
Performance Modeling of Vehicular Clouds

Under Different Service Strategies

Chinh Tran

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

June 2023

© Chinh Tran, 2023

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis is prepared

By: Chinh Tran

Entitled: Performance Modeling of Vehicular Clouds Under Different Service

Strategies

and submitted in partial fulfillment of the requirements for the degree of:

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 Chair

Dr. Fuzhan Nasiri

External Examiner

Dr. Jelena Misic

 External to Program

Dr. Roch H. Glitho

 Examiner

Dr. Dongyu Qiu

 Examiner

Dr. Jun Cai

 Thesis Supervisor

Dr. Mustafa Mehmet-Ali

Approved by:

Dr. Jun Cai, Graduate Program Director

June 20th, 2023

Dr. Mourad Debbabi, Dean

 Gina Cody School of Engineering and Computer Science

iii

Abstract
Performance Modeling of Vehicular Clouds Under Different Service Strategies Using

Stochastic Methods

Chinh Tran, Ph. D.

Concordia University, 2023

The amount of data being generated at the edge of the Internet is rapidly rising as a result of the

Internet of Things (IoT). Vehicles themselves are contributing enormously to data generation

with their advanced sensor systems. This data contains contextual information; it's temporal and

needs to be processed in real-time to be of any value. Transferring this data to the cloud is not

feasible due to high cost and latency. This has led to the introduction of edge computing for

processing of data close to the source. However, edge servers may not have the computing

capacity to process all the data. Future vehicles will have significant computing power, which

may be underutilized, and they may have a stake in the processing of the data. This led to the

introduction of a new computing paradigm called vehicular cloud (VC), which consists of

interconnected vehicles that can share resources and communicate with each other. The VCs may

process the data by themselves or in cooperation with edge servers.

Performance modeling of VCs is important, as it will help to determine whether it can provide

adequate service to users. It will enable determining appropriate service strategies and the type of

jobs that may be served by the VC such that Quality of service (QoS) requirements are met. Job

completion time and throughput of VCs are important performance metrics. However,

performance modeling of VCs is difficult because of the volatility of resources. As vehicles join

and leave the VC, available resources vary in time. Performance evaluation results in the

literature are lacking, and available results mostly pertain to stationary VCs formed from parked

vehicles. This thesis proposes novel stochastic models for the performance evaluation of

vehicular cloud systems that take into account resource volatility, composition of jobs from

multiple tasks that can execute concurrently under different service strategies. First, we

developed a stochastic model to analyze the job completion time in a VC system deployed on a

highway with service interruption. Next, we developed a model to analyze the job completion

time in a VC system with a service interruption avoidance strategy. This strategy aims to prevent

iv

disruptions in task service by only assigning tasks to vehicles that can complete the tasks’

execution before they leave the VC. In addition to analyzing job completion time, we evaluated

the computing capacity of VC systems with a service interruption avoidance strategy,

determining the number of jobs a VC system can complete during its lifetime. Finally, we

studied the computing capacity of a robotaxi fleet, analyzing the average number of tasks that a

robotaxi fleet can serve to completion during a cycle. By developing these models, conducting

various analyses, and comparing the numerical results of the analyses to extensive Monte Carlo

simulation results, we gained insights into job completion time, computing capacity, and overall

performance of VC systems deployed in different contexts.

v

Acknowledgement
Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Mustafa K.

Mehmet-Ali, for his invaluable guidance, support, and encouragement throughout my PhD

journey. His insights, expertise, and professionalism have been instrumental in shaping my

research and my development as a researcher. I am deeply grateful for the time and effort he has

dedicated to my work and the trust he has placed in me. I feel fortunate to have had the

opportunity to work with him and to have benefited from his mentorship. I would not have been

able to complete this thesis without his guidance and support, and I am truly grateful for that.

I would also like to express my sincere gratitude to my thesis committee members: Dr.

Dongyu Qiu, Dr. Jun Cai, and Dr. Roch H. Glitho. Their insights, suggestions, and guidance

have been invaluable throughout my research. I am deeply grateful for their time and effort in

reviewing my work and providing valuable feedback. Their expertise and support have helped

shape my research and my research development. I feel fortunate to have worked with such a

talented and supportive committee, and I am truly grateful for their contributions to my research.

I also want to express my heartfelt gratitude to Mikhail Ovsyannikov and Duc T. Le for

their emotional support during my Ph.D. journey. Their friendship and encouragement have

meant so much to me, and have helped me to stay motivated and focused during the challenges

of graduate school. I am deeply grateful for their unwavering support and the joy and laughter

they have brought into my life. Thank you for being such wonderful friends.

Finally, I would like to express my deepest gratitude to my family members, my mom

Hong T. M. Pham, my godmother Ven T. Trần, and my younger brother Vien X. Tran, for their

love and support throughout my Ph.D. journey. My mom and godmother have always been great

sources of encouragement and shining examples of determination, hard work, understanding, and

love. I am grateful for their constant support and for the guidance they have provided throughout

my life. I also want to thank my younger brother for being a great source of motivation and for

inspiring me to work hard and strive for excellence. I am grateful to have such a loving and

supportive family, and I couldn't have completed this journey without them. Thank you, Mom

and Vien, for everything.

vi

To my beloved mother, Phạm Thị Minh Hồng

To my dearest godmother, Trần Thị Vén

To my most cherished brother, Trần Xuân Viễn

vii

Table of Contents
List of Tables ... xi

List of Figures ... xii

List of Acronyms .. xv

Chapter 1 Introduction .. 1

1.1. Motivation for Vehicular Cloud ... 1

1.1.1. Improved traffic management ... 2

1.1.2. Enhanced road safety .. 2

1.1.3. Enabling new services and applications ... 3

1.2. Architectures of Vehicular Cloud .. 3

1.2.1. Centralized architecture (Vehicular Edge Computing)... 4

1.2.2. Distributed architecture (Vehicular Fog Computing) ... 5

1.2.3. Hybrid architecture ... 6

1.3. Enabling technologies of Vehicular Cloud .. 7

1.3.1. Advanced vehicular sensor systems.. 7

1.3.2. Wireless communication ... 8

1.3.3. Autonomous vehicles .. 9

1.3.4. Software-defined networks (SDNs) .. 10

1.4. Security and privacy in Vehicular Cloud ... 11

1.5. Resource Management in Vehicular Cloud ... 12

1.6. Performance Modeling of Vehicular Cloud ... 14

1.6.1. Hybrid or Centralized VC architectures ... 15

1.6.2. Distributed VC architecture .. 17

1.7. Research objectives .. 20

1.8. Contributions.. 22

1.9. Organization ... 24

Chapter 2 Job completion time in a VC with service interruption ... 25

2.1 Free-flow traffic on a highway ... 25

2.1.1. System model .. 26

2.1.2. An analysis of job completion time .. 29

viii

2.1.3. Derivation of the probability distribution of the number of service interruptions 44

2.1.4. Numerical and Simulation Results.. 45

2.1.5. Approximate Analysis of Average Job Completion Time with Migration Overhead 51

2.2. Congested traffic on a highway ... 54

2.2.1. Modeling approach ... 54

2.2.2. Numerical results .. 57

2.3. Summary .. 57

Chapter 3 Job completion time in a VC with service interruption avoidance strategy 59

3.1. System model ... 59

3.1.1. Vehicular cloud and job model ... 59

3.1.2. Task service strategy ... 60

3.1.3. System model assumptions ... 61

3.2. Mathematical preliminaries ... 63

3.3. Analysis of job completion time .. 64

3.3.1. Probability distribution of the number of vehicle arrivals for the assignment of all the

tasks in a job.. 64

3.3.2. Probability density function of the upper and lower bound of job completion time .. 68

3.3.3. Mean of upper and lower bound of job completion time.. 69

3.3.4. Probability density function of the longest task completion time 70

3.4. Numerical results ... 71

3.5. Summary .. 76

Chapter 4 Computing capacity of a VC with service interruption avoidance strategy 78

4.1. System model ... 78

4.1.1. Vehicular Cloud model ... 78

4.1.2. Job and service model ... 79

4.1.3. Mathematical assumptions .. 81

4.2. Derivation of the Computing Capacity .. 81

4.2.1. Probability generating function of the number of vehicle arrivals to the VC during its

lifetime .. 81

4.2.2. PMF of the number of completed tasks during the lifetime of a VC 82

4.2.3. Probability distribution of the number of completed jobs during the lifetime of VC . 83

ix

4.2.4. Average number of attempted jobs during VC lifetime .. 85

4.3. Numerical results ... 86

4.4. Summary .. 88

Chapter 5 Computing capacity of a robotaxi fleet .. 89

5.1. System model and assumptions ... 90

5.1.2. Robotaxi model ... 90

5.1.4. Cyclical nature of the system .. 92

5.2. Computing Capacity of a Robotaxi Fleet with Infinite Backlog of Tasks 94

5.2.1. Laplace transform of the duration of a busy period of a 𝑴/𝑴/𝒄 queue 94

5.2.2. PGF of the number of passengers served during a system busy period 94

5.2.3. Computing capacity of the robotaxi fleet .. 95

5.2.4. Mean number of completed tasks during a cycle.. 97

5.3. Delay analysis of the tasks in a robotaxi fleet with Finite Backlog of Tasks 98

5.4. Numerical results ... 100

5.5 Summary ... 103

Chapter 6 Conclusion and Future work .. 104

Conclusion .. 104

Future work ... 106

Heterogeneity in the VC ... 106

Migration overhead ... 106

Deadline driven task execution ... 107

Non-homogeneous traffic flow ... 107

Appendix A Solving differential-difference equations in 2.1.2 with transform methods 109

Appendix B Section 2.1 Simulation description ... 113

Appendix C Analysis of job completion time in dynamic VC on a highway with congested traffic

... 116

Vehicle model preliminary ... 117

Derivation of the joint probability distribution of the number of uncompleted tasks and

vehicles ... 118

Derivation of the probability density function of the job completion time and the number of

service interruptions in congested traffic .. 123

Appendix D Proof of equation (3.9) ... 124

x

Appendix E Chapter 3 simulation description .. 126

References ... 128

xi

LIST OF TABLES
Table 2.1. Main notations of section 2.1 ... 29

Table 2.2. Values of system parameters ... 46

Table 2.3. Numerical and simulation results for average task service time in minutes for Cases 2

and 3 .. 46

Table 2.4. Numerical and simulation results for average job completion time in minutes for cases

in Table 2.2 ... 47

Table 2.5. Job completion time as a function of average residency time, 𝑟 57

Table 3.1. Main notations of this chapter ... 62

Table 4.1. Main notations of Chapter 4 .. 80

Table 5.1. Main notations of Chapter 5 .. 93

Table B.1. The vehicle matrix upon the start of the simulation where there is 1 initial vehicle 113

Table B.2. The task matrix upon the start of the simulation where there no time has elapsed and

task 2 is assigned to vehicle 1 ... 113

Table B.3. The completion time matrix after 𝑛 runs for a job of 𝔍 tasks 114

Table C.1. Main notations of the analysis of section 2.2 .. 116

Table E.1. An example of the comparison of the residency time of a vehicle to the task matrix to

determine which task to assign to the vehicle. .. 127

xii

LIST OF FIGURES
Fig. 2.1. System model .. 26

Fig. 2.2. An example of a timeline of a VC executing a job of 3 tasks starting from the VC’s

creation to the completion of the job. ... 28

Fig. 2.3. State transition diagram for the system. In each state the number of uncompleted tasks is

shown above the of number of worker vehicles in the system. .. 31

Fig. 2.4. State transition diagram for the system for different values of 𝑗 and 𝑘. 33

Fig. 2.5. State transition diagram for subsystem 𝜃𝑗. States 𝑗 − 1, 𝑘 are absorbing states............. 36

Fig. 2.6. An example showing task execution and service times, subsystem absorption times for a

job with ℑ = 5 tasks. 𝜏𝑖 and 𝑠𝑖 are execution and service times of task i, 𝑌𝑖 is the service time of

the task that is i’th to complete. .. 42

Fig. 2.7. Numerical and simulation results for average task suspension times as a function of the

average number of vehicles in the VC for Case 2. ... 47

Fig. 2.8. Average job completion time as a function of the average number of vehicles in the VC

for case 1in Table 2.2. ... 48

Fig. 2.9. Average job completion time as a function of the average number of vehicles in the VC

for case 3 in Table 2.2. .. 48

Fig. 2.10. Average job completion time as a function of the average number of vehicles in the

VC for case 5 in Table 2.2. ... 49

Fig. 2.11. Probability density function of the job completion time for the case 1 in Table 2.2 .. 49

Fig. 2.12. Probability density function of the job completion time for the case 3 in Table 2.2 .. 50

Fig. 2.13. Probability density function of the job completion time for the case 5 in Table 2.2 .. 50

Fig. 2.14. Numerical and simulation results for the average number of interruptions as a function

of average vehicle residency time. .. 51

Fig. 2.15. Average job completion time as a function of the average residency time of the

vehicles, 𝑟, for case 1 in Table 2.2. ... 52

file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522357
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522357
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522358
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522359
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522360
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522360
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522360

xiii

Fig. 2.16. Average job completion time as a function of the average residency times of the

vehicles, 𝑟, for case 1 in Table 2.2 and 𝑣 = 4. ... 53

Fig. 2.17. Average job completion time as a function of the average residency times of the

vehicles, 𝑟, for case 1 in Table 2.2 and 𝑣 = 6. ... 53

Fig. 2.18. State transition diagram for the system in congested traffic. In each state number of

uncompleted tasks is shown above the number of worker vehicles in the system. 55

Fig. 2.19. State transition diagram for subsystem 𝜃𝑗. States 𝑗 − 1, 𝑘 are absorption states. Once

the transition to states 𝑗 − 1, 𝑘 occur, the reverse transition is not allowed. 56

Fig. 3.1. An example of task service strategy for a job with four tasks. 61

Fig. 3.2. Numerical and simulation results of probability of assigning all the tasks of a job as a

function of the number of vehicle arrivals with average task execution time as a parameter and

constant average residency time. .. 72

Fig. 3.3. Numerical and simulation results of probability of assigning the last task to the k’th

vehicle as a function of k with average task execution time as a parameter. 73

Fig. 3.4. Numerical and simulation results of upper and lower bound of job completion time for

truncated and untruncated task execution times. .. 73

Fig. 3.5. Numerical and simulation results for the pdf of the completion time of the longest task

for untruncated task execution time. ... 74

Fig. 3.6. Numerical and simulation results for the mean completion time of the task with longest

truncated execution time as a function of the number of tasks in a job. 75

Fig. 3.7. Simulation results for average completion time of the longest task and the job and their

ratio as a function of task execution bound. ... 76

Fig. 4.1. An example of the job model and service strategy. ... 79

Fig. 4.2. The average number of jobs completed as a function of vehicle arrival rate 87

Fig. 4.3. Average number of completed jobs as a function of vehicle service rate. 87

Fig. 4.4. Average number of jobs completed as a function of average number of tasks in a job. 88

file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522372
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522372

xiv

Fig. 5.1. An example of the passenger and task service strategy mechanism of a robotaxi fleet

with 2 taxis for scenario 1. Additionally, the figure also shows the relationship between the

number of passengers in the system and the duration of the busy period, the idle period and the

cycle. ... 92

Fig. 5.2. Numerical and simulation results of the average number of completed tasks during a

cycle as a function of passenger service rate 𝛼 ... 101

Fig. 5.3. Numerical and simulation results of the average number of completed tasks during a

cycle as a function of passenger arrival rate 𝜆 .. 102

Fig. 5.4. Numerical and simulation results of the average cycle, system busy period and total

idle durations of the fleet as a function of the passenger arrival rate. .. 102

Fig. 5.5. Numerical and simulation results of the average task delay as a function of task service

rate... 103

Fig. C.1. State transition diagram for the system in a congested traffic vehicle model. In each

state number of uncompleted tasks is shown above the number of worker vehicles in the system.

... 119

Fig. C.2. State transition diagram for sub system 𝜃𝑗. States 𝑗 − 1, 𝑘 are absorption states. Once

transitions to states 𝑗 − 1, 𝑘 occur, the reverse is not allowed. ... 120

file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522390
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522390
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522390
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522391
file:///E:/1.Study/Concordia/Research/Thesis%20defense/Tran_PhD_F2023.docx%23_Toc139522391

xv

LIST OF ACRONYMS

IoT Internet of Things MEDs mobile edge devices

AR Augmented Reality PPP Poisson point process

VR Virtual Reality CSMA carrier sense multiple access

VC Vehicular Cloud SDVN Software Defined Vehicular

Networks

VANETs Vehicular-Ad-hoc-Networks MHCDD multi-hop cooperative data

dissemination

MCC Mobile Cloud Computing VEC vehicular edge computing

RSUs Road-side Units MMPP Markov Modulated Poisson

Process

V2X Vehicle-to-Everything PSFFA pointwise stationary fluid flow

approximation

5G fifth-generation mobile network PTD Packet transmission delay

6G sixth-generation mobile network PDP packet delivery probability

SDNs Software-defined networks MTTF mean time to failure

V2V Vehicle-to-Vehicle AP access points

DSRC Dedicated Short-Range

Communications

eCAVs Electric Connected Autonomous

Vehicles

V2I Vehicle-to-Infrastructure CPU central processing unit

eMBB enhanced Mobile Broadband UAVs Unmanned Aerial Vehicles

xvi

mMTC Machine Type Communications QoS Quality of service

URLLC Ultra-Reliable and Low-Latency

Communications

CDF Cumulative Distribution Function

NR-V2X New Radio Vehicle-to-Everything i.i.d independently and Identically

distributed

LTE Long Term Evolution Pdf Probability density function

SMC Secure Multiparty Computation PGF Probability Generating Function

MEC Mobile-Edge Computing Pmf Probability mass function

SaaS Software as a Service

1

Chapter 1

Introduction

1.1. Motivation for Vehicular Cloud

The number of smart devices, including vehicles, phones, watches, glasses, and meters, is

growing rapidly. New devices are introduced continuously, and they generate massive amounts

of data. These devices reside at the edge of the Internet, forming the network known as the

Internet of Things (IoT).

Data generated at the edge of the Internet is increasing rapidly due to vehicles equipped

with advanced sensors. The generated data is transient by nature, and its significance for

potential users decreases rapidly if not processed in a timely manner. The transferring of this data

to the cloud is not feasible because of cost and latency [1]. This led to the introduction of the

edge computing paradigm to provide computing power close to the source of data. However, this

also may not be sufficient as we move towards smart cities [2], which envision providing

intelligent services in transportation systems, healthcare, homes, workplaces, and more. Smart

cities interconnect city infrastructure, allowing data collection from various human and machine

sources. Additionally, recent smart devices like wearables and Augmented Reality/ Virtual

Reality (AR/VR) systems, which often execute computationally demanding and time-sensitive

applications, further increase the demand for nearby computing resources. The modern vehicles

are having high computational power and storage capabilities. These resources may be under

utilized which may be used to address the rising computational needs at the edge of the Internet

[3], [4]. The cluster of computation and interconnectivity based on a network of modern vehicles

is called a vehicular cloud (VC). As a result, the emerging vehicular cloud concept offers a

promising solution, combining the untapped computational resources of the vehicles to tackle the

challenges related to the generation of large amounts of data and latency requirements [5]–[7].

Vehicular cloud technology goes beyond simply offering surplus computational resources

to nearby devices; it also presents potential solutions to pressing societal issues like traffic

congestion and accidents. In the following sub-sections, we will explore the various applications

2

of vehicular cloud that can lead to safer and more efficient transportation systems as well as

creative value-added services and applications.

1.1.1. Improved traffic management

The exponential rise in vehicular traffic in recent years has placed considerable strain on

existing traffic management systems [8], prompting the search for innovative solutions to

alleviate congestion and improve overall traffic conditions.

It has been demonstrated that incorporating vehicular cloud technology into traffic

management systems can substantially improve traffic flow and reduce congestion. This is

largely due to the ability of vehicular cloud networks to collect and share real-time traffic

information from numerous vehicles, which allows traffic management systems to make more

informed decisions [9].

1.1.2. Enhanced road safety

Vehicular cloud may help to enhance road safety and reduce traffic accidents [10], [11].

One of the primary motivations for research in this domain is the rising number of fatalities due

to traffic accidents, which has been a global concern for years [12]. Vehicular cloud systems will

facilitate the exchange of critical data related to traffic conditions and road hazards, which can be

instrumental in developing predictive models and early warning mechanisms to mitigate

accidents. By pooling the sensing capabilities of multiple vehicles, the vehicular cloud can create

a more comprehensive and accurate picture of the road environment. Group sensing can help

identify potential risks and hazards, such as road obstructions or pedestrians, leading to improved

safety measures [13]. In the event of an accident, the vehicular cloud can streamline

communication between emergency services and connected vehicles, ensuring a faster and more

efficient response. Streamline communication can help minimize the severity of accidents and

improve overall road safety [14], [15]. As such, exploring the potential of the vehicular cloud for

improving road safety is essential for supporting safer and more efficient transportation

ecosystems.

3

1.1.3. Enabling new services and applications

One of the most compelling aspects of vehicular cloud computing is its ability to

facilitate dynamic and adaptive resource sharing, which can revolutionize providing services

such as in-vehicle infotainment and cooperative sensing [16], [17]. Additionally, the vehicular

cloud enables the proliferation of location-aware services, thus enhancing the overall driving

experience by providing real-time information about traffic conditions, parking availability, and

locations of interest [18]. Furthermore, vehicular cloud computing allows for seamless,

ubiquitous connectivity. This enables the development of many location-based services,

significantly improving the overall driving experience [19]. However, extensive research in

various aspects of the field is still necessary to realize these value-added applications. For

example, it is essential to explore advanced techniques for efficient management of vehicular

resources, as in [20], [21].

1.2. Architectures of Vehicular Cloud

Vehicular Cloud architecture has evolved since its conception due to the advancement in

vehicular design and technology, communication capabilities, and potential applications of VC.

Thus, it encompasses many different architectures, such as Vehicular Cloud Computing,

Vehicular Fog Computing, and Vehicular Edge Computing. Vehicular Cloud Computing is

originally an evolution of Vehicular-Ad-hoc-Networks (VANETs) inspired by Mobile Cloud

Computing (MCC) [22], which allows mobile devices, such as mobile phones and laptops, to

leverage cloud computing services and resources [23]. Eventually, as the number of data-

generating devices surged unexpectedly, Cloud Computing struggled to process these data in

real-time due to network bandwidth constraints. Consequently, Edge Computing [24] and Fog

Computing [25] emerged almost simultaneously to address the challenge in two different

manners. While Edge Computing proposes a pervasive and miniaturized version of Cloud

Computing and still permits users to leverage the processing of external edge servers nearby, Fog

Computing proposes a network of user devices to interconnect and “co-operate among them and

with the network to perform storage and processing tasks without the intervention of third-

parties.” Vehicular Edge Computing and Vehicular Fog Computing are the subsets of Edge

Computing and Fog Computing, respectively, where the users are the vehicles. However,

4

specific to the vehicular domain, edge servers can be placed at Road-side Units (RSUs) to serve

moving vehicles [26].

VC can also be classified into two categories called static or stationary VCs and dynamic

VCs. Static VCs are usually based on stationary vehicles in parking lots, while dynamic VCs are

based on moving vehicles on highways and roads in the cities.

As there is yet a realization of vehicular cloud, a VC architecture that is more recent and

evolved does not necessarily replace the older architectures. Thus, this section intends to

investigate the details of three primary vehicular cloud architectures: centralized, distributed, and

hybrid. Our goal is to dissect the unique attributes of each architectural type while assessing their

respective strengths and weaknesses concerning scalability, reliability, and communication

efficacy. By examining these architectures in depth, we aim to provide a comprehensive

understanding of the design principles supporting the development of robust and efficient

vehicular cloud systems.

1.2.1. Centralized architecture (Vehicular Edge Computing)

In the realm of vehicular cloud computing, the centralized architecture is characterized by

a central server, which is often a nearby edge computing system that serves the communication

and computation needs of vehicles and other network devices [27], [28].

The primary strength of the centralized architecture is its potential for improved

communication efficacy, as the single control entity can efficiently coordinate data transfer and

computation among vehicles [29]. Moreover, the centralized nature of this architecture facilitates

better resource allocation and task prioritization, which can lead to more efficient resource

utilization and overall performance improvements [20]. Another advantage is the ease of

implementing security measures, as the central control entity can oversee and enforce security

protocols across the entire network, ensuring a consistent and robust security framework.

Nevertheless, this architecture also exhibits certain drawbacks, particularly with regard to

scalability and reliability. As the vehicular cloud expands and the number of connected vehicles

grows, the central control unit may struggle to accommodate the increased computational

workload, leading to possible congestion and performance issues. Additionally, the centralized

5

nature of this architecture makes it vulnerable to single-point failures, as any disruption in the

central control unit can have significant consequences for the entire network.

In conclusion, the centralized architecture of the vehicular cloud offers benefits in terms

of communication efficacy, resource allocation, task prioritization, and security but may face

significant challenges regarding scalability and reliability.

1.2.2. Distributed architecture (Vehicular Fog Computing)

In the modern era of vehicular technology, the distributed architecture of the vehicular

cloud has emerged as a promising solution to harness the potential of computing resources

available in vehicles [7]. The distributed architecture of the vehicular cloud is based on the

assumption that vehicles are capable of handling offloaded computation, albeit with

opportunistic resources [30]–[37]. This architecture is characterized by its ability to utilize the

computing power of individual vehicles despite their resource intermittence nature.

Due to the distributed characteristics of the architecture, the system does not suffer

detrimentally when any single vehicle or component fails. In other words, this system's fault

tolerance capability is higher than the centralized system, which enables continuous operation

under this architecture. Additionally, since the computational workload is shared among multiple

vehicles, this system makes better use of under-utilized resources on vehicles [38]. Moreover, the

distributed architecture facilitates data processing closer to the source. This reduces energy

consumption from data transmission. Furthermore, a distributed architecture allows the system to

scale easily. A vehicle with computational resources and communication capabilities can easily

and seamlessly be integrated into the computing network. This flexibility to incorporate new

computing resources also means that utilization of the resources is opportunistic, and their

availability is time-varying. The increased reliability comes at the expense of increased

complexity in terms of communication and coordination among the vehicles, which could

potentially impact the overall efficacy of the communication process.

On the other hand, the pool of resources from the vehicles can vary dynamically due to

various reasons, such as congested communication channels or intermittent availability of

computing resources, which may penalize the overall performance of the vehicular cloud. As the

processing load is distributed across multiple vehicles, delays in communication between these

6

vehicles could negatively impact the speed at which tasks are completed. Moreover, the varying

capabilities of individual vehicles in terms of computing power and resource availability may

lead to an uneven workload distribution, further intensifying the latency issue [5].

1.2.3. Hybrid architecture

The hybrid architecture of the vehicular cloud allows offloading of the computational

tasks among vehicles, edge servers, and cloud servers, enabling dynamic allocation of resources

based on the workload at any given time [39]–[42]. By leveraging the unique capabilities of

these different entities, hybrid architecture aims to create a highly efficient and adaptive

computing environment to meet the ever-increasing and diverse demand for computation power

by new applications.

The architecture shares multiple advantages with the distributed architecture, such as

scalability, fault-tolerant, resource management, and scheduling flexibility. In this system, each

component, including the vehicles, edge servers, and cloud servers, can autonomously contribute

to the computational demands of the network, thereby mitigating the potential for bottlenecks in

processing capabilities [43]. Furthermore, it is almost always possible to find more resource

options for a specific task due to the diverse resource pool [44]. Moreover, hybrid architecture is

quite reliable because of its decentralized design. Single points of failure are distributed across

different computing platforms, creating a more stable system that is less likely to experience

major failures.

Hybrid architecture is not without its limitations. The communication efficacy between

vehicles, edge servers, and cloud servers may be hampered by latency issues, particularly in

scenarios where rapid real-time data processing is essential for optimal functionality. Another

potential issue with this architecture is the complex orchestration required to synchronize and

coordinate the dynamic offloading of computational tasks among vehicles, edge servers, and

cloud servers, thereby causing operational inefficiencies and worsening resource allocation

challenges. Another concern is the increased risk of security vulnerabilities in the system. The

larger and more diverse a system becomes, the more interfaces and vulnerabilities it might have.

Thus, there will be many more potential attack vectors to compromise the system.

7

1.3. Enabling technologies of Vehicular Cloud

The vehicular cloud cannot emerge without a foundation laid by other enabling

technologies since the vehicles have not always been computationally capable, and the

communication channels have not been advanced enough to support tasks offloading. Recently,

wireless communications, such as fifth-generation mobile network (5G) and sixth-generation

mobile network (6G) technologies and vehicle-to-everything (V2X) communication, have played

a pivotal role in facilitating the seamless exchange of information between vehicles and their

surrounding environment. The computation capacities of the vehicles have increased drastically

to support vehicular autonomy. Furthermore, advanced vehicular sensor systems have emerged

as an enabling technology, encouraging data from the sensor system to be processed by nearby

vehicles, which enhances situational awareness and cooperative decision-making in the vehicular

cloud. Software-defined networks (SDNs) offer adaptable resource management, enhancing

control and resource sharing in vehicular cloud operations.

Next, we will describe each of the enabling technologies mentioned above that is

contributing to the development of vehicular clouds.

1.3.1. Advanced vehicular sensor systems

In the present era, advanced sensor systems have emerged as indispensable components

of modern vehicles, contributing significantly to enhanced safety, performance, and efficiency.

Among the collection of sensors integrated into modern automobiles, radar, lidar, camera, and

ultrasonic sensors feature prominently, working together to achieve optimal vehicular operation

[45]. At the same time, the sensors produce an extremely large amount of data, which is

incredibly rich in contextual information, extremely valuable, highly time-sensitive, and location

bound. As such, the data must be processed immediately after its generation. However, the

colossal amount of data generated by these sensor systems poses a daunting challenge, as the

movement of this amount of data to the cloud is not feasible due to cost and bandwidth

limitations.

8

1.3.2. Wireless communication

The evolution of wireless communication enabling vehicular cloud systems started with

VANETs. Initially, VANETs were dependent on Vehicle-to-Vehicle (V2V) communication,

facilitated by Dedicated Short-Range Communications (DSRC). As the standards facilitating

VANETs evolved, which allowed vehicles to interact with surrounding infrastructure improved,

Vehicle-to-Infrastructure (V2I) paradigm emerged.

The introduction of 5G, the fifth-generation mobile network, played a significant role in

the evolution of vehicular communication. 5G offers superior speed, latency, and reliability

compared to its predecessors and is based on three pillars: enhanced Mobile Broadband (eMBB),

massive Machine Type Communications (mMTC), and Ultra-Reliable and Low-Latency

Communications (URLLC). The development of 5G has been crucial in fostering V2X

communication [46], [47], which aims to create a seamless flow of information among the

various elements in the transportation ecosystem.

V2X communication encompasses the exchange of information between a vehicle and

any other entity, including other vehicles, infrastructures, and people. V2X enables vehicles to

communicate with smart objects that belong to IoT. URLLC, the building block of V2X

communication, has significantly enhanced the capabilities and potential of vehicular cloud

systems by enabling real-time data sharing among vehicles. Recent studies have demonstrated

the superiority of New Radio Vehicle-to-Everything (NR-V2X) over Wi-Fi-based technologies,

such as DSRC, in terms of data rate and latency [48]. The study shows that NR-V2X can achieve

10 ms latency for 100 bytes and 1500 bytes packets for a communication range of up to 500 m.

Additionally, the study also shows that NR-V2X can achieve around 2 Mbps transmission rate

for non line of sight (NLOS) for 500 m, which is an order of magnitude difference compare to

Wi-Fi-based technologies. Other research has highlighted the advantages of Long Term

Evolution (LTE) - based V2X communication, including wide coverage, high capacity, and high

penetration [49]. More recently, empirical results show that LTE-V2X outperforms DSRC at

long range and higher traffic density [50], which enables further the realization of VC.

5G's key contribution to vehicular cloud systems is the enablement of V2X

communication, fostering connectivity and collaboration among vehicles, infrastructure

elements, and other road users. The ultra-low latency characteristics of 5G networks support

9

time-critical applications like collision avoidance, emergency response, and intelligent traffic

management [46]. Additionally, the high data rates offered by 5G networks significantly enhance

the computing capabilities of vehicular cloud systems, enabling the sharing of multimedia

content, advanced mapping information, and real-time data analytics [47]. By seamlessly

integrating 5G and V2X communication technologies, vehicular cloud systems can provide

vehicles with faster access to cloud computing resources, thereby improving the efficiency of

onboard computing units [51].

The significance of V2X in overcoming the challenges posed by unreliable

communication channels in the Vehicular Cloud cannot be overstated. By seamlessly connecting

vehicles and enabling resource sharing, V2X serves as the critical part of establishing a robust

and dependable distributed network of computing power, storage, and supplementary services

like location and witnesses [52]. V2X communication can also facilitate traffic flow

optimization, enhances situational awareness, and enables cooperative driving applications, such

as platooning or smart intersections [53]. This facilitation would reinforce and further stabilize

the communication channels in Vehicular Cloud. Additionally, by providing vehicles with access

to localized services and content, V2X technology significantly reduces dependence on

continuous Internet connectivity, leading to a more stable and efficient network [54].

1.3.3. Autonomous vehicles

Autonomous vehicles, commonly referred to as self-driving cars, represent a paradigm

shift in transportation, leading the way to a new era of mobility. These sophisticated machines

employ a wide range of sensors, algorithms, and advanced technologies to make their way

through city streets and highways and make split-second decisions autonomously without relying

on human input [4]. Consequently, autonomous vehicles promise to considerably mitigate

traffic-related accidents, enhance fuel efficiency, and improve overall traffic conditions [55]

while also potentially playing an enormous part in enabling vehicular cloud.

For example, autonomous vehicles can exchange data to maintain optimal distances,

circumvent collisions, and reduce redundant sensory resources. The latter perk permits the

reduction in overall computation utilization rate if the vehicles are not connected, allowing

excess computing to be leveraged by external devices. Furthermore, they can collaborate in

10

orchestrating traffic flow, thereby mitigating congestion and minimizing emissions. Additionally,

the immense processing power of autonomous vehicles can be harnessed to examine and

combine massive amounts of data, thereby facilitating the emergence of intelligent urban

ecosystems and cutting-edge transportation infrastructures. In sum, the emergence of

autonomous vehicles stands not only to revolutionize transportation and urban living in myriad

ways but also to support the emergence of vehicular clouds.

1.3.4. Software-defined networks (SDNs)

SDNs paved the way for a transformative change in network management and

orchestration, offering a more dynamic and programmable approach to controlling network

resources [56]. By decoupling the control plane from the data plane, SDNs promote a centralized

system for configuring, managing, and optimizing network infrastructure. The myriad

advantages of SDNs, encompassing flexibility, scalability, and resource optimization, have

brought about a wide array of applications spanning cloud computing, the IoT, and vehicular

networks, including vehicular cloud

 Software-defined networks play an instrumental role in facilitating vehicular cloud

deployment. Firstly, SDNs foster a more robust and efficient connection between vehicles,

thereby augmenting the overall vehicular cloud performance [57]. This is achieved through the

optimization of routing paths and the utilization of real-time information for adaptive network

infrastructure adjustments. SDNs are capable of managing and directing traffic in a distributed

manner, thus improving network resilience and flexibility. Further, SDNs also bolster the

security of the vehicular cloud by enabling distributed threat detection and mitigation [58].

Network traffic can be analyzed in various parts of the network for abnormal patterns, allowing

for a more comprehensive and efficient response to potential threats. Thirdly, SDNs facilitate the

management and allocation of vehicular cloud resources. By centralizing control, administrators

can effortlessly monitor the network's available resources of the vehicular clouds and allocate

them based on demand, mitigating resource contention and augmenting overall performance

[59]. Lastly, SDNs contribute to the scalability of the vehicular cloud. As the number of vehicles

surges, the network configuration can be easily adjusted and expanded to cater to growing

requirements [60]. In summation, software-defined networks are indispensable in actualizing

11

vehicular cloud and possess the potential to revolutionize vehicular communication and

resource-sharing paradigms.

1.4. Security and privacy in Vehicular Cloud

Vehicular cloud computing demands a thorough focus on security and privacy aspects. In

fact, security and privacy in vehicular clouds directly impact the passengers onboard, making

them two major obstacles in the implementation of vehicular cloud technology. Thus, ensuring

data security and integrity is a primary concern, requiring strong encryption techniques and

robust communication infrastructures to protect vehicular data against malicious actors and

breaches. Additionally, adopting privacy-protection methods, including data anonymization,

obfuscation, and aggregation techniques, is crucial for user anonymity and the reduction of

personal information exploitation. The brief literature review below outlines possible strategies

to tackle security and privacy issues in vehicular cloud, thereby increasing the feasibility of this

paradigm.

Data security and integrity are vital in information technology. Implementing strong

encryption algorithms is essential for secure vehicle communication, preventing eavesdropping,

tampering, or illegal data access [61]. Deployment of secure authentication protocols is

necessary for the confirmation of vehicle identities and the prevention of unauthorized access

[62]. Data integrity involves guaranteeing unaltered and consistent information, using techniques

like checksums, digital signatures, and error-correcting codes [63]. Preserving data integrity is

crucial for smooth vehicular cloud operation, as network-provided services rely on exchanged

data accuracy [64].

Privacy-preserving techniques are essential in modern digital environments. In vehicular

cloud, these techniques ensure data privacy for exchanged data volumes, including geolocation,

driving patterns, and vehicle diagnostics. Encryption can secure communication channels,

ensuring access solely for authorized entities [65]. Differential privacy can obscure individual

data points within aggregate datasets, preserving user privacy while providing valuable insights

[66]. Privacy-preserving techniques enable secure and private computation, using methods like

secure multiparty computation (SMC) and homomorphic encryption for computations on

encrypted data, preserving sensitive data confidentiality even during processing [67]. These

12

methods promote trust between users and service providers, driving widespread vehicular cloud

technology adoption.

1.5. Resource Management in Vehicular Cloud

Effective resource management plays an important role in vehicular cloud computing, as

it directly impacts the performance, efficiency, and quality of services offered by this

technology. More importantly, by employing well-designed resource management methods,

vehicles can be given more incentives to share their resources, promoting greater collaboration

and resource pooling within the network. The motivation for resource management in vehicular

cloud is to maximize system performance, minimize latency, and improve overall reliability

while addressing the challenges of limited availability, dynamic topology, and diverse

application requirements. In this context, various resource allocation and scheduling techniques

have been proposed to achieve these objectives, which can be categorized into six groups: game

theoretic approaches, auction-based mechanisms, learning-oriented optimization techniques,

optimization-based strategies, bio-inspired algorithms, and consensus-based methodologies.

Game theory provides a mathematical instrument for interpreting and examining strategic

interactions amongst multiple rational actors within a system [68]. Concerning vehicular clouds,

game-theoretic principles have been employed to investigate cooperative and adversarial

engagements between vehicles to attain optimal resource allocation [69]. Importantly, game

theory provides incentives for vehicles to share their resources, promoting more efficient

utilization and distribution of vehicular resources. Various game-theoretic frameworks have been

applied to vehicular cloud resource allocation, including cooperative games, non-cooperative

games [70], and coalitional games, each with its distinctive characteristics and assumptions.

Additionally, solution concepts, such as Nash equilibrium [71] and Pareto efficiency, have been

employed to analyze the outcomes of strategic interactions among vehicles, thus facilitating

stable and efficient resource allocation schemes.

Conversely, auction mechanisms offer a decentralized methodology for resource

allocation [72], [73]. Under this schema, vehicles can function as buyers and bidders, tendering

bids for accessible resources to satisfy their computational requisites. Auction-based mechanisms

provide incentives for vehicles to share their resources, as vehicles can benefit from pooling

13

resources together to increase their bidding power and maximize their chances of acquiring the

required resources. Auction-oriented systems can foster efficient resource allocation by

integrating market forces and stimulating competition amongst vehicles. Various auction

formats, such as double auctions [72], [74], have been proposed to facilitate resource allocation

in vehicular cloud environments. These auction mechanisms can be further refined through the

incorporation of incentive-compatible mechanisms, pricing schemes [75], and truthful bidding

strategies [76], ultimately prompting a fair and transparent resource allocation process.

Learning-centric optimization techniques are a promising approach to resource allocation

in vehicular clouds [27], [46], [77]–[79]. Such methods employ machine learning algorithms to

extrapolate knowledge from past experiences and adapt resource allocation strategies

accordingly. Incorporating learning-based optimization enables vehicular cloud systems to

accomplish superior resource allocation outcomes in dynamic and uncertain environments.

Various learning techniques, such as reinforcement learning [32], [46], [77], have been employed

to enhance resource allocation decisions in vehicular clouds. These algorithms can leverage

historical data and feedback mechanisms to continuously refine and update resource allocation

policies, ensuring a robust and adaptive response to changing vehicular network conditions.

Optimization-based strategies are grounded in mathematical models designed to

maximize or minimize an objective function while adhering to specified constraints. More

specifically, they intend to efficiently allocate computing, storage, and communication resources

among connected vehicles in a vehicular cloud network to solve computationally intensive tasks

[44]. These methods aim to maximize the overall performance and minimize the latency while

taking into account the constraints and requirements specific to vehicular environments, such as

high mobility, limited resources, and variable network conditions [34]–[36]. By leveraging

mathematical optimization techniques, such as linear programming [33], [80], integer

programming [81], and dynamic programming [82], researchers can attain optimal resource

allocation solutions for vehicular cloud systems. Moreover, multi-objective optimization

approaches, which consider multiple conflicting objectives simultaneously, have been proposed

to account for the trade-offs inherent in vehicular cloud resource allocation, ensuring a

comprehensive process [83].

14

Bio-inspired algorithms, as the name suggests, are heuristics and metaheuristics derived

from natural phenomena, emulating the processes observed in biological systems. These

algorithms, which include genetic algorithms [20], [37], [84], swarm intelligence [85], [86], and

ant colony optimization [87], have been used in vehicular cloud resource allocation due to their

adaptability and ability to find near-optimal solutions. These algorithms help manage the

complexity of resource allocation in vehicular cloud systems. Hybrid bio-inspired algorithms,

which combine multiple techniques, improve performance and efficiency. Examples include

combining genetic algorithms with particle swarm optimization or ant colony optimization,

enabling more efficient exploration and exploitation of the solution space [88]. As a result, bio-

inspired algorithms are well-suited for addressing the challenges of vehicular cloud resource

allocation.

Consensus-based methodologies employ distributed coordination and decision-making

principles to achieve consensus on tasks allocation amongst vehicles [39], [89]. Vehicles in a

network communicate, share information, and iteratively update their local knowledge to

converge on a collective agreement for tasks allocation. This approach to resource allocation

fosters a self-organized, decentralized system in which vehicles can collaborate and synchronize

their actions to attain optimal tasks distribution. Various consensus algorithms, such as the

average consensus algorithm [90], the weighted consensus algorithm [91], and the gossip-based

consensus algorithm [92], have been utilized to facilitate resource allocation in vehicular cloud

systems. Additionally, fault-tolerance mechanisms and privacy-preserving techniques can

improve the robustness and security of consensus-based resource allocation, ensuring reliable

and trustworthy resource distribution in vehicular networks.

1.6. Performance Modeling of Vehicular Cloud

As explained in the previous section, resource management deals with the allocation of

computational resources to tasks such that the system performance is maximized. In general,

resource management assumes that available resources and task workloads are constant. Given

the available resources and workload, it attempts to determine the optimal allocation of the

resources to the tasks. Thus, random processes that govern the system's behavior, such as the

15

arrival process of vehicles to the VC, residency times of the vehicles, number of tasks in a job,

and task execution times, are not captured.

Performance modeling of vehicular cloud systems attempts to evaluate system

performance by taking into account its stochastic nature. Job completion time, resource

utilization, and service capacity of vehicular cloud are important performance measures. There

are three primary methods of performance modeling: stochastic modeling, simulation, and

statistical analysis. Stochastic modeling offers a mathematical framework to study the

performance of vehicular clouds [93]–[97]. Simulation, on the other hand, creates a digital

environment replicating real-world vehicular cloud scenarios, enabling researchers to analyze

various configurations and identify potential bottlenecks without implementing them in an actual

system [39], [44], [98]. Lastly, statistical analysis involves examining data from real-world

vehicular cloud systems to identify trends and patterns in traffic, which can inform the design of

increasingly more efficient architectures [6].

As the main subject of this thesis is performance modeling using the stochastic modeling

method, detailed reviews of relevant works on the same subject matter will be discussed further

below in two different subsections divided by vehicular cloud architectures.

1.6.1. Hybrid or Centralized VC architectures

In [99], the authors address the growing demand for powerful mobile applications, such

as VR and AR, which are often limited by storage, computing capability, and battery life of

mobile devices. The paper focuses on an application scenario where Mobile-Edge Computing

(MEC) facilities are provided as a Software as a Service (SaaS) within a limited geographical

area for mobile-edge devices (MEDs). The authors employ a Markov model with requests

reneging to analyze the MEC system performance concerning task-dropping probability and

mean time spent by a computation request in the MEC system. They develop a design procedure

to identify the optimal number of computation resources to be allocated to the MEC system to

fulfill specific QoS requirements. However, the analytical model relies on several simplifying

assumptions, making the problem more manageable but potentially limiting the model's

applicability in more complex real-world scenarios.

[100] investigates the local delay problem in a MEC-based VANET, specifically focusing

on a suburban scenario where a vehicle node requires computing services from an edge node.

16

The authors derive closed-form expressions for both uplink and downlink local delays using

stochastic geometry. Key assumptions include the spatial distribution of vehicle nodes on each

street following an independent 1-D homogeneous Poisson point process (PPP) and edge nodes

being deployed at each intersection with a certain probability. Contrary to most existing local

delay models for VANETs, the authors employ a carrier sense multiple access (CSMA)

mechanism for channel access by both vehicle and edge nodes. The derived analytical model's

effectiveness is verified through numerical results, which also investigate the impacts of

underlying network parameters on the local delay. The model serves as a guideline for edge node

deployment. Despite its contributions, the work focuses exclusively on a suburban scenario,

leaving the analysis of an urban scenario to be explored in future research.

The work presented in [101] revolves around the performance modeling of a single-

server MEC system under a task scheduling strategy that considers both the priority and time

constraint of computing tasks. The authors construct a 3-D Markov chain to depict the queuing

and processing process at a MEC server, accommodating the task scheduling strategy. From this

Markov model, they derive the system's performance in terms of the average drop probability

and average waiting time. However, the work has its limitations, as it focuses on a single-server

MEC system, which may not be representative of more complex MEC systems.

In [102], the authors propose the use of Software Defined Vehicular Networks (SDVN)

to address the challenges posed by the significant increase in traffic within VANET, which has

resulted in considerable delays in data transfer. By employing reliable multi-hop cooperative

data dissemination (MHCDD) for data traffic forwarding, SD-VANETs, a form of SDVN,

enhance end-to-end connectivity and network resource utilization in dynamic network

topologies. The authors analyze the network model using 𝑀/𝑀/𝑚 queueing model to effectively

minimize delay and enhance throughput within the multi-server queueing system of SDVN.

[103] presents an analytical model for evaluating the performance of vehicular edge

computing (VEC) systems with bursty task arrivals. It’s assumed that the tasks may be executed

locally, at neighboring vehicles and edge servers. It’s assumed that the vehicles generate tasks

according to Markov Modulated Poisson Process (MMPP). Each vehicle keeps locally generated

tasks and the offloaded tasks from the neighboring vehicles in separate queues. They use a

Markov chain analysis to determine the average task delay. The analysis in this work does not

17

consider jobs with multiple tasks, and there is no resource volatility as the number of vehicles is

assumed to be constant.

In [104], a cooperative computation model is studied between the nearby vehicles and

edge servers. They consider three node computation model where the nodes are two vehicles and

an edge server. One of the vehicles is the host vehicle for the task, and the other vehicle and the

edge server are within one-hop communication range of the host vehicle. The authors consider

three execution modes of the task: by a single node, by two nodes, and by all three nodes. In the

cases of multiple node executions, the task is partitioned into subtasks, each to be executed by a

node. The analysis also takes into account communication reliability and overhead. They

determine the probability of successful completion of a task through constrained optimization.

Their results show that jobs with short deadlines and large data sizes will benefit from

cooperative computation as opposed to noncooperative solutions.

1.6.2. Distributed VC architecture

 In [105], the authors analyze a VC based on the vehicles at a traffic-light-controlled

intersection. The authors examine an intersection’s traffic by modeling it as a G/G/1 queue.

Then, they analyze it with the diffusion method. Based on this traffic model, the distribution of

the lifetime of the VC that follows a specific quality of service criteria, which is that number of

vehicles must be above a certain threshold, is determined. However, the task service strategy and

the performance of the VC under computational load have not been studied.

 [106] presents a model to evaluate the time-dependent performance of platooning

communications at intersections using the 802.11p protocol in autonomous driving scenarios.

The authors consider various movement behaviors of platoons at intersections, including turning,

accelerating, decelerating, and stopping, as well as the periodic change of traffic lights.

Subsequently, they establish a hearing network to reflect the time-varying connectivity among

vehicles. The pointwise stationary fluid flow approximation (PSFFA) is employed to model the

nonstationary behavior of the packet transmission queue. The packet transmission delay (PTD)

and packet delivery ratio (PDR) are derived, and the accuracy of the proposed model is validated

through simulation.

18

In the [107], the authors examined the performance of broadcast packets in a one-

dimensional VANET using the slotted ALOHA protocol. The analysis primarily centered on the

packet delivery probability (PDP) under a delay constraint, given its importance in safety-related

applications within VANETs. The authors used stochastic geometry theory to represent vehicle

locations and introduced an approximation technique to address spatial correlations in

interference. The authors showcased, via numerical and simulation findings, that spatial

correlations in interference have a notable impact on PDP and produced an analytical formula for

PDP that can be numerically computed.

In [108], [109], the authors investigated job completion time in a stationary VC in a

parking lot. It is assumed that the execution time of a job is a random variable with a finite mean,

and the residency time of the vehicles in the VC is exponentially distributed. For reliability, the

system uses redundancy which assigns a job to two vehicles. Each of the vehicles executes its

instance of the job. When one of the vehicles departs before finishing the execution of the job,

the remaining vehicle halts its execution, and the work done by the leaving vehicle is saved.

Then, the system starts recruiting an additional vehicle to resume the execution of the job. The

recruitment duration is a random variable with a general distribution. If a new vehicle is recruited

before the remaining vehicle departs, then the saved work is migrated to the new vehicle.

Following that, both vehicles resume the execution of the job. This iteration of the execution

fails if the remaining vehicle leaves before another vehicle is recruited. The unfinished work is

discarded, and a new iteration begins with the recruitment of two new vehicles for the execution

of the job. This process continues until the execution of the job is successfully completed. The

paper determines the expected completion time of job execution.

The work in [110] is a follow-up of [108] and it uses the same assumptions. They

propose an alternative approach for the derivation of job completion time that takes into account

the cost of failures. This is done by assuming that approximations to the first and second-order

moments of the parameters are available. They consider three scenarios: both the first and second

moments of both the duration of the recruitment and execution time of a job are available; only

the first moment of the job execution time is known; the first and second moments of the job

execution time are known. The scenario that assumes the availability of the first and second

moments of job execution time seems to follow the simulation results better than the other

19

scenarios. However, for longer job execution times, the correlation between the approximations

and simulations is not good.

In [111], the availability aspect of a stationary VC in a parking lot is analyzed using

stochastic modeling. Jobs are serviced under “𝐽𝑛” strategy, where each of the 𝑛 copies of a job is

executed by different vehicles. The work determines a closed-form expression for the mean time

to failure (MTTF) of 𝐽𝑛 job assignment and presents a formulation to determine 𝑛 given a QoS

threshold.

Though the works in [108], [110], [111] derive job completion time in a VC, the models

assume a stationary VC, and the job consists of a single task. The assumption of simultaneous

execution of a job by multiple vehicles increases job completion time substantially. Since the

model assumes a stationary VC with parked vehicles, this redundancy seems to be unnecessary,

as communication in this environment should be reliable.

In [112], the authors investigate job completion time for a dynamic VC system on a

highway with a service without redundant execution and migration overhead. It is assumed that

there are access points (AP) on the highway with arbitrary coverage, but there will be segments

of the highway with no coverage. The vehicles can only upload and download their work under

the coverage of an AP. The authors also assume that the downloading and uploading can only

occur under the coverage of a single AP, and a job can be completed by a single vehicle without

communicating with other vehicles. The authors list three scenarios where a vehicle completes

its job: a vehicle finishes a job under the coverage of one AP but finishes the uploading of the

result under the coverage of the next AP; job execution ends outside of the coverage of an AP;

job execution and uploading of the result is completed under the same AP. Then, the authors

derive the completion time of a job in each case. After that, they combine the results of the three

cases by weighing them with their limiting probabilities. The authors then confirm their findings

by simulation. Though this work studies job completion time in a dynamic VC, they assume that

the residency time of the vehicle does not expire during the execution of a job and a job consists

of a single task.

In [113], they study energy-aware resource management in Electric Connected

Autonomous Vehicles (eCAVs). It’s stated that these vehicles will generate a massive amount of

data that needs to be processed with minimum latency. This problem may be addressed by

20

having edge servers located at RSUs. However, this solution may not be scalable due to a large

number of vehicles, workload, and limited capacity of edge servers. Local execution of the

workload by operating a central processing unit (CPU) at a high frequency, even if it meets the

requirements, is not desirable because it will result in high power consumption, which will

reduce the driving range of the electric vehicle. It has been found that a task executed at a high

CPU frequency may consume much more power than executing a task at a lower CPU

frequency. As a result, energy savings may be achieved by partitioning the tasks into subtasks

and executing them in multiple vehicles in parallel at lower CPU frequencies. The authors

propose an energy management algorithm that minimizes computational energy by distributing

the workload among a number of eCAVs.

1.7. Research objectives

In this section, we explain the objectives of the research in this thesis. The widespread

realization and acceptance of VCs still face many challenges. These challenges arise due to the

volatility of resources, privacy concerns, and drivers not willing to share their resources.

However, the realization of many societal goals requires the assistance that VCs may offer.

Resource volatility arises from intermittent communication connectivity and random residence

times of the vehicles in the VCs. Advances in wireless communications, installation of RSUs,

and deployment of Unmanned Aerial Vehicles (UAVs) [114] will help maintain connectivity in

VCs. Smart vehicles and smart cities will benefit from cooperative driving in data collection and

forming a view of the environment. These will provide incentives for drivers to share their

resources and remain members of a VC for a longer period of time. Thus, drivers may be willing

to form a platoon by adjusting their speeds to prevent the breakup of the VCs. In the future, VCs

will be more stable and have longer lifetimes.

The objective of this thesis is the performance evaluation of these networks under

different operating environments and workloads. Important performance measures of VCs are

job completion time and their computation capacity. Knowledge of job completion time will help

inform deployment strategies and ensure that QoS requirements are met. The computation

capacity of a VC indicates the number of jobs that can be completed during the lifetime of this

system. The complexity of vehicular cloud systems presents a significant challenge to their

21

performance modeling. Next, we discuss the factors that impact the performance of these

systems.

- Ressource volatility: As stated in the above, the behavior of these systems can vary

greatly depending on the specific workload and environment in which they operate.

Since vehicles are moving in and out of the vehicular cloud randomly in these

systems, the available resources are time-varying. The variability of the resources

depends on whether VCs are dynamic or static. The volatility of the resources will be

higher in dynamic VCs than in static ones. Even in dynamic VCs, resource volatility

depends on whether VCs are formed on highways or on streets with traffic lights and

stop signs. Also, whether the traffic is free-flowing or congested impacts the

availability of resources. The residency time of vehicles in congested traffic will be

longer. The drivers caught in congested traffic will be more willing to share their

resources, especially if the objective of an application is to alleviate the congestion.

- Job Composition: The performance of the system depends on whether a job consists

of single or multiple tasks. In the case of a job with multiple tasks, whether these

tasks are independent of each other or dependent on each other also impacts the

performance. If the tasks of a job are independent, they can be executed concurrently

without waiting for the results from the other tasks.

- Service strategy: Another important factor that impacts the performance of the

system is the task service strategy. In this case, we have three service strategies:

interrupted, uninterrupted service, or hybrid task service. In the interrupted service

strategy, a task is assigned to a vehicle even if the residency time of the vehicle is not

sufficient to finish the execution of the task. In this strategy, when the vehicle departs,

the task is assigned to another vehicle, which resumes its execution from where it was

left. This strategy suffers from migration overhead. In the uninterrupted service

strategy, a task is assigned to a vehicle only if the residency time of the vehicle is

sufficient to finish the execution of the task. Thus, this strategy does not experience

migration overhead due to service interruption. However, if the execution time of a

task is long compared to vehicle residency times, then the task assignment may take a

long time. The job completion time increases due to migration overhead in the

interrupted service strategy and due to task assignment delay in the uninterrupted

22

service strategy. A hybrid service strategy is a mix of interrupted and uninterrupted

service strategies. It uses an interrupted service strategy to assign tasks with long

execution times and an uninterrupted service strategy to assign tasks with short

execution times. An important parameter will be the threshold that determines which

service strategy to use.

From the literature survey in the previous section, research work on the performance

evaluation of VCs is very limited. The references [108]–[111] determine the average job

completion time in a stationary VC in a parking lot. They assume a service strategy with

interruption, thus, a vehicle may depart before execution is completed. The drawback of this

work is that there is no vehicle arrival process to the VC. It is assumed that the amount of time to

recruit a vehicle to execute the job is a random variable with a general distribution. The

recruitment time is assumed to be the same whether or not there are vehicles in the parking lot.

Another drawback of these works is the assumption that the job consists of a single task.

The work in [112] determines job completion time in a dynamic VC on a highway

scenario. It is assumed that there are APs along the highway; however, there are gaps in the

coverage of the APs. Jobs may only be downloaded and uploaded under the coverage of APs.

The objective of the research in this thesis is to study the job completion time and the

throughput of the VCs under different service strategies in various environments.

1.8. Contributions

The main contributions of this thesis are centered around the performance modeling of

vehicular cloud systems using stochastic methods. These contributions are as follows:

1. Job completion time in a dynamic VC on a highway: In this work, we developed a

stochastic model to analyze the job completion time in a VC system deployed on a

highway. Our model accounts for the dynamic nature of the VC, where vehicles are

constantly entering and exiting the system. The computing power and the complexity of a

task are characterized by the time taken to complete the task.

Publication:

a. C. Tran and M. Mehmet-Ali, “Analysis of Job Completion Time in Vehicular Cloud

Under Concurrent Task Execution,” International Conference on Computing,

23

Networking and Communications (ICNC 2023). IEEE, Feb. 22, 2023. doi:

10.1109/ICNC57223.2023.10074524

b. C. Tran and M. Mehmet-Ali, “A Performance Modeling of Dynamic Vehicular

Clouds: Job Completion Time of Concurrently Executed Tasks,” 6th International

Workshop on Vehicular Networking and Intelligent Transportation Systems

(VENITS). July 18 – Accepted

2. Job completion time in VC with interruption avoidance strategy: We also developed a

model to analyze the job completion time in a VC system with an interruption avoidance

strategy. This strategy aims to prevent disruptions to the VC by only assigning the task to

a vehicle if it can complete it before it leaves the VC.

Publication:

a. C. Tran and M. Mehmet-Ali, “Towards Job Completion Time in Vehicular Cloud by

Overcoming Resource Volatility,” 2022 IEEE 47th Conference on Local Computer

Networks (LCN). IEEE, Sep. 26, 2022. doi: 10.1109/lcn53696.2022.9843398.

b. C. Tran and M. Mehmet-Ali, “Performance Analysis of Vehicular Cloud Under

Interruption Avoidance Strategy,” 2022 IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE). IEEE, Sep. 18, 2022. doi:

10.1109/ccece49351.2022.9918500.

3. The computing capacity of a VC with interruption avoidance strategy: In addition to

analyzing the job completion time, we also evaluated the number of jobs consisting of a

random number of tasks that a VC system can complete during its lifetime with an

interruption avoidance strategy.

Publication:

a. C. Tran and M. Mehmet-Ali, “Towards Modeling Computation Capacity of a

Vehicular Cloud while Overcoming Resource Volatility,” 2023 Biennial Symposium

on Communications (BSC 2023). IEEE, Jul. 4-7, 2023 - Accepted

4. The computing capacity of a robotaxi fleet: Finally, we studied the computing capacity of

a robotaxi fleet, a type of VC system where self-driving vehicles provide on-demand

transportation services and during their idles times perform task computations. More

specifically, the average number of completed tasks that a robotaxi fleet can complete is

analyzed, which can be determined numerically.

24

Publication:

b. C. Tran and M. Mehmet-Ali, “Robotaxis as Computing Clusters: A Stochastic

Modeling Approach,” Sixteen International Workshop on Selected Topics in Mobile

and Wireless Computing. IEEE, Jun. 21-23, 2023 - Accepted

Overall, this thesis makes measurable contributions to VC performance modeling by

comprehensively analyzing the job completion time and computing capacity of VC systems

under various scenarios and conditions.

1.9. Organization

The remainder of this thesis is structured as follows: Chapter 2 analyses job completion

time in a dynamic VC under free-flow and congested traffic conditions with a service

interruption strategy. Chapter 3 analyzes job completion time under an interruption avoidance

service strategy. Chapter 4 derives the computing capacity of a VC under the interruption

avoidance strategy, including the number of completed jobs for a given number of tasks. Chapter

5 derives the computing capacity of a robotaxi fleet, including the average number of tasks that

the fleet can complete. Finally, Chapter 6 presents the conclusions.

25

Chapter 2

Job completion time in a VC with service

interruption

In this chapter, we will evaluate the performance of a dynamic VC formed by moving

vehicles. We will consider a VC on a highway and study its performance both under free-flow

and congested traffic. In the model, the vehicles join the VC randomly, and after spending a

random amount of time, they depart. Thus the population size of the VC is time-varying. We

analyze the completion time of a job consisting of multiple tasks executed concurrently. We

consider a task assignment scheme where a task may only be served at any time by a single

vehicle, and a vehicle can only serve one task at a time. If a vehicle serving a task leaves the VC,

that task must be migrated to another vehicle. The migration occurs immediately if there is an

idle vehicle in the VC. Otherwise, the VC suspends the task until another vehicle becomes

available. Regardless, the VC migrates the image of the task to the new vehicle to resume

execution from where it was left. The execution of a job is completed when the execution of all

its tasks completes.

2.1 Free-flow traffic on a highway

Traditionally, highways are considered uninterrupted flow facilities [115]. However, it is

common to see congestion on highways in major cities. In this section, we will consider

highways with free-flow traffic where the residency time of the vehicles on the highway is

independent of each other.

First, we will analyze job completion time by assuming that migration overhead is

negligible. Then we relax this assumption, introduce migration overhead to the model, and use

an ad-hoc method to derive the bounds of the job completion time for this case. The main

26

contributions of this section are below:

• The system is modeled as a two-dimensional birth-death process, and a set of differential

difference-equations describing the system's behavior is provided. After solving these

equations, the job completion time's probability density function (pdf) is determined.

• Based on the first result, the probability distribution of the number of service interruptions

of a task is subsequently provided.

• Finally, the upper bound for average job completion time with migration overhead is

derived based on the previous results.

2.1.1. System model

Vehicle Cloud Model

We consider a highway scenario where the vehicles can wirelessly interconnect to form a

VC, as shown in Fig. 2.1.

Fig. 2.1. System model

It is assumed that a vehicle may generate a new job with several tasks. This vehicle is

called the owner of the job. Then, this vehicle initiates the formation of a VC and becomes the

VC's leader. We further assume that all the vehicles within the transmission range of the leader

become members of the VC, and these vehicles are called worker vehicles. The worker vehicles'

primary function is to execute the job's tasks. A worker vehicle has two states which are referred

to as active and idle. A worker vehicle is in the active state when working on a task; otherwise, it

27

is in the idle state. The leader only manages the assignment and migration of the tasks and does

not actively process the tasks. A worker can only process a single task at any time. The size of

the VC refers to the number of vehicles currently in the cloud, and it does not include the leader.

The population of the VC is dynamic since the workers join to and depart from the VC as they

may have different speeds than the leader. The VC terminates when processing of all the tasks of

the job is completed. In this work, workers and worker vehicles will be used interchangeably.

Similarly, the leader and leader vehicle are also interchangeable.

Job Model

We assume that a job consists of 𝔍 tasks, each requiring a random amount of processing

time. A worker vehicle can only execute a single task at any time and vice versa. Each task can

be in three states which will be referred to as completed, active, and suspended. A task is in the

completed state if its processing is complete. A task is in the active state if it is currently under

execution. A task is suspended if its processing is halted because no worker can process it. In

other words, the tasks in either active or suspended states are uncompleted. The processing of a

job finishes when all its tasks complete their processing. During the execution of a job, job size

refers to the total number of uncompleted tasks. At any time, the job size can be either bigger

than, smaller than, or equal to the VC size. If the VC size is larger than the job size, it means all

uncompleted tasks are in active state, and there are idle workers. On the other hand, if the VC

size is smaller than the job size, the number of tasks in the active state equals to the VC size, and

the remaining uncompleted tasks are in the suspended state. Finally, when the VC size equals the

job size, all the uncompleted tasks are in active state, and there are no idle workers or suspended

tasks.

Task Service Strategy

As explained above, each task may be served by a single vehicle, and each vehicle can

only serve a single task at any time. After generating a job and forming of the VC, the leader

vehicle randomly assigns the tasks to the worker vehicles initially present in the VC. If the job

size is larger than the VC size, the number of idle vehicles is zero, and unassigned tasks are

suspended. When a new worker joins the VC, if there are any suspended tasks, the leader

randomly chooses one of the suspended tasks and assigns it to the arriving worker vehicle for

execution. When a worker completes the processing of a task, the leader assigns to the vehicle a

28

suspended task, if any. When a worker departs from the VC, if this worker is serving a task, that

task will be suspended if there are no idle workers in the VC; otherwise, the leader will randomly

assign the task to one of the idle workers.

As an example in Fig. 2.2, we show an execution of a job with 3 tasks in a VC. At the

time of the VC formation, 𝑡0, there are 2 vehicles (vehicles 1 and 2) in the VC. Vehicle 1 is

randomly assigned task 3, and vehicle 2 is randomly assigned task 2. As may be seen, at time 𝑡1

vehicle 2 leaves the VC. Since there is no other vehicle that can take over the execution of task 2,

the task is suspended. At 𝑡2, vehicle 3 arrives to the VC, and the VC randomly chooses task 2 to

assign to the vehicle. As vehicle 3 leaves the VC shortly after, task 2 becomes suspended again.

At 𝑡3, vehicle 1 completes task 3. As there are 2 suspended tasks, the VC randomly chooses task

2 from the suspended tasks (tasks 1 and 2) and assigns it to the vehicle 1. At 𝑡4, vehicle 4 arrives

when only task 1 is in the suspended state. Therefore, the VC picks task 1 and assigns it to this

vehicle. When vehicles 5 and 6 arrive to the VC between 𝑡4 and 𝑡5, as there are no suspended

tasks these vehicles remain idle. Finally, at 𝑡5, vehicle 1 stops executing task 2 and departs from

the VC. Since vehicles 5 and 6 are idle, VC assigns this task to randomly chosen vehicle 6. Then,

the task immediately continues its execution.

Fig. 2.2. An example of a timeline of a VC executing a job of 3 tasks starting from the VC’s

creation to the completion of the job.

 The notation used in this sub-section is shown in Table 2.1.

29

Notation Description Notation Description

𝔍 Number of tasks in a job 𝜃𝑗
Subsystem 𝑗 representing the set of

states that is reachable from state

{𝑗, 𝑘} for a fixed value of 𝑗

𝜇 Service rate of a task 𝑋𝑗
Absorbing time of subsystem 𝜃𝑗 to

make the transition to an absorbing

state

𝜆 Arrival rate of vehicles 𝐺𝑋𝑗(𝑥𝑗)
Cumulative distribution function of

the absorbing time 𝑋𝑗

𝛼 Service rate of a vehicle 𝑔𝑋𝑗(𝑥𝑗)
Probability density function of the

absorbing time 𝑋𝑗

𝑟̅
Mean residency time of a vehicle in

the system
𝒢𝑗(𝑠)

Laplace transform of the probability

density function of the absorbing time

𝑋𝑗

𝑠̅ Mean execution time of a task 𝑌𝑛 Completion time of the 𝑛′𝑡ℎ task

𝜐̅
Average number of vehicles in the

system
𝒴𝑛(𝑠)

Laplace transform of the probability

density function of completion time

of the 𝑛′𝑡ℎ task

𝑘
Number of vehicles in the system,

𝑘 ≥ 0
𝑌̅𝑛 Average completion time of 𝑛′𝑡ℎ task

𝑗
Number of uncompleted tasks in the

system, 0 ≤ 𝑗 ≤ 𝔍
𝑌̅ Average task service time

𝑃𝑗(𝑡)
Probability that there are 𝑗

uncompleted tasks in the subsystem 𝜃𝑗

at time 𝑡.
𝛾

Probability that an execution of a task

will be interrupted

𝑃𝑗,𝑘(𝑡)
Probability that there are 𝑗

uncompleted tasks and 𝑘 vehicles in

the subsystem 𝜃𝑗 at time 𝑡
ℓ

Number of interruptions that a task

experiences during its service time

𝑄𝑘
Steady-state probability that there are

𝑘 vehicles in the system
ℓ̅

Average number of interruptions

leading to workload migration.
ℒ𝑗,𝑘(𝑠) Laplace transform of 𝑃𝑗,𝑘(𝑡)

Table 2.1. Main notations of section 2.1

2.1.2. An analysis of job completion time

Next, we analyze the system under the service strategy described in the previous

subsection. The objective of the analysis is determining the probability density functions of task

completion and job completion times. This objective requires the knowledge of the transient

behavior of the system starting from the time that the job is created to the completion of the last

task. Since, in this strategy, there will be service interruptions due to premature departures of

workers during the task processing, we will also be interested in the probability distribution of

the number of service interruptions a task undergoes during its execution.

30

i) Mathematical Assumptions

As stated in the previous subsection, a new job will have 𝔍 tasks. We assume that the

execution times of the tasks are independent and identically distributed (i.i.d) according to an

exponential distribution with parameter 𝜇. The assumption of exponential execution times for

tasks is often used in cloud computing [116]–[119] and, more recently, in vehicular edge

computing [99]. It is shown in [120] that the distances between two adjacent vehicles on a

highway are i.i.d with an exponential distribution. This result assumes a Poisson arrival of the

vehicles to an arbitrary point on a highway, which was empirically confirmed in [115]. In [6], the

vehicles' arrival and departure processes and the number of vehicles in a VC have been shown

empirically to follow a Poisson process. As a result, we will model VC population size as a

𝑀/𝑀/∞ queueing system with a Poisson arrival process with parameter 𝜆 and exponentially

distributed residency times with parameter 𝛼. We assume that at the time that a leader vehicle

creates the job, the number of worker vehicles in the VC is at a steady state. Defining k as the

number of worker vehicles in the VC, it is given by the steady-state probability distribution of

the number of customers in a 𝑀/𝑀/∞ queueing system. From [121],

𝑄𝑘 = 𝑃𝑟(𝑘 𝑤𝑜𝑟𝑘𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑉𝐶) =
(𝜆 𝛼⁄)𝑘

𝑘!
𝑒−𝜆 𝛼⁄ , 𝑘 ≥ 0

(2.1)

31

ii) State Transition Diagram of The System

A set of two variables, {𝑗, 𝑘}, may represent the states of the system, where 𝑗 denotes the

number of uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any

time. We note that when the system is in the state {𝑗, 𝑘}, it means that the execution of 𝔍 − 𝑗

tasks has been completed, and the number of suspended tasks is given by max(0, 𝑗 − 𝑘). We can

Fig. 2.3. State transition diagram for the system. In each state the number of uncompleted tasks

is shown above the of number of worker vehicles in the system.

32

model the system using a two-dimensional birth-death process, whose state-transition diagram is

shown in Fig. 2.3. In the figure, in the states of each row the number of vehicles varies while the

number of uncompleted tasks remains same. More specifically, in a row, the number of vehicles

increases by rate 𝜆 as the system state moves from left to right and decreases by rate 𝑘𝛼, where 𝑘

is the current number of vehicles in the VC, as the system state moves from right to left. In a

column, the number of unfinished tasks decreases by one as the system state moves from top to

bottom row by row. However, in the states of the left-most column the number of vehicles in the

VC is zero, i.e., 𝑘 = 0, as a result there are no transitions between the states in this column since

there are no vehicles to execute the tasks. Additionally, in the columns that have transitions

between neighboring states these transitions are uni-directional (going from top to bottom)

because no new tasks are created during job execution.

iii) Derivation of the Differential-difference equations describing the system

Next, we write the differential-difference equations describing the system in Fig. 2.3. We

identify four types of states in Fig. 2.3, which are shown in Fig. 2.4.

Fig. 2.4a shows the state transition diagram for the states {𝑗, 0} where 0 ≤ 𝑗 ≤ 𝔍. This

subfigure represents all the states in the first column and their adjacent states in the second

column in Fig. 2.3. In these states, no worker vehicles are available to process the tasks. Thus, all

the unfinished tasks are in a suspended state. Therefore, the transitions between the states only

involves the change in the number of vehicles in the system.

Fig. 2.4b shows the state transition diagram for the states {𝔍, 𝑘} where 𝑘 > 0. This

subfigure represents all the states in the first row except the left-most state and the adjacent states

in the second row from the top in Fig. 2.3. In these states, none of the tasks have yet been

completed, and min (𝔍, 𝑘) of the tasks are in the active state and the remainder are in the

suspended state. As previously noted, the transition between state {𝔍, 𝑘} and {𝔍 − 1, 𝑘} is uni-

directional since no new tasks are created during the job execution.

Fig. 2.4c shows the state transition diagram for the states {𝑗, 𝑘} where 0 < 𝑗 < 𝔍, 𝑘 > 0.

The subfigure corresponds to all the states in Fig. 2.3 except the first column and the first and

last rows. In these states, 𝔍 − 𝑗 tasks are completed, min (𝑗, 𝑘) tasks are in the active state and

𝑗 − min (𝑗, 𝑘) are in the suspended state. More specifically, we can see two uni-directional

transitions from the state with an additional uncompleted task to the state with one fewer

33

uncompleted tasks. Furthermore, we can see the transitions between the states on the same row

as the number of vehicles in the system increases and decreases.

Fig. 2.4d shows the state transition diagram for the states {0, 𝑘} where k > 0. This

subfigure corresponds to all the states on the bottom row and their adjacent states above in Fig.

2.3. As the last row represents states with no uncompleted tasks remaining in the system (or all

tasks have been completed), there is only a single uni-directional transition into states {0, 𝑘}.

Next, let 𝔓𝑗,𝑘(𝑡) denote the probability that there will be 𝑗 uncompleted tasks and 𝑘

worker vehicles in the system at time 𝑡. Then, from the state transition diagrams in Fig. 2.4, we

can write the following differential-difference equations describing the system,

𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝔓𝑗,1(𝑡) − 𝜆𝔓𝑗,0(𝑡), 𝔍 ≥ 𝑗 ≥ 0, 𝑘 = 0

(2.2)

Fig. 2.4. State transition diagram for the system for different values of 𝑗 and 𝑘.

(a) State transition diagram for 𝑘 = 0, 0 ≤ 𝑗 ≤ 𝔍

(b) State transition diagram for 𝑘 > 0, 𝑗 = 𝔍

(c) State transition diagram for 𝑘 > 0, 0 < 𝑗 < 𝔍

(d) State transition diagram for 𝑘 > 0, 𝑗 = 0

34

𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓𝔍,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓𝔍,𝑘+1(𝑡)

−[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝔍, 𝑘)𝜇]𝔓𝔍,𝑘(𝑡), 𝑗 = 𝔍, 𝑘 > 0 (2.3)

𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓𝑗,𝑘+1(𝑡)

−[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝔓𝑗,𝑘(𝑡)

+𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝜇𝔓𝑗+1,𝑘(𝑡), 0 < 𝑗 < 𝔍, 𝑘 > 0 (2.4)

𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓0,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓0,𝑘+1(𝑡)

−[𝜆 + 𝑘𝛼]𝔓0,𝑘(𝑡) + 𝜇𝔓1,𝑘(𝑡), 𝑗 = 0, 𝑘 > 0 (2.5)

The above set of differential-difference equations determines the behavior of the system,

and the solution of the set of equations must satisfy the normalization condition,

 ∑∑𝔓𝑗,𝑘(𝑡)

∞

𝑘=0

𝔍

𝑗=0

= 1

(2.6)

Next, we let 𝔓𝑗(𝑡), 𝔓 𝑘(𝑡) denote the marginal probability distributions of the number of

uncompleted tasks and the number of worker vehicles in the system at time 𝑡, respectively. Then,

 𝔓𝑗(𝑡) = ∑𝔓𝑗,𝑘(𝑡)

∞

𝑘=0

(2.7)

 𝔓𝑘(𝑡) =∑𝔓𝑗,𝑘(𝑡)

𝔍

𝑗=0

(2.8)

 𝔓𝑗(0) = {
1 𝑓𝑜𝑟 𝑗 = 𝔍
0 otherwise

(2.9)

 𝔓𝑘(𝑡) = 𝑄𝑘, 𝑘 ≥ 0 (2.10)

where in (2.10), 𝑄𝑘 is given by (2.1). We note that if the initial size of VC is larger than the

number of tasks in the job, all the tasks will be initially under execution by the worker vehicles.

35

In Appendix A, we have attempted to solve the above set of differential-difference

equations through transform methods. However, this approach was not successful because we

could not determine all the unknowns. As a result, we tried the decomposition approach to

below.

iv) Derivation of the joint probability distribution of the number of uncompleted tasks and

vehicles through decomposition

In the state transition diagram of Fig. 2.3, the states in row 𝑗 correspond to the system

having 𝑗 uncompleted tasks. When the system is in row 𝑗, it moves to the row 𝑗 − 1 immediately

when one of the tasks completes its execution. The execution of the job begins in one of the

states at the top row 𝔍, and it’s completed when the system enters one of the states at the bottom

row. Therefore, the job completion time is the sum of the periods the system spends in the states

in each row. Following this observation, we will derive the amount of time the system spends in

the states of each row. As a result, we will divide the system into several subsystems, where we

can analyze each subsystem independently of the other subsystems. Let 𝜃𝑗 denote the subsystem

j where 0 < 𝑗 ≤ 𝔍. We define the subsystem 𝜃𝑗 as the set of states of rows 𝑗 and 𝑗 − 1 in Fig. 2.3

with the state-transition diagram as shown in Fig. 2.5.

𝜃𝑗 = {(𝑗, 𝑘) ∀ 𝑘 ≥ 0 ∪ (𝑗 − 1, 𝑘) ∀ 𝑘 > 0}, 0 < 𝑗 ≤ 𝔍 (2.11)

The states of row 𝑗 − 1 for 𝑘 > 0 will be absorbing states [121] for this subsystem. When

the subsystem enters one of the absorbing states, then the system immediately exits the

subsystem 𝜃𝑗 and enters the subsystem 𝜃𝑗−1. This transition happens when service of one of the

tasks is completed. We will refer to the amount of time that the system spends in the subsystem

𝜃𝑗 as absorbing time and will denote it by 𝑋𝑗.

36

Next, we will derive the joint probability distribution of the number of uncompleted tasks

and the number of vehicles in a subsystem as a function of time. Since the subsystems are

analyzed independently, we set the initial time for each subsystem to zero. Let 𝑃𝑗,𝑘(𝑡) denote the

probability that there will be j uncompleted tasks and k worker vehicles in the subsystem 𝜃𝑗 at

time t. From Fig. 2.5, the behavior of the subsystem 𝜃𝑗 may be described by the following set of

differential-difference equations,

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝑃𝑗,𝑘+1(𝑡) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡), 𝑘 > 0

(2.12)

𝑑𝑃𝑗−1,𝑘(𝑡)

𝑑𝑡
= 𝑚𝑖𝑛(𝑗, 𝑘)𝜇𝑃𝑗,𝑘(𝑡), 𝑘 > 0

(2.13)

𝑑𝑃𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝑃𝑗,1(𝑡) − 𝜆𝑃𝑗,0(𝑡), 𝑘 = 0

(2.14)

Since the number of worker vehicles is at the steady state, the initial distribution of the

number of workers in the subsystem 𝜃𝔍 is given by (2.1). In the subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍, the

initial number of vehicles in the subsystem will be given by the number of vehicles in the

subsystem 𝜃𝑗+1 when that subsystem enters an absorbing state. As a result, we have the

following initial distributions,

Fig. 2.5. State transition diagram for subsystem 𝜃𝑗 . States {𝑗 − 1, 𝑘} are absorbing states.

37

𝑃𝑗,𝑘(0) = {
𝑄𝑘, 𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝜃𝑗 , 𝑗 = 𝔍

𝑃𝑗+1,𝑘(∞), 𝑓𝑜𝑟 𝜃𝑗 , 𝑗 < 𝔍

(2.15)

Moreover, we also note that at time 𝑡 = 0, the VC cannot have any completed task in the

subsystem 𝜃𝑗 , thus, we can write,

𝑃𝑗−1,𝑘(0) = 0, 0 < 𝑗 ≤ 𝔍, 𝑘 > 0 (2.16)

Next, let us define the following Laplace transform,

ℒ𝑗,𝑘(𝑠) = 𝕃{𝑃𝑗,𝑘(𝑡)} = ∫ 𝑃𝑗,𝑘(𝑡)
∞

𝑡=0

 𝑒−𝑠𝑡𝑑𝑡
(2.17)

To solve the set of equations (2.12) to (2.14), we will take their Laplace transforms,

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0)

= 𝜆ℒ𝑗,𝑘−1(𝑠) + (𝑘 + 1)𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

𝑘 > 0 (2.18)

𝑠ℒ𝑗−1,𝑘(𝑠) − 𝑃𝑗−1,𝑘(0) = 𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠), 𝑘 > 0 (2.19)

𝑠ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0) = 𝛼ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠), 𝑘 = 0 (2.20)

Next, we express ℒ𝑗,𝑘(𝑠) in terms of ℒ𝑗,0(𝑠). From (2.20), we can write ℒ𝑗,1(𝑠) in terms

of ℒ𝑗,0(𝑠),

 ℒ𝑗,1(𝑠) =
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)] (2.21)

Substituting 𝑘 = 1 in (2.18) while noting 𝑗 ≥ 1 gives,

𝑠ℒ𝑗,1(𝑠) − 𝑃𝑗,1(0) = 𝜆ℒ𝑗,0(𝑠) + 2𝛼ℒ𝑗,2(𝑠) − [𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠)

⇔ ℒ𝑗,2(𝑠) =
[𝑠 + 𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼

(2.22)

38

Substituting ℒ𝑗,1(𝑠) in (2.21) to (2.22), we can also express 𝐿𝑗,2(𝑠) in terms of 𝐿𝑗,0(𝑠) as

follows:

ℒ𝑗,2(𝑠) =
[𝑠 + 𝜆 + 𝛼 + 𝜇]

1
𝛼 [(𝑠 + 𝜆)ℒ𝑗,0

(𝑠) − 𝑃𝑗,0(0)] − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼

=
[
1
𝛼
(𝑠 + 𝜆 + 𝛼 + 𝜇)(𝑠 + 𝜆) − 𝜆] ℒ𝑗,0(𝑠) − [𝑠 + 𝜆 + 𝛼 + 𝜇]

1
𝛼 𝑃𝑗,0

(0) − 𝑃𝑗,1(0)

2𝛼

(2.23)

Next, we solve for 𝐿𝑗,𝑘+1(𝑠) in (2.18),

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

(𝑘 + 1)𝛼
ℒ𝑗,𝑘(𝑠) −

𝜆

(𝑘 + 1)𝛼
ℒ𝑗,𝑘−1(𝑠)

−
1

(𝑘 + 1)𝛼
𝑃𝑗,𝑘(0),

𝑓𝑜𝑟 𝑘 > 0 (2.24)

In (2.24), we see that ℒ𝑗,𝑘+1(𝑠) depends on ℒ𝑗,𝑘(𝑠), and ℒ𝑗,𝑘−1(𝑠). As a result, we can

express ℒ𝑗,𝑘+1(𝑠) recursively in terms of ℒ𝑗,0(𝑠) using (2.21) and (2.22). This implies ℒ𝑗,𝑘(𝑠) can

be written as a function of ℒ𝑗,0(𝑠) for 𝑘 > 0. Next, we show how to determine ℒ𝑗,0(𝑠) from the

normalization condition,

 ∑𝑃𝑗,𝑘(𝑡)

∞

𝑘=0

+∑𝑃𝑗−1,𝑘(𝑡)

∞

𝑘=1

= 1
(2.25)

Taking Laplace transform of the conservation relation in the above, we have,

 ∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑ℒ𝑗−1,𝑘(𝑠)

∞

𝑘=1

=
1

𝑠

(2.26)

After substituting (2.16) in (2.19), we solve for ℒ𝑗−1,𝑘(𝑠) as followed:

 ℒ𝑗−1,𝑘(𝑠) =
𝑚𝑖𝑛(𝑗, 𝑘)𝜇

𝑠
ℒ𝑗,𝑘(𝑠), 𝑘 > 0

(2.27)

39

Then, results in (2.21) and (2.27) are substituted on the left-hand side of (2.26), which

gives,

∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑
𝑚𝑖𝑛(𝑗, 𝑘)𝜇

𝑠
ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) +∑𝑠ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

+∑𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) + (𝑠 + 𝜇)ℒ𝑗,1(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=2

= 𝑠ℒ𝑗,0(𝑠) + (𝑠 + 𝜇)
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)]

+∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=2

(2.28)

Next, using the change of variables, we can rewrite equation (2.24) as below:

ℒ𝑗,𝑘(𝑠) =
[𝑠 + 𝜆 + (𝑘 − 1)𝛼 +𝑚𝑖𝑛(𝑗, 𝑘 − 1)𝜇]

𝑘𝛼
ℒ𝑗,𝑘−1(𝑠) −

𝜆

𝑘𝛼
ℒ𝑗,𝑘−2(𝑠)

−
1

𝑘𝛼
𝑃𝑗,𝑘−1(0),

𝑓𝑜𝑟 𝑘 ≥ 2 (2.29)

Since 𝑃𝑗,𝑘(0) ∀𝑘 ≥ 1 can be found from (2.15), as previously noted, ℒ𝑗,𝑘(𝑠) can be

expressed as a function of only ℒ𝑗,0(𝑠) from the recursion in (2.29). As a result, the sum

∑ [𝑠 + 𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)
∞
𝑘=2 in (2.28) can be expressed as a function of ℒ𝑗,0(𝑠). Therefore, we

can solve for the unknown function ℒ𝑗,0(𝑠) using (2.26).

After the determination of ℒ𝑗,0(𝑠), this means that we have obtained all ℒ𝑗,𝑘(𝑠) functions

using (2.21), (2.28) and (2.26). Then, by taking the inverse Laplace transforms of ℒ𝑗,𝑘(𝑠), 𝑃𝑗,𝑘(𝑡)

40

can be finally derived. In determining ℒ𝑗,0(𝑠) we need to truncate the infinite summation in

(2.28), the accuracy of this truncation is tested through simulation.

We note that from the final value theorem property of the Laplace transforms,

 𝑃𝑗+1,𝑘(∞) = lim
𝑠→0

𝑠ℒ𝑗+1,𝑘(𝑠) (2.30)

which gives the initial distribution of the number of vehicles in the subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍, in

(2.15). This initial distribution of the number of vehicles in a subsystem has also been confirmed

by simulation.

v) Derivation of the probability density function of the job completion time

We define the service time of a task as the time interval between the job generation and

the task completion time. Let 𝜏𝑖, 𝑠𝑖 denote the execution and service time of the task 𝑖,

respectively. Also, let sets 𝑇, 𝑆 denote the execution and service times of all the tasks in the job,

respectively,

 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑖 , … . , 𝜏𝔍}

 𝑆 = {𝑠1, 𝑠2, … . , 𝑠𝑖 , … . , 𝑠𝔍}

We note that the order of the service times of the tasks is not necessarily the same as their

execution time durations since the random assignment of the tasks to the vehicles and suspension

of the tasks may change the order of the service time completions. Thus, it is possible to have

𝑠𝑖 < 𝑠𝑗 despite of 𝜏𝑖 > 𝜏𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝔍. Let us define 𝑌 as the ordered set of task service times,

 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛, … , 𝑌𝔍}

where 𝑌1 denote the smallest and 𝑌𝔍 the largest of the task service times. Thus, the elements of

the ordered set of task service times satisfy the following inequalities,

 𝑌1 < 𝑌2 < ⋯𝑌𝑛 < ⋯ < 𝑌𝔍 (2.31)

As we noted before, when the subsystem 𝜃𝑗 reaches an absorbing state, the service time

of a task completes, and that subsystem makes a transition to the subsystem 𝜃𝑗−1. The ordered

41

service times of the tasks and absorbing time of the subsystems are related by the following

equations,

 𝑌1 = 𝑋ℑ (2.32)

𝑌𝑛 = 𝑌𝑛−1 + 𝑋(ℑ−𝑛+1) (2.33)

𝑌𝔍 = 𝑌ℑ−1 + 𝑋1 (2.34)

We note that the service time of the last task to complete, 𝑌𝔍, also corresponds to the

completion time of the job. Fig. 2.6 shows an example of the relationship between 𝑋𝑗, 𝜏𝑖, 𝑠𝑖 and

𝑌𝑛 for ℑ = 5.

First, we will determine the pdf of the absorbing time of each subsystem. Let us define

the cumulative distribution function (CDF) of the absorbing time of the subsystem 𝜃𝑗 as,

𝐺𝑋𝑗(𝑥𝑗) = 𝑃𝑟𝑜𝑏(𝑋𝑗 ≤ 𝑥𝑗)

= 1 − 𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) (2.35)

Let 𝑃𝑗(𝑡) denote the marginal probability distribution of the number of uncompleted tasks

in the subsystem 𝜃𝑗 at time 𝑡, then this distribution is given by,

𝑃𝑗(𝑡) = ∑𝑃𝑗,𝑘(𝑡)

∞

𝑘=0

(2.36)

We note that if 𝑋𝑗 is the absorbing time of the subsystem 𝜃𝑗 , at moment 𝑋𝑗, the system

will make the transition from the subsystem 𝜃𝑗 to subsystem 𝜃𝑗−1. Thus, the event 𝑋𝑗 > 𝑥𝑗 is

equivalent to the event that there are 𝑗 uncompleted tasks in the subsystem 𝜃𝑗 at time 𝑡. Then, the

complementary probability 𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) maybe determined from the marginal distribution of

the number of tasks in the subsystem 𝜃𝑗 as follow:

𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) = 𝑃𝑗(𝑥𝑗) (2.37)

Substituting the above in (2.35), we have,

42

 𝐺𝑋𝑗(𝑥𝑗) = 1 − 𝑃𝑗(𝑥𝑗) (2.38)

Then, the pdf of the absorbing time of the subsystem 𝜃𝑗 is given by

 𝑔𝑋𝑗(𝑥𝑗) =
𝑑𝐺𝑋𝑗(𝑥𝑗)

𝑑𝑥𝑗
= −

𝑑𝑃𝑗(𝑥𝑗)

𝑑𝑥𝑗

(2.39)

Next, we determine the pdfs of the completion time of the tasks. Let us define Laplace

Fig. 2.6. An example showing task execution and service times, subsystem absorption times for a

job with ℑ = 5 tasks. 𝜏𝑖 and 𝑠𝑖 are execution and service times of task i, 𝑌𝑖 is the service time of

the task that is i’th to complete.

43

transforms of the pdf of absorbing time of subsystem 𝜃𝑗 and service time of the task completed in

this subsystem as,

 𝒢𝑗(𝑠) = 𝐸[𝑒
−𝑠𝑋𝑗] (2.40)

 𝒴𝑛(𝑠) = 𝐸[𝑒−𝑠𝑌𝑛] (2.41)

 Since the absorbing times of the subsystems are independent of each other, we can first

rewrite equations (2.32) to (2.34) as follow,

 𝒴1(𝑠) = 𝒢ℑ(𝑠) (2.42)

𝒴𝑛(𝑠) = 𝒴𝑛−1(𝑠)𝒢(ℑ−𝑛+1)(𝑠) (2.43)

𝒴ℑ(𝑠) = 𝒴ℑ−1(𝑠)𝒢1(𝑠) (2.44)

From the above recursion, we can determine 𝒴𝑛(𝑠) and Laplace transform of the pdf of

the job completion time, 𝒴𝔍(𝑠), respectively, as

 𝒴𝑛(𝑠) = ∏ 𝒢𝑖(𝑠)
ℑ
𝑖=ℑ−𝑛+1 , 1 ≤ 𝑛 ≤ 𝔍 (2.45)

 𝒴𝔍(𝑠) =∏𝒢𝑖(𝑠)

ℑ

𝑖=1

(2.46)

Let 𝑓𝑌𝑛(𝑡) denote the pdf of the random variable 𝑌𝑛. Then, 𝑓𝑌𝑛(𝑡) may be obtained by the

inversion of 𝒴𝑛(𝑠). Similarly, the inversion of 𝒴𝔍(𝑠) gives the pdf of the job completion time

𝑓𝑌𝔍(𝑡). From the above, we can also obtain, the 𝑚𝑡ℎ moment of the task service time using the

following relation,

 𝑌̅𝑛
𝑚 = (−1)𝑚

𝑑𝑚𝒴𝑛(𝑠)

𝑑𝑠𝑚
|
𝑠=0

(2.47)

From the above, the first moment of service time of the 𝑛‘𝑡ℎ task to be completed is

given by,

44

 𝑌̅𝑛 = −
𝑑𝒴𝑛(𝑠)

𝑑𝑠
|
𝑠=0

(2.48)

The expected value of job completion time is given by 𝑌̅𝔍 using 𝒴𝔍(𝑠), from (2.46)

 𝑌̅𝔍 = −
𝑑𝒴𝔍(𝑠)

𝑑𝑠
|
𝑠=0

(2.49)

Let 𝑌̅ denote the average of the service times of all the tasks. Then, it is given by,

 𝑌̅ =
1

𝔍
∑ 𝑌̅𝑛

𝔍

𝑛=1

(2.50)

2.1.3. Derivation of the probability distribution of the number of service

interruptions

In this subsection, we determine the probability distribution of the number of service

interruptions of a task. Service of a task will be interrupted when a worker vehicle serving that

task departs prematurely from the system. Let 𝜏 and r denote the execution time of a task and the

residency time of a vehicle in the VC, respectively. Let 𝛾 denote the probability that the

execution of a task will be interrupted, then,

 𝛾 = 𝑃𝑟(𝜏 > 𝑟) (2.51)

Since the task execution times and the vehicle residency times are exponentially

distributed with parameters 𝜇 and 𝛼 respectively, then,

𝛾 = ∫ ∫ 𝜇𝑒−𝜇𝜏𝛼𝑒−𝛼𝑟𝑑𝑟𝑑𝜏
𝜏

0

∞

0

= ∫ 𝜇𝑒−𝜇𝜏 [∫ 𝛼𝑒−𝛼𝑟𝑑𝑟
𝜏

0

] 𝑑𝑡
∞

0

= ∫ 𝜇𝑒−𝜇𝜏(1 − 𝑒−𝛼𝜏)𝑑𝑡
∞

0

= ∫ 𝜇𝑒−𝜇𝜏𝑑𝑡
∞

0

−∫ 𝜇𝑒−(𝜇+𝛼)𝜏𝑑𝑡
∞

0

=
𝛼

𝛼 + 𝜇

(2.52)

Let ℓ denote the number of interruptions a task experiences during its service time. Since

45

the service interruptions are independent of each other, then the probability distribution of the

number of interruptions during the execution of a task is given by the geometric distribution,

 𝑃𝑟𝑜𝑏(ℓ = 𝑘) = (1 − 𝛾)𝛾𝑘 , 𝑘 = 0, 1, 2, … (2.53)

The average number of interruptions leading to a workload migration is given by

 ℓ̅ =
𝛾

1 − 𝛾

(2.54)

It is noted that not every service interruption results in the suspension of a task. If an idle

worker vehicle is available when a task is interrupted, its service will immediately resume.

However, every service interruption results in migration overhead.

2.1.4. Numerical and Simulation Results

In this subsection, we present the numerical results about the analysis and simulation

results to verify the analysis. The numerical results are obtained by solving for ℒ0,𝑘(𝑠) in (2.28).

This derivation requires truncation of the infinite summation. We set the upper limit of the sum

to be at least twice the mean of the average number of vehicles in the VC. As will be seen, the

simulation results validate this choice of the truncation limit. We used Monte Carlo simulation to

validate the numerical results, test the accuracy of the truncation of the infinite summation in

(2.28) and confirm that the analysis is error-free. The simulation program was written in Matlab

and is described in Appendix B.

We have chosen five cases to illustrate the results based on the average number of

vehicles in the VC, 𝜐̅, the average task execution times, 𝜏̅, the mean vehicle residency time, 𝑟̅,

and the number of tasks in a job, 𝔍. Table 2.2 presents the parameter values for each case in a

column. For cases 4 and 5, the residency time of the vehicles and the average number of vehicles

in the VC is higher. As a result, processing of jobs with a higher number of tasks with longer

task execution times will be possible.

46

Case 1 2 3 4 5

𝒓̅ (min) 6 6 6 20 20

𝒗̅ 2 4 8 9 9

𝝉̅(𝐦𝐢𝐧) 6 6 9 20 25

𝕵 2 4 4 6 8

Table 2.2. Values of system parameters

Table 2.3 presents the numerical and simulation results of the ordered average task

service times for cases 2 and 3 in Table 2.2. Also shown in the last column of Table 2.3. is the

overall average task service time (𝑌̅). It may be seen that the overall average service time is

larger than the average task execution time, 𝑌̅ > 𝜏̅. This difference is due to task suspension

times, which results from not having an idle vehicle to continue with the execution of a task. The

difference between the average task service time and the average task execution time gives the

average task suspension time, 𝑌̅ − 𝜏̅ . In Fig. 2.7, we plot the average task suspension time as a

function of the average number of vehicles in the VC, 𝑣̅, for Case 2. It may be seen that as 𝑣̅

increases, the average task suspension time decreases and eventually drops to zero. From this

point on, the job completion time is no longer dependent on the average number of vehicles in

the VC. We note that the numerical and simulation results are very close in both the table and the

figure.

Case 𝑌̅1 𝑌̅2 𝑌̅3 𝑌̅4 𝑌̅

2
Num 2.101 4.409 7.569 13.67 6.937

Sim 2.103 4.412 7.574 13.67 6.94

3
Num 2.293 5.311 9.817 18.82 9.06

Sim 2.293 5.308 9.815 18.82 9.059

Table 2.3. Numerical and simulation results for average task service time in minutes for

Cases 2 and 3

47

Fig. 2.7. Numerical and simulation results for average task suspension times as a function of the

average number of vehicles in the VC for Case 2.

Table 2.4 presents the average job completion time for all cases shown in Table 2.2. It

may be seen that the average job completion times in cases 4 and 5 are significantly higher than

the other cases because their average task execution times are longer, and the number of tasks in

the job is also higher. Fig. 2.8 to Fig. 2.10 show the average job completion time as a function of

the average number of vehicles in the VC, 𝑣̅, for cases 1, 3, 5 in Table 2.2. As may be seen, the

average job completion times continuously decrease with increasing 𝑣̅, until it reaches to a

plateau, at which, the job completion times are seemingly no longer dependent on 𝑣̅. As shown

in Fig. 2.7, this behavior is due to the elimination of the task suspension times with increasing 𝑣̅.

Fig. 2.11 to Fig. 2.13 show both the numerical and simulation results for the probability

density function of the job completion times for cases 1, 3, and 5 in Table 2.2. From the graphs,

we can see that the numerical results match the simulation results.

Case No 1 2 3 4 5

𝑌̅𝔍 (num) 11.861 13.666 18.82 49.296 68.954

𝑌̅𝔍 (sim) 11.869 13.669 18.818 49.282 68.956

Table 2.4. Numerical and simulation results for average job completion time in minutes for cases

in Table 2.2

48

Fig. 2.8. Average job completion time as a function of the average number of vehicles in the VC

for case 1in Table 2.2.

Fig. 2.9. Average job completion time as a function of the average number of vehicles in the VC

for case 3 in Table 2.2.

49

Fig. 2.10. Average job completion time as a function of the average number of vehicles in the

VC for case 5 in Table 2.2.

Fig. 2.11. Probability density function of the job completion time for the case 1 in Table 2.2

50

Fig. 2.12. Probability density function of the job completion time for the case 3 in Table 2.2

Fig. 2.13. Probability density function of the job completion time for the case 5 in Table 2.2

51

Fig. 2.14 shows the average number of service interruptions of a task as a function of the

mean vehicle residency time, 𝑟̅. It may be seen that the average number of interruptions

decreases as the residency time of the vehicles increases.

Fig. 2.14. Numerical and simulation results for the average number of interruptions as a function

of average vehicle residency time.

2.1.5. Approximate Analysis of Average Job Completion Time with Migration

Overhead

Next, we will present an adhoc method to determine an upper bound for average job

completion time with migration overhead. Execution of a task will be interrupted each time the

worker vehicle serving that task leaves the VC. As a result, the worker vehicle will take time to

upload its progress to the leader before it leaves. Similarly, an idle vehicle needs time to

download a task from the leader to resume its execution. We let m denote the upload/download

time of the VM. Thus, the total migration time overhead of each service interruption will be 2𝑚.

We will assume, in our case, the average size of a VM to be 2 Mbytes. Then given the average

data transmission rate is 1 Mbps in 5G NR V2X at 500 m [48], the average migration time,

including the overhead, would be approximately 20 seconds.

52

Simulations have shown that the impact of the migration overhead on the average job

completion time is more than the sum of the migration overheads during the job execution time.

Let 𝑌̅𝔍,𝑀 denote the average job completion time that includes migration. From the simulation

results, we found that it may be estimated as follows,

𝑌̅𝔍,𝑀 = 𝑏(2𝑚ℓ̅ + 𝑌̅𝔍)

Where ℓ̅ is the average number of interruptions from (2.54) and 𝑌̅𝔍 is the average job

completion time without migration overhead, and 𝑏 is a bias factor introduced to take into

account the extra migration overhead. Simulations have shown that the bias factor depends on

the average number of vehicles in the VC, assuming that mean residency time is constant. An

appropriate choice of the bias factor enabled us to determine an upper bound for average job

completion time. In Fig. 2.15 to Fig. 2.17, we present the average job completion times with

migration overhead for scenarios with different 𝑣̅ and a chosen migration time of 10, 20, or 30

seconds. From the comparison with the simulation results, the chosen bias factors result in tight

upper bounds for average job completion times.

Fig. 2.15. Average job completion time as a function of the average residency time of the

vehicles, 𝑟̅, for case 1 in Table 2.2.

53

Fig. 2.16. Average job completion time as a function of the average residency times of the

vehicles, 𝑟̅, for case 1 in Table 2.2 and 𝑣̅ = 4.

Fig. 2.17. Average job completion time as a function of the average residency times of the

vehicles, 𝑟̅, for case 1 in Table 2.2 and 𝑣̅ = 6.

54

2.2. Congested traffic on a highway

 As previously noted, while highways are often considered uninterrupted flow facilities in

traffic engineering, congestion is often seen in the cities. Thus, the vehicle model must be

adjusted to reflect the difference between free-flow and congested traffic flow. More specifically,

as vehicles slow down when more vehicles are on the highway during the congestion period,

their time spent in a VC should increase accordingly.

 Regarding the system model, the vehicular cloud model, job model, and task service

strategy will remain the same as the work in the previous section. The traffic model is the only

difference between this section and the previous section. Therefore, only the important steps of

the modeling and analysis will be presented in this section. The details of the analysis may be

found in Appendix C.

2.2.1. Modeling approach

In free-flow traffic, the residency times of the vehicles on the highway are independent of

each other. As a result, the motion of the vehicles in free-flow traffic is modeled as a 𝑀/𝑀/∞

queueing system. In a 𝑀/𝑀/∞ system, there is no customer waiting time, and the customer

delay in the system equals the customer service time. Under congested traffic, the residency

times of the vehicles on the highway are correlated with each other. As a result, the motion of the

vehicles in congested traffic is modeled with the 𝑀/𝑀/𝑚 queuing system, where 𝑚 is the

number of lanes on the highway. In a 𝑀/𝑀/𝑚 system, customers experience waiting time, and

customer delay is given by the sum of its waiting and service times. Since the customers' waiting

times depend on each other, customer delays will be correlated. In our application, the customer

delay in the queueing system corresponds to the residency time of a vehicle on a highway. Since

customer delays in a 𝑀/𝑀/𝑚 queueing system depend on each other, this will capture the

correlation between the residency times of the vehicles under congested traffic. We can find a

similar assumption made under a single-lane scenario with a general service time distribution in

[122].

55

Similar to the analysis of the job completion time during a free-flow traffic scenario, a set

of two variables, {𝑗, 𝑘}, will represent the state of the system, where 𝑗 denotes the number of

uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any time. Then

we can draw the state transition diagram for the system, as shown in Fig. 2.18. In the figure, in

Fig. 2.18. State transition diagram for the system in congested traffic. In each state number of

uncompleted tasks is shown above the number of worker vehicles in the system.

56

the states of each row the number of unfinished tasks in the system is same, and in the states of

each column the number of vehicles in the VC is same, similar to the case of free-flowing traffic

in Fig. 2.3.

The main difference between this model and the previous one is the transitions between

the states when there are at least 𝑚 vehicles in the system. Since the traffic is congested, and the

service rate of all the 𝑚 lanes is same, the rate of vehicles leaving the VC is limited by the

number of lanes, 𝑚, in the system. More specifically, the rate of vehicles leaving the VC should

be 𝑚𝛼 when there are at least 𝑚 vehicles in the system, as shown in the columns with at least 𝑚

vehicles in the system in Fig. 2.18. Additionally, the average wait time of a vehicle in a VC may

be nonzero. We note further that the vehicles can serve tasks during their wait time in the VC.

Therefore, the vehicles would stay longer in the VC to serve tasks under congested traffic

compared to the free-flowing traffic scenario with the same service time. As a result, jobs should

complete faster under congested traffic than free-flow traffic when all system parameters are

equal.

Then similarly to the decomposition approach in the previous section, we split the system

in Fig. 2.18 into subsystems, 𝜃𝑗 , based on the number of remaining uncompleted tasks in the

system, 𝑗. The state transition of each sub-system is shown in Fig. 2.19.

Fig. 2.19. State transition diagram for subsystem 𝜃𝑗 . States {𝑗 − 1, 𝑘} are absorption states. Once

the transition to states {𝑗 − 1, 𝑘} occur, the reverse transition is not allowed.

Due to the similarities of the models between the congested and free-flow scenarios, the

analysis is repetitive. As a result, the analysis of the model shown in Fig. 2.19 is presented in

Appendix C.

57

2.2.2. Numerical results

In this section, we present the numerical results of the analysis and Monte Carlo

simulation results to verify the accuracy of the analysis.

We obtain the numerical results by solving for ℒ0,𝑘(𝑠) in (C.26). The operation will

require truncation of the infinite summation. In this truncation, we set the upper limit of the sum

to be at least twice the mean of the average number of vehicles in the VC. As will be seen, the

simulation results validate this choice of the truncation limit. A Monte Carlo simulation program

has been written in Matlab, and the results are obtained over 106 runs.

Table 2.5 shows the numerical and simulation results of average job completion time, 𝑌̅𝔍,

for different values of average vehicle residency times, 𝑟̅. We assumed 𝔍 = 6 tasks in a job,

𝑚 = 4 lanes on the highway, mean task execution time (1/𝜇 = 6 𝑚𝑖𝑛), and mean service time

of the vehicles (1/𝛼 = 6 𝑚𝑖𝑛). The results were obtained for different values of vehicle arrival

rate. As the vehicle arrival rate increases, vehicle residency times increase because of increasing

congestion on the highway. As residency time increases, job completion times decrease since

there will be more vehicles in the VC to execute tasks. It may be seen that numerical results

match simulation results, showing that the analysis is correct.

𝑟̅(𝑚𝑖𝑛) 7 8 9 10 11 12 13 14 15 16 17 18

𝜌 0.589 0.69 0.747 0.785 0.813 0.834 0.851 0.865 0.876 0.886 0.894 0.901

𝑌̅𝔍 (Num) 22.05 19.59 18.46 17.77 17.31 16.97 16.71 16.51 16.35 16.21 16.09 15.99

𝑌̅𝔍 (Sim) 22.05 19.58 18.44 17.76 17.31 16.97 16.71 16.51 16.35 16.21 16.10 15.99

Table 2.5. Job completion time as a function of average residency time, 𝑟̅

2.3. Summary

In this chapter, we analyzed the performance of a dynamic VC serving a job with

multiple tasks under both free-flow and congested traffic flow on a highway. In free-flow traffic,

vehicle residency times are independent of each other, while in congestion, they are correlated.

As a result, under free-flow traffic, service to vehicles has been modeled as a 𝑀/𝑀/∞ , and

58

under congestion, it has been modeled as a 𝑀/𝑀/𝑚 queueing system. Since customer waiting

times in a 𝑀/𝑀/𝑚 system are dependent, that takes care of the correlation in the residency times

of the vehicles in the congested traffic. In the analysis, we assume that a task can be served by a

single vehicle at any time, and a task is not suspended if there are idle vehicles in the VC. A

transient analysis is carried out to determine the pdf of the job completion time under zero

migration overhead. This analysis is far more difficult than the steady-state analysis of Markov

chains. This result provides the minimum job completion time for any task-serving strategy

because a task will be served as long as there are idle vehicles in the VC. We show that as the

number of vehicles in the system increases, the task suspension times drop and the task service

time approaches to the task execution time. We also determine the distribution of the number of

service interruptions during task execution, which allows us to infer job completion time under

migration overhead. We provide extensive simulation and numerical results to show the accuracy

of our analytical model.

.

59

Chapter 3

Job completion time in a VC with service

interruption avoidance strategy

In the service strategy studied in the previous chapter, the execution of a task may be

interrupted if the vehicle serving the task leaves the VC. This service strategy may result in

excessive virtual machine migration overhead, and further, certain job models may require their

tasks to be entirely executed without interruption. In this chapter, we will consider a service

strategy that avoids interruption of task execution. In this strategy, a task will only be assigned to

a vehicle if the task execution time can be fitted entirely into the residency time of the vehicle.

This service strategy directly alleviates the challenges by ensuring that the tasks are executed

entirely without being interrupted by migration. However, we can intuitively see that the job

completion time under this service strategy may significantly increase depending on the

durations of task execution times and vehicle residency times. For instance, if a vehicle does not

reside in the VC long enough to complete the task in one go, the task must wait for future

vehicles with suitable residency times to arrive at the VC.

 In this chapter, for this service strategy, we will derive the distribution of the required

number of vehicle arrivals at the VC for the assignment of all the tasks, the bounds of job

completion time, and an approximation to job completion time.

3.1. System model

Next, we will describe the system model consisting of vehicular cloud, job model, and

task service strategy.

3.1.1. Vehicular cloud and job model

The vehicular cloud and job models are the same as the work in the previous chapter: the

VC is formed on a highway by the VC leader, which will recruit nearby moving worker vehicles

60

to assign the tasks of the job. Upon joining the VC, the workers will let the leader know their

routes and speeds, and, based on this information, the leader vehicle will be able to estimate their

residency times in the VC.

3.1.2. Task service strategy

A job is assumed to consist of 𝔍 independent tasks in our model, and each task requires a

random amount of execution time to be completed. A job will be completed when all its tasks

complete their executions. The leader will attempt to assign the vehicles to the remaining

unassigned tasks as vehicles arrive. For each arriving vehicle, the leader will assign the longest

unassigned task the vehicle can complete within its residency time. In making this assignment

decision, the leader will use its estimate of the residency time of the worker vehicle. Finally, the

vehicle will return the task execution results to the leader upon task completion and will not be

assigned any additional task. In this service strategy, tasks will not experience interruptions in

execution and, therefore, no interruptions-related workload migration overhead. Furthermore, a

vehicle joining the VC will either execute a single task or remain unassigned during its residency

time at the VC. Moreover, the unassigned task with the longest execution time will have the

highest priority for assignment to a vehicle. Thus, the first vehicle whose residency time is

longer than the longest task execution time will always be the one that will be assigned that task.

Another implication of this task service strategy is that the completion time of the last assigned

task will not always be the completion time of the job since the last assigned task is not always

the longest task. Finally, in this service strategy, a task with a long execution time may

substantially increase job completion time since assigning that task to a vehicle may take a long

time.

To demonstrate this task service strategy, we give an example in Fig. 3.1 showing how a

job of 4 tasks is assigned according to the vehicles' arrival times and residency times in the VC.

Firstly, the execution times of the four tasks of a job and their ordered execution times are shown

by the bar charts on the left of Fig. 3.1. The residency times of the vehicles arriving at the VC are

shown in the bar charts at the upper right of the figure, and the timeline showing the respective

arrival time of the vehicles and the completion times of the tasks are at the right bottom of the

figure. With respect to the task assignment order, when the first vehicle arrives with the

residency time 𝑅1 = 8 𝑚𝑖𝑛𝑠, it can execute tasks 2, 3 and 4. Therefore, the VC will assign it the

61

task with the longest execution time, which is task 3 with 𝑋3 = 7 mins. This task assignment

ensures that the task execution is completed within the residency time of vehicle 1. Next, when

vehicle 2 arrives with the residency time 𝑅2 = 1 𝑚𝑖𝑛, the vehicle cannot execute any remaining

tasks (1, 2 and 4) to completion during its residency time, it’s not assigned any task. For all the

subsequent arrivals, the same logic applies. Thus, upon the arrival of the 5th vehicle, the last task,

which is task 2, is assigned. As mentioned before, it is important to note that the last assigned

task is not always the task that completes last. As shown in the task assignment timeline in Fig.

3.1, the last task to complete in the job is task 1, which is assigned before tasks 2 and 4.

However, since task 1 has a much longer execution time than tasks 2 and 4, its completion time

is last. Furthermore, the completion time of task 1 is also the completion time of the job.

Fig. 3.1. An example of task service strategy for a job with four tasks.

3.1.3. System model assumptions

A job has 𝔍 independent tasks whose execution times are i.i.d random variables with

mean 1/𝜇. We assume that vehicles arrive at the VC randomly with mean interarrival time of

1/𝜆. We further assume that the residency times of vehicles are i.i.d random variables with mean

1/𝛼. Finally, we assume there are no vehicles in the VC when it is formed.

The main notations employed in this chapter is in Table 3.1.

62

Notation Description Notation Description

𝔍 Number of tasks in a job 𝑔𝑅𝑘(𝑟𝑘) Probability density function of 𝑅𝑘

𝐾
Number of vehicles have

joined the VC
𝐹𝑋𝑗(𝑥𝑗)

Cumulative distribution function of

𝑋𝑗

𝑟̅
Average residency time of

vehicles 𝐺𝑅𝑘(𝑟𝑘)
Cumulative distribution function of

𝑅𝑘

𝑠̅
Average execution time of

tasks
𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍)

Joint probability density function of

all order statistics of execution times

𝜏̅
Average interarrival time of

vehicles to the VC
𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾)

Joint probability density function of

all order statistics of vehicle

residency times

𝜇 Service rate of a task 𝐴𝐾

Event of all tasks are assigned when

there have been 𝐾 vehicles joining a

VC

𝜆
Arrival rate of worker

vehicles
𝐾𝔍

Number of vehicles arrivals at the VC

to assign the last task

𝛼
Departure rate of vehicles

from the VC
𝒟𝑈 Upper bound of job completion time

𝜉
Upper bound of the execution

time of a truncated task
𝒟𝐿 Lower bound of job completion time

𝑋𝑗
Random variable as execution

time of task 𝑗
𝑌𝑘 Arrival time of the 𝑘𝑡ℎ vehicle

𝑅𝑘
Random variable as residency

time of vehicle 𝑘
𝐾∗

Number of vehicle arrivals until the

longest task is assigned

𝑋(𝑗)
𝑗𝑡ℎ order statistics of

execution times
𝑍𝑋(𝑗)

Completion time of the 𝑗𝑡ℎ shortest

task

𝑅(𝑘)
𝑘𝑡ℎ order statistics of vehicle

residency times
𝑃𝐾𝔍(𝑘) Probability mass function of 𝐾𝔍

𝑓𝑋𝑗(𝑥𝑗)
Probability density function of

𝑋𝑗
𝑔𝑅𝑘(𝑟𝑘) Probability density function of 𝑅𝑘

𝔍 Number of tasks in a job 𝐹𝑋𝑗(𝑥𝑗)
Cumulative distribution function of

𝑋𝑗

𝐾
Number of vehicles have

joined the VC
𝐺𝑅𝑘(𝑟𝑘)

Cumulative distribution function of

𝑅𝑘

𝑟̅
Average residency time of

vehicles
𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍)

Joint probability density function of

all order statistics of execution times

𝑠̅
Average execution time of

tasks
𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾)

Joint probability density function of

all order statistics of vehicle

residency times

𝜏̅
Average interarrival time of

vehicles to the VC

Table 3.1. Main notations of this chapter

63

3.2. Mathematical preliminaries

We assume that task execution times have a general distribution that is supported by a

semi-infinite interval of (0,∞). As noted earlier, a task with a long execution time may

significantly increase job completion time. As a result, we will also consider the impact of the

bounding of the task execution times on job completion time. We let 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥) denote

the pdf and the cdf of task execution times, respectively. We can set upper bound for the task

execution times to 𝜉 by truncating the pdf as follows,

 𝑓𝑋(𝑥|𝑋 ≤ 𝜉) =
𝑓𝑋(𝑥)

𝐹𝑋(𝜉)

(3.1)

For task execution times that are exponentially distributed random variables with mean

1/𝜇 , the truncated pdf from (3.1) becomes,

 𝑓𝑋(𝑥|𝑋 ≤ 𝜉) =
𝜇𝑒−𝜇𝑥

(1 − 𝑒−𝜇𝜉)

(3.2)

We let 𝑋𝑗 denote the execution time of 𝑗’th task for 1 ≤ 𝑗 ≤ 𝔍, and 𝑅𝑘 denote the

residency time of the 𝑘’th vehicle, for 1 ≤ 𝑘 ≤ 𝐾, where 𝐾 is the number of vehicle arrivals at

the VC. We assume that 𝑋𝑗 and 𝑅𝑘 are i.i.d for 1 ≤ 𝑗 ≤ 𝔍 and 1 ≤ 𝑘 ≤ 𝐾. We further denote the

cdfs and pdfs of 𝑋𝑗 and 𝑅𝑘 as 𝐹𝑋(𝑥), 𝑓𝑋(𝑥) and 𝐺𝑅(𝑟), 𝑔𝑅(𝑟), respectively. Let us arrange all 𝑋𝑗

and all 𝑅𝑘 among themselves according to the order of their magnitudes as follows,

 𝑋(1) ≤. . . ≤ 𝑋(𝑗) ≤. . . ≤ 𝑋(𝔍), 𝑅(1) ≤. . . ≤ 𝑅(𝑘) ≤. . . ≤ 𝑅(𝐾) (3.3)

then 𝑋(𝑗), 𝑅(𝑘) are known as the 𝑗𝑡ℎ and 𝑘𝑡ℎ order statistics, respectively. From [39] the pdfs of

𝑋(𝑗) and 𝑅(𝑘) are given by,

 𝑓𝑋(𝑗)(𝑥) =
𝔍!

(𝑗 − 1)! (𝔍 − 𝑗)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]

𝑗−1[1 − 𝐹𝑋(𝑥)]
𝔍−𝑗

(3.4)

 𝑔𝑅(𝑘)(𝑟) =
𝐾!

(𝑘 − 1)! (𝐾 − 𝑘)!
𝑔𝑅(𝑟)[𝐺𝑅(𝑟)]

𝑘−1[1 − 𝐺𝑅(𝑟)]
𝐾−𝑘

(3.5)

64

We let 𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) and 𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) denote the joint distributions of all

𝑋(𝑗) and all 𝑅(𝑘), respectively, then

 𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) = ℑ!∏𝑓𝑋𝑖(𝑥𝑖)

ℑ

𝑖=1

(3.6)

 𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) = 𝐾!∏𝑔𝑅𝑖(𝑟𝑖)

𝐾

𝑖=1

(3.7)

3.3. Analysis of job completion time

In this section, the probability distribution of the number of vehicle arrivals to assign all

tasks of a job, the probability density function of the upper and lower bounds of the job

completion time, and the probability density function of the completion time of the longest task

will be determined.

3.3.1. Probability distribution of the number of vehicle arrivals for the

assignment of all the tasks in a job

In this subsection, we will determine the probability distribution of the required number

of vehicle arrivals to assign all the tasks in a job. For all the tasks to be assigned, there must have

been at least 𝔍 vehicle arrivals at the VC. Let 𝐴𝐾 denote the event that all the tasks have been

assigned when there are 𝐾 vehicle arrivals to the VC. If 𝐾 ≥ 𝔍, it means that 𝑅(𝐾−𝔍+𝑖) >

𝑋(𝑖), ∀𝑖 = 1. . 𝔍. The probability of the event 𝐴𝐾 is given by,

 𝑃𝑟(𝐴𝐾) = {
𝑃𝑟𝑜𝑏(𝑅(𝐾) > 𝑋(𝔍), … , 𝑅(𝐾−𝔍+1) > 𝑋(1)), 𝐾 ≥ 𝔍

0, 𝐾 < 𝔍

(3.8)

We note that the probability in (3.8) only involves the highest 𝔍 residency times, whose joint pdf

can be determined from (3.7) as,

 𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1) (3.9)

65

= ∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

 If the residency times of the vehicles are exponentially distributed, then integrations in

(3.9) can be evaluated, which results in the following closed form (derivation of this result is

given in Appendix D),

𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1)

= 𝐾! 𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙
𝑒−(𝐾−𝐽)𝛼𝑟𝐾−𝐽+1(𝑒𝛼𝑟𝐾−𝐽+1 − 1)𝐾−𝐽

(𝐾 − 𝐽)!

(3.10)

To determine the probability in (3.8), we need to derive the joint pdf of the ordered

vehicle residency times and the ordered task execution times, which is denoted as

ℎ𝑅(𝐾),…,𝑅(𝐾−𝔍+1),𝑋(𝔍),…,𝑋(1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1, 𝑥𝔍, … 𝑥1). Since task execution times are independent of

vehicle residency times, the joint pdf is given by,

ℎ𝑅(𝐾),…,𝑅(𝐾−𝔍+1),𝑋(𝔍),…,𝑋(1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1, 𝑥𝔍, … 𝑥1)

= 𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1)𝑓𝑋(𝔍),…,𝑋(1)(𝑥𝔍, … , 𝑥1) (3.11)

Then, 𝑃(𝐴𝑘) can be determined as,

 𝑃𝑟(𝐴𝐾) = ∫…∫ℎ𝑅(𝐾),…,𝑋(1)(𝑟𝐾, … , 𝑥1)
𝐷

𝑑𝑥1…𝑑𝑟𝐾
(3.12)

where in the above 𝐷 is the domain of the integration. Let 𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 and 𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 denote

the domain of integration for untrancated and truncated execution times respectively. Then, they

are given by (3.13) and (3.14),

𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = {(𝑥1, … , 𝑥𝔍, 𝑟𝐾−𝔍+1, … , 𝑟𝐾): (𝑥𝑖 ≤ 𝑟𝑗∀𝑗 = 𝐾 − 𝔍 + 𝑖, 1 ≤ 𝑖

≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝑥𝑖+1∀1 ≤ 𝑖 ≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑟𝑗 ≤ 𝑟𝑗+1∀𝐾 − 𝔍 + 1

≤ 𝑗 ≤ 𝐾 − 1)}
(3.13)

66

𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = {(𝑥1, … , 𝑥𝔍, 𝑟𝐾−𝔍+1, … , 𝑟𝐾): (𝑥𝑖 ≤ 𝑟𝑗∀𝑗 = 𝐾 − 𝔍 + 𝑖, 1 ≤ 𝑖

≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝑥𝑖+1∀1 ≤ 𝑖 ≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑟𝑗 ≤ 𝑟𝑗+1∀𝐾 − 𝔍 + 1

≤ 𝑗 ≤ 𝐾 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝜉∀1 ≤ 𝑖 ≤ 𝔍)}
(3.14)

 As an example, let us assume that we have 𝔍 = 2 tasks, then the domains of the

integration in (3.13) and for the untruncated and truncated cases are, respectively,

𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 = {(0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝑟𝐾 < ∞)} (3.15)

𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 = {(0 ≤ 𝑥1 < 𝑥2 < 𝜉 < 𝑟𝐾−1 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝜉 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝑟𝐾 < 𝜉)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝜉 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝑟𝐾 < 𝜉)}

(3.16)

 From (3.15) and (3.16), (3.12) can be rewritten for the untruncated and truncated cases as

shown in (3.17) and (3.18), respectively. We first denote ℎ𝑅(𝐾),𝑅(𝐾−1),𝑋(2),𝑋(1)(𝑟𝐾, 𝑟𝐾−1, 𝑥2, 𝑥1) as

ℍ2, then,

𝑃(𝐴𝐾,𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2)

= ∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾
𝑥2

0

𝑟𝐾−1

0

𝑟𝐾

0

∞

0

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾
𝑟𝐾−1

0

𝑥2

0

𝑟𝐾

0

∞

0

(3.17)

67

𝑃(𝐴𝐾,𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2) =

= ∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾
𝑥2

0

𝜉

0

𝑟𝐾

𝜉

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾
𝑥2

0

𝑟𝐾−1

0

𝜉

0

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾
𝑥2

0

𝑟𝐾−1

0

𝑟𝐾

0

𝜉

0

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾
𝑟𝐾−1

0

𝑥2

0

𝜉

0

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾
𝑟𝐾−1

0

𝑥2

0

𝑟𝐾

0

𝜉

0

(3.18)

Let 𝐾𝔍 denote the number of vehicle arrivals when the last task is assigned, and define

𝑃𝐾𝔍 (𝑘) as the probability distribution of 𝐾𝔍,

 𝑃𝐾𝔍 (𝑘) = 𝑃𝑟(𝐾𝔍 = 𝑘) (3.19)

Then, the probability of the event 𝐴𝐾 may be expressed in terms of 𝑃𝐾𝔍(𝑘) as,

 𝑃𝑟(𝐴𝐾) =∑ 𝑃𝐾𝔍(𝑘)
𝐾

𝑘=𝔍

(3.20)

From the above, finally, we determine the probability distribution of the number of

vehicle arrivals for the assignment of all the tasks in a job,

 𝑃𝐾𝔍(𝐾) = {
𝑃𝑟(𝐴𝐾) − 𝑃𝑟(𝐴𝐾−1), 𝐾 > 𝔍

𝑃(𝐴𝐾), 𝐾 = 𝔍
0, 𝐾 < 𝔍

(3.21)

68

3.3.2. Probability density function of the upper and lower bound of job completion time

Next, we will derive the pdf of the upper and lower bound of job completion time. First,

let us determine the pdf of the vehicle's arrival time assigned to the last task. Let 𝑌𝑘 denote the

arrival time of the 𝑘’th vehicle and 𝑓𝑌𝑘(𝑡) its pdf. Let 𝜏𝑘 denote the interarrival time of the 𝑘′𝑡ℎ

vehicle, then,

 𝑌𝑘 =∑𝜏𝑖

𝑘

𝑖=1

(3.22)

Since 𝜏𝑘∀𝑘 is assumed to be i.i.d with pdf 𝑓𝜏(𝑡), Laplace transform of 𝑌𝑘 could be

obtained as follows. Let us define 𝑌𝑘(𝑠) = 𝐸[𝑒
−𝑠𝑌𝑘] and 𝜏(𝑠) = 𝐸[𝑒−𝑠𝜏] as Laplace transforms

of 𝑓𝑌𝑘(𝑡) and 𝑓𝜏(𝑡), respectively. Then,

 𝑌𝑘(𝑠) =∏𝜏𝑖(𝑠)

𝑘

𝑖=1

= [𝜏(𝑠)]𝑘
(3.23)

If 𝜏𝑘 ∀𝑘 are exponentially distributed, then the pdf of 𝑌𝑘 is given by the Erlang

distribution [121],

 𝑓𝑌𝑘(𝑡) =
𝜆𝑘𝑡𝑘−1𝑒−𝜆𝑡

(𝑘 − 1)!

(3.24)

Let 𝑌𝐾𝔍 denote the arrival time of the vehicle which has been assigned to the last task.

Since, distribution of the number of vehicle arrivals to assign the last task is given in (3.21),

using the law of total probability, we determine the pdf of 𝑌𝐾𝔍 as follows,

 𝑓𝑌𝐾𝔍
(𝑡) = ∑𝑓𝑌𝑘(𝑡)𝑃𝐾𝔍(𝑘)

∞

𝑘=𝔍

(3.25)

Clearly, the job completion time will be the longest when the longest task is assigned for

execution last. Otherwise,job completion time will be the shortest when the shortest task is

69

assigned to execute last. Let 𝒟𝑈 and 𝒟𝐿 denote the upper and lower bound of the job completion

time, then,

 𝒟𝑈 = 𝑌𝐾𝔍 + 𝑋(𝔍) (3.26)

 𝒟𝐿 = 𝑌𝐾𝔍 + 𝑋(1) (3.27)

The pdfs of 𝒟𝑈 and 𝒟𝐿 can be determined from (3.26), (3.27) using convolution property

as follows

 𝑓𝒟𝑈(𝑡) = 𝑓𝑌𝐾𝔍
(𝑡) ∗ 𝑓𝑋(𝔍)(𝑡) = ∫ 𝑓𝑌𝐾𝔍

(𝑥)𝑓𝑋(𝔍)(𝑡 − 𝑥)𝑑𝑥
∞

0

(3.28)

 𝑓𝒟𝐿(𝑡) = 𝑓𝑌𝐾𝔍
(𝑡) ∗ 𝑓𝑋(1)(𝑡) = ∫ 𝑓𝑌𝐾𝔍

(𝑥)𝑓𝑋(1)(𝑡 − 𝑥)𝑑𝑥
∞

0

(3.29)

3.3.3. Mean of upper and lower bound of job completion time

Next, we will determine the mean of the job completion time's upper and lower bound.

From (3.26) and (3.27),

 𝐸[𝒟𝑈] = 𝐸[𝑌𝐾𝔍] + 𝐸[𝑋(𝔍)] (3.30)

 𝐸[𝒟𝐿] = 𝐸[𝑌𝐾𝔍] + 𝐸[𝑋(1)] (3.31)

 Similarly to the reasoning for the derivation of (3.25), the expected arrival time of the

vehicle which has been assigned to the last task is given by,

 𝐸[𝑌𝐾𝔍] = ∑𝐸[𝑌𝑘]𝑃𝐾𝔍(𝑘)

∞

𝑘=𝔍

(3.32)

Since the interarrival times are i.i.d., from (3.22), 𝐸[𝑌𝑘] = 𝑘𝐸[𝜏], where 𝐸[𝜏] = 1 𝜆⁄ .

Substituting this in (3.32) and then (3.32) in (3.30) and (3.31) gives the mean of the upper and

lower bound of job completion time as

70

 𝐸[𝒟𝑈] = 𝜆𝐸[𝐾𝔍] + 𝐸[𝑋(𝔍)] (3.33)

 𝐸[𝒟𝐿] = 𝜆𝐸[𝐾𝔍] + 𝐸[𝑋(1)] (3.34)

3.3.4. Probability density function of the longest task completion time

Due to the service strategy, the completion time of the longest task execution is expected

to be a good approximation of the job completion time. As a result, the pdf of the longest task

completion time will be derived in this subsection. Since the longest task has the highest

assignment priority, when a vehicle's residency time, 𝑅, is larger than the execution time of the

longest task, 𝑋(𝔍), it is the only possible task that can get assigned. Let us assume that the longest

task execution time is a constant, then the comparisons of 𝑅 and 𝑋(𝔍) are independent Bernoulli

trials. Let 𝑝∗ denote the probability that the outcome of a trial is a "success," we then have

 𝑝∗ = 𝑃𝑟𝑜𝑏(𝑅 > 𝑋(𝔍)|𝑋(𝔍) = 𝑐) (3.35)

Let 𝐾∗ denote the number of the vehicle that has been assigned the longest task. Then the

random variable 𝐾∗ has a geometric distribution with parameter 𝑝∗:

 𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾
∗ = 𝑘|𝑋(𝔍) = 𝑐) = (1 − 𝑝∗)𝑘−1𝑝∗, 𝑘 ≥ 1 (3.36)

We further denote the arrival time of the vehicle serving the longest task as 𝑌𝐾∗. Similarly

to the derivation of 𝑓𝑌𝐾𝔍
(𝑡) in equations (3.22) to (3.25), we can determine the pdf of 𝑌𝐾∗ as:

 𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑡|𝑋(𝔍) = 𝑐) = ∑𝑓𝑌𝑘(𝑡)𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾
∗ = 𝑘|𝑋(𝔍) = 𝑐)

∞

𝑘=1

(3.37)

When the interarrival time of the vehicles is exponentially distributed, substituting in the above

from (3.24), we have,

71

𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑡|𝑋(𝔍) = 𝑐) = ∑
𝜆𝑚𝑡𝑚−1𝑒−𝜆𝑡

(𝑚 − 1)!
𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾

∗ = 𝑘|𝑋(𝔍) = 𝑐)

∞

𝑚=1

= 𝜆(1 − 𝑝∗)𝑒−𝜆𝑡∑
(𝜆𝑝∗𝑡)𝑘−1

(𝑘 − 1)!

∞

𝑘=1

= 𝜆(1 − 𝑝∗)𝑒−(1−𝑝
∗)𝜆𝑡

(3.38)

Let us finally denote the completion time of the longest task as 𝑍𝑋(𝔍). Then,

 𝑍𝑋(𝔍) = 𝑌𝐾∗ + 𝑋(𝔍) (3.39)

Assuming that 𝑋(𝔍) is a constant, the conditional pdf of 𝑍𝑋(𝔍) can be written as

 𝑓𝑍𝑋(𝔍)|𝑋(𝔍)=𝑐
(𝑧|𝑋(𝔍) = 𝑐) = {

0, 𝑧 ≤ 𝑐

𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑧 − 𝑐|𝑋(𝔍) = 𝑐), 𝑧 > 𝑐
(3.40)

Since the pdf of 𝑋(𝔍) can be determined from (3.4), we can finally find the unconditional

pdf of the longest task completion time as :

 𝑓𝑍𝑋(𝔍)
(𝑧) = ∫ 𝑓𝑍𝑋(𝔍)|𝑋(𝔍)=𝑥𝔍

(𝑧|𝑋(𝔍) = 𝑥𝔍)𝑓𝑋(𝔍)(𝑥𝔍)𝑑𝑥𝔍

∞

0

(3.41)

3.4. Numerical results

In this section, we will present the representative numerical and simulation results to

show the correctness of our analysis. It is noted that the interarrival times and the residency times

of the vehicles will be chosen to be exponentially distributed in this section. We let 𝑟̅ denote the

average residency time of a vehicle, 𝑠̅ the average execution time of a task and 𝜏̅ the average

vehicle interarrival time. Simulation has been implemented in Matlab, and it has been described

in Appendix E.

Fig. 3.2 plots the probability of the event that all the tasks of a job will be assigned before

or at K’th vehicle, 𝑃𝑟(𝐴𝐾), as a function of the number of vehicle arrivals with average task

execution time as a parameter. Fig. 3.3 plots the probability of the event of assigning the last task

of a job at the k’th vehicle, 𝑃𝐾𝔍(𝑘), as a function of the number of vehicle arrivals for the same

72

system. We first note that the numerical and simulation results agree very well in both figures.

Furthermore, the figures support our intuitive understanding of the system's behavior. As the

average task execution times increases with constant vehicle residency times, finding a vehicle

that can execute a task within the vehicle's residency period becomes harder. Thus, the VC will

need more vehicles joining before finding the ones that can complete the job. This reasoning is

confirmed in Fig. 3.3 when the 𝑃𝐾𝔍(𝑘) curve for 𝑠̅ = 8 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, denoted by 𝑃𝐾𝔍
𝑠̅=8(𝑘), is

compared with the 𝑃𝐾𝔍(𝑘) curve for 𝑠̅ = 2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, denoted 𝑃𝐾𝔍
𝑠̅=2(𝑘), at 𝑘 = 4 and 𝑘 = 24: It

may be seen that 𝑃𝐾𝔍
𝑠̅=8(4) < 𝑃𝐾𝔍

𝑠̅=2(4) and 𝑃𝐾𝔍
𝑠̅=8(24) > 𝑃𝐾𝔍

𝑠̅=2(24) which confirms our intuition.

Fig. 3.2. Numerical and simulation results of probability of assigning all the tasks of a job as a

function of the number of vehicle arrivals with average task execution time as a parameter and

constant average residency time.

73

Fig. 3.3. Numerical and simulation results of probability of assigning the last task to the k’th

vehicle as a function of k with average task execution time as a parameter.

Fig. 3.4. Numerical and simulation results of upper and lower bound of job completion time for

truncated and untruncated task execution times.

74

Fig. 3.4 plots the cdf curves of the upper and lower bounds of job completion times

𝑃𝑟𝑜𝑏(𝐷𝑈 < 𝑡), 𝑃𝑟𝑜𝑏(𝐷𝐿 < 𝑡) and the simulation results of job completion times 𝑃𝑟𝑜𝑏(𝐷 < 𝑡)

under uninterrupted and interrupted task assignment schemes. Further, results have been plotted

both for truncated and untruncated task execution times. In the truncated cases, the upperbound

for task execution time is chosen to be 𝜉 = 4 𝑚𝑖𝑛. It may be seen that simulation results for job

completion time fall between the upper and lower bounds for both truncated and untruncated task

execution times. It's also seen that truncation of the distribution of the task execution time

effectively reduces the mean task execution time and job completion time and bounds. Finally,

it's seen that the system's performance under interrupted service with no migration overhead is

better than uninterrupted service. This observation is an example of the previous conclusion that

the pdf of job completion time under interrupted task assignment serves as the lowest bound of

any task servicing discipline.

Fig. 3.5 plots the numerical and simulation results of the pdf of the longest task

completion time and the simulation result of job completion time for untruncated task execution

times. Again, it may be seen that numerical and simulation results for the longest task

completion time agree well. Further, the results show that the completion time of the longest task

is a good approximation for the job completion time for this example.

Fig. 3.5. Numerical and simulation results for the pdf of the completion time of the longest task

for untruncated task execution time.

75

Fig. 3.6 presents the numerical and simulation results of the average completion time of

the longest task and the average simulation job completion time as a function of the number of

tasks in the job for truncated task execution times with bound 𝜉 = 8 and 𝜉 = 18 mins. It may be

seen that as the number of tasks in a job increases, the completion time of the longest task will no

longer be a good approximation for the completion time of the job. This may be due to having

other tasks with execution times close to the task with the longest execution time. Despite this

difference, as 𝜉 increases, the difference between these two vanishes regardless of the number of

tasks in a job, an example of which is shown in Fig. 3.7. This means that for the untruncated

case, the average job completion time can be approximated very well by the average longest task

completion time.

Fig. 3.6. Numerical and simulation results for the mean completion time of the task with longest

truncated execution time as a function of the number of tasks in a job.

76

Fig. 3.7. Simulation results for average completion time of the longest task and the job and their

ratio as a function of task execution bound.

3.5. Summary

In the VC architecture, there may be cases that task migration may not be desirable

because of its overhead or due to the Quality of Service (QoS) requirements of the application. In

these cases, the VC has to employ a service strategy to avoid workload migration caused by

interruptions. This chapter employs the strategy that the leader only assigns a task to a vehicle

when the vehicle can finish the task during its residency time in the VC. The arrival times, the

vehicles' residency times, and the execution times of the tasks in a job are assumed to be i.i.d

with arbitrary probability distributions. Based on this assumption and the interruption-avoidance

service strategy, we provide the probability distribution of the number of vehicles arriving at the

VC to assign all the tasks in a job. Based on this foundational result, the probability density

function of the bounds of the job completion times and their first moments are derived. We

derive the pdf of the competion time of the task with longest execution time. We show that

average longest task’s completion time is a good approximation for the average job completion

time. The numerical results show that if a job has tasks with long execution times this strategy

will result in long job completion times. As a result, it will be good to use a hiybrid strategy,

77

where short tasks are assigned according to the interruption avoidance strategy and long tasks

according to the strategy that allows interruption. Finally, Monte Carlo simulation results are

used to verify the numerical results of the analysis.

78

Chapter 4

Computing capacity of a VC with service

interruption avoidance strategy

In this chapter, we will derive the computing capacity of a VC during its lifetime for

service interruption avoidance strategy. The computing capacity gives us the distribution of the

number of jobs a VC can execute during its existence.

4.1. System model

In this section, we describe vehicular cloud, job, and service models and state the

mathematical assumptions.

4.1.1. Vehicular Cloud model

We assume a highway with free-flow traffic where vehicles can choose to interconnect

and form a VC through wireless communications. The vehicle that initiates the formation of the

VC becomes its leader. The leader recruits other vehicles and manages and assigns computing

tasks to the vehicles in the VC. A vehicle joining the VC agrees the VC to utilize its computing

resources and must connect directly to the leader to join the VC. We assume that the connectivity

range of the leader vehicle is sufficiently large. A vehicle may leave the VC when it exits from

the highway or if it decides to stop sharing its resources. The period that a vehicle is a member of

a VC will be referred to as its residency time. A vehicle joining to VC will share its path and

speed with the VC leader. Then, the leader will be able to estimate the residency times of the

joining vehicles. When the leader leaves the VC, its role is transferred to another member while

guaranteeing connectivity to the remaining members. The lifetime of a VC ends when the leader

is the only vehicle in the VC.

79

4.1.2. Job and service model

A job contains a number of tasks, which can either come from the VC members or

external mobile devices connected to the VC called a requester. A job may have random number

of tasks with Poisson distribution with parameter 𝛾. The execution times of the tasks will be i.i.d.

random variables with exponential distribution with parameter 𝜇. We assume that the VC

continuously receives jobs until the last vehicle leaves the VC; therefore, the VC never runs out

of jobs to execute.

In this work, a vehicle will keep executing tasks one after another during its residency

time in the VC. However, we assume an uninterrupted task service strategy which means that a

vehicle will only be assigned a task if it can finish its execution before leaving the VC. An

example of the job and service models are given in Fig. 4.1. In part a of the figure, we have job 1

and 2 with 5 and 4 tasks in each job, respectively. These tasks are ready to be assigned at the

conception of the VC. In part b of the figure, it shows that each vehicle executes tasks

subsequently, and the vehicles are only assigned the next task only if it finishes the current task.

This approach continues until the remaining residency times of the vehicles no longer

sufficiently long to execute the task entirely. Then the vehicle will be idle.

Fig. 4.1. An example of the job model and service strategy.

80

Notation Description Notation Description

𝜇 Service rate of a task 𝐽𝑖
Number of tasks served by the i’th

vehicle, 𝑖 = 1…𝑀

𝜆 Arrival rate of vehicles 𝐽(𝑧) Probability generating function of 𝐽

𝛼 Service rate of vehicles 𝕂
Number of tasks served during the

lifetime of a VC

𝑅
Residency times of the

vehicles in the VC
𝕂̅

Average number of tasks served

during the lifetime of a VC

𝑓𝑅(𝑟)
Probability density function of

the residency times
𝕂(𝑧) Probability generating function of 𝕂

𝑅(𝑠) Laplace transform of 𝑓𝑅(𝑟) 𝛾 Average number of tasks in a job

Τ
Interarrival times of the

vehicles at the VC
𝐿 Number of tasks in a job

𝑓Τ(𝜏)
Probability density function of

the interarrival times
𝐿𝑖 Number of tasks in the 𝑖𝑡ℎ job

𝑀

Number of customers served

during the busy period of a

𝐺/𝐺/∞ queue

𝐿(𝑧) Probability generating function of 𝐿

𝑀̅ Average number of customers

served during the busy period

of a 𝐺/𝐺/∞ queue

𝑃0
Probability that there is no task in a

job

𝑀(𝑧)
Probability generating

function of 𝑀
𝐴𝑛 Number of tasks in 𝑛 jobs

𝑀̂

Number of vehicles served

during the busy period of a

𝑀/𝐺/∞ queue

𝐴𝑛(𝑧) Probability generating function of 𝐴𝑛

𝑀̂(𝑧)
Probability generating

function of 𝑀̂
ℕ

Number of completed jobs during the

lifetime of the VC

𝐽
Number of completed tasks by

a single vehicle
ℕ̅

Average number of completed jobs

during the lifetime of the VC

𝜇 Service rate of a task 𝐽𝑖
Number of tasks served by the i’th

vehicle, 𝑖 = 1…𝑀

𝜆 Arrival rate of vehicles 𝐽(𝑧) Probability generating function of 𝐽

𝛼 Service rate of vehicles 𝕂
Number of tasks served during the

lifetime of a VC

𝑅
Residency times of the

vehicles in the VC
𝕂̅

Average number of tasks served

during the lifetime of a VC

𝑓𝑅(𝑟)
Probability density function of

the residency times
𝕂(𝑧) Probability generating function of 𝕂

Table 4.1. Main notations of Chapter 4

81

4.1.3. Mathematical assumptions

We will be considering free-flow highway scenario where vehicles' driving behaviors are

independent of each other. It will be assumed that the residency times of the vehicles in the VC

are i.i.d random variables with mean 1/𝛼 and pdf 𝑓𝑅(𝑟), whose Laplace transform is 𝑅(𝑠). We

assume that the interarrival time of the vehicles to the VC has the pdf 𝑓Τ(𝜏) and the arrival rate

of the vehicles is 𝜆.

The main notations employed in this chapter is shown in Table 4.1.

4.2. Derivation of the Computing Capacity

In this section, we will determine the number of completed jobs during the lifetime of a

VC. We first determine the number of vehicle arrivals to the VC during its lifetime and the

number of tasks each vehicle can serve during its residency. Then, we determine the total

number of completed tasks and, subsequently, the number of completed jobs during the lifetime

of the VC.

4.2.1. Probability generating function of the number of vehicle arrivals to the

VC during its lifetime

We will assume that the interarrival time of the vehicles to VC and residency time the of

the vehicles in the VC are i.i.d and they have arbitrary distributions. We will model the number

of vehicles in the VC as a 𝐺/𝐺/∞ queueing system. The lifetime of the VC corresponds to the

busy period of the queueing system. As a result, the number of vehicles that has joined to the VC

during its lifetime corresponds to the number of customers served during the busy period of a

𝐺/𝐺/∞ queueing system. Let 𝑀 denote the number of customers served during the busy period

of a 𝐺/𝐺/∞ queueing system and 𝑀(𝑧) its PGF. Then, from Theorem 4 in [123], 𝑀(𝑧) is given

by,

 𝑀(𝑧) =∑ 𝑧𝑛∫ …∫ ∏{[𝑓𝑅 (∑𝑥𝑗

𝑛

𝑗=𝑖

) − 𝑓𝑅(𝑥𝑖)] 𝑑𝑓Τ(𝑥𝑖)} 𝑓𝑅(𝑥𝑛)𝑑𝑓Τ(𝑥𝑛)

𝑛−1

𝑖=1

∞

0

∞

0

∞

𝑛=1

(4.1)

82

Let 𝑀̂(𝑧) denote the PGF of the number of customers served during the busy period of a

𝑀/𝐺/∞ queue. Then from Theorem 2 in [124], the above 𝑀(𝑧) reduces to,

 𝑀̂(𝑧) = 1 −
1

𝜆𝐹(𝑧)

(4.2)

where

 𝐹(𝑧) = ∫ 𝑒
[−𝜆𝑡+𝜆 ∫ 𝑧𝑅(𝑦)

𝑡
𝑦=0 𝑑𝑦]

𝑑𝑡
∞

𝑡=0

(4.3)

4.2.2. PMF of the number of completed tasks during the lifetime of a VC

Next, we will derive the number of tasks served during the lifetime of the VC. First, we

will determine the number of tasks a vehicle serves during its residency time in the VC. Since the

execution times of the tasks are i.i.d exponentially distributed with parameter 𝜇, the number of

tasks that a vehicle can serve is given by the number of Poisson points with parameter 𝜇 that may

occur during its residency time. Then, the distribution of the number of completed tasks by a

single vehicle, 𝐽, is given by

 𝑃(𝐽 = 𝑗) = ∫
(𝜇𝑟)𝑗

𝑗!
𝑒−𝜇𝑟

∞

0

𝑓𝑅(𝑟)𝑑𝑟

(4.4)

Let us denote the probability-generating function of 𝐽 as 𝐽(𝑧), then

 𝐽(𝑧) =∑𝑃(𝐽 = 𝑗)𝑧𝑗
∞

𝑗=0

=∑∫
(𝜇𝑟)𝑗

𝑗!
𝑒−𝜇𝑟𝑓𝑅(𝑟) 𝑑𝑟

∞

0

𝑧𝑗
∞

𝑗=0

(4.5)

Interchanging the order of summation and integration gives

 𝐽(𝑧) = ∫ 𝑒−(𝜇−𝜇𝑧)𝑟𝑓𝑅(𝑟) 𝑑𝑟

∞

0

= 𝑅(𝑠)|𝑠=𝜇−𝜇𝑧
(4.6)

where 𝑅(𝑠) is the Laplace transform of the residency time.

83

Let 𝕂 denote the number of tasks served during the lifetime of a VC, and 𝕂(𝑧) = 𝐸[𝑧𝕜]

denote the PGF of the distribution of 𝕂. Let also 𝐽𝑖 denote the number of tasks served by the 𝑖'th

vehicle, 𝑖 = 1…𝑀, where M is the number of vehicles that were members of the VC during its

lifetime. Then, 𝕂 is given by,

 𝕂 =∑𝐽𝑖

𝑀

𝑖=1

(4.7)

As 𝑀 and 𝐽𝑖 are independent, the PGF of 𝕂 is given by,

 𝕂(𝑧) = 𝑀(𝑧)|𝑧=𝐽(𝑧) (4.8)

4.2.3. Probability distribution of the number of completed jobs during the

lifetime of VC

Next, we will determine the number of jobs the VC will serve during its lifetime. We

assume that the number of tasks in a job is given by the Poisson distribution with parameter 𝛾

and each job has at least one task. Let 𝐿 denote the number of tasks in a job and 𝐿(𝑧) the PGF of

the distribution of 𝐿. Then, we have

 𝑃𝑟𝑜𝑏(𝐿 = 𝑖) = {
1

1 − 𝑃0

𝛾𝑖𝑃0
𝑖!

, 𝑖 ≥ 1

0, 𝑖 = 0

(4.9)

 𝐿(𝑧) = 𝐸[𝑧𝐿] =
𝑒−𝛾(1−𝑧) − 𝑃0

1 − 𝑃0

(4.10)

where 𝑃0 = 𝑒−𝛾.

 Let 𝐴𝑛 denote the number of tasks in 𝑛 jobs and 𝐴𝑛(𝑧) the PGF of 𝐴𝑛. Since the number

of tasks in each job is i.i.d, from (4.10), we can write the PGF of the sum of the tasks in 𝑛 jobs,

𝐴𝑛(𝑧), as

84

𝐴𝑛(𝑧) = [𝐿(𝑧)]𝑛 =
1

(1 − 𝑃0)𝑛
[𝑒−𝛾(1−𝑧) − 𝑃0]

𝑛

=
1

(1 − 𝑃0)𝑛
∑ (

𝑛

𝑘
) 𝑒−𝛾(1−𝑧)𝑘(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0

(4.11)

where the last equation in the above follows from the Binomial theorem. We also note that

 𝑒−𝛾(1−𝑧)𝑘 =∑
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
𝑧ℓ

∞

ℓ=0

(4.12)

 Substitute (4.12) into (4.11), then we have,

 𝐴𝑛(𝑧) =∑[
1

(1 − 𝑃0)
𝑛
∑ (

𝑛

𝑘
)
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0
] 𝑧ℓ

∞

ℓ=0

(4.13)

 From the definition of the probability-generating function, the probability distribution of

𝐴𝑛 can be determined from (4.13) as:

 𝑃𝑟𝑜𝑏(𝐴𝑛 = ℓ) = {

1

(1 − 𝑃0)𝑛
∑ (

𝑛

𝑘
)
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0
, ℓ ≥ 𝑛

0, ℓ < 𝑛

(4.14)

Finally, let ℕ denote the number of completed jobs during the lifetime of the VC and 𝐿𝑖

the number of tasks in the 𝑖𝑡ℎ job. Since the number of tasks in jobs is i.i.d, then the probability

distribution of 𝐿𝑖 is given by (4.10). Then, the probability that there will be 𝑛 completed jobs

given 𝕜 completed tasks when 𝕜 ≥ 𝑛 will be given by

85

𝑃𝑟𝑜𝑏(𝑁 = 𝑛|𝕂 = 𝕜) = 𝑃𝑟𝑜𝑏(𝐴𝑛 ≤ 𝕜 ∩ 𝐴𝑛+1 > 𝕜)

=∑𝑃𝑟(𝐴𝑛 = 𝒾)𝑃𝑟(𝐿𝑛+1 > 𝕜 − 𝒾)

𝕜

𝒾=𝑛

=∑𝑃𝑟(𝐴𝑛 = 𝒾)

𝕜

𝒾=𝑛

∑ 𝑃𝑟(𝐿𝑛+1 = 𝑗)

∞

𝑗=𝕜−𝒾+1

=∑𝑃𝑟(𝐴𝑛 = 𝒾)

𝕜

𝒾=𝑛

(1 −∑𝑃𝑟(𝐿𝑛+1 = 𝑗)

𝕜−𝒾

𝑗=1

)

(4.15)

We note that 𝑃𝑟(ℕ = 𝑛|𝕂 = 𝕜) = 0 for 𝕜 < 𝑛. From the inversion of 𝕂(𝑧) in (4.8), we

can determine the probability distribution of 𝕂, with which, we can determine the unconditional

distribution of the number of completed jobs during the lifetime of a VC, ℕ,

 𝑃𝑟(ℕ = 𝑛) = ∑𝑃𝑟(ℕ = 𝑛|𝕂 = 𝕜)𝑃𝑟(𝕂 = 𝕜)

∞

𝕜=𝑛

(4.16)

4.2.4. Average number of attempted jobs during VC lifetime

Although we can determine the average number of completed jobs from (4.16), we will

provide an alternative derivation of the average number of completed jobs which is

computationally less intensive. The work in [125] provides a closed-form result for the average

number of customers served during the busy period of an 𝐺/𝐺/∞ queue. Thus from equation

(2.6) in [125], the average number of vehicles that became a member of a VC during its lifetime,

𝑀̅, is approximately given by,

 𝑀̅ ≅
𝑒(𝜑

(𝐶𝑠
2+1))(𝜑(𝐶𝑠

2 + 1) + 1) + 𝜑(𝐶𝑠
2 + 1) − 1

2𝜑(𝐶𝑠2 + 1)

(4.17)

where 𝜑 and 𝐶𝑠 are the mean number of vehicles in the system and the coefficient of variance of

the residency time, respectively. We note

 𝜑 =
𝜆

𝛼
, 𝐶𝑠 =

√𝐸[𝑅2] − (𝐸[𝑅])2

𝐸[𝑅]
 (4.18)

86

 Then, the average number of completed tasks, 𝕂̅ , is given by,

 𝕂̅ = 𝑀̅𝐸[𝐽] = 𝑀̅𝐽′(𝑧) |𝑧=1 (4.19)

 Where 𝐸[𝐽] is the average number of tasks served to completion by a vehicle. 𝐽′(𝑧) is the

derivative of 𝐽(𝑧) wrt z, which is the PGF of the number of completed tasks by a vehicle during

its residency given by (4.5). Let us next determine the average number of tasks in a job. From

(4.9),

 𝐿̅ =
𝛾

1 − 𝑃0

(4.20)

Finally, the average number of completed jobs during the lifetime of a VC is given by

 ℕ̅ =
𝕂̅

𝐿̅

(4.21)

4.3. Numerical results

In this section, we will present numerical results from the analysis above as well as

simulation results to demonstrate that the analysis is correct. We assume that the interarrival and

residency times of the vehicles are exponentially distributed. In the base case, the values of

system parameters are set as 𝛼 = 0.2 vehicle/min, 𝜇 = 1/3 tasks/ min, 𝜆 = 1 vehicle/min, 𝛾 = 4

tasks.

Fig. 4.2 to Fig. 4.4 plot the average number of job completions as one of the parameters

in the base case varies. In general, the system performance confirms our intuition of the system.

An increasing 𝜆 leads to more job completions as there will be more vehicles during the lifetime

of a VC to execute tasks, as shown in Fig. 4.2. An increasing 𝛼 or a shorter average residency

time reduces the number of tasks that a vehicle completes. Thus, the number of completed jobs

will be less, which is shown in Fig. 4.3. An increase in the average number of tasks in a job, 𝛾,

will decrease the number of completed jobs, as shown in Fig. 4.4. Finally, it may be seen that

numerical and simulations results agree with each other.

87

Fig. 4.2. The average number of jobs completed as a function of vehicle arrival rate

Fig. 4.3. Average number of completed jobs as a function of vehicle service rate.

88

Fig. 4.4. Average number of jobs completed as a function of average number of tasks in a job.

4.4. Summary

In this chapter, we analyze the computing capacity of a VC architecture. Similar to the

previous chapters, the VC is formed by vehicles on a free-flow highway. However, in this

chapter, when the leader leaves the VC, the leadership is transferred to another member without

disconnecting the remaining members. Furthermore, a vehicle can join the VC if it allows the

VC to utilize its computing resources and is within the communication range of the leader of the

VC. The VC exists when at least one vehicle is in the VC and terminates when the last vehicle

disconnects from the VC. The number of completed jobs characterizes the computing capacity of

the VC during its existence. We model the number of vehicles within the VC as a 𝑀/𝐺/∞

queueing system. The number of tasks in a job follows a Poisson distribution and task execution

times are exponentially distributed. Under these assumptions, we first determine the probability

distribution of the total number of vehicles that join the VC during its existence. Then, we follow

up with the distribution of the number of tasks served by these vehicles. Finally, we derive the

distribution of the number of jobs completed during the VC lifetime.

89

Chapter 5

Computing capacity of a robotaxi fleet

Future vehicles will likely become increasingly autonomous for various reasons, such as

comfort, safety, and economics. In fact, besides traditional modes of transportation, passengers

will be able to order autonomous taxis or robotaxis operated by technology companies to get to

their destinations. From the perspective of the robotaxi fleet operators, they would want to utilize

all the resources of their fleet fully and continuously. However, passengers’ demand for robotaxi

services will be high during rush hours and low during off-peak periods. Thus, the operators are

left with an intermittently idling fleet of computationally powerful autonomous vehicles. This

work explores the possibility of utilizing the processing units on these vehicles as a computing

cluster during their idling period and providing computing services to nearby external customers

with computationally demanding tasks.

Computing cluster based on robotaxis is a form of edge computing (EC) and, therefore,

holds several advantages over cloud computing. For example, a robotaxi fleet can execute tasks

with lower latency than cloud computing due to its proximity to end users. Additionally, as

developers must design robotaxis to be fault-tolerant to ensure passengers’ safety, the onboard

computing units should also be relatively reliable. This characteristic of robotaxi-based EC will

ensure the ease of deployment and operation of such computing clusters. Therefore, the

feasibility of such a system should be higher than its counterparts.

We study the performance of the system under two scenarios, infinite and finite backlog

of tasks. In the infinite backlog case, there will always be tasks to execute for idling taxis. In this

case, we derive the probability distribution of the number of tasks that the fleet can serve to

completion during a cycle. A cycle is defined as the interval between two consecutive time

points when the entire fleet becomes idle. In the finite backlog case, we assume that the tasks

requiring service arrive at the system according to a Poisson process. The tasks requiring service

enter a queue until they can be served by an idling taxi. If a task is pre-empted during execution

90

due to the arrival of a passenger service request, it has to wait until another idling taxi becomes

available. We derive an approximation for the average task delay in the system.

5.1. System model and assumptions

5.1.2. Robotaxi model

 We consider a robotaxi company that owns a fleet of vehicles. The fleet operates in a

geo-fenced area for regulatory and efficiency reasons and serves only passenger requests within

that area. To manage and assist the operations of the vehicles of the fleet, the fleet operator

connects wirelessly to the vehicles. The operator monitors the occupancy status of each vehicle

and assigns the passenger requests and computing tasks over the air to these vehicles. In

addition, the fleet operator also manages task transfer when the arrival of a passenger request

halts the execution of a task. Thus, the operator will know when the vehicles are transporting

passengers or are idling and ready to execute tasks. The vehicle’s only responsibility is carrying

out assigned passenger requests, executing tasks, and backing up the execution progress when

interruptions occur. From here on, the vehicles in the robotaxi fleet are called taxis.

 We will assume that the arrival of the passenger requests is according to a Poisson

process with parameter λ. The passenger service requests will wait in a queue until taxis become

available to serve them. The passenger service times are assumed to be exponentially distributed

with parameter 𝛼. The fleet will include 𝑐 taxis in total. As a result, we will model the service of

the passengers as a 𝑀/𝑀/𝑐 queuing system.

5.1.3. Task service model

 The execution times of the tasks are independent of passenger service times, and they are

assumed to be exponentially distributed with the parameter 𝜇. When a taxi in the fleet finishes

serving a passenger, if there are no pending passenger requests for service, it will idle and will be

available for execution of computing tasks. During this period, the taxi will execute tasks

assigned by the fleet operator. However, since the main functionality of the robotaxi fleet is to

provide transportation services, carrying out passenger requests from taxi hailers are prioritized

over executing tasks. Thus, if a passenger service request arrives when an idling taxi is running a

91

task, the taxi will halt the execution, save the progress, and drive to the passenger location to

serve it. The operator will retrieve the unfinished task with the progress intact and assign it to

another idling taxi. When the taxi completes the trip, it will continue to serve other waiting

requests from the passengers, if any. Otherwise, if there are no waiting passenger requests, it will

be available for task execution.

 We will consider two operating scenarios. In the first scenario, the system has a

seemingly infinite backlog of tasks to execute; in the second scenario, the backlog of tasks will

be finite. In the second scenario, we will assume that arrival of task requests for service is

according to a Poisson process with rate 𝛽. In the following, we will evaluate the task-serving

performance of the system for both scenarios. We will derive the distribution of the number of

tasks the system can serve over a period for the first scenario and the average task delay in the

system for the second scenario.

 In Fig. 5.1a, we show the above task service strategy for a robotaxi fleet with 2 taxis for

scenario 1. When passenger 1 arrives at the system, taxi 1 begins to serve this passenger. As

there are no other pending passenger requests for service at this time, taxi 2 begins

simultaneously executing task 1. However, during the task execution, the passenger 2 request

arrives. As a result, taxi 2 has to halt its task execution and start serving passenger 2. Taxi 2

returns the task to the operator with all its progress intact. When taxi 1 finishes serving passenger

1, since there are no pending passenger requests it resumes execution of task 1 from where it was

halted. The same thing happens to task 2 where its execution is halted by the arrivals of

passengers 3 and 5.

92

Fig. 5.1. An example of the passenger and task service strategy mechanism of a robotaxi fleet

with 2 taxis for scenario 1. Additionally, the figure also shows the relationship between the

number of passengers in the system and the duration of the busy period, the idle period and the

cycle.

5.1.4. Cyclical nature of the system

We will refer to the period that all the taxis are idle, meaning none of them serving any

passenger requests, as system idle period. The system idle periods will alternate with system

busy periods. During the system busy period at least one taxi will be busy serving a passenger

request at any time. A system idle period followed by a system busy period will be referred to as

a cycle. During the system busy period some taxis will be idle some of the time. We will reserve

“idle period” to refer to the total amount of time that a single taxi will be idle during a system

busy period. We will consider operation of a taxi fleet in cycles. During a system idle period all

the taxis will be executing tasks. During the system busy period, taxis will be executing tasks

during their idle periods. During the system busy period the execution of the tasks will be

93

intermittent and often interrupted to serve passenger requests. An example of the cycle is shown

in Fig. 5.1b.

The main notations used in this chapter is shown in Table 5.1.

Notation Description Notation Description

𝑐 Number of taxis in the robotaxi fleet 𝑋 Length of the idle period

𝜇 Service rate of a task 𝑄𝑏
Number of tasks the system can

compute during the busy period

𝜆 Arrival rate of passengers 𝑄𝑖
Number of tasks the system can

compute during the idle period
𝛼 Service rate of a passenger 𝕂 Tasks served during the idle period

𝐿 Interval of the busy period 𝑄
Total number of tasks the system

finish during the busy cycle

𝜑𝑖(𝑠)
Laplace transform of the first passage time

from state 𝑖 to state 0 in a 𝑀/𝑀/𝑐 queue
𝑘

Number of passengers in the

system

Ψ(𝑠)
Laplace transform of the length of the busy

period of an 𝑀/𝑀/1 queue with service rate

𝑐𝛼 and arrival rate 𝜆.
𝑗 Number of idle taxis in the system

𝑁𝑏
Number of passengers served during the

busy period
𝑚

Number of idle taxis serving tasks

in the system

𝜙𝑖(𝑧)
PGF of the number of passengers served

during the first passage time from state 𝑖 to

state 0
𝑛 Number of tasks in the system

Φ(𝑧)
PGF of the number of passengers served

during the busy period of an 𝑀/𝑀/1 queue

with service rate 𝑐𝛼 and arrival rate 𝜆.
𝑑̅

Average delay of tasks in the

system

𝜔 Service time of a passenger in the fleet 𝑋 Length of the idle period

𝑌𝑏 Length of the busy period 𝑄𝑏
Number of tasks the system can

compute during the busy period

𝑌𝑝
Total time that taxis spend serving

passengers during the busy period.
𝑄𝑖

Number of tasks the system can

compute during the idle period
𝑌𝑢 Idle time of the taxis during the busy period 𝕂 Tasks served during the idle period

𝑐 Number of taxis in the robotaxi fleet 𝑄
Total number of tasks the system

finish during the busy cycle

𝜇 Service rate of a task 𝑘
Number of passengers in the

system
𝜆 Arrival rate of passengers 𝑗 Number of idle taxis in the system

𝛼 Service rate of a passenger 𝑚
Number of idle taxis serving tasks

in the system
𝐿 Interval of the busy period 𝑛 Number of tasks in the system

Table 5.1. Main notations of Chapter 5

94

5.2. Computing Capacity of a Robotaxi Fleet with Infinite

Backlog of Tasks

In this section, we determine the computing capacity of the system described above for

an infinite backlog of tasks. Since fleet operation is in cycles, we will derive the probability

distribution of the number of tasks that can be served to completion during a cycle and its first

moment. For this result, we need to determine the number of tasks that can be served during

system idle and busy periods. For the latter, we would need to know the duration of a system

busy period and the number of passengers served during that busy period.

5.2.1. Laplace transform of the duration of a busy period of a 𝑴/𝑴/𝒄 queue

Next, we will determine the system busy period of a robotaxi fleet. As stated in the

previous section, the passenger service may be modeled as a 𝑀/𝑀/𝑐 queuing system. Let 𝜑𝑖,

𝜑𝑖(𝑠) denote the duration of the first passage time from state 𝑖 to state 0 and its Laplace

transform in a 𝑀/𝑀/𝑐 queue. As a result, the duration of the busy period of the 𝑀/𝑀/𝑐 queue

and its Laplace transform are given by 𝜑1 and 𝜑1(𝑠), respectively. In [126], the authors derived

a recursion to determine 𝜑𝑖(𝑠) given below,

 𝜑1(𝑠) =
𝜆

𝜆 + 𝛼 + 𝑠
𝜑2(𝑠) +

𝛼

𝜆 + 𝛼 + 𝑠

(5.1)

 𝜑𝑖(𝑠) =
𝜆

𝜆 + 𝑖𝛼 + 𝑠
𝜑𝑖+1(𝑠) +

𝑖𝛼

𝜆 + 𝑖𝛼 + 𝑠
𝜑𝑖−1(𝑠), 2 ≤ 𝑖 ≤ 𝑐 − 1

(5.2)

 𝜑𝑐(𝑠) = 𝜑𝑐−1(𝑠)Ψ(𝑠), 𝜑0(𝑠) = 1 (5.3)

 Ψ(𝑠) =
𝜆 + 𝑐𝛼 + 𝑠 − ((𝜆 + 𝑐𝛼 + 𝑠)2 − 4𝑐𝜆𝛼)

1
2

2𝜆

(5.4)

We note that Ψ(𝑠) is the Laplace transform of the duration of the busy period of an

𝑀/𝑀/1 queue with service rate 𝑐𝛼 and arrival rate 𝜆.

5.2.2. PGF of the number of passengers served during a system busy period

Next, we provide the result for the number of passengers served during a system busy

period. Let 𝑁𝑏 and 𝑁𝑏 (𝑧) denote the number of passengers served during a system busy period

95

and its PGF, respectively. Let 𝜙𝑖(𝑧) denote the PGF of the number of passengers served during

the first passage time from state 𝑖 to state 0 in a 𝑀/𝑀/𝑐 queuing system. Thus, 𝜙1(𝑧) will give

PGF of the number of customers served during the busy period of an 𝑀/𝑀/𝑐 queue. As a result,

the PGF of the number of passengers served during the system busy period of the robotaxi fleet

is given by 𝑁𝑏 (𝑧) = 𝜙1(𝑧). From [126], we have the following recursion to determine 𝜙𝑖(𝑧)

 𝜙1(𝑧) = 𝑁𝑏 (𝑧) = 𝐸[𝑧𝑁𝑏] (5.5)

 𝜙1(𝑧) =
𝜆

𝜆 + 𝛼
𝜙2(𝑧) + 𝑧

𝛼

𝜆 + 𝛼

(5.6)

 𝜙𝑖(𝑧) =
𝜆

𝜆 + 𝑖𝛼
𝜙𝑖+1(𝑧) + 𝑧

𝑖𝛼

𝜆 + 𝑖𝛼
𝜙𝑖−1(𝑧), 1 ≤ 𝑖 ≤ 𝑐 − 1

(5.7)

 𝜙𝑐(𝑧) = 𝜙𝑐−1(𝑧)Φ(𝑧), 𝜙0(𝑧) = 1 (5.8)

Φ(𝑧) =
𝜆 + 𝑐𝛼 − ((𝜆 + 𝑐𝛼)2 − 4𝑐𝜆𝛼𝑧)

1
2

2𝜆

(5.9)

We note that Φ(𝑧) is the PGF of the number of passengers served during the system busy

period of an 𝑀/𝑀/1 queue with service rate 𝑐𝛼 and arrival rate 𝜆.

5.2.3. Computing capacity of the robotaxi fleet

 Now that we have the duration of the system busy period and the number of passengers

served during that period, we will be able to determine probability distribution of the number of

tasks that may be served during a cycle of the robotaxi fleet. The number of tasks served during a

cycle is given by the sum of the number of tasks served during system busy and idle periods.

 First, we will determine the number of tasks served during a system busy period. For this,

we will determine sum of the durations of idle periods of all the taxis during a system busy

period. Let 𝑌𝑝 denote the total amount of time that taxis spend serving the passengers during a

system busy period and 𝑌𝑝(s) its Laplace transform. Also, let 𝑌𝑢 denote the sum of the durations

of idle periods of all the taxis during a system busy period and 𝑌𝑢(𝑠) its Laplace transform. From

these definitions, we have,

 𝑌𝑢 = 𝑌𝑏 − 𝑌𝑝 (5.10)

96

 Where 𝑌𝑏 = 𝑐𝜑1. The Laplace transform of 𝑌𝑏 is given by,

 𝑌𝑏(𝑠) = 𝐸[𝑒−𝑠𝑌𝑏] = 𝐸[𝑒−𝑠𝑐𝜑1] = 𝜑1(𝑠)|𝑠=𝑠𝑐 (5.11)

 Let 𝜔𝑖 denote the service time of a passenger. Then,

 𝑌𝑝 =∑𝜔𝑖

𝑁𝑏

𝑖=1

(5.12)

 Since passenger service times are i.i.d, we let 𝜔 denote 𝜔𝑖. Then, from (5.5) we have,

 𝑌𝑝(𝑠) = 𝑁𝑏(𝑧)⌋𝑧=𝜔(𝑠) (5.13)

 Where, 𝜔(𝑠) is the Laplace transform of a passenger’s service time given by,

 𝜔(𝑠) =
𝛼

𝑠 + 𝛼

(5.14)

 Let 𝑓𝑌𝑏(𝑦𝑏), 𝑓𝑌𝑝(𝑦𝑝) and 𝑓𝑌𝑢(𝑦𝑢) denote the pdfs of the random variables 𝑌𝑏 , 𝑌𝑝, 𝑌𝑢,

respectively. We can obtain 𝑓𝑌𝑏(𝑦𝑏) and 𝑓𝑌𝑝(𝑦𝑝) through the inverse Laplace transform of 𝑌𝑏(s)

and 𝑌𝑝(𝑠) from (5.11) and (5.5), respectively. Since 𝑌𝑏 > 𝑌𝑝, from (5.10), we can write

 𝑓𝑌𝑢(𝑦𝑢) = ∫ 𝑓𝑌𝑏(𝑦𝑢 + 𝑦𝑝)𝑓𝑌𝑝(𝑦𝑝)𝑑𝑦𝑝

∞

0

(5.15)

 By taking the Laplace transform of the above pdf, we obtain 𝑌𝑢(𝑠). During the idling

times of the system busy periods, taxis will be executing tasks. Since task execution times are

exponentially distributed with parameter 𝜇, the number of tasks that can be executed to

completion will be given by the number of Poisson points that may occur with parameter 𝜇

during the 𝑌𝑢 interval. From equation 5.46 in [121], PGF of the number of tasks the system can

compute during the system busy period, 𝑄𝑏(𝑧), is given by,

 𝑄𝑏(𝑧) = 𝑌𝑢(𝑠)|𝑠=𝜇−𝜇𝑧 (5.16)

 Next, we will derive the number of tasks that can be executed during the system idle

period. During the system’s idle period, there are no passengers in the system. Since the

97

passengers arrive at the system according to a Poisson process with parameter 𝜆, the system idle

duration will be exponentially distributed with the same parameter. Let random variable X

denote the duration of the idle period and 𝑓𝑋(𝑥) its pdf, then,

 𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥, 𝑥 ≥ 0 (5.17)

Let us also define 𝕂 as the number of tasks served during the system idle period by a

single taxi. Also let, 𝑃𝕂(𝕜) and 𝕂(𝑧) denote probability distribution and its PGF of 𝕂

respectively. If we condition on the duration of the system idle period, the probability

distribution of the number of tasks completed during this period,

 𝑃𝕂(𝕜|𝑋 = 𝑥) =
(𝜇𝑥)𝕜𝑒−𝜇𝑥

𝕜!
, 𝕜 ≥ 0

(5.18)

 𝕂(𝑧|𝑋 = 𝑥) = 𝑒−𝜇𝑥(1−𝑧)
(5.19)

 Let also 𝑄𝑖 and 𝑄𝑖(𝑧) denote the sum of the tasks all the taxis serve during the system

idle period and its PGF, respectively. We then can write,

 𝑄𝑖(𝑧|𝑋 = 𝑥) = [𝐾(𝑧|𝑋 = 𝑥)]𝑐 = 𝑒−𝜇𝑐𝑥(1−𝑧) (5.20)

 𝑄𝑖(𝑧) = ∫ 𝑒−𝜇𝑐𝑥(1−𝑧)𝑓𝑋(𝑥)𝑑𝑥
∞

0
=

𝜆

𝜆+𝜇𝑐(1−𝑧)
 (5.21)

 Finally, let us denote the total number of tasks completed during a cycle as 𝑄. Then 𝑄 is

the number of tasks completed during the system busy and idle periods, 𝑄 = 𝑄𝑖 + 𝑄𝑏. From

(5.16) and (5.21), the number of tasks served during a cycle of a robotaxi system is given by,

 𝑄(𝑧) = 𝑄𝑖(𝑧)𝑄𝑏(𝑧) (5.22)

5.2.4. Mean number of completed tasks during a cycle

 The distribution of the number of completed tasks can be challenging to determine

numerically for a large number of taxis. On the other hand, its mean is often easier to obtain. As

a result, we will next determine the mean number of tasks served to completion during a cycle.

 From (5.10), (5.13) and (5.17), we can write the mean for the sum of the idle times of the

taxis during the system busy period 𝑌𝑢 as

98

 𝐸[𝑌𝑢] = 𝐸[𝑌𝑏] − 𝐸[𝑌𝑝] = −𝑌𝑏
′(𝑠)|𝑠=0 + 𝑌𝑝

′(𝑠)|
𝑠=0

 (5.23)

where 𝑌𝑏
′(𝑠) and 𝑌𝑝

′(𝑠) denote the derivatives of 𝑌𝑏(𝑠) and 𝑌𝑝(𝑠) w.r.t 𝑠. As a computing task is

exponentially distributed with parameter 𝜇, then the mean number of completed tasks during the

system busy period is given by,

 𝐸[𝑄𝑏] = 𝜇𝐸[𝑌𝑢] (5.24)

 From (5.21), the mean number of tasks served during a system idle period will be given

by,

 𝐸[𝑄𝑖] =
𝑑𝑄𝑖(𝑧)

𝑑𝑧
|
𝑧=1

(5.25)

 Finally, the mean number of tasks served during a cycle of a robotaxi system is given by,

 𝐸[𝑄] = 𝐸[𝑄𝑖] + 𝐸[𝑄𝑏] (5.26)

5.3. Delay analysis of the tasks in a robotaxi fleet with Finite

Backlog of Tasks

In this section, we consider the same system model as the previous section, except that

we assume a finite backlog of tasks waiting to be served. We assume that the tasks arrive at the

system according to a Poisson process with parameter 𝛽. As in the previous section, passengers

have preemptive priority over tasks. We will determine the average delay of a task in the system.

The system may be modeled as a 𝑀/𝑀/𝑐 queue with two classes of customers. The high-priority

customers (passengers) do not see the low-priority customers (tasks). As in the previous section,

the service of the passengers follows the 𝑀/𝑀/𝑐 queuing system. Then from [121], the

stationary probability distribution of having 𝑘 passengers in the system, 𝑃𝑘, is given by,

 𝑃𝑘 =

{

 𝑃0
(𝑐𝜌)𝑘

𝑘!
, 𝑓𝑜𝑟 0 < 𝑘 < 𝑐

𝑃0
(𝑐𝜌)𝑘𝑐𝑐−𝑘

𝑐!
, 𝑓𝑜𝑟 𝑐 ≤ 𝑘

(5.27)

where 𝜌 is the utilization factor given by, 𝜌 =
𝜆

𝑐𝛼
.

99

 In [127], an algorithmic method has been developed to determine the distribution of the

number of low-priority customers in the system. However, the application of this method is

computationally very cumbersome for more than two servers, 𝑐 > 2. As a result, we will develop

an approximate analysis for the low-priority customers. If there are 𝑘 passengers in the system,

then, there will be 𝑗 = 𝑐 − 𝑘 idle taxis for 𝑘 ≤ 𝑐. From (5.27), we can determine the probability

distribution of 𝑗 idle taxis in the system, 𝑇𝑗, as follows

 𝑇𝑗 = {

𝑃𝑐−𝑗, 𝑓𝑜𝑟 1 < 𝑗 ≤ 𝑐

1 −∑𝑃𝑘

𝑐−1

𝑘=0

, 𝑓𝑜𝑟 𝑗 = 0

(5.28)

 Furthermore, let us define the average number of idle taxis as 𝑚,

 𝑚 = ⌊∑ 𝑗𝑇𝑗
𝑐

𝑗=0
⌋

(5.29)

 Then, we make the approximation that tasks are served by 𝑚 taxis continuously. Thus,

the service given to the tasks will be modeled as a 𝑀/𝑀/𝑚 queueing system. Let us further

denote the utilization factor of this system as 𝜎 =
𝛽

𝑚𝜇
. Then, the stationary distribution of 𝑛 tasks

in the system, 𝑄𝑛, can be written as

 𝑄𝑛 =

{

 𝑄0

(𝑛𝜎)𝑗

𝑗!
 𝑓𝑜𝑟 0 < 𝑗 < 𝑛

𝑄0
(𝑛𝜎)𝑗𝑞𝑛−𝑗

𝑗!
 𝑓𝑜𝑟 𝑛 ≤ 𝑗

(5.30)

 From the definition of the expected value, we can determine the average number of tasks

in the system 𝑛̅ from (5.22). Using Little’s result, the average delay of the tasks in the system 𝑑̅

is given by,

 𝑑̅ =
𝑛̅

𝛽
=
∑ 𝑛𝑄𝑛
∞
𝑛=0

𝛽

(5.31)

100

5.4. Numerical results

This section presents numerical results about the analysis for the infinite and finite

backlog of tasks. We also provide results of a Monte-Carlo simulation written in Matlab to verify

the analysis. Simulate was run 50,000 cycles. We note that simulation run time increases rapidly

with increasing duration of busy periods; as a result, we could not obtain simulation results for

large values of busy period duration. In each cycle, the passengers arrive at the system according

to a Poisson process and either immediately receive service if there are idle taxis or enter a

waiting queue until taxis become available. The tasks have exponentially distributed execution

times and are served according to the service strategy described in the system model. An arriving

passenger may preempt an executing task. The total number of tasks served to completion is

averaged over the number of cycles to determine the average number of tasks completed.

Fig. 5.2 and Fig. 5.3 show the average number of completed tasks during a cycle for an

infinite backlog of tasks as a function of passenger service and arrival rates, respectively. Fig. 5.3

also shows average number of completed tasks per minute as a function of passenger arrival rate.

In Fig. 5.2, the average number of completed tasks decreases as passenger service rate increases

because the busy period duration decreases as service rate increases. In Fig. 5.3, we can see that

the average number of completed tasks initially slightly decreases until passenger arrival rate

equals to 𝜆 ≈ 2 vehicles/min and after that, it starts increasing. However, this plot is misleading

because the average cycle duration is not constant as passenger rate increases. In the same figure,

it’s shown that the average number of completed tasks per minute decreases linearly as a

function of passenger arrival rate. This behavior may be explained by Fig. 5.4, which shows the

average cycle, system busy period, and the total idle period durations of the fleet as a function of

passenger arrival rate. It may be seen that while the duration of the busy period increases as

passenger arrival rate increases, the system’s idle period decreases. As a result, cycle duration

initially decreases but then it starts increasing with increasing passenger service rate because the

busy period increases much faster than the system idle period decreases. Fig. 5.4 also shows that

duration of the fleet’s total idle period follows the pattern of cycle duration. The number of

completed tasks during a cycle is a function of the total idle period, which explains the behavior

of the curve in Fig. 5.3. Though the number of completed tasks increases during a cycle as

101

passenger arrival rate increases, when normalized to cycle duration, the average number of

completed tasks per unit time decreases.

Fig. 5.5 shows the average delay of a task in the case of a finite task backlog. The

average task delay has been plotted as a function of task service rate for constant values of

passenger and task arrival rates and passenger service rates. The arriving tasks join a queue when

there are no idling taxis and can be preempted by any new arriving passengers during their

execution. We can see that the average task delay decreases as the service rate increases.

Finally, in all figures, numerical results match simulation results.

Fig. 5.2. Numerical and simulation results of the average number of completed tasks during a

cycle as a function of passenger service rate 𝛼

102

Fig. 5.3. Numerical and simulation results of the average number of completed tasks during a

cycle as a function of passenger arrival rate 𝜆

Fig. 5.4. Numerical and simulation results of the average cycle, system busy period and total

idle durations of the fleet as a function of the passenger arrival rate.

103

Fig. 5.5. Numerical and simulation results of the average task delay as a function of task service

rate.

5.5 Summary

In this chapter, we considered a robotaxi fleet that transports passengers to their

destinations. Since the robotaxis are autonomous, they will have high computing resources. Fleet

operators would like to utilize these taxis during idle times as they are costly. In this work, we

evaluate the fleet’s performance in serving computational tasks during idle times under infinite

and finite backlog of tasks. We model the system as a 𝑀/𝑀/𝑐 queue with two types of

customers, which are passengers and tasks. Passengers are given preemptive priority over the

tasks. In the infinite backlog of tasks, we determine the probability distribution and the first

moment of the number of completed tasks during a cycle. We show that the average number of

completed tasks decreases with increasing task service rate and passenger arrival rates. In the

finite backlog of tasks, the average task delay decreases with an increasing task service rate.

These results will help in determining benefits of using idle resources in a robotaxi fleet in task

execution.

104

Chapter 6

Conclusion and Future work

Conclusion

The data generated at the edge of the Internet is increasing rapidly due to the proliferation

of smart devices. This data cannot be transferred to the cloud because of high cost and latency.

Further, the data needs to be processed in real-time to be of value to the users. Modern vehicles

are equipped with powerful computers and storage facilities. Furthermore, these vehicles are

being designed with redundancy for vehicular autonomy. As a result, the computing resources of

these vehicles can be underutilized, which can be pooled together to form a computing cluster

called a vehicular cloud. Vehicular clouds may help to solve the processing needs of the massive

data being generated at the edge of the Internet. As a result, there is great interest in determining

the capabilities of the VCs.

In this thesis, we model and analyze the performance of Vehicular Cloud under different

traffic conditions, task assignment strategies, job models, and service priorities. The goal of this

work is to analytically derive the key performance measures, such as job completion time and

computing capacity of VCs, to estimate the capability of the VCs. In the following, the main

contributions of this work are briefly summarized.

The first contribution concern the derivation of the probability distribution of the job

completion time of an ad-hoc vehicular cloud on a highway under free-flowing and congested

traffic conditions with a service interruption strategy. In this service strategy, when a vehicle

serving a task leaves the VC, that task is assigned to an idle vehicle in the VC. It’s assumed that

the vehicles arrive at the VC according to a Poisson process, and they have independent

residency times under free-flowing traffic and correlated residency times under congested traffic.

We assumed that a job contains multiple independent tasks with random execution times. Under

this service strategy, we derived the probability density function of job completion time for both

mentioned traffic conditions with zero migration overhead. This result is significant because no

105

service strategy can provide a lower job completion time. We also provide an ad hoc method to

include the migration overhead in the job completion time.

In the second contribution, we determined an approximation to the job completion time

under the service interruption avoidance strategy. This service strategy avoids the migration

overhead due to service interruption. In this service strategy, a vehicle will only be assigned a

task if it can finish its execution during its residency time. Further, a vehicle will be assigned the

longest of the unassigned tasks that it can complete. Under these conditions, we derived the

distribution of the completion time of the longest task. Numerical results show that the

completion time of the longest task may be used to approximate the job completion time.

However, the completion time of a job will be long if the job has tasks with long execution

times. Thus, a hybrid service strategy that serves short-duration tasks according to the service

avoidance strategy and it serves long-duration tasks according to the service with interruption

strategy will be a better choice.

In the third contribution, we derived the probability distribution of the number of

completed jobs during the lifetime of a VC. This work makes the same assumptions as the

previous contribution, except it assumes that the number of tasks in a job follows a Poisson

distribution. Under these assumptions, the distribution of the total number of vehicles that join

the VC during its existence is derived and serves as a foundation for subsequent results. Then,

the distributions of the number of tasks completed by these vehicles and the number of jobs

completed during the VC lifetime are derived.

 In the final contribution of this thesis, we analyzed the computing capacity of a robotaxi

fleet that serves passengers. The vehicles in the fleet form a VC, and they can execute tasks

during their idle times; however, passengers have pre-emptive priority over task executions.

Contrary to the previous contributions, the VC is permanent, and the number of vehicles in the

VC is constant as the robotaxi often functions within a geofenced area. We study this system

both under infinite and finite backlog of tasks. In the case of an infinite backlog of tasks, we

derived the probability distribution of the number of tasks the system can serve over a period. In

the second case, it is assumed that the tasks will queue for service, and we derived the average

delay of the tasks in the system.

106

The work in this thesis helps to a better understanding of the capabilities of vehicular clouds. It

determines job completion time in terms of the arrival rate of vehicles to the VC, vehicle

residence times, number of tasks in a job, and task execution times. This helps in determining

whether a VC can meet the QoS requirements of a job.

Future work

There remain potential models stemming from the current model that can be explored in

future work. These problems are described below,

Optimal Hybrid Service Strategy

As explained in the above, hybrid service strategy may result in better job performance. Thus,

tasks with execution times below a threshold will be served with service interruption avoidance

strategy and those above the threshold with service interruption strategy. It will be useful to

determine the optimal value of the threshold that will result in the shortest job completion time.

This optimal threshold value will depend on the arrival rate of the vehicles, as well as

distributions of residency and task execution times.

Heterogeneity in the VC

The current model assumes that the vehicles have identical computational powers. In

practice, this may not be true. The computational powers of vehicles may be different. Also, the

vehicles may not make available all their computational powers for the external jobs and keep

part of it for their local computations. Another variable may be introduced to the system model

to capture the computational powers of the vehicles. We will attempt to extend the present

analysis to cover this case. However, the state-space explosion will be a problem.

Migration overhead

In the preliminary work, we have developed an ad hoc method to determine an upper-

bound for average job completion time with constant migration overhead. The migration

overhead may be a random variable as the data rates of the communication links are variable. We

would like to extend our model to include migration overhead rather than determining it in an ad-

hoc manner. It will be assumed that the residence time of a vehicle will consist of three stages of

107

Erlangian distribution with different parameters. The first stage will correspond to the

downloading of the VM from the VC leader, the second stage execution of a task, and the third

stage to the uploading of either the VM or the results of the completed task to the VC leader. In

this case, the number of vehicles in the system may be modeled as an 𝑀 ∕ 𝐺 ∕ ∞ queuing

system. Clearly, we will need to increase the dimensions of the state vector that describes the

system. Again, we will attempt to extend the current analysis to handle this case. We will also

investigate the results of absorption time in Markov chains theory to help in solving this

problem.

Deadline driven task execution

The service strategies studied in this thesis donot take into consideration the deadlines for

completion of the task execution times. Thus the tasks in addition to the duration of their

execution times may also have deadlines for service completion. Defining the task waiting time

as the difference between service completion deadline and task execution time, the tasks with

smaller waiting times should be given priority in service. This strategy ensures that a task with

less waiting time is executed earlier, thus improving the likelihood of all tasks meeting their

respective deadlines. The challenge lies in the likely increase in the dimensions of the state

vector that describes the system, similar to the case when migration overhead is included.

Despite the complexity, it is expected that incorporating this nuanced scheduling approach will

enhance the performance of the VC systems. The analytical methods developed for dealing with

heterogeneity and migration overhead could potentially be adapted to handle this new feature in

the model.

Non-homogeneous traffic flow

The existing models assume a homogeneous traffic flow where vehicles are joining and

leaving the VC at a constant rate. However, in real-world scenarios, the traffic flow might not be

uniform, especially during peak and off-peak hours. There might be instances where a large

number of vehicles join the VC, causing a sudden surge in the available computational power.

Conversely, during off-peak hours, the number of vehicles, and therefore the computational

power, may drastically reduce. Future work should aim to incorporate non-homogeneous traffic

flow into the model. The traffic flow variation of vehicles could be captured by a non-

108

homogeneous Poisson process where the arrival and departure rates are time-dependent. The

modeling of such a system will provide more accurate results to the real-world.

109

Appendix A

Solving differential-difference equations

in 2.1.2 with transform methods

Let us define the probability generating function (PGF) of the joint probability

distribution of the number of uncompleted tasks and number of worker vehicles in the system at

time t as

 𝔓(𝑧1, 𝑧2, 𝑡) =∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

(A.1)

We now multiply both sides of each of the equations (2.2) to (2.5) by 𝑧1
𝑗𝑧2

𝑘 and sum

them over 𝑗 and 𝑘, which results in:

∑
𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
𝑧1
𝑗

𝔍

𝑗=0

=∑𝛼𝔓𝑗,1(𝑡)𝑧1
𝑗

𝔍

𝑗=0

−∑𝜆𝔓𝑗,0(𝑡)𝑧1
𝑗

𝔍

𝑗=0

(A.2)

∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

=∑𝜆𝔓𝔍,𝑘−1(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

+∑(𝑘 + 1)𝛼𝔓𝔍,𝑘+1(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

−∑[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝔍, 𝑘)𝜇]𝔓𝔍,𝑘(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

(A.3)

110

∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

=∑∑𝜆𝔓𝑗,𝑘−1(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+∑∑(𝑘 + 1)𝛼𝔓𝑗,𝑘+1(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

−∑∑[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝜇𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

(A.4)

∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

=∑𝜆𝔓0,𝑘−1(𝑡)𝑧2
𝑘

∞

𝑘=1

+∑(𝑘 + 1)𝛼𝔓0,𝑘+1(𝑡)𝑧2
𝑘

∞

𝑘=1

−∑[𝜆 + 𝑘𝛼]𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

+∑𝜇𝔓1,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

(A.5)

Using the change of variables technique and algebraic manipulations, we can rewrite

equations (A.3), (A.4), and (A.5), respectively, as:

∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

= 𝜆𝑧1
𝔍∑𝔓𝔍,𝑘(𝑡)𝑧2

𝑘+1

∞

𝑘=0

+ 𝛼𝑧1
𝔍 [∑𝑘𝔓𝔍,𝑘(𝑡)𝑧2

𝑘−1

∞

𝑘=0

−𝔓𝔍,1(𝑡)]

− 𝜆𝑧1
𝔍∑𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

− 𝛼𝑧1
𝔍∑𝑘𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

− 𝜇𝑧1
𝔍∑𝑚𝑖𝑛(𝔍, 𝑘)𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

(A.6)

111

∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

= 𝜆∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘+1

∞

𝑘=0

𝔍−1

𝑗=1

+𝛼 [∑∑𝑘𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘−1

∞

𝑘=0

𝔍−1

𝑗=1

−∑𝔓𝑗,1(𝑡)𝑧1
𝑗

𝔍−1

𝑗=1

] − 𝜆∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

−𝛼∑∑𝑘𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

− 𝜇∑∑𝑚𝑖𝑛(𝑗, 𝑘)𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+𝜇∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

(A.7)

∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

= 𝜆∑𝔓0,𝑘(𝑡)𝑧2
𝑘+1

∞

𝑘=0

+ 𝛼 [∑𝑘𝔓0,𝑘(𝑡)𝑧2
𝑘−1

∞

𝑘=0

−𝔓0,1(𝑡)]

− 𝜆∑𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

− 𝛼∑𝑘𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

+ 𝜇∑𝔓1,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

(A.8)

On the left-hand sides of equations (A.2) to (A.5), since ∑ ∑
𝑑𝔓𝑗,𝑘(𝑡)

dt
 ∞

𝑘=0
𝔍
𝑗=0 converges

uniformly, we can interchange the order of differentiation and summation. Then summing the

derivations all together results in

∑
𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
𝑧1
𝑗

𝔍

𝑗=0

+∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

+∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

=∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

=
𝜕

𝜕𝑡
∑∑𝔓𝑗,𝑘(𝑡)𝑧1

𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

=
𝜕𝑃(𝑧1, 𝑧2, 𝑡)

𝜕𝑡

(A.9)

 Summing the right-hand sides of equations (A.2), (A.6) to (A.8) and using the results

from equation (A.9), we obtain the following partial differential equation of 𝔓(𝑧1, 𝑧2, 𝑡),

112

𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑡
= 𝜆𝑧2𝔓(𝑧1, 𝑧2, 𝑡) + 𝛼

𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑧2
− 𝜆𝔓(𝑧1, 𝑧2, 𝑡) − 𝛼𝑧2

𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑧2

−𝜇∑∑𝑚𝑖𝑛(𝑗, 𝑘)𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍

𝑗=1

+ 𝜇∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=0

(A.10)

We note that the above partial differential equation is unsolvable as not all the terms can

be written as a function of 𝔓(𝑧1, 𝑧2, 𝑡) and its partial derivatives.

113

Appendix B

Section 2.1 Simulation description

In the simulation script, we use a 𝑛 × 5 matrix to represent the vehicles, such as one in

Table B.1, where the rows are the vehicles in the VC during a simulation run, and the columns

are the characteristics of the vehicles, such as, unique vehicle ID , minutes until the vehicle’s

arrival, residency duration of the vehicle in the VC, status of the vehicle, the ID of the task

assigned to the vehicle (v_task). Similarly, we use another 𝔍 × 5 matrix to represent the status of

the 𝔍 tasks during a simulation run, such as one in Table B.2. The 𝔍 rows of the matrix represent

the 𝔍 tasks, and the columns represents the unique task ID, the remaining task execution times,

the completion time (t_comp), the status of the tasks (t_stat) and the ID of the vehicle working

the task (t_veh).

Vehicle ID Interarrival times Residency times Status Assigned task ID

1 0 12.65 𝑖𝑛_𝑉𝐶 2
2 11.39 16.45 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 0
… … … … …

Table B.1. The vehicle matrix upon the start of the simulation where there is 1 initial vehicle

Task ID Task execution

time

Task completion

time

Status Assigned vehicle

ID

1 35.86 0 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 0
2 16.89 0 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 1
… … … … …

𝔍 44.19 0 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 0

Table B.2. The task matrix upon the start of the simulation where there no time has elapsed and

task 2 is assigned to vehicle 1

To record the completion time of all the tasks for all the runs, we create a 𝑛 × 𝔍 matrix,

where each row is the completion time results for all the runs, and each column is the completion

time of task 𝑗𝑡ℎ. Contrary to the task and vehicle matrices, the values of the completion time

matrix will remain intact after each simulation run.

114

Runs
Task completion times

1 2 3 … 𝔍

1 5.01 3.49 6.32 … 6.6

2 2.99 3.39 1.53 … 4.61

… … … … … …

𝑛 1.75 13.6 1.63 … 2.34

Table B.3. The completion time matrix after 𝑛 runs for a job of 𝔍 tasks

We then create the task matrix by creating a unique ID for the tasks. Then, we generate

an exponentially distributed execution times for each task using exprnd function with the mean

execution time of a task, 1/𝜇. At this point, there are no vehicles in the VC, thus the remaining

columns of the matrix are zero.

Then, we generate the initial vehicles with unique vehicles ID in the VC in MATLAB

using poissrnd function with the parameter 𝜆/𝛼. These vehicles will form the first rows of the

vehicle matrix. For each of the vehicles, we assign them an exponentially distributed random

variable from exprnd function using the mean residency time, 1/𝛼. As these are initial vehicles,

their arrival times to the VC are 0. For each vehicle, we will randomly select the ID of an

unassigned task in the task matrix and assign the value to the v_task field. Concurrently, we also

change the task status after each assignment. Finally, an arriving vehicle is added to the matrix

by generating the interarrival time and residency time to the last row. When the number of initial

vehicles is zero, the arriving vehicle is the first row of the vehicle matrix. Furthermore, since the

vehicle is yet to arrive to the VC, no task is assigned to this vehicle.

The simulation will run until the sum of all the remaining task execution times is zero.

During the run, we will find the event that will occur next by comparing the arrival time of the

next vehicle, the shortest residency times of the vehicles in the VC, the shortest remaining

execution time of the unfinished tasks. The comparison also allows us to determine the time delta

until the next event (delta_t). Regardless of the type of the event, the interarrival time, the

residency times of all the vehicles in the VC and the execution times of the assigned tasks must

be subtracted by delta_t. Furthermore, the completion time of all unfinished tasks will increase

by delta_t.

The type of the event will determine which complementary action will take place next.

For instance, when the next event is an arrival, we need to check first if there are still unassigned

115

tasks. If that is indeed the case, then we have to randomly select one of the unassigned tasks and

assign it to the arriving vehicle. Otherwise, the vehicle will change its status to “idle” in the VC

upon arriving. When the next event is a completion of a task, then the status of the task will

change to “complete”. Additionally, the vehicle completing the task will continue to handle an

unassigned task, if any. Finally, when the next event is a departure of the vehicle, then the status

of the vehicle in the matrix will change. Furthermore, when the vehicle has been serving a task,

the VC will assign the task to another idle vehicle, if any. Otherwise, the status of the task will

change to suspend.

When a simulation ends, the completion time of the tasks should be available in the 3rd

column of the task matrix. The VC completes a job when the remaining execution time of the

last unfinished task of the job is zero. Therefore, the completion time of the job is the maximum

value in the completion time column of the task matrix. We then transpose the column into a row

and append the values to the completion time matrix.

Finally, the simulation is computed over 106 times to form the final completion matrix.

Then from the matrix, we can compute the average and the distribution of the task completion

time, the completion time of the 𝑗𝑡ℎ task, and the completion time of a job.

116

Appendix C

Analysis of job completion time in

dynamic VC on a highway with congested

traffic

As we mentioned previously, the analysis of the job completion time in dynamic VC on a

highway with congested traffic shares a lot of methodological similarities with free-flowing

traffic case. Hence, the section was distilled to show only important figures and results, and this

appendix section aims to provide a more detailed analysis of the work.

Notation Description Notation Description

𝔍 Number of tasks in a job ℒ𝑗,𝑘(𝑠) Laplace transform of 𝑃𝑗,𝑘(𝑡)

𝜇 Service rate of a task 𝜆 Arrival rate of vehicles
𝛼 Service rate of a vehicle 𝑟̿ Average delay of a vehicle

𝜌 Utilization factor of an 𝑀/𝑀/𝑚 queue 𝑌̅𝑛
Average completion time of 𝑛′𝑡ℎ

task

𝑋𝑗
Absorbing time of subsystem 𝜃𝑗 to make

the transition to an absorbing state
𝑔𝑋𝑗(𝑥𝑗)

Probability density function of the

absorbing time 𝑋𝑗

𝑘 Number of vehicles in the system, 𝑘 ≥ 0 𝒢𝑗(𝑠)
Laplace transform of the

probability density function of the

absorbing time 𝑋𝑗

𝑗
Number of uncompleted tasks in the

system, 0 ≤ 𝑗 ≤ 𝔍 𝑌𝑛 Completion time of the 𝑛′𝑡ℎ task

𝑃𝑗(𝑡)
Probability that there are 𝑗 uncompleted

tasks in the subsystem 𝜃𝑗 at time 𝑡.
𝒴𝑛(𝑠)

Laplace transform of the

probability density function of

completion time of the 𝑛′𝑡ℎ task

𝑃𝑗,𝑘(𝑡)
Probability that there are 𝑗 uncompleted

tasks and 𝑘 vehicles in the subsystem 𝜃𝑗 at

time 𝑡

𝐺𝑋𝑗(𝑥𝑗)
Cumulative distribution function

of the absorbing time 𝑋𝑗

𝑄𝑘
Steady-state probability that there are 𝑘

vehicles in the system
𝔏

Average number of customers in

the system of an 𝑀/𝑀/𝑚 queue

𝜃𝑗
Subsystem 𝑗 representing the set of states

that is reachable from state {𝑗, 𝑘} for a

fixed value of 𝑗

Table C.1. Main notations of the analysis of section 2.2

117

Vehicle model preliminary

Under congested traffic, we assume that the vehicle model follows the 𝑀/𝑀/𝑚 queuing

model where 𝑚 is the number of lanes on the highway. This change from 𝑀/𝑀/∞ allows us to

incorporate the increased wait time of a vehicle in a VC when congestion occurs. We can find a

similar assumption made under a single-lane scenario with a general service distribution in [122].

Vehicles arrive at the traffic at each lane according to the Poisson process with rate 𝜆 and spend

an exponentially distributed time of mean 𝛼 in the service to escape the traffic. Vehicles need to

wait to be served with an average waiting time 𝑤. From [121], the distribution of vehicles in the

system is given as follows:

𝑄𝑘 = 𝑃𝑟𝑜𝑏(𝑘 𝑤𝑜𝑟𝑘𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑉𝐶)

=

{

 𝑄0
(𝑚𝜌)𝑘

𝑘!
, 𝑘 < 𝑚

𝑄0
𝜌𝑘𝑚𝑚

𝑚!
, 𝑘 ≥ 𝑚

(C.1)

where the probability that there are 0 vehicles in the system is:

 𝑄0 = [∑
(𝑚𝜌)𝑘

𝑘!

𝑚−1

𝑘=0

+ (
(𝑚𝜌)𝑚

𝑚!
) (

1

1 − 𝜌
)]

−1

(C.2)

From [128, p. 42], the average number of customers in an 𝑀/𝑀/𝑚 queue, 𝔏, is given by,

 𝔏 =
𝜌

1 − 𝜌
𝐶(𝑚, 𝜆 𝜇⁄) + 𝑐𝜌

(C.3)

where 𝜌 = 𝜆/𝑚𝛼 is the utilization factor and 𝐶(𝑚, 𝜆 𝜇⁄) is the Erlang C formula [121].

From Little's result average delay of a customer, 𝑟̅, is given by,

 𝑟̅ =
𝔏

𝜆
 (C.4)

The utilization factor is 𝜌 where it must follow the condition to be ergodic:

 𝜌 =
𝜆

𝑚𝛼
< 1

(C.5)

118

Derivation of the joint probability distribution of the

number of uncompleted tasks and vehicles

Similar to the analysis of the job completion time during a free-flow traffic scenario, a set

of two variables, {𝑗, 𝑘}, may represent the state of the system, where 𝑗 denotes the number of

uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any time. We

again note that when the system is in the state {𝑗, 𝑘}, it means that the execution of 𝔍 − 𝑗 tasks

finishes, and the number of suspended tasks is given by max(0, 𝑗 − 𝑘). Then, as shown in the

state transition diagram in Fig. C.1, we can model the system using a two-dimensional birth-

death process. However, when we write the global balance equation for this system, we will also

end up with a differential-difference equation containing unknowns similar to that of equation

(A.10).

In the state transition diagram of Fig. C.1, the states in row 𝑗 correspond to having 𝑗

uncompleted tasks in the system. The execution of the job begins in one of the states at the top

row. Each time execution of a task is completed, the system moves to the next row below. The

execution of the job is completed when the system enters one of the states at the bottom row.

Thus the job completion time is the sum of the times the system spends in the states at each row.

Following this observation, we will derive the amount of time the system spends in the states of

each row. As a result, we will divide the system into several subsystems, where we can analyze

each subsystem independently of the other subsystems. Let 𝜃𝑗 denote subsystem j where 0 <

𝑗 ≤ 𝔍. We define subsystem 𝜃𝑗 as the set of states of rows 𝑗 and 𝑗 − 1 of the state-transition

diagram as shown in Fig. C.2.

 𝜃𝑗 = {(𝑗, 𝑘) ∀ 𝑘 ≥ 0 ∪ (𝑗 − 1, 𝑘) ∀ 𝑘 > 0}, 0 < 𝑗 ≤ 𝔍 (C.6)

119

The states of row 𝑗 − 1 for 𝑘 > 0 will be absorbing states [121] for this subsystem. When

the subsystem enters one of the absorbing states, then the system immediately exits the

subsystem 𝜃𝑗 and enters the subsystem 𝜃𝑗−1. During this transition, the service of one of the tasks

completes. We will refer to the amount of time that the system spends in the subsystem 𝜃𝑗 as

absorbing time and denote it by 𝑋𝑗.

Fig. C.1. State transition diagram for the system in a congested traffic vehicle model. In each

state number of uncompleted tasks is shown above the number of worker vehicles in the system.

120

Next, we will derive the joint probability distribution of the number of uncompleted tasks

and the number of vehicles in a subsystem as a function of time. Since subsystems are analyzed

independently, we assume that the initial time for each subsystem will be set to zero. Let 𝑃𝑗,𝑘(𝑡)

denote the probability that there will be j uncompleted tasks and k worker vehicles in the

subsystem 𝜃𝑗 at time 𝑡. From Fig. C.2, the behavior of the subsystem 𝜃𝑗 may be described by the

following set of differential-difference equations:

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝑃𝑗,𝑘+1(𝑡) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡),

0 < 𝑘 ≤ 𝑚 − 1
(C.7)

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + 𝑚𝛼𝑃𝑗,𝑘+1(𝑡) − [𝜆 + 𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡), 0 < 𝑚 ≤ 𝑘

(C.8)

𝑑𝑃𝑗−1,𝑘(𝑡)

𝑑𝑡
= 𝑚𝑖𝑛(𝑗, 𝑘)𝜇𝑃𝑗,𝑘(𝑡), 0 < 𝑘

(C.9)

𝑑𝑃𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝑃𝑗,1(𝑡) − 𝜆𝑃𝑗,0(𝑡), 𝑘 = 0

(C.10)

Since the number of worker vehicles in the system is at a steady state, then initial

distribution of the number of workers in the subsystem 𝜃𝔍 is given by (C.1) and (C.2). In

subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍, the initial number of vehicles in the system will be given by the

number of vehicles in the subsystem 𝜃𝑗+1 when that subsystem has entered into an absorbing

state. As a result, we have the following initial distributions,

Fig. C.2. State transition diagram for sub system 𝜃𝑗. States {𝑗 − 1, 𝑘} are absorption states. Once

transitions to states {𝑗 − 1, 𝑘} occur, the reverse is not allowed.

121

 𝑃𝑗,𝑘(0) = {
𝑄𝑘, 𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝜃𝑗 , 𝑗 = 𝔍

𝑃𝑗+1,𝑘(∞), 𝑓𝑜𝑟 𝜃𝑗 , 𝑗 < 𝔍

(C.11)

We note that from the final value theorem property of the Laplace transforms,

 𝑃𝑗+1,𝑘(∞) = lim
𝑠→0

𝑠ℒ𝑗+1,𝑘(𝑠) (C.12)

which gives the initial distribution of the number of vehicles in the subsystem 𝜃𝑗 . This initial

distribution of the number of vehicles in a subsystem has also been confirmed by simulation.

Moreover, we also note that at time 𝑡 = 0, no task should have been completed in the

subsystem 𝜃𝑗 , thus, we can write,

 𝑃𝑗−1,𝑘(0) = 0, 0 < 𝑗 ≤ 𝔍, 𝑘 > 0, (C.13)

Next, let us define the following Laplace transform,

 ℒ𝑗,𝑘(𝑠) = 𝕃{𝑃𝑗,𝑘(𝑡)} = ∫ 𝑃𝑗,𝑘(𝑡)
∞

𝑡=0

 𝑒−𝑠𝑡𝑑𝑡
(C.14)

To solve the set of equations (C.7) to (C.10), we will take their Laplace transforms,

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0)

= 𝜆ℒ𝑗,𝑘−1(𝑠) + (𝑘 + 1)𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠),

0 < 𝑘 ≤ 𝑚 − 1 (C.15)

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0) = 𝜆ℒ𝑗,𝑘−1(𝑠) + 𝑚𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 +𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠),

0 < 𝑚 ≤ 𝑘 (C.16)

 𝑠ℒ𝑗−1,𝑘(𝑠) − 𝑃𝑗−1,𝑘(0) = 𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠), 𝑘 > 0 (C.17)

 𝑠ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0) = 𝛼ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠), 𝑘 = 0 (C.18)

Next, we express ℒ𝑗,𝑘(𝑠) in terms of ℒ𝑗,0(𝑠). From (C.18), we can write ℒ𝑗,1(𝑠) in terms of

122

ℒ𝑗,0(𝑠),

 ℒ𝑗,1(𝑠) =
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)] (C.19)

Depending on the value of 𝑚, substituting 𝑘 = 1 in either (C.15) or (C.16) gives, respectively,

ℒ𝑗,2(𝑠) =

[𝑠 + 𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼
,

𝑓𝑜𝑟 0 < 𝑘 ≤ 𝑚 − 1 (C.20)

ℒ𝑗,2(𝑠) =

[𝑠 + 𝜆 +𝑚𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

𝑚𝛼
,

𝑓𝑜𝑟 0 < 𝑚 ≤ 𝑘 (C.21)

Substituting (C.19) in either (C.20) or (C.21), we can also express 𝐿𝑗,2(𝑠) in terms of

𝐿𝑗,0(𝑠). Next, we solve for 𝐿𝑗,𝑘+1(𝑠) in (C.15) and (C.16), respectively,

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

(𝑘 + 1)𝛼
ℒ𝑗,𝑘(𝑠)

−
𝜆

(𝑘 + 1)𝛼
ℒ𝑗,𝑘−1(𝑠) −

1

(𝑘 + 1)𝛼
𝑃𝑗,𝑘(0), 0 < 𝑘 ≤ 𝑚 − 1

(C.22)

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 +𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

𝑚𝛼
ℒ𝑗,𝑘(𝑠)

−
𝜆

𝑚𝛼
ℒ𝑗,𝑘−1(𝑠) −

1

𝑚𝛼
𝑃𝑗,𝑘(0), 0 < 𝑚 ≤ 𝑘

(C.23)

In the above, we see that ℒ𝑗,𝑘+1(𝑠) depends on ℒ𝑗,𝑘(𝑠), and ℒ𝑗,𝑘−1(𝑠). As a result, we can

express ℒ𝑗,𝑘+1(𝑠) recursively in terms of ℒ𝑗,0(𝑠) using (C.19), (C.20), and (C.21). This recursion

implies ℒ𝑗,𝑘(𝑠) can be written as a function of ℒ𝑗,0(𝑠) for 𝑘 > 0. Next, we show how to

determine ℒ𝑗,0(𝑠) from the normalization condition,

 ∑𝑃𝑗,𝑘(𝑡)

∞

𝑘=0

+∑𝑃𝑗−1,𝑘(𝑡)

∞

𝑘=1

= 1
(C.24)

123

Taking Laplace transform of the conservation relation in the above, we have,

 ∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑ℒ𝑗−1,𝑘(𝑠)

∞

𝑘=1

=
1

𝑠

(C.25)

After substituting (C.13) in (C.17), we solve for ℒ𝑗−1,𝑘(𝑠), then this result is substituted

in (C.25), which gives,

 𝑠ℒ𝑗,0(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 1
(C.26)

Next, since ℒ𝑗,𝑘(𝑠) can be written as a function of ℒ𝑗,0(𝑠), from (C.22) and (C.23), we

can substitute it into (C.26) to solve for the unknown function ℒ𝑗,0(𝑠). After determination of

ℒ𝑗,0(𝑠), it means that we have obtained all ℒ𝑗,𝑘(𝑠) functions and then application of the inverse

Laplace transforms to ℒ𝑗,𝑘(𝑠) results in 𝑃𝑗,𝑘(𝑡). In determining ℒ𝑗,0(𝑠) we need to truncate the

infinite summation in (C.26), the accuracy of this truncation is tested through simulation.

Derivation of the probability density function of the job

completion time and the number of service interruptions in

congested traffic

 Since we also determined 𝑃𝑗,𝑘(𝑡) for the congested traffic vehicle model, the derivation of

the probability density function of the job completion time, and the number of service

interruptions in congested traffic are similar to that of free-flow traffic and will not be given

here.

124

Appendix D

Proof of equation (3.9)

We will first need to prove an important result to derive equation (3.9), which is

 ∫𝛼𝑒−𝛼𝑥
𝑒−𝑘𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘

𝑘!
𝑑𝑥 =

𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘+1

(𝑘 + 1)!

(D.1)

We prove (D.1) by taking the derivative with respect to 𝑥 on the right-hand side. Denote

𝑣(𝑥) =
𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥−1)𝑘+1

(𝑘+1)!
,

𝑑𝑣(𝑥)

𝑑𝑥
=

1

(𝑘 + 1)!
∙
𝑑

𝑑𝑥
[𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘+1]

=
1

(𝑘 + 1)!
{
𝑑

𝑑𝑥
[𝑒−(𝑘+1)𝛼𝑥](𝑒𝛼𝑥 − 1)𝑘+1 + 𝑒−(𝑘+1)𝛼𝑥

𝑑

𝑑𝑥
[(𝑒𝛼𝑥 − 1)𝑘+1]}

=
1

(𝑘 + 1)!
[(𝑘 + 1)𝛼𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘𝑒𝛼𝑥

− (𝑘 + 1)𝛼𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘(𝑒𝛼𝑥 − 1)]

=
𝛼𝑒−𝛼𝑥𝑒−𝑘𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘

𝑘!

(D.2)

 Since the residency times or the workers are i.i.d and exponentially distributed, their joint pdf

can be written as

 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1) = 𝐾! 𝛼
𝐾𝑒−𝛼𝑟1 …𝑒−𝛼𝑟𝐾 (D.3)

Then we can rewrite the integral in equation (3.9) as below

 ∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

(D.4)

125

= 𝐾!𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙ ∫ 𝛼𝑒−𝛼𝑟𝐾−𝔍 …∫ 𝛼𝑒−𝛼𝑟1𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

After that, we can apply result of (D.1) to (D.4) starting from 𝑘 = 0 in (D.1) since each

definite integral in (D.4) has the lower limit of 0 and the upper limit of its following integral. We

finally have,

∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

= 𝐾! 𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙
𝑒−(𝐾−𝐽)𝛼𝑟𝐾−𝐽+1(𝑒𝛼𝑟𝐾−𝐽+1 − 1)𝐾−𝐽

(𝐾 − 𝐽)!

(D.5)

126

Appendix E

Chapter 3 simulation description

We use Monte Carlo simulation to validate our numerical results since we employed

stochastic modeling as our analytical methods.

At the start of a simulation run, a task matrix of size 2 × 𝔍 is created. The first row of the

matrix is an ascending order array of 𝔍 exponential random variables with mean 1/𝜇, which is

created by sorting the exprnd function with parameters 1/𝜇, 1 and 𝔍. The second row is the zero-

value array to flag completed tasks. Then, we initiate a counter variable, veh_count, with value

zero to keep track of the number of vehicles arrival to assign all tasks in a job in a simulation

run. Additionally, another arrival time variable, veh_arrival_curr, is initiate with value zero to

accumulate the interarrival times of all vehicles arrival at the VC. Essentially, when a vehicle

arrives, veh_arrival_curr will increase the amount of interarrival time of the vehicle.

Furthermore, if the vehicle can execute a task, then veh_arrival_curr also allows us to register the

task completion time by adding the task execution time to veh_arrival_curr.

To register ordered task completion times, we initiate a zero-value array of 𝔍 elements.

Thus, there will be a 𝑛 × 𝔍 matrix to record the results of the simulation runs. Additionally, we

will also create two arrays of 𝑛 elements to store the job completion time and the number of

vehicles arrival to assign all tasks in a job for each simulation run.

In each simulation run, we will loop until the second row of the task matrix is all flagged

after initiating all the necessary variables above. During each iteration, we will increment

veh_count and generate two exponential random variables of the interarrival time and residency

time of a vehicle using exprnd with the parameter 1/𝜆 and 1/𝛼, respectively. Then,

veh_arrival_curr increases by the recently generated interarrival time. After that, we compare the

residency time to the first row of the task matrix to see if the residency time is larger than any

uncompleted task. If so, we will flag the task with the longest execution time. Then we compute

the task completion time by adding the residency time to veh_arrival_curr and appending it to

the task completion time array with the corresponding index. Table E.1 shows an example of an

127

arriving vehicle with the residency time of 4.96 compared to the tasks. We see that the residency

time is larger than values of the first row of the matrix at index 0, 1, 2, 3, 4 and indices 1 and 4 is

flagged at the second row. Since the task row is sorted in the ascending order, task at index 3 is

the largest among the uncompleted tasks. Thus, the index 3 at the second row will be flagged. On

the other hand, if the residency time is smaller than all the incomplete tasks, we will let the loop

continue to run and do nothing.

Current vehicle’s residency time: 4.96

Tasks

0 1 2 3 4 … 𝔍

Ordered

Execution

time

1.57 2.31 2.95 4.88 4.92 … 10.34

Completion

flag
 x x x …

Table E.1. An example of the comparison of the residency time of a vehicle to the task matrix to

determine which task to assign to the vehicle.

After all the tasks are flagged, we should have the array of the task completion time in the

second row of the task matrix and the number of vehicle arrivals to assign all tasks in a job. The

array is appended to the ordered task completion time. Then, the job completion time, which is

the longest task completion time, is then appended to the array of job completion time. Finally,

the number of vehicle arrivals is recorded for the run. The matrix and the arrays will allow us to

compute the average and the distribution of the 𝑗𝑡ℎ ordered task completion times, the job

completion time and the number of vehicle arrivals to assign all the tasks.

Finally the simulation is ran over 105 times to obtain the final results.

128

REFERENCES
[1] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview on Edge Computing Research,”

IEEE Access, vol. 8, pp. 85714–85728, 2020, doi: 10.1109/ACCESS.2020.2991734.

[2] A. Iqbal and S. Olariu, “A Survey of Enabling Technologies for Smart Communities,”

Smart Cities, vol. 4, no. 1, pp. 54–77, Dec. 2020, doi: 10.3390/smartcities4010004.

[3] L. Liu et al., “Computing Systems for Autonomous Driving: State of the Art and

Challenges,” IEEE Internet Things J, vol. 8, no. 8, pp. 6469–6486, Apr. 2021, doi:

10.1109/JIOT.2020.3043716.

[4] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and Sensor Fusion

Technology in Autonomous Vehicles: A Review,” Sensors, vol. 21, no. 6, p. 2140, Mar.

2021, doi: 10.3390/s21062140.

[5] Y. Zhang, H. Zhang, K. Long, Q. Zheng, and X. Xie, “Software-Defined and Fog-

Computing-Based Next Generation Vehicular Networks,” IEEE Communications

Magazine, vol. 56, no. 9, pp. 34–41, Sep. 2018, doi: 10.1109/MCOM.2018.1701320.

[6] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular Fog Computing: A

Viewpoint of Vehicles as the Infrastructures,” IEEE Trans Veh Technol, vol. 65, no. 6, pp.

3860–3873, Jun. 2016, doi: 10.1109/TVT.2016.2532863.

[7] A. M. A. Hamdi, F. K. Hussain, and O. K. Hussain, “Task offloading in vehicular fog

computing: State-of-the-art and open issues,” Future Generation Computer Systems, vol.

133, pp. 201–212, Aug. 2022, doi: 10.1016/j.future.2022.03.019.

[8] J. Lu, B. Li, H. Li, and A. Al-Barakani, “Expansion of city scale, traffic modes, traffic

congestion, and air pollution,” Cities, vol. 108, p. 102974, Jan. 2021, doi:

10.1016/j.cities.2020.102974.

[9] I. Gokasar, A. Timurogullari, M. Deveci, and H. Garg, “SWSCAV: Real-time traffic

management using connected autonomous vehicles,” ISA Trans, vol. 132, pp. 24–38, Jan.

2023, doi: 10.1016/j.isatra.2022.06.025.

[10] Y. Yang, L. Zhang, Y. Zhao, K.-K. R. Choo, and Y. Zhang, “Privacy-Preserving

Aggregation-Authentication Scheme for Safety Warning System in Fog-Cloud Based

VANET,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 317–

331, 2022, doi: 10.1109/TIFS.2022.3140657.

[11] M. Benadda and G. Belalem, “Improving Road Safety for Driver Malaise and Sleepiness

Behind the Wheel Using Vehicular Cloud Computing and Body Area Networks,”

International Journal of Software Science and Computational Intelligence, vol. 12, no. 4,

pp. 19–41, Oct. 2020, doi: 10.4018/IJSSCI.2020100102.

[12] NHTSA, “Newly Released Estimates Show Traffic Fatalities Reached a 16-Year High in

2021,” NHTSA, May 22, 2022.

129

[13] L. Nkenyereye, S. M. R. Islam, M. Bilal, M. Abdullah-Al-Wadud, A. Alamri, and A.

Nayyar, “Secure crowd-sensing protocol for fog-based vehicular cloud,” Future

Generation Computer Systems, vol. 120, pp. 61–75, Jul. 2021, doi:

10.1016/j.future.2021.02.008.

[14] A. Paranjothi, M. Atiquzzaman, and M. S. Khan, “Message Dissemination in Connected

Vehicles,” Sep. 2020.

[15] M. Al Shabi, “An Efficient Delay Aware Emergency Message,” Jul. 2022.

[16] W. Yang, X. Dai, J. Xiao, and H. Jin, “LDV: A Lightweight DAG-Based Blockchain for

Vehicular Social Networks,” IEEE Trans Veh Technol, vol. 69, no. 6, pp. 5749–5759, Jun.

2020, doi: 10.1109/TVT.2020.2963906.

[17] R. S. and C. Chetanaprakash, “Advancement in infotainment system in automotive sector

with vehicular cloud network and current state of art,” International Journal of Electrical

and Computer Engineering (IJECE), vol. 10, no. 2, p. 2077, Apr. 2020, doi:

10.11591/ijece.v10i2.pp2077-2087.

[18] N. Gaouar and M. Lehsaini, “Toward vehicular cloud/fog communication: A survey on

data dissemination in vehicular ad hoc networks using vehicular cloud/fog computing,”

International Journal of Communication Systems, vol. 34, no. 13, Sep. 2021, doi:

10.1002/dac.4906.

[19] H. Singh, V. Laxmi, A. Malik, and Isha, “Fog Computing as Future Perspective in

Vehicular Ad hoc Networks,” in Fog, Edge, and Pervasive Computing in Intelligent IoT

Driven Applications, Wiley, 2020, pp. 177–192. doi: 10.1002/9781119670087.ch10.

[20] W. Wei, R. Yang, H. Gu, W. Zhao, C. Chen, and S. Wan, “Multi-Objective Optimization

for Resource Allocation in Vehicular Cloud Computing Networks,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 12, pp. 25536–25545, Dec. 2022, doi:

10.1109/TITS.2021.3091321.

[21] A. U. Rahman, A. W. Malik, V. Sati, A. Chopra, and S. D. Ravana, “Context-aware

opportunistic computing in vehicle-to-vehicle networks,” Vehicular Communications, vol.

24, p. 100236, Aug. 2020, doi: 10.1016/j.vehcom.2020.100236.

[22] M. Whaiduzzaman, M. Sookhak, A. Gani, and R. Buyya, “A survey on vehicular cloud

computing,” Journal of Network and Computer Applications, vol. 40, pp. 325–344, Apr.

2014, doi: 10.1016/j.jnca.2013.08.004.

[23] H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend and

perspectives,” in 2012 Second International Conference on Digital Information and

Communication Technology and it’s Applications (DICTAP), IEEE, May 2012, pp. 195–

202. doi: 10.1109/DICTAP.2012.6215350.

[24] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,”

IEEE Internet Things J, vol. 3, no. 5, pp. 637–646, Oct. 2016, doi:

10.1109/JIOT.2016.2579198.

130

[25] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 5, pp. 27–32, Oct. 2014, doi:

10.1145/2677046.2677052.

[26] Y.-J. Ku, P.-H. Chiang, and S. Dey, “Quality of Service Optimization for Vehicular Edge

Computing with Solar-Powered Road Side Units,” in 2018 27th International Conference

on Computer Communication and Networks (ICCCN), IEEE, Jul. 2018, pp. 1–10. doi:

10.1109/ICCCN.2018.8487353.

[27] M. Khayyat, I. A. Elgendy, A. Muthanna, A. S. Alshahrani, S. Alharbi, and A.

Koucheryavy, “Advanced Deep Learning-Based Computational Offloading for Multilevel

Vehicular Edge-Cloud Computing Networks,” IEEE Access, vol. 8, pp. 137052–137062,

2020, doi: 10.1109/ACCESS.2020.3011705.

[28] S. Xu, C. Guo, R. Q. Hu, and Y. Qian, “Blockchain-Inspired Secure Computation

Offloading in a Vehicular Cloud Network,” IEEE Internet Things J, vol. 9, no. 16, pp.

14723–14740, Aug. 2022, doi: 10.1109/JIOT.2021.3054866.

[29] E. Qafzezi, K. Bylykbashi, M. Ikeda, K. Matsuo, and L. Barolli, “Coordination and

management of cloud, fog and edge resources in SDN-VANETs using fuzzy logic: A

comparison study for two fuzzy-based systems,” Internet of Things, vol. 11, p. 100169,

Sep. 2020, doi: 10.1016/j.iot.2020.100169.

[30] T. Mekki, I. Jabri, A. Rachedi, and M. Ben Jemaa, “Towards Multi-Access Edge Based

Vehicular Fog Computing Architecture,” in 2018 IEEE Global Communications

Conference (GLOBECOM), IEEE, Dec. 2018, pp. 1–6. doi:

10.1109/GLOCOM.2018.8647850.

[31] Z. Zhou, H. Liao, X. Wang, S. Mumtaz, and J. Rodriguez, “When Vehicular Fog

Computing Meets Autonomous Driving: Computational Resource Management and Task

Offloading,” IEEE Netw, vol. 34, no. 6, pp. 70–76, Nov. 2020, doi:

10.1109/MNET.001.1900527.

[32] S.-S. Lee and S. Lee, “Resource Allocation for Vehicular Fog Computing Using

Reinforcement Learning Combined With Heuristic Information,” IEEE Internet Things J,

vol. 7, no. 10, pp. 10450–10464, Oct. 2020, doi: 10.1109/JIOT.2020.2996213.

[33] R. Kumar, A. Saad, and R. E. De Grande, “COrRect: Connection-Oriented Resource

Matching for Vehicular Clouds,” in IEEE International Conference on Communications,

Institute of Electrical and Electronics Engineers Inc., Jun. 2021. doi:

10.1109/ICC42927.2021.9500563.

[34] Y. Wu, J. Wu, L. Chen, G. Zhou, and J. Yan, “Fog Computing Model and Efficient

Algorithms for Directional Vehicle Mobility in Vehicular Network,” IEEE Transactions

on Intelligent Transportation Systems, vol. 22, no. 5, pp. 2599–2614, May 2021, doi:

10.1109/TITS.2020.2971343.

[35] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-OBUs-As-On-Demand-Fogs: Resource

and Context Aware Deployment of Containerized Micro-Services,” IEEE/ACM

131

Transactions on Networking, vol. 28, no. 2, pp. 778–790, Apr. 2020, doi:

10.1109/TNET.2020.2973800.

[36] L. H. Yen, J. C. Hu, Y. D. Lin, and B. Kar, “Decentralized Configuration Protocols for

Low-Cost Offloading from Multiple Edges to Multiple Vehicular Fogs,” IEEE Trans Veh

Technol, vol. 70, no. 1, pp. 872–885, Jan. 2021, doi: 10.1109/TVT.2020.3046874.

[37] F. Sun et al., “Cooperative Task Scheduling for Computation Offloading in Vehicular

Cloud,” IEEE Trans Veh Technol, vol. 67, no. 11, pp. 11049–11061, Nov. 2018, doi:

10.1109/TVT.2018.2868013.

[38] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-Latency Tradeoff for

Dynamic Computation Offloading in Vehicular Fog Computing,” IEEE Trans Veh

Technol, vol. 69, no. 12, pp. 14198–14211, Dec. 2020, doi: 10.1109/TVT.2020.3040596.

[39] Z. Liu, P. Dai, H. Xing, Z. Yu, and W. Zhang, “A Distributed Algorithm for Task

Offloading in Vehicular Networks With Hybrid Fog/Cloud Computing,” IEEE Trans Syst

Man Cybern Syst, vol. 52, no. 7, pp. 4388–4401, Jul. 2022, doi:

10.1109/TSMC.2021.3097005.

[40] S. Xu and C. Guo, “Computation Offloading in a Cognitive Vehicular Networks with

Vehicular Cloud Computing and Remote Cloud Computing,” Sensors, vol. 20, no. 23, p.

6820, Nov. 2020, doi: 10.3390/s20236820.

[41] A. Waheed, M. A. Shah, A. Khan, C. Maple, and I. Ullah, “Hybrid Task Coordination

Using Multi-Hop Communication in Volunteer Computing-Based VANETs,” Sensors,

vol. 21, no. 8, p. 2718, Apr. 2021, doi: 10.3390/s21082718.

[42] Y. Kang, Z. Liu, Q. Chen, and Y. Dai, “Joint Task Offloading and Resource Allocation

Strategy for DiffServ in Vehicular Cloud System,” Wirel Commun Mob Comput, vol.

2020, pp. 1–15, Nov. 2020, doi: 10.1155/2020/8823173.

[43] S. Ucar, T. Higuchi, C.-H. Wang, and O. Altintas, “Chain of Interdependent Vehicular

Micro Clouds,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring),

IEEE, Apr. 2021, pp. 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9448911.

[44] S. K. Pande et al., “A Smart Cloud Service Management Algorithm for Vehicular

Clouds,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp.

5329–5340, Aug. 2021, doi: 10.1109/TITS.2020.3021075.

[45] Q. Chen, Y. Xie, S. Guo, J. Bai, and Q. Shu, “Sensing system of environmental perception

technologies for driverless vehicle: A review of state of the art and challenges,” Sens

Actuators A Phys, vol. 319, p. 112566, Mar. 2021, doi: 10.1016/j.sna.2021.112566.

[46] Z. Ning et al., “Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A

Deep Reinforcement Learning-Based Traffic Control System,” IEEE Transactions on

Intelligent Transportation Systems, vol. 22, no. 8, pp. 5201–5212, Aug. 2021, doi:

10.1109/TITS.2020.2970276.

132

[47] E. Benalia, S. Bitam, and A. Mellouk, “Data dissemination for Internet of vehicle based

on 5G communications: A survey,” Transactions on Emerging Telecommunications

Technologies, vol. 31, no. 5, May 2020, doi: 10.1002/ett.3881.

[48] W. Anwar, N. Franchi, and G. Fettweis, “Physical Layer Evaluation of V2X

Communications Technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11bd, and IEEE

802.11p,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), IEEE,

Sep. 2019, pp. 1–7. doi: 10.1109/VTCFall.2019.8891313.

[49] S. Gyawali, S. Xu, Y. Qian, and R. Q. Hu, “Challenges and Solutions for Cellular Based

V2X Communications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.

222–255, Oct. 2021, doi: 10.1109/COMST.2020.3029723.

[50] S. Maaloul, H. Aniss, L. Mendiboure, and M. Berbineau, “Performance Analysis of

Existing ITS Technologies: Evaluation and Coexistence,” Sensors, vol. 22, no. 24, p.

9570, Dec. 2022, doi: 10.3390/s22249570.

[51] M. Hao, D. Ye, S. Wang, B. Tan, and R. Yu, “URLLC Resource Slicing and Scheduling

in 5G Vehicular Edge Computing,” in 2021 IEEE 93rd Vehicular Technology Conference

(VTC2021-Spring), IEEE, Apr. 2021, pp. 1–5. doi: 10.1109/VTC2021-

Spring51267.2021.9448805.

[52] H. Zhang, Z. Wang, and K. Liu, “V2X offloading and resource allocation in SDN-assisted

MEC-based vehicular networks,” China Communications, vol. 17, no. 5, pp. 266–283,

May 2020, doi: 10.23919/JCC.2020.05.020.

[53] H. Xiao, W. Zhang, W. Li, A. T. Chronopoulos, and Z. Zhang, “Joint Clustering and

Blockchain for Real-Time Information Security Transmission at the Crossroads in C-V2X

Networks,” IEEE Internet Things J, vol. 8, no. 18, pp. 13926–13938, Sep. 2021, doi:

10.1109/JIOT.2021.3068175.

[54] J. Lu, W. Yang, and F. Wu, “High Definition Map Distribution in Named Data

Networking Based VANETs,” in 2020 3rd International Conference on Hot Information-

Centric Networking (HotICN), IEEE, Dec. 2020, pp. 129–134. doi:

10.1109/HotICN50779.2020.9350807.

[55] L. M. Clements and K. M. Kockelman, “Economic Effects of Automated Vehicles,”

Transportation Research Record: Journal of the Transportation Research Board, vol.

2606, no. 1, pp. 106–114, Jan. 2017, doi: 10.3141/2606-14.

[56] K. Nisar et al., “A survey on the architecture, application, and security of software defined

networking: Challenges and open issues,” Internet of Things, vol. 12, p. 100289, Dec.

2020, doi: 10.1016/j.iot.2020.100289.

[57] D. Jiang, Z. Wang, L. Huo, and S. Xie, “A Performance Measurement and Analysis

Method for Software-Defined Networking of IoV,” IEEE Transactions on Intelligent

Transportation Systems, vol. 22, no. 6, pp. 3707–3719, Jun. 2021, doi:

10.1109/TITS.2020.3029076.

133

[58] R. Amin, I. Pali, and V. Sureshkumar, “Software-Defined Network enabled Vehicle to

Vehicle secured data transmission protocol in VANETs,” Journal of Information Security

and Applications, vol. 58, p. 102729, May 2021, doi: 10.1016/j.jisa.2020.102729.

[59] A. H. Sodhro, J. J. P. C. Rodrigues, S. Pirbhulal, N. Zahid, A. R. L. de Macedo, and V. H.

C. de Albuquerque, “Link Optimization in Software Defined IoV Driven Autonomous

Transportation System,” IEEE Transactions on Intelligent Transportation Systems, vol.

22, no. 6, pp. 3511–3520, Jun. 2021, doi: 10.1109/TITS.2020.2973878.

[60] A. Abuarqoub, “A Review of the Control Plane Scalability Approaches in Software

Defined Networking,” Future Internet, vol. 12, no. 3, p. 49, Mar. 2020, doi:

10.3390/fi12030049.

[61] H. Goumidi, S. Harous, Z. Aliouat, and A. M. Gueroui, “Lightweight Secure

Authentication and Key Distribution Scheme for Vehicular Cloud Computing,” Symmetry

(Basel), vol. 13, no. 3, p. 484, Mar. 2021, doi: 10.3390/sym13030484.

[62] V. Kumar, M. Ahmad, D. Mishra, S. Kumari, and M. K. Khan, “RSEAP: RFID based

secure and efficient authentication protocol for vehicular cloud computing,” Vehicular

Communications, vol. 22, p. 100213, Apr. 2020, doi: 10.1016/j.vehcom.2019.100213.

[63] X. Shen, Y. Lu, Y. Zhang, X. Liu, and L. Zhang, “An Innovative Data Integrity

Verification Scheme in the Internet of Things assisted information exchange in

transportation systems,” Cluster Comput, vol. 25, no. 3, pp. 1791–1803, Jun. 2022, doi:

10.1007/s10586-021-03471-5.

[64] A. Masood, D. S. Lakew, and S. Cho, “Security and Privacy Challenges in Connected

Vehicular Cloud Computing,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4,

pp. 2725–2764, Feb. 2020, doi: 10.1109/COMST.2020.3012961.

[65] P. Mundhe, S. Verma, and S. Venkatesan, “A comprehensive survey on authentication and

privacy-preserving schemes in VANETs,” Comput Sci Rev, vol. 41, p. 100411, Aug. 2021,

doi: 10.1016/j.cosrev.2021.100411.

[66] S. Wang, J. Li, G. Wu, H. Chen, and S. Sun, “Joint Optimization of Task Offloading and

Resource Allocation Based on Differential Privacy in Vehicular Edge Computing,” IEEE

Trans Comput Soc Syst, vol. 9, no. 1, pp. 109–119, Feb. 2022, doi:

10.1109/TCSS.2021.3074949.

[67] Y. Li, H. Li, G. Xu, T. Xiang, and R. Lu, “Practical Privacy-Preserving Federated

Learning in Vehicular Fog Computing,” IEEE Trans Veh Technol, vol. 71, no. 5, pp.

4692–4705, May 2022, doi: 10.1109/TVT.2022.3150806.

[68] M. Zamzam, T. El-Shabrawy, and M. Ashour, “Game Theory for Computation Offloading

and Resource Allocation in Edge Computing: A Survey,” in 2020 2nd Novel Intelligent

and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2020, pp. 47–53. doi:

10.1109/NILES50944.2020.9257921.

134

[69] A. Mebrek and A. Yassine, “Intelligent Resource Allocation and Task Offloading Model

for IoT Applications in Fog Networks: A Game-Theoretic Approach,” IEEE Trans Emerg

Top Comput Intell, pp. 1–15, 2021, doi: 10.1109/TETCI.2021.3102214.

[70] Z. Wang, S. Zheng, Q. Ge, and K. Li, “Online Offloading Scheduling and Resource

Allocation Algorithms for Vehicular Edge Computing System,” IEEE Access, vol. 8, pp.

52428–52442, 2020, doi: 10.1109/ACCESS.2020.2981045.

[71] H. Wang, T. Lv, Z. Lin, and J. Zeng, “Energy-Delay Minimization of Task Migration

Based on Game Theory in MEC-Assisted Vehicular Networks,” IEEE Trans Veh Technol,

vol. 71, no. 8, pp. 8175–8188, Aug. 2022, doi: 10.1109/TVT.2022.3175238.

[72] X. Peng, K. Ota, and M. Dong, “Multiattribute-Based Double Auction Toward Resource

Allocation in Vehicular Fog Computing,” IEEE Internet Things J, vol. 7, no. 4, pp. 3094–

3103, Apr. 2020, doi: 10.1109/JIOT.2020.2965009.

[73] D. Kumar, G. Baranwal, and D. P. Vidyarthi, “A Survey on Auction based Approaches for

Resource Allocation and Pricing in Emerging Edge Technologies,” J Grid Comput, vol.

20, no. 1, p. 3, Mar. 2022, doi: 10.1007/s10723-021-09593-9.

[74] J. Shyuan, W. Lim, Z. Xiong, T. D. Niyato, C. Leung, and C. Miao, “A Double Auction

Mechanism for Resource Allocation in Coded Vehicular Edge Computing,” IEEE Trans

Veh Technol, vol. 71, no. 2, pp. 1832–1845, Feb. 2022, doi: 10.1109/TVT.2021.3131395.

[75] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Computation Resource

Allocation and Task Assignment Optimization in Vehicular Fog Computing: A Contract-

Matching Approach,” IEEE Trans Veh Technol, vol. 68, no. 4, pp. 3113–3125, Apr. 2019,

doi: 10.1109/TVT.2019.2894851.

[76] A. Alamer and S. Basudan, “An efficient truthfulness privacy-preserving tendering

framework for vehicular fog computing,” Eng Appl Artif Intell, vol. 91, p. 103583, May

2020, doi: 10.1016/j.engappai.2020.103583.

[77] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A Deep Reinforcement

Learning-Based Resource Management Game in Vehicular Edge Computing,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2422–2433, Mar.

2022, doi: 10.1109/TITS.2021.3114295.

[78] S. M. A. Kazmi et al., “Computing on Wheels: A Deep Reinforcement Learning-Based

Approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp.

22535–22548, Nov. 2022, doi: 10.1109/TITS.2022.3165662.

[79] Y. Sun, S. Zhou, and Z. Niu, “Distributed Task Replication for Vehicular Edge

Computing: Performance Analysis and Learning-Based Algorithm,” IEEE Trans Wirel

Commun, vol. 20, no. 2, pp. 1138–1151, Feb. 2021, doi: 10.1109/TWC.2020.3030889.

[80] C. Zhu et al., “Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog

Computing,” IEEE Internet Things J, vol. 6, no. 3, pp. 4150–4161, Jun. 2019, doi:

10.1109/JIOT.2018.2875520.

135

[81] T. Bahreini, M. Brocanelli, and D. Grosu, “Energy-Aware Resource Management in

Vehicular Edge Computing Systems,” in 2020 IEEE International Conference on Cloud

Engineering (IC2E), IEEE, Apr. 2020, pp. 49–58. doi: 10.1109/IC2E48712.2020.00012.

[82] J. B. D. da Costa, R. I. Meneguette, D. Rosario, and L. A. Villas, “Combinatorial

Optimization-based Task Allocation Mechanism for Vehicular Clouds,” in 2020 IEEE

91st Vehicular Technology Conference (VTC2020-Spring), IEEE, May 2020, pp. 1–5. doi:

10.1109/VTC2020-Spring48590.2020.9128834.

[83] X. Xu, R. Gu, F. Dai, L. Qi, and S. Wan, “Multi-objective computation offloading for

Internet of Vehicles in cloud-edge computing,” Wireless Networks, vol. 26, no. 3, pp.

1611–1629, Apr. 2020, doi: 10.1007/s11276-019-02127-y.

[84] H. Materwala, L. Ismail, R. M. Shubair, and R. Buyya, “Energy-SLA-aware genetic

algorithm for edge–cloud integrated computation offloading in vehicular networks,”

Future Generation Computer Systems, vol. 135, pp. 205–222, Oct. 2022, doi:

10.1016/j.future.2022.04.009.

[85] W. Shu and Y. Li, “Joint offloading strategy based on quantum particle swarm

optimization for MEC-enabled vehicular networks,” Digital Communications and

Networks, vol. 9, no. 1, pp. 56–66, Feb. 2023, doi: 10.1016/j.dcan.2022.03.009.

[86] N. Keshari, T. S. Gupta, and D. Singh, “Particle Swarm Optimization based Task

Offloading in Vehicular Edge Computing,” in 2021 IEEE 18th India Council

International Conference (INDICON), IEEE, Dec. 2021, pp. 1–8. doi:

10.1109/INDICON52576.2021.9691758.

[87] X. Liu and G. Zhang, “Joint Optimization Offloading and Resource Allocation in

Vehicular Edge Cloud Computing Networks with Delay Constraints,” in 2020 IEEE

International Conference on Progress in Informatics and Computing (PIC), IEEE, Dec.

2020, pp. 363–368. doi: 10.1109/PIC50277.2020.9350840.

[88] S. Midya, A. Roy, K. Majumder, and S. Phadikar, “Multi-objective optimization

technique for resource allocation and task scheduling in vehicular cloud architecture: A

hybrid adaptive nature inspired approach,” Journal of Network and Computer

Applications, vol. 103, pp. 58–84, Feb. 2018, doi: 10.1016/j.jnca.2017.11.016.

[89] P. Lang, D. Tian, X. Duan, J. Zhou, Z. Sheng, and V. C. M. Leung, “Cooperative

Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks,”

IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 783–798, Sep. 2022, doi:

10.1109/TIV.2022.3190308.

[90] Q. Hu, H. Cheng, X. Zhang, and C. Lin, “Trusted resource allocation based on proof-of-

reputation consensus mechanism for edge computing,” Peer Peer Netw Appl, vol. 15, no.

1, pp. 444–460, Jan. 2022, doi: 10.1007/s12083-021-01240-0.

[91] X. Ye, M. Li, P. Si, R. Yang, Z. Wang, and Y. Zhang, “Collaborative and Intelligent

Resource Optimization for Computing and Caching in IoV With Blockchain and MEC

136

Using A3C Approach,” IEEE Trans Veh Technol, vol. 72, no. 2, pp. 1449–1463, Feb.

2023, doi: 10.1109/TVT.2022.3210570.

[92] M. V. Fard, A. Sahafi, A. M. Rahmani, and P. S. Mashhadi, “Resource allocation

mechanisms in cloud computing: a systematic literature review,” IET Software, vol. 14,

no. 6, pp. 638–653, Dec. 2020, doi: 10.1049/iet-sen.2019.0338.

[93] C. Tran and M. Mehmet-Ali, “Analysis of Job Completion Time in Vehicular Cloud

Under Concurrent Task Execution,” in 2023 International Conference on Computing,

Networking and Communications (ICNC), IEEE, Feb. 2023, pp. 101–105. doi:

10.1109/ICNC57223.2023.10074524.

[94] C. Tran and M. Mehmet-Ali, “Towards Job Completion Time in Vehicular Cloud by

Overcoming Resource Volatility,” in 2022 IEEE 47th Conference on Local Computer

Networks (LCN), IEEE, Sep. 2022, pp. 331–334. doi: 10.1109/LCN53696.2022.9843398.

[95] B. Kar, K.-M. Shieh, Y.-C. Lai, Y.-D. Lin, and H.-W. Ferng, “QoS Violation Probability

Minimization in Federating Vehicular-Fogs With Cloud and Edge Systems,” IEEE Trans

Veh Technol, vol. 70, no. 12, pp. 13270–13280, Dec. 2021, doi:

10.1109/TVT.2021.3120413.

[96] R. Fantacci and B. Picano, “Performance Analysis of a Delay Constrained Data

Offloading Scheme in an Integrated Cloud-Fog-Edge Computing System,” IEEE Trans

Veh Technol, vol. 69, no. 10, pp. 12004–12014, Oct. 2020, doi:

10.1109/TVT.2020.3008926.

[97] Y. Katayama and T. Tachibana, “Optimal Task Allocation Algorithm Based on Queueing

Theory for Future Internet Application in Mobile Edge Computing Platform,” Sensors,

vol. 22, no. 13, p. 4825, Jun. 2022, doi: 10.3390/s22134825.

[98] C. Celes, A. Boukerche, and A. A. F. Loureiro, “Revealing and Modeling Vehicular

Micro Clouds Characteristics in a Large-Scale Mobility Trace,” in IEEE International

Conference on Communications, Institute of Electrical and Electronics Engineers Inc.,

Jun. 2021. doi: 10.1109/ICC42927.2021.9500262.

[99] A. Bonadio, F. Chiti, and R. Fantacci, “Performance Analysis of an Edge Computing SaaS

System for Mobile Users,” IEEE Trans Veh Technol, vol. 69, no. 2, pp. 2049–2057, Feb.

2020, doi: 10.1109/TVT.2019.2957938.

[100] Y. Wu and J. Zheng, “Modeling and Analysis of the Local Delay in an MEC-Based

VANET for a Suburban Area,” IEEE Internet Things J, vol. 9, no. 9, pp. 7065–7079, May

2022, doi: 10.1109/JIOT.2021.3116195.

[101] J. Li, X. You, and J. Zheng, “Performance Modeling and Analysis of anMECSystem with

Task Priority and Expiring Time Constraint,” IEEE Communications Letters, pp. 1–1,

2023, doi: 10.1109/LCOMM.2023.3270338.

[102] B. Ravi, A. Gautam, and J. Thangaraj, “Stochastic performance modeling and analysis of

multi service provisioning with software defined vehicular networks,” AEU -

137

International Journal of Electronics and Communications, vol. 124, p. 153327, Sep. 2020,

doi: 10.1016/j.aeue.2020.153327.

[103] W. Miao, G. Min, X. Zhang, Z. Zhao, and J. Hu, “Performance Modelling and

Quantitative Analysis of Vehicular Edge Computing With Bursty Task Arrivals,” IEEE

Trans Mob Comput, vol. 22, no. 2, pp. 1129–1142, Feb. 2023, doi:

10.1109/TMC.2021.3087013.

[104] J. Zhou, D. Tian, Y. Wang, Z. Sheng, X. Duan, and V. C. M. Leung, “Reliability-Optimal

Cooperative Communication and Computing in Connected Vehicle Systems,” IEEE Trans

Mob Comput, vol. 19, no. 5, pp. 1216–1232, May 2020, doi:

10.1109/TMC.2019.2907491.

[105] P. Sun and N. Samaan, “A Novel VANET-Assisted Traffic Control for Supporting

Vehicular Cloud Computing,” IEEE Transactions on Intelligent Transportation Systems,

vol. 22, no. 11, pp. 6726–6736, Nov. 2021, doi: 10.1109/TITS.2020.2994280.

[106] Q. Wu, Y. Zhao, and Q. Fan, “Time-Dependent Performance Modeling for Platooning

Communications at Intersection,” IEEE Internet Things J, vol. 9, no. 19, pp. 18500–

18513, Oct. 2022, doi: 10.1109/JIOT.2022.3161028.

[107] J. Kim and G. Hwang, “Performance Modeling and Analysis of Broadcast Packets in

Vehicular Ad Hoc Networks,” J Syst Sci Syst Eng, vol. 28, no. 2, pp. 211–223, Apr. 2019,

doi: 10.1007/s11518-018-5397-1.

[108] R. Florin, P. Ghazizadeh, A. Ghazi Zadeh, S. El-Tawab, and S. Olariu, “Reasoning About

Job Completion Time in Vehicular Clouds,” IEEE Transactions on Intelligent

Transportation Systems, vol. 18, no. 7, pp. 1762–1771, Jul. 2017, doi:

10.1109/TITS.2016.2620434.

[109] R. Florin, P. Ghazizadeh, A. Ghazi Zadeh, R. Mukkamala, and S. Olariu, “A tight estimate

of job completion time in vehicular clouds,” IEEE Transactions on Cloud Computing, pp.

1–1, 2018, doi: 10.1109/TCC.2018.2834352.

[110] R. Florin and S. Olariu, “Toward Approximating Job Completion Time in Vehicular

Clouds,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 8, pp.

3168–3177, Aug. 2019, doi: 10.1109/TITS.2018.2873998.

[111] R. Florin, A. Ghazizadeh, P. Ghazizadeh, S. Olariu, and D. C. Marinescu, “Enhancing

Reliability and Availability through Redundancy in Vehicular Clouds,” IEEE

Transactions on Cloud Computing, vol. 9, no. 3, pp. 1061–1074, Jul. 2021, doi:

10.1109/TCC.2019.2905590.

[112] A. Ghazizadeh, P. Ghazizadeh, R. Mukkamala, and S. Olariu, “Towards Approximating

Expected Job Completion Time in Dynamic Vehicular Clouds,” in 2019 IEEE 12th

International Conference on Cloud Computing (CLOUD), IEEE, Jul. 2019, pp. 481–483.

doi: 10.1109/CLOUD.2019.00084.

138

[113] T. Bahreini, M. Brocanelli, and D. Grosu, “VECMAN: A Framework for Energy-Aware

Resource Management in Vehicular Edge Computing Systems,” IEEE Trans Mob

Comput, vol. 22, no. 2, pp. 1231–1245, Feb. 2023, doi: 10.1109/TMC.2021.3089338.

[114] M. Asim and A. A. Abd El-Latif, “Intelligent computational methods for multi-unmanned

aerial vehicle-enabled autonomous mobile edge computing systems,” ISA Trans, vol. 132,

pp. 5–15, Jan. 2023, doi: 10.1016/j.isatra.2021.11.021.

[115] R. Roess, E. Prassas, and W. McShane, Traffic Engineering. Pearson Prentice Hall, 2004.

[116] D. Bruneo, “A Stochastic Model to Investigate Data Center Performance and QoS in IaaS

Cloud Computing Systems,” IEEE Transactions on Parallel and Distributed Systems, vol.

25, no. 3, pp. 560–569, Mar. 2014, doi: 10.1109/TPDS.2013.67.

[117] E. Ataie, R. Entezari-Maleki, L. Rashidi, K. S. Trivedi, D. Ardagna, and A. Movaghar,

“Hierarchical Stochastic Models for Performance, Availability, and Power Consumption

Analysis of IaaS Clouds,” IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp.

1039–1056, Oct. 2019, doi: 10.1109/TCC.2017.2760836.

[118] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, “Stochastic Model Driven

Capacity Planning for an Infrastructure-as-a-Service Cloud,” IEEE Trans Serv Comput,

vol. 7, no. 4, pp. 667–680, Oct. 2014, doi: 10.1109/TSC.2013.44.

[119] Y. Chen et al., “Stochastic Workload Scheduling for Uncoordinated Datacenter Clouds

with Multiple QoS Constraints,” IEEE Transactions on Cloud Computing, vol. 8, no. 4,

pp. 1284–1295, Oct. 2020, doi: 10.1109/TCC.2016.2586048.

[120] S. Yousefi, E. Altman, R. El-Azouzi, and M. Fathy, “Analytical Model for Connectivity in

Vehicular Ad Hoc Networks,” IEEE Trans Veh Technol, vol. 57, no. 6, pp. 3341–3356,

Nov. 2008, doi: 10.1109/TVT.2008.2002957.

[121] L. Kleinrock, Queueing systems, vol. 1. Wiley-Interscience, 1975.

[122] T. Zhang, R. E. de Grande, and A. Boukerche, “Design and analysis of stochastic traffic

flow models for vehicular clouds,” Ad Hoc Networks, vol. 52, pp. 39–49, Dec. 2016, doi:

10.1016/j.adhoc.2016.07.009.

[123] L. Liu and D.-H. Shi, “Busy period in GI X /G/ ∞,” J Appl Probab, vol. 33, no. 3, pp. 815–

829, Sep. 1996, doi: 10.2307/3215361.

[124] D. N. Shanbhag, “On infinite server queues with batch arrivals,” J Appl Probab, vol. 3,

no. 1, pp. 274–279, Jun. 1966, doi: 10.2307/3212053.

[125] J. A. Filipe and M. A. M. Ferreira, “Infinite servers queue systems busy period - a

practical case on logistics problems solving,” Applied Mathematical Sciences, vol. 9, pp.

1221–1228, 2015, doi: 10.12988/ams.2015.410808.

[126] J. R. Artalejo and M. J. Lopez-Herrero, “Analysis of the busy period for the M/M/c queue:

an algorithmic approach,” J Appl Probab, vol. 38, no. 01, pp. 209–222, Mar. 2001, doi:

10.1017/S0021900200018611.

139

[127] J. Wang, O. Baron, and A. Scheller-Wolf, “M/M/c Queue with Two Priority Classes,”

Oper Res, vol. 63, no. 3, pp. 733–749, Jun. 2015, doi: 10.1287/opre.2015.1375.

[128] M. Barbeau and E. Kranakis, Principles of Ad Hoc Networking. Chichester, UK: John

Wiley & Sons, Ltd, 2007. doi: 10.1002/9780470512494.

	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1 Introduction
	1.1. Motivation for Vehicular Cloud
	1.1.1. Improved traffic management
	1.1.2. Enhanced road safety
	1.1.3. Enabling new services and applications

	1.2. Architectures of Vehicular Cloud
	1.2.1. Centralized architecture (Vehicular Edge Computing)
	1.2.2. Distributed architecture (Vehicular Fog Computing)
	1.2.3. Hybrid architecture

	1.3. Enabling technologies of Vehicular Cloud
	1.3.1. Advanced vehicular sensor systems
	1.3.2. Wireless communication
	1.3.3. Autonomous vehicles
	1.3.4. Software-defined networks (SDNs)

	1.4. Security and privacy in Vehicular Cloud
	1.5. Resource Management in Vehicular Cloud
	1.6. Performance Modeling of Vehicular Cloud
	1.6.1. Hybrid or Centralized VC architectures
	1.6.2. Distributed VC architecture

	1.7. Research objectives
	1.8. Contributions
	1.9. Organization

	Chapter 2 Job completion time in a VC with service interruption
	2.1 Free-flow traffic on a highway
	2.1.1. System model
	Vehicle Cloud Model
	Job Model
	Task Service Strategy

	2.1.2. An analysis of job completion time
	i) Mathematical Assumptions
	ii) State Transition Diagram of The System
	iii) Derivation of the Differential-difference equations describing the system
	iv) Derivation of the joint probability distribution of the number of uncompleted tasks and vehicles through decomposition
	v) Derivation of the probability density function of the job completion time

	2.1.3. Derivation of the probability distribution of the number of service interruptions
	2.1.4. Numerical and Simulation Results
	2.1.5. Approximate Analysis of Average Job Completion Time with Migration Overhead

	2.2. Congested traffic on a highway
	2.2.1. Modeling approach
	2.2.2. Numerical results

	2.3. Summary

	Chapter 3 Job completion time in a VC with service interruption avoidance strategy
	3.1. System model
	3.1.1. Vehicular cloud and job model
	3.1.2. Task service strategy
	3.1.3. System model assumptions

	3.2. Mathematical preliminaries
	3.3. Analysis of job completion time
	3.3.1. Probability distribution of the number of vehicle arrivals for the assignment of all the tasks in a job
	3.3.2. Probability density function of the upper and lower bound of job completion time
	3.3.3. Mean of upper and lower bound of job completion time
	3.3.4. Probability density function of the longest task completion time

	3.4. Numerical results
	3.5. Summary

	Chapter 4 Computing capacity of a VC with service interruption avoidance strategy
	4.1. System model
	4.1.1. Vehicular Cloud model
	4.1.2. Job and service model
	4.1.3. Mathematical assumptions

	4.2. Derivation of the Computing Capacity
	4.2.1. Probability generating function of the number of vehicle arrivals to the VC during its lifetime
	4.2.2. PMF of the number of completed tasks during the lifetime of a VC
	4.2.3. Probability distribution of the number of completed jobs during the lifetime of VC
	4.2.4. Average number of attempted jobs during VC lifetime

	4.3. Numerical results
	4.4. Summary

	Chapter 5 Computing capacity of a robotaxi fleet
	5.1. System model and assumptions
	5.1.2. Robotaxi model
	5.1.4. Cyclical nature of the system

	5.2. Computing Capacity of a Robotaxi Fleet with Infinite Backlog of Tasks
	5.2.1. Laplace transform of the duration of a busy period of a 𝑴/𝑴/𝒄 queue
	5.2.2. PGF of the number of passengers served during a system busy period
	5.2.3. Computing capacity of the robotaxi fleet
	5.2.4. Mean number of completed tasks during a cycle

	5.3. Delay analysis of the tasks in a robotaxi fleet with Finite Backlog of Tasks
	5.4. Numerical results
	5.5 Summary

	Chapter 6 Conclusion and Future work
	Conclusion
	Future work
	Heterogeneity in the VC
	Migration overhead
	Deadline driven task execution
	Non-homogeneous traffic flow

	Appendix A Solving differential-difference equations in 2.1.2 with transform methods
	Appendix B Section 2.1 Simulation description
	Appendix C Analysis of job completion time in dynamic VC on a highway with congested traffic
	Vehicle model preliminary
	Derivation of the joint probability distribution of the number of uncompleted tasks and vehicles
	Derivation of the probability density function of the job completion time and the number of service interruptions in congested traffic

	Appendix D Proof of equation (3.9)
	Appendix E Chapter 3 simulation description
	References

