in this process is the lack of an efficient means for 

architecture representation and visualization. A formalized representation of systems architectures 

is necessary throughout development to improve efficiency. The development of an architectural 

representation framework for the conceptual design process can enable the efficient exploration of 

systems architectures. Formal architecture modeling enables important analysis, such as safety 

assessment, FHA, and MDAO activities, early in the design process. This investigation of a broad 
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range of system architectures leads to the development of more efficient aircraft. Clear architecture 

representation also identifies integration issues early, preventing costly program delays and 

making the product more competitive. 

 

1.3 Objectives and Scope of the Thesis 

This thesis focuses on the system architecture representation within the MBSE environment and 

integration to the evaluation phases, i.e., a simplified MDAO workflow and FHA early in 

conceptual design, as highlighted in Figure 1-2. This scope addresses system architecture 

representation for hybrid-electric propulsion, secondary power generation, and distribution 

specifications by a generic template model adaptable for various aircraft configurations. As a 

higher level of integration is required between the propulsion and non-propulsive power generation 

for various aircraft systems, including primary flight control system, and hydraulic and fuel 

systems, hybrid-electric is an example of sufficient complexity to illustrate the methodology.  

The architectures of different hybrid-electric propulsion system configurations are created based 

on predefined requirements and aircraft configurations. The objectives of this research are as 

follows: 

• Develop a generic set of architecture representations and modeling elements within the open-

source Architecture Analysis & Design Integrated Approach (ARCADIA)/Capella MBSE 

framework to support the specification and analysis of aircraft with unconventional propulsion 

systems to manage architecture complexity and variability. This thesis focuses on hydrid-

electric propulsion systems and associated aircraft subsystems. 

• Explore how to link an MBSE specification model and an associated MDAO workflow to 

enable data consistency between the two.  

• Explore how the MBSE specification model can be used to perform safety assessment 

(following the SAE ARP4761). This thesis focuses on the development of a methodology in 

Capella to perform a model-based FHA.  
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1.4 Organization of the Thesis 

The organization of this thesis is as follows: Chapter 2 presents an overview of the current state of 

MBSE tools and practices in aircraft system architecture representation and outlines the need to 

link MBSE and MDAO and the importance of safety considerations to enhance the system 

architecting during the conceptual design phase.  Chapter 3 introduces a multi-level modeling 

methodology using ARCADIA/Capella to represent system architectures. It is followed by the 

MBSE-MDAO link to enhance the system architecting process and the integration of FHA within 

the MBSE environment. Chapter 4 provides examples of how this methodology is applied to 

hybrid electric system architectures and yaw control in primary flight control systems and the 

application of model-based FHA to the landing gear braking system. Finally, Chapter 5 concludes 

with a summary of the main points and proposes areas for future research.
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2 State of the Art 

 

This chapter presents the state of the art in aircraft systems architecting. It introduces Model-Based 

Systems Engineering (MBSE) applications and discusses prior work on bridging MBSE to the 

other system evaluation processes, including MDAO workflow and MBSA activities. Finally, it 

closes with a gap analysis. 

 

2.1 System architecting in early aircraft design 

System architecture development involves creating various configurations for a particular aircraft 

system. This is achieved through a process including listing, presenting, and evaluating all possible 

architectural design options. During this process, all combinations of system components are 

identified to generate a list of potential system architectures. Then, feasible system architectures 

are evaluated, and the most suitable solution architecture that meets the requirements is selected. 

As briefly discussed in Chapter 1, system architecting is divided into three separate phases, 

depicted in Figure 1-2. The main focus of this research and the related literature is on the design 

space representation and potential links to the evaluation process. Each phase is described as 

follows: 

1. Design Space Definition 

During this stage, the boundaries of the design space are established, including factors such as 

weight, performance metrics, high-level aircraft requirements, and technology selections. In the 

case of hybrid-electric aircraft, the design space is defined by power distribution, power 

transmission, and the propulsion system’s efficiency [36]. These combinations may be 

technologically unfeasible, inconsistent, difficult to integrate, or have poor performance. Thus, 

part of the design space definition involves eliminating infeasible configurations before proceeding 

to the architecture evaluation phase.  

As the MBSE framework developed in this thesis should be able to easily connect with architecture 

descriptions and representations, which are outputs of the design space definition phase referring 

to Figure 1-2, as brief review of literature about design space definition is presented here. 



13 

 

 

Basically, various techniques and approaches are used to define an architecture design space. A 

design space is the set of all possible configurations of a system architecture that can be created 

by combining different variations of components and interconnections. The function-based 

approach is used by Liscouët-Hanke [37] and Lammering [38] to define architecture within a 

system sizing and performance estimation framework. Bussemaker et al. in [39] offer a new 

method for modeling the system architecture design space in a way that yields a semantic 

representation using architecture design space graphs. These graphs provide a semantic 

representation of the architecture design space, including function-component mapping, 

component characterization, and component connection. 

As the design space grows, it becomes important to filter feasible architecture configurations. 

Jeyaraj et al. [40] present a rule-based safety filtering approach for large design spaces in their 

safety-focused systems architecting framework. The safety-based approach introduced by Jeyaraj 

in [28] enhances the system architecture definition phase by introducing a rule-based safety 

filtering method for conventional and novel system architectures (i.e., for more electric, hybrid-

electric, and distributed electric aircraft). This method allows the extraction of feasible 

architectures from a large design space automatically.  This literature was conducted concurrently 

with the development of this thesis. 

2. Design Space Representation (Architecture Representation) 

Aircraft systems are complex, with many subsystems that interact with one another. Architecture 

representation is necessary to present the system interfaces and exchanges between system 

components and other system elements in an unambiguous way. Creating an architectural 

representation of the aircraft system enables a shared understanding of the system between all 

parties involved in the design process [31]. 

An initial set of users’ needs is translated into textual requirements. These requirements derive a 

functional architecture specification for the system of interest. From this point on, two approaches 

can be taken. First, functional architecture can constrain the design space and generate many 

architectural options, as demonstrated in [41]. These architectures are then represented in a graph-

based environment where safety rules are applied, and feasibility checks are conducted to remove 
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incompatible options. The second approach would be directly generating the list of candidate 

system architectures in a graph-based representation environment. The subsequent application of 

rules and filtering of architectures is the same as previously described. The remaining few 

architectures are then developed into a model-based specification using any of the numerous 

MBSE workbenches that are currently available [42]. The recent work by Boggero et al. [30], 

within the AGILE 4.0 project, explores a tool-independent approach and introduces a model-based 

architectural framework for complex system representation. This MBSE framework focuses on 

the system architecting activities of a systems engineering product development process, which 

includes functional, logical, and physical system architecting. Other MBSE approaches literature 

are explored in further detail in Section 2.2. 

3. Architecture Evaluation  

In early works on system architecture evaluation [37], [43] and later [37], [44], the overall system 

architecture contribution to aircraft level performance is evaluated (calculating contributions to 

weight, drag, and secondary power off-takes). This evaluation workflow can be generic and 

repeatable with minor modifications for conventional and even more electric system architectures 

[44]–[46]. However, reconfiguring the workflow may be time-consuming for unconventional and 

novel architectures, as models need to be identified, sizing and performance routines synthesized, 

and a link to aircraft-level metrics needs to be made. At the same time, aspects of tool fidelity must 

also be considered. At the conceptual design phase, obtaining overall results using a workflow 

consisting of low-fidelity tools may prove feasible. However, the effect of infusing some high-

fidelity analysis as part of the workflow on aircraft-level metrics would still need to be quantified 

in terms of uncertainty. Although several approaches to formalizing the evaluation phase of system 

architecting have been proposed in the literature [38], [47], [48], these methods are based on an 

overall architecture description. They are sometimes very abstract, and the step of architecture 

representation is skipped, with the notable exception of [49], where system safety and performance 

analysis has been shown in the context of system architecting.  

A more granular system architecture description and representation are required to perform more 

detailed system architecture evaluations. This can be achieved by using a so-called architecture 

descriptor. Typical descriptors may be textual, as in [44], pictorial, as in [46], and object-oriented, 

as in [41]. An architecture descriptor carries information about the system configuration that is 
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then used to activate specific modules and interfaces in a subsequent evaluation workflow. It is 

possible to evaluate many types of architectures based on structuring the architecture descriptor, 

but this ultimately limits the scope for applying the architect’s knowledge base. This means that a 

system architect may not be able to easily add redundancies, change power types and incorporate 

new technologies without having to modify a baseline workflow each time. The graph-based 

system architecture descriptor proposed by Jeyaraj [28] is designed to support the integration of 

the safety-focused systems architecting framework within an MDAO environment and was 

developed in parallel to this thesis. This descriptor links architecture definition and rule-based 

safety assessment with architecture evaluation and formal architecture specification in an MBSE 

environment. 

 

2.2  Model-Based System Engineering (MBSE) 

MBSE is applied by systematic use of models that describe the behavior, functionality, 

requirements, activities, mission capability, structure, and interconnectivity between elements in 

the System of Systems (SoS) [50]. It enables the creation, organization, and distribution of data 

that is relevant to the developmental phase of a system engineering approach [51]. Given the 

complexity of system development and the need for extensive communication between diverse 

teams that are often in different geographical locations, MBSE has become essential for managing 

the large amounts of information generated during the process.  

MBSE, as explained in [52] and [53], brings several benefits, such as improved communication, 

decreased risk of development, enhanced quality and safety, and elevated efficiency. Through a 

model-based process, the system model is interpreted structurally by all involved parties, leading 

to more effective communication and eliminating ambiguity in the design process. This is possible 

because the system model is communicated using a systematic modeling methodology, facilitating 

communication between design teams[53]. These models support visualization, validation, and 

verification during the lifecycle of a project. [50]. However, MBSE is not limited to a specific 

process and ensures that all the information related to the system design is stored in a model 

repository, resulting in a more uniform and standardized development process. 
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In [54] and [55], an overview of current MBSE methodologies and their application in different 

industries can be found. There is a growing interest in using MBSE for complex systems 

engineering, such as space systems architecting, due to its ability to provide a systematic modeling 

approach. In [56], MBSE is adopted for the preliminary design stage for satellite communication 

system architecting. Practicing individuals who use MBSE have said that it provides them with a 

clear understanding of design problems, helps them develop requirements, and speeds up the 

concept design process [35]. The Jet Propulsion Laboratory (JPL) has implemented MBSE with 

the aim of enhancing the quality of its products and missions, as well as reducing costs [57]. MBSE 

has been used to explore the trade space for fractioned satellite architectures at JPL [57] and [56]. 

Thus, MBSE is extensively used for developing highly integrated systems in various domains. The 

next section will explain how MBSE is implemented in aircraft system architecture representation. 

MBSE has been increasingly adopted in the industry by Original Equipment Manufacturers 

(OEMs) such as Rolls Royce and Boeing, who have reported the benefits of using this approach 

for designing products [55]. In fact, Boeing has implemented MBSE in developing digital aircraft 

networks, resulting in reduced development time and the ability to identify design errors at an early 

stage [58]. Additionally, MBSE has been acknowledged as a methodology for handling the 

growing sophistication of automotive technology and design [59].  

MBSE has been applied in various aircraft system development projects. Mathew et al. [60] used 

MBSE tools to develop a system architecture specification for integrated modular avionics, while 

Fisher et al. [61], Becker, and Giese [62] applied MBSE in aircraft system architecture 

specifications for small unmanned air vehicles and aircraft environmental control systems, 

respectively. Liscouet-Hanke et al. used MBSE to develop aircraft flight control systems [63], and 

Malone applied MBSE in the development of digital aircraft networks [58]. 

MBSE has also been adapted for representing system architectures in conceptual design by 

Liscouet-Hanke and Jeyaraj to support continued development in further design stages [29], [31]. 

The thesis is built upon the work conducted by Jeyaraj [29], [31], which serves as the starting point 

for the research. Several researchers have also investigated the effective use of MBSE [30], [64], 

[65] in the AGILE 4.0 design framework. The project leverages MBSE technologies and integrates 

them within an MBSE development system for the modeling, assessment, and optimization of 

complex systems addressing the entire life cycle. The ambition of model-based system architecting 
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in the AGILE 4.0 project is to introduce all the development activities of a typical Systems 

Engineering process and include all the main pillars of the aeronautical supply chain: design, 

production, certification, and manufacturing [30].  

In conclusion, MBSE is well-suited for handling complicated systems and enhancing the 

development process's efficiency by gathering information and presenting it in customized and 

relevant views to stakeholders. By using a system model as the primary reference point, there is 

only one source of accurate information during the development process, eliminating any 

uncertainty and ensuring consistency in the design process. Using a model-based method allows 

for thorough tracking and control of requirements on a large scale, which addresses several issues 

associated with the conventional requirements-based approach [59]. However, the aerospace 

industry faces challenges in implementing a successful MBSE framework due to the complexity 

of aircraft systems and the learning curve required to create effective models. Selecting an 

appropriate MBSE framework is crucial to enable engineers to adhere to standards and manage 

system complexity and configuration while implementing ARP4754A principles. 

 

2.2.1 Commonly used MBSE tools 

MBSE refers to the practice of utilizing system models to facilitate system engineering tasks. A 

model can take the form of a textual, physical, mathematical, or logical representation of the 

system [66]. There are two main types of models employed in MBSE: descriptive models and 

analytical models [52]. Descriptive models capture logical relationships, such as the interactions 

between system components and functions, as well as the logical and physical architecture of the 

system. On the other hand, analytical models employ equations, rules, and other direct 

relationships to represent a system and its characteristics. These models are used in simulations to 

verify system performance. A system model can be composed of a combination of analytical and 

descriptive models to represent different aspects of the system. For instance, a system model may 

be used to specify system requirements descriptively, which can then be mapped onto a simulation 

model to test system productivity. Moreover, the system model can also be leveraged to identify 

the safety, reliability, and performance perspectives of the system. 
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Currently, different approaches and tools are available to implement the MBSE method. Examples 

of these tools include modeling languages such as SysML (System Modelling Language) and UML 

(Unified Language Model), and ARCADIA (Architecture Analysis and Design Integrated 

Approach), as well as representation models like diagram definition and documents [67], [68]. 

UML, a visual language for complex software systems, uses graphical notations for clear 

representation [67]. SysML extends UML for system engineering applications and is widely used 

by the systems engineering community [69]. Various MBSE tools are currently being used to 

support system engineering activities such as requirements engineering, architecture definition, 

verification, validation, and model simulation. These tools include Cameo Systems Modeller, 

Rhapsody, Core, ANSYS SCADE, and the Modelica suite. 

Choosing the appropriate MBSE tool depends on the specific application or system that is being 

evolved. To effectively use an MBSE paradigm, a combination of the modeling language, tool, 

process, and architecture framework is necessary. A standardized modeling language, such as 

UML or SysML, is typically used by MBSE solutions, although Capella is an exception. 

Additionally, a systematic process for developing system models is essential for ensuring 

transparency and a shared understanding of the system among engineering teams. Unfortunately, 

many available MBSE solutions do not have an integrated tool and process. 

Most tools use a standard modeling language like SysML without providing a modeling 

methodology. In contrast, ARCADIA/Capella offers a comprehensive solution that facilitates 

defining a system from start to finish. ARCADIA/Capella is developed and maintained by an open-

source consortium with a broad user base, and it has been successfully used by Thales and attracted 

industry attention due to its flexibility and integrated capabilities. Notably, Capella is extensively 

used by Bombardier Inc., an industrial partner in the AGILE 4.0 project, making it the tool of 

choice for this thesis. More information about ARCADIA/Capella is available in the following 

section. 

 

2.2.2 ARCADIA/Capella 

The MBSE ARCADIA (Architecture Analysis & Design Integrated Approach) is a structured 

modeling framework designed to define and validate the architecture of intricate systems [42]. 
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Thales shift from a supplier to a systems integrator across various domains prompted the 

development of the ARCADIA methodology. Defining the architecture was anticipated to 

significantly enhance engineering and system integration effectiveness [70]. A clear understanding 

of the system at all engineering levels was necessary to improve the V&V process, and early 

detection of architecture defects and incompatibilities was crucial. All these factors were taken 

into account in developing the ARCADIA methodology. 

The ARCADIA approach uses a standardized modeling process shared among stakeholders to 

support a structured engineering process. The system model represents the product and connects 

models at different levels, allowing for collaborative model elaboration across engineering levels 

[42]. The modeling process captures stakeholders' operational needs and facilitates the system's 

final integration verification and validation (IV&V). It has been observed that ARCADIA is 

versatile enough to be used across different engineering disciplines and business units within 

Thales, and the engineering community has embraced it at different levels. The following text 

provides an explanation of the modeling process and different levels utilized in the ARCADIA 

methodology: 

The ARCADIA methodology emphasizes utilizing functional need analysis to guide engineering 

activities. This involves converting requirements into functions and defining functional exchanges, 

states, and data flows [71]. Although ARCADIA is not tied to a specific tool, the Capella 

workbench supports it. The Capella workbench offers tools for model development and complexity 

management, including filters, replicable elements, and copy-paste functionality, among others, to 

ensure a user-friendly experience. 

To facilitate user adoption, the ARCADIA methodology utilizes engineering concepts and 

language familiar to users, including functions, components, and data, to facilitate user adoption 

[42]. The ARCADIA methodology consists of several important stages, starting with the 

identification of user needs and the subsequent development of a solution. This is achieved through 

operational and system analysis, transforming requirements into clear user needs. In order to meet 

these needs, logical and physical architectures are created, resulting in solution architectures that 

fulfill the user's requirements. The ARCADIA methodology allows for the creation of a variety of 

diagrams based on the system model, which can represent different system views. Figure 2-1 

demonstrates the engineering modeling levels that are available in ARCADIA. 
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Figure 2- 1: Viewpoints-based approach in ARCADIA, from [68] 

The ARCADIA methodology outlines four distinct levels for the process of architecture 

development, as depicted in Figure 2-1: 

1. Operational Analysis Level 

In order to define the goals of the system and what the users need to achieve, the ARCADIA 

methodology uses Operational Analysis (OA). The main aim of this phase is to identify the "actors" 

who interact with the system and their requirements for the system to operate (for instance, the 

cabin crew or the flight crew who regulate the cabin temperature). OA identifies use cases or needs 

through operational capability. 

2. System Analysis Level 

System Analysis (SA) is a process in which the functions required by the system are determined, 

and the information flow between functions is developed. SA helps to define what the system must 

do for the user/actor, such as controlling pressurization. The system begins to take shape at this 

working level, and requirements are consolidated and formalized. SA identifies and defines the 

needs or use cases of the system by assessing its capability. 
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3. Logical Architecture Level 

In the Logical Architecture (LA) phase, the focus is on determining how the system operates to 

meet the required performance. In addition to defining functions, this stage also identifies the 

components responsible for performing these functions, resulting in a logical architecture. LA 

presents a logical solution to the needs identified in both SA and OA. 

4. Physical Architecture Level 

The Physical Architecture (PA) represents the last level in this structure, where it focuses on the 

physical components of the system and how they will be constructed. Any connections and 

interactions established between components in the previous levels are maintained, and updates 

can be made using the transition functionality in Capella [31], [72]. 

 

2.2.2.1 Application of Capella in Aircraft system specifications 

The ARCADIA methodology has been applied in aircraft systems architecture specification, 

specifically in the Environmental Control System for integrated modular avionics [60]. It was used 

to demonstrate the possibility of developing a system architecture specification for aircraft high 

lift systems using top-down and bottom-up approaches [33] and shows the effective test rig 

architecture specification for flight control computer [63]. The ARCADIA/Capella has also been 

adapted to represent the system architecture for effective flight control system and actuation types 

[29]. It features a two-level modeling approach with generic and technology-specific modeling 

elements at the system, logical, and physical architecture levels. A catalog of modeling elements 

representing various actuator technologies for Flight Control System (FCS) is developed to ease 

the fast generation of system architecture models for design space exploration and subsequent 

architecture analysis. The steps of architecture representation are illustrated in Figure 2-2.  
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Figure 2- 2: Architecture representations using the multi-level modeling approach, from [25] 

 These applications are mainly focused on key aircraft systems during the conceptual design phase. 

The multi-level modeling approach in [31], shown in the figure, is used as a basis to develop the 

architectural framework presented in this research. The current work aims to create a reusable 

template of system architecture specification focusing on hybrid-electric aircraft at the conceptual 

design stage and to facilitate the evaluation of system architectures early in the design stage from 

different perspectives. 

 

2.2.2.2 Model Enhancement Using Capella Add-ons 

Model enhancement refers to the process of making changes or improvements to an existing model 

to better suit the needs of a particular system architecture. The Capella provides a range of tools 

and features that enrich essential elements and artifacts, making it easier to develop and refine the 
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model as the design process progresses. Exploring models from different aspects may result in 

model enhancement with various properties. 

Capella viewpoints are add-ons to the Capella tool, providing extra functionalities for various 

engineering tasks on system models. These include requirements management, document 

generation, safety assessment, performance analysis, cost estimation, and time scheduling [73]. 

Open-source viewpoints are available for certain tasks, enhancing model architectures. Basic 

viewpoints like mass, price, and performance come with their own property packages, allowing 

users to augment models with relevant properties. Figure 2-3 shows the engineering activities as 

Capella add-ons to enhance the architecture models. 

 

Figure 2- 3: Engineering activities supported by Capella viewpoint extensions, from [69] 

Desired Capella viewpoints sometimes need customization or creation from scratch. Capella 

Studio, an integrated development environment, allows for add-on creation using Java and the 

Eclipse Modeling Framework (EMF), facilitating standard development that integrates with 

Capella's architecture. This aids in extending Capella's functionality and integration with other 

tools. However, Capella Studio's complexity makes it hard for non-programmers to develop simple 

properties for architecture models, leading to the exploration of a simpler Capella tool in this 

research, capable of managing properties without any coding. Therefore, In the frame of this work 

Property Value Management Tool (PVMT) is implemented to enrich models and architectural 

elements. 

PVMT is an add-on to Capella and provides a customized viewpoint that can be used at any level 

of modeling for any elements, while the other basic viewpoints have limited features and only 
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cover specific aspects of a model. However, PVMT can be integrated into a model and enhance 

architecture by giving any custom properties to each element. The PVMT is designed to help 

system engineers and architects manage the complex relationships between the properties of 

system components, such as requirements, functions, and physical elements, and the assigned 

values. The PVMT offers a range of capabilities, including: 

1. Automated property analysis: The PVMT can automatically analyze the properties and values 

assigned to system components in a Capella model and provide insights into the relationships 

and dependencies between them. This can help engineers identify issues and inconsistencies 

in their models and ensure that they are aligned with the system requirements. 

2. Dynamic filtering and grouping: It allows users to dynamically filter and group the properties 

and values of system components based on different criteria, such as requirements, safety 

reliability, or sizing parameters. This can help engineers quickly identify and isolate issues and 

focus their analysis efforts on specific areas of the model. 

3. Bulk editing and updating: It enables engineers to quickly edit and update the properties and 

values of system components in bulk, which can save time and improve productivity. 

Most of the capabilities mentioned above are executable by the PVMT editor, where the property 

packages are defined and allocated to a modeling layer. In order to create a property package in 

Capella using the PVMT tool, the property domain should be specified. This refers to the Capella 

elements and their modeling layer at which the property package applies, such as functions, 

physical components, or system requirements at SA, LA, and PA modeling layers. They should 

then be defined by their types, which refer to the property's data type, such as Integer, String, Float, 

Boolean, or Enumeration. Finally, particular property value rules can be set and applied to the 

package.  

 

2.2.2.3 Extracting Information from Capella Model 

The need for extracting information from Capella arises when designers need to reuse information 

from system model specifications in another environment and share the model with stakeholders 

who may not have access to Capella or may not be familiar with this tool. Exporting the model 

provides a clear and concise representation of the system architecture early in the design stages 
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that can be easily understood and reviewed by project team members, OEM, suppliers, and other 

stakeholders. The extracted model from Capella can also be used for documentation, analysis, 

system behavior simulation, and verification purposes, which are critical for ensuring the system 

meets the required functional and non-functional requirements. In this thesis, the Capella models 

are extracted and used for integration within the AGILE 4.0 MDAO workflow. The detailed 

method of data extraction information from model specifications is addressed in Section 3.3.1.  

Capella allows integration with other systems and tools in several manners. Various open-source 

and commercial extensions are available for Capella to export the model information and data in 

different formats, as depicted in Figure 2-3. These add-ons provide a way to extract data from 

Capella models and use it in other applications, making it easier to analyze, report, and share 

information about the system being developed. XHTML Documentation Generation, an open-

source add-on, gives an HTML version of a Capella project to be referenced for other engineering 

activities during the system architecting process. For model documentation, M2Doc enables the 

creation of high-quality, customizable, and up-to-date specification files of the models in 

Microsoft Word. 

Recently, a prototype Capella extension, i.e., Python4Capella, has been developed that allows 

users to interact with their Capella models using Python scripts. With this add-on, users can read 

and write data from and to their Capella models using Python, which provides a powerful and 

flexible way to manipulate data. The Python4Capella is currently hosted on Labs for Capella, 

which is a collaborative platform for the Capella community to share and develop extensions and 

tools for the Capella tool. It provides an opportunity to explore new ways of integrating models 

with MDAO workflow and extend the functionality of the Capella using Python. However, the 

Python4Capella is still a prototype and may not be fully functional or may contain bugs or 

limitations.  

Above all the possible extraction methods, there is a simpler and more practical solution to export 

model specification data for further applications. Capella export feature enables system 

information and component properties to be incorporated into the Comma-Separated Values 

(CSV) format that can be opened in other applications such as spreadsheets or databases. The CSV 

export format includes a set of rules for formatting data, where each row represents an instance of 

a particular element or object in the Capella model, and each column represents an attribute or 
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property of that element. For example, a CSV export of a Capella model might include a row for 

each requirement in the model, with columns for the requirement ID, name, description, status, 

and other relevant attributes. Similarly, a CSV export of a Capella model might include a row for 

each component in the model, with columns for the component ID, name, type, interfaces, and 

other relevant attributes. This feature in Capella is used during this research for sharing and 

documenting information from models created within this framework.  

To illustrate system architecture models, there is an image export option in Capella that enables 

users to save and share the model at any stage of the model construction in JPG, PNG, SVG, BMP, 

and GIF formats. All the system architecture presented in the Appendix is extracted in a JPEG file 

by using this feature. 

In summary, MBSE has emerged as a powerful method for designing complex systems. 

ARCADIA stands as a transformative approach within MBSE, providing a standardized and 

structured pathway for defining and validating intricate system architectures. It allows for the 

creation of a comprehensive system model that can be used to visualize and evaluate the system's 

architecture. Using these models, system architects can identify potential design flaws and trade-

offs before implementation, saving time and costs. The following sections discuss how other 

researchers utilize MBSE in system architecture evaluation and present a deeper exploration of the 

MBSE bridge to MDAO and MBSA environments.  

 

2.3 Systems Architecting Considerations in MDAO Workflow 

MDAO is an engineering design methodology that involves the simultaneous optimization of 

multiple disciplines or subsystems to improve the overall performance of a complex system. 

MDAO requires a detailed understanding of the system's architecture specifications which can be 

achieved through MBSE. MBSE enables the creation of system models to perform MDAO. 

According to [8], MDAO can be integrated with MBSE by creating models that represent the 

system's subsystems and disciplines. The models can be used to perform system-level 

optimization, which involves optimizing the system's architecture and requirements to improve 

overall system performance.  
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During the conceptual design phase, system architecture activities should be conducted to ensure 

that the ultimately chosen architecture, which is further refined and applied to the aircraft, meets 

the requirements most effectively. MBSE is incorporated into the design process to create a 

specific system architecture during the detailed design phase [74]. However, the adaptability of 

MBSE to conceptual design activities is relatively limited due to the complexities associated with 

managing various potential architectures and variants within a layered, complex specification 

model [29], [33]. 

The current process in the industry lacks MBSE during the exploration phase, limiting the 

evaluation of a few system architectures. The specifications of architectures are manually 

transferred to MDAO workflow at the system level for evaluation.  The MBSE specification phase 

is typically disconnected and used after this initial phase. While some academic approaches enable 

the evaluation of many system architectures, these approaches are not widely adopted in the 

industry [25]. Figure 2–4 visualizes the current situation (“as-is processed”) and the envisaged 

future process ("to-be process"), addressing the drawbacks of each step of design space 

exploration. 

 

Figure 2- 4:Stages of the system architecting process for design space exploration 

To evaluate the system architecture in conceptual design, sizing and analysis tools are utilized by 

the designer. These tools can be incorporated into a system-level workflow within an MDAO 
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environment at the aircraft level. For this reason, a strategy is needed to ensure that the system-

level workflow obtains information from the system architecture for both configuration and 

execution. The system architecture is then assessed to determine critical performance metrics, 

including mass increments, drag, fuel, and other aircraft-level parameters, as stated in [44], [37]. 

The evaluation workflow can be standardized and easily replicated with minor changes for 

conventional and innovative system architectures [44]–[46]. However, configuring the workflow 

may be time-consuming for unconventional and innovative architectures, as models need to be 

identified, sizing and performance routines synthesized, and a connection to aircraft-level metrics 

established. 

The connection between MBSE and MDAO is important to access the information about the 

system architecture contained within the model-based specification, which is then used to 

configure the MDAO workflow. The model-based specification also provides tool inputs that are 

assigned to model elements for different tools in the system-level workflow, making it a crucial 

part of the updated system architecting process. However, challenges remain in enabling this 

capability, such as identifying and categorizing the transfer of information from the MBSE 

specification to the MDAO environment [21], [22]. The inadequate exchange of information 

between system architecting and MDAO frameworks can hinder integration. This raises the 

question of how architecture description artifacts can be mapped to workflow elements in an 

MDAO specification. Significant efforts have been made in developing MDAO frameworks with 

reconfiguration capabilities that support collaborative MDAO processes, but the integration of 

MDAO methods specifically to support system architecting activities is still lacking.  

There are several challenges based on a literature review by Chaudemar et al.[75] on the concurrent 

application of MBSE and MDAO early in the design stage. Formulating the MDAO problem 

consumes significant time, even though the required information is readily accessible in the MBSE 

system model. Moreover, The integration of MDAO solutions into the MBSE system model is not 

discovered sufficiently due to the MBSE tools and language limitations that require manual effort. 

Aiello et al.[76] Propose a method to extract system requirements from the MBSE model and 

enhance them through MDAO in five steps. The method is tested for sizing a drone battery using 

papyrus as an MBSE tool and OpenMDAO. However, their proposal does not address the reuse of 

MBSE models.  
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Ciampa et al. [77] use an architectural framework to link the MBSE and MDAO workflow. This 

method introduces a 'development system' that assists in the evolution of the 'system of interest' 

(SoI) at various stages, using MBSE to quicken the creation of MDAO systems. This involves a 

formal description of the MDAO system's structure and behavior through an MDAO system 

architecture. This architecture uses a framework that is a combination of terminology and 

viewpoints for architectures, requirements, and lifecycle. In this context, system architecting, 

specification, and identification are formalized through MBSE and linked to MDAO. However, 

the reuse of the system model and data is not described, and the execution of MDAO for sizing 

and parametrizing the system of interest is not addressed.  

 Bussemaker et al. [8] offer MBSE Architecting to MDAO bridging approach by using function-

based architecture modeling and collaborative workflows that leverage disciplinary expertise. The 

architecting step builds on the requirements specification step, and therefore a large part of the 

requirements validation can also be taken up by the architecting activity through the specification 

of architecture properties and formulation of the architecture design problem. The architecting 

approach focuses on modeling the function-based architecture design space for architecture 

optimization. The MDAO approach implements the collaborative MDAO principle to leverage 

disciplinary expertise and implement cross-organizational MDAO workflows. 

Habermehl et al.[78] propose a formalization of the MDAO workflow by three modeling 

approaches: workflow architecture, internal behavior, and executable behavior. The main purposes 

of the formalization are the resolution of the MDAO black box behavior and the provision of a 

means to parameterize the system architecture with an optimal parameter set. The paper aims to 

provide a novel approach to link MDAO in MBSE system models, taking advantage of existing 

models and thus reducing the initial implementation effort of MDAO. The workflow's structure 

and behavior are formally outlined using SysML for an electric coolant pump as a use case 

Moreover, The integration of safety and certification considerations into the system model can be 

accomplished using MBSE and MDAO, where the model can provide this information as 

constraints to the MDAO workflow [79], [80]. However, evaluating a large design space through 

the architecture evaluation process is expensive in terms of computation cost, requiring pre-

filtering of viable designs.  
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In recent times, there has been a focus on increasing automation in the implementation and 

execution of MDAO [21], [81]. To make the formulation phase of MDAO more efficient, a 

centralized MDAO schema and MDAO definition environments have been developed. These 

environments consolidate tool repositories and allow for the structuring and visualization of 

MDAO workflows [81]. By using these schemas, MDAO specifications can be designed and 

executed automatically. In general, MDAO specifications, implementation, and execution have 

become more advanced and automated, and they have the potential to be easily reconfigured. 

However, many organizations still follow the traditional approach of using Process Integration and 

Design Optimization (PIDO) tools, which rely on manual effort for reconfiguration.  

Ultimately, the MDAO specification needs to be executed in software, necessitating a robust data 

framework for storing, exchanging, and processing information about MDAO workflow 

configuration. The Common MDAO Workflow Schema (CMDOWS), as defined by [81], coupled 

with the Common Parametric Aircraft Schema (CPACS), offers a mechanism for capturing 

information related to the MDAO workflow in a neutral data format. This information can then be 

processed by software and visualization frameworks for execution and user interaction [82]. 

In summary, despite recent development, there is still a lack of connection or integration between 

linking MBSE system architecting and MDAO, which is challenging as they have different 

characteristics in development, formalization, fidelity, and reconfiguration that require a deeper 

exploration and effort. System architecting is a flexible and manual process that involves many 

iterations and changes, while MDAO is automated and static. This integration can be achieved 

by identifying the necessary information that should be shared and examining the current 

structure of MDAO data through analysis of exchange standards and framework.  

 

2.4 Model-based safety assessment (MBSA) 

Model-based safety assessment (MBSA) is a method that uses system models to evaluate system 

safety. This approach differs from traditional safety analysis methods, relying on models rather 

than manual analysis of system components. The connection between system modeling and safety 

assessment has been acknowledged as an essential aspect of model-based safety assessment 

processes. MBSA can be used to identify potential hazards and assess the safety of a system design, 
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allowing designers to make informed decisions about improving their systems' safety and 

reliability [7]. MBSA utilizes formal modeling techniques to aid in safety assessment tasks. These 

models can be classified as either standalone or extended models [83], [84]. Standalone models 

are designed to represent safety-related information by capturing the relationship between the 

constituent elements of a system. On the other hand, extended models are safety-specific 

abstractions of the parent system model, focusing on safety-related aspects. Current approaches to 

MBSA involve using extended models that are developed in specialized environments, such as 

MATLAB/Simulink. 

The industry is investigating progress toward the MBSA approach [7], [83], [85]–[87]. Recent 

developments in MBSA applications mainly focus on using a model-based approach to perform 

safety analyses such as Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis 

(FTA). Gradel et al. [7] have demonstrated the use of MBSA in conceptual design by illustrating 

the development and evaluation of fault trees using a model-based definition of failure events that 

includes safety requirements obtained from FMEA. The proposed scheme extends the classical 

FMEA scheme with fault propagation behavior to enable a more comprehensive analysis of 

potential hazards for unconventional aircraft systems, while Bruno et al. [88] have proposed a 

Reliability, Accessibility, Maintainability, and Safety Framework for conventional as well as more 

electric system architectures, which includes a model-based FMEA. 

A proposed link between MBSE and MBSA by Sango et al. [89] is performed using 

ARCADIA/Capella and SafetyArchitect tool developed by ALL4TEC. It leverages the Safety 

viewpoint in Capella and the import legacy in Safety Architect to conduct classical safety analyses 

such as FTA. However, the MBSA tool used for the study is not open-source; therefore, the 

accessibility, compatibility with other tools, and customization capabilities are limited.  

Maitrehenry et al. [90] propose a new method for identifying failure scenarios in aircraft systems 

that is operations and flight-phase-oriented, and that increases confidence in the analysis of failure 

combinations. The study also highlights the importance of safety in the aviation industry and how 

formal model-based FHA can be used to verify that proposed aircraft architectures fulfill their 

safety requirements. Villhauer et al. [91] illustrate a method for performing FHA in a SysML 

environment by presenting an aircraft pitch controller model as a test case.  
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Recently, there has been advancement in integrating FHA into the system architecting process. 

Jimeno et al. [92], [49] offer a safety analysis comprised of two methods. The first method supports 

semi-automating the FHA process, using the functional view as input. The FHA results are then 

used to update the safety objectives in the requirements view. The second method automatically 

generates Fault Trees from the Logical view, which can be evaluated both qualitatively and 

quantitatively. The contribution to the probability of failure of their components can be ranked 

through importance measures, helping the architect to focus on the most problematic parts of the 

architecture. An MBSE-based FHA approach investigated by Jiang et al. [93] presents the 

implementation of an FHA using SysML for the landing gear braking system test case from the 

ARP4761 example.  

Overall, several researchers have investigated and employed MBSA for different safety analyses, 

such as FHA, FTA, and FMEA, using model-based approaches. MBSE enables the creation of 

system models that can be used to represent the system's architectures and behavior. Integration of 

safety analysis within the MBSE framework is important as it allows for the development of safer 

and more realistic system architectures, especially for unconventional and innovative technologies 

where new architectures have to be designed and system safety has to be taken into account. By 

leveraging the functional structure of the architecture, integral processes such as safety analysis 

can be performed, and artifacts such as reusable modeling elements can be developed, resulting in 

greater efficiency in system integration and ultimately reducing development cost and time. MBSA 

within a model-based environment also allows for the use of advanced safety analysis techniques, 

such as FHA, that can be integrated with the system architecture model to identify and evaluate 

safety concerns early in the design process. 

A systematic process is necessary for integrating the FHA with MBSE, which includes 

determining the appropriate level of elaboration, creating specific diagrams and viewpoints, and 

customizing them to assist the safety analyst in examining functional chains, hierarchies, and 

allocations within an MBSE environment. Additionally, it is necessary to consider enhancing the 

model-based system architecture specification artifacts with safety-specific information to support 

downstream MBSA activities, such as fault tree analysis. Lastly, there is a need to demonstrate the 

integrated FHA process in developing new aircraft system architectures to enhance the overall 

aircraft development process. 
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2.5 Summary and Gap Analysis 

MBSE is promising for managing complex systems and enhancing the efficiency of development 

processes. However, the aerospace industry faces challenges in adopting an effective MBSE. 

Therefore, it is crucial to select a suitable MBSE framework to manage the complexity of 

unconventional aircraft and be adaptive to different system configurations. In this research, 

ARCADIA/Capella is selected as a tool to generate generic templates of architectures for hybrid-

electric propulsion systems.  

The integration of MBSE to MDAO still lacks a direct link using a model-based system 

architecture specification in Capella that contains all the necessary system specification 

information. This represents an area of unexplored potential in which further investigation and 

development in this thesis could lead to more efficient and comprehensive evaluation and 

optimization of the design models. 

Moreover, there is a need for a methodical procedure to integrate FHA within the MBSE 

framework. The augmentation of model-based system architecture specification with safety-

centric information needs to be considered. to facilitate downstream MBSA activities early in 

design stages. This can be achieved in this thesis by introducing and performing a model-based 

FHA for system architectures in Capella as an initial step toward comprehensive MBSA.
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3 Methodology  

 

This chapter provides an overview of a multi-level approach within the MBSE framework to 

demonstrate the architectural development of novel aircraft systems such as hybrid-electric 

aircraft. Then, it presents the integration of model-based system architectures in Capella to the 

MDAO workflow to advance the system architecting evaluation phase. It is followed by a proposal 

on how to enrich the MBSE specification to support FHA as a step towards enabling MBSA.  

Figure 3-1 shows the activities breakdown required for architecture representation with different 

levels of granularity in Capella and the connection to other environments involved in the system 

architecting process. It features a multi-level modeling approach that establishes generic 

architectures and variants of the aircraft system elements that can be reused to build advanced 

system architectures.  

 

Figure 3- 1: Overview of the methodology in Capella and connections to other analysis environments 

The five sections numbered in the overview of methodology are: 

1.  System architecture and design space definition, and rule-based filtering (this part is not in the 

of scope of this thesis but covered within the AGILE4.0 project) 
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2. MBSE multi-level framework in Capella 

3. MBSE to MDAO sizing tool environment in collaboration with the AGILE 4.0 project, this is 

also covered in the conference paper [94] 

4. MBSE to MBSA bridge supporting FHA, this is also addressed in the conference paper [95] 

5. MBSE to 3D modeling CAD design as future work (this part is not in the of scope of this thesis 

but was planned to be addressed within the AGILE4.0 project) 

The focus of this thesis is mainly on phases 2, 3, and 4, which are discussed in detail in this chapter. 

However, the methodology was built to also easily connect with activities in points 1 and 5 in 

Figure 3-1. 

 

3.1 Multi-level System Specification 

The proposed multi-level modeling approach is a technique that helps manage complexity and 

create model-based architecture designs for unconventional aircraft, which feature a high-level of 

variability in early design phases [31]. The multi-level approach needs to be defined in relationship 

to the modeling levels defined in a specific MBSE solution; here, the ARCADIA/Capella solution 

is used. 

The multi-level approach in the MBSE framework involves building models at different levels of 

detail, called granularity. The granularity of system artifacts increases through a top-down 

approach, which begins with defining high-level components and system requirements and then 

moves to lower-level components and detailed artifacts. This process ultimately results in a 

complete physical architecture for the aircraft. 

The multi-level approach is particularly useful for iterative and concurrent system development 

processes. It provides an effective conceptual model for the system development process to 

develop a specific system implementation from knowledge of an intended aircraft function. The 

approach involves creating system functions and allocating them to logical components, which are 

then allocated to physical components to comprise a complete physical architecture of an aircraft 

configuration. 
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The proposed method allows the creation of basic architecture diagrams and generic configuration 

variants for unconventional aircraft systems and subsystems. The generic model then evolves into 

a more detailed architecture, resulting in a complete architecture for the aircraft. 

 

3.1.1 Model Development 

Capella’s modeling process follows the ARCADIA method’s disciplines, depicted in Figure 2-1 

in Chapter 2, and it is formalized to support the multi-level modeling approach at conceptual design 

for unconventional systems in aircraft. The proposed top-down methodology maps the MBSE 

steps to ARP4754A practices [23] for aircraft and system development while it follows the 

ARCADIA’s modeling convention [42].  

The system architecture design space is filtered for feasibility based on predefined rules. This 

results in a reduced set of architectures that are modeled within an MBSE environment. Then, a 

few feasible architectures are selected as input for this research, and the primary requirements for 

developing the architectures are considered. Figure 3-2 shows architecture models catalog in 

various levels of detail across Capella modeling layers. The purpose of this approach is to build 

reusable system architectures in an MBSE framework. As the conceptual development process is 

performed for the aircraft/system-level functions, the proposed modeling framework is outlined in 

a way to cover both levels in models with different granularity.  
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Figure 3- 2: Multi-level modeling approach and levels of detail within the MBSE framework 

The multi-level framework is implemented in Capella, which enables handling architecture 

variants by reusable model representation artifacts. Architecture specifications used in this method 

contained reusable elements, including functions and logical and physical components. Model 

artifacts are replicable and reusable in several models at different modeling stages throughout an 

elemental catalog in Capella, which is described in detail in Section 3.1.4. 

According to Figure 3-2, the multi-level modeling framework covers two primary engineering 

levels, as discussed in Chapter 1, aircraft-level and system-level: 

1. Aircraft-level consists of the highest level of aircraft functions and systems. This level only 

covers the major systems and their interfaces without any subsystems. For instance, in the case 

of hybrid electric aircraft architecture, aircraft-level systems are the electrical system, the 

propulsion system, and FCS. 

2. System-level functions and subsystems are derived from higher levels that follow a top-down 

approach. The system level focuses on how the detailed functions of a specific system are 
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allocated to the subsystems and shows the interfaces between subsystems and other systems of 

aircraft.  

At each level, functions and logical and physical components can be defined to build up 

architectures. However, when integrating architectures is important to ensure consistency between 

the aircraft-level and system-level functions. The model variants management is discussed in detail 

in Section 3.1.3. 

In a Capella-based approach, the different modeling layers represent different analyses and are 

typically performed by different people. It is a way of separating the different analyses while 

maintaining consistency across the levels. This method is best suited in cases where the system 

architecture is not well defined or if the system architecture needs to be developed from scratch. 

Developing a system in Capella usually starts at the Operational Analysis level (OA), where 

requirements, entities, and actors to complete a mission are defined. The operational analysis 

capture market and customer needs; however, this research focuses on system architecture 

development, and the operational analysis is assumed completed.  

The work of the system architect, as assumed in this thesis, starts with realizing aircraft/system-

level functions, as the requirements and the system of interest are known. Instead, the multi-level 

specification can be built using system Analysis (SA). The system architecture design space starts 

here. At this layer of modeling in Capella where the system engineer defines the system of interest 

and the aircraft-level functions to build a generic architecture, which can later be tailored for a 

range of aircraft requirements and support a variety of aircraft configurations and architectures. 

For example, in the hybrid-electric propulsion case study, the scope of the system(s) and 

components are described in design space definitions.  

The next modeling level in Capella, the Logical Architecture (LA), is used to determine logical 

components and their relationship in the logical architecture of the system(s). Depending on the 

aircraft configurations, logical architectures in different levels of detail can be derived from the 

generic architectures. At this modeling level, logical functions at the aircraft and system levels are 

allocated to so-called logical components. The logical component provides a logical solution or 

behavior for the deployed functions. 
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Finally, the LA is passed down to Physical Architecture (PA), where physical components 

(hardware and software) and the various types of interfaces are associated with logical components 

and exchanges. The logical components and functions are at the maximum level of granularity. 

This methodology allows the creation of an accurate representation of the system interfaces and 

exchanges at logical and physical levels during the conceptual design, which can then be expanded 

at preliminary design and provided to suppliers and manufacturers for further development. It 

offers architecture representation for various models at the LA and PA levels for different systems 

configurations in Capella. Architecture models for case studies of flight control system hydraulic 

and fuel systems are presented in Chapter 4. 

 

3.1.2 Levels of Detail in the Modeling Approach 

As explained in the previous section, the modeling methodology needs to cover aircraft and system 

levels. The process of developing models in Figure 3-2 is organized into three levels of detail, each 

adding certain information and value to the model(s), which are briefly described in Table 3-1.  

Table 3- 1: Levels of detail specification in the Capella modeling methodology 

 

• Detail level 0 is characterized by the highest level of abstraction, and it covers the top-level 

aircraft functions for a generic aircraft configuration. As the SA model architecture is generic, 

it can fit into level 0, and the model is called Generic S0.  

Detail Level Description 

Level 0 A generic model for aircraft configuration, significantly on propulsion system – 

including top-level functions and generic interface elaboration 

Level 1 Intermediate level definition of aircraft characterization, Including aircraft-

level redundancy and key technological choices – number of engines, number of 

hydraulic systems, and level of electrification/hybridization  

Level 2 Includes sufficient elaboration of subsystems or logical components to show 

allocation 



41 

 

• Detail level 1 is a transitional level between aircraft-level elements and system-level functions 

in models. Therefore, models are designed to be set for aircraft-level and system-level 

functions. They include logical component redundancy related to technological choices. For 

example, in the hybrid-electric case study, the number of engines needs to be defined in the 

early design stage. LA models are available in granularity levels 0, 1, and 2. 

• Detail level 2 includes component redundancies at both the aircraft-level and system-level. PA 

and LA models at this level of detail illustrate the elaboration of the (sub)systems for a 

particular configuration and the number of system components and items. 

Here are examples of aircraft-level models at the LA modeling layer, from Figure 3-3 to Figure 3-

5, illustrating the model specifications of a hybrid-electric aircraft in the three levels of detail. In 

the process of developing models within the Capella framework, substantial emphasis is laid on 

the System Architecture Breakdown [SAB], the Logical Architecture Breakdown [LAB], and the 

Physical Architecture Breakdown [PAB] diagrams. These diagrams are instrumental as they 

provide a comprehensive overview of the system, components, allocations, and exchanges. Other 

types of Capella diagrams related to the frame of this work are discussed in section 3.5. System 

interfaces and functional exchanges are highlighted to show their significance in architecture. The 

HE configurations and their differences are discussed in Chapter 4, Section 4.1. 

The architectures in the LA layer are also categorized by their level of detail. The logical model 

detail level 0 (L0) is a generic model similar to S0, only with logical components where the top-

level functions are allocated to the systems. At this level of modeling, high-level architecture 

variants of the L0 model can be created; they are distinguished by their functional exchanges and 

data flow in their architectures since most architectural elements are common.  

In this thesis, the three configurations of the HE propulsion system, namely the series, parallel, 

and partial series-parallel architectures (see Section 4.1.1 for more details), are created. Figure 3-

3 shows the L0 model for the parallel configuration of the HE propulsion system to show the 

modeling granularity.  Note that the System of Interest (SOI) in all the architectures is “Aircraft”. 

However, the SOI box is removed only for representation reasons in these models, and the focus 

is on illustrating its (sub)systems.   
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Figure 3- 3: L0 model aircraft-level model of hybrid-electric aircraft partial series/parallel configuration at the LA 

layer with detail level 0 

Figure 3-3 shows the hybrid-electric propulsion system in more detail than the interfacing system, 

as this part is the system of interest in this study. However, examples of major interfacing systems, 

such as the fuel system, the hydraulic system, and the primary flight control system, are also 

shown, as they will be further investigated in the case studies (Chapter 4), and they present various 

related subsystem levels. 

Figure 3-4 shows logical model with the detail level 1 (L1) for the parallel configuration of the HE 

aircraft. In this model, some top-level functions of the L0 model are broken down into more 

specific functions, and logical components are allocated to the systems. For the HE case study, 

model L1 includes the number of engines and the propeller types, such as the main propeller and 

the small propeller as support. These technological decisions need to be addressed early in the 

conceptual design stage. Note that the level of granularity of the interacting systems (Primary 

Flight Control System, Hydraulic System, and Fuel System) remains unchanged. 
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Figure 3- 4: L1 model aircraft-level model of hybrid-electric aircraft partial series/parallel configuration at the LA 

layer with detail level 1 

The logical model level 2 contains all the component redundancies in the aircraft, and the 

architecture is too detailed to demonstrate. Therefore, Figure 3-5 shows the propulsion and 

electrical systems cropped from the model at logical architecture detailed level 2 (L2) for the HE 

case study. Models at this level, either at LA or PA, contain allocation of system requirements to 

items. The complete models at these levels are presented in Chapter 4 in detail.  

 

Figure 3- 5: L2 model aircraft-level model of hybrid-electric aircraft partial series/parallel configuration at the LA 

layer with detail level 2 for propulsion and electrical systems 
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This figure is extracted from a larger L2 model depicted in Figure 4-9 in Chapter 4.  

 

3.1.3 Model Variants Adaptation & Management 

The described strategy for system development and building models is performed across Capella 

modeling layers at aircraft and system levels. At the LA and PA modeling layers in Capella, several 

models can be built for the (sub)system(s). In this modeling approach, a main model with aircraft-

level functions can be propagated into several models with system-level functions. The derived 

models are designed to capture the elaborations of logical and physical components of (sub-

)systems, along with their interfaces with other systems. At the LA layer, aircraft-level model 

propagation is started at logical model detail level 1(L1). Then the derivative models are referred 

to as System-Logical with level 1 detailed (Sys-L1). The Sys-L1 is a centralized and expanded 

model of a logical component in the L1 model. The same rule is applied for the logical model 

detail level 2 (L2). Therefore, for any specific system in aircraft, Sys-L2 can be built. For L2 and 

Sys-L2, physical architectures are defined as P2 and Sys-P2, respectively. In order to manage the 

model variants for better accessibility and efficient traceability of the system architectures, two 

approaches are available for Capella to investigate: the so-called Horizontal Adaptation and 

Vertical Transition [42].  

In the present work, model variants are integrated within the modeling layers by horizontal 

adaptation to avoid inconsistency through the aircraft to system levels transition and model 

development. This method provides insights at the system level without losing sight of the overall 

picture at the aircraft level. Besides, this type of adaptation maintains the architectural unity of 

different aircraft systems. Figure 3-6 demonstrates the horizontal adaptation method applied at the 

LA level, transitioning from the L1 model to the Sys-L1 models. For example, the Primary Flight 

Control System in the L1 model is decomposed to one of its sub-systems, Yaw Control, in the 

Sys1-L1 model. Similarly, the Hydraulic System in the L1 model is decomposed into detailed 

components in the Sys2-L1 model, containing system-level functions. 

Horizontal adaptation involves using a generic architecture for system specifications while 

defining the behavior of subsystems through encapsulation. This means that the functions of the 

subsystems are incorporated into the parent functions of the main components without focusing 
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on the subcomponents themselves [72]. The functions are encapsulated in the Sys-L1 and sys-L2 

models.  

 

Figure 3- 6: Horizontal adaptation for aircraft to system-level transition 

It is important to note that each subsystem requires its own separate model to implement the MBSE 

method for aircraft system development effectively. This is due to the limitation of Capella to 

allow “zooming” into sub-systems withing the same model. However, the horizontal adaptation 

method is not suitable for detailed subsystem specifications; it is only utilized when the detail of 

subcomponents or the behavior of the subsystem is not required [60]. In this work, the focus is not 

on detailed specifications of subsystems. Instead, it focuses on the system specifications and their 

interfaces at aircraft and system levels, and it attempts to depict the transition from aircraft level 

to system level models without losing the unity of all the systems. 

Another way to manage the model variant is “vertical transition,” which involves defining the 

detailed architecture of a system's components by realizing their subcomponents. Capella 

subsystem-transition add-on is required to perform the vertical transition of a  logical component 

to lower levels of detail in the system architecture (SA). In this method, main sibling logical 

components interacting directly with the selected subsystem become system actors. This would 
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result in a clean and efficient model. However, the vertical transition method is more effective 

when a particular subsystem or logical component is specifications are required, and the high-level 

model is finalized; this is rarely the case in the conceptual design iterations. As the vertical 

transition approach only focuses on the sibling component or actor, the overview of the entire 

system might be lost. In other words, it enables a more targeted and efficient approach to modeling 

and designing a subsystem. Therefore, the vertical transition is not suitable to be implemented in 

the proposed framework. Instead, horizontal adaptation has been chosen to manage the models 

across the framework.  

 

3.1.4 Architectural Element Catalog & Reusability  

The architecture specification uses a catalog of architectural artifacts, including logical and 

physical components and functions that have been defined in Capella with different granularity 

levels. These artifacts are appropriate to be deployed frequently in architectural representations at 

the conceptual design stage. The advantage of defining these basic architectural artifacts and 

elements at an early stage is that once the system architecture has been selected, the basic elements 

that are already contained within the model-based specification can be easily expanded and refined 

as the design process progresses. This saves time and effort in the later stages of design by 

providing a foundation of well-defined elements to build upon. Most of the logical and physical 

architecture elements are made reusable using the Replicable Elements Collection (REC) in 

Capella. The REC allows architectural elements to be reused across different models, 

configurations, and contexts. This feature enhances the reusability of architectural artifacts and 

helps to maintain the relationships between exchanges, logical and physical components, and 

functions. The REC elements are instantiated as RPL (Replicas) within a specific configuration or 

model, allowing them to be used in multiple models. By utilizing the REC feature, Capella enables 

the efficient reuse of modeling elements and ensures that the relationships between the different 

components and functions are kept intact [96].  

In this context, referring to Figure 3-5, the logical component “Motor” and its function “Convert 

Electrical to Mechanical Power” are made reusable by REC and saved into the Capella library. 

These elements are replicated (RPL) in Figure 3-5 (L2) and other models as required. Therefore, 

the redundancy of the components in Capella models within this method is addressed with 
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REC/RPL feature while constructing the complete system architecture representations. Having 

reusable elements and artifacts speeds up the process of building architecture representations and 

also results in the creation of modeling artifacts that can be developed and enhanced later.  

 

3.1.5 Model Nomenclature Consistency  

Another aim of this work is to create reusable templates of aircraft and system within the MBSE 

framework. This helps implement the system architecture development of ARP4754A with 

predefined and reusable architectural elements. Through the architecture representations at 

different granularity levels from SA to PA layers in Capella, each model contains particular 

information and components and functions at a specific level (i.e., aircraft, system, or item levels). 

However, it is important to keep the consistency of elements and artifact naming while using the 

architectural representation templates for any system modeling practices. To this end, a list of 

Capella model elements, including functions, logical components, logical behaviors, and physical 

implementation, is created for each system in aircraft. A part of this nomenclature is depicted in 

Table 3-2 as an example of elements used in the propulsion system. The complete list, including 

propulsion, electrical, hydraulic, fuel, and yaw control systems, can be found in the Appendix. All 

the functions at the system, logical and physical levels which referred as green boxes are named 

similarly in different as the functionality of a component do not change across the modeling levels.  

Since the logical components are defined as logical solutions for their allocated functions, they 

specify generic types of  components. The logical component and behaviors are presented in blue 

boxes. For example, in Table 2-3, the logical component solution for the system function 

“Generate Mechanical Power” is “Engine”. At physical architecture layer, logical components are 

transferred from logical to physical architectures and serve as physical component behaviors. 

Therefore, they are named similar to logical components and presented in blue boxes. These 

physical behaviors are allocated to physical nodes, yellow boxes, which present the specific types 

of the components. For logical component “Engine”, the physical node is “Dual-spool Turboprop”. 

If the specific technical component has not been identified yet, the same name as the logical 

components is used as a placeholder for physical nodes. 
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Table 3- 2: Capella nomenclature of elements in different modeling layers for the propulsion system 

Modeling layers 

System Analysis Logical Architecture Physical Architecture 

System Function Logical Function Logical Component Physical Function 
Physical Component 

Behaviour 

Physical 

Component Node 

Propulsion System 

Generate 

Mechanical 

Power 

Generate 

Mechanical 

Power 

Engine/ Gas 

Turbine/ Internal 

Combustion Engine 

(generic type or sub-

type) 

Generate 

Mechanical 

Power 

Engine/ Gas 

Turbine 

Dual-spool 

turboprop 

_ 

Transfer 

Mechanical 

Power 

Accessory Gearbox 

Transfer 

Mechanical 

Power      

Accessory 

Gearbox 

Accessory 

Gearbox 

_ 
Reduce Shaft 

Speed 

Propeller Speed 

Reduction Gearbox 

Reduce Shaft 

Speed 

Propeller Speed 

Reduction 

Gearbox 

Propeller Speed 

Reduction 

Gearbox 

_ 
Generate 

Support-Thrust 
Supporting Propeller Generate Thrust 

Supporting 

Propeller 

Electrically 

driven variable 

pitch  

Generate Thrust Generate Thrust Propeller Generate Thrust Propeller 5-blade MTV-27 

 

According to Figures 3-3 to 3-5, all of the functions and logical components allocated to the 

propulsion systems are summarized in Table 3-2. The architectural element naming is chosen in a 

way to be generic and usable among most of the propulsion systems of HE aircraft, except for the 

physical components. Depending on the type of aircraft and its mission, physical component 

selections will vary. For instance, according to the ATA (Air Transport Association) 100 chapter 

61, specific requirements such as design, performance, and safety requirements need to be 

considered when choosing the propeller types [97]. In this context, the physical components used 

for the HE test case are selected based on the reference aircraft (hybridized Do-228) used in 

Hoffman et al. [18].  

As stated above, this thesis aims to enhance the basic Capella specification model to enable the 

bridge to MDAO and MBSA analyses. As discussed in Section 2.2.2.1, the PVMT is selected to 
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be used in this study to enrich the Capella models. As part of the AGILE4.0 project, the model 

specifications in this work are tested and linked to a system-level MDAO workflow by enriching 

the architectures with particular input parameters for physical components. This is discussed in 

more detail in Section 3.2. The application of PVMT for building a customized safety assessment 

property package to support the FHA process is explained in Section 3.3.  

 

3.2 Connecting MBSE to MDAO 

The proposed framework seeks to establish a connection between MBSE and MDAO, which 

would result in a more efficient approach to aircraft systems architecting. Figure 3-7 illustrates the 

MDAO process within the context of systems architecting. The system architecture design space 

is depicted as a graph-based descriptor and is evaluated for feasibility based on predefined criteria. 

This filtering process leads to a reduced set of architectures that are then modeled within an MBSE 

environment.  

MBSE is introduced not only as a means of linking MDAO and systems architecting but also as 

an integral component of the systems architecting process. The MDAO environment comprises 

the MDAO specification, which includes details about the tools, interconnections, and choices of 

MDAO architecture, as well as the designation of different design variables, objectives, and 

constraints. This information is structured within the MDAO data schema and enables MDAO 

execution through a Process Integration and Design Optimization (PIDO) platform, as discussed 

in Chapter 2, Section 2.3. In addition, the model-based specification is expected to facilitate the 

development process by allowing for the reuse of model artifacts beyond the conceptual design 

phase. It is also noted that ensuring an architecture specification early in the design process helps 

establish a traceable baseline for later reference.  
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Figure 3- 7: Proposed framework for integrating MBSE and MDAO for systems architecting, from [96] 

The remaining few system architectures, after the feasibility filtering process, can be evaluated in 

an integrated MDAO workflow that operates at both the aircraft and system levels. The 

information required for the MDAO specification is obtained from the architecture specification 

model. This architecture specification helps to configure the system-level workflows by 

considering information from top-level requirements such as range, payload, and mission profile. 

These subsystem workflows are then formally specified and integrated into an MDAO 

specification, while the aircraft-level workflow is assumed to have already been created using tools 

available in the repository. 

This specification is then incorporated into an existing MDAO specification database such as 

CMDOWS. It allows MDAO workflows to be executed within existing MDAO implementation 

frameworks such as RCE [98] and OPTIMUS [99]. For each architecture, one point iteration is 

conducted, followed by a comparison of the MDA results. This stage allows architectures that 

exhibit unacceptable performance characteristics to be discarded. A number of aircraft metrics are 

considered for evaluation, including maximum Takeoff weight, fuel burn, and operating costs. A 

comparison of the relative performance of each architecture is conducted based on the optimized 

results. Using the MDAO results published, a multi-attribute decision-making approach is 

employed to select the final architecture of the system. 

The proposed framework leverages a model-based architecture specification to provide more 

detailed information on the MDAO specification.  

Within the scope of this work, elements of the model are enhanced by incorporating data that 

quantifies their characteristic properties, which are beneficial for system-level sizing tools. 
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Examples of such properties include efficiency, depth of discharge, and specific power assignment 

for a battery in the HE propulsion system architecture. An algorithm is presented in the next section  

that potentially can automate the process of extracting this information from the underlying data 

model. The extracted properties are then communicated to the associated tools, and the results are 

recorded as additional model properties in the Capella model elements. 

 

3.2.1 Model Data Extraction and Connection to AGILE 4.0 MDAO workflow  

The study outlines an initial approach to integrating the enhanced model with AGILE 4.0 project 

workflows [22], as described in Chapter 1. This approach involves using a static workflow, where 

inputs from the Capella model properties are extracted and provided to the workflow specification 

data model. It focuses on integrating an architecture specification created in Capella with a system-

level MDAO workflow. The Capella model is first enriched with specific input parameters 

corresponding to tools in the system-level workflow. The enriched model is then translated into a 

graph-based MDAO specification, which is stored in the Common MDAO Workflow Schema 

(CMDOWS), along with information on tool interconnections and execution order. A PIDO 

framework like RCE processes the CMDOWS file to execute the workflow and obtain results. 

Here, there are three main aspects of this integration using the example of the Flight control system 

and tools developed in the AGILE4.0 project: 

1. Adding system-level tool input parameters to the Capella model 

2. Extracting parameters from the Capella data model 

3. Integrating the extracted parameters into an MDAO workflow. 

Figure 3-8 depicts a set of tools implemented to facilitate the integration of MBSE and MDAO. 
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Figure 3- 8: Tool selection for MBSE-MDAO integration framework, from [94] 

 

Parameter Extraction from the Capella Data Model   

Capella provides support for various types of information, such as component descriptions, 

architecture summaries, and model validation information in its architecture specification. 

However, Capella does not natively support the addition of custom or model-specific properties 

and the interrogation of model elements to access these properties and needs a plug-in tool for 

additional capabilities.  

Capella is constructed using the Eclipse Modelling Framework (EMF), which can be customized 

by altering the primary features and creating additional components [100]. The framework 

includes a structured data model that stores all information related to the Capella model. There are 

two ways to interrogate the Capella model: 

1. Through visual means by utilizing the workbench and diagram editors within the Capella 

environment 

2. Accessing the underlying data model and schema. 

To visually interrogate the Capella model, the system architect must manually interact with the 

diagram editor and access the PVMT viewpoint tab, as discussed in Section 2.2.2.1. Afterward, 

the system architect will need to manually export and transfer the information to an Excel sheet or 

directly to the input file of an MDAO system-level tool or workflow.  

All data model information is written to two files, which are now called “.capella” and “.aird” in 

Capella version 5.0.0, previously known as “.melodymodeller”. The “.aird” file contains Capella 
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project details of active diagrams, such as the formatting and location of elements in a diagram 

and a log of model changes. On the other hand, the “.capella” file carries information about each 

model element, including assignments, characteristics, input and output ports, as well as any 

assigned property values.  

Accessing and modifying the underlying data model presents a feasible method to integrate an 

MBSE specification in Capella with external tools such as Visual Studio Code. The data model is 

structured in an XML schema that contains comprehensive details about the system architecture 

specification, such as function, logical and physical component names, functional and component 

exchanges, and physical links. Additionally, the schema stores data on assigned properties and 

their respective values, along with the position of graphical elements. 

The schema assigns a unique alphanumeric identifier to each model artifact and links between 

elements reference these identifiers. A simplified schema is created to make navigation easier by 

only containing the necessary tags for property extraction, with the mapping from the actual 

schema tags to the simplified version. Figure 3-9 outlines the algorithm for retrieving model 

properties from the “.Capella” file. This method relies on two key assumptions: firstly, a 

predetermined list of components is established in Capella, complete with unique identifiers and 

individual names. Secondly, a list of properties is defined with the PVMT tool, and variable names 

are specified in the “key” field within the PVMT viewpoint editor [94]. 

 

Figure 3- 9: Algorithm of parameter input and extraction in Capella 
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To begin, inputs are collected and integrated into the Capella model using the PVMT tool. To 

achieve this, the PVMT viewpoint should be activated within Capella, and the data type for each 

property must be defined and named. Once properties are established, values are assigned to each 

field, and the model should be saved. Parameters can be extracted by reading the top-level property 

value group tag and identifying the name and ID of the child property value tag. Next, the 

components tag can be accessed, and the name, ID, and applied property ID of each physical 

component can be parsed. The child property value groups tag can then be accessed, and the ID 

value can be read. Finally, the property values tag can be accessed, which is itself a child of the 

property value groups tag assigned to the physical component. At this point, a match can be made 

between the applied property ID and the property value ID defined in step 1 of Figure 3-9, and the 

value of the property can be stored [94]. This process can be simplified by creating a simplified 

schema that only includes the relevant tags, as described earlier. The process of adding and reading 

component parameter and data from Capella XML source code and mapping from the actual 

schema tags to a simplified version can be found in Appendix.  

 

Transfer Parameters into AGILE 4.0 Workflows 

In the context of the AGILE4.0 project, the MDAO workflow specification is generated through a 

collaborative effort involving the KADMOS tool and the KE-chain process platform [101], [102]. 

In KE-chain, each tool’s owner defines a “design competence” and initializes input and output 

parameters using separate CPACS files as an interface standard. After that, a consolidated CPACS 

baseline file is generated by connecting all the input and output files of the individual tools. This 

serves as a means of communication between the tools during the execution of the workflow. 

Following that, the workflow architecture is modified, and the tool execution order is specified. In 

addition, design parameters are set up, and constraints, objectives, and state variables are defined. 

This is followed by the generation of a CMDOWS file, which can be used to execute the workflow 

in RCE, together with the input baseline CPACS file. There are three ways to transfer parameters 

into the MDAO workflow:  
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1. directly modifying the CPACS and CMDOWS files 

2. packaging extracted parameters and integrating them with the AGILE environment to generate 

a CMDOWS file 

3. integrating the extracted parameters as an example tool. 

 The third method is the most straightforward but has limitations, such as the need for an existing 

baseline workflow and only considering system-level tool inputs, which are unchangeable. The 

process and resulting workflow with the integration of parameters derived from Capella are shown 

in Figure 3-10. 

 

Figure 3- 10: Integrating Capella with AGILE4.0 workflow, from [94] 

The 1ASSET tool [10] takes the system architecture as input to perform component sizing and 

provides the overall component weight and power demand. This tool relies on the parameters 

specified in Capella, which are extracted using the Capella2Workflow tool. The parameter 

extraction functionality is integrated into the AGILE workflow by defining the input and output in 

the AGILE workbench. Capella2Workflow directly provides the parameter values to ASSET, and 

the output of ASSET is further passed to the ASTRID2 tool [103], which performs the sizing of 

other systems. The parameters extracted from Capella are written to the output CPACS file of 

Capella2Workflow, which serves as the input file for the ASSET tool. The workflow output is 

 
1 ASSET: Aircraft System Sizing Estimation Tool in development at Concordia University  
2 ASTRID: Aircraft system sizing and performance estimation tool developed by the Politecnico di Torino 
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written to the baseline CPACS file, and the relevant parameters are extracted and written back to 

the Capella data model schema, which can be inspected within the Capella workbench.  

This section showed how properties could be added to Capella model elements and extracted by 

parsing the data model schema. The approach to integrating Capella with system-level MDAO 

tools in the AGILE4.0 workflow is presented, but it requires the system-level workflow to be 

predefined, and there is a limitation to reconfiguring the workflow based on the referenced tool. 

Different modeling elements are also used to infer tool inputs, but an algorithm is required to make 

this process efficient. The study identifies areas of improvement to mature the MBSE-MDAO link 

functionality [94]. 

 

3.3 MBSE to MBSA Integration 

Referring to Figure 3-1, this section focuses on integrating the document-based FHA process into 

the MBSE environment in the early design stage of aircraft at the aircraft level and system level. 

It attempts to facilitate the FHA output transition to other steps in the safety assessment process, 

especially for MBSA.  

Within the safety assessment process, the Functional Hazard Assessment (FHA) is an early activity 

that requires functions as input and determines safety objectives, which are crucial inputs for 

system architecture. Functional analysis is typically a vital component of any MBSE approach, 

making it a suitable starting point for exploring the relationship between MBSE and a potential 

model-based FHA [95]. Current industry practices rely on an FHA process that is iterative 

throughout the design development [23], and as the system modeling and development evolves, 

the system integration processes should be adaptable to the new methods. Enhancing the model-

based system specification to ease the FHA would be a first step towards MBSA [95].   

It is important to note that the modeling artifacts used in the MBSE framework are mapped to 

specific disciplinary tools based on the inputs and outputs that each artifact is assigned. This helps 

to ensure that the modeling process is streamlined and that the resulting system architecture is 

well-designed and effective. 
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The system architectures that are created through the proposed methodology undergo additional 

levels of evaluation to ensure that they meet safety requirements. Enriching the model with the 

outputs of safety assessment could then help support individual MBSA analyses such as 

Preliminary Aircraft Safety Assessment (PASA) and Preliminary System Safety Assessment 

(PSSA). This includes conducting FHA to identify potential hazards and risks associated with the 

system. From the results of the FHA, Fault Tree Analysis (FTA) is extracted to further analyze 

and mitigate potential failures or hazards.  

 

3.3.1 FHA integration within the MBSE framework  

The integration of the FHA into MBSE is analogous to integrating behavior and requirements into 

MBSE. The primary objective of the model-based FHA is to identify safety requirements emerging 

from the functional and logical architecture of a system. To achieve this, the FHA process is 

integrated into an MBSE framework, which includes key steps like functional analysis and the 

synthesis of functional architecture with system architecture modeling. By conducting modeling 

and FHA simultaneously, safety requirements can be elicited and incorporated into the system 

model in real-time to enhance them with safety information. This enriched system model then 

serves as the basis for downstream analysis using MBSA tools to generate artifacts like fault trees 

and reliability block diagrams. This process includes system architecture specification and the 

failure identification, classification, and tracking of failure effects.  The model-based architecture 

specification is continuously updated with information from the FHA and the inspection of the 

model by the system architect, ensuring that the resulting system architecture is well-designed and 

meets all necessary safety requirements. 

 

System Architecture Specification & Modeling 

The proposed MBSE multi-level modeling approach is followed to model system architecture as 

directed in Section 3.1. Each modeling layer in Capella provides various diagrams with a different 

objective. Starting modeling at the SA level, the System Functional Break Down [SFBD] diagram 

generally shows the functional decomposition and relationships. A similar diagram at the LA 

modeling level shows the Logical Functional Breakdown [LFBD]. There are more common-used 
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diagrams at the SA and the LA: System/Logical Dataflow Blank [SDFB] and [LDFB]. Typically, 

the application of this diagram is to illustrate the functional chain and define specific use case 

scenarios of the system. 

After defining functions and the functional exchanges in the SA layer, they are allocated to systems 

using the System Architecture Breakdown [SAB] diagram. This diagram gives a graphical view 

of every element identified in the previous diagram, including system functions, allocations, 

connections, and data flow. A similar diagram is available at the LA layer, i.e., the Logical 

Architecture Breakdown [LAB] diagram, presenting the logical component exchanges and 

functional allocations to these components other than [SAB] capability [95].  

Moreover, the system engineer can define scenarios in Capella. Functional Scenario [FS] diagrams 

aim to combine the functional chain with time sequence into one concrete diagram. Aligned with 

the scenario and functional chain diagrams, the Modes and States [MSM] diagram demonstrates 

the system’s expected behavior in situations foreseen at design time and the operating conditions 

or status of structural elements of the system. The [MSM] diagram reflects various concepts, such 

as the phases of a mission or flight (e.g., taxi, take-off, climb) and the specific functioning 

requirements of the system under certain conditions [42], [104], [105].  

 

3.3.2 FHA Principles & Application 

The novel modeling methodology and MBSE environment presented in this study provide 

graphical and visual model diagrams that can replace predominantly document-based safety 

assessment processes, specifically the FHA. The primary goal of the FHA is to identify each failure 

condition and determine its classifications. The FHA process can be divided into two parts, 

namely, the aircraft-level FHA (AFHA) and the system-level FHA (SFHA). The AFHA defines 

safety objectives at the aircraft level, including single or multiple system function failures. The 

output of the AFHA serves as a starting point for the preliminary Aircraft Safety Assessment 

(PASA). The SFHA is an essential part of the overall aircraft-level safety assessment process, 

systematically identifying hazards associated with significant system functions and describing 
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them in terms of operational and functional effects. The output of the SFHA is used to conduct the 

PSSA [24]. 

The AFHA takes as its input the aircraft-level functions, which are defined in the aircraft functional 

architecture and are aligned with the aircraft design requirements and objectives. These functions 

are typically broken down into sub-functions to create a hierarchical structure. To facilitate this 

process, Capella is best suited because it has diagrams at the SA layer that are related to functions, 

and it follows ARCADIA principles. By practicing at this layer’s diagrams, the top-level aircraft 

functions can be decomposed into the lowest level of aircraft sub-functions. The decomposition of 

lower-level aircraft functions does not necessarily involve assigning functions to systems. Instead, 

it helps in identifying more detailed failure conditions that can be used as the initial step in 

identifying failure conditions. It should be noted that in Capella terminology, the aircraft-level 

functions are referred to as “system functions” at the SA modeling level. 

The AFHA in Capella is primarily applied at the SA level and partially at the LA level, focusing 

on aircraft-level functions. On the other hand, the SFHA is solely implemented at the LA level, 

covering aircraft systems and their corresponding system-level functions. To effectively integrate 

both processes, a modeling level such as LA level 0 (L0) can be utilized to break down lower 

aircraft-level functions into system-level functions using the [LFBD] diagram. Meanwhile, the 

SFHA can utilize modeling levels L1 (for unconventional aircraft systems) and L2 to allocate 

system-level functions to the corresponding aircraft systems using the [LAB] diagram. 

Figure 3-11 presents the proposed formalization of the entire process supporting the FHA in 

Capella, which includes several activities such as defining the aircraft-level functions, performing 

the functional breakdown, foreseeing the functional failures and the potential failure effects, 

determining severity classification, and assigning flight phase [95]. 
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Figure 3- 11: Overview of the formalized process of FHA integration and application within Capella 

 

The procedure outlined in Figure 3-11 is designed to efficiently perform the AFHA and SFHA for 

each aircraft system using Capella. The steps are as follows: 

• Step 1: Define functions using functional breakdown diagrams for aircraft-level and system-

level functions at SA and LA modelling levels, respectively. Allocate functions to the 

system(s) at both levels and create architecture diagrams. Identify primary failure relationships 

and functional connections to predict potentially affected functions and failure conditions. 

• Step 2: Enrich function properties with failure conditions, effects, target average probability of 

occurrence, and impacted failure conditions of other functions. 

• Step 3: Analyze different diagrams to gain better insight into failure conditions and effects. 

The modes and states diagram identifies flight phases with active functions, while functional 

chains and scenario diagrams help identify cause and effect of failure events, such as potential 

combination and propagation effects. Functions are color-coded to visually indicate their most 

severe failure condition classification in the system architecture. 

• Validation and extraction: Validate architectures and modeled systems using the MBSE 

methodology presented in section 3.1. The system architectures created here, follow the same 

process as presented in Figure 3-2. Export in image and CSV format and document in 

Microsoft Excel and Word. 
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Overall, this formalized process enables the consolidation of predominantly document-based 

safety assessment processes into a visual and graphical model-based FHA. These activities are 

supported by the use of PVMT, the modes and states diagram, the SA and LA level diagrams. The 

implementation of this procedure is summarized in Table 3-3, each diagram serving a purpose in 

the context of this research. 

Table 3- 3: Overview of selected Capella diagram in support of implementing the FHA process 

 

The supporting Capella diagrams and detailed implementation of the proposed model-based FHA 

and its integration with the MBSE methodology for the wheel braking system of landing gears are 

described and demonstrated in Section 4.2.  

 

Enrichment of the Capella Model Elements to Support Safety Assessment 

To facilitate the safety assessment process, starting with the FHA, modifying elements of the 

system models is proposed to convey information about the failure conditions, their effects, and 

their severity. Here PVMT is used as a means to enrich the models with safety specifications 

information relevant to the FHA. The analysis viewpoint modules can assist the system 

architecture evaluation process in terms of feasibility and safety.  

An example of a customized property package created as part of the presented research work for 

FHA activities is depicted in Figure 3-12. By using PVMT and Viewpoint Editor, as explained in 
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Section 2.2.2.1, engineers can create a property package in Capella that is tailored to the specific 

needs of their system architecture and engineering processes and can improve the consistency and 

quality of the system models and enable more effective analysis and evaluations in several 

domains. In the Appendix, a step-by-step approach for using PVMT in Capella and creating a 

safety viewpoint is demonstrated.  

 

Figure 3- 12: Safety assessment property package defined in Viewpoint Editor by PVMT and applied to a system 

function at the SA layer in Capella 

According to Figure 3-12, a system function, Allow Movement on Ground, enriched with data for 

an FHA viewpoint, including an example of a failure condition ID, failure condition description, 

the flight phase(s) in which the failure condition can occur, and the classification of failure severity 

followed by the impacted failure conditions, and the average target probability of occurrence. 

Typically, identifying failure conditions involves breaking down the high-level aircraft function. 

As described earlier, PVMT enriches the properties of model elements by providing a safety 

viewpoint tailored to the model. While multiple failure conditions may be linked to a function, 

Figure 3-12 illustrates an example of how failure condition specifications can be assigned to a 

function. By employing the customized safety assessment viewpoint, one can identify the failure 

conditions for a given function, assess their impact on the aircraft, and classify them based on 

severity. This information can be used later to model the propagation and combination of failure 

effects and to perform other safety analyses. The severity classification for each failure condition 

is determined by examining the statements of effects in the properties of functions against the 

relevant regulatory guidance. The classifications, namely Catastrophic, Hazardous, Major, Minor, 

and No Safety Effect, are assigned based on the most severe failure effects of each failure 
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condition. The PVMT enables functions to be color-coded based on the associated failure 

conditions and their classifications using the viewpoint editor, and the function color changes in 

the model architecture accordingly. Furthermore, an automated assignment of a target average 

probability of occurrence is implemented, corresponding to the severity classification. It’s 

important to note that the severity of a failure condition may change depending on the flight phase 

in which it occurs. Therefore, the associated flight phase in the viewpoint is assigned through the 

modes and states diagram. 

In summary, to facilitate the identification of failure effects and targets, the results of the proposed 

model-based FHA can be utilized in other safety assessment analyses like FMEA and FTA. 

Overall, the proposed method can enhance the effectiveness of the early development process and 

promote collaboration between system and safety engineers, which is critical to bringing advanced 

and intricate aircraft and systems to the market more swiftly. 

 

3.4 Summary 

This Chapter described the proposed methodology for improving a model-based system 

architecting process using an MBSE framework. The methodology includes the following aspects:  

➔ A multi-level modeling approach to structure model and manage model complexity, in-line 

with the ARCADIA method in the Capella tool 

➔ Creating re-usable elements to reduce development time when dealing with architecture 

variants 

➔ Model enrichment and model information extraction using the PVMT add-on 

1. Linking MBSE to MDAO workflow to facilitate the use of MBSE in the aircraft design process 

from the conceptual design stage, enabling more comprehensive system analysis, including 

safety analysis, based on architecture models. This approach paves the way for better 

integration of MBSE in the aircraft design process. 

2. Integrating MBSE to MBSA by proposing model-based FHA, which enhances the efficacy of 

the initial development process and fosters better collaboration between the safety engineer 

and system engineer. This collaboration is essential for expediting the introduction of novel 

and intricate aircraft and systems to the market. 
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In the following chapter, the model integration and applications of the proposed methodology are 

presented, which offers a practical perspective on multi-level modeling specifications and the 

integration of model-based FHA to the MBSE framework.
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4 Model Integration and Application 

 

The previous chapter proposed a methodology for system architecture representation within the 

MBSE framework and explored the connection to MDAO workflow. Moreover, it introduced a 

model-based FHA as an initial step toward MBSA.  

This chapter presents two test cases that apply the developed framework. The first test case 

illustrates the multi-level specification framework for aircraft and system-level models, including 

the following systems: the hybrid-electric propulsion systems, the yaw control system (as part of 

the primary flight control system), the hydraulic power system, the fuel system, and their 

interfaces. In this chapter, system architecture specifications, and configurations are discussed in 

detail. The second test case focuses on the model-based FHA and is developed for the wheel 

braking systems.  

Each test-case will be proceeded with a short description of the system that this modeled to enable 

a better understanding of the specification models. 

4.1 Test case 1: Multi-level system specification for the hybrid-electric propulsion 

system and associated subsystems 

 

4.1.1 Hybrid-Electric Propulsion System  

Before explaining the specification model for the HE propulsion system, a short literature review 

presents the various hybrid-electric propulsion configurations. This analysis was required to build 

a generic model and to structure the specification model properly. 

The following literatures are used to establish the system specification models. De Vries et al. 

[106]  develop a methodology that utilizes component-oriented constraint diagrams to provide a 

visual representation of the design space, while Harish et al.[36] use a framework to evaluate 

different hybrid-electric propulsion system architectures, which considers power distribution, 

power transmission, and the propulsion system’s efficiency.  Finally, Hofmann et al. [18] have 

analyzed the impact of hybridization on a Dornier 228 aircraft and found that a parallel hybrid-
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electric architecture can improve takeoff performance and reduce noise footprint but may decrease 

passenger capacity. 

Several types of hybrid-electric configurations exist [107], as the main categories are shown in 

Figure 4-1. However, only three powertrain configurations for hybrid-electric propulsion are 

considered as use cases for this work.  

 

Figure 4- 1:Hybrid- electric propulsion architectures, extracted  from [107] 

The hybrid propulsion systems utilize gas turbine engines to power the aircraft and recharge the 

batteries. The batteries can also provide energy for the aircraft’s propulsion during one or more 

stages of the flight. In Figure 4-1, a parallel hybrid system consists of a battery-powered motor 

and a turbine engine, both mounted on a shaft that drives a fan, allowing for either or both to 

provide propulsion at any given time. On the other hand, in a series-hybrid system, only the electric 

motors are directly connected to the fans, while the gas turbine drives an electrical generator, which 

then powers the motors and/or charges the batteries. Series-hybrid systems can be applied in 

distributed propulsion concepts using multiple small motors and fans. The series/parallel partial 

hybrid system has one or more fans directly driven by the gas turbine and others exclusively driven 

by electric motors. These motors can be powered by a battery or a turbine-driven generator [107]. 
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Series Hybrid-Electric Propulsion Configuration 

In the series architecture, fans are solely driven by electric motors supplied with electricity by a 

generator. An internal combustion engine (turboshaft) feeds mechanical power to the generator, 

the output of which drives the motors and/or charges the batteries usually added to the powertrain 

to act as a barrier in peak power demand. The savings (charging batteries) are accumulated when 

high energy density fuel is burned during the cruise flight [107], [108]. 

Although the main energy source comes from hydrocarbon fuels, which increases payloads and 

ranges, the dual energy conversion is less efficient than the single one due to the conversion from 

fuel to mechanical energy and then from mechanical energy to electric energy. For instance, 15% 

of the energy will be lost between the gas turbine and the propellers, considering efficiencies of 

95% for each electrical machine and 97% for each power electronic [18]. Therefore, combining 

the gas turbines into a single, more efficient unit placed inside the fuselage is more logical and 

applicable, which consequently increases efficiency and reduces noise. However, it will involve 

heavy electric machinery bringing weight penalty to the series system configuration. As shown in 

Figure 4-2, series hybrid systems could use multiple relatively small motors and fans, meaning 

that distributed propulsion concepts can be applied through the series configuration. To this end, 

setting the number of propellers at four would be decent according to previous design research 

[18], [108].  

 

Figure 4- 2: Series hybrid powertrain, from [18] 
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Parallel Hybrid-Electric Propulsion Configuration 

In this configuration, a battery-powered motor and a turbine engine are both set on a shaft that 

drives a propeller so that either or both can run the propeller(s). Contrary to serial-hybrid 

powertrains, parallel-hybrid powertrains include single-energy conversion. They are categorized 

in two various arrangements. One possible architecture is “Torque Split”- Parallel, in which the 

mechanical power from both an internal combustion engine and an electric motor can be 

simultaneously transmitted to a propeller drive shaft via a gearbox. The other one is referred to as 

“Through the Road”- Parallel (TTR-parallel), a configuration where these two mechanical power 

providers separately feed two or more different fans or propellers. In this case, some propellers 

can be run by gas turbines, whereas others are driven by electric motors. In a TTR-parallel layout, 

there is no link between conventional and electrical powertrain [108]. With the benefit of requiring 

less numbers of components, this configuration enjoys advantages related to weight saving. 

Nonetheless, on the downside, it involves mechanical coupling which causes operational and 

control complexity. Similar to the series configuration, the electrical power can be stored in a 

battery. The battery can either be charged onboard or on the ground, to supplement the propulsive 

power in different phases of the flight such as cruise and descent [109]. Hofmann et al [18] 

recommend to place the propellers at the rear of the fuselage that one may shorten the connection 

of powerpack and propellers besides the reduction of noise by shielding its blades. Besides, another 

parallel configuration has been noted which contains two gas turbines instead of one as shown in 

Figure 4-3. This architecture not only enables achieving the maximum required power in case of 

failure of one gas turbine, but also reduces the power peak of each turbine in the normal condition. 

However, this configuration is faced with a weight drawback and is unlikely to be considered for 

future studies. 
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Figure 4- 3: Parallel hybrid powertrain, from [18] 

 

 Partial Series/Parallel Hybrid-Electric Propulsion Configuration 

A serial/parallel hybrid electric configuration represents the co-existence of both serial and parallel 

operation. It has one or more main propellers, which are mechanically driven by a gas turbine 

directly as well as smaller fans driven by motors holding electrical power sourced from a gas 

turbine-driven generator or a battery [107]. One of the advantages that series/parallel hybrid 

system architectures offer is having lower installed electrical power and, in turn, smaller-sized 

electrical components since a significant portion of the propelling power is conducted from the gas 

turbine to the propellers. Restrictions of sizing and operating the engine to satisfy the propeller’s 

high demand power could be lower to enable performance optimization of the engine in various 

operating segments [18], [109]. 

Additionally, the combination of parallel and series is the most promising configuration regarding 

the environmental issues and the performance of expected hybrid systems. Although this combined 

architecture suffers from electrical power losses due to double energy conversion, they are 

significantly low compared to the series architecture. Since this configuration, to a great extent, 

can cover the drawbacks of both series and parallel system architectures, it is used as the reference 

for the use case HE system architecture within the proposed framework. This configuration is 

schematically outlined in Figure 4-4.  



70 

 

 

Figure 4- 4: Series/Parallel hybrid powertrain with additional electric boost, from [18] 

The following section will discuss the model architectures for series, parallel, and partial 

series/parallel configurations at the LA modeling layer in Capella. Also, a generic model that 

covers the configurations of the HE system mentioned above is presented at the SA modeling 

layer. Other models, such as L1, L2, and P2, are presented for the “Series/parallel with additional 

electric boost” configuration to avoid repetition.  

Capella specification models 

Architecture representations following the proposed MBSE approach are performed in Capella. 

As discussed in Chapter 3, the architecture modeling in this work begins with the SA level.  

Initially, the HE system’s generic architecture (S0) is developed at the System Architecture (SA) 

level. Next, the system configurations of the HE system are modeled generically at the Logical 

Architecture (L0) level. Then it is followed by creating series/parallel system configuration models 

at detail levels 1 (L1) and 2 (L2). Finally, a physical model at level 2 (P2) of the HE configuration 

is developed at the Physical Architecture (PA) level.  

It is important to note that the reference model for the presented  HE  propulsion and electrical 

system architectures is based on the study by Hofmann et al.[18]for the Dornier 228, a 19-

passenger commuter aircraft. 
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S0: Generic Model at the System Analysis Level 

This level of representation utilizes generic components to create a simple architecture of any HE 

system configuration, focusing on the interactions and exchanges between its components. This 

model aims to provide a simplified, high-level view of the system’s structure and behavior, which 

can be used to inform early-stage design decisions and facilitate communication between different 

stakeholders. 

By using generic functions, the S0 model allows for a more flexible and adaptable modeling 

process, as specific details and functions can be added or removed as needed. This approach is 

particularly useful for complex systems where the details of individual components of the system 

may not be fully understood or where there is a need to explore different design options quickly. 

As depicted in Figure 4-5, top-level aircraft functions related to HE cases, such as “Generate 

Mechanical Power” and “Generate Thrust,” are allocated to the System of Interest (SoI) “Aircraft.” 

These top-level functions can be broken down into sub-functions, later in detailed modeling levels. 

For example, “Store energy” is the parent function for fuel tanks and batteries. Also, at this point, 

functions are not allocated to any specific aircraft systems at this modeling level. It is to be noted 

that the aircraft functions depicted in Figure 4-5 are incomplete, and other top-level functions are 

not covered within the frame of this work. 

 

Figure 4- 5: S0-Generic system architecture for hybrid-electric aircraft without interfaces systems at SA in Capella 

Functions and their connections in model S0-Generic are arranged in a way to be adaptable for the 

three types of HE configurations, as discussed in the previous section. Therefore, from this model, 

all three HE configurations can be derived simply by switching one or two functional exchanges. 
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This level of representation provides a useful starting point for developing more detailed models 

of a system’s architecture, allowing for a better understanding of its behavior and supporting the 

development of effective design solutions.  

 

L0 Model at the Logical Architecture Level 

The L0 models are created with level 0 detail, as explained in Section 3.1.2, which is similar to the 

S0-Generic representation. The L0 model allows the HE system architecture representations at a 

high level. By reusing generic elements, this can be accomplished rapidly and allows for the 

creation of a broad range of architectures. Nevertheless, more detailed representations are 

frequently necessary to examine specific interactions within a system architecture or to advance a 

chosen system architecture. The formation of architecture specifications necessitates a more 

precise definition of certain elements of the system architecture. This can be accomplished using 

the L1, and L2 representation levels, depicted in the next sections. 

The L0 model aims to allocate the top-level aircraft functions defined in the S0-Generic model to 

their related systems. At the LA modeling stage, all the systems of the SOI are defined as Logical 

Components or Logical Systems. Because the SOI is big, only sub-systems are presented in the 

models.  

Moreover, the L0 model illustrates system allocations to other systems, as shown in Figure 4-6. 

The HE system contains a “Propulsion system” and an “Electric Power Generation and 

Distribution System”. These systems are shown to be connected to other systems, such as the fuel, 

hydraulic, and flight control systems, through a series of interfaces and connections. This allows 

for a more detailed analysis of the interactions and exchanges between the different components 

of the system, which can be used to inform design decisions and identify potential issues.  

According to Hofmann et al., partial series/parallel HE configuration is the most promising, while 

it is more complex. Figure 4-6 generically features this configuration for hybridized Dornier 228 

[18]. As shown in the architecture model, there are three ways to provide mechanical power to the 

“Generate Thrust” function and run propellers.  
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1. Provide Fuel → Generate Mechanical Power → Transfer Mechanical Power →Generate 

Thrust 

2. Provide Fuel → Generate Mechanical Power → Transfer Mechanical Power → Convert 

Mechanical to Electrical Power → Distribute Electrical Power → Convert Electrical to 

Mechanical Power → Transfer Mechanical Power → Generate Thrust 

3. Store Electrical Energy →Distribute Electrical Power → Convert Electrical to Mechanical 

Power → Generate Thrust. 

The first and second power chain, rely on “Generate Mechanical Power” and burning fuel, while 

the third, the greener way, solely depends on electrical energy and it. 

 

Figure 4- 6: L0-Generic for Parallel HE configuration at LA in Capella 

The L0 model for series HE configurations is presented in Appendix. 

 

L1 Model at the Logical Architecture Level 

This level of detail model (L1) includes aircraft-level redundancy and technological choices such 

as the number of engines, number of hydraulic systems, flight control system technology, and level 

of electrification. The L1 model is necessary for designing unconventional architectures, especially 
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for HE aircraft systems that are relatively new and unexplored. In the early design stages, by 

considering technological factors, designers can optimize the aircraft’s performance and ensure 

that it meets the requirements of the intended mission. 

Aircraft-level redundancy refers to the use of multiple independent systems to perform critical 

functions on an aircraft. This redundancy is designed to ensure that the failure of one system does 

not result in the failure of the entire aircraft. For example, an aircraft with multiple engines can 

continue to fly even if one engine fails. Similarly, redundant hydraulic systems can ensure that the 

aircraft’s control surfaces remain functional in the event of failure. Figure 4-7 illustrates the model 

L1 relying on two “Gas Turbine” to provide mechanical power for primary and secondary power 

generation. For primary power generation, both engines are driving the “Propeller Speed 

Reduction Unit” which reduces the engine shaft speed to a suitable speed to run the “propeller_1”. 

In secondary power generation, the two gas turbines provide mechanical power for “Accessory 

Gearbox” to run Engine-Driven Pumps (EDP) of hydraulic and fuel systems. The cross-

connections of engines to “Transfer Mechanical Power” function lower the risk of failure of 

providing mechanical power for aircraft systems.  

Moreover, the level of electrification on an aircraft can impact its safety and performance. 

Electrical systems are often used to power critical components such as flight control systems. More 

advanced aircraft designs may rely more heavily on electrical systems, such as using electric 

motors for propulsion instead of traditional jet engines. However, the use of electric systems also 

introduces new safety concerns, such as the risk of battery fires or electrical failures. 
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Figure 4- 7: L1 model for partial series/parallel HE configuration at LA in Capella 

In both Figure 4-6 and Figure 4-7, the power chain is similar, which is for partial series-parallel 

configuration. However, the L1 model is more detailed compared to the L0 model. Logical systems 

are decomposed into logical components. Meanwhile, Top-level functions associated with critical 

technological decisions are also decomposed into lower-level aircraft functions. These functions 

are allocated to their related logical system.  As types of propellers should be addressed early in 

the conceptual design stage, the functional decomposition of “Generate Thrust” would be an 

obvious example of this, which is broken down to “Generate Main Thrust” and “Generate Support 

Thrust”. Each child function is allocated to distinguished logical solutions, which are “Propeller” 

and “Supporting Propeller”, respectively.  

Referring to Figure 3-1, as discussed in Section 3.1.2, the L1 model is a good starting point for 

creating system-level models and deriving system-level functions. Section 4.3 illustrates system-

level models such as Sys-L1, Sys-L2, and SysP2 for yaw control of the flight control system. 

 

L2 Model at the Logical Architecture Level 

L2 model representation provides greater detail on specific components of the architecture where 

component redundancy is included. A representation of hydraulic and fuel systems and yaw 

control surfaces is also provided, as they have major interfaces with propulsion and electrical 
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systems. The interface systems are sufficiently elaborated to show allocations and interfaces to the 

HE propulsion and electrical systems. By providing a detailed view of the power system 

architecture alongside the HE propulsion system, it becomes possible to investigate redundancy 

and to study the functional relationships between the HE system and FCS, and to perform safety 

analysis in early design stage. The systems specifications and test case assumptions are illustrated 

in Figure 4-8. The reference aircraft used for yaw control, hydraulic, and fuel systems is 

Bombardier Challenger 605 business jet [110-112]. The reason for this selection is that the 

consumer systems have simple architecture and detailed design inputs for system architecture are 

more accessible and open source.  

 

Figure 4- 8: Specification of systems illustrated in L2 and P2 models, adapted from [18], [110], [111] 

Figure 4-9 illustrates the application of L2 in the representation of the hybridized Do228’s 

propulsion and electrical architecture. The focus of the L2 modeling representation is on logical 

component behavior and functional allocations. Also, the connections between the HE system and 

other systems are well-addressed. This approach also allows designers to focus on the behavior of 

individual systems and their interactions with other systems without getting bogged down in the 

details of individual components. The L2 model represents different aircraft systems using dashed 

line boxes, and the components are categorized according to the system they belong to. 

At this level, no information regarding the component technology is given. Basically, system 

physical specifications belong to the PA modeling level. However, the L2 model features typical 
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logical solutions for functions. For example, there are three actuators in the yaw control system, 

but the type of actuators is not specified.  

This is important to zoom in on specific interfaces and internal components or to develop certain 

architectural elements further, with more detail. In this application, the L2 model representation is 

used to capture HE systems along with interface systems in more detail. The sources of different 

types of power (e.g., electrical, mechanical, and hydraulic) and how they are distributed to other 

systems such as primary flight control and fuel systems are outlined in L2 model. 

 As more representation elements are added, the diagram's readability decreases. While the Capella 

viewer allows for zooming in and out, this function is not available when the diagram is exported 

as an image. As a result, practical recommendations were discovered for the efficient export of 

diagrams, which entail consolidating all the elements together to reduce empty space. 

The arrangement of components in the L2 model is symmetrical, which can facilitate navigation 

and allow for the identification of component redundancy while maintaining an understanding of 

the overall structure. The symmetrical arrangement of components can help designers to visualize 

how different parts of the system interact with one another and identify any redundancies or 

inefficiencies in the design. This approach enables users to zoom in on specific interfaces and 

internal components while still keeping the big picture. 
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Figure 4- 9: L2 model for partial series/parallel HE configuration in Capella 

Identifying the sources and consumers of electrical power is crucial, given the increasing 

importance of electrical power in both hybrid-electric and all-electric aircraft to ensure safe and 

efficient operation. The electrical power feeding hydraulic, fuel, and yaw control, has several 

power generation and distribution elements, which are as follows: 

1. Battery: is a rechargeable energy storage device that provides electrical power to the electrical 

system when the engines are not running or in the event of power shortage.  

2. GEN: refers to an electrical generator that derives power from the engine power offtake. 
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3. APU GEN: refers to an electrical generator that derives power from the Auxiliary Power Unit 

(APU) engine power. 

4. PDU: Power Distribution Unit (PDU) provides primary power bus connectivity, transfer, and 

distribution functions to the aircraft loads. The default mode of operation for PDU allows for 

the minimum requirement of supplying power from batteries and generators to the necessary 

loads. This ensures that the emergency and essential electrical systems remain powered. 

As for consumers, electrical power is used for a variety of systems and components in aircraft, 

including: 

1. EMP: or Electric Motor Pump pressurizes the hydraulic system by using the electrical power 

distributed by PDU.  

2. Fuel Feed Pump: deliver a constant flow of fuel to the engines at the required pressure that 

prevents engine failure due to fuel starvation. 

3. Battery: in recharging mode, this component consumes electrical power when the power 

demand is relatively low. 

Also, mechanical power for running propellers and driving mechanical pumps in fuel and 

hydraulic systems is provided and transferred by the following elements: 

1. Gas Turbine: a type of engine that uses a continuous combustion process to convert fuel into 

mechanical energy. 

2. APU gas turbine: a small gas turbine engine used to provide electrical power and/or hydraulic 

pressure when the main engines are not operating. It is typically located in the tail section of 

the aircraft. 

3. Accessory gearbox: a component that is used to transmit power from the main engine to various 

aircraft systems, such as the electrical and hydraulic systems. 

4. Propeller speed reduction unit: a gearbox that is used to reduce the speed of the engine output 

shaft to a speed suitable for driving a propeller. 

5. Motor: refers to an electric motor that is used to drive various systems, such as hydraulic pumps 

or fuel pumps. 

The consumers of mechanical power in model L2 are mostly Engine-Driven Pumps in hydraulic 

and fuel systems connected to the engine through the “Accessory Gearbox”. There are two engine-
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driven hydraulic pumps powered by both engines, meaning that in case of failure of one engine, 

the other engine would be able to supply hydraulic system which is a crucial power for FCS. The 

three hydraulic systems in model L1 power the yaw control surface actuators. Systems 1 and 2 

each have one EMP and one EDP, and system 3 has two EMP. This combination of hydraulic 

pumps prevents failure of the hydraulic system in the event of failure of electrical power or 

mechanical power sources. 

 

P2 Model at the Physical Architecture Level 

The P2 model features the detail level representation the same as the L2 model, as they are both at 

detail level 2. This model aims to illustrate the physical implementation of the logical components 

employed in the L2 model. These components are reusable throughout Capella by the REC/RPL 

capability explained in Section 3.1.  

Figure 4-10 captures system interfaces and exchanges along with physical components at the PA 

level. The system architecture enhanced with physical implementation can be provided to suppliers 

for development. The selection of HE physical implementations for the P2 model is based on the 

proposed components by Hofmann et al. [18] and Do-228. Also, the Challenger 605 manual [110- 

112] is used as a reference for yaw control, hydraulic,  and fuel systems component selection. With 

this model, the exact type of component deployed to the architecture is identified. For example, 

the technology of the actuator used for the rudder is Hydro-Mechanical Actuator (HMA), and this 

is according to the selection of Challenger 605 [110]. However, the objective of the P2 model is 

to focus on the elaboration of the physical architecture of the HE system and interface with other 

systems. A catalog of the physical components employed in the P2 model is listed in the Appendix.  

The model presented in this section emphasizes on aircraft-level functions and shows the 

functional decomposition in different granularity levels. However, the system-level functions are 

also covered within this framework which is illustrated for a test case in the following section.  
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Figure 4- 10: P2 model for partial series/parallel HE configuration in Capella 
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4.1.2 Primary Flight Control System – Yaw control 

In this work, the yaw control system, which is part of the primary flight control system, has been 

chosen as an example to illustrate the application of the methodology for system-level functions. 

Although the yaw control system does not have a direct interface with the HE system, it is 

indirectly dependent on the HE system through the hydraulic system. This highlights the 

interconnections of different systems within an aircraft and the importance of considering these 

interdependencies when designing and analyzing aircraft systems. By using the yaw control system 

as an example, this work demonstrates the importance of taking a system-level approach to aircraft 

design, considering the interactions between different systems, and identifying potential areas for 

improvement from a safety perspective.  

The Sys-L1 model, which is the first model developed in this study at the system-level, is derived 

directly from the L1 model at the aircraft-level, by using horizontal adaptation, as illustrated in 

Figure 3-6. The elaboration principles used in Sys-L1 are similar to those used in L1, but Sys-L1 

includes system-level functions with a particular focus on yaw control. Yaw control system in 

Challenger 605 has mechanical controls through pedals to operate the rudder. Figure 4-11 provides 

a schematic of the Challenger 605 yaw control system. To simplify the architecture and focus on 

key features, the yaw damping system has been neglected in the Sys-L1 model. This approach 

allows for a clearer representation of the system-level functions and their relationships, which can 

be useful for further development and optimization of the yaw control system.  

The yaw control system is designed to provide control over the aircraft's movement around the 

vertical axis, and it relies on a hydraulic actuated rudder hinged on the rear spar of the vertical 

stabilizer. The conventional arrangement of the primary flight controls includes rudder pedals for 

both the pilot and copilot. The cockpit controls transmit movement to the rudder through 

mechanical means such as cables and/or pushrods, which then use hydraulic power to move the 

control surfaces. the rudder pedals are connected to three independent actuators through two 

separate mechanical control paths. Each actuator is powered by a separate hydraulic system, which 

ensures redundancy and improves the reliability of the system. 
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Figure 4- 11: Challenger 605 yaw control schematic, from [110] 

Artificial control loading is implemented at the individual rudder pedals to provide pilots with a 

tactile sense of control. This approach allows pilots to feel the response of the control surfaces and 

adjust their inputs accordingly, contributing to safe and effective aircraft operation. The rudder 

pedal control systems are equipped with an anti-jam breakout mechanism that allows for continued 

operation in the event of a jammed rudder control on one side. This mechanism enables both the 

pilot and copilot rudder pedals to operate the remaining control system. However, additional force 

on the rudder pedals is required to bypass the inoperative side, allowing for continued rudder 

operation. This feature ensures that the aircraft remains controllable in the event of a system 

failure, contributing to the overall safety and reliability of the aircraft [110]. 

Figure 4-12 illustrates the Sys-L1 model at the LA modeling level, which places a greater focus 

on the yaw control system. The HE-related systems are presented with top-level functions and are 

not decomposed in this model. By using the Sys-L1 model, the detailed connections between the 

interface system and the yaw control system can be identified without losing sight of the overall 
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system architecture. This approach allows for a more targeted analysis of the system-level 

functions and their interrelationships.  

Similar to the rules followed in detail level 1, the Sys-L1 model only includes redundancy for those 

components that are part of the technological choices. For instance, the decision to use three 

hydraulic systems to provide hydraulic power to the actuator was made early in the design process 

and is reflected in the Sys-L1 model. However, this model does not present actuator redundancy 

since it was not considered part of the technological choices. Focusing on critical components and 

their redundancies, this model provides a more targeted analysis that can help identify potential 

failure points and improve the overall system reliability. 

 

Figure 4- 12: Sys-L1 for FCS yaw control and interfaces to HE systems in Capella 

As the pilot has a direct influence on the yaw control system, the Sys-L1 model shows the pilot as 

the logical actor of the system, depicted in a light blue box. The model also highlights important 

interactions, such as control and feedback chains, to help understand the relationships between 

various components and their effects on the overall system. 

More detailed models of the yaw control system, including Sys-L2 and Sys-P2, are presented in 

Appendix. These diagrams contain the redundancy of all components and physical implementation 

for each logical behavior. 
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4.2 Test-Case 2: Model-based FHA for the Landing Gear Braking System 

This section outlines the implementation of the proposed method using a case study of an aircraft 

wheel braking system, which was adapted from the SAE ARP4761 [24] example for the system 

FHA. The model-based FHA activities within Capella and enabling safety assessment are 

demonstrated through all proposed steps. As stated earlier, the initial step in the FHA process 

involves identifying functions at the aircraft and system levels. Figure 4-12 exhibits the 

decomposition of aircraft-level functions in the SA modeling layer within the scope of AFHA. 

Meanwhile, the proposed functions related to the landing gear and braking systems, as well as 

interface functions to the braking system functions, are highlighted in the LA modeling level 

within the scope of SFHA. The allocation of functions to systems is a crucial input to PASA, 

aiming to identify the system(s) that will implement the respective function(s). 

 

Figure 4- 13: Integration of AFHA and SFHA scopes functional decomposition in [SFBD] and [LFBD] diagrams in 

Capella 
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Using the system architecture diagram in the S0 model, top-level aircraft functions are allocated 

to the system of interest, aircraft, while low-level aircraft sub-functions are implemented using the 

Logical architecture diagram in the L0 model for the aircraft and its systems. Figure 4-14 (a) shows 

the system architecture diagram [SAB] in the S0 model and its allocated functions, while Fig. 4-

14 (b) shows the logical architecture diagram [LAB], which includes the aircraft systems and the 

allocated sub-functions. This level of activity is necessary to organize aircraft functions and assign 

them to systems based on their appropriate grouping [23]. 

         

 

Figure 4- 14: Allocation of aircraft-level functions to the system(s) in Capella at SA and LA modeling levels 

The allocation of functions to systems and the development of the system architecture are crucial 

steps for the SFHA. These activities are initiated at the S0 and L0 models in Capella and are further 

developed and refined at the L2 model. The output of this model is a complete system architecture, 

including all relevant details, such as component redundancy and interface elaborations [95]. 

These detailed models are valuable for PSSA activities and for determining a system's architectural 

and safety requirements [23]. 

Figure 4-15 illustrates the system architecture for the landing gear braking system at the L2 model. 

The wheel braking system, the system of interest, interfaces with the hydraulic system, electrical 

system, and pilot. The functions in the architecture are styled differently according to the most 

severe classification of their associated failure conditions in all flight phases using the color-coding 

feature in PMVT. As an example, the color coding is applied to the "Provide park braking 

(a) [SAB] diagram S0 model of aircraft and 

allocated functions 
(b) [LAB] diagram L0 model of aircraft and the allocated 

systems and sub-functions 
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capability," "Provide normal braking," and "Provide auto-braking" functions. Green represents 

minor, yellow as major, orange as hazardous, and red as catastrophic failure conditions. During 

the taxiing phase, the failure condition of "loss of park braking mode capability" classifies "Provide 

park braking capability" as minor. However, normal braking and auto-braking are both classified 

as red since uncommanded braking during take-off is typically catastrophic. 

 

Figure 4- 15: Allocation of system-level functions to the braking system with color-coding at [LAB] logical 

architecture diagram L2 model in Capella 

The proposed methodology for system safety analysis (SFHA) includes the use of functional chain 

diagrams at the system architecture (SA) and logical architecture (LA) levels to identify functional 

failure relationships and negative dataflows. These diagrams typically show functional 

relationships for accomplishing a mission, but in this methodology, they are used to represent 

failure relationships. The analysis is performed using the [SDFB] diagram in Capella to 

demonstrate failure relationships at the aircraft-level functions based on their properties, while the 

[LDFB] diagram represents failure effects relationships for system-level functions. Figure 4-16 

provides an example of a functional failure chain diagram for the brakes system, showing failure 

relationships for both aircraft-level and system-level functions. This approach enables 

visualization of the potential chain of cause-and-effect failure relationships, supporting the safety 

assessment process. 

After identifying the failure conditions of a function and specifying the impacted functions in the 

properties, it becomes possible to define the failure effect relationship between the failed and 

impacted functions. The functional failure diagram can provide valuable support to the safety 
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assessment process by allowing for the visualization of potential chains of cause-and-effect failure 

relationships. It is important to note, however, that this approach does not provide a systematic 

identification of failure events or combinations of events that may lead to a failure condition, which 

would typically fall under the scope of a Fault Tree Analysis. The concept of cause-and-effect can 

be described as the failure of one function, potentially leading to the failure of another function. 

When a chain of cause and effect occurs over a series of different functions, this is known as 

cascading or propagation effects. 

 

Figure 4- 16: Functional failure effect relationships related to the brakes system functions using [SDFB] and 

[LFBD] Functional chain diagrams in Capella 
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The failure relationship chain depicted in Figure 4-16 can be explained by following the failure 

conditions associated with a function and its impacted functions. To further illustrate this 

relationship, an example is provided in Figure 4-17, which shows the failure relationship for the 

ground phase within the scope of AFHA. 

 

Figure 4- 17: Safety properties allocation to the functions evident the failure relationship on ground 

In a similar vein, the [FS] diagram offers an alternative approach to identifying potential failure 

effects. In the scenario diagram Figure 4-18, system-level functions are depicted as green boxes 

with vertical lines indicating their execution and operation time. Here, the execution boxes as 

functional failure occurrences. The exchanged arrows between functions, representing failure 

relationships, allow different types of failure events to be identified. For example, "one-to-many" 

(a single function with several outputs) would suggest a resource function, and it is important to 

determine whether failure effects cover all the functions that may be impacted. Conversely, "many-

to-one" (a single function with several inputs) would suggest an end-consumer or concentrator 

function, and it is essential to understand the impact of each input on failure conditions and their 

severity. 
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Figure 4- 18: Functional failure effect event and their relationships analysis  potential using the functional 

scenarios [FS] diagram in Capella 

The safety assessment process requires an analysis of failure effects and their severity across 

various flight and operational phases. To achieve this, the potential use of the modes and states 

diagram, or [MSM], in Capella, which is a transversal model, is investigated. As shown in Figure 

4-19, the MSM diagram identifies the relevant flight phases and the functions expected to operate 

during each phase. By considering all relevant flight phases, the MSM diagram helps ensure that 

the failure conditions are complete. Additionally, the MSM diagram provides a graphical 

representation of the transitions between flight phases and any events that may disrupt the typical 

sequence of flight phases. 

Figure 4-19 illustrates an instance of the Rejected Take-Off (RTO) scenario as a typical failure 

scenario. In order to model this scenario, the modes and states diagram is employed. The diagram 

illustrates the “Take-Off” phase, which can lead to two scenarios. The first scenario is the normal 

operation, which proceeds to the “Climb” mode and the succeeding phases until “taxiing” on the 

ground. However, if there is an event that requires the abortion of take-off, the aircraft enters the 
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“Rejected Take-Off (RTO)” mode. For instance, the function “Provide normal braking” is 

expected to be active during landing and RTO. Therefore, it is necessary to assess the “Loss of 

normal braking” in these two situations. On the other hand, this function is not expected to be 

active during take-off and taxi, and therefore, the “uncommanded normal braking” needs to be 

evaluated during these phases. 

 

Figure 4- 19: Flight phases and expected operating functions during a normal operation flight and rejected take-off 

in [MSM] diagram in Capella, 
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The modes and states diagram can offer several benefits in terms of identifying critical flight 

phases and potential failure conditions. It also promotes a standardized definition of flight phases 

between the FHA and system architecting. The impact and criticality of a functional failure can be 

evaluated systematically by extracting all the flight phases in which a specific function is active. 

This approach can eventually lead to the creation of a comprehensive report documenting the 

analysis of the overall model. 

 

4.3 Summary 

This chapter presented two test cases that implement the framework developed in Chapter 3: 

 Test-case 1 is the HE architecture of the hybridized Do-228, built using the developed modeling 

elements at increasing levels of granularity. The S0 representation creates a simplified generic 

architecture of all types of HE systems. The use of generic elements ensures that the resulting 

diagrams are reusable. Similarly, L0 is generic but is tailored for different configurations of HE 

aircraft. For unconventional system architectures, L1 is suggested as middle-stage modeling in this 

framework to show the technological choices and key component redundancy. Also, it shows the 

interface system to highlight the connections of HE functions to other aircraft functions. However, 

L2 representation allows a profound view of the interaction between functions and their logical 

components while addressing all component redundancy as required for safety analysis. Physical 

implementations for logical behaviors are presented in the P2 model for all interface systems, such 

as yaw control, hydraulic, and fuel systems. Moreover, the sys-L1 model illustrates system-level 

functions with deeper insight into the yaw control system. System-level model elements are built 

based on Challenger 605 to simplify the architecture.  

In test-case 2, the model-based FHA activities in Capella are tested for the brake system of landing 

gears. A customized safety viewpoint is created using the PVMT tool, and several diagrams in 

Capella are explored and utilized to support safety practices at an early stage of system 

development. Although test-case 2 adequately covers all the relevant aspects of FHA, there are 

still some challenges with the proposed method. One is navigating the complexity of the model-

based specification with multiple layers of elaboration. Another is the manual process of 
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identifying failure effects due to Capella limitations. Future research will aim to address these 

challenges by automating the process and expanding the work to FTA and FMEA levels. 

 

5 Conclusion and Future Work 

 

This chapter summarizes the key contributions and implications of this thesis and a discussion 

thereof, subsequently outlining potential avenues for future exploration. It aims to synthesize the 

development within the context of aircraft system architecture early in the design stages, 

emphasizing the value added by this research and highlighting opportunities for future progression 

in this critical field of study. 

 

5.1 Summary of Contributions and Discussion 

An MBSE modeling approach for architecting system specifications in early design stages is 

developed using ARCADIA/Capella tool in this thesis. The proposed framework presents multi-

level architecture templates, allowing unconventional aircraft architecture such as HE to be 

modeled from aircraft-level functions to physical implementations with different granularity 

levels. This can help in system architecting process by managing the complexity and variability of 

the architectures. Furthermore, it is explored how the MBSE specification model can be enhanced 

to ease the link to other early design activities, such as MDAO and safety assessment. This 

connection is necessary to evaluate architectures using system sizing, performance, and to enable 

optimization studies. Furthermore, the evaluation of architecture also provides information to 

enrich the MBSE specification. A framework is also developed to conduct early safety assessment 

activities such as FHA, which enables the identification and improves visibility of key functional 

failures and their effects on the system and at aircraft-level. This early enrichment of the system 

model with safety specific information, serves as an initial step towards MBSA. The work presents 

a method for transitioning the current document-based FHA process to an MBSE environment 

enabling a more comprehensive and, as a result, more effective safety evaluation in the early design 

phases.  
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The proposed system architecting framework enables aircraft system architectures to be 

represented and visualized during the conceptual design stage. Early representation of 

architectures can facilitate communication and collaboration among all project teams and 

stakeholders. This can help to ensure that everyone has a clear and consistent understanding of the 

system architecture and how it meets the requirements and standards. The use of generic elements 

and models in the representation of system architectures allows for a rapid exploration and 

evaluation of a large set of candidate architectures. This can help to identify the most promising 

architectures early in the design process and facilitate the evaluation of the system from various 

aspects. This expedited process enhances the efficiency of the overall system architecting process. 

The utilization of the MBSE framework in aircraft development provides several advantages. One 

of the key benefits is the creation of reusable model elements that can be used in various stages of 

development, including the development of technology and interface specifications for system 

developers. This eliminates any vagueness in terms of system requirements and interface 

definitions, allowing the system integrator or aircraft manufacturer to specify the system that suits 

the aircraft's requirements. Moreover, the presented multi-level modeling approach in Capella 

gives users different views of the system’s structures, including functional, logical, and physical 

in a variety of granularity levels. This can efficiently help to navigate across different detail levels 

of  novel aircraft architectures. Also, external modules and add-ons to Capella can provide different 

"Viewpoints" to enrich the models in various domains to support model-based system analysis. 

These viewpoints can be customized according to the nature of the analysis and the type of desired 

output. 

By leveraging the functional structures of the system architectures and customizing a safety 

viewpoint, model-based FHA activities can be integrated within the Capella. Using the MBSE 

framework in the FHA process can enhance traditional tables and documents with relationship 

diagrams and provide deeper insights for both the system and safety engineer and allow for easier 

iterations between them. Moreover, it enriches the model definition by providing a comprehensive 

view of the relevant constraints, including how certain failure conditions may be interrelated due 

to the inherent connection between system functions. The PVMT plugin to Capella was utilized to 

generate new properties linked to functions, which facilitate subsequent safety assessment tasks. 
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The presented method of linking MBSE and MDAO emphasizes the iterative process of systems 

architecting and the recent developments made in automating MDAO workflow specification by 

offering: a means for adding input properties to elements in the Capella MBSE and a means for 

extracting these properties to supply system-level MDAO tools. This can be an initial concept of 

integrating with the established MDAO specification and visualization environment developed by 

the AGILE 4.0 project. 

The multi-level MBSE specification models are defined for a generic HE aircraft and its three 

common configurations: series, parallel, and partial series-parallel.  The test case includes the 

propulsion system and electrical system as primary power generation, APU and mounted accessory 

gearbox as part of the secondary power generation, and hydraulic, fuel, and yaw control systems 

as power consuming. This work was performed as part of the collaborative research project in the 

frame of AGILE4.0 [26] and for the industrial partner Bombardier Inc. 

Challenges 

The proposed representation framework for systems architecture in the Capella MBSE tool has 

been found to have several drawbacks. While it meets the criteria of clarity, modularity, and 

traceability, it becomes difficult to read when the number of elements represented increases. This 

is due to the overlap between components and the resulting decrease in diagram readability. 

Moreover, when diagrams become larger, they are hard to visualize within a single view. Another 

limitation is the inability to zoom into diagrams, which can be an issue when a system component 

has an encapsulated detail representation within it. In the Capella tool, this feature is only 

supported in a separate model or diagram, and there is no capability to access the encapsulated 

representation directly from the main diagram. 

The process of creating, sorting, and arranging the elements in Capella is time-consuming, 

especially when modeling complex system(s) in different granularity levels. At detail level 2, the 

system architecture representations consist of many elements, making it difficult to read the 

individual components and exchanges. This type of representation is effective in capturing system 

exchanges and serving as a comprehensive architecture specification for suppliers and 

manufacturers. It is not ideal for visualization and demonstration to other development teams. 

Furthermore, it is not possible to directly illustrate the location of system components with respect 
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to the aircraft. Overlaying Capella system architecture diagrams with aircraft drawings is 

challenging and time-consuming, providing no additional clarity. 

The presented method of integrating MBSE and FHA in this thesis encompasses all the important 

aspects to formalize model-based FHA. Nevertheless, there are some challenges and limitations 

associated with this approach.  Firstly, the model-based system specification with multi-levels of 

elaborations is sufficiently complex, making it difficult to navigate through the modeling levels. 

As the model-based FHA activities are performed at aircraft and system levels, transferring and 

exchanging the model specification between these levels within Capella requires higher levels of 

expertise. This can be a drawback as the safety engineers need a basic knowledge of MBSE to 

execute the FHA steps in Capella. Moreover, the current process of identifying and adding the 

failure effects to functions is performed manually. That is due to the Capella limitations in 

importing and exporting the element’s properties and the inability of property inheritance between 

functions.  

 

5.2 Future Work 

One potential avenue for future work could be to investigate methods for improving the readability 

of large and complex system architecture representations in Capella. This could involve exploring 

alternative visualization techniques or developing tools for zooming in and out of encapsulated 

diagrams within a single view. Additionally, further research could focus on automating the 

process of diagram generation in Capella to improve efficiency and enable the exploration of a 

larger design space.  

Further work could focus on developing a link between architecture specification and 3D 

visualization to improve system integrations and more accurately estimate system metrics such as 

weight and wiring length in the conceptual design phase. This can be achieved by generating 

parametric visualization of aircraft systems within a 3D modeling environment using physical 

architecture specifications.  

Another aspect that requires further investigation is the link between MBSE and MDAO, focusing 

on improving automation and increasing flexibility in the workflow based on system architecture 

specifications. The ability to perform automated analysis on a larger design space will also be a 
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key area of investigation. In addition, researchers will explore the modeling levels required in 

MBSE for optimal MDAO workflow integration. 

Moreover, for developing safety considerations of system architecture, more automated methods 

for failure affect recognition need to be explored to increase traceability and efficiency in the FHA 

process. The work can be extended beyond the FHA to the FTA and FMEA levels. This will allow 

for a more comprehensive safety assessment process in the early design stages. 

The integration of these features will enable the exploration of aircraft system architectures further 

into the conceptual design phase, leading to an efficient aircraft development process. By 

addressing these areas, it is hoped that MBSE can become an even more powerful tool for 

optimizing complex system designs
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Appendix 

 

 

 

Figure A- 1: Sys-L1 for hydraulic system and interfaces to HE systems in Capella 

 

Figure A-1 shows the Sys-L1 model for the hydraulic system. In the model, three hydraulic 

systems are defined and distinguished by numbers. Hydraulic system 1 and 2 has two types of 

hydraulic pump: Engine Driven Pump and Electrical Motor Pump, while two Electrical Motor 

Pump runs the hydraulic system 3. Each hydraulic system supplies one actuator in the yaw control 

system.  
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Figure A- 2: Sys-L2 for FCS yaw control and interfaces to HE systems in Capella 

 

The Sys-L2 model for yaw control is illustrated in Figure A-2. Here, the detail view of the yaw 

control, such as control surfaces, relay means, rudder trim, and three actuators moving the rudder, 

are specified. 
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Figure A- 3: Sys-P2 for FCS yaw control and interfaces to HE systems in Capella 

Figure A-3 shows the allocation of logical components to physical components in the model Sys-

P2 for yaw control. For example, the physical component responsible for relay means is " Rudder 

Switches", and the Hydro mechanical Actuator is chosen for control surface actuation. The 

reference architecture for this model is Challenger 605. In order to simplify the architecture, the 

yaw damping system is neglected.
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Table A- 1: Propulsion and electrical systems nomenclature of model components in Capella 

Modelling layers 

System Analysis Logical Architecture Physical Architecture 

System Function Logical Function Logical Component Physical Function 
Physical Component 

Behaviour 
Physical Component Node 

Propulsion System 

Generate Mechanical 

Power 

Generate Mechanical 

Power 

Engine/ Gas Turbine/ Internal 

Combustion Engine 

(generic type or sub-type) 

Generate Mechanical 

Power 
Engine/ Gas Turbine Dual-spool turboprop 

_ 
Transfer Mechanical 

Power 
Accessory Gearbox 

Transfer Mechanical 

Power      
Accessory Gearbox Accessory Gearbox 

_ Reduce Shaft Speed 
Propeller Speed Reduction 

Gearbox 
Reduce Shaft Speed 

Propeller Speed 

Reduction Gearbox 

Propeller Speed Reduction 

Gearbox 

_ 
Generate Support-

Thrust 
Supporting Propeller Generate Thrust Supporting Propeller 

Electrically driven variable 

pitch  

Generate Thrust Generate Thrust Propeller Generate Thrust Propeller 5-blade MTV-27 

Electrical System 

Store Energy Store Electrical Energy Battery Store Electrical Energy Battery Pouchbag cell (NMC) Battery 

_ 
Convert Mechanical to 

Electrical Power 
APU Generator 

Convert Mechanical to 

Electrical Power 
APU Generator AC Generator 

Convert Mechanical 

to Electrical Power 

Convert Mechanical to 

Electrical Power 
Generator 

Convert Mechanical to 

Electrical Power 
Generator 

Switch Reluctance Machine                                    

AC Engine-Driven Generator 

Convert Electrical to 

Mechanical Power 

Convert Electrical to 

Mechanical Power 
Motor 

Convert Electrical to 

Mechanical Power 
Motor Switch Reluctance Machine 

_ 
Convert Electrical to 

Mechanical Power 
Wingtip Motor 

Convert Electrical to 

Mechanical Power 
Wingtip Motor 

Permanent magnet 

synchronous motors  

Convert Electrical 

Power 
Convert DC to AC Inverter Convert DC to AC Inverter Inverter 

Convert Electrical 

Power 
Convert DC to DC Converter Convert DC to DC Converter Converter 

_ 
Distribute Electrical 

Power 
PDU 

Distribute Electrical 

Power 
PDU DC Bus 
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Table A- 2: Hydraulic and fuel system nomenclature of models components in Capella 

Modeling layers 

System Analysis Logical Architecture Physical Architecture 

System Function Logical Function Logical Component Physical Function 
Physical Component 

Behaviour 
Physical Component Node 

Hydraulic System 

_ _ EMP 
Convert Electrical to 

Hydraulic Power  
EMP ACMP 

_ _ EDHP 
Convert Mechanical to 

Hydraulic Power  
EDHP EDP 

_ _ Accumulator 
Maintain Hydraulic 

Pressure  
Accumulator Nitrogen-Charged Cylinder 

_ _ Reservoir  Store Hydraulic Fluid Reservoir Reservoir 

Fuel System 

Store Energy Store Fuel Fuel Tank Store Fuel Fuel Tank 
Main Tank - Right/ Left 

Wing 

_ _ Fuel Tank Store Fuel Fuel Tank 
Auxiliary Fuel Tank - 

Forward/Center/Aft 

_ _ Fuel Tank Store Fuel Fuel Tank 
Tail Tank - Cone - Left/Right 

Saddle 

_ Transfer Fuel  Transfer Pump Transfer Fuel  Transfer Pump  Ejector Pump 

_ 
Deliver Fuel at proper 

Pressure 
Feed Pump  

Deliver Fuel at proper 

Pressure 
Feed Pump  Engine-Driven Fuel Pump 

_ Transfer Fuel Feed Pump Transfer Fuel Feed Pump DC Boost Pump 

_ Transfer Fuel Transfer Pump Transfer Fuel Transfer Pump APU fuel Pump  
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Table A- 3: Primary flight control system nomenclature of model components in Capella 

Modeling layers 

System Analysis Logical Architecture Physical Architecture 

System Function Logical Function Logical Component Physical Function 
Physical Component 

Behaviour 
Physical Component Node 

Primary Flight Control System – Yaw Control 

Turn Aircraft 

Coordination 
Rudder Rudder Rudder Turn Aircraft Coordination Rudder 

Transmit Mechanical 

Command 
Relay Means Relay Means Control Cables 

Transmit Mechanical 

Command 
Relay Means 

Transmit Trim Relay Means Relay Means Trim Switch Transmit Trim Relay Means 

Actuate Control 

Surface 
Actuator Actuator 

HMA / EHSA - 

Upper/Middle/lower 

Rudder 

Actuate Control Surface Actuator 

Actuate Control 

Surface 
Trim Actuator Trim Actuator Trim Switch Actuate Control Surface Trim Actuator 

Provide Initial 

Feedback 
Cockpit Cockpit 

Flight Control Synoptic 

Page 
Provide Initial Feedback Cockpit 

Provide Feedback Control Interface Control Interface Pedals Provide Feedback Control Interface 

Provide Mechanical 

Input 
Control Interface Control Interface Pedals Provide Mechanical Input Control Interface 
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Figure A- 4: Allocation of properties to battery physical component in Capella using the PVMT add-on 

 

Figure A-4 shows properties such as efficiency, specific power, installation factor, and depth of 

discharge applied to a physical component representing a battery. These properties can provide 

input to a battery sizing tool that will provide the battery's overall weight. 
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Table A- 4: Mapping between Capella schema and simplified schema tag names 

Capella Schema Tag Name Simplified Schema Tag Name 

Root:org.polarsys.capella.core.data.capellamodeller:Project Project 

Root:ownedPropertyValuePkgs Property Value Packages 

Child:owned PropertyValueGroups Property Value Groups 

Child:ownedPropertyValues Property Values 

Root: ownedModelRoots Models 

Child: ownedArchitectures Architectures 

Child:ownedPhysicalComponentPackage Physical Architecture 

Child:ownedPhysicalComponents Components 

Child:ownedPropertyValueGroups Property Value Groups 

Child:ownedPropertyValues Property Values 

 

Each model artifact is assigned a unique alphanumeric sequence as an identifier within the 

schema, and links between elements such as functional chains and physical links reference these 

identifiers in specifying the source and target of each exchange. Although the schema is well 

structured, the size and tag names can make navigation cumbersome. In order to simplify the 

traversal of different tags for property extraction and the automation of the process, a simplified 

schema is created which contains only the tags that are accessed to extract model element 

properties. The mapping from the actual schema tags to a simplified version is shown in Table 

A-4, supplemented by an illustration in Figures A-5 and A-6. 

The process of parsing and reading component parameter and data from Capella XML source code 

is as follow: 

Step: 1: Access the Physical Components tag and check the Components tag against every name 

in the list of physical components.   
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Step 2: For every name that matches, read the name, id and appliedPropertyValue fields.   

Step 3: Open the Property Value Groups tag and compare the id against the value stored in 

appliedPropertyValues from the previous step. For every match, read the Property Values tag for 

the id, name, and appliedPropertyValues fields.  

Step 4: Open Property Value Packages and its child tag Property Values. There will be multiple 

child tags of the same name, so it is necessary to iterate through them and match the applied 

property values field. If a match does occur, then the name, description and s_id fields are read 

and stored.  

Step 5: The tags from Step 3 (namely Property Values)  are accessed once again and the value field 

is accessed and its contents are stored. 

Step 6: The name and description field from Step 4 and the Value field from Step 5 are combined 

and provided as output. The description field from Step 4 stores the variable abbreviation as needed 

by any system-level tools. It is important that the matching variable names are set during the 

property assignment process. 

This approach is used to extract the parameters listed in Table A-4 that are assigned to elements 

of the HE model- which include the name, variable name and value. This data is stored in an 

intermediary file, which in this case is an Excel sheet from where it is passed to a HE aircraft sizing 

and performance estimation tool. The results, which include, fuel weight and battery weight are 

written back to the Excel file and added to the Capella model through modification of the schema.  

The steps required for adding properties to the Capella data model schema are as follows:   

Step 1: Add another child Property Value Groups tag under the Property Value Packages tag. Add 

the name and id of the property category being written. It is imperative that the id be unique as it 

is referenced in subsequent tags.   

Step 2: Add a child  Property Value tag under the Property Value Group tag. Provide a name and 

unique id for the property being written.  
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Step 3: Add a child property value groups tag under the components tag of the physical component 

to which the property is being assigned. Provide a name, unique id and under the 

appliedPropertyValueGroups field, including the unique id referenced in step 2 prefaced with a 

‘#’. 

Step 4: Add a child Property Values tag under the Property Value Groups Tag of the selected 

physical component and include a unique id, name, an appliedPropertyValues field containing the 

nique id defined in step 3 prefaced with a ‘#’. Add a value field and enter the numeric or string 

value that is to be assigned to that property.   

In the case of the HE system architecture, the weight of fuel and mass of battery are written back 

to the Capella schema and viewed in the Capella workbench. Duplicates are dealt with using the 

“s_id” field. If two physical components have the same name then the s_id values are compared.  

 

 

Figure A- 5: Condensed and expanded versions of the simplified Capella XML Schema 

Figure A-5 shows the simplified Capella data schema with the tag names that represent different 

types of model information. An expanded version is also included with annotations describing the 

steps required to extract property information from the schema. These steps are labeled from 1 to 

4 and include sub-steps about accessing and opening specific elements of each parent tag.  
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Figure A- 6: Capella XML data schema: the highlighted section shows where properties have been added manually 

 

Figure A-6 shows the expanded schema and an additional section that is included when a user 

manually modifies the schema to add a property value. These additions are shown to be both within 

the Property Value Packages tag and within the Physical Architecture parent tag. 
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Figure A- 7: Activating PVMT add-on to a Capella project 

This Section presents a guide to creating a viewpoint in Capella using the PVMT tool to enrich components with customized viewpoints. 

As PVMT add-on is not enabled within a project by default, the first step is to activate and add the Property Values to the project view. 
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Figure A- 8: Launching PVMT and specifying a viewpoint configuration by Viewpoint Definition Editor 
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Figure A-8 specifies Viewpoint Editor's location, where the viewpoint configuration can be defined, and users can start building a 

property domain for the Capella model.  

 

 

Figure A- 9: Creating property domain in Viewpoint Editor 

Figures A-9 and Figure A-10 show the steps of defining the property domain and adding initial parameters as enumeration. In the 

example of the safety property package, enumerations are defined as Flight phases. This feature can help users to specify the flight 

phase when a particular failure event occurs for a component or function.   
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Figure A- 10: Defining enumeration literal as parameters of properties 

In Figure A-10, the enumeration literals are defined. The assignment of an enumeration parameter to a component can be made by 

selecting from the enumeration literal defined here. For example, each flight phase is defined as an enumeration literal.  
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Figure A- 11: Defining the scope of the property domain and adding more parameters as properties 

 

The next step is to define the scope of the property domain in which properties can be assigned. In Figure A-11, this property domain is 

to be applied for system, logical and physical components in Capella models. Adding extensions can define more properties, such as 

functional failure events and failure rates, for this property domain.  
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Figure A- 12: defining different property types for the extensions 

This Figure illustrates how different types of properties such as String, Integer, Float, Boolean, and Enumeration. In each extension, any 

property of any type can be defined. Notably, for defining the enumeration property, users can choose from the enumerations defined in 

steps 5 and 6. Moreover, the property rule can be applied to specific properties. For example, users can specify the condition a property 

assigns to a component. These conditions can be “IF ” or value-comparing conditions. The complete safety property domain created to 

support the model-based FHA in the frame of this work is shown in Figure A-13.
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Figure A- 13: Safety viewpoint created using PVMT plugin in Capella to support model-based FHA 


