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Abstract

Discourse Analysis of Argumentative Essays of English Learners based on their CEFR

Level

Blaise Hanel

This thesis aims to explore the relationship between discourse information and the CEFR-

level (Common European Framework of Reference for Languages) in argumentative English learner

essays. The study leverages two prominent frameworks: the Rhetorical Structure Theory (RST) and

the Penn Discourse TreeBank (PDTB), to analyze essays obtained from The International Corpus

Network of Asian Learners (ICNALE) and the Corpus and Repository of Writing (CROW). The

research investigates the influence of different discourse relations and connectives on the language

proficiency level of the writers, and further explores the potential of using discourse information as

additional features for automated CEFR-level determination.

The analysis of the collected essays reveals significant findings regarding the utilization of dis-

course relations by English learners. Notably, the RST relations of EXPLANATION and BACK-

GROUND are statistically used more often by writers with a CEFR level below fluency. In addition,

as the CEFR level increases, the use of the PDTB relation of CONTINGENCY decreases. These

results provide empirical evidence of the relationship between discourse relations and language

proficiency, highlighting the differential usage patterns among learners at various CEFR levels.

To validate these findings computationally, discourse relations and connectives are employed

as supplementary features for machine learning models. The experimental results indicate that

incorporating discourse information into the automated CEFR-level determination process leads to

a mild increase in performance compared to relying solely on lexical and grammatical features.

However, it is important to note that the proposed approach does not outperform the use of large

language models, such as RoBERTa, which have demonstrated superior performance in various

natural language processing tasks.
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Nevertheless, this study contributes valuable insights into the relationship between discourse

relations and argumentative English learner essays. The findings highlight the potential influence of

discourse relations on language proficiency and suggest avenues for further research and develop-

ment in language assessment methodologies.
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Chapter 1

Introduction

In a world where over 7,000 languages are used, much research has focused on improving

methods to teach and learn natural languages. In particular, the field of Natural Language Processing

(NLP) has a long history of developing tools to assist language learners and reduce learning barriers.

Previous works on computational discourse analysis, such as Webber (2009), Bachand, Davoodi,

and Kosseim (2014), and Abdalla, Rudzicz, and Hirst (2018) have shown significant differences in

discourse usage across textual genre and simplicity level. However, to our knowledge, very few

studies have investigated the relationship between discourse structures and language learning. This

thesis attempts to fill this gap by investigating the usage of discourse relations and connectives to

identify trends in argumentative texts written by English learners across various proficiency levels.

1.1 Goal of the Thesis

Over the past few decades, the field of Natural Language Processing (NLP) has made remarkable

progress in various areas such as language translation, sentiment analysis, and text classification.

One of the most exciting areas of NLP research has been the development of computational tools to

assess the quality of student essays written by English Language Learners (ELL)
1
.

The importance of assessing the quality of ELL essays cannot be overstated, as it plays a critical

1
In this thesis, we will frequently use the term ELL as coined by Lacelle-Peterson and Rivera (1994), as commonly

used terms ESL (English as a Second Language) and L2 imply that English is the second language of the learners, which

may not always be the case.
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role in improving students’ writing skills and enhancing their language proficiency. Traditional

assessment methods have relied on human graders, which is time-consuming, expensive, and prone

to subjectivity. On the other hand, NLP methods have the potential to automate the assessment

process, providing an objective and efficient way of evaluating student essays.

Rhetorical Structure Theory (RST) and Penn Discourse TreeBank (PDTB) are two important

frameworks that have been used to analyze the discourse structure and coherence of texts. RST aims

to identify the rhetorical relations that connect different parts of a text, such as CAUSE-EFFECT,

ELABORATION, and CONTRAST, while PDTB focuses on the identification of explicit and im-

plicit discourse connectives (e.g. but, if. . . then, because) and labelling the relation they convey

(e.g. COMPARISON.CONTRAST, CONTINGENCY.CONDITION, and CONTINGENCY.CAUSE).

By leveraging these frameworks, NLP methods can be used to empirically analyze the difference in

usage of discourse information in student essays of ELL.

The goal of this thesis is to investigate the usage of discourse relations and connectives

to discover trends in their usage in argumentative texts by English learners across various

proficiency levels. Specifically, we investigate the usage of discourse relations using the Rhetori-

cal Structure Theory (Mann & Thompson, 1988) and the Penn Discourse TreeBank (Prasad et al.,

2008) frameworks, as well as discourse connectives from the Penn Discourse TreeBank, to discover

trends in their usage in argumentative texts by English learners across various proficiency levels.

Ultimately, this thesis aims to contribute to ongoing efforts to develop more accurate and effective

NLP-based tools for assessing ELL essays, thereby enhancing the quality of education for ELL

students.

1.2 Motivation

Corpus research on the use of discourse structures across different CEFR levels can provide

valuable insights into language learners’ ability to organize and convey their ideas in written or

spoken language. This analysis can also identify common patterns of language use that prove chal-

lenging for learners at different CEFR levels, thereby facilitating the development of more effective

2



teaching materials and strategies tailored to learners’ specific needs (Aoyama, 2022). Addition-

ally, it can help reduce the workload of human graders (Mieskes & PadÂo, 2018). Findings can also

inform the development of more reliable assessment tools that accurately measure learners’ profi-

ciency in the use of discourse structures. Accurate assessment is essential for learners to identify

their strengths and weaknesses and make informed decisions about their language learning goals

and strategies.

With the rise of Generative AI models such as ChatGPT
2
, there is a growing need for more

intelligent and context-aware AI chatbots that can effectively communicate with users across dif-

ferent language proficiency levels. While existing chatbot systems offer valuable assistance, they

often lack the ability to accurately gauge and adapt to the user’s language skills, resulting in com-

munication gaps and potential frustration. By analyzing the discourse structure changes in essays

written by English learners, we can gain valuable insights into the linguistic progress from novice to

fluency, which can be harnessed to develop improved language assessment models for AI chatbots.

Tyen, Brenchley, Caines, and Buttery (2022) discuss methods to adjust the difficulty of chat-

bot generated responses based on the Common European Framework of Reference (CEFR) levels.

They propose various decoding strategies that take into account vocabulary restriction, re-ranking

of candidate messages, and sub-token penalties, among others. While their focus is on adjusting the

generated text difficulty, our thesis expands upon their work by exploring the underlying changes

in discourse structures that occur as English learners progress through different proficiency levels,

allowing for the possibility of a more automatic system to determine when difficulty adjustment is

necessary.

1.3 Methodology

The goal of this thesis is to investigate differences in the usage of discourse relations and con-

nectives between English learner and English native texts. In order to achieve this goal, we used

the following methodology. First, we parsed essays from different CEFR levels with four discourse

parsers (two from RST-DT and two from PDTB). Then, we used the agreement between the two

2
https://openai.com/blog/chatgpt

3



RST parsers to determine the frequency of RST relations among different levels of English pro-

ficiency. Using the agreement between the two PDTB parsers, we repeated this step for PDTB

level 1 relations, and for discourse connectives. Then, we used this information to create features

for Random Forest, Support Vector Machine, and Logistic Regression models to classify learner

texts. A flowchart of our full methodology, starting with the raw text from the datasets, is shown in

Figure 1.1.

Raw essays from datasets labelled with CEFR levels

Run through 2 RST and 2 PDTB parsers

Extract annotated parser output

Find agreement of the 2 RST and the 2 PDTB parser outputs

Filter out segments where parsers disagree on relation

Compute percentage of each discourse relation and connective for each CEFR level

Use parser output to create discourse relation and connective features

Evaluate ML models with new features

Figure 1.1: Flowchart showing our methodology, beginning with raw text from English learner

datasets.
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1.4 Contributions

This thesis makes several contributions to the field of Natural Language Processing (NLP) and

language assessment for English learners:

(1) Discourse Analysis of English Learner Essays: In Chapter 3, we provide a comprehensive

analysis of discourse structures in English learner essays, focusing on the Rhetorical Structure

Theory (RST) and Penn Discourse TreeBank (PDTB) frameworks. By examining the usage

of discourse relations and connectives across CEFR levels, we identify patterns and trends

that are indicative of different levels of language proficiency.

(2) Discourse Parser Agreement: In Section 3.2.2 and Section 3.3.1, we investigate the agree-

ment between commonly-used PDTB and RST parsers. This could provide useful insight to

future users of these discourse parsers.

(3) Insights into Language Learning Challenges: Our analysis of RST and PDTB discourse

relation patterns in Chapter 3 uncovers specific discourse patterns that pose challenges for

English learners at different proficiency levels. This information can inform the development

of targeted teaching materials and strategies to address these challenges and enhance language

learning outcomes.

(4) Automated Language Assessment: In Chapter 4, we explore the feasibility of using dis-

course relations and connectives as features for machine learning models to automatically

assess proficiency levels of English learner essays. Our experiments with Random Forest,

Support Vector Machine, and Logistic Regression models measured the potential of these

features to enhance accurate and efficient language assessment. While, in recent years, this

assessment has begun to be taken over by Large Language Models (LLMs), and has yielded

effective results on automated essay scoring (Naismith, Mulcaire, & Burstein, 2023), tradi-

tional machine learning models remain relevant for this task. Firstly, LLMs are computa-

tionally expensive and require significant computational resources to train and deploy. Thus,

systems with limited computing power must rely on lower-cost models, such as traditional
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machine learning models, to complete tasks. Additionally, applications of traditional ma-

chine learning models can be used as baselines for the further study of LLMs.

On a more general point of view, by analyzing the discourse structure changes in essays writ-

ten by English learners, we contribute to the development of more intelligent and context-aware

AI chatbots. Our findings can be used to create language assessment models that adapt to users’

proficiency levels, resulting in improved communication and user experience.

Through these contributions, this thesis aims to advance the field of NLP, facilitate language

learning and assessment, and contribute to the development of more effective and intelligent lan-

guage technologies.

1.5 Thesis Structure

This chapter presented our motivation to work on discourse analysis for language learning and

our contributions to the field of NLP. Chapter 2 will provide an overview of previous work and the

required background related to our research. Chapter 3 will provide an in-depth discussion of our

discourse analysis process and results. Chapter 4 will discuss the methodology and results of our

work to use machine learning to empirically validate the use of the findings of Chapter 3. Finally,

Chapter 5 will summarize the thesis and present directions for future work.
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Chapter 2

Literature Review

This chapter provides an overview of previous work and background information related to our

research.

Section 2.1 covers linguistic background, which includes language proficiency scores and text

complexity metrics. We discuss how these measures can be used to analyze texts and how they can

aid in the development of language models. This section also discusses the assessment of textual

complexity, reviewing previous work that analyzes the language and structure of a text to determine

its level of difficulty

Section 2.2 gives an overview of discourse analysis, including a description of the most impor-

tant framework; Rhetorical Structure Theory and Discourse Lexicalized Tree-Adjoining Grammar.

These frameworks help identify and analyze the discourse structure of a text, including the relation-

ships between different textual spans. The section also describes the mapping of discourse relations

across different frameworks. This is important because different frameworks have different ways of

representing discourse relations, and mapping them helps identify similarities and differences be-

tween the frameworks. This section also reviews classic work on computational discourse analysis,

in which past research has found differences in discourse features in a wide variety of texts.

Finally, Section 2.3 discusses machine learning classifiers, which are used to classify texts based

on different criteria. We cover transformer-based methods and classic models, which are widely

used in natural language processing.
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2.1 Assessment of Textual Complexity and Proficiency

In this section, we describe standard scores and formulae used to grade complexity and profi-

ciency of English texts. We then discuss previous corpus research aimed to assign these scores to

texts automatically.

2.1.1 Language Proficiency Scores

To assess language proficiency, several measures have been developed. In particular, the Com-

mon European Framework of Reference for Languages (CEFR), and the Test of English as a Foreign

Language (TOEFL).

CEFR defines six proficiency reference levels: A1, A2, B1, B2, C1, and C2, which represent

a progression from basic understanding of a language (A1) to full fluency (C2). Each level of the

CEFR provides a general description of what a learner should be able to accomplish to achieve

that level, in terms of writing, reading, speaking, and listening proficiency. The TOEFL score,

meanwhile, is given to a language learner as a result of taking an official test in English. The test

consists of four sections, one of which involves writing an essay based on a reading passage, or

based on opinions and personal experiences. A score between 0 (low proficiency) and 120 (full

fluency) is given.

The CEFR and TOEFL levels have become standards to evaluate English proficiency, and sev-

eral datasets of texts have been labelled with these measures. To facilitate their interoperability, in

2010, the Educational Testing Service (ETS), a non-profit organization that develops and admin-

isters standardized tests, proposed a metric
1

for mapping TOEFL scores directly to CEFR levels.

Figure 2.1 shows this mapping as used by the International Corpus Network of Asian Learners of

English (Ishikawa, 2013) (see Section 3.1)
2
. C2 levels are not listed, as only ELLs had taken a

TOEFL test.

Essays in the datasets that we used (see Section 3.1) are labelled with both TOEFL and CEFR

scores in order to assess the English language proficiency of the reader. These scores will be used

1
https://language.sakura.ne.jp/icnale/images/about/toefl mapping.pdf

2
The International Corpus Network of Asian Learners of English separates B1 into a lower and upper level (B1 1 and

B1 2). For our analysis, we will combine them into a singular B1 label.
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CEFR Level TOEFL Internet-based Test

A2 (Waystage) -56

B1 1 (Threshold: Lower) 57+

B1 2 (Threshold: Upper) 72+

B2+ (Vantage or higher) 87+

Table 2.1: Mapping of CEFR levels to TOEFL scores according to the Educational Testing Service.

to analyze and evaluate these texts based on the writer’s language proficiency.

2.1.2 Text Complexity Metrics

Text Complexity Metrics have been created in order to convert surface-level information such as

word and character counts into a metric that can be used to give a general complexity and readability

score to a text. These readability scores are generally known to be imperfect, but are designed to be

simple and fast to calculate. These scores can be used as a baseline, and in conjunction with more

informative features, for machine learning classification of learner texts (see Section 4). The main

formulae are described below.

Flesch Reading Ease (Flesch, 1943) relies entirely on the total number of words, sentences,

and syllables per word. The formula for computing Flesch Reading Ease is shown below:

FRE = 206.835 − 1.015 ( total words

total sentences
) − 84.6 ( total syllables

total words
) (1)

The possible values in the Flesch Reading Ease score range from 0 to 100. A higher score

indicates a text which is easier to understand. However, to some, a number sans context between 0

and 100 means little at first glance. Using this reasoning, J. Kincaid and a team working with the

United States Army created the Flesch–Kincaid Grade Level (or Flesch-Kincaid Index) (Kincaid,

Fishburne, Rogers, & Chissom, 1975). Similarly to Flesch Reading Ease, this score relies entirely

on the total number of words, sentences, and syllables per word, however the scale is limited to a

score of 0 to 18:

FKGL = 0.39 ( total words

total sentences
) + 11.8 ( total syllables

total words
) − 15.59 (2)
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This creates a scale where the readability score is meant to map to the average reading ability

of a student in US grade level 0-12, as well as up to six years of post-secondary study in the topic

of the essay. Though more factors other than word length, sentence length, and syllables should

be considered, this index is generally accepted as an official framework for text readability in legal

contexts. In some US States, insurance policies cannot exceed a certain Flesch-Kincaid Index (Texas

Department of Insurance, 1992) in order to ensure that clients can understand the policies.

The Dale-Chall Readability Score took inspiration from the Flesch Reading Ease, but disre-

garded the assumption that a word with more syllables is always more complex. Dale and Chall

(1948) argued that the original formula of Flesch (1943) did not efficiently predict the readability

of certain types of words, such as affixes and proper nouns. In the original version of the formula,

Dale and Chall used a list called the Dale List, containing 769 words that were understood by at

least 80 percent of 4th graders. Any word outside this list was considered a difficult word, the count

of which was applied to this formula:

DCRS = 0.1579 (difficult words
words

) + 0.0496 ( words

sentences
) (3)

The Gunning Fog Index was developed by businessman Robert Gunning in 1952 (Gunning,

1952). The formula takes a similar idea of complex words being 3 or more syllables, yet adds on

the idea that proper nouns and compound words should not be counted as complex. In addition,

common suffixes such as -es, -ed, and -ing are ignored in syllable counts. The equation relies solely

on words, sentence count, and complex words that do not fall into the above categories:

GFI = 0.4 ( words

sentences
+ 100 (complex words

words
)) (4)

The Linsear Write Formula (sometimes also called the Lensear Write Formula) was first pro-

posed in the incredibly-named book Gobbledygook Has Got To Go (O’Hayre, 1966). This formula

is stated to be concerned not so much with the reader as with the writer. In the version of the formula

used by the Textstat library
3
, the equation is as follows, where hard words are defined as words with

3
https://pypi.org/project/textstat/

10



3 or more syllables, and easy words are defined as words with 2 or fewer syllables.

r =

easy words + 3(complex words)
sentences

(5)

LWF =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r > 20

r

2

r <= 20
r

2
− 1

The Linsear Write Formula once again gives a score equivalent to a US grade level, reflecting

the estimated years of education needed to read the text fluently.

The Automated Readability Index (Smith & Senter, 1967) and the Coleman Liau Index

(Coleman & Liau, 1975) both rely on characters per word, rather than syllables. In creating the

Automated Readability Index, Smith and Senter (1967) gave a random passage to a selection of

65 college students, asking them to count the number of syllables in the passage. The students re-

turned a mean character count with a standard deviation of 17.52, showing that there is discrepancy,

even among human annotators, regarding syllable count. The Coleman-Liau Index was created for

mechanical scanners, so a simple method was needed that did not require knowledge of syllabifica-

tion. The output of both indices is similar to that of the Flesch-Kincaid Index, in which the value

corresponds to a US Grade Level.

The Automated Readability Index is computed as:

ARI = 4.71 (characters
words

) + 0.5 ( words

sentences
) − 21.43 (6)

The Coleman-Liau Index is:

CLI = 0.0588 (characters
words

) + 0.296 (sentences
words

) − 15.8 (7)

Finally, a simple text complexity metric is the SMOG Index (Simple Measure Of Gobbledy-

gook) (McLaughlin, 1969). In its simplest form, this index only takes into account the number of

polysyllabic words (defined as 3 or more syllables) in a 30-sentence sample from the text, takes

the square root of this number, and adds 3. This index is considered the easiest to be computed by
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mental math, and is generally found most useful for medical documents.

SMOG =

√
polysyllabic words + 3 (8)

These readability scores, though naÈıve, have been used as a baseline for CEFR-level classi-

fication (Montgomerie, 2021), and will be combined with more informative features for machine

learning classifiers (see Section 4.1).

2.1.3 Corpus Research in Assessment of Textual Complexity and Proficiency

Previous works have used machine learning to assess learner texts. Browning (2017) compared

the performances of Gaussian Naive Bayes, Logistic Regression, Decision Trees, and Random For-

est models to identify texts written by native English speakers. They used standard linguistic fea-

tures, such as part-of-speech tags, and frequency of grammatical and spelling errors. Results showed

that lexical and syntactic usage are strong indicators of language competency. For example, native

speakers tend to produce more right-branching syntactic trees, avoid adverbs at the end of sentences,

and use passive voice. However, discourse structures have not been analyzed.

Aoyama (2022) discovered that contextualized word embeddings (CWEs) from BERT (see Sec-

tion 2.3.2) could be used to find differences in word usage between L1 and ELL writers of English.

They used the EFCAMDAT (Geertzen, Alexopoulou, Korhonen, et al., 2013) dataset for language

learners, and the LOCNESS (Granger, 1998) dataset for native English speakers. Aoyama (2022)

found a steady decrease in CWE distance (that is to say, the distance between a word and the words

providing its context) as proficiency level increases. Though this can provide an insight into gram-

matical structure, this work does not look specifically into discourse analysis and relations.

More recently, Schmalz and Brutti (2021) used BERT embeddings on 2-3 sentence inputs by

English learners to train a model to automatically assess CEFR levels (see Section 2.1.1) based on

frequencies of errors. They used a 100,000 essay sample from the EFCAMDAT and the CLC-FCE

(Yannakoudakis, Briscoe, & Medlock, 2011) datasets, with essays written by adult English language

learners. Schmalz and Brutti (2021) was able to show strong performance in CEFR-level classifi-

cation, with both manual and automatic error detection. Montgomerie (2021) performed a similar
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task in which Logistic Regression, SVM, and Random Forest classifiers were used to classify read-

ing practice tests from LearnEnglish
4

by the British Council into CEFR levels. Syntactic features

such as parse tree depth, average frequency of part-of-speech tags, and text complexity metrics (see

Section 2.1.2) were used as features for the classifier. With this dataset, the highest accuracy score

reported for standard machine learning models was 68.2% for a Random Forest classifier. Again,

discourse relation information was not considered.

2.2 Discourse Analysis

Discourse analysis is often defined as going ªbeyond the sentenceº (Rimmer, 2006), and looking

at the relationships between sentences and the structures that they form. This differs from syntactic

analysis, which focuses on the grammatical structure of a sentence, and semantic analysis, which

determines intra-sentence word meanings without looking at the larger context. In computational

discourse analysis, computational techniques are used to analyze and understand discourse struc-

tures, meaning, and coherence in large amounts of text (Jurafsky & Martin, 2023). To facilitate

the development of such computational tools, several discourse frameworks have been proposed.

In this section we will focus on two frameworks: Rhetorical Structure Theory (RST), proposed by

Mann and Thompson (1988) and Discourse Lexicalized Tree-Adjoining Grammar (Webber, 2004)

(DLTAG), the basis for the Penn Discourse TreeBank (Prasad et al., 2008).

2.2.1 Rhetorical Structure Theory

In order to model the discourse structure of a text, Rhetorical Structure Theory (Mann & Thomp-

son, 1988) first segments the text into distinct text spans, and then connects these spans to each other

with a rhetorical relation. A rhetorical relation is defined as a pragmatic function that one span ful-

fills with respect to another (Jasinskaja & Karagjosova, 2020). The spans that are related to each

other can be further described as a Nucleus or a Satellite. Relations will always contain a Nucleus,

but the second span can be either a Nucleus (in a multi-nucleic relation) or a Satellite. A nucleus

carries the meaning of a relation, while a satellite cannot be understood without its attachment to

4
https://learnenglish.britishcouncil.org/skills/reading
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the nucleus. Example 1 from the RST-DT (Carlson, Marcu, & Okurowski, 2002) corpus shows a

sentence segmented using RST.

(1) [Seasonal swings in the auto industry this year aren’t occurring at the same time as

in the past]
1
, [because of production and pricing differences.]

2

Segment 1 of Example 1 is a nucleus, as it can exist on its own as a complete thought. Segment 2

is a satellite related to the nucleus via an EXPLANATION relation which provides, as the name

suggests, an explanation as to why the nucleus is true.

It is worth noting that these relations can be nested within each other. A span of text acting

as a nucleus or a satellite of a relation may have embedded nuclei and satellites relating to each

other within it, thus creating a hierarchical structure of relations. This tree is mathematically laid

out by Kornai and Tuza (1992). At the lowest leaf level, also known as Elementary Discourse Units

(EDUs), text spans in RST are non-overlapping, however, they are combined into higher levels in

the tree structure. Thus, the text spans within a particular higher level of the tree structure do not

overlap, but the segmentation forms the leaf EDUs.

RST schemas are often illustrated with the satellite pointing to the nucleus it relates to. The

depth of trees is often displayed with these schemas stacked on top of each other. Example 2 is

parsed as shown in Figure 2.1. EDUs 1-2 are a BACKGROUND satellite relating to the nucleus

containing EDUs 3-4. Further down the tree, EDU 2 is an ELABORATION satellite to EDU 1, while

EDU 3 and EDU 4 are related with a CONTRAST relation.

(2) [Mario is a plumber;]
1

[Bowser is his enemy.]
2

[As the game progressed, Mario

grew more powerful,]
3

[while Bowser got weaker.]
4

The RST discourse Treebank (RST-DT) (Carlson et al., 2002) is the main standard corpus used

in RST-based research. It was built following the RST framework, using 385 manually annotated

Wall Street Journal articles (347 for training and 38 for testing) which cover a variety of topics and

contain over 176,000 words. The RST-DT uses a total of 16 relation classes, as shown in Table 2.2.

Appendix C shows a further explanation of 12 of these RST relations.

Several state-of-the-art RST parsers have been trained on the RST-DT corpus in order to seg-

ment and label discourse relations in new texts, with slight variances in their approach. Hernault,
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Figure 2.1: Example of an RST tree of Example 2, based on an visual format by Mann and Taboada

(2005).

RST-DT Discourse Relations

1 ATTRIBUTION 9 EVALUATION

2 BACKGROUND 10 EXPLANATION

3 CAUSE 11 JOINT

4 COMPARISON 12 MANNER-MEANS

5 CONDITION 13 SUMMARY

6 CONTRAST 14 TOPIC-COMMENT

7 ELABORATION 15 TEMPORAL

8 ENABLEMENT 16 TOPIC-CHANGE

Table 2.2: RST relations used in the RST-DT (Carlson & Marcu, 2001)

Prendinger, duVerle, and Ishizuka (2010) developed the HILDA classifier using two Support Vector

Machine classifiers. The first is a binary classifier which decides whether two spans of text have a

relation, while the second is a multi-class classifier for deciding the relation. Joty, Carenini, Ng, and

Mehdad (2013) expanded on this classification by arguing for the importance of a classifier for both

intra-sentential and inter-sentential relations, using a Conditional Random Field for both. Feng and

Hirst (2014) used a greedy approach, where each step merges two existing spans, and then two Con-

ditional Random Fields are used, one predicting the structure, and the other predicting the relation.

Ji and Eisenstein (2014) use an approach in which predictions make incremental moves in feature-

space to match the annotations of the training data in the RST-DT. Later, Heilman and Sagae (2015)

used a transition-based approach, with multi-class logistic regression, and achieved similar results

to the at-the-time state-of-the-art parsers while reporting an RST-DT test set document parsing time

of 0.4 seconds per document, on an i7-4850HQ CPU at 2.30 GHz., compared to Feng and Hirst
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(2014)’s reported 10.71 seconds on a system with ªfour duo-core 3.0 GHz processors.º Li, Li, and

Chang (2016) used a deep learning model attention-based hierarchical neural network to achieve

similar results to previous parsers without the need for manual feature engineering. Y. Wang et

al. (2017) used a two-stage approach, first using a transition-based model for identifying span and

nuclearity, and a second stage where inter-sentence, cross-sentence, and cross-paragraph relations

are classified with SVM classifiers. As will be discussed in Section 3.2.1, we used the Heilman

and Sagae (2015) and Y. Wang et al. (2017) parsers given that they are the most recent open-source

parsers.
5

2.2.2 Discourse Lexicalized Tree-Adjoining Grammar

Apart from RST, Discourse Lexicalized Tree-Adjoining Grammar (DLTAG) constitutes the

main framework for modelling textual discourse. DLTAG builds from its predecessor, Lexical-

ized Tree-Adjoining Grammar (LTAG) (XTAG Research Group, 1998), which in and of itself is a

linguistic theory based on the formalism of tree-adjoining grammar. LTAG is a grammar in which

initial or auxiliary trees are associated with each lexical item (single word, part of a word, or chain

of words) in a language. Each of these trees has exactly one lexical anchor, meaning one lexical

item carrying meaning.

Initial tree structures, often denoted by α, represent a simple tree built from small units of

text, such as noun phrases or verb phrases, which contain only one non-terminal root with terminal

leaves. On the other hand, auxiliary tree structures, often denoted by β, have a root and a foot

which always match. Figure 2.2 shows a simple Auxiliary tree with a Verb Phrase (VP) root and

a Verb Phrase (VP) foot. This allows auxiliary trees to be inserted into other trees via the process

of substitution or adjunction. In substitution, a node is replaced by a tree with a root node of the

same value. This operation requires an initial tree, or a derived tree with a non-terminal root, to

take the place of the node being substituted. In adjunction, a new tree is created from an auxiliary

tree and any other tree. This operation can only be applied to non-terminal nodes which have not

previously been marked as substitution nodes. As an example, Figure 2.3 shows an auxiliary tree

5
https://github.com/EducationalTestingService/rstfinder and https://github.com/

yizhongw/StageDP
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with a root and foot of a verb phrase (VP) attaching to another tree containing a verb phrase node.

In Figure 2.3, (a) is the auxiliary tree to be attached to the VP node in the (b) tree. (c) is the derived

tree produced by their adjunction. This appends an adverb in front of the previously existing verb

phrase, retaining a grammatically correct sentence while altering the meaning.

Figure 2.2: Example of an auxiliary tree showing a matching Verb Phrase foot and root, from Vijay-

Shanker (1992).

Figure 2.3: Example of the adjunction operation in LTAG.

While LTAG was developed for syntactic analysis, DLTAG is an extension of LTAG to model

discourse. Much like in Rhetorical Structure Theory (see Section 2.2.1), the fundamental units of

DLTAG consist of discourse segments separated by discourse connectives. These discourse connec-

tives (e.g. because, still, but, etc.) may consist of subordinating conjunctions, coordinating conjunc-

tions, adverbial phrases, prepositional phrases, or an implicit connective. DLTAG tree structures are
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based around these connectives, which can be singleton, in the case of a singular discourse connec-

tive, such as so, or parallel, in the case of a paired discourse connective, such as on one hand . . .

on the other hand. These paired discourse connectives are uncommon in English, unlike in other

languages, such as Chinese Costa, Cheng, Muermans, Hanel, and Kosseim (2023). An example of

an initial tree for a singular discourse connective is shown in Figure 2.4, while an example of an

initial tree for a paired discourse connective is shown in Figure 2.5. In Figure 2.4, Dc indicates

the discourse segment before and after the connective, while the down arrows indicate the points

at which a substitution via an auxiliary tree may occur. In Figure 2.5, Dc indicates the discourse

segments preceding each half of the paired discourse connective, while the down arrows indicate

the points at which a substitution via an auxiliary tree may occur.

Figure 2.4: Initial tree structure for the singular discourse connective so, from Webber (2004).

Figure 2.5: Initial tree structure for the paired discourse connective on one hand ... on the other

hand, from Webber (2004).

DLTAG varies from RST based on its structure and classification. In the RST framework, the

discourse structure of a text is represented via a tree (see Section 2.2.1), where two clauses with
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a relation to each other may be leaf nodes (EDUs) nested within the clause of another relation.

In DLTAG, the discourse structure of a text is not hierarchical, and segments are separated by a

discourse connective. If no discourse connective is explicitly stated, the two discourse segments are

said to be related via an implicit discourse connective, with no lexical realization. Example 3 shows

two arguments forming a COMPARISON connected by an explicit connective, but. This example

uses the convention of Prasad, Forbes-Riley, and Lee (2017), in which Argument 1 is in italics,

Argument 2 is in bold, and the discourse connective is underlined.

(3) The Manhattan U.S. attorney’s office stressed criminal cases from 1980 to 1987,

averaging 43 for every 100,000 adults. But the New Jersey U.S. attorney averaged

16.

Example 4 shows two arguments implicitly connected. This example, provided by Prasad et al.

(2017), assumes that the implied connective is For example.

(4) So far, the mega-issues are a hit with investors. (Implicit=For example,) Earlier

this year, Tata Iron & Steel Co.’s offer of $355 million of convertible debentures

was oversubscribed.

The Penn Discourse TreeBank (Prasad, Webber, Lee, & Joshi, 2019) takes into account the

lexical aspects of discourse provided by DLTAG when annotating and analyzing discourse rela-

tions. Three main versions have been developed, the PDTB-1.0 (Prasad et al., 2006), the PDTB-2.0

(Prasad et al., 2008), and the PDTB-3.0 (Prasad et al., 2019). As the PDTB-3.0 is very recent, most

research has been done using PDTB-2.0. Figure 2.6 shows every discourse relation that appears in

the PDTB-2.0. For this thesis, we will mainly be focusing on the four top-level relations, CON-

TINGENCY
6
, EXPANSION, COMPARISON, and TEMPORAL. The PDTB-2.0 corpus contains

over one million words of articles from the Wall Street Journal, with 53,631 manually annotated

discourse relations.

6
For sake of readability, RST relations are indicated in SMALL CAPS; while first-level PDTB relations are in CAPITAL

letters.
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Figure 2.6: PDTB-2.0 relation hierarchy.

TEMPORAL, CONTINGENCY, COMPARISON, and EXCEPTION are the first-level relations which

are further expanded into a tree of more specific relations.
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Figure 2.7: Explicit Discourse Relation mapping between RST and PDTB based on three linguistic

approaches, from Demberg et al. (2017). Underlined and bold entries indicate that all proposals

agree on the mapping, while underlined entries indicate an agreement of two approaches.

2.2.3 Mapping Discourse Relations Across Frameworks

Demberg et al. (2017) studied the compatibility of the two discourse annotation frameworks,

RST and PDTB. The study found that while the two frameworks have some similarities, there

are also differences in their annotations, that lead to compatibility issues. The authors provide

insights into how to address these issues and improve the compatibility between the two frameworks

for future research. They used a mapping of three different linguistic studies (Chiarcos (2014),

Bunt and Prasad (2016), and Sanders et al. (2018)) and analyzed empirically the annotations of

the overlapping texts between the RST-DT and the PDTB to propose a mapping between RST and

PDTB-2.0 relations. Figure 2.7 shows this mapping, and will be the basis for conglomerating RST

and PDTB data in Section 3. In the figure, underlined and bold entries indicate that all proposals

agree on the mapping, while underlined entries indicate an agreement of two approaches.
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2.2.4 Corpus Research in Discourse Analysis Across Textual Genres

Differences in discourse structures have been analyzed computationally across textual genres,

text complexity, and cognitive abilities.

Webber (2009) and Bachand et al. (2014) showed that the genre of a text influences the choice

of discourse relations. Bachand et al. (2014) used articles of various genres to look for common

patterns of relations. The researchers observed, for example, that the RST relation of ATTRIBUTION

is common in the newspaper article genre, JOINT is comparatively more frequent in online reviews,

and TEMPORAL is more frequent in academic paper methodology sections.

Davoodi (2017) addressed a similar task of using both RST and PDTB relations to find to what

degree these relations can be used as features to classify written texts, as well as exploring how

the complexity level of a text influences its discourse-level linguistic choices. It was found, in the

case of discourse relations, that there is no statistical difference in their explicit usage across levels

of complexity, and that using discourse relations as features for classifying texts based on their

complexity did not lead to better performance than the use of other linguistic features. However,

the text complexity was shown to influence the usage of discourse connectives (e.g. but, because).

Statistical differences were shown to exist; such as the more frequent usage of because as opposed

to thus to signal CAUSE relations, and but as opposed to while to signal CONTRAST relations in

simplified texts.

Abdalla et al. (2018) identified changes in the usage of discourse relations among patients with

Alzheimer’s disease. They used the RST parser of Feng and Hirst (2014) to analyze written material

by patients with Alzheimer’s, as well as a control group, using the DementiaBank (MacWhinney,

Fromm, Forbes, & Holland, 2011) and CCC (Pope & Davis, 2011) datasets, which contain material

from patients with Alzheimer’s and a control group. Results showed that these two groups displayed

a significant increase in ATTRIBUTION relations and a decrease in ELABORATION relations among

writers with Alzheimer’s disease.

While, to our knowledge, discourse structures have not been analyzed across English proficiency

levels, some discourse relations, specifically PDTB level-1 relations, have been used to classify

learner texts in Czech (RysovÂa, RysovÂa, & MÂırovskÂy, 2016), showing that the ratio of usage of
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these relations proved useful as features in Random Forest and Multilayer Perceptron classifiers.

2.3 Machine Learning Classification

As will be described in Section 4, we will be using a number of machine learning models in

order to classify learner texts based on their CEFR level. Section 2.3.1 will describe a few of the

traditional machine learning classification models used in our work. Section 2.3.2 will describe

recent advancements in transformer-based models.

2.3.1 Classic Machine Learning Models

Many classification models have been used for text categorization. Below is a description of

the main approaches. Each of these algorithms has its own advantages and disadvantages, and the

choice of which to use depends on the specific requirements of the task at hand.

Support Vector Machines (SVMs) are a class of supervised learning algorithms that are widely

used for classification and regression tasks (Cortes & Vapnik, 1995). The fundamental idea behind

SVMs is to find a hyperplane, also known as a decision boundary, that separates the data into

different classes with the maximum possible margin. The margin is defined as the distance between

the closest points in the data, referred to as support vectors, and the hyperplane.

SVMs are particularly effective in dealing with high-dimensional data, where the number of

features is much larger than the number of samples. They can handle non-linear decision boundaries

by transforming the data into a higher dimensional space. SVMs are also relatively insensitive to

the presence of noisy data. However, they can be computationally intensive, particularly for large

datasets, and the choice of kernel can have a significant impact on the performance of the algorithm

(Cortes & Vapnik, 1995).

One of the most commonly used kernels in SVMs is the Radial Basis Function (RBF) kernel.

The RBF kernel maps the input data into a higher dimensional feature space through a non-linear

transformation (SchÈolkopf & Smola, 2002). In this higher dimensional space, the decision boundary

can be linear, even if the original data is not linearly separable. The RBF kernel is defined as the

exponential of the negative Euclidean distance between two data points, multiplied by a parameter
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known as the bandwidth. The bandwidth parameter determines the smoothness of the decision

boundary and can be optimized through cross-validation. The RBF function is shown below:

f(x) = n

∑
i=1

αi exp(−γ∣∣x − xi∣∣2). (9)

In the equation, the variable f(x) represents the output of the SVM classifier for a given input

vector x. It serves as the decision function that predicts the class or assigns a score to the input.

The coefficients αi are associated with each training sample xi and are determined during the SVM

training phase. These coefficients indicate the importance or contribution of each training sample

to the decision function.

The term exp(−γ∣∣x−xi∣∣2) represents the radial basis function (RBF) kernel, which measures

the similarity or distance between the input vector x and the support vectors xi. The RBF kernel

computes a weighted sum of exponential functions, where each term represents the similarity be-

tween the input vector and a support vector.

The parameter γ controls the width of the RBF kernel. It determines the influence or spread of

the kernel. Higher values of γ result in a narrower kernel, meaning that only nearby support vectors

have a significant impact on the decision function. Conversely, lower values of γ widen the kernel,

allowing more support vectors to contribute to the decision function.

The term ∣∣x − xi∣∣ denotes the Euclidean distance between the input vector x and a support

vector xi. It quantifies the similarity or dissimilarity between the two vectors in the input feature

space.

Lastly, the variable n represents the total number of support vectors used in the SVM model.

These support vectors are a subset of the training samples that play a crucial role in defining the

decision boundary.

The RBF kernel has advantages over the polynomial kernel in that it tests the hyperplane in

an infinite number of dimensions, whereas the polynomial kernel is limited to a set number of

dimensions.

Logistic Regression is a popular machine learning algorithm for solving classification prob-

lems, where the goal is to predict a categorical outcome based on one or more predictor variables. It
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is a statistical method that uses a logistic function to model the relationship between the predictors

and the binary response variable. A main advantage of Logistic Regression is its speed.

The logistic function, also known as the sigmoid function, maps a real-valued number to a value

between 0 and 1, which can be interpreted as the probability of the positive class. The parameters of

the logistic regression model are estimated using maximum likelihood estimation, which maximizes

the likelihood of observing the data given the model parameters (Nelder & Wedderburn, 1972).

One of the strengths of logistic regression is its interpretability. The coefficients of the model

represent the change in the log-odds of the positive class for a one-unit increase in the predictor,

while holding all other predictors constant. This allows for the identification of the most important

predictors and the assessment of their individual and combined effect on the response (Nelder &

Wedderburn, 1972).

Logistic regression is also relatively fast and computationally efficient, making it a good choice

for large datasets. However, it is limited to linear relationships between the predictors and the

response and may not be appropriate for datasets with complex non-linear relationships (Hastie,

Trevor and Tibshirani, Robert and Friedman, Jerome, 2009).

Random Forest Classifiers solve both regression and classification problems. These classifiers

operate by creating an ensemble of decision trees, each of which is trained on a random subset

of the data and makes a prediction. The final prediction is made by aggregating the predictions

of all the trees in the forest. This method not only improves the performance of the model but

also reduces overfitting, which is a common issue with traditional decision trees (Breiman, 2001).

Additionally, Random Forest classifiers have the ability to handle high dimensional data, missing

values and are relatively easy to interpret compared to other complex models. Overall, Random

Forest classifiers offer a robust and flexible solution for a variety of real-world problems and have

proven to be effective in numerous applications across various domains (Liaw & Wiener, 2002).

2.3.2 Transformer-Based Methods

RoBERTa is a pre-trained transformer-based neural language model that uses bidirectional self-

attention to perform a range of natural language processing tasks. In order to understand RoBERTa,

it is necessary to understand its predecessor, BERT, as well as Transformers.
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A transformer processes an ordered sequence of data, applies some neural-network based algo-

rithm, and returns a sequence of outputs. The development of the Transformer architecture in 2017

(Vaswani et al., 2017) marked a significant milestone in the field of NLP. The Transformer allowed

for parallel processing of sequences, making it suitable for processing long sequences of textual

data for NLP tasks. This architecture has since become the foundation for many state-of-the-art

models in NLP.

One such model is BERT (Bidirectional Encoder Representations from Transformers), intro-

duced by Devlin, Chang, Lee, and Toutanova (2018). BERT is a pre-trained language model that

has been fine-tuned for various NLP tasks such as sentiment analysis, named entity recognition, and

question answering. BERT has achieved remarkable results on a wide range of NLP benchmarks,

demonstrating the potency of the Transformer architecture in capturing contextual information in

language data. Devlin et al. (2018) show that BERT achieved state-of-the-art performance on a

range of natural language understanding tasks, including question answering, text classification,

and named entity recognition. The authors also analyze the behaviour of BERT and show that

it effectively captures contextual information in language data through its use of the Transformer

architecture.

RoBERTa (Robustly Optimized BERT Approach), introduced by Liu, Y., Ott, M., Goyal, N.,

Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V (2019), builds

upon the original BERT architecture and makes several modifications aimed at improving its per-

formance. These modifications include a larger model size, longer pre-training time, and a larger

corpus for training. These changes have resulted in RoBERTa outperforming BERT and other pre-

trained models on various NLP benchmarks (e.g. A. Wang et al. (2018)), cementing the Transformer

architecture’s position as the current state-of-the-art in NLP. Given the significant performance of

RoBERTa, we used it as a benchmark for our classifiers to aim towards (see Section 4.1).

2.4 Chapter Summary

In this chapter, we provided background on the assessment of textual proficiency levels and

parsing methods, and frameworks used for discourse classification. We also reviewed work on
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corpus research, provided a linguistic perspective on the tools used in our work, and presented a

deeper dive into the machine learning methods used in our work for classifying learner texts. In

the next chapter, we will discuss the methodology and results of the discourse analysis of English

learner texts.
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Chapter 3

Discourse Analysis of English Learner

Texts

This chapter provides an in-depth description of our methodology for the discourse analysis of

essays, and the results. The findings of this chapter were accepted for publication at the forthcoming

RANLP-2023 conference (Hanel & Kosseim, 2023).

Section 3.1 introduces the various datasets that were considered, including the International

Corpus Network of Asian Learners and the Corpus and Repository of Writing.

In order to extract discourse relation and connective information from the dataset, we used two

parsers from each discourse analysis framework. Section 3.2 will discuss the RST parsers, their

agreement, and present the results of the discourse analysis for RST relations. Section 3.3 will

discuss the PDTB parsers, their agreement, and present the results of the discourse analysis for

level-1 PDTB relations and discourse connectives. Section 3.4 will describe the mapping between

the two frameworks.

3.1 Datasets

In order to analyze discourse phenomena across learner texts, we needed corpora of essays pre-

labelled with language proficiency levels. As Webber (2009) and Bachand et al. (2014) have shown,

the genre of a text has an influence on the usage of discourse relations (see Section 2.2.4), thus it
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was important to find corpora of essays of the same genre. We used two datasets, the International

Corpus Network of Asian Learners (see Section 3.1) and the Corpus & Repository of Writing (see

Section 3.1).

The International Corpus Network of Asian Learners The first dataset we used was the In-

ternational Corpus Network of Asian Learners (ICNALE) (Ishikawa, 2013). The ICNALE is an

extension of the Corpus of English Essays Written by Asian University Students (CEEAUS), re-

leased in 2009. Compared to CEEAUS, ICNALE covers a greater diversity of writers from Asia,

which makes it more reliable for international contrastive studies. In this dataset, writers presented

their opinions about one of two statements: (a) It is important for college students to have a part-

time job. and (b) Smoking should be completely banned at all the restaurants in the country. The

ICNALE dataset used the ETS mapping (see Section 2.1.1) to convert TOEFL scores into CEFR

scores. The dataset contains essays from 5 CEFR levels: A2, B1.1, B1.2, B2, and C2. In order to be

compatible with the second dataset, we merged B1.1 and B1.2 instances to create a single B1 label.

ICNALE Dataset CROW Dataset

A2 B1 B2 C2 All A2 B1 B2 C2 All

Essays 960 3976 464 400 5600 208 221 865 133 1429

Words per Essay 225 233 241 225 231 1207 846 905 2176 1057

Sentences per Essay 15 15 14 9 14 63 44 45 106 53

Table 3.1: Statistics of the ICNALE and CROW datasets.

Example 5 is a sample A2-level essay from an English learner in Korea, from the ICNALE

dataset:
1

(5) I agree for this topic Because university life is based on social life I think gain

knowledge of what is important but much experience more important I had a part time

job help to me This work too hard, but useful thing and make some money I have work

the part-time job for kindergarten assistance for children’s festival. That part-time job

is tired but I was happy and worth Part-time job are many useful species for university

students. For example only vacation part-time job and special treatment for only uni-

versity students You get part-time job of your major study and your interest’s part-time

1
All grammar and punctuation errors in this text are verbatim from the original text.
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job is help for your future. I will work part-time job for summer vacation Part time

job is much advantage First, learn important manners are in society. Second, knowing

the importance of money The reason money management for hard-earned money and

understanding importance of money. Third hang out with friends. Moreover university

students have much time especially vacation is best I think level up study for important

but work part-time job important too. Part-time job to university students gain money

and many useful experiences Therefore ªi agree. It is important for college students to

have a part-time job. º

The Corpus and Repository of Writing The Corpus and Repository of Writing (CROW) (Sta-

ples & Dilger, 2018) is a collection of written learner texts established in 2015 at Purdue Uni-

versity. The CROW dataset consists of essays split into three assignment groups: Argumentative

Papers, Rhetorical Analysis, and Reflection. For the sake of consistency in genre, we only used

the argumentative papers for comparison with the ICNALE dataset. These argumentative papers

are comprised of essays from two different courses/institutions (ENGL 105 from Northern Arizona

University and ENGL 106i from Purdue).

It is worth noting that CROW dataset texts are not labelled with a CEFR score, but rather with a

TOEFL score (see Section 2.1.1). In 2010, the Educational Testing Service (ETS) proposed a metric

for mapping TOEFL scores directly to CEFR levels
2
. The ICNALE dataset used this mapping

(though the mapping has since been changed) to convert TOEFL scores to CEFR scores, so we used

the same metric on the CROW dataset.

Example 6 is an excerpt from a B2-level essay from an English learner in China, from the

CROW dataset:

(6) There has been much debate recently about what should be done to improve the

user-experience of smartphones. Some say that the manufactors should put a large

battery into the phone in order to make the phone last longer while using. Others think

that the designer should do harder work and make the smartphone thinner and lighter,

in order to have a better hands-on experience. However, a larger battery means a

2
https://language.sakura.ne.jp/icnale/images/about/toefl mapping.pdf
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thicker and heavier phone. Therefore, the controversial topic kept existing among all

the designers. A larger battery can provide a longer using time. Making the phone the

width and the weigh of the phone can affect the user-experience by a lot. Too much

improvement on either side can make the phone extremely expensive which can be the

biggest killer of user-experience.

Table 3.1 shows statistics of both datasets. A2-B2 essays are from English learners, while C2

essays are from countries with English as an official language. As the table shows, ICNALE is

significantly larger than CROW (5600 essays compared to 1429). However, the essays in CROW

are longer with a word-per-essay average of 1057 words vs 231. In addition, as shown in Table 3.1,

the datasets do not contain samples of A1 and C1 CEFR levels, and are not balanced across levels.

For the discourse analysis, all essays were considered in order to maximize the size of the dataset.

However, for the automatic classification (see Chapter 4), ICNALE’s B1 was under-sampled to 1000

random essays in order to balance the dataset and reduce bias.

Other Datasets Considered Other datasets were considered, but were not appropriate for our

work. Among these, we considered the International Corpus of Learner English (ICLE) (Granger,

Dupont, Meunier, Naets, & Paquot, 2020), the EFCAMDAT (Geertzen et al., 2013) and the CLC-

FCE (Yannakoudakis et al., 2011).

ICLE (Granger et al., 2020) is a research database of written and spoken English produced by

non-native speakers. It was created in 1994 by Sylviane Granger, a Belgian linguist and researcher in

the field of second language acquisition. The ICLE dataset was designed to provide a comprehensive

and representative sample of the English language produced by learners from a wide range of first

language backgrounds, including Chinese, German, French, Spanish, and Russian. The corpus is

based on data collected from learner essays, exam scripts, and spoken interactions. This dataset

was not used in our work because of its small amount of labelled data, as only 20 essays from each

first-language corpus were analyzed by a manual annotator to determine the writer’s CEFR score.

We had also considered the use of the EFCAMDAT (Geertzen et al., 2013) and CLC-FCE (Yan-

nakoudakis et al., 2011) datasets discussed in Schmalz and Brutti (2021); however these datasets

consist of short question-answer pairs rather than essays, and hence current discourse parsers (see
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Section 2.2.1) are not capable of parsing these to extract relevant discourse information.

3.2 RST-DT Parsing

In order to identify patterns across CEFR levels, we analyzed the data to find the average fre-

quency for essays of each CEFR label in the dataset: A2, B1, B2, and native speakers. To determine

if the differences were statistically significant, we ran a two-tailed t-test with a significance level of

0.05 for each of these spans, comparing A2 against native speakers, B1 against native speakers, and

B2 against native speakers.

3.2.1 RST-DT Parsing Methodology

Today, many pre-trained discourse parsers are publicly available. For RST, the two most recent

publicly-available parsers are the Y. Wang et al. (2017) parser and the Heilman and Sagae (2015)

parser. These parsers are directly compared in Y. Wang et al. (2017), and both parsers are publicly

available to download and train on GitHub.
3

In addition, the Heilman and Sagae (2015) parser is

highly efficient, allowing for quick discourse parsing without reliance on an external GPU. However,

the parsers were not ready to use and had to be trained before use.

Setting up the Heilman and Sagae (2015) parser As recommended by the authors, we trained

the Heilman and Sagae (2015) parser on the Penn Treebank
4

(Marcus, Santorini, & Marcinkiewicz,

1993) for syntactic information, and on the RST Discourse Treebank (RST-DT) (Carlson et al.,

2002) for discourse information. The RST-DT consists of 385 Wall Street Journal articles annotated

with discourse structure in the RST framework. To train the Heilman and Sagae (2015) parser, we

first split the RST-DT using the standard split of 38 documents for the test set, 40 for the validation

set, and the other 307 for training. The next step was to train a discourse segmentation model from

the newly created training set and the development set.

3
https://github.com/EducationalTestingService/rstfinder and https://github.com/

yizhongw/StageDP
4
The Penn Treebank (PTB), not to be confused with the Penn Discourse TreeBank (PDTB), is a corpus annotated with

syntactic information, such as syntactic tree structures for sentences, part-of-speech tags, and phrase structure.
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We trained the Conditional Random Field model, tasked with segmenting the text into Elemen-

tary Discourse Units (EDUs). During the training process, the regularization parameter, C, of the

CRF model was optimized to maximize the likelihood of the observed data given the model. The

goal of optimizing this hyperparameter was to find the optimal balance between fitting the data

well and avoiding overfitting. This was achieved by training the CRF model multiple times with

different values for the regularization hyperparameter (ranging from 0.0625 to 16.0), using a sim-

ple 1-dimensional grid search, and evaluating its performance on the validation set. As shown in

Table 3.2, a C value of 16.0 was shown to produce the highest F1 score on the RST-DT validation

set.

C Precision Recall F1

0.015625 92.82% 81.17% 86.60%

0.03125 93.16% 84.66% 88.71%

0.0625 93.87% 86.21% 89.88%

0.125 93.87% 87.18% 90.40%

0.25 93.48% 88.22% 90.78%

0.5 93.31% 88.48% 90.83%

1 93.37% 88.48% 90.86%

2 93.57% 88.61% 91.02%

4 93.58% 88.74% 91.10%

8 93.46% 88.87% 91.11%

16 93.47% 88.93% 91.14%

32 93.34% 88.93% 91.08%

64 93.34% 88.87% 91.05%

Table 3.2: Fine-tuning of the C regularization value for the Conditional Random Field of the Heil-

man and Sagae (2015) parser for segmentation.

After using the CRF for segmentation, the Heilman and Sagae (2015) parser uses a linear re-

gression model to select the most appropriate RST relation. We trained this model with a similar

hyperparameter tasked with normalization. The linear regression model is aided with pre-generated

features from the SciKit-Learn Laboratory (SKLL
5
). As shown in Table 3.3, a regularization pa-

rameter value of 0.5 was shown to produce the highest F1 score on the RST-DT validation set

After running on the ICNALE and CROW datasets, the Heilman and Sagae (2015) parser pro-

duced a JSON file with separate objects for each EDU, as well as a dependency tree. D3.js was

5
https://skll.readthedocs.io/en/latest/
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C Precision Recall F1

0.0625 55.86% 56.57% 56.21%

0.125 58.27% 58.98% 58.61%

0.25 58.65% 59.37% 59.01%

0.5 59.18% 59.63% 59.41%

1 57.63% 58.10% 57.87%

2 56.05% 56.46% 56.26%

4 55.37% 55.72% 55.55%

8 55.32% 55.62% 55.47%

16 54.61% 54.89% 54.75%

Table 3.3: Fine-tuning of the C regularization value for the Conditional Random Field of the Heil-

man and Sagae (2015) parser for relation labelling.

used to visualize this tree in HTML. An example of this dependency tree is shown in Figure 3.1.

Red circles symbolize nuclei, while white circles symbolize satellites (except for the furthest left

circle, which is the root).

Figure 3.1: RST dependency tree visualized by D3.js using an A2-level essay from Ishikawa (2013),

with satellites labelled with their RST relation.

Setting up the Y. Wang et al. (2017) parser The Y. Wang et al. (2017) parser was similarly

trained on the RST-DT. For obtaining syntactic information, rather than training on the Penn Tree-

Bank like the Heilman and Sagae (2015) parser, this parser used a CoreNLP server
6
. This server

performed tokenization, part-of-speech tagging, sentence splitting, word lemmatization, and named

6
https://stanfordnlp.github.io/CoreNLP/
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entity recognition. Next, we extracted feature templates, action maps, and relation maps to convert

the raw text data into a numerical representation that could be used as input to a machine learning

model. Feature templates are predefined patterns that capture relevant linguistic aspects of a unit

and represent them as feature vectors. Action maps are used for sequence labelling to map the cur-

rent state and desired label to actions, and relation maps are used for dependency parsing to map

the current word, context, and desired relation to actions. Example 7 shows a snippet of the output

in the .parse file for the same A2-level essay from Korea used previously.

As this parser did not natively come with an EDU segmenter, we used an external tool
7
.

Little preprocessing other than feature engineering had to be done on the raw text files, except

for CROW documents, which were provided in a format which contained essay metadata within the

.txt files, so the metadata needed to be removed prior to parsing.

(7)

(SN-Attribution

(NS-Explanation (EDU _!I_agree_for_this_topic!_) (EDU _!

Because_university_life_is_based_on_social_life_I_think!_))

(NN-Contrast

(EDU _!gain_knowledge_of_what_is_important_but_much

_experience_more_important_I_had_a_part_time_job_help

_to_me_This_work_too_hard_,!_)

(NS-Elaboration

(EDU _!but_useful_thing_and_make_some_money!_)

(NS-Attribution

(EDU _!I_have_work_the_part_-_time_job_for

_kindergarten_assistance_for_children_’s_festival_)

(SN-Contrast ...

7
http://www.chokkan.org/software/crfsuite/
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Heilman and Sagae (2015) Y. Wang et al. (2017) Average

1. ENABLEMENT 58.00% 75.76% 66.88%

2. ATTRIBUTION 88.84% 96.68% 92.76%

3. ELABORATION 100.00% 99.93% 99.97%

4. TEMPORAL 14.21% 35.37% 24.79%

5. JOINT 84.68% 96.11% 90.40%

6. CONTRAST 64.93% 75.28% 70.11%

7. EXPLANATION 77.96% 55.49% 66.73%

8. CAUSE 39.16% 25.14% 32.15%

9. CONDITION 63.57% 63.95% 63.76%

10. BACKGROUND 56.55% 65.63% 61.09%

11. MANNER-MEANS 20.57% 23.05% 21.81%

12. COMPARISON 9.73% 8.90% 9.32%

13. SUMMARY 0.82% 0.05% 0.44%

14. EVALUATION 6.73% 0.63% 3.68%

15. TOPIC-COMMENT <0.01% <0.01% <0.01%

16. TOPIC-CHANGE <0.01% <0.01% <0.01%

Table 3.4: Percentage of essays in the ICNALE dataset containing at least 1 of the given RST

relation.

Running the RST parsers After parsing the ICNALE and CROW datasets with both RST parsers,

we used the output of each RST parser to find the frequency of each RST relation label per essay

with respect to the total number of relation labels. This gave us the percentage of discourse relations

for each essay.

Each RST parser used the same set of 16 labels. Statistics of the frequency of each relation

were then collected. Table 3.4 shows the percentage of essays containing at least 1 of the given RST

relation. As Table 3.4 shows, EVALUATION, TOPIC-COMMENT, TOPIC-CHANGE, and SUMMARY

were found on average in less than 5% of the documents. They were therefore considered too

infrequent to evaluate further. In total, 12 RST relations were therefore considered for further

analysis.

Both RST parsers were trained and parsed files on a desktop computer running Ubuntu 20.04.4

LTS with an Intel
®

Core
™

i7-4770 CPU @ 3.40GHz with 4 cores. The total training time of each

parser was below 5 minutes. The total parsing time on the ICNALE dataset of 5600 documents

ranged from 8 to 12 hours on the Heilman and Sagae (2015)-based parser and 6 days on the Y. Wang

et al. (2017)-based parser.
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3.2.2 RST Parser Agreement

Given that each RST parser can make segmentation and labelling errors, we computed their

agreement across the two datasets. Much research has addressed the alignment of RST and PDTB

annotations (Demberg et al., 2017), but even between two RST parsers with the same labels, com-

puting their agreement on the same dataset can be a difficult task, as the tree structures may not

match. To align the annotations, we used the following method. Given 2 EDUs from each parser,

EDUp1 and EDUp2:

Segment Alignment:

If EDUp1 and EDUp2 span the same text (sans punctuation), we align them and keep the pair

(EDUp1, EDUp2) along with their associated discourse annotations for relation agreement. This

case alone led to an inter-parser agreement of over 95%.

Relation Alignment:

(1) For each EDUpi in the aligned (EDUp1, EDUp2),

• If EDUpi was labelled as a satellite by parser pi, it is then labelled with its lowest-

level discourse relation. In Figure 3.2, satellite A would be labelled ATTRIBUTION,

while satellite C would be labelled EXPLANATION. Satellite B, as a nucleus, would not

receive a label.

• If EDUpi was the second EDU of a multi-nucleic relation, it is labelled with the discourse

relation that represents the pair (labelling only the second EDU in the pair prevents the

relation from being double-counted).

• Otherwise, EDUpi is not assigned a relation.

(2) For each EDU:

• If BOTH parsers label the EDU as a satellite, and they have the same relation, mark

them as an agreement.

• If BOTH parsers label the EDU as a satellite, and they have a different relation, mark

them as a disagreement.
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Heilman and Sagae (2015)

Ena. Att. Ela. Tem. Joi. Cont. Exp. M-M Cau. Cond. Bac. Com. Total

Enablement 1236 56 597 3 104 13 11 3 28 13 17 3 2084

Attribution 69 9488 488 8 281 81 43 10 66 132 108 10 10784

Elaboration 697 378 10415 60 628 114 88 69 124 105 336 34 13048

Temporal 2 44 50 299 26 43 8 1 7 6 131 2 619

Joint 15 46 187 10 1732 10 2 6 35 10 18 2 2073

Contrast 36 64 173 36 111 951 39 7 24 118 53 5 1617

Explanation 2 39 21 1 29 3 503 0 187 8 4 2 799

Manner-Means 1 14 9 0 7 0 1 386 0 2 38 2 460

Cause 9 9 15 2 13 4 99 2 96 5 13 3 270

Condition 21 125 106 13 44 11 17 12 13 2594 55 1 3012

Background 15 123 161 50 62 10 9 27 55 51 1732 68 2363

Comparison 1 7 3 0 6 0 0 0 1 2 19 124 163

Y
.
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n

g
et
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)

p
a
rs

er

Total 2104 10393 12225 482 3043 1240 820 523 636 3046 2524 256 37292

Table 3.5: RST Parser agreement between the Heilman and Sagae (2015) parser along the x-axis

and the Y. Wang et al. (2017) parser on the y-axis, on the ICNALE dataset.

• Otherwise, if one or both parsers label the EDU as a nucleus, the EDU is ignored, since

its relation has already been considered through its satellite.

Figure 3.2: Example RST tree.

Using this method, we were able to verify the agreement between the two parsers on the 12

most frequent satellite-nucleus RST relations. The two parsers showed an agreement of 79.3%

on relation tags on the ICNALE dataset, and an agreement of 80.3% on the CROW dataset, with

the full results shown in Table 3.6 and Table 3.7. As the results show, the parsers disagreed most

frequently on CAUSE relations, frequently mislabelling these relations as EXPLANATION. For the

following analysis, only the EDUs with an agreed-upon relation between the two parsers were used.

Therefore, only 29556 relation instances were kept out of 37292 from ICNALE and 31689 out of

39469 from CROW.
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Heilman and Sagae (2015)

Ena. Att. Ela. Tem. Joi. Cont. Exp. M-M Cau. Cond. Bac. Com.

Enablement 58.75% 0.54% 4.88% 0.62% 3.42% 1.05% 1.34% 0.57% 4.40% 0.43% 0.67% 1.17%

Attribution 3.28% 91.29% 3.99% 1.66% 9.23% 6.53% 5.24% 1.91% 10.38% 4.33% 4.28% 3.91%

Elaboration 33.13% 3.64% 85.19% 12.45% 20.64% 9.19% 10.73% 13.19% 19.50% 3.45% 13.31% 13.28%

Temporal 0.10% 0.42% 0.41% 62.03% 0.85% 3.47% 0.98% 0.19% 1.10% 0.20% 5.19% 0.78%

Joint 0.71% 0.44% 1.53% 2.07% 56.92% 0.81% 0.24% 1.15% 5.50% 0.33% 0.71% 0.78%

Contrast 1.71% 0.62% 1.42% 7.47% 3.65% 76.69% 4.76% 1.34% 3.77% 3.87% 2.10% 1.95%

Explanation 0.10% 0.38% 0.17% 0.21% 0.95% 0.24% 61.34% 0.00% 29.40% 0.26% 0.16% 0.78%

Manner-Means 0.05% 0.13% 0.07% 0.00% 0.23% 0.00% 0.12% 73.80% 0.00% 0.07% 1.51% 0.78%

Cause 0.43% 0.09% 0.12% 0.41% 0.43% 0.32% 12.07% 0.38% 15.09% 0.16% 0.52% 1.17%

Condition 1.00% 1.20% 0.87% 2.70% 1.45% 0.89% 2.07% 2.29% 2.04% 85.16% 2.18% 0.39%

Background 0.71% 1.18% 1.32% 10.37% 2.04% 0.81% 1.10% 5.16% 8.65% 1.67% 68.62% 26.56%Y
.
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Comparison 0.05% 0.07% 0.02% 0.00% 0.20% 0.00% 0.00% 0.00% 0.16% 0.07% 0.75% 48.44%

Table 3.6: Percentages of RST Parser agreement between the Heilman and Sagae (2015) parser

along the x-axis and the Y. Wang et al. (2017) parser on the y-axis, on the ICNALE dataset.

Heilman and Sagae (2015)

Ena. Att. Ela. Tem. Joi. Cont. Exp. M-M Cau. Cond. Bac. Com. Total

Enablement 1556 35 746 4 151 15 11 4 40 16 20 3 2602

Attribution 72 9093 553 9 137 110 57 11 77 130 144 12 10406

Elaboration 738 203 12845 121 306 141 87 98 130 132 357 33 15193

Temporal 3 9 62 397 26 54 10 1 7 6 172 3 750

Joint 4 14 248 1 714 5 2 8 13 8 10 1 1030

Contrast 48 59 167 38 117 973 49 9 33 144 67 6 1696

Explanation 3 10 28 1 33 3 578 0 27 12 5 3 704

Manner-Means 1 5 12 0 7 0 1 553 0 2 54 3 638

Cause 10 8 242 3 12 3 125 3 103 6 14 3 533

Condition 27 2 149 18 48 10 22 15 13 2738 67 1 3111

Background 18 41 173 56 60 14 11 30 62 61 1979 80 2587

Comparison 0 1 4 0 5 0 0 0 1 3 20 174 207

Y
.
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Total 2480 9481 15230 649 1617 1315 955 733 507 3257 2909 322 39469

Table 3.7: RST Parser agreement between the Heilman and Sagae (2015) parser along the x-axis

and the Y. Wang et al. (2017) parser on the y-axis, on the CROW dataset.

3.2.3 RST Relations Across CEFR Levels

While many RST relations showed some statistical differences between learner and native

speaker essays, only two of the twelve showed the same patterns across the two datasets, in which

at least two of the three t-tests showed a significant difference. For the relation of EXPLANATION,

both parsers and both datasets showed a statistical difference in A2 vs C2 and B1 vs C2, but no

statistical difference between B2 and C2. The data suggests a general downward trend in the usage

of EXPLANATION relations, which flattens out as the learner reaches the B2 level. In Figure 3.3, ª*º

indicates a p-value less than 0.05 when comparing the marked data point against C2-level essays

with a t-test. Intuitively, individuals with lower CEFR levels may have a more limited vocabulary

and understanding of complex sentence structures, which can make it more difficult for them to

express themselves in a clear and concise way. As a result, they may rely more heavily on the RST
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relation of EXPLANATION to clarify their meaning and provide additional detail to support their

arguments or ideas.
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Figure 3.3: Percentage of RST relation of EXPLANATION in the CROW and ICNALE datasets, as

parsed by both RST parsers.

For the RST relation of BACKGROUND, both parsers and both datasets show a statistical differ-

ence in B1 vs C2 and B2 vs C2, but no statistical difference between A2 and C2. This is shown

in Figure 3.4, which suggests that newer learners use BACKGROUND relations at a similar rate to

native English speakers (C2), whereas B-level learners show an increase in these relations. In this

figure, ª*º indicates a p-value less than 0.05 when comparing the marked data point against C2-

level essays. The RST relation of BACKGROUND is used to provide information that is important

to understanding the main idea or topic of a text. English language learners may rely more heavily

on BACKGROUND to provide necessary context and establish the main topic or theme of their writ-

ing. However, A2 level English learners may not have the language skills necessary to effectively

attribute a background to the points they are attempting to convey.

Example 8 shows an example of a BACKGROUND relation, from a B2-level essay, in the

ICNALE dataset. The satellite’s opening clause, ªAs we all know,º is a strong indicator of this

type of relation, as it often comes before factual (or presented by the writer as factual) background

information relevant to understand the argument.

(8) [In this way, it is a quite reasonable rule that all the customers should obey. To

ban smoking in restaurants can also help educate the teenagers.]
1

[As we all know, the
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Elab. Exp. M-M Att. Joi. Ena. Back. Comp. Cont. Cau. Tem. Cond.

A2 43.52 5.62 0.87 13.91 13.91 4.29 3.90 0.24 5.84 1.49 1.21 6.59

B1 46.62 4.62 0.90 12.37 13.79 4.18 4.50 0.34 5.71 1.56 1.37 5.47

B2 48.03 3.29 1.10 11.72 12.81 4.25 5.03 0.39 6.01 1.72 1.47 5.27
IC

N
A

L
E

C2 41.77 3.40 0.92 17.02 16.91 3.71 3.96 0.41 4.93 1.13 1.43 5.68

A2 65.75 3.24 3.16 6.14 8.32 1.89 2.34 0.38 3.16 1.05 0.46 1.23

B1 63.47 3.19 2.93 6.56 9.72 2.01 2.78 0.30 2.93 1.02 0.53 1.47

B2 64.62 2.79 2.77 6.06 9.00 2.01 2.75 0.38 2.77 1.02 0.50 1.12

C
R

O
W

C2 63.97 2.58 2.58 5.70 11.22 1.62 2.21 0.21 2.58 0.86 0.43 1.26

Table 3.8: Frequencies of each RST relation by dataset and CEFR score.

number of teenagers who smoke is rising rapidly.]
2
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Figure 3.4: BACKGROUND mean in the CROW and ICNALE datasets, as parsed by 2 RST parsers.

Table 3.8 shows the frequencies of each of the twelve discourse relations. Highlighted scores

have a p-value below 0.05 when compared to C2 in a two-tailed t-test. EXPLANATION and BACK-

GROUND have already been shown to have matching patterns of t-test results, but there are other

notable relations as well. The RST relation of JOINT is used much more often among C2 writers

than by English learners, but the t-test between CROW’s B1-level and C2 is just above the 0.05 p

threshold. While C2 speakers seem to use CAUSE relations less frequently than learners, the values

don’t vary enough to be statistically significant. CONTRAST relations are also used less frequently

in C2-level essays, however the results are inconclusive for the difference among A- and B-level

essays, as the frequency is highest in the B2 range in the ICNALE dataset, while it is highest in the

A2 range in the CROW dataset.
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3.3 PDTB Parsing

Two PDTB parsers were also used to compare results with the RST, including the popular PDTB

parser presented by Lin et al. (2014) and the high scoring parser of J. Wang and Lan (2015) used at

the CONLL-shared 2015 Shared Task (Xue et al., 2015).

Setting up the Lin et al. (2014) parser A Java version of the Lin et al. (2014) parser is available

on GitHub
8
. It is pre-trained and ready to be used on raw text files out of the box. The parser,

called the PDTB-Styled End-to-End Discourse Parser, uses a deep neural network architecture that

takes raw text as input and outputs a discourse structure in the form of relations between discourse

units. The network is trained on the PDTB training set (Prasad et al., 2008) to learn the patterns

and features that are indicative of different types of discourse relations. During training, the parser

learns to identify discourse connectives, such as however and because, and to use them to predict

the type of relation that holds between two discourse units. The parser has an additional dependency

on The Stanford CoreNLP Dataset (Manning et al., 2014) for reading and generating parse trees.

Once trained, the PDTB-Styled End-to-End Discourse Parser can be applied to new texts to

produce a discourse analysis. The parser first segments the text into discourse units, then uses the

learned patterns and features to predict the discourse relations between these units. The output of

the parser is a set of discourse relations, each of which is characterized by the type of relation, the

connective used (if any), and the arguments (i.e., the discourse segments) involved in the relation.

Example 9 shows one line of a .txt file for the A2-level essay from ICNALE shown in Example 5.

An explanation of each string in the output is laid out in Table 3.9.
9

Example 10 shows the full quote

of the text being described.

8
https://github.com/WING-NUS/pdtb-parser

9
A full list of possible outputs is available at https://github.com/WING-NUS/pdtb-parser/blob/

master/README.md, yet most are not relevant to our work.
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Key String

Relation type (Explicit/Implicit) Explicit

Character location of connective 613...616

Connective (raw text) and

Sentence number 1

Connective (in lowercase) and

Relation Expansion

Character location of Arg1 480..612

Arg1 text

For example only vacation part-time job and special treatment

for only university students You get part-time job of your

major study

Character location of Arg2 617..670

Arg2 text your interest’s part-time job is help for your future

Table 3.9: Explanation of the output of the Lin et al. (2014) parser.

(9)

Explicit|||613..616||and||1|and|||Expansion|||||||||||

480..612||For example only vacation part-time job and

special treatment for only university students You get

part-time job of your major study||||||||617..670||your

interest’s part-time job is help for your future|||||||

||||||

(10) For example only vacation part-time job and special treatment for only university

students You get part-time job of your major study and your interest’s part-time job

is help for your future.

Note that, in this example, the first argument is particularly long. This may be due a reliance on

punctuation in PDTB segmentation, which poses a challenge on A-level essays such as this one in

which the writer may not have a grasp on punctuation and writes long, run-on sentences.

Setting up the J. Wang and Lan (2015) parser For a point of comparison, the code
10

from

J. Wang and Lan (2015) was also used to parse the data into PDTB format. The parser uses a neural

10
https://github.com/lanmanok/conll2015 discourse
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network architecture to generate discourse relation and connective predictions based on the repre-

sentation of the input text. This representation is generated using a combination of word embed-

dings, contextual embeddings, and linguistic features. The main difference between the approaches

of the Lin et al. (2014) and the J. Wang and Lan (2015) parsers lies in the way they generate the

representations used to predict discourse relations. J. Wang and Lan (2015)’s approach generates

the representations directly from the text, while Lin et al. (2014)’s approach generates the repre-

sentations based on the PDTB-style discourse tree structure and then uses these representations to

make the final relation predictions.

As the parser was originally run for the CONLL 2015 shared task (Xue et al., 2015), it required

input of a JSON file containing the syntactic parse tree. To generate such files, we began by execut-

ing the Stanford parser’s ªlexparserº script on the input file. Then, we implemented a conversion

function to transform the resulting output into JSON format. During the conversion process, we

parsed the data line by line. We identified and stored the parse tree lines along with the corre-

sponding dependencies for each sentence. We ensured that the parse tree lines were concatenated

correctly. Finally, we constructed a JSON structure with the sentences, parse trees, and dependen-

cies, and saved it to a JSON file with the same name as the input file. This resulted in a JSON

representation of the input data that captured the sentence structure and linguistic dependencies.

In a similar process with the Berkeley parser, we appended the output to the JSON, which pro-

vided tokenized words, including the character start and end points in the raw text file. Figure 3.5

is a snippet of example output from a sentence in an A2-level essay in the ICNALE dataset, with

ªdependenciesº and ªwordsº truncated to just one example.

Running the PDTB parsers Much like the RST parsers’ outputs, we aligned the outputs of the

two parsers, then extracted frequencies of PDTB level-1 discourse relations for each dataset. We

used the output of each PDTB parser to find the frequency of every PDTB level 1 relation (see

Figure 2.6) per essay with respect to the total number of relation labels.

Both PDTB parsers were run on the same desktop computer running Ubuntu 20.04.4 LTS with

an Intel
®

Core
™

i7-4770 CPU @ 3.40GHz with 4 cores. Total parsing time on the ICNALE dataset

of 5600 documents ranged from 4 to 8 hours on both parsers.

44



Figure 3.5: Example snippet of pdtb-parses.json file necessary for running the J. Wang and

Lan (2015) parser.

3.3.1 PDTB Parser Agreement

Given that each PDTB parser is also prone to segmentation and labelling errors, we computed

their agreement across the two datasets. We have calculated parser agreement in a similar method

to RST (see Section 3.2.2), with some slight differences:

(1) PDTB arguments are used instead of RST EDUs

(2) As these arguments are in list format, rather than tree format, the algorithm was simpler: For

every (Arg1, Arg2) pair in parser p1, look for a corresponding exact match of (Arg1, Arg2)

text in parser p2.

(3) As the previous step yielded a segmentation agreement of only 65.4% in ICNALE and 67.4%

in CROW, we also looked for (Arg1, Arg2) text in parser p2 which differed by 1 word. This

boosted the agreement to 80.1% in ICNALE and 81.5% in CROW.
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(4) As before, relations between every matching (Arg1, Arg2) in p1 and (Arg1, Arg2) in p2 are

placed into a contingency table, shown in Table 3.11.

Lin et al.

Contingency Expansion Comparison Temporal Total

Contingency 16876 1322 284 663 19145

Expansion 894 18013 231 544 19682

Comparison 428 541 9607 320 10896

Temporal 349 402 128 7065 7944

W
a
n

g
et

a
l.

Total 18547 20278 10250 8592 57667

Table 3.10: PDTB Parser agreement between the Lin et al. (2014) parser along the x-axis and the

J. Wang and Lan (2015) parser on the y-axis, on the ICNALE dataset.

Lin et al.

Contingency Expansion Comparison Temporal Total

Contingency 14509 1290 225 672 16696

Expansion 771 15581 179 469 17001

Comparison 369 417 8286 243 9314

Temporal 267 287 77 6093 6725

W
a
n

g
et

a
l.

Total 15916 17475 8767 7577 49735

Table 3.11: PDTB Parser agreement between the Lin et al. (2014) parser along the x-axis and the

J. Wang and Lan (2015) parser on the y-axis, on the CROW dataset.

As expected, a 4-class classification performs a lot better than the classification for RST, with a

90.9% relation agreement for ICNALE and a 89.4% agreement for CROW. The remaining analysis

was done only on the agreements, therefore 44469 instances of 49735 were used for CROW, and

51561 of 57667 were used for ICNALE.

3.3.2 PDTB Relations Across CEFR Levels

The results of the PDTB parser agreement were used to create an agreement between the two

parsers. Table 3.12 shows the frequencies of each of the four top-level PDTB relations. Highlighted

scores have a p-value below 0.05 when compared to C2 in a two-tailed t-test. As the table shows, no

pattern of relation usage seems to exist across CEFR levels. Though all three categories of learner

essays in EXPANSION are significantly different from C2 in both datasets, one is significantly

higher, while the other is significantly lower.
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CONTINGENCY t-test EXPANSION t-test TEMPORAL t-test COMPARISON t-test

A2 40.01 0.00 30.77 0.00 12.74 0.00 16.35 0.06

B1 33.20 0.00 33.61 0.00 15.71 0.96 17.28 0.00

B2 28.64 0.27 33.51 0.00 17.18 0.16 20.53 0.00
IC

N
A

L
E

C2 29.99 - 40.05 - 15.75 - 14.77 -

A2 25.51 0.15 36.63 0.00 15.52 0.00 20.93 0.89

B1 27.25 0.01 35.47 0.01 16.93 0.00 19.95 0.31

B2 26.28 0.04 35.01 0.01 16.99 0.00 20.69 0.69

C
R

O
W

C2 23.68 - 31.81 - 21.94 - 21.07 -

Table 3.12: Frequencies of each top-level PDTB relation by dataset and CEFR score.

3.4 Inter-Framework Mapping

To compare the discourse relations across frameworks, we used the relation mapping proposed

by Demberg et al. (2017). The mapping, shown in Table 3.13, does not account for all RST relations,

as some relations, such as ATTRIBUTION, are generally not considered to be coherence discourse

relations in other schemes such as PDTB.

PDTB level 1 relations RST relations

TEMPORAL TEMPORAL, BACKGROUND

CONTINGENCY CAUSE, CONDITION, EXPLANATION

EXPANSION ELABORATION, JOINT

COMPARISON CONTRAST, COMPARISON

Table 3.13: Mapping of PDTB level 1 to RST relations proposed by Demberg et al. (2017).

A possible caveat to this mapping is that not all RST relations are covered by a PDTB 1st-level

relation. A group of relations such as CAUSE + CONDITION + EXPLANATION represent a less

complete relation group than their counterpart CONTINGENCY. We chose to do this mapping to

see if there is an agreement between PDTB and RST parsers, but mapping between these two types

of parser is currently imperfect.

We performed the inter-framework mapping discussed in Section 3.4 in order to directly com-

pare RST and PDTB relations. As mentioned in Section 3.3.2, no PDTB top-level relation showed

a pattern of usage consistent across datasets. However, for the ICNALE dataset, the PDTB relation

of CONTINGENCY showed an interesting comparison with the RST relations of CAUSE + CON-

DITION + EXPLANATION. Though the CROW dataset did not match this pattern exactly, it also

showed C2-level essays having the lowest frequency of CONTINGENCY relations.

Figure 3.6 compares the percentage of CONTINGENCY (the average of the two PDTB parsers)
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to the percentage of CAUSE + CONDITION + EXPLANATION (the average of the two RST parsers)

on the ICNALE dataset. The left graph shows the frequency of the level 1 relation CONTINGENCY.

The right graph shows the average frequency of CAUSE + CONDITION + EXPLANATION. ª*º indi-

cates a statistically significant difference with C2 essays. The mapping agrees with the pattern that

emerges, in which A2 and B1-labelled texts show a statistically significant difference in frequency

with C2 essays, whereas B2 essays do not.
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Figure 3.6: Percentage of CONTINGENCY across frameworks, in the ICNALE dataset.

3.5 Discourse Connective Analysis

The previous results compared only discourse relations. However, the PDTB parsers also pro-

vided other discourse information in their output, including the discourse connectives used with

each relation, and the marking of each discourse connective as explicit or implicit.

For the sake of this analysis, we only looked at single discourse connectives connecting pairs of

arguments (e.g. but, however, in conclusion), however in future analysis, paired discourse connec-

tives (e.g. on one hand... on the other hand) could be considered as well.

To analyze the usage of discourse connectives and implicit vs explicit relations, every relation

was put into a list in a .csv file, with the relation type, discourse connective, implicit/explicit marker,

and CEFR level listed in each row. Using this, we were able to extract, for each PDTB relation,

which discourse connectives are used most frequently by different levels of English learner. As for
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Explicit vs Implicit relations, the PDTB parsers were not able to find implicit relations frequently

enough to find useful data. Zhao and Webber (2022) discusses how parsers trained on PDTB-3.0

(Prasad et al., 2019) have improved in this regard, however those parsers are not currently easily

accessible. The PDTB parsers showed an inability to classify enough implicit discourse connectives

for an implicit vs explicit analysis to be significant. Lin et al. (2014) shows that the F1 score of

implicit vs explicit classification is in the low 20s. The same researchers discuss in Lin, Kan, and

Ng (2009) how this classification faces four main challenges: ambiguity of discourse relations, a

parsers lack of ability to infer from a knowledge base, lack of context, and lack of world knowledge.

In addition to analyzing the discourse relations, we also looked at the distribution of discourse

connectives.

For each level-2 discourse relation in the PDTB, we extracted all discourse connectives used to

signal this relation, and calculated how frequently each connective was used by each CEFR level. A

total of 51,561 discourse connective instances were found in the ICNALE dataset, and 44,469 were

found in the CROW dataset. Details are shown in Appendix A.

The values in Table 3.14 show the frequency of the discourse connective used by the CEFR level

to signal the discourse relation, divided by the total number of the discourse relation in the CEFR

level. Each discourse connective in the table had a p-value less than 0.05 in at least two of the three

t-tests: A2 vs C2, B1 vs C2, and B2 vs C2.

The ICNALE dataset, in general, showed a higher number of discourse connectives with sta-

tistical differences in frequency between learner essays and C2 essays. However, all 5 statistically

different connectives in the CROW dataset were also statistically different in the ICNALE dataset.

The smaller amount of statistically different discourse connectives in CROW dataset could be at-

tributed to the smaller number of essays in the dataset.

3.6 Chapter Summary

In this chapter, we described our methodology to analyze discourse-level information across

CEFR-level, as well as the results of this analysis. This included the presentation of the datasets
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Relation Connective A2 B1 B2 C2

ICNALE

CONTINGENCY.cause so 0.424 0.379 0.242 0.269

CONTINGENCY.cause so that 0.021 0.045 0.036 0.105

COMPARISON.contrast but 0.744 0.655 0.411 0.538

COMPARISON.contrast though 0.026 0.046 0.051 0.122

COMPARISON.concession nonetheless 0.013 0.018 0.026 0.132

TEMPORAL.asynchronous then 0.361 0.298 0.192 0.190

TEMPORAL.asynchronous after 0.210 0.225 0.180 0.150

TEMPORAL.synchrony when 0.775 0.637 0.569 0.497

EXPANSION.restatement overall 0.040 0.072 0.121 0.400

EXPANSION.restatement rather 0.000 0.021 0.091 0.100

EXPANSION.restatement in other words 0.480 0.338 0.364 0.100

CROW

CONTINGENCY.cause so 0.389 0.316 0.209 0.173

COMPARISON.contrast though 0.063 0.061 0.072 0.174

TEMPORAL.asynchronous after 0.260 0.298 0.306 0.195

EXPANSION.restatement rather 0.021 0.000 0.017 0.086

EXPANSION.restatement in other words 0.426 0.422 0.506 0.286

Table 3.14: Discourse relations with a significant difference between frequencies in A2 vs C2-level

essays.

in Section 3.1, the discourse parsing process and the results for the identification of discourse rela-

tions using RST (see Section 3.2) and PDTB (see Section 3.3), the inter-framework mapping (see

Section 3.4), and the results for the identification of discourse connectives (see Section 3.5).

Overall, there seems to be a relation between learner CEFR level and the RST relations of

EXPLANATION and BACKGROUND. Native speakers tend to have the lowest usage of CONTIN-

GENCY relations in the PDTB. There seems to be an increase in the usage of the discourse connec-

tives though and rather and a decrease in the usage of the discourse connectives so, in other words,

and after as CEFR level increases.

In Chapter 4, we will explore how we used the results of this chapter in a machine learning

process, and present the results of the classification.
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Chapter 4

Machine Learning Classification

In this chapter, we will empirically validate our findings in Chapter 3 by measuring how dis-

course relations and connectives used as features can help to automatically assess the CEFR levels

of essays. Section 4.1 will discuss our methodology, while Section 4.2 will show the results, with F1

scores of every model in the ablation study, and contingency tables of the best-performing models.

4.1 Classification Methodology

Previous work on the automatic assessment of CEFR-level shows that classification modelling

yields better performance than regression modelling (Vajjala & Lõo, 2014). Given this, we decided

to perform a classification task to empirically assess the CEFR level. As discussed in Section 3.1,

ICNALE’s B1 class was under-sampled to 1000 random essays.

We built upon the work of Montgomerie (2021) (see Section 2.1.3), who used standard machine

learning with linguistic features for this task. Specifically, Montgomerie (2021) used syntactic in-

formation
1
, part-of-speech tags, and readability level scores as features for SVM, Random Forest,

and Logistic Regression models.

Montgomerie (2021) used a dataset which contained 1500 texts which were assigned a CEFR

score by an automatic CEFR detector
2
. As both our datasets (ICNALE and CROW) contained

1
Syntactic parse trees and part-of-speech information were found using spaCy linguistic tools. https://spacy

.io/usage/linguistic-features
2
https://textinspector.com/help/tu-lexical-profile/
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ICNALE CROW

Gunning Fog 45.74% 38.25%

Flesch Kincaid Grade 45.00% 35.76%

Smog 43.53% 39.70%

Automated Readability 46.50% 37.03%

Text Standard 41.21% 38.53%

Dale Chall 44.22% 38.80%

Coleman Liau Index 40.79% 37.13%

Difficult Words 38.99% 42.74%

Linsear Write Formula 43.04% 38.50%

Random Baseline 25.00% 25.00%

Table 4.1: F1 score of ICNALE and CROW essays classified using only the readability scores as a

baseline.

essays written by students who had taken a separate test to determine their TOEFL score (and thus

CEFR level) we expect these datasets to pose a more difficult challenge to the models, as they

were not labelled by a model that may have used similar features. In addition, the texts used by

Montgomerie (2021) were written by native speakers for the purpose of readability by different

language levels, rather than by language learners themselves, so though the methodology of this

paper will be used in our work, a direct comparison of the results would not be useful.

Readability Scores, otherwise known as Text Complexity Metrics (Section 2.1.1) were used

both as a baseline, and as features for the models. As a simple baseline, each text complexity metric

for an N-class classifier had its output split into N equal sections. For example, if the lowest value

on any essay for the Flesch Kincaid Grade Level was 2, the highest was 18, and N=4, the range of

16 values (2-18) would be split into fourths, with each ascending level outputting labels A2, B1, B2,

and C2. This was shown to be particularly ineffective to classify learner texts, as outliers occurred

in low-level essays with lack of punctuation. To remedy this, a robust scaler was used to ignore

outliers, but overall the F1 score on this simple baseline was very low (See Table 4.1).

Three machine learning classifiers were chosen for their ease of use, usage in the previous work

(Montgomerie, 2021), and availability with the scikit-learn package (Pedregosa, F., Varoquaux, G.,

Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E., 2011).

The first classifier we chose is a Support Vector Classifier (SVC) since they are particularly good at
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handling high-dimensional data
3
, and our methodology contains a high number of features. We used

an RBF kernel to maximize its efficiency at the cost of processing time. As a second classifier, we

chose a Random Forest Classifier, as the combination of multiple decision trees helps to reduce the

risk of overfitting and improve the accuracy of the model. Random Forests handle both numerical

and categorical features well, which fits with our choice of features. Though more common in

binary classification tasks, we chose a Logistic Regression model as our third classifier, since the

relationship between the progression of CEFR levels is linear.

Each model was trained on 5 types of features. These 5 feature types can be further classified

into 2 groups: surface and syntactic-level features, and discourse-level features.

The full list of features includes:

(1) Syn: These include syntactic and part of speech features. We used the average per-sentence

frequency of 18 part of speech tags
4
, and one feature for average syntactic parse tree depth.

5

(2) Read: Eight Readability scores (see Section 2.1.1) were used: We used the SMOG Index

(McLaughlin, 1969), Flesch-Kincaid Index (Flesch, 1943), Coleman-Liau Index (Coleman &

Liau, 1975), Automated Readability Index (Smith & Senter, 1967), Dale Chall Readability

Score (Dale & Chall, 1948), Linsear Write Formula (O’Hayre, 1966), Gunning Fog Index

(Gunning, 1952), and Textstat Text Standard (Bansal, 2016)
6
.

As additional features, we incorporated the results of our discourse analysis (see Chapter 3)

and created new features to model discourse relations and connectives. These new features were

intended to capture the underlying discourse structure of the text.

(3) RST: For ICNALE, average per-sentence frequency of 8 RST relations with statistical dif-

ference in at least one t-test: ATTRIBUTION, BACKGROUND, CONTRAST, COMPARISON,

CONDITION, ELABORATION, EXPLANATION, and JOINT. For CROW, average per-sentence

3
https://scikit-learn.org/stable/modules/svm.html

4
The POS tags include Adjective, Adposition, Adverb, Auxiliary verb, Conjunction, Coordinating conjunction, Deter-

miner, Interjection, Noun, Numeral, Particle, Pronoun, Proper noun, Punctuation, Subordinating conjunction, Symbol,

Verb, and Space.
5
We used the Dependency Parser from spaCy https://spacy.io/api/dependencyparser to extract POS

tags and syntactic parses.
6
Readability scores were found using the Textstat library https://pypi.org/project/textstat/
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frequency of 6 RST relations with statistical difference in at least one t-test: ATTRIBUTION,

BACKGROUND, CONTRAST, COMPARISON, EXPLANATION, and JOINT.

(4) PDTB: Average per-sentence frequency of the 4 level-1 PDTB relations: CONTINGENCY,

EXPANSION, COMPARISON, and TEMPORAL.

(5) Con: Discourse connectives Average per-sentence frequency of the 11 most discriminating

discourse connectives for ICNALE and 5 discourse connectives for CROW (See Table 3.14).

To measure the contribution of each type of feature, each of the 5 categories was used individu-

ally, and features were added gradually until all were used to create a final model with relations and

a final model with connectives. This process was repeated for ICNALE data and CROW data.

For feature engineering, some code design choices had to be made. As the syntactic-level fea-

tures found by the SpaCy library (Honnibal & Montani, 2017) and Textstat
7

were very quick to

calculate, they were recalculated for each essay dynamically while training and testing. Discourse-

level features, on the contrary, take too long to extract dynamically, so a Python script was created

to match each essay with its RST and PDTB parses to be placed into the same row in either the

test or train files. The input feature array sent to the models contained the full text of the essay

concatenated with its RST or PDTB parse, while the output array contained the CEFR label. In pre-

processing, each input value was then split into its essay and its parse, for the essay to be sent to have

surface and syntactic-level features extracted, while the RST or PDTB parses were sent to compute

the frequency of every relation, simply by looking for instances of each relation in the string. This

thread was also sent information from the essay containing the number of sentences in the essay,

so that a mean could be calculated for each relation with respect to the number of sentences in the

essay. The features were then combined to obtain an overall CEFR score prediction.

Two separate machines were used: A laptop computer running Windows 10 with an Intel
®

Core
™

i5-9300H CPU @ 2.40GHz with 4 cores, and a desktop computer running Ubuntu 20.04.4

LTS with an Intel
®

Core
™

i7-4770 CPU @ 3.40GHz with 4 cores. The training of each of the

3 models took between 5 and 6 minutes per document on the ICNALE dataset containing 1120

test documents and 4480 training documents. Models were saved in .joblib files, with SVC model

7
https://pypi.org/project/textstat/
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files ranging from 317KB - 1332KB, logistic regression model files ranging from 5KB-6KB, and

Random Forest Classifier model files ranging from 3MB-22MB.

We used 5-fold cross-validation to obtain an average F1 score for each class.

For RST features, we had also experimented with using all of our 12 chosen RST relations as

features, however we had found, in 5 out of 6 cases, as shown in Table 4.2, that using only the

relations with statistical difference in at least one t-test showed an improved result in classification.

Dataset

Model Features ICNALE CROW

SVM Syn + Read + RST (All 12) 53.76 ± 1.54 56.05 ± 3.99

SVM Syn + Read + RST (Only significant) 53.95 ± 1.64 56.35 ± 3.01

Logistic Regression Syn + Read + RST (All 12) 53.04 ± 1.99 57.53 ± 4.09

Logistic Regression Syn + Read + RST (Only significant) 53.26 ± 1.73 57.41 ± 3.59

Random Forest Syn + Read + RST (All 12) 51.75 ± 0.98 59.09 ± 3.76

Random Forest Syn + Read + RST (Only significant) 53.14 ± 0.60 60.25 ± 4.47

Table 4.2: Results of classification using syntactic features, readability score features, and RST

features, comparing the use of all 12 relations versus the use of relations with at least some statistical

difference between C2 levels and learners.

4.2 Classification Results

4.2.1 Overall Results

Table 4.3 shows the results of the classification for all 5 categories of features. Overall, the

classification into 4 CEFR levels range between 39% to 61% F-measure. As Table 4.3 shows,

for each model, either adding syntactic features to discourse relations or discourse connectives

yielded the best performance, though most results are within the standard deviation. Between RST

and PDTB features, PDTB features seem to provide a greater improvement, but the PDTB level

1 relations are more general than the more specific RST relations. This may be due to the more

challenging discourse parsing into fine-grained relations or that, as Section 3.2 shows, apart from

EXPLANATION and BACKGROUND, the usage of RST discourse relations do not vary greatly across

CEFR levels.
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As an additional point of comparison, we used RoBERTa from HuggingFace
8

as a standalone

CEFR classifier. We trained a model for a language proficiency classification task using the RoBERTa

transformer-based model. The model is fine-tuned on our datasets using the PyTorch deep learning

framework. We loaded the dataset using pandas and preprocessed it with the LabelEncoder class

from scikit-learn. Our training function trains the model using the Trainer class from the trans-

formers library, which provides built-in capabilities for training and evaluation. We then used the

resulting trained model to predict the language proficiency of texts in a test dataset.

RoBERTa was able to produce a significantly higher performance on both datasets, reaching F-

measures of 59.69 and 67.56 without any feature engineering. This last experiment was performed

as a comparison point, but without using explicit features, it is hard to measure of the contribution

of discourse features to CEFR assessment.

4.2.2 Contingency Matrices of Highest-Performing Models

The contingency matrices for the six top-performing models (SVC, Logistic Regression, and

Random Forest) on both ICNALE and CROW datasets are presented in the following tables.

Table 4.4 displays the results of the SVC model for both ICNALE and CROW datasets. In the

ICNALE table, the classifier encounters challenges in distinguishing between A2 and B1 essays. On

the other hand, the CROW table indicates that it may have been beneficial to under-sample the B2

essays in our classification. However, a majority of the essays classified as B2 are actually B1-level

essays, differing only by one proficiency level. Table 4.5 for Logistic Regression and Table 4.6 for

Random Forest follow a similar trend. In general, the models have the most difficulty distinguishing

between B1 and B2 essays.

4.3 Chapter Summary

In this chapter, we set out to validate our previous findings through an empirical validation.

Our goal was to automatically assess the CEFR levels of essays by using discourse relations and

connectives as features. To achieve this, we performed a classification task and an ablation study.

8
https://huggingface.co/docs/transformers/model doc/roberta
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In Section 4.1, we discussed the choice of classification modelling over regression modelling

based on previous work in CEFR-related tasks. We built upon the work of Montgomerie (2021),

who employed standard machine learning techniques with linguistic features for CEFR classifica-

tion. Our methodology incorporated syntactic information, part-of-speech, readability scores, and

discourse-level features.

We chose three machine learning classifiers: Support Vector Classifier (SVC), Random Forest

Classifier, and Logistic Regression model. These models were trained on six different categories of

features, which were further classified into syntactic-level features and discourse-level features. We

used an ablation study of these features to automatically classify the texts.

In Section 4.2, we presented the performance of the models. We observed that the inclusion of

discourse features, particularly PDTB features, led to a marginal increase in F-measure. However,

the results were mostly within the standard deviation. We also compared our models with a stan-

dalone CEFR classifier based on the RoBERTa model, which yielded significantly high performance

on both datasets.

Overall, our findings demonstrated that the inclusion of discourse features might have a mild

improvement in classification performance. The mildness of the improvement relates to the findings

in Chapter 3 that show most RST and PDTB relations did not show glaring differences among CEFR

levels. Furthermore, the comparison with the RoBERTa model highlighted the superiority of large

language models in CEFR classification tasks, even when additional features are incorporated.
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Dataset

Model Features ICNALE CROW

SVM Syn 48.77 ± 2.08 49.19 ± 2.57

SVM Read 49.01 ± 1.08 55.54 ± 3.75

SVM Syn + Read 53.28 ± 1.97 55.57 ± 3.72

SVM RST 40.06 ± 2.57 47.08 ± 3.59

SVM PDTB 40.19 ± 1.98 46.00 ± 2.61

SVM Conn 38.23 ± 1.57 46.15 ± 2.86

SVM Syn + Read + RST 53.95 ± 1.64 56.35 ± 3.01

SVM Syn + Read + PDTB 54.35 ± 2.52 56.86 ± 3.32

SVM Syn + Read + RST + PDTB 55.01 ± 2.12 57.10 ± 3.81

SVM Syn + Read + Conn 55.70 ± 1.93 55.16 ± 3.62

Logistic Regression Syn 45.75 ± 2.78 49.98 ± 3.80

Logistic Regression Read 46.43 ± 1.74 55.17 ± 4.10

Logistic Regression Syn + Read 52.42 ± 2.63 56.85 ± 3.97

Logistic Regression RST 39.54 ± 1.57 46.06 ± 2.84

Logistic Regression PDTB 40.45 ± 1.44 45.69 ± 2.30

Logistic Regression Conn 37.15 ± 1.69 46.11 ± 2.54

Logistic Regression Syn + Read + RST 53.26 ± 1.73 57.41 ± 3.59

Logistic Regression Syn + Read + PDTB 54.13 ± 2.61 58.55 ± 4.56

Logistic Regression Syn + Read + RST + PDTB 54.81 ± 2.19 59.17 ± 3.94

Logistic Regression Syn + Read + Conn 55.90 ± 2.57 59.55 ± 4.26

Random Forest Syn 49.78 ± 0.84 53.37 ± 4.40

Random Forest Read 47.80 ± 1.52 59.10 ± 3.14

Random Forest Syn + Read 52.90 ± 1.39 60.49 ± 4.28

Random Forest RST 39.02 ± 1.12 52.55 ± 2.23

Random Forest PDTB 39.93 ± 2.03 48.77 ± 1.55

Random Forest Conn 39.17 ± 1.86 55.94 ± 4.11

Random Forest Syn + Read + RST 53.14 ± 0.60 60.25 ± 4.47

Random Forest Syn + Read + PDTB 53.74 ± 1.86 61.15 ± 4.40

Random Forest Syn + Read + RST + PDTB 54.54 ± 2.60 62.19 ± 4.02

Random Forest Syn + Read + Conn 53.29 ± 2.75 61.28 ± 3.57

RoBERTa N/A 59.69 ± 1.99 67.56 ± 2.11

Table 4.3: Results of the classification, showing average F1 on 5-fold cross-validation ± standard

deviation.

58



ICNALE - SVC

Predicted

A2 B1 B2 C2

Actual

A2 69.06% ± 3.58% 27.29% ± 5.03% 0.94% ± 0.93% 2.71% ± 1.13%

B1 33.3% ± 3.11% 58% ± 3.87% 4.9% ± 1.78% 3.8% ± 0.45%

B2 18.97% ± 6.12% 52.8% ± 7.88% 20.91% ± 3.46% 7.33% ± 1.77%

C2 5.24% ± 2.7% 18.45% ± 3.57% 8.73% ± 4.23% 67.58% ± 7.6%

CROW - SVC

Predicted

A2 B1 B2 C2

Actual

A2 46.02% ± 3.03% 2.21% ± 2.31% 30.77% ± 12.27% 20.99% ± 5.7%

B1 0.4% ± 0.89% 45.14% ± 3.02% 42.11% ± 7.89% 12.35% ± 11.3%

B2 7.46% ± 2.48% 9.27% ± 3.11% 82.46% ± 2.94% 0.81% ± 0.52%

C2 7.52% ± 5.94% 12.03% ± 11.71% 15.04% ± 17.02% 65.41% ± 12.02%

Table 4.4: Contingency matrix with standard deviation for the 5-fold cross validation, for the two

highest-performing SVM models: Syn + Read + Conn for ICNALE and Syn + Read + RST + PDTB

for CROW.

ICNALE - Logistic Regression

Predicted

A2 B1 B2 C2

Actual

A2 65.42% ± 4.75% 30.31% ± 7.29% 1.88% ± 1.08% 2.4% ± 0.47%

B1 31.6% ± 3.73% 55.5% ± 5.58% 8.1% ± 3.56% 4.8% ± 0.57%

B2 18.53% ± 7.36% 42.46% ± 9.29% 30.82% ± 1.96% 8.19% ± 1.63%

C2 2.74% ± 1.63% 18.2% ± 5.03% 11.97% ± 5.48% 67.08% ± 4.17%

CROW - Logistic Regression

Predicted

A2 B1 B2 C2

Actual

A2 38.65% ± 2.15% 1.44% ± 1.32% 51.25% ± 14.16% 8.65% ± 4.02%

B1 0.9% ± 2.02% 37.24% ± 4.05% 60.95% ± 14.96% 0.9% ± 1.24%

B2 8.97% ± 3.72% 9.5% ± 2.66% 80.49% ± 2.28% 1.04% ± 0.95%

C2 8.27% ± 4.9% 0% ± 0% 21.8% ± 11.4% 69.92% ± 24.45%

Table 4.5: Contingency matrix with standard deviation for the 5-fold cross validation, for the two

highest-performing Logistic Regression models: Syn + Read + Conn for ICNALE and CROW.
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ICNALE - Random Forest

Predicted

A2 B1 B2 C2

Actual

A2 63.33% ± 3.35% 30.94% ± 6.98% 2.81% ± 0.79% 2.92% ± 0.87%

B1 32.3% ± 3.91% 53% ± 2.87% 8.3% ± 3.75% 6.4% ± 1.19%

B2 18.32% ± 6.14% 45.47% ± 7.97% 27.37% ± 2.91% 8.84% ± 3.27%

C2 5.49% ± 3.48% 16.96% ± 2.87% 9.73% ± 3.78% 67.83% ± 5.82%

CROW - Random Forest

Predicted

A2 B1 B2 C2

Actual

A2 36.8% ± 4.66% 1.94% ± 2.03% 52.52% ± 18.88% 8.74% ± 4.41%

B1 0.45% ± 1.01% 47.19% ± 5.43% 51.9% ± 8.96% 0.45% ± 1.01%

B2 8.46% ± 0.48% 8.27% ± 1.11% 82.46% ± 2.94% 0.81% ± 0.52%

C2 3.76% ± 4.6% 0% ± 0% 26.32% ± 10.3% 69.92% ± 21.03%

Table 4.6: Contingency matrix with standard deviation for the 5-fold cross validation, for the two

highest-performing Random Forest models: Syn + Read + RST + PDTB for ICNALE and CROW.
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Chapter 5

Conclusions and Future Work

In this thesis, we investigated the use of discourse information in essays across language pro-

ficiency levels. A corpus analysis with state-of-the-art RST and PDTB parsers showed a marginal

relation between learner CEFR level and the RST relations of EXPLANATION and BACKGROUND.

Using the mapping of PDTB and RST proposed by Demberg et al. (2017), we showed a decrease in

use of CONTINGENCY relations as the CEFR level increases. When used as additional features to

automatically determine the CEFR level of learner essays, features measuring the frequency of RST

and PDTB relations, as well as discourse connectives, lead to a mild improvement in performance,

though adding these features is not enough for traditional models to outperform large language

models such as RoBERTa.

5.1 Contributions

This thesis makes several significant contributions to the field of Natural Language Processing

(NLP) and language assessment for English learners.

Firstly, in Chapter 3, a comprehensive analysis of discourse structures in English learner es-

says is presented, focusing on the Rhetorical Structure Theory (RST) and Penn Discourse Treebank

(PDTB) frameworks. By examining the usage of discourse relations and connectives across Com-

mon European Framework of Reference (CEFR) levels, distinct patterns and trends that indicate

varying levels of language proficiency are identified.
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Additionally, an investigation is conducted in Section 3.2.2 and Section 3.3.1 to assess the agree-

ment between widely used PDTB and RST parsers. This analysis provides valuable insights for

future users of these discourse parsers, aiding in their selection and implementation.

The analysis of RST and PDTB discourse relation patterns in Chapter 3 uncovers specific chal-

lenges that English learners face at different proficiency levels. These findings contribute to the

development of targeted teaching materials and strategies, enabling educators to address these chal-

lenges and enhance language learning outcomes.

Furthermore, Chapter 4 explores the feasibility of using discourse relations and connectives

as features for machine learning models to automatically assess the proficiency levels of English

learner essays. Through experiments with Random Forest, Support Vector Machine, and Logis-

tic Regression models, the potential of these features to enhance accurate and efficient language

assessment is measured.

Overall, this thesis aims to drive progress in the field of NLP, facilitate language learning and

assessment, and contribute to the development of more effective and intelligent language technolo-

gies.

5.2 Limitations

This section discusses the limitations of the research conducted in the thesis, highlighting po-

tential challenges and biases that could affect the findings of the results.

The study employed two separate RST (Rhetorical Structure Theory) and PDTB (Penn Dis-

course Treebank) parsers to calculate the agreement for discourse information. However, it is im-

portant to acknowledge that these parsers were trained on corpora primarily composed of text writ-

ten by fluent English speakers, such as Wall Street Journal articles. While every effort was made

to ensure accurate parsing, it is essential to recognize that the parsers might not achieve perfect

accuracy, as they may not fully capture the nuances and variations in English usage by non-native

speakers or speakers from diverse linguistic backgrounds.

The research heavily relied on data from the ICNALE (International Corpus Network of Asian

62



Learners of English) A2-B2 essays, which exclusively represent English learners from Asian coun-

tries. Furthermore, the CROW (Corpus of Research Writing) dataset prominently featured learners

from the five most represented native countries in Asia. This heavy bias towards Asian learners

of English poses a potential limitation in terms of the broad applicability of the findings. It is im-

portant to acknowledge that learners from African, South American, or European countries may

exhibit different patterns and behaviours when it comes to discourse information. Consequently, if

the same experiment were to be conducted with learners from these regions, the results might differ

significantly.

Although we employed a consistent mapping of TOEFL scores to CEFR levels across all datasets,

there are certain concerns that need to be addressed. Firstly, the mapping used in ICNALE catego-

rizes any essay written by a non-native speaker with a TOEFL score above 87 as B2. Consequently,

we adopted this same classification for the CROW dataset. However, this approach introduces a

potential issue where essays might be labelled as B2 even though they would technically fall under

the C1 classification.

5.3 Future Work

In this section, we will discuss potential future applications of the analysis and data generated

from this research, along with avenues for further exploration.

To enhance the broad applicability and accuracy of the results, future studies should consider

incorporating data from a more diverse range of English learners, taking into account their varying

linguistic backgrounds. This can be achieved by leveraging parsers trained on corpora that encom-

pass a broader range of linguistic sources. By incorporating a more diverse set of learners and

linguistic backgrounds, the findings can be more robust and representative of the broader English

learner population.

Similarly, future work could explore replicating the methodology employed in this study for

learners of languages other than English. However, it should be acknowledged that the availability

of CEFR-labelled learner corpora in English, despite being the most over-represented language in

NLP research (Sùgaard, 2022), was already challenging. Therefore, the task of finding similar
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corpora in other languages might prove even more difficult. Nevertheless, investigating discourse

analysis and language assessment methodologies in languages beyond English would contribute to

a more comprehensive understanding of language learning and assessment across diverse linguistic

contexts. It could provide valuable insights into the transferability of findings and the development

of tailored language assessment models for learners of different languages. Efforts should be made

to expand the resources and availability of CEFR-labelled corpora in various languages to facilitate

such future research endeavours.

Moreover, it would be valuable for future work to investigate differences in discourse relations

based on the first language of English learners while considering their CEFR levels. The corpora

used in this study provide information on the native language or country of origin of the learners,

offering an opportunity to explore the influence of first language on discourse patterns. Appendix B

provides some preliminary work towards this topic. This line of inquiry aligns with the sugges-

tions put forth by Perkins (2014), who proposed that first language identification could be useful

in various contexts, including author identification in criminal investigations. Therefore, empiri-

cally validating the impact of first language on discourse relations in English learner essays would

provide valuable insights into language transfer and interlanguage development.

Expanding on the analysis of discourse relations, future work could explore the usage of explicit

versus implicit relations. Investigating these additional aspects of discourse information across dif-

ferent levels of language proficiency would provide a more comprehensive understanding of English

learners’ discourse abilities and enrich our insights into their language learning process.

Furthermore, the availability of PDTB-3.0 (Prasad et al., 2019) parsers opens up new avenues

for analysis. The updated corpus, along with previous work mapping RST and PDTB-3.0 relations

(Costa, Sheikh, & Kosseim, 2023), provides an opportunity to investigate discourse relations across

various textual genres using the latest corpus resources. Incorporating PDTB-3.0 relations into the

analysis can contribute to a more comprehensive understanding of discourse structures and their

usage by English learners.

In addition, it would be interesting to explore the development of discourse parsers specifically

trained on learner texts. While this thesis used RST and PDTB parsers trained on writings by fluent

English speakers, such as Wall Street Journal articles, the creation of parsers tailored to effectively
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parse discourse information from learner texts could yield more accurate and insightful results.

This specialized parsing approach would enhance our understanding of discourse usage by English

learners and better capture the nuances of learner-specific language.

Future research can expand its focus beyond discourse analysis in argumentative texts and delve

into discourse structures across various text genres, including narratives, academic papers, and con-

versational dialogues. Notably, recent work has explored this avenue in the realm of spontaneous

spoken dialogue (LÂopez Cortez & Jacobs, 2023). By extending the examination of discourse rela-

tions and connectives to diverse genres, a more comprehensive understanding of language learning

can be achieved, shedding light on genre-specific discourse patterns.

This work ties into current trends in NLP. While, in recent years, CEFR assessment has begun

to be taken over by Large Language Models (LLMs), and has yielded effective results on automated

essay scoring (Naismith et al., 2023), traditional machine learning models remain relevant for this

task. Firstly, LLMs are computationally expensive and require significant computational resources

to train and deploy. Thus, systems with limited computing power must rely on lower-cost mod-

els, such as traditional machine learning models, to complete tasks. Additionally, applications of

traditional machine learning models can be used as baselines for the further study of LLMs.

Current CEFR assessment tools currently struggle with polysemy disambiguation– the disam-

biguation of words that have multiple meanings. Settles, LaFlair, and Hagiwara (2020) discussed

the problem of accurately categorizing lexical items while developing Duolingo’s CEFR-checker,

and suggests using two regression models that are trained on lexical item representations made up

of surface-based features. With the addition of discourse-based features, focusing on the context

of sentences rather than surface-based features, future work could attempt to solve this polysemy

disambiguation problem. Recent work has attempted to tackle this issue for usage in the creation

of level-appropriate pedagogical content (Aleksandrova & Pouliot, 2023), by examining the most

common usage of polysemic words in language learner essays using BERT, for the task of creating

a CEFR-based classifier designed for English and French to assess the lexical complexity of single-

word and multi-word expressions in context, as tool for the language learning application Mauril
1
.

This work expanded upon recent previous work (GarÂı Soler & Apidianaki, 2021) which found that

1
https://mauril.ca/
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BERT was able to automatically create embeddings for polysemic words, especially the uncased

model.

Recent previous work has explored numerous handcrafted features for examining texts at a dis-

course and surface level. Lee and Lee (2023) presents a list of 220 handcrafted features commonly

used in computational linguistics. The list does contain the syntactic features we chose in Chap-

ter 4, save for a few of the readability scores, however there are many more features that could be

explored in combination with our discourse features.

Other LLMs, such as Google’s T5
2

and OpenAI’s GPT-2, can be fine-tuned for CEFR classifi-

cation tasks (Roos & Sidorova, 2022). While our work focused on using discourse as features for

traditional machine learning models, we could use these features to fine-tune LLMs as well. Al-

though this work used OpenAI’s GPT-2, more up-to-date versions of GPT require human fine-tuning

as well (Young & Shishido, 2023). As for our own investigation into this topic, we tested ChatGPT’s

understanding to see if ChatGPT
3

was capable of automatic generation of English-learner texts. The

response given in Figure 5.1, written in perfect fluent English, implies that ChatGPT doesn’t fully

understand the concept of an A2-level learner, and that fine-tuning of this model on CEFR-related

tasks is necessary.

By considering these suggested avenues for future work, researchers can continue to advance

the field of discourse analysis, expand the knowledge base on language learning, and contribute to

the development of effective language assessment tools and instructional approaches.

2
https://github.com/google-research/text-to-text-transfer-transformer

3
https://openai.com/blog/chatgpt
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Figure 5.1: Example of an attempt at using ChatGPT (powered by GPT-3.5) to generate an essay

from an A2-level English learner
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Appendix A

Detailed Results of Discourse

Connectives

The following shows each PDTB level-2 relation, and the ratios of discourse connectives used

to signal them, as well as the number of instances of discourse connectives for each CEFR level.

Connectives with a p-value less than 0.05 in at least 2 of 3 t-tests (A2 vs C2, B1 vs C2, and B2 vs

C2) are highlighted.

CONTINGENCY.Cause A2 B1 B2 C2

so 0.424 0.379 0.242 0.269

because 0.428 0.390 0.289 0.431

so that 0.021 0.045 0.036 0.105

since 0.007 0.022 0.053 0.039

therefore 0.078 0.084 0.189 0.102

Total (Count) 2371 7987 748 636

Table A.1: Ratios of each discourse connective used to signal a CONTINGENCY.CAUSE relation

in ICNALE.
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COMPARISON.Contrast A2 B1 B2 C2

but 0.744 0.655 0.411 0.538

however 0.148 0.185 0.372 0.191

on the other hand 0.023 0.039 0.024 0.020

nevertheless 0.004 0.008 0.005 0.002

while 0.029 0.040 0.100 0.077

though 0.026 0.046 0.051 0.122

Total (Count) 1430 5313 760 493

Table A.2: Ratios of each discourse connective used to signal a COMPARISON.CONTRAST relation

in ICNALE.

Comparison.Concession A2 B1 B2 C2

nonetheless 0.013 0.018 0.026 0.132

although 0.658 0.686 0.744 0.763

still 0.076 0.029 0.064 0.000

nevertheless 0.013 0.014 0.000 0.000

as if 0.051 0.026 0.013 0.000

though 0.165 0.221 0.154 0.053

but 0.013 0.004 0.000 0.000

in the end 0.013 0.000 0.000 0.000

Total (Count) 79 510 78 38

Table A.3: Ratios of each discourse connective used to signal a COMPARISON.CONCESSION

relation in ICNALE.

Contingency.Condition A2 B1 B2 C2

if 0.987 0.986 0.990 0.984

as long as 0.000 0.001 0.002 0.002

once 0.000 0.003 0.004 0.000

when 0.012 0.008 0.002 0.007

lest 0.000 0.000 0.002 0.000

when and if 0.000 0.000 0.000 0.005

Total (Count) 1315 4100 486 426

Table A.4: Ratios of each discourse connective used to signal a CONTINGENCY.CONDITION

relation in ICNALE.
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Expansion.Alternative A2 B1 B2 C2

or 0.681 0.658 0.391 0.582

otherwise 0.071 0.092 0.072 0.036

until 0.000 0.005 0.000 0.000

unless 0.142 0.099 0.116 0.236

rather 0.000 0.007 0.014 0.018

instead 0.097 0.137 0.333 0.073

alternatively 0.009 0.000 0.072 0.055

Total (Count) 113 437 69 55

Table A.5: Ratios of each discourse connective used to signal a EXPANSION.ALTERNATIVE rela-

tion in ICNALE.

Temporal.Asynchronous A2 B1 B2 C2

before 0.182 0.203 0.224 0.210

then 0.361 0.298 0.192 0.190

until 0.050 0.035 0.061 0.080

as soon as 0.007 0.009 0.012 0.035

ultimately 0.000 0.003 0.016 0.010

in turn 0.002 0.005 0.004 0.010

after 0.210 0.225 0.180 0.150

once 0.026 0.050 0.065 0.060

since 0.059 0.076 0.143 0.105

when 0.038 0.039 0.020 0.015

later 0.038 0.024 0.033 0.020

Total (Count) 424 1812 245 200

Table A.6: Ratios of each discourse connective used to signal a TEMPORAL.ASYNCHRONOUS

relation in ICNALE.

Temporal.Synchrony A2 B1 B2 C2

when 0.775 0.637 0.563 0.497

as 0.102 0.219 0.273 0.263

while 0.112 0.122 0.116 0.199

meanwhile 0.005 0.006 0.014 0.000

simultaneously 0.000 0.001 0.000 0.000

once 0.000 0.000 0.002 0.000

Total (Count) 785 3447 490 376

Table A.7: Ratios of each discourse connective used to signal a TEMPORAL.SYNCHRONY relation

in ICNALE.
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Expansion.Restatement A2 B1 B2 C2

overall 0.040 0.072 0.121 0.400

much as 0.040 0.007 0.030 0.000

in particular 0.160 0.029 0.121 0.000

in other words 0.480 0.338 0.364 0.100

in the end 0.000 0.022 0.000 0.100

indeed 0.000 0.007 0.061 0.000

in short 0.160 0.323 0.061 0.300

in sum 0.040 0.050 0.061 0.000

rather 0.000 0.022 0.091 0.100

Total (Count) 25 139 33 10

Table A.8: Ratios of each discourse connective used to signal a EXPANSION.RESTATEMENT rela-

tion in ICNALE.

Expansion.Instantiation A2 B1 B2 C2

for example 0.829 0.834 0.880 0.900

for instance 0.167 0.164 0.120 0.100

in particular 0.005 0.003 0.000 0.000

Total (Count) 210 652 100 40

Table A.9: Ratios of each discourse connective used to signal a EXPANSION.INSTANTIATION

relation in ICNALE.

Expansion.Conjunction A2 B1 B2 C2

and 0.578 0.501 0.406 0.622

in addition 0.034 0.023 0.047 0.009

moreover 0.023 0.032 0.040 0.001

in fact 0.017 0.016 0.014 0.005

finally 0.025 0.019 0.015 0.021

also 0.283 0.342 0.371 0.228

besides 0.016 0.022 0.030 0.002

Total (Count) 2463 10092 1214 1304

Table A.10: Ratios of each discourse connective used to signal a EXPANSION.CONJUNCTION

relation in ICNALE.

Contingency.Cause A2 B1 B2 C2

so 0.389 0.216 0.209 0.173

because 0.245 0.372 0.388 0.578

so that 0.048 0.057 0.040 0.033

since 0.049 0.046 0.072 0.067

therefore 0.117 0.133 0.134 0.074

Total (Count) 1464 1274 4789 973

Table A.11: Ratios of each discourse connective used to signal a CONTINGENCY.CAUSE relation

in CROW.

82



Comparison.Contrast A2 B1 B2 C2

but 0.397 0.343 0.366 0.356

however 0.338 0.411 0.366 0.273

on the other hand 0.038 0.039 0.045 0.009

nevertheless 0.012 0.019 0.019 0.003

while 0.075 0.055 0.062 0.112

though 0.063 0.061 0.072 0.174

Total (Count) 1286 1006 4256 1199

Table A.12: Ratios of each discourse connective used to signal a COMPARISON.CONTRAST rela-

tion in CROW.

Comparison.Concession A2 B1 B2 C2

nonetheless 0.128 0.055 0.050 0.006

although 0.705 0.843 0.798 0.710

still 0.040 0.031 0.029 0.024

nevertheless 0.013 0.008 0.005 0.000

as if 0.047 0.000 0.010 0.083

though 0.054 0.063 0.104 0.160

in the end 0.007 0.000 0.000 0.000

Total (Count) 149 127 584 169

Table A.13: Ratios of each discourse connective used to signal a COMPARISON.CONCESSION

relation in CROW.

Contingency.Condition A2 B1 B2 C2

if 0.979 0.979 0.971 0.979

as long as 0.006 0.002 0.003 0.000

once 0.008 0.006 0.013 0.006

when 0.006 0.011 0.013 0.011

Total (Count) 517 466 1570 621

Table A.14: Ratios of each discourse connective used to signal a CONTINGENCY.CONDITION

relation in CROW.

Expansion.Alternative A2 B1 B2 C2

or 0.489 0.536 0.473 0.475

otherwise 0.098 0.179 0.083 0.049

until 0.000 0.000 0.000 0.008

unless 0.163 0.071 0.087 0.115

rather 0.022 0.000 0.033 0.057

instead 0.217 0.214 0.324 0.287

alternatively 0.011 0.000 0.000 0.008

Total (Count) 92 56 241 122

Table A.15: Ratios of each discourse connective used to signal a EXPANSION.ALTERNATIVE re-

lation in CROW.
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Temporal.Asynchronous A2 B1 B2 C2

before 0.100 0.174 0.154 0.154

then 0.281 0.223 0.196 0.280

until 0.049 0.032 0.024 0.069

as soon as 0.014 0.002 0.005 0.010

ultimately 0.023 0.002 0.007 0.003

in turn 0.012 0.016 0.010 0.039

after 0.260 0.298 0.306 0.195

once 0.037 0.068 0.066 0.066

since 0.128 0.120 0.161 0.071

when 0.044 0.018 0.027 0.049

later 0.033 0.023 0.022 0.046

Total (Count) 430 443 1476 590

Table A.16: Ratios of each discourse connective used to signal a TEMPORAL.ASYNCHRONOUS

relation in CROW.

Temporal.Synchrony A2 B1 B2 C2

when 0.588 0.660 0.543 0.649

as 0.302 0.218 0.313 0.216

while 0.072 0.076 0.096 0.113

meanwhile 0.017 0.027 0.020 0.001

simultaneously 0.001 0.000 0.001 0.002

Total (Count) 709 633 2653 924

Table A.17: Ratios of each discourse connective used to signal a TEMPORAL.SYNCHRONY rela-

tion in CROW.

Expansion.Restatement A2 B1 B2 C2

overall 0.319 0.156 0.136 0.400

much as 0.000 0.000 0.023 0.000

in particular 0.043 0.022 0.023 0.000

in other words 0.426 0.422 0.506 0.286

in the end 0.021 0.000 0.000 0.000

indeed 0.000 0.000 0.011 0.000

in short 0.043 0.267 0.125 0.086

in sum 0.000 0.044 0.017 0.029

rather 0.021 0.000 0.017 0.086

Total (Count) 47 45 176 35

Table A.18: Ratios of each discourse connective used to signal a EXPANSION.RESTATEMENT

relation in CROW.
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Expansion.Instantiation A2 B1 B2 C2

for example 0.809 0.725 0.768 0.723

for instance 0.186 0.275 0.224 0.277

in particular 0.005 0.000 0.008 0.000

Total (Count) 215 167 655 65

Table A.19: Ratios of each discourse connective used to signal a EXPANSION.INSTANTIATION

relation in CROW.

Expansion.Conjunction A2 B1 B2 C2

and 0.494 0.451 0.456 0.556

in addition 0.030 0.032 0.030 0.012

moreover 0.036 0.040 0.039 0.003

in fact 0.022 0.016 0.018 0.019

finally 0.008 0.013 0.013 0.004

also 0.331 0.367 0.359 0.327

besides 0.013 0.021 0.017 0.002

Total (Count) 2475 1932 7352 1857

Table A.20: Ratios of each discourse connective used to signal a EXPANSION.CONJUNCTION

relation in CROW.
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Appendix B

Native Language Analysis

Each essay in each of the datasets was marked with its CEFR score, but it was also marked

with the L1
1

language or country of origin of the writer. Because of this, we were able to extract

discourse relation frequency regarding native language or country of origin. Though we had not

gone into as deep a dive into the machine learning aspects and statistical significance tests for this

secondary question, the data could be used in future work on discourse differences among ELL

writers from various L1 backgrounds.

Ela. Att. Joi. M-M Ena. Bac. Com. Cont. Temp. Cond. Cau. Exp.

China 62.89% 6.31% 9.51% 0.66% 2.12% 2.28% 0.34% 2.96% 0.49% 1.25% 1.08% 3.89%

India 68.95% 5.75% 8.35% 0.85% 1.69% 1.71% 0.32% 2.38% 0.39% 0.85% 0.79% 2.92%

Korea 64.39% 5.70% 8.44% 0.81% 1.92% 2.32% 0.33% 3.19% 0.38% 1.18% 1.12% 4.06%

Malaysia 67.06% 5.98% 6.14% 0.82% 1.94% 2.58% 0.64% 2.76% 0.38% 1.10% 0.64% 3.30%

Taiwan 62.57% 5.93% 9.50% 0.69% 1.79% 2.50% 0.36% 2.50% 0.43% 1.07% 1.50% 4.14%

USA 63.97% 5.70% 11.22% 0.93% 1.62% 1.95% 0.21% 2.58% 0.43% 1.26% 0.86% 2.94%

Table B.1: Percentage analysis of 12 RST relations, in texts from the 6 most represented countries

of origin in the CROW dataset, using parser info from the Heilman and Sagae (2015) parser.

Data for both RST parsers in the ICNALE (Ishikawa, 2013) dataset comes from the entirety

of the output of each parser, prior to filtering for only spans which agree on the relation (see Sec-

tion 3.2.2).

The International Corpus of Learner English (ICLE) (Granger et al., 2020), as discussed in

Section 3.1, did not contain enough CEFR-labelled data to be used for the main task of the thesis.

1
ºL1º in ICNALE consists of essays from six English-speaking countries: United States, Canada, United Kingdom,

Australia, New Zealand, and Nigeria
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Elab. Att. Joi. Ena. Bac. Comp. Cont. M-M Tem. Cond. Cau. Exp.

China 52.51% 7.80% 12.21% 3.50% 4.01% 0.40% 4.67% 0.66% 0.52% 3.23% 1.39% 4.32%

Hong Kong 56.36% 7.49% 10.86% 3.55% 4.05% 0.58% 3.72% 0.92% 0.50% 3.38% 1.56% 3.85%

Indonesia 52.70% 6.04% 12.46% 2.56% 2.38% 0.34% 4.03% 0.81% 0.70% 3.63% 2.58% 7.32%

Japan 50.72% 10.09% 11.51% 2.99% 2.90% 0.24% 4.79% 1.03% 0.52% 4.16% 1.45% 5.73%

Korea 52.57% 7.72% 12.44% 2.56% 2.55% 0.32% 4.67% 0.82% 0.47% 3.85% 1.85% 5.96%

Pakistan 59.69% 4.13% 15.20% 2.86% 1.51% 0.28% 3.71% 0.81% 0.63% 1.67% 2.07% 5.06%

Phillippines 57.14% 6.72% 11.54% 1.97% 2.40% 0.28% 4.20% 0.75% 0.71% 3.06% 1.75% 5.17%

Singapore 54.87% 7.31% 12.52% 2.90% 3.37% 0.65% 4.12% 1.27% 0.70% 3.12% 1.51% 3.29%

Taiwan 51.12% 9.10% 12.76% 3.09% 3.10% 0.21% 4.85% 0.65% 0.62% 3.71% 1.34% 4.43%

Thailand 52.05% 7.42% 14.87% 2.64% 2.31% 0.21% 3.57% 0.52% 0.56% 3.98% 1.86% 6.19%

L1 48.16% 11.10% 16.30% 2.22% 2.42% 0.41% 3.71% 0.93% 0.79% 3.53% 1.48% 4.03%

Table B.2: Percentage analysis of 12 RST relations, in texts from all countries of origin in the

ICNALE dataset, using parser info from the Heilman and Sagae (2015) parser.

Elab. Att. Joi. Ena. Bac. Comp. Cont. M-M Tem. Cond. Cau. Exp.

China 39.94% 17.09% 14.69% 5.38% 8.19% 0.32% 7.26% 1.04% 2.26% 7.01% 1.46% 3.14%

Hong Kong 40.66% 16.42% 14.27% 5.40% 7.93% 0.35% 5.81% 1.22% 3.05% 6.90% 2.28% 3.38%

Indonesia 39.00% 14.54% 14.78% 5.45% 4.84% 0.17% 7.17% 1.22% 1.87% 8.57% 1.37% 3.18%

Japan 34.77% 22.41% 13.25% 5.63% 5.42% 0.23% 8.09% 1.05% 2.20% 9.63% 0.81% 3.25%

Korea 36.23% 18.64% 14.17% 5.59% 5.53% 0.20% 7.66% 1.07% 2.09% 9.78% 1.56% 3.09%

Pakistan 46.06% 13.15% 17.70% 5.40% 5.01% 0.19% 6.87% 0.89% 1.21% 4.58% 1.21% 3.18%

Phillippines 42.81% 15.37% 13.31% 5.97% 4.70% 0.31% 7.80% 0.93% 2.09% 6.55% 2.01% 3.06%

Singapore 43.38% 15.68% 15.05% 5.45% 7.08% 0.32% 7.01% 0.89% 2.50% 5.60% 1.89% 3.11%

Taiwan 36.13% 20.33% 14.15% 5.38% 6.85% 0.22% 8.15% 1.03% 2.14% 7.82% 1.55% 3.04%

Thailand 36.76% 17.57% 15.80% 5.81% 4.44% 0.32% 5.97% 0.96% 2.03% 9.31% 1.14% 3.13%

L1 35.36% 23.35% 17.39% 5.24% 4.73% 0.24% 6.15% 0.90% 2.06% 7.39% 0.82% 3.15%

Table B.3: Percentage analysis of 12 RST relations, in texts from all countries of origin in the

ICNALE dataset, using parser info from the Y. Wang et al. (2017) parser.

However, this data consisted of written texts from 27 different language backgrounds. Thus, this

data could be used for analysis based on native language. Texts are sorted by the label ªfirst language

at homeº from the ICLE dataset.
2
. This data is shown in Table B.4.

This data was not verified to the extent that the CEFR-labelled data was, given that the ICLE

data was only run on one parser, however based on this data, we can make a few observations that

could be further explored in future research. For these observations, we are comparing ICNALE’s

ªCountryº label with ICLE’s ªfirst language at homeº label, specifically China, Taiwan, and Hong

Kong with Chinese, Japan with Japanese, Republic of Korea with Korean, and Pakistan with Urdu

and Punjabi. While it is not always the case that speakers of these languages are from these countries

and vice versa, the data can give a general idea of trends in discourse usage.

• Pakistan is well ahead of all other listed countries in the use of Elaboration with both parsers

2
The full manual can be downloaded from https://dial.uclouvain.be/pr/boreal/object/boreal:

229877
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Elab. Att. Joi. Ena. Back. Comp. Cont. Temp. Cond. Cau. Exp.

Bulgarian 54.90% 6.56% 13.72% 2.14% 1.94% 0.33% 4.52% 0.43% 1.95% 1.38% 5.33%

Chinese-Cantonese 56.29% 9.79% 9.94% 2.96% 2.87% 0.34% 3.33% 0.50% 2.72% 1.50% 4.81%

Chinese-Mandarin 53.68% 7.00% 13.13% 2.65% 3.38% 0.26% 4.60% 0.57% 2.46% 1.22% 5.65%

Czech 55.99% 7.35% 14.81% 1.70% 1.92% 0.39% 4.17% 0.41% 1.79% 1.35% 5.57%

Dutch 54.81% 6.88% 12.44% 2.02% 2.22% 0.40% 4.92% 0.44% 2.05% 1.50% 6.10%

Finnish 55.22% 7.00% 12.94% 1.88% 2.27% 0.46% 4.94% 0.42% 2.55% 1.33% 5.65%

French 56.81% 7.10% 11.03% 2.65% 2.16% 0.31% 4.36% 0.36% 2.22% 1.30% 4.83%

German 55.38% 6.09% 13.69% 1.86% 2.76% 0.34% 4.73% 0.63% 2.17% 1.13% 4.79%

Greek 54.83% 6.50% 14.14% 2.67% 1.93% 0.35% 3.94% 0.30% 1.47% 1.40% 5.66%

Hungarian 57.70% 6.23% 9.34% 2.38% 2.87% 0.43% 4.29% 0.36% 2.45% 1.77% 5.60%

Italian 54.62% 7.39% 11.30% 1.71% 1.86% 0.30% 5.64% 0.23% 2.03% 1.23% 5.22%

Japanese 49.50% 9.06% 14.11% 2.66% 2.99% 0.25% 4.63% 0.47% 3.11% 1.37% 6.63%

Korean 52.60% 6.95% 12.57% 2.48% 2.90% 0.34% 4.91% 0.43% 2.83% 1.81% 6.64%

Lithuanian 54.83% 7.24% 12.34% 2.32% 2.37% 0.42% 4.54% 0.46% 1.72% 1.38% 5.69%

Macedonian 52.50% 6.42% 15.61% 2.29% 2.40% 0.33% 4.43% 0.38% 1.97% 1.44% 5.32%

Norwegian 51.86% 7.69% 15.54% 2.10% 2.27% 0.52% 4.66% 0.55% 2.15% 1.10% 5.41%

Persian 53.10% 6.63% 15.58% 2.55% 2.10% 0.21% 3.90% 0.61% 1.92% 1.63% 5.38%

Portuguese 55.25% 6.45% 12.96% 2.45% 2.26% 0.35% 4.05% 0.37% 2.00% 1.43% 5.13%

Polish 59.29% 5.77% 11.68% 2.12% 2.25% 0.45% 3.54% 0.37% 1.60% 1.23% 5.24%

Punjabi 59.47% 5.14% 13.72% 1.82% 1.79% 0.40% 3.51% 0.44% 1.86% 1.29% 5.90%

Russian 54.36% 7.43% 13.49% 2.22% 1.97% 0.34% 4.70% 0.37% 1.75% 1.46% 5.31%

Serbian 51.83% 6.12% 15.41% 1.90% 2.72% 0.52% 5.19% 0.64% 2.42% 1.37% 5.19%

Spanish 54.88% 6.89% 11.32% 1.93% 2.23% 0.31% 4.97% 0.41% 2.01% 1.52% 5.24%

Swedish 53.28% 7.63% 13.61% 2.14% 2.62% 0.50% 4.73% 0.42% 2.38% 1.06% 5.38%

Tswana 56.34% 7.37% 12.59% 2.40% 1.99% 0.25% 2.05% 0.44% 2.42% 2.42% 6.69%

Turkish 52.77% 6.94% 12.78% 2.44% 2.74% 0.35% 3.99% 0.61% 2.75% 1.66% 7.51%

Urdu 60.58% 4.72% 13.37% 2.23% 1.63% 0.40% 3.02% 0.55% 1.77% 1.77% 6.08%

Table B.4: Frequency analysis of 12 RST relations, in texts from all 27 ºfirst language at homeº

labels in the ICLE dataset, using parser info from the Heilman and Sagae (2015) parser.

for ICNALE, while Urdu and Punjabi are 1st and 2nd highest in this category for ICLE.

• Japan/Japanese always scores high in Attribution relations, trailing only L1 learners in the

ICNALE dataset and Cantonese in the ICLE dataset.

• Hong Kong and China are 1st and 2nd highest in the use of Background with both parsers

for ICNALE, while Chinese-Mandarin and Chinese-Cantonese are 1st and 2nd highest in this

category for ICLE.

• Conversely, Pakistan has the lowest score for the relation of BACKGROUND for one parser in

the ICNALE dataset (and the 4th-lowest in the other), while Urdu and Punjabi are 1st- and

2nd-lowest in this category for ICLE.
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Appendix C

RST-DT Labels

The following are examples of the 12 different RST relations that are discussed in this thesis.

The list of all 16 RST-DT relation classes are located in the Discourse Tagging Reference Man-

ual (Carlson & Marcu, 2001)
1
. This manual was used as a guide to create these example sentences.

All explanations of these relations come from this guide as well.

Note that the manual gives a total of 78 different relations, and the 16 RST-DT relations are the

16 classes they are sorted into. Thus, this list is not exhaustive, which is the reason, for example,

some CONTRAST relations are a nucleus-satellite pair, despite the provided example being multi-

nucleic.

In the following examples, EDUs are listed in [brackets], while nuclei are in italics.

1. ATTRIBUTION Instances of reported speech, including both direct and indirect forms, necessi-

tate the identification of the rhetorical relation called ATTRIBUTION. The satellite component of this

relation comprises the source of the attribution, which can be a clause containing a reporting verb

or a phrase introduced by according to. On the other hand, the nucleus represents the actual content

of the reported message, which is typically presented in a separate clause. Note that the ATTRI-

BUTION relation is not limited to speech alone but can also be employed with cognitive predicates,

encompassing emotions, thoughts, hopes, and similar expressions.

1
https://www.isi.edu/˜marcu/discourse/tagging-ref-manual.pdf

The full list of classes is located on page 32, examples of each relation begin on page 45.
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(11) [According to Toad,] [the princess is in another castle.]

2. BACKGROUND In a BACKGROUND relation, the satellite component serves to establish the

context or basis for interpreting the nucleus. Comprehending the satellite element aids the reader

in understanding the nucleus. It is important to note that the satellite does not represent the cause,

reason, or motivation behind the situation presented in the nucleus. Furthermore, the intentions of

the reader or writer do not play a role in determining the existence of this relation.

(12) [Mario wears overalls.] [Overalls are trousers with an extra piece of cloth cover-

ing the chest, held in place by a strap over each shoulder.]

3. CAUSE The situation portrayed in the nucleus gives rise to the situation depicted in the satellite.

The nucleus, acting as the cause, holds paramount importance. Meanwhile, the satellite illustrates

the outcome or consequence of the action. The writer’s intention is to underscore and highlight the

cause.

(13) [This year, Princess Peach enacted a new charter,] [expanding the Mushroom

Kingdom beyond its original borders.]

4. COMPARISON In a COMPARISON relation, two textual spans are examined and evaluated based

on a specific dimension, which can be abstract in nature. Such relationships can convey similari-

ties, differences, greater than, less than, and other comparative aspects concerning abstract entities

associated with the comparison relation. It is important to note that in the context of a comparison

relation, the spans, entities, and other elements being compared are not presented contrastingly.

(14) [The Mushroom Kingdom ball expects 1,000 Mushroom People as guests,] [com-

pared with 900 guests in the previous year.]

5. CONDITION In a CONDITION relation, the validity of the proposition connected to the nucleus

depends on the fulfillment of the condition stated in the satellite. The satellite presents a hypothetical

situation that has not actually occurred. This relation can also encompass negative conditions, where

the non-fulfillment of a particular condition leads to a specific outcome.
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(15) [Mario is going to win this race,] [unless Yoshi or Birdo have a blue shell.]

6. CONTRAST In a CONTRAST relation, two or more nuclei are juxtaposed and contrasted with

each other based on a specific dimension. This contrast may occur in only a few respects, while

other aspects remain unchanged. Typically, a CONTRAST relation involves the use of a contrastive

discourse cue (referred to as a discourse connective in PDTB), such as but, however, while, whereas

a COMPARISON relation does not require such cues.

(16) [But from the beginning of the game, Yoshi’s star count grew,] [while Luigi’s

never did.]

7. ELABORATION ªThe satellite provides specific information to help define a very general con-

cept introduced in the nucleus.º

(17) [Bowser’s army is big.] [It consists of 1 million Goombas.]

8. ENABLEMENT In an ENABLEMENT relation, the scenario described in the nucleus is not yet

actualized. The action presented in the satellite, however, enhances the likelihood of the situation

described in the nucleus becoming a reality.

(18) [Mario should jump over the barrels.] [Doing this will increase the likelihood he

is able to rescue the Princess from Donkey Kong.]

9. EXPLANATION The EXPLANATION relation ªprovides a factual explanation for the situation

presented in the nucleus.º Relations that fall within the category of EXPLANATION may or may not

be attempting to convince the reader of a point.

(19) [Ultimately, Yoshi is doing well in this game.] [He’s been able to collect a star

every few turns.]

10. JOINT There are two categories of JOINT relations: a list and a disjunction. A list is a multi-

nuclear relation where the elements are presented sequentially without being compared, contrasted,

91



or engaged in a stronger form of multinuclear relation. Typically, a list relation demonstrates a par-

allel structure among the units involved. On the other hand, a disjunction is a multinuclear relation

where the elements are listed as alternative options, either positive or negative in nature.

(20) [Mario, sooner or later, has to stomp a Goomba,] [and he has to get a power-up.]

11. MANNER-MEANS The MANNER-MEANS relation can be further categorized into a manner

relation and a means relation. In a manner relation, the satellite elucidates the manner or way in

which something is done. It may also involve expressing similarity or making comparisons. The

satellite answers questions such as ºin what manner?º or ºin what way?º

On the other hand, in a means relation, the satellite specifies the method, mechanism, instru-

ment, channel, or conduit used to achieve a particular goal. It provides information on how some-

thing was or is to be accomplished. In other words, the satellite answers questions like ºby which

means?º or ºhow?º and is often indicated by the preposition by.

(21) [Birdo could still win this race] [by using the shortcut on Rainbow Road.]

12. TEMPORAL In a TEMPORAL relation, the situation presented in the nucleus occurs before, at

the same time, or after the situation presented in the satellite. As the name suggests, the two spans

are related by time.

(22) [Following its massive success in North America,] [the arcade game was ported to

the Game & Watch in 1982.]
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Appendix D

Tools

This work would not be possible without the tools developed over the years and open sourced

by their creators. All the work to run the RST parsers, preprocess the text, index and rank the

documents was run inside the GNU/Linux
1

environment, or Windows Subsystem for Linux
2
.

Python
3
, Pytorch

4
, Scikit-Learn

5
and Transformers

6
from Huggingface

7
provided us with the

libraries required to implement RoBERTa.

SpaCy linguistic tools https://spacy.io/usage/linguistic-featureswere used

to collect linguistic features such as part-of-speech tags and syntactic parse tree depth for use in ma-

chine learning classification. This classification also relied on the Joblib
8
, Scikit-Learn, pandas

9
,

and NumPy
10

libraries.

Additional support for running the RST and PDTB parsers was provided by CoreNLP
11

, which

performed useful syntactic tasks such as tokenization and lemmatization.

1
https://www.gnu.org/gnu/linux-and-gnu.en.html

2
https://learn.microsoft.com/en-us/windows/wsl/install

3
https://www.python.org/

4
https://pytorch.org/

5
https://scikit-learn.org

6
https://huggingface.co/docs/transformers/index

7
https://huggingface.co/

8
https://joblib.readthedocs.io/en/stable/

9
https://pandas.pydata.org/

10
https://numpy.org/

11
https://stanfordnlp.github.io/CoreNLP/
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The Stanford
12

and Berkeley
13

parsers, as well as implementation code from University of

Trento
14

were used to convert raw text to the format necessary to run the J. Wang and Lan (2015)

parser.

ZPar Parser
15

was used to generate constituency parsing for use by the Heilman and Sagae

(2015) parser, while the CRF was trained with the aid of binaries from CRFPP
16

.

CRFSuite
17

was used to aid in EDU segmentation for the Y. Wang et al. (2017) parser.

Many LateX tables in this thesis were generated using Tables Generator
18

.

Several figures in this thesis were created with the help of Photopea
19

.

Additional support provided by the work of Richard A
20

.

12
https://nlp.stanford.edu/software/lex-parser.shtml

13
https://github.com/slavpetrov/berkeleyparser

14
https://github.com/esrel/DP

15
https://github.com/frcchang/zpar

16
https://github.com/taku910/crfpp

17
http://www.chokkan.org/software/crfsuite/

18
https://www.tablesgenerator.com/

19
https://www.photopea.com/

20
https://www.youtube.com/watch?v=dQw4w9WgXcQ
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