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Abstract

Extending the reach of fault localization to assist in automated

debugging

An Ran Chen, Ph.D.

Concordia University, 2023

Software debugging is one of the most time-consuming tasks in modern software

maintenance. To assist developers with debugging, researchers have proposed fault

localization techniques. These techniques aim to automate the process of locating

faults in software, which can greatly reduce debugging time and assist developers in

understanding the faults. Effective fault localization is also crucial for automated

program repair techniques, as it helps identify potential faulty locations for patching.

Despite recent efforts to advance fault localization techniques, their effectiveness

is still limited. With the increasing complexity of modern software, fault localization

may not always provide direct identification of the root causes of faults. Further, there

is a lack of studies on their application in modern software development. Most prior

studies have evaluated these techniques in traditional software development settings,

where only a single snapshot of the system is considered. However, modern soft-

ware development often involves continuous and fine-grained changes to the system.

This dissertation proposes a series of approaches to explore new automated debug-

ging solutions that can enhance software quality assurance and reliability practices,

with a specific focus on extending the reach of fault localization in modern software

development.

The dissertation begins with an empirical study on user-reported logs in bug re-

ports, revealing that re-constructed execution paths from these logs provide valuable

debugging hints. To further assist developers in debugging, we propose using static

analysis techniques for information-retrieval and path-guided fault localization. By

leveraging execution paths from logs in bug reports, we can improve the effective-

ness of fault localization techniques. Second, we investigate the characteristics of

operational data in continuous integration that can help capture faults early in the

testing phase. As there is currently no available continuous integration benchmark
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that incorporates continuous test execution and failure, we present T-Evos, a dataset

that comprises various operational data in continuous integration settings. We pro-

pose automated fault localization techniques that integrate change information from

continuous integration settings, and demonstrate that leveraging such fine-grained

change information can significantly improve their effectiveness. Finally, the disser-

tation investigates the data cleanness in fault localization by examining developers’

knowledge in fault-triggering tests. The study reveals a significant degradation in

the performance of fault localization techniques when evaluated on faults without

developer knowledge.

Through case studies and experiments, the proposed techniques in this dissertation

significantly improve the effectiveness of fault localization and facilitate their adoption

in modern software development. Additionally, this dissertation provides valuable

insights into new debugging solutions for future research.
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Chapter 1

Introduction

Software debugging is one of the most time-consuming tasks in software maintenance.

On average, developers spend 50% of their time on debugging and bug fixing, rather

than on implementing new features [32]. When an issue occurs, developers would

create a bug report that documents the necessary information for others to reproduce,

diagnose, and fix the bug. However, due to limited time and resources, many bugs

remain unfixed for a long period of time. A prior study [46] finds that it often takes

several months for developers to address a bug report, which further hinders the

user-perceived quality of the system. With the increasing complexity of software,

the consequences of software bugs can be severe, with a report [88] estimating the

cost of dealing with poor software quality (e.g., failures and defects) to be USD$2.41
trillion in the United States alone in 2022. The substantial cost associated with

software debugging has prompted researchers and practitioners to propose automated

debugging solutions. For instance, fault localization techniques [14, 54, 71, 116, 125,

128, 177, 193, 206] have been proposed to assist in locating and understanding the

root causes of faults.

Although the usefulness of fault localization techniques have been well studied [15,

86, 94, 144, 155], their application is still comprised in modern software development.

For example, fault localization techniques still suffer from the lack of effectiveness [69,

177, 178, 185, 188] due to the increasing complexity of modern software. Another

limitation is the lack of research on adapting fault localization to modern software

development. Most prior studies [17, 78, 95, 150, 183] have evaluated these techniques

in traditional software development settings, where only a single snapshot of the
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system is considered. In contract, in modern software development, and especially in

continuous integration, developers make continuous and finer-grained changes to the

system.

In recent years, the use of Continuous Integration (CI) has become a common

practice to assist in software maintenance. This presents an opportunity to leverage

fine-grained operational data for extending the scope of fault localization techniques.

The goal of this dissertation is to explore new automated debugging solutions that

can help developers improve their quality assurance and reliability practices, extend-

ing the reach of fault localization in modern software development. The continuous

integration process provides new opportunities for debugging and opens doors for

utilizing continuous integration data in fault localization. This, in turn, can reduce

debugging time and minimize the impact of bugs on users.

1.1 Research Statement

While fault localization has proven to be a popular automated debugging solution,

its effectiveness and adaptation to the modern software context are crucial research

directions for it to be widely adopted in practice. We believe that by identifying

operational data and developing techniques to leverage them, developers can perform

debugging tasks more effectively, and we can gain a better understanding of the root

causes of faults. Therefore, we propose the following:

By mining software repositories and performing program analysis, we

can improve the effectiveness of existing fault localization techniques

and propose new techniques that are readily available for use in modern

software development.

In this dissertation, we consider user-reported logs and fine-grained code change

information as potential debugging information that can enhance the performance of

fault localization. Moreover, we recognize them as valuable resources to help improve

software quality assurance and reliability practices for future studies.
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1.2 Research Overview

Overall, this dissertation presents several techniques aimed at broadening the appli-

cability and ease-of-use of fault localization in modern software development. This

dissertation is divided into three main parts, each providing a perspective on the

potential of fault localization in modern software development: the utilization of

user-reported logs, the application of fault localization in continuous integration, and

the refinement of fault localization data. In particular, Chapter 3 and 4 propose

utilizing user-reported logs as new debugging knowledge in fault localization. Chap-

ter 5 and 6 discuss the extension of fault localization in continuous integration, with

the use of fine-grained code and coverage changes information. Chapter 7 covers

fault localization data cleanness. Together, these parts aim to extend the reach of

fault localization. The rest of this introduction describes fault localization techniques,

and the key research challenges addressed in each of the subsequent chapters of this

dissertation.

1.3 Fault Localization

Fault localization techniques are typically carried out in two stages. The initial stage

involves defining and reducing the search space. Since the entire code base is exten-

sive and contains thousands of files, this step aims to identify the code locations that

are more likely to be faulty within the program. The second stage focuses on rank-

ing the code locations based on their likelihood of containing faults. Prioritization

is given to the most suspicious code locations, allowing developers to examine them

first. Typically, fault localization techniques provide developers with a ranked list of

suspicious code locations, assisting them in locating the faults and comprehending

the root causes. Code locations that rank higher on the list are considered more

suspicious and required closer examination. A broad family of fault localization tech-

niques [14, 54, 71, 116, 125, 128, 177, 193, 206] has been proposed and developed, each

trying to attack the problem from a unique perspective in terms of the input data,

root cause, granularity and accuracy of the localization. For instance, Information

Retrieval-based (IR-based) Fault Localization [54, 128, 152, 157, 161, 171, 180, 206]

utilizes information retrieval techniques to leverage the textual information from a

bug report as a query, and generate a ranked list of source code files based on their
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textual similarity to the query. This ranked list helps prioritize the files that are likely

to contain the fault. In Section 2.3, we further discuss the main steps of IR-based

techniques. Another popular family of fault localization is Spectrum-based Fault Lo-

calization (SBFL) [15, 16, 17, 77, 133, 182]. The base intuition of SBFL is that code

entities covered by a larger number of failing tests but fewer passing tests are more

likely to be associated with faults. In Section 2.4, we present SBFL in detail.

1.4 Challenge: Lack of Effectiveness

Effective fault localization plays a crucial role in reducing debugging time and assist-

ing developers in bug fixing. It is also essential for other research directions, such

as automated program repair (APR) [63, 97, 99, 114, 146, 190]. APR techniques

rely on the effectiveness of fault localization to identify potential faulty locations for

patching. Researchers have explored various approaches to enhance effectiveness of

fault localization by incorporating additional information, such as analyzing similar

bug reports from the past [206], leveraging software development history [161, 175],

and utilizing structured information present in bug reports [171].

However, in practice, fault localization techniques still suffer from limited effective-

ness [69, 177, 178, 185, 188]. For example, as modern software becomes more complex,

fault localization may not directly pinpoint the root causes of faults [177, 178, 185].

Moreover, when attempting to isolate faults at a finer granularity, such as the state-

ment level, fault localization techniques can encounter the issue of tie [69, 188]. This

occurs when statements within the same block are equally suspicious due to shared

coverage, code history, or similar textual information.

A recent study [86] has revealed that automated fault localization techniques are

greatly appreciated by developers in the industry. The study indicated that over

97% of developers consider research on fault localization to be either “Essential” or

“Worthwhile”. However, despite the progress made in fault localization techniques,

practitioners have high expectations for their adoption in real-world scenarios. They

expect these techniques to identify faults among the top 5 positions and achieve a

minimum accuracy of 75%. Unfortunately, the effectiveness of fault localization is

currently compromised in practice. Chapter 3 and 4 address this research challenge.

Chapter 3 studies the challenges and benefits of analyzing user-reported logs in bug
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reports for assisting in debugging. Chapter 4 proposes an information retrieval-based

fault localization by re-constructing execution paths using logs, which can help to

improve the effectiveness of fault localization.

1.5 Challenge: Adaptation to Modern Software

Development Practices

The lack of research on fault localization techniques in modern software development

is another crucial factor hindering their wide adoption. Our research is motivated by

two key observations. First, in modern software development, users typically submit

bug reports to notify developers about bugs [28]. However, by the time the bugs are

reported, they have already impacted the users, making it too late to resolve them

in production. To address this, CI practices enable the daily execution of functional

tests to detect faults before they reach the users [126, 158]. CI also offers valuable

information in the form of code coverage and test results, which can aid in the de-

bugging process. Second, most prior studies [17, 78, 95, 150, 183] have evaluated

these techniques in traditional software development settings, where only a single

snapshot of the system is considered. However, in the context of modern software

development, especially in continuous integration, developers make continuous and

finer-grained changes to the system. This means that when a new test failure occurs,

the fine-grained information associated with these changes can provide valuable in-

sights for locating the fault [25, 148]. Additionally, the atomic nature of code changes

in modern development limits unintended consequences, making fault isolation feasi-

ble with more accessible and less costly diagnosis metrics. Therefore, Chapter 5, 6

investigate fault localization in continuous integration to assist in adapting fault local-

ization techniques to modern software development practices. Particularly, Chapter 5

provides a large-scale longitudinal study on continuous test execution and failure, aim-

ing to gain a better understanding of the operational information in modern software

development setting (i.e., continuous integration). This chapter also introduces a

new benchmark for fault localization in continuous integration. Chapter 6 proposes

changed-based fault localization techniques specialized for continuous integration set-

tings. Finally, Chapter 7 aims to bridge the gap between fault localization research

and its practical application in modern software development by focusing on data
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cleanness.

1.6 Contributions

In this dissertation, we study how leveraging user-reported logs can enhance debug-

ging information and contribute to improved fault localization techniques in modern

software development. Additionally, we explore the utilization of fine-grained change

information, such as code changes and coverage changes, to extend the scope of fault

localization. These types of information are readily available and automatically exe-

cuted in modern development pipelines. Our contributions are as follows:

1. We show that even without any advanced techniques, the user-reported logs may

provide a good indication of the fixed classes. To assist future research in ana-

lyzing logs, we propose to leverage the execution paths that are re-constructed

from these logs to provide additional debugging supports.

2. We propose Pathidea, an IRFL approach that leverages logs in bug reports to

reconstruct execution paths. Pathidea integrates the execution paths informa-

tion to further improve the performance of fault localization.

3. We present a dataset, T-Evos, which contains fine-grained CI test execution

information collected on a commit-by-commit basis. We also conduct an em-

pirical study on the collected test execution data. Finally, we provide some

possible research directions that may be done using T-Evos.

4. We present finer-grained change information, code and coverage changes as a

new direction to improve fault localization. Both change information are less

costly to obtain and may be readily available for systems following CI practices.

5. We present a case study that examines the developer’s knowledge in the fault-

triggering tests, which contributes to a significant overestimation of the perfor-

mance of fault localization techniques.
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Chapter 2

Background and Related Works

In this section, we discuss the various debugging information related to the work of

this dissertation. Then, we provide additional background on popular families of fault

localization, Information Retrieval-based Fault Localization (IRFL) and Spectrum-

based Fault Localization (SBFL). We also discuss the commonly used metrics for

evaluating the effectiveness of fault localization (i.e., Top-N, Mean Average Precision,

and Mean Reciprocal Rank).

2.1 Bug Reports

Bug reports contain information to help developers diagnose reported bugs. A prior

study [27] points out that from the developers’ perspective, a good bug report should

have a clear description and other important debugging information, such as logs.

On bug tracking systems such as Jira, bug reports typically contain the following

fields: Summary, Status, Details (including Type, Status, Priority, Resolution, Af-

fects Versions, and Fix Versions), Assignee, Reporter, Description, Attachments, and

Comments. Figure 1 shows an example of a bug report from the Hadoop Common

system. The Summary section gives an overview of the bug. The Description section

provides an explanation to the bug, and may contain the logs for debugging hints and

some user-specific runtime information (e.g, describe the specific use case or hardware

environment). The Status field provides the status of the bug report in the workflow.

The Resolution field indicates the final resolution assigned to the reported bug (e.g.,

FIXED, DUPLICATE, WON’T FIX). The Affects Versions field is usually provided
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  Attachments

  Summary

  Description

  Comments

  ID

  Details

  Reporter

  Assignee

  Dates created,
updated and

resolved

Logs

Figure 1: An example bug report (HADOOP-4426) on Jira.
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2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker: Task
attempt_200902120746_0297_r_000033_0 is in COMMIT_PENDING

2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker:
attempt_200902120746_0297_r_000033_0 0.33333334% reduce > sort

Figure 2: An example of log snippets. (HADOOP-5233)

17/07/14 13:31:58 INFO hdfs.DFSClient: Exception in createBlockOutputStream java.
io.EOFException:

at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:2280)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.createBlockOutputStream
(DFSOutputStream.java:1318)

...

Figure 3: An example of exception logs. (HDFS-8475)

by the reporter, whereas the Fix Versions field is added by the assignee after bug

fixes. Sometimes, either the reporter or the assignee might attach patches or tests in

the Attachments section. In the Comments section, developers may further discuss

the bug, provide opinions, and potentially ask for additional technical details. To

note that the same idea applies for bug reports on Bugzilla, although they do not

contain the Fix Versions field.

2.2 User-reported Logs in Bug Reports

To assist developers to diagnose and fix bugs, reporters may attach logs in their

bug reports. Typically, there are two types of logs in bug reports: log snippets,

which record software system execution at run time; and exception logs, which

record the stack traces when an exception happens. Figure 2 and Figure 3 show

an example of log snippets and exception logs, respectively. A log snippet is an

ordered set of log messages generated by logging statements during runtime. Each

log is often composed of the timestamp, verbosity level (e.g., debug, info, error, or

fatal), class name, and detailed log message. An exception log contains information on

multiple sets of stack frames (i.e., stack trace) when an exception happens. Exception

logs are recorded together with log snippets to provide a more detailed view of the

system execution when an exception happens [60]. Exception logs often contain the

timestamps, thrown exceptions (e.g., NullPointerException), and the fully-qualified

file names, method signatures, and line numbers for the method calls on the stack

frames.
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In bug reports, logs may be attached in the Description and Comments sections.

Reporters often open a bug report and report the failing stack traces or log snippets

in the Description to assist developers in bug fixing. Occasionally, developers may

discuss the bug report and request more logs from the reporter in the Comments

section. Figure 4 shows such an example, where the developer first asked for a step-

by-step instruction to reproduce the bug, then demanded server logs.

2.3 Information Retrieval-based Fault Localization

(IRFL)

Information Retrieval-based Fault Localization, or IRFL, is a localization technique

that leverage bug reports to rank the source code files based on their likelihood to

contain faults. This technique assists developers in identifying the faulty files, and

provides a better understanding of the root causes of the fault. In IRFL techniques,

locating bugs is transformed into a search problem, where each bug report represent

a search query, with the source code files as the document collection to search from.

Prior studies [53, 54, 117, 119, 128, 147, 152, 157, 161, 171, 180, 184, 206] present a

number of variations of IRFL techniques. For context of the implementation details,

we discuss how IRFL techniques typically locates faults. The main steps include: (1)

how bug reports are preprocessed, (2) how source code files are pre-processed, (3)

how suspicious files are prioritized, and (4) how the suspicious files are evaluated.

2.3.1 Preprocessing Bug Reports

The preprocessing step involves extracting the textual contents from the bug report

(e.g., description and summary) and standardizing words in bug reports with that

of source code files. This extracted information is then utilized to narrow down the

search space of source code files that are directly associated with the given bug re-

port. The preprocessing typically include: tokenization, text normalization, stopword

removal, and stemming. We first split the sentences from bug reports into words (to-

kens). Then, we normalize special identifiers into constituent words such as breaking

the camel cased word getName into tokens get and name. We remove English stop-

words, programming language specific keywords, special symbols and punctuations
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Figure 4: An example of a bug report (ZOOKEEPER-2982) highlighting the dis-

cussions between the reporter and developer (assignee). The bug report addresses

a server problem when resolving for the host address on Zookeeper clusters. In the

Comments section, the developer asked the reporter to provide some server logs to

help the bug fix (higlighted in red).
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to reduce the noise of tokens that are irrelevant to the faults. Finally, we perform

stemming to reduce each word to its root form. For instance, the tokens recorded and

recording are simplified to record. This increases the probability of matching shared

words between the bug report and source code files.

In addition to analyzing the textual contents, several IRFL techniques [95, 152,

157, 171, 173, 180, 184, 206] have been proposed to incorporate additional information

from bug reports to enhance the effectiveness of fault localization. Zhou et al.

[206] suggested considering similar bug reports that have been previously resolved to

identify the files that require bug fixes. Saha et al. [152] considered the structure of

bug reports and employed structured retrieval techniques to model the source code

structure. Le et al. [95] developed an approach that analyzes the textual descriptions

in bug reports to identify suspicious words, which are then used to localize faults.

Wang and Lo [171] proposed a comprehensive approach that combines version history,

similar bug reports, and structural information to improve fault localization. Around

the same time, Moreno et al. [128], Wong et al. [180] and Wu et al. [184] focused on

analyzing stack traces provided in bug reports to pinpoint the root causes of faults.

2.3.2 Preprocessing Source Code Files

The preprocessing steps for source code involve tokenization, text normalization, stop-

word removal, and stemming, similar to the preprocessing steps used for bug reports.

These steps help standardize the tokens in the source code files. In terms of pre-

processing source code, previous studies [90, 180] have also proposed segmenting the

source code files to reduce noise in larger files, as only a small portion of a large

file may be relevant to the bug report. To enhance the localization capability, other

studies [117, 161] have demonstrated the usefulness of version histories in evaluating

the likelihoods of source code files containing faults. Sisman and Kak [161] prior-

itized locations in the source code by modeling past faulty modification histories,

while Loyola et al. [117] explored fault-introducing changes to improve localization

performance.
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2.3.3 Prioritizing Suspicious Files

A popular information retrieval technique used to prioritize the more suspicious files is

the Vector Space Model (VSM). VSM is an algebraic model used to represent queries

and documents as vectors of index terms. Documents and queries are represented

by weighted vectors of n-dimensional space, where n denotes the number of unique

terms in the document collection (i.e., corpus). In the context of IRFL, the bug

report serves as the search query, while the entire code base of source code files is

treated as the document collection. The objective is to identify the source code file

that contains the highest textual similarity (e.g., measured by cosine similarity) with

the given bug report.

In VSM, we first calculate the vector of weights for the query and documents. The

weight of each term is often represented with the Term Frequency-Inverse Document

Frequency (TF-IDF) of each corresponding term. Term Frequency (TF) refers to the

frequency a specific term appears within a document. On the other hand, Inverse

Document Frequency (IDF) focuses on the importance of a term in a document col-

lection, which is determined by the number of documents in the corpus that contain

the term. Terms with higher values of TF-IDF are considered more important. Then,

we calculate the cosine similarity between query vector and document vectors. For-

mula 1 calculates the cosine similarity between query q and document d based on

their vector representations:

Sim(q, d) =
q · d

∥q∥∥d∥
=

n∑︁
i=1

qi × di√︃
n∑︁

i=1

(qi)2 ×
√︃

n∑︁
i=1

(di)2
(1)

where qi represents the weighted vector of term i that appears in the query q. Simi-

larly, di represents the the weighted vector of term i in document d. After calculating

the similarity score for each document, the next step involves sorting the documents

based on their respective similarity scores. This sorting process generates a ranked

list, starting from the most suspicious document (i.e., source code file) to the least

suspicious, which provides developers with a prioritized list to examine.
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2.4 Spectrum-based Fault Localization (SBFL)

Spectrum-based fault localization, or SBFL, is a fault localization technique that

identifies the faulty locations based on passing and failing test executions. SBFL

sorts all program elements, such as statements or methods, based on a suspiciousness

score. A program element with a higher suspiciousness score is considered more likely

to contain faults. The goal of SBFL is to rank the faulty program elements at the

top of the list, with high suspiciousness scores assigned to them. With this ranked

list, developers would inspect the program elements with the highest suspiciousness

scores first, saving both debugging time and effort. The computation of the suspi-

ciousness score is based on the test execution profiles. During the SBFL process, tests

are executed on the target program, and test execution profiles are collected. These

profiles contain information about the execution of each program element, indicating

whether the tests covering the program element (e.g., statement) pass or fail. Based

on this information, the likelihood of a statement containing faults can be computed

to calculate the suspiciousness score. Previous studies [15, 16, 17, 77, 133, 182] have

proposed various SBFL formulas for calculating the suspiciousness score. The com-

mon intuition is that code locations covered by more failing tests are more likely

to contain faults. These formulas typically use statistics such as e f, e p, e f, and

e p, where e f, e p represent the number of failing and passing tests that execute the

program element e, while e f and e p represent the numbers of failing and passing

tests that do not execute the program element e. One of the most widely used and

well-studied SBFL techniques is Ochiai [15, 16], which calculates the suspiciousness

score using the formula:

Ochiai(e) =
ef√

ef + nf ·
√
ef + ep

(2)

2.5 Evaluation Metrics for Fault Localization

For evaluating the effectiveness of fault loacalization techniques, the following three

metrics are widely used: Top-N, mean average precision, and mean reciprocal rank.

Top-N: Top-N tracks the number of bugs where at least one faulty source code file is
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discovered within the top N ranked results. N is commonly set at (1, 5, 10, and 15).

This metric focus on detecting one of the faulty locations early in the ranked list for

more bugs (early precision).

Mean Average Precision (MAP): MAP takes into account the ranks of all faulty

files. It is calculated by computing the mean of the average precision across all

bug reports. It assesses scenarios where developers need to explore the ranked list

extensively to find as many relevant results as possible. The average precision (AP)

is calculated as:

AP =

∑︁m
i=1 i/Pos(i)

m
(3)

Mean Reciprocal Rank (MRR): The reciprocal rank is computed as the reciprocal

of the position at which the first faulty file is discovered. The Mean Reciprocal Rank

(MRR) is then determined by taking the average reciprocal rank across all bug reports.

Formula 15 presents the calculation for the mean reciprocal rank, where K represents

a set of bug reports, and ranki represents the rank of the first buggy file in the i -th

bug report.

MRR =
1

K

K∑︂
i=1

1

ranki
(4)
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Part I

Utilizing User-reported Logs in

Fault Localization
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Chapter 3

An Empirical Study on the

User-Reported Logs in Bug

Reports

Bug reports often contain logs that offer crucial debugging information for develop-

ers. When debugging, developers rely on these logs to analyze system executions

and understand the root causes of the faults. Intuitively, user-provided logs in bug

reports illustrate the problems that users encounter and may help developers with the

debugging process [27]. There are a number of techniques that analyze crash reports

or system logs to help developers in debugging [30, 65, 75, 102, 164, 184, 195, 196].

However, these prior techniques often assume that developers have access to the entire

system-generated logs or instrumented system runtime data. In practice, such infor-

mation may not always be available due to privacy or technical concerns [34, 156, 160].

For instance, users usually only attach a portion of the logs in their bug reports, since

the size of the entire log file is often several gigabytes or even larger [48, 160].

This chapter presents an empirical study that examines the challenges and bene-

fits of utilizing users-reported logs in bug reports for software debugging. We begin

by providing the motivation for our study, followed by the description of our case

study setup. Our findings show that logs often provide a good indication of where

a fault is located. However, we also find a significant number of bug reports where

there was no overlap between the logged classes and the faulty classes. Upon manual
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investigation, we find that many logs lack system execution information, only show-

ing the point of failure (e.g., exception) without providing direct hint on the actual

root cause. Furthermore, our call graph analysis reveals potential approaches that

can aid developers in debugging by performing static analysis on the system execu-

tion and establishing connections between the logs. These approaches may provide

additional debugging information that are not readily available from the logs. In

summary, our findings shed light on potential future research directions to improve

the attachment and analysis of logs in bug reports, aiming to better assist developers

in their debugging.

In the next chapter, we extend the utilization of user-reported logs to develop an

information retrieval-based fault localization technique that achieves high effective-

ness.

An earlier version of this chapter has been published at Empirical Soft-

ware Engineering (EMSE), 2021. Pages 1-30. Chen et al. [38]
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3.1 Motivation

Bug reports provide important information for developers to fix the problems that

users encounter [21, 27]. Typically, when reporters create a bug report, they need to

provide a title, the severity (e.g., major or minor), the description of the problem,

and system-generated logs (e.g., log messages or stack traces) which illustrate the

system execution paths when the problem occurs. In particular, such logs may contain

valuable debugging information for developers [27, 157, 207]. Based on the user-

provided information, developers then diagnose the problem and resolve the issue.

In general, developers first look at the description of the bug report and manually

examine the attached logs. Then, developers investigate where the logs were generated

in the source code to find out where the bug might be. Finally, developers manually

examine the source code and the corresponding logs, trying to understand how the

system was executed when the bug happened and resolve the bug.

Intuitively, user-provided logs in bug reports illustrate the problems that users

encounter and may help developers with the debugging process [27]. A number

of prior studies aim to debug or reproduce bugs using system execution informa-

tion [75, 164, 184, 195, 196]. However, these prior approaches often assume that

developers have access to the entire system-generated logs or instrumented system

runtime data. Such debugging data may not always be available to developers. In

many cases, developers need to rely on data in bug reports for debugging, which

may be incomplete or inaccurate [27]. Insufficient debugging information remains

a challenge for developers in gaining a full understanding of the problem, resulting

in frequent delays in resolving the bug report [27]. Therefore, the objective of this

chapter is to investigate the potential of user-provided logs in bug reports as valuable

hints for debugging. Our findings offer initial insights on leveraging readily-available

information in bug reports to assist developers with debugging. Additionally, we aim

to gain a deeper understanding of the challenges developers may face when analyzing

user-provided logs and explore potential solutions to overcome these challenges.
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Table 1: An overview of the studied systems.

System LOC Type Code maturity Selected bug

history range

ActiveMQ 480k Messaging server > 10 years 2008-01-01

to 2019-01-19

AspectJ 447k Aspect-oriented > 10 years 2008-01-01

extension to 2019-01-19

Hadoop Common 364K Common utilities > 10 years 2008-01-01

to 2019-01-19

HDFS 560K Distributed storage > 10 years 2008-01-01

to 2019-01-19

MapReduce 291K Distributed processing > 10 years 2008-01-01

system to 2019-01-19

YARN 313K Resource manager > 5 years 2012-07-18

to 2019-01-19

Hive 1.7M Data warehouse > 5 years 2008-10-15

to 2019-01-19

PDE 369k Tools for plug-ins > 10 years 2008-01-01

development to 2019-01-19

Storm 346k Distributed processing > 5 years 2013-12-11

system to 2019-01-19

Zookeeper 144k Configuration service > 10 years 2008-06-10

to 2019-01-19

Total 5.0M - - -
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3.2 Case Study Setup

3.2.1 Studied Systems

Table 1 shows an overview of the studied systems. We conduct our case study on

10 Java-based open source systems: ActiveMQ, AspectJ, Hadoop Common, HDFS,

MapReduce, YARN, Hive, PDE, Storm and ZooKeeper. The size of the studied sys-

tems ranges from 144K to 1.7M lines of code. These studied systems are widely used

in prior log-related studies and have high-quality logs [42, 108, 199]. The studied

systems also cover different domains, varying from virtual machine deployment sys-

tems to data warehousing solutions. Most of the systems have more than 10 years of

code development. We choose these systems because they are large in scale, actively

maintained, well-documented, and have many bug reports that contain logs [42, 108].

3.2.2 Collecting and Filtering Bug Reports

We collect all the bug report data that is available on the Jira repository [22] of each

studied system from 2008 (or the earliest bug creation date) to January 2019, and

compute the lines of code (LOC) on the master branch (data collected in January

2019). To collect the bug reports, we built a web crawler that sends REST API calls

to the Jira repositories. We select the bug reports based on the criteria that are used

in prior bug report studies [42, 46, 199]. Namely, we select bug reports of the type

“Bug”, whose status are “Closed” or “Resolved”, with the resolution “Fixed” and

priority marked as “Major” or above. Additionally, we only select the bug reports

that have corresponding code changes in the code repository (i.e., having commit

messages that contain the bug report ID), so we can verify that the bugs are indeed

fixed. At the end of this process, we collected a total of 8,848 bug reports.

3.2.3 Identifying Bug Reports that Contain Logs

In this study, we consider two types of logs: log snippets and stack traces.

We refer log snippets as the system-generated logs and refer stack traces as the re-

ported messages in stack frames (i.e., in the case of exception). These two types of

logs are often the only information that is available for debugging production prob-

lems [60, 195, 197]. A log snippet is composed of consecutive log messages generated
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at runtime. Log messages often contain a static message (e.g., in Java, in the follow

code, Logger.info("static_message" + method()), static message is an example

of a static message), values for dynamic variables, and the log verbosity level (e.g.,

info, warning, or error). An example log message is: “2018-08-29 15:37:47.891 Utils

[INFO] Interrupted while waiting for fencing command: cd”, where it shows the times-

tamp of when the event happened, the executed class (i.e., Utils), the log level (i.e.,

INFO), and the log message (i.e., Interrupted while waiting for fencing command:

cd). Note that such log messages usually contain system execution information and

may not always be an indication of an error [48, 195]. The second type of logs is

the system generated exception message and stack trace. Stack traces show the stack

frame of the system when exceptions occur. Typically, reporters attach logs in the

bug description or as comments.

Since the studied systems use specific logging conventions on the structure of the

log snippets (e.g., ordered as timestamps, verbosity level, class name, and message),

we use regular expressions to capture them in the Description and Comments sections

of bug reports [42]. Specifically, we look for log snippets by extracting lines that

contain timestamps and log-related keywords (e.g., info, debug, and error). We look

for stack traces in a similar fashion by using both keywords (e.g., a line beginning

with “at...”) and line formats (e.g., followed by method invocation, class name, and

line number) that are specific to stack traces.

3.2.4 Collected Bug Reports

In general, we find that there is a non-negligible percentage (an average

of 21.5% across all systems) of bug reports that contain logs (i.e., either

log snippets, stack traces, or both). Table 2 shows the number of bug reports

in the studied systems. We use BRWL to refer to bug reports with logs, and BRNL to

represent bug reports without logs. In total, 1,561 (18%) bug reports contain logs and

7,287 (82%) bug reports do not contain any logs. We also observe that 6% to 47% (an

average of 21.5%) of the bug reports contain at least one type of logs, which indicates

that logs are often attached by reporters to help describe problems. In addition,

reporters are more likely to include stack traces in a bug report compared to log

snippets. Specifically, 10% (161/1,561) of BRWL have only log snippets compared to

66% (1,029/1,561) of BRWL that have only stack traces. One possible reason is that
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Table 2: Bug reports in the studied systems. BR represents bug reports; BRNL

represents bug reports with no logs and BRWL represents bug reports with logs (i.e.,

either contain log snippets, stack traces, or both).

System BR with BR with BR with Total Total Total

only log only stack both BRWL BRNL BR

snippets traces

ActiveMQ 10 55 27 92 (15%) 502 (85%) 594

AspectJ 0 42 3 45 (24%) 140 (76%) 185

Hadoop Common 23 71 58 152 (21%) 573 (79%) 725

HDFS 29 99 74 202 (17%) 964 (83%) 1,166

MapReduce 27 100 66 193 (34%) 382 (66%) 575

YARN 29 147 96 272 (47%) 304 (53%) 576

Hive 4 109 16 129 (6%) 2,102 (94%) 2,231

PDE 23 342 0 365 (17%) 1,763 (83%) 2,128

Storm 7 44 13 64 (17%) 316 (83%) 380

Zookeeper 9 20 18 47 (16%) 241 (84%) 288

Total 161 1,029 371 1,561 (18%) 7,287 (82%) 8,848

stack traces are more straightforward to interpret (e.g., with clear exception messages

and stack traces); whereas the information in the log snippets may vary depending on

how reporters attach the logs and how developers write the logging statements in the

source code [108, 195, 196]. However, many bug reports still contain both log snippets

and stack traces, which shows that both types of logs are commonly provided in bug

reports to help debugging.

3.3 Case Study Results

In this section, we discuss the results of our research questions (RQs). For each RQ,

we present the motivation, our approach and the results.
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3.3.1 RQ1: Are Bug Reports With Logs Resolved Faster

Than Bug Reports Without Logs?

Motivation: Prior studies [27, 207] found that log snippets and stack traces are

useful debugging information in bug reports. Presumably, and as found in prior

research [27, 198, 207], bug reports that contain logs may take a shorter amount of

time to resolve compared to bug reports that do not have logs. However, prior research

only studies bug reports with either log snippets or stack traces but did not study the

combination of both types of logs. In addition, as also shown in Section 2.2, developers

may ask for more logs and may thus delay the bug resolution time. Therefore, in this

RQ, we revisit whether bug reports with logs are resolved faster than bug reports

without logs, and if bug reports with logs in the Comments section take more time

to resolve.

Approach: We analyze the bug resolution time for the bug reports that we collected

in Section 3.2. In particular, we study the bug reports that have a corresponding

code change in the code repository. For each analyzed bug report, we calculate the

bug resolution time (in days) by taking the difference between the bug resolution date

and bug report creation date [46]. We statistically compare the bug resolution time of

the bug reports with logs (BRWL) and the bug reports without logs (BRNL). We use

Wilcoxon rank-sum test to study if there exists a statistically significant difference

between the resolution time of BRWL and BRNL. We select Wilcoxon rank-sum

test because it is a non-parametric test that does not have an assumption on the

distribution of the data [127]. To further show the magnitude of the difference, we

compute the effect size. We use Cliff’s Delta, which is also a non-parametric test, as

the effect size measurement to quantify the amount of difference between BRWL and

BRNL [50]. We assess the magnitude by using the thresholds provided by Romano

et al. [149]:

effect size

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

negligible, if |d| < 0.147

small, if 0.147 ≤ |d| < 0.33

medium, if 0.33 ≤ |d| < 0.474

large, if 0.474 ≤ |d|

(5)

Results: In general, BRWL takes more time to resolve compared to
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Table 3: A comparison of the bug resolution time (in days) between the bug reports

with logs (BRWL) and the bug reports without logs (BRNL) across the studied

systems.

Project BRWL median BRNL median p-values Cliff’s Delta

resolution resolution

ActiveMQ 21.5 1.0 <0.001 0.73 (large)

AspectJ 14.0 25.0 0.89 0.01 (negligible)

Hadoop Common 7.0 1.0 <0.001 0.58 (large)

HDFS 27.5 4.0 <0.05 0.46 (medium)

MapReduce 23.5 1.0 0.19 0.69 (large)

YARN 10.0 2.0 0.47 0.53 (large)

Hive 7.0 3.0 0.56 0.25 (small)

PDE 3.0 6.0 <0.05 0.11 (negligible)

Storm 4.0 3.0 <0.001 0.28 (small)

Zookeeper 91.0 1.0 0.15 0.88 (large)

Average 20.9 4.7 - -

BRNL. Table 3 shows the median resolution time of bug reports with logs (BRWL)

and without logs (BRNL). We find that the median resolution time ranges from 3 to

91 days for BRWL, and ranges from 1 to 25 days for BRNL. Our results show that

such differences are statistically significant in four out of 10 studied systems (Ac-

tiveMQ, Hadoop Common, HDFS, and Storm), where the effects range from small to

large. Figure 5 further shows the beanplots that compare the density of the resolu-

tion time distribution between BRWL and BRNL. We limit the Y-axis to 15 days to

better visualize the difference between the resolution time of BRWL and BRNL (most

BRNL are resolved within 15 days). As illustrated in Figure 5, the distribution of

the resolution time for BRNL generally has a long tail. In other words, most BRNL

are resolved in a very short amount of time (within two to three days), and almost

all BRNL are resolved within 15 days. BRWL, on the other hand, have more uniform

distributions in the studied systems. To better illustrate this finding, Figure 6 shows

the boxplots that compare the median resolution time between BRWL and BRNL in

range of 15 days. BRNL are generally resolved in a shorter amount of time than that

of BRWL.
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Figure 5: Beanplots to illustrate the densities of resolution time (in days) distribution

for BRWL and BRNL in range of 15 days.
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Prior studies [27, 207] found that log snippets and stack traces are important de-

bugging information in bug reports. However, even though such information is useful

for debugging, we find that BRWL take more time to resolve compared to BRNL.

Hence, we further investigate the possible factors that may increase the resolution

time for BRWL. We first study where the logs are attached in bug reports. As dis-

cussed in Section 2.2, developers may request more logs in the Comments section of

a bug report, which may take time for the reporter to provide and delay the bug fix-

ing. Table 4 shows the percentage of BRWL with logs only in the Description section

(i.e., BRWL-D) and BRWL with logs in the Comments section (i.e., BRWL-C, both

BRWL with logs only in the Comments and BRWL with logs in both the Description

and Comments), along with their respective median number of log lines and median

resolution time. We find that the BRWL-C covers from 17% to 68% (an average

of 43%) of BRWL. In addition, the median number of log lines in the Comments

section is comparable to that of the Description section. For the median resolution

time, however, BRWL-C require much more time to resolve (i.e., medians are 1.1

to 36.8 times slower) compared to that of BRWL-D. The Wilcoxon rank-sum test

shows that the resolution time from BRWL-D is statistically significantly different

from the BRWL-C (p < 0.001). We use Cliff’s Delta to assess the magnitude of this

difference, which results to a small effect size (i.e., |d| is 0.31). We further examine

the Spearman rank correlation between the number of log lines in the Comments

section and the resolution time. Although the correlation is not strong, we find that

there are some correlations between the bug resolution time and the number of log

lines in the Comments section (0.20 across all studied systems). Our finding shows

that it is common for developers to ask for more logs to diagnose a bug, and having

more logs in the Comments section may increase bug resolution time. In other words,

the initial-attached logs may be insufficient for debugging. Figure 4 illustrates an

example of such cases. The bug report ZOOKEEPER-2982 highlights an Internet

Protocol address (IP) resolution bug in the ZooKeeper server. Although the reporter

initially added some stack traces in the bug description illustrating the root cause, he

was later asked by the developer to provide the steps to reproduce the bug and some

server logs to help the bug fix.

Different from other studied systems, our finding shows that, in Eclipse PDE and

AspectJ, the bug reports with logs are resolved faster than the ones without. The
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Table 4: A comparison of the number of log lines and median resolution time between

BRWL that have logs only in Description (BRWL-D) and BRWL that have logs in

Comments (i.e., BRWL-C, BRWL with logs only in Comments and BRWL with logs

in both Description and Comments).

Project # of BRWL-C Median # of Median # of BRWL-D Median # of Median

log lines resolution log lines resolution

time (dates) time (dates)

ActiveMQ 40 (43%) 28 221 52 (57%) 21 6

AspectJ 15 (33%) 6 84 30 (67%) 6 11

Hadoop Common 72 (47%) 12 8 80 (53%) 13 7

HDFS 116 (57%) 22 37 86 (43%) 13 21

MapReduce 111 (58%) 18 36 82 (42%) 17 19

YARN 132 (49%) 18 13 140 (51%) 14 6

Hive 41 (32%) 22 18 88 (68%) 29 5

PDE 83 (23%) 9 27 282 (77%) 11 1

Storm 11 (17%) 27 14 53 (83%) 17 4

Zookeeper 32 (68%) 16 116 15 (32%) 25 46

total: 653 (42%) avg: 18 avg: 57 total: 908 (58%) avg: 17 avg: 13

median resolution time for BRWL and BRNL are 3 and 6 days for PDE, respectively,

and the difference is statistically significant (p-value < 0.05) with a negligible effect

size. The median resolution time for BRWL and BRNL are 14 and 25 days for

AspectJ, respectively, and the difference is not statistically significant (p-value =

0.89). After some investigation, we find that, compared to other studied systems,

Eclipse PDE and AspectJ have the least percentage of BRWL-C. As shown in Table 4,

BRWL-C take more time to resolve. For PDE and AspectJ, there are only 23% and

33% of the bug reports that have logs in the Comments section, respectively.

Another factor that associates with the bug resolution time is the complexity of

bug fixes. We further compare the complexity of the bug fixes between BRWL and

BRNL. For each bug report, we compute the number of changed lines of code (i.e., the

total number of additions and deletions). In general, we find that the median number

of changed lines of code is 51 for BRWL and 30 for BRNL. We also calculate the non-

parametric Wilcoxon rank-sum test to compare the number of changed lines between

BRWL and BRNL. The Wilcoxon rank-sum test shows that BRWL is statistically

significant different from BRNL in terms of changed lines (p < 0.001). To assess the

magnitude of this difference, we use Cliff’s Delta. The difference between the number

of changed lines of code for BRWL and BRNL is negligible (i.e., |d| is 0.12). In short,
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we find that the bug fixes for BRWL are larger than BRNL, which may be positively

correlated with the longer fixing time of BRWL.

We find that BRWL takes more time to resolve (median ranges from 3 to 91 days)

compared to BRNL (median ranges from 1 to 25 days). Our further investigation

shows that the initially-attached logs may not be sufficient for debugging (i.e.,

developers often ask for more logs in the Comments section of a bug report), and

the bug fixing size of BRWL is, in general, larger than BRNL (median is 51 vs 30

lines of code).

3.3.2 RQ2: Are There Overlaps Between Logged Classes and

Fixed Classes?

Motivation. Logs illustrate important system run-time information. When debug-

ging user-reported bugs, logs (i.e., either log snippets, stack traces, or both) are

usually the only source of information that is available to developers [60, 195, 197].

Developers need to manually analyze the logs to diagnose the problem. Hence, if the

attached logs are unclear or insufficient, debugging can become even more time con-

suming and challenging [93, 195, 198]. Even though prior studies have leveraged logs

to assist bug localization [128, 171, 180], it is still not clear about the direct effects of

the logs and their possible limitations. In this RQ, we study the overlap between the

logged classes (i.e., classes that generated the logs) and the fixed classes (i.e., classes

where developers applied bug fixes). Our findings provide the empirical evidence on

the importance and usefulness of providing additional tools and information to help

developers in analyzing user-provided logs in bug reports.

Approach. Our goal is to study if there exist overlaps between the logged classes

and the fixed classes (i.e., whether or not at least one of the fixed classes is the same

as the classes that generated the user-reported logs). Our first step is to extract the

logged classes from bug reports. As mentioned in Section 3.2.3, we capture the logs

using regular expression. Specifically, we look for log snippets by extracting log lines

that contain timestamps (e.g., 17/07/14 13:31:58, verbosity level (e.g., INFO), and

fully-qualified class name (e.g., org.apache.hadoop.mapred.TaskTracker). We highlight

stack traces in a similar fashion by using the at keyword, followed by a fully-qualified

class name, method invocation, and line number. At the end of the first step, we get
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Table 5: An overview of the bug reports with fixed classes overlapping with the

logged classes. The average numbers are computed based on each bug report. The

percentage of fixed classes located in logs is the ratio of the fixed classes in logs to

the total fixed classes in bug report (# fixed classes in logs / # total fixed classes).

Project # of BR with Avg. # of fixed Avg. # of logged % of fixed classes

fixed classes classes per BR classes per BR located in logs

located in logs

ActiveMQ 25 (58%) 2.3 15.3 41.6%

AspectJ 23 (65%) 2.0 5.5 33.7%

Hadoop Common 87 (65%) 2.4 6.8 50.0%

HDFS 119 (71%) 2.8 16.1 48.2%

MapReduce 108 (70%) 2.2 8.6 49.7%

YARN 192 (79%) 3.3 11.2 51.0%

Hive 91 (75%) 2.9 12.6 51.6%

PDE 291 (81%) 4.5 14.4 24.5%

Storm 30 (55%) 2.0 7.6 38.7%

Zookeeper 29 (63%) 2.2 6.7 46.2%

total: 995 (73%) avg: 2.7 avg: 10.5 avg: 43.5%

a list of fully-qualified class names covered in logs.

The next step is to extract the list of fixed classes for each bug report. We follow

prior studies [85, 209] by linking the bug reports to the associated bug fixing commits

using bug IDs. In the studied systems, developers are required to record the bug IDs

in commit messages. Therefore, we use the git log | grep BUG ID[ˆ\d] command to

find the corresponding bug fixing commits of a bug. Once we get these commits, we

find the list of fixed Java files and compute for their fully-qualified class name from the

package declaration statement (e.g., package org.apache.hadoop.mapred.TaskTracker).

Finally, we compared the fixed classes that overlap with the logged classes. To note

that both the logged classes and fixed classes are collected at outer class-level. To

further refine our analysis, we exclude 191 bug reports that did not modify any

existing Java classes. We then conduct a manual study on these bug fixes to examine

the reason.

Results. Classes covered in user-reported logs provide a good indication

of where the bug may be located. Table 5 shows the overview of the bug reports

where the fixed classes have an overlap with the logged classes. We find that 88%
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Table 6: A comparison of the median resolution time for the bug reports with fixed

classes located in logs and the ones without.

Project # of BR with Median # of BR with no Median

fixed classes resolution time fixed classes resolution time

located in logs (days) located in logs (days)

ActiveMQ 25 (58%) 14 18 (42%) 57

AspectJ 23 (65%) 16 22 (35%) 13

Hadoop Common 87 (65%) 7 47 (35%) 6

HDFS 119 (71%) 18 48 (29%) 26

MapReduce 108 (70%) 11 46 (30%) 26

YARN 192 (79%) 10 52 (21%) 7

Hive 91 (75%) 7 30 (25%) 6

PDE 291 (81%) 3 70 (19%) 6

Storm 30 (55%) 4 25 (45%) 25

Zookeeper 29 (63%) 60 17 (37%) 117

total: 995 (73%) avg: 15 total: 375 (27%) avg: 29

(1,370/1,561) bug reports modified existing Java classes when fixing bugs. We further

study the remaining 191 bug reports that did not modify any existing Java class later

in this RQ. There are 73% (995/1,370) bug reports that have an overlap between the

fixed classes and the logged classes. In other words, to a large extent, logs provide

direct information for developers to diagnose and fix a bug. In addition, Table 5 shows

the number of classes covered in user-reported logs. We find that the user-reported

logs often cover 5.5 to 16.1 unique classes and these logged classes have an overlap

with 24.5% to 51.6% of the fixed classes. Given the fact that, on average, fixing

a bug report requires only modifying 2 to 4.5 classes in the studied systems. Our

finding shows that even without any advanced techniques, the user-reported logs may

provide a good indication of the fixed classes. Furthermore, on some systems, the

median resolution time is drastically reduced for bug reports that have class overlap.

Table 6 shows the median resolution time for bug reports with class overlap and the

ones without. For bug reports with class overlap, the resolution time can be reduced

up to 6.3 times. However, as we also find, not all fixed classes are found in logged

classes. Further improvement can be done to better assist developers. For instance,
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Figure 7: Cumulative percentage of bug reports for the position of fixed class in stack

trace.

future research can develop tools to reconstruct the execution path based on the user-

reported logs to assist developers with bug fixing as we observe cases where the fixed

classes are located on the execution path.

Similar to the prior study conducted by Schroter et al. [157], we further analyze

the bug reports with fixed classes in stack traces (725/995) to study the position of

the fixed class in the stack frames. Figure 7 shows an overview between the position

of the fixed class in stack trace and the cumulative percentage of bug reports. We

observe that 40% of the bug reports have the fixed class located at the first stack

frame, 70% have the fixed class located within the top-5 stack frames, and more than

90% have the fixed class located within the top-15 stack frames. However, when

we further analyze the relationship between the position of the fixed class and the

resolution time of the bug report, the Spearman correlation is nearly zero (0.08). One

potential reason is that bug reports are only marked as resolved or fixed after they

have been tested, code-reviewed, and integrated into the production environment.

There are many factors that can influence the resolution time (e.g., time of bug triage

and replication). As the position of the fixed class is only relevant to the debugging
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process, its effect becomes less significant to the overall resolution time. Therefore,

our finding shows that there is no clear correlation between the position of the fixed

class in the stack frame and the bug resolution time.

Table 7 shows examples where there is an overlap between the logged classes and

fixed classes. HADOOP-5233 (i.e., first row in Table 7) reports a bug where the

reducer transits from COMMIT PENDING to RUNNING state while it should wait

for the commit response. The user-provided logs show the unexpected transition

from COMMIT PENDING state, generated by the TaskTracer class. The bug fix to

HADOOP-5233 adds a conditional logic to ignore the progress update in the Task-

Tracker class whenever the state changes from COMMIT PENDING to RUNNING.

Thus, the logged class TaskTracer overlaps with the fixed class. Other changes (i.e.,

the changes that occur in JobInProgress, Task, TaskInProgress and TaskStatus) make

sure that the COMMIT PENDING task entry is properly removed from the tracker.

HDFS-10512 (i.e., second row in Table 7) describes a bug that triggers an unexpected

NullPointerException in the VolumeScanner class (i.e., a volume scanner is responsible

to scan block data to detect data corruptions) while reading for a volume variable

through the DataNode.reportBadBlocks method call. The bug fix essentially added

a conditional operator to verify whether the volume variable is null in the DataNode

class. The changes to FsDatasetImpl and VolumeScanner are to adopt existing codes

to the changes. In addition, a new test case is added to the TestFsDatasetImpl class

to test the DataNode.reportBadBlocks method when the volume is null. The logged

classes overlaps with the fixed classes DataNode and VolumeScanner.

We further manually examine the bug reports in which no existing Java classes

were modified in the bug fix. We manually study a statistically representative ran-

dom sample of 162 bug reports out of the 191 bug reports (with a confidence level

of 95% and a confidence interval of 3%). We classify these bug reports into four

categories: non-Java code changes, configuration file changes, only added new Java

classes, and incorrect commit. Non-Java code changes (85/162) are bug fixes per-

formed on programming source code files other than .java. Such source code files are

usually system-specific. For example, in HIVE, a big majority of these bug reports

changed test query files (.q) and test query result files (.q.out). Configuration file

changes (65/162) are bug fixes that only modified configuration files, such as manag-

ing dependencies in .xml file for Maven projects. Only added new Java classes (8/162)
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Table 7: Examples of direct mapping between logged classes and fixed classes. Note

that we simplify these examples by only showing the class name instead of the fully-

qualitified class name.

Bug Report Logs Logged Fixed classes Overlaps

classes

HADOOP-5233

...

2009-02-12 08:35:36,417 INFO org.apache.hadoop.map

-red.TaskTracker: Task attempt_200902120746_0297_r

_000033_0 is in COMMIT_PENDING

2009-02-12 08:35:36,417 INFO org.apache.hadoop.map

-red.TaskTracker: attempt_200902120746_0297_r_0000

33_0 0.33% reduce > sort

TaskTracker

JobInProgress

Task

TaskInProgress

TaskStatus

TaskTracker

TaskTracker

HDFS-10512

...

2016-04-07 20:30:53,831 ERROR org.apache.hadoop.

hdfs.server.datanode.VolumeScanner: VolumeScanner

(/dfs/dn, DS-89b72832-2a8c-48f3-8235-48e6c5eb5ab3)

exiting because of exception java.lang.NullPointer

-Exception

at org.apache.hadoop.hdfs.server.datanode.DataNo

-de.reportBadBlocks(DataNode.java:1018)

at org.apache.hadoop.hdfs.server.datanode.Volume

-Scanner$ScanResultHandler.handle(VolumeScanner

.java:287)

at org.apache.hadoop.hdfs.server.datanode.Volume

-Scanner.scanBlock(VolumeScanner.java:443)

at org.apache.hadoop.hdfs.server.datanode.Volume

-Scanner.runLoop(VolumeScanner.java:547)

at org.apache.hadoop.hdfs.server.datanode.Volume

-Scanner.run(VolumeScanner.java:621)

...

DataNode

VolumeScanner

DataNode

FsDatasetImpl

TestFsDatasetImpl

VolumeScanner

Datanode

VolumeScanner
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are bug reports where only new Java classes were added to the studied system, and

no existing Java class was modified. For such bugs, it is impossible for the logs to be

mapped to a new fixed class that is yet to exist in the system. We also find that this

type of bug fixes is uncommon and developers often modify other configuration files

to adopt the newly added Java classes. Finally, incorrect commit (4/162) consists

of bug reports where bug fixes were committed with the incorrect bug ID. In short,

our findings show that it is common for developers to modify files that are written

in different programming languages, and some bugs can actually be fixed by modify-

ing configuration files. Future studies should consider the polyglot nature of modern

software systems and the importance of configuration files in fixing bugs.

The fixes to 88% (1,370/1,561) of the BRWL included modifications to existing

Java classes. We find that 73% (995/1,370) of the bug reports have overlaps

between the logged classes and fixed classes. Depending on the quality of the

logs, the logged classes can locate up to 51.6% (44% on average) of the fixed

classes. Although the user-provided logs provide a good indication on the bug

fixing locations in some situations, there is still an average of 56% of the fixed

classes that have no overlap with the logged classes.

3.3.3 RQ3: Why do some fixed classes have no overlap with

the logged classes?

Motivation. Unlike bugs that are uncovered during development phases, many user-

reported bugs are difficult to reproduce and often lack test cases [168, 197, 199]. In

such cases, developers rely on logs during the debugging process [195, 196, 197]. How-

ever, as we found in RQ2, even though there is an overlap between logged classes and

fixed classes, there are some bugs where the user-provided logs cannot help identify

fixed classes (27%, 375/1,370) after excluding the bug reports that had no modified

Java class in bug fixes. Therefore, in this RQ, we manually investigate the reasons

why certain user-provided logs fail to find the fixed classes (i.e., cannot help iden-

tify any fixed classes). Our findings may provide insights on helping researchers and

practitioners improve the current logging practice.

Approach. We manually study the bug reports in which the logs could not help

identify fixed classes at all. From RQ2, we find that 27% (375/1,370) of bug reports
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have no overlaps between the logged classes and fixed classes. Hence, we then manu-

ally study 278 out of 375 such bug reports to achieve a confidence level of 95% and a

confidence interval of 3% [127]. We manually studied the bug reports. In particular,

we examined the bug reports, the attached logs, the bug fixes, source code classes,

and the development history (e.g., prior commits) to understand the reason. We took

notes while studying each bug report. At the end of the process, we uncovered a list

of categories for which there was no direct mapping between logged classes and fixed

classes. We then revisited and assigned each bug report to the uncovered categories.

We verified the assigned categories and any discrepancy (e.g., on which category the

bug report belongs to) is discussed until there is a consensus.

Results. In total, we uncovered two categories of reasons for which there was no

direct mapping between the logged classes and fixed classes. Below, we discuss each

category in detail.

Logs that show the failure but not the fault (i.e., the root cause) (266/278).

We find that reporters in most of the 278 studied bug reports attached related logs

to the bug, but the logged classes do not have an overlap with the fixed classes. In all

the cases that we manually studied, the logs are reported to illustrate an unexpected

behavior (i.e., the failure [68]). The majority of the cases (i.e., 202 bug reports) are

related to stack traces. As stack traces are used to provide debugging information

at the point of failure, the faulty classes (i.e., the cause of the bug) do not fall into

the stack frames of the stack traces. Figure 8 shows an example. In STORM-2496, a

reporter attached stack traces to show the failure AuthorizationException when users

upload dependency artifacts. In this stack trace, we see the list of stack frames lead-

ing to the exception and the state of the user’s access permission being null. However,

DependencyUploader, the essential class that manages permissions and where the bug

fix was applied, is not shown in the logs. The reporter also did not attach the logs

that happened before the exception, which may show the execution path that led to

the exception and help locate the root cause.

Similar to the prior study by Moreno et al. [128], we further analyze the shortest

path in the call graph between the fixed classes and classes found in the logs at class

level. Although some user-provided logs cannot help to identify any fixed classes,

we want to investigate how far away the logged classes are from the fixed classes in

the system. Thus, we further analyze the distance between the fixed classes and the
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Figure 8: An example bug report (STORM-2496) that shows the reporter attached

logs to illustrate unexpected behaviors (i.e., failure). The bug fix was applied in a

related class (i.e., DependencyUploader), but the class is not shown in the stack trace.
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Table 8: Percentage of bug reports and fixed classes located at different distances,

where the distance is calculated as the shortest path between the logs and fixed

classes in terms of class invocations. When there is no path between the logs and

fixed classes, the fixed classes are marked as unreachable.

# BR # fixed classes

total dist=1 dist>1 unreachable total dist=1 dist>1 unreachable

266 61 (23%) 13 (5%) 192 (72%) 564 83 (15%) 19 (3%) 462 (82%)

logged classes. First, we select the commit prior to the bug fixing commit as our

affected version (i.e., the bug is still unresolved). Then, we derive the system call

graph on the affected version using JavaParser [1]. JavaParser is a static analysis tool

that transforms the source code to Abstract Syntax Tree (AST) for Java applications.

We traverse the method calls in the ASTs to uncover all the paths in the call graph.

Once the paths are generated, we calculate the distance for the shortest path, if it

exists, between the fixed classes and the logged classes by applying depth-first search.

Table 8 shows the percentage of bug reports and fixed classes located at different

distances. For the 266 bug reports that belong to this category, 61 (23%) bug reports

have fixed classes that are one distance away from the classes shown in the logs, 13

(5%) are two distance or further, and 192 (72%) bug reports have fixed classes that

are unreachable from the classes in the logs. The result implies that 28% of the

studied bug reports have the fixed classes that are reachable (i.e., one distance away

or further in the call graph) to the classes in logs. Besides, in terms of the number

of fixed classes in stack traces, our finding shows that up to 18% of the fixed classes

(15% that are one distance away from the logged classes, and 3% are two distance

or further) can be located in the call graph. The result shows that even for some of

the bug reports which have no overlap between the logged classes and fixed classes,

the execution path re-constructed from the logged classes may be used to suggest the

potential bug fixing locations.

There are a few other reasons where the fixed classes cannot be located using

the attached logs. Figure 9 shows an example of such bug reports. In this exam-

ple, DataNode throws IOException when one of the partitions does not have enough
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Figure 9: An example bug report (HADOOP-1189) that highlights the insufficient

disk space left in one of the partitions. The bug fix updated the FSDataset class

which is not shown in the logs (but based on our manual study, the FSDataset class

is invoked between the first log and the second log).
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remaining disk space. The logs show the execution of blocks (i.e., in a distributed stor-

age system, blocks are essentially chunks of files that are stored across DataNodes)

when writing to DataNode. The bug occurs inside the getAvailable method, from

the FSDataset class, that incorrectly calculates the available space. The getAvailable

method was executed as part of the execution between the first log snippet carrying

the message of “No space left on device while writing ...” and the stack trace throw-

ing the IOException. However, the class (i.e., FSDataset) is not recorded in the stack

trace since calls to the class have returned before throwing exceptions, so are no longer

available in the stack. Since logs are expensive to maintain and monitor [108, 196],

developers may need to prioritize on logging the essential code snippets. Hence, some

code snippets may be ignored and not logged. As shown in the previous example, an

important code snippet was hidden between two logging statements. One potential

direction for future research is to focus on reconstructing the execution path among

logs and uncover the hidden paths between logs to further assist debugging.

Our finding indicates that reporters often only attach debugging information for

the point of failure (e.g., stack traces). Although such information is helpful, there is a

missing link between the failure and the root cause of the problem in the source code.

Reporters may consider attaching additional logs (e.g., log snippets) that show the

execution of the system in addition to stack traces. Additional research is required

to help reporters provide missing logs in bug reports that complete the execution

information and help developers with debugging the problem.

To better illustrate the cases where the fixed classes are unreachable through the

call graph, Figure 10 shows such example. The bug report Eclipse PDE 266964 shows

an IllegalStateException when modifying the preferred platform. This error is due to

the user job that keeps running while the user switches the target platform. The

stack trace shows that the Worker class continues to process the user job which leads

to the IllegalStateException. The developers discussed in the comments that such use

cases should not be allowed. The fixed classes were TargetPlatformPreferencePage2,

TargetEditor and LoadTargetDefinitionJob. The fix ensured that any existing jobs

are cancelled before the target platform switches. In such cases, the bug fix occurs in

a small workflow change of the system, and it is almost impossible for developers to

show such details in logs.

Code evolution (12/278). We find that sometimes the source code that generates
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Figure 10: An example bug report (Eclipse PDE Bug 266964) where the fixed

classes are unreachable through the call graph.
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the logs no longer exists. In other words, the logs that the reporters provide are from

an older version of the system. The logging statements or the source code class may

have been removed during evolution. In such cases, developers may have additional

challenges in understanding and fixing the bug. In addition, we find that 28.1%

(323/1,151) of the studied bug reports do not have values for the Affects Version field

(i.e., entered by the reporter or developers to indicate which versions they observed

the bug). Even if the bug reports have Affects Version, only 32.4% (268/828) of

the bug reports have the same Fix Version as the Affects Version. Note that we

exclude PDE and AspectJ bug reports from this analysis since the Fix Version field

is not available on Bugzilla. Namely, developers often debug and perform the fix

on a different version of the code and not on the reported Affects Version. Our

finding highlights that version information is essential for a high-quality bug report.

Therefore, reporters are strongly suggested to include version information of the buggy

system when submitting a bug report. Future studies should also be conducted to

help developers analyze such bug reports by taking the past development history (e.g.,

prior source code changes) into consideration, since the fixes may need to be applied

to newer versions of the system.

Our manual study finds that some user-provided logs only show the unexpected

behavior (i.e., failure), but do not show the root cause of a bug nor the execution

that led to the failure. Reporters should consider attaching additional logs to

assist in debugging. In addition, some attached logs are from prior versions of the

systems and can no longer be found in the source code. Future research is required

to utilize prior source code changes as an important debugging hint for developers

when analyzing bug reports.

3.4 Discussion and Implication of Our Findings

In this section, we summarize our findings and provide some discussion and implica-

tions.

More research and supports are needed for logging code evolution. In

our manual study in RQ3, we find that some user-provided logs (i.e., either stack

traces, log snippets, or both) can no longer be found in the version that developers

are working on. Different from a prior study [198], we found that it is not uncommon
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for logging statements or methods in stack traces to be removed from the source

code. If developers are not familiar with the system, such logging statement changes

can cause additional challenges during debugging. Future studies should consider

analyzing software development history and help developers locate the user-provided

logs, for which the corresponding logging statements/methods were deleted or moved.

In addition, for reporters, it is essential to provide the version information of the

system when reporting a bug.

Reporters need additional assistance on providing logs in bug reports.

Although logs provide important debugging information for developers, reporters may

not be able to provide accurate logs that can illustrate the problem. For example,

we find that reporters may attach incomplete logs or logs that only illustrate the

exception. Hence, future studies should also consider helping reporters provide more

accurate logs that can better assist debugging. One potential direction is to study

the part of system execution that is not illustrated in the reported logs to find the

missing link between the failure and the root cause of the problem.

Future studies could consider using execution paths that are re-constructed

from readily-available runtime data to provide additional debugging sup-

ports. We find that, even though the quality of user-provided logs may not be

perfect, these logs still provide a good indication of the fixed classes. Our finding

highlights a potential direction that may further assist developers with debugging.

For example, future studies may leverage logs to re-construct the execution paths

between each log message or stack frame. For instance, as shown in Figure 9, al-

though the fixed class is invoked on the execution path leading to the bug, but it

does not directly appear in the reported stack trace. Therefore, to further assist de-

velopers in debugging, additional research is needed to leverage user-provided logs in

re-constructing the execution paths leading to failures.

3.5 Threats to Validity

In this section, we discuss the threats to validity related to this study.
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3.5.1 External Validity.

Threats to external validity are related to the generalizability of our findings. To

increase the generalizability of our study, we conduct our case study on 10 large-

scale open source systems that vary in size and infrastructures (e.g., data warehouse,

real-time computation system, distributed file system). These systems are actively

maintained and widely used. Although all the systems are Java-based, our approach

is not limited to Java systems. We present our approach in a generic way that can

easily be adapted to fit systems in other programming languages (e.g., by changing

the regular expression). To reduce the external threat to validity, we include systems

from different domains, ranging from databases to software development tools. We

found that the results are similar across the studied systems. However, other system

types, such as mobile applications, may use logs differently (e.g., for in-house debug-

ging [202]) and our findings may not hold. Future studies are encouraged to conduct

the analysis on systems in more diverse domains to improve the generalizability of

our findings. For RQ3, we mitigate the sampling bias by ensuring the sample falls

into a confidence level of 95% with a confidence interval of 3%. When sampling for

our manual data set, we carefully respect the sample size of each studied system and

sampled proportionally according to the number of bug reports per system.

3.5.2 Internal Validity.

Threats to internal validity are related to experimenter errors and bias. Our study

shows that the results of direct mapping between logged classes and fixed classes

highly depend on the quality of user-provided logs. Thus, the extracted logs are an

internal threat to the validity of our study. To mitigate this threat, we choose 10

systems that vary in software maturity, to better observe the difference in log quality

of each studied system.

Another threat to internal validity is that we use bug IDs in commit messages

to identify bug fixing commits. Although the developers in the studied systems are

required to provide bug IDs in commit messages as part of the development guideline,

there may still be some mistakes. For example, in our manual study in RQ3, we found

a few cases where developers made a typo when providing bug IDs in the message.

Nevertheless, we find such cases to be rare, and based on our manual study on a

statistically representative sample, the heuristic has a very high precision (99%).
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Another threat to internal validity is the way in which we collected the bug reports

with logs. Typically, reporters attach logs in the bug description or as comments.

Sometimes, when the logs are too long, reporters may upload them as attachments.

Therefore, bug reports with logs might also include those that have log files in at-

tachments. We further investigate this possibility, and find only a small number of

the reporters upload logs as attachment (i.e., in 51 out of 8,849 bug reports, log files

were added as attachment), which limits the impact of this threat.

In our study, we selected bug reports with priority “Major” or higher because bug

reports with a lower priority may have less of an impact on the overall quality of

the system. Moreover, these bug reports are less likely to be fixed. For example, we

find that only 14% of the bug reports with logs marked as “Minor” or less were fixed

in Hive, 13% in Hadoop Common and Storm, and 12% in MapReduce. Therefore,

we follow prior studies [42, 46, 199] and focus our analysis on the bug reports with

priority “Major” or higher.

3.5.3 Construct Validity.

In this chapter, we have two manual studies. One investigates the reasons why some

bug reports had no modification on existing Java files. The other one studies the

reasons why some bug reports have no overlaps between the logged classes and fixed

classes. Human biases may be introduced. To reduce the bias of our analysis, we have

a second author to verify the assigned categories and any discrepancies are discussed

until consensus is reached.
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Chapter 4

Pathidea: Improving Information

Retrieval-Based Fault Localization

by Re-Constructing Execution

Paths Using Logs

In the last chapter, we conducted an empirical study on the usefulness of user-reported

logs in debugging. Although these logs often offer valuable insights into the locations

of faults, many of them may lack comprehensive system execution information. They

often only indicate the point of failure without directly hinting at the actual root

cause. In our empirical study, we presented logs as valuable information that can

be leveraged to reconstruct system execution paths when an issue occurs, thereby

assisting developers with debugging. A natural question that arises is how we can

effectively utilize the reconstructed execution paths in a fault localization technique.

This chapter covers an information retrieval-based fault localization (IRFL) approach,

Pathidea, which addresses this aspect.

To help developers speed up the debugging process, researchers have proposed

various IRFL approaches [29, 54, 90, 112, 117, 151, 161, 171, 206]. As introduced

in Section 2.3, IRFL approaches leverage information retrieval to help developers

locate potentially faulty files. Given a bug report, IRFL approaches use its textual

information as queries to generate a ranked list of source code files, based on their

textual similarity, that are potentially faulty. To improve the performance of IRFL,
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researchers have proposed approaches that utilize various information in software

repositories, such as similar bug reports from the past [206], software development

history [161, 175], and structured information in bug reports [171].

In addition to the textual description of a bug, developers often provide the system

execution information when a bug happens. Developers may attach log snippets

(e.g., 2015-07-01 19:24:12,806 INFO org.apache.ZooKeeper.ClientCnxn: Client session

timed out) or stack traces (e.g., java.lang.NullPointerException) that show a snapshot

of the system execution. Prior studies [38, 108, 195] show that logs (i.e., log snippets or

stack traces) can be mapped to source code to re-construct execution paths and assist

developers with debugging. Even though a number of IRFL approaches [180, 206]

try to leverage stack traces in bug reports, they only analyze the file names that

appear directly in stack traces to boost the fault localization performance. Yet, the

embedded system execution information, which can be re-constructed by linking the

logs to their corresponding location in the source code, may further help improve the

performance of IRFL approaches.

In this chapter, we proposed Pathidea, a new IRFL approach that uses static

analysis to re-construct execution paths from logs in bug reports to help locate the

potential faulty files. To the best of our knowledge, Pathidea is the first approach

that incorporates the re-constructed execution paths into the IRFL approach. We

conducted a case study to evaluate Pathidea on eight open source systems. The re-

sults demonstrate that Pathidea can identify faulty files with high precision and recall

values, and outperforms existing state-of-the-art IRFL approaches. Our results show

that the re-constructed execution paths can complement existing IRFL approaches

by improving fault localization performance. Our evaluation presents a parameter

sensitivity analysis and provides recommendations on setting the parameter values

when applying Pathidea. In summary, our approach sheds light on further improving

IRFL approaches by combining information in bug reports with the source code. Fu-

ture studies may consider leveraging such execution paths information when designing

IRFL approaches.

An earlier version of this chapter has been published at IEEE Transac-

tions on Software Engineering (TSE), 2021. Pages 2905-2919. Chen et al.

[39]
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Bug ID YARN-8209

Summary NPE in DeletionService

Stack Trace

2018-04-25 23:38:41,039 WARN concurrent.ExecutorHelper

↪→ (ExecutorHelper.java:logThrowableFromAfterExecute(63)): java.lang.NullPointerException

at DockerClient.writeCommandToTempFile (DockerClient.java:109)

at DockerCommandExecutor.executeDockerCommand (DockerCommandExecutor.java:3)

at DockerCommandExecutor.executeStatusCommand (DockerCommandExecutor.java:192)

at DockerCommandExecutor.getContainerStatus (DockerCommandExecutor.java:128)

at LinuxContainerExecutor.removeDockerContainer (LinuxContainerExecutor.java:935)

at DockerContainerDeletionTask.run (DockerContainerDeletionTask.java:61)

at java.lang.Thread.run (Thread.java:748)

Figure 11: Stack traces extracted from the bug report YARN-8209.

4.1 Motivation

The textual information in bug reports often provide hints on where the faults may be

located. To help developers reduce the needed time for locating the faults, researchers

have proposed a series of IRFL approaches [29, 54, 90, 112, 117, 151, 161, 171, 206].

Although IRFL approaches have shown promising results, most of the prior studies

only treat the information in bug reports as pure text. However, in addition to the

textual description in bug reports, developers also heavily rely on the logs that the

reporters provide to understand and debug issues [27]. As we discussed in the previous

chapter, logs, either log snippets or stack traces, show the partial system execution

when a problem occurs. Prior studies [108, 195] show that logs can be mapped to

source code and assist developers with understanding the system execution during

debugging and maintenance. Such valuable information may further help improve

the performance of IRFL approaches.

Figure 11 depicts the stack trace extracted from the Description section of a

bug report from YARN. Based on the textual information in the stack trace, IRFL

approaches may identify files such as DockerClient, DockerCommandExecutor, Linux-

ContainerExecutor, and DockerContainerDeletionTask (i.e., the name of the files shown

in the stack trace) as potentially faulty files. However, the information is limited as

we may overlook what happens between each stack frame. To resolve this bug, the

developers provided a fix to the PrivilegedOperation file (shown in Figure 12), which
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1 public class DockerCommandExecutor {

2

3 public static String executeDockerCommand (DockerCommand dockerCommand, ...)

↪→ throws ContainerExecutionException {

4

5 PrivilegedOperation dockerOp = dockerCommand.preparePrivilegedOperation

↪→ (dockerCommand, ...);

6

7 if (disableFailureLogging) {

8 dockerOp.disableFailureLogging();

9 }

. . .

31 }

. . .

251 }

Figure 12: Simplified source code from DockerCommandExecu-

tor.executeDockerCommand. The fix of YARN-8209 was applied in Privileged-

Operation.

is called during the execution shown in the second last stack frame (at DockerCom-

mandExecutor.executeDockerCommand (DockerCommandExecutor.java:3)), but not in-

cluded in the stack trace (i.e., the call to PrivilegedOperation is already popped from

the stack). Therefore, such hidden execution is invisible to IRFL approaches. Thus,

in this chapter, we aim to utilize the execution paths information that can be re-

constructed from logs to provide more information and improve fault localization

performance.

4.2 Related Work

Some prior studies on IRFL leverage the system execution information (e.g., stack

traces or test case execution) in bug reports to help locate faulty files. Dao et al.

[54] leveraged the coverage, slicing, and spectrum information in failed test cases

to improve IRFL. Wong et al. [180] propose BRTracer, a bug-report-oriented fault

localization tool. The tool is built on top of BugLocator [206] and uses the file names

that appear in stack traces to further rank the suspicious files. They studied 3,459 bug
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reports across three systems in which only 17% of the bug reports include stack traces.

In addition to stack traces, Youm et al. [193] propose a new bug localization approach,

BLIA (Bug Localization using Integrated Analysis) that integrates analyzed data by

utilizing structured information in bug reports and source code files, code change

history, similarity analysis of existing bug reports, and stack traces.

Prior studies only leverage the “visible” information in bug reports (e.g., stack

traces). However, as shown in Figure 11 and 12, sometimes the hidden execution

paths that can be re-constructed in bug reports can provide additional information

for debugging and fault localization. In the previous chapter, we study if the logs in

bug reports can be used to locate faulty files. We find that logs in bug reports provide

a good indication on where the faulty files, although the provided logs may be out-

dated or can no longer be found in the source code. In this chapter, we leverage the

stack traces and log snippets in bug reports to re-construct the system execution paths

to complement IRFL approaches. We propose an IRFL approach called Pathidea and

we find that it achieves better performance compared to state-of-the-arts such as BR-

Tracer. Moreover, we find that the hidden execution information re-constructed from

our path analysis can also help improve the performance of existing IRFL approaches

(see details in Sections 4.5.1 and 4.5.2).

4.3 Pathidea: Path-guided Fault Localization

In this section, we first present an overview of Pathidea. Then, we describe each step

of our approach in detail.
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Figure 13: An overview of Pathidea.
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4.3.1 An Overview of Pathidea.

Figure 13 shows an overview of our approach, which contains four major steps: (1) In

the source code analysis step, we build a Vector Space Model (VSM) and compute an

initial similarity score between the bug report and the source code files. We denote

this initial score as VSM score. (2) In the log analysis step, we highlight the related

files that appear directly in the logs using regular expression. Depending on the type

of log, we apply different strategies to derive a boost score (i.e., to adjust the weight

of the files), denoted as log score. (3) In the path analysis step, we re-construct the

file-level execution paths from the logs to find the files which were called during the

execution time. We assign a new boost score, which we denote as the path score, to

these files. (4) Finally, we add the log and path scores into our initial similarity score

to calculate the final suspiciousness score of a file. We rank the files based on the

suspiciousness score and derive a list of ranked files for investigation. In the following

subsections, we discuss the aforementioned steps in detail.

4.3.2 Analyzing Source Code Files and Bug Reports.

To analyze the source code files and bug reports, we follow common source code pre-

processing steps [47]. We first tokenize the source code file into a series of lexical

tokens and remove programming language specific keywords [139] (e.g., for and while

for Java). Next, we split concatenated words based on camel case (e.g., getAver-

age) and underscore (e.g., get average) and remove stopwords (e.g., the and and).

We use the list of stopwords from the Natural Language Toolkit (NLTK) library in

Python [138]. Finally, we perform Porter stemming to remove morphological affixes

from words and derive their common base form (e.g., running becomes run). As men-

tioned in Section 2.3, the output of this process is a collection of corpus, where each

document represents a source code file. Given a bug report, we extract the lexical

tokens from the summary and description fields. To represent each bug report as a

search query, we follow the same pre-processing steps described above.

Since larger files contain more tokens, by nature, large files are more likely to be

favored in fault localization [180]. Thus, to treat all files equally regardless of its size,

we follow a prior study [180] by using a segmentation approach when creating the

corpus. The segmentation approach divides each file into multiple segments of code

snippets of the same size. Namely, each document in the corpus represents a segment
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of code snippets from a source code file. Then, given a bug report, the corresponding

file of the segment that has the highest suspiciousness score is marked as the most

suspicious file for investigation. Similar to the study by Wong et al. [180], we set the

segment size to 800 tokens.

More specifically, Formula 6 below calculates the VSM score between a file f and

a bug report br, where suspiciousnessmax(seg, br) is the maximum cosine similarity

score between all the segments seg in f and br.

VSM Score(f, br) = suspiciousnessmax(seg, br). (6)

4.3.3 Analyzing Log Snippets and Stack Trace Information

Logs provide an important source of information to developers. Prior studies [43,

48, 93, 195] have shown that developers often leverage logs to understand how the

system was executed for debugging and testing purposes. Thus, our approach aims

to utilize both types of logs (i.e., log snippets and stack traces) to further assist fault

localization. We compute additional suspiciousness scores for the files that generate

the logs. We denote the additional suspiciousness score computed from the logs as

the log score.

To analyze the logs, we first capture them from a bug report using regular expres-

sions. In particular, for stack traces, we check for the at keyword followed by a file

name that ends with .java. For log snippets, we look for a timestamp followed by a

verbosity level and a fully qualified class name. For instance, given the following log

line “2015-07-01 19:24:12,806 INFO org.apache.ZooKeeper.ClientCnxn: Client session

timed out”, our regular expression captures “2015-07-01 19:24:12,806” as the times-

tamp, “INFO” as the verbosity level, and “org.apache.ZooKeeper.ClientCnxn” as the fully

qualified class name. We use the fully qualified class name to derive its corresponding

file name. Next, we verify in the source code repository whether the file exists. This

helps us remove the files that are part of the external libraries. Finally, we calculate

the log score differently for files extracted from stack traces and from log snippets.

For stack trace, we use the rank of the file in the call stack to assess its suspiciousness

score by following a prior study [180]. If a file appears on the top of the stack trace,

it is ranked the first and receives a higher suspiciousness score. Given a rank position

i, if i is within the top 10 ranks, the suspiciousness score is inversely proportional to
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the rank (e.g., the second ranked file receives a suspiciousness score of 0.5). For any

rank position i beyond top 10, the file receives a constant suspiciousness score of 0.1.

Formula 7 below calculates the log score for files in a stack trace.

LogScore(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
rank

if rank ≤ 10

0.1 if rank > 10

0 if file not found

(7)

For log snippets, we assign a constant value of 0.1 to every mapped file. We denote

this constant value as α. We use α as a parameter to attribute a suspiciousness score

to each file mapped from log snippets. In RQ3, we further investigate the sensitivity

of the value for α.

When multiple stack traces are attached in a bug report, we regard them as equally

valuable. Therefore, to further refine our approach, we reset the rank back to 1 when

a new stack trace begins. In log snippets, when the same file appears multiple times,

it is only computed once in the log score. Figure 14 shows an example of the log score

computation. The logs start with a log snippet containing two log lines: “task_r_1

done copying task_m_0” and “task_r_1 Copying task_m_1”. As both lines are generated

by the same file, that is ReduceTask.java, the log score is only computed once with

a constant value of 0.1. Two stack traces follow the log snippet. The first stack

trace throws a java.lang.OutOfMemoryError, where the file SequenceFile.java appears

in the first stack frame. Therefore, it is ranked as the first place, and its log score

is 1.00. Similarly, the file in the second stack frame (i.e., SequenceFile.java) receives

a log score of 0.50. The second stack trace throws a java.lang.NullPointerException,

in which InMemoryFileSystem.java, FileSystem.java and ReduceTask.java receive their

respective log score based on their order in the stack frames (i.e., 1.00, 0.50 and 0.33,

respectively).
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Logs

2008−01−07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task r 1 done copying task m 0

2008−01−07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task r 1 Copying task m 1

...

2008−01−07 21:02:13 WARN org.apache.hadoop.mapred.ReduceTask: java.lang.OutOfMemoryError: Java heap space

at org.apache.hadoop.io.SequenceFile$Reader.init (SequenceFile.java:1345)

at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:1311)

2008−01−07 21:02:31 ERROR org.apache.hadoop.mapred.ReduceTask: java.lang.NullPointerException: Map output copy

↪→ failure

at org.apache.hadoop.fs.InMemoryFileSystem.close (InMemoryFileSystem.java:378)

at org.apache.hadoop.fs.FileSystem.getLength (FileSystem.java:449)

at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:665)

Log Snippet #1

Rank File Log Score

1 ReduceTask.java 0.10

Stack Trace #1

Rank File Log Score

1 SequenceFile.java 1.00

2 ReduceTask.java 0.50

Stack Trace #2

Rank File Log Score

1 InMemoryFileSystem.java 1.00

2 FileSystem.java 0.50

3 ReduceTask.java 0.33

Figure 14: An example of the log score computation when there are log snippet and multiple stack traces.
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4.3.4 Analyzing and Re-constructing Execution Paths.

As discussed in Section 2.3 and 4.1, most prior studies only consider the textual

information that is available in the bug report. Since logs can be further mapped to

the source code, there may be valuable information in the source code that can help

developers to better understand the system execution. To this end, we analyze the

logs and re-construct the potential execution paths. We describe the steps as follow.

We first extract the related methods and files that appear in the logs. We verify

that such methods and files exist in the source code repository. Then, for each

related method call, we derive the method-level Abstract Syntax Tree (AST) using

Javaparser [137]. Javaparser is a static analysis tool that supports many Java versions

and is actively maintained. The AST tree allows us to traverse the AST nodes and

find the method calls inside each method declaration. We statically construct the

execution path from the AST tree of the method by linking each method call into

its method declaration. If a related method call appears in the execution path, we

mark it as visited. The execution path continues to expand until the last method

call in the log is visited. Once the execution path is re-constructed, we analyze

the execution order of the related method calls and uncover the potential execution

paths. Algorithm 1 shows the pseudo code of our implementation. The algorithm

takes extracted logs from bug reports as input, and outputs the potential execution

paths. First, we initiate a global variable (line 2) executionPaths to store the re-

constructed execution path. When we iterate through the logs, we assign the current

log at position i and the next log at position i+1 (line 4-5). Then, the execution

paths are derived from the logs (line 6). The findPathBetween function essentially

implements the Breadth-First-Search (BFS) algorithm to traverse the call graph. In

this process, we record every possible path that connects the current log to the next

log. If two consecutive logs are identical (i.e., have the same log template), we remove

one from the logs (e.g., the logs may be generated in a loop). Once the execution path

is re-constructed, we store it in the local variable paths (line 6), which is then added

to the global variable executionPaths (line 7). Lastly, we return the global variable

executionPaths (line 9).

Note that a path is constructed for each sequential set of logs (e.g., logs belong to

the same thread). Thus, after we have obtained the re-constructed execution paths,

there may be some duplicated paths due to the looping of some logs generated at
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Algorithm 1 Execution Paths Re-Construction Algorithm

Input: Extracted Logs

Output: Execution Paths

1: procedure findExecutionPath(logs)

2: initialise executionPaths

3: for i=1; i<logs.length do

4: currentLog = logs.atPosition(i)

5: nextLog = logs.atPosition(i+1)

6: paths = findPathsBetween(currentLog, nextLog)

7: executionPaths.add(paths)

8: end for

9: return executionPaths

10: end procedure

runtime by different threads. Therefore, we compare the sequence of method calls

inside each generated path and remove the duplicated paths.

In our experiment, we use a virtual machine, with a four-core Intel Xeon (Skylake,

IBRS) CPU (2.10 GHz) and 5 GB of RAM. On average, the call graph analysis and

path construction take 22 minutes for the entire system, where the size of our studied

systems varies from 79k to 1.2 million source lines of code. Note that the call graph

analysis only needs to be done once, since, in practice, we can incrementally update

the call graph based on the code changes in each commit. Therefore, we believe that

the additional call graph analysis and path construction time is reasonably acceptable

and would not affect the usability of the approach.

Once the execution paths are re-constructed, we compute the path score for every

file on the execution paths. We compute the path score as follows:

PathScore(f, br) = β ×N(V SMScore(f, br)) (8)

Given a bug report br, V SMScore(f, br) is the cosine similarity score between

file f and the bug report, where N is the normalization function that normalizes

V SMScore(f, br) to a value in the range of between 0 and 1, and β denotes the

weight of V SMScore(f, br), that is between 0 and 1.
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When a file appears on the path, the parameter β boosts the suspiciousness score

to favor the files that were on the execution path. The faulty files may be one of the

files that are on the execution path [195]. By introducing the path score, we are able

to better distinguish the relevant files on the execution path from the less relevant

files. In our study, we set β to 0.2 (we evaluate the effect of β in RQ3).

We explain the aforementioned path score computation in detail with Figure 15

that serves as our running example. We derive the running example from a real bug

report. We simplify the code for the ease of explanation and limit the call graph to

a depth of one. In this example, our goal is to derive the execution path from the

logs and compute the path score. This process of re-constructing the execution path

is analogous to the sailing boat traveling back to the shore. The idea is that the

running execution (the sailing boat) navigates through the logging statements (the

beacons) in order to reach the potentially faulty classes (the shore). First, the logging

statements are an analogy of ”beacons”. The running execution finds and connects

each of the logging statements in order to reconstruct the execution path. Starting

from the reported logs, each log line is mapped to its corresponding logging statement

by matching the static part of the logging statement. In our running example, by

comparing each log line to the static part of the logging statements, we find that the

log line “2019-01-07 21:02:13 INFO ReduceTask: task r 1 initialized” is generated by the

logging statement at line 3, and the log line “2019-01-07 21:02:13 INFO ReduceTask:

runNewReducer called” is produced by the logging statement at line 12. Based on

this information, we re-construct the execution path by connecting these two logging

statements, and find the call path [2–6, 10, 11–16] that contains both of the logging

statements at line 3 and 12. Since the logging statement at line 18 is not executed

nor recorded, the analysis excludes runOldReducer() in the execution path. Then,

the classes that appear on the execution path are treated as the potentially faulty

classes. The list of classes collected in our running example are: JobConfiguration,

Reducer, and Context. Note that only the classes that are relevant to the project

are collected. As these classes might have data dependencies with the bug (or even

contain the bug), we assign a PathScore to the files that contain these classes to boost

their suspiciousness score based on Formula 8.
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Logs

1○ 2019-01-07 21:02:13 INFO ReduceTask: task_r_1 initialized

2○ 2019-01-07 21:02:13 INFO ReduceTask: runNewReducer called

3○ 2019-01-07 21:02:13 INFO ReduceTask: task_r_1 done

Code Snippets Executed Class boosted by path

1 class ReduceTask { • -

2 void run_task(String task_id, JobConfiguration job){ • -

3 log.info(task_id + ’ initialized’); //1○ • -

4 boolean useNewApi = job.getUseNewReducer(); • JobConfiguration

5 if (useNewApi) { • -

6 runNewReducer(); • -

7 } else { ◦ -

8 runOldReducer(); ◦ -

9 } ◦ -

10 log.info(id + ’done’); //3○ • -

11 void runNewReducer(){ • -

12 log.info(’runNewReducer called’); //2○ • -

13 Reducer reducer = createReducer(job); • Reducer

14 Context context = createReduceContext(); • Context

15 reducer.run(context); • -

16 } • -

17 void runOldReducer(){ ◦ -

18 log.info(’runOldReducer called’); ◦ -

19 ReduceValuesIter values = new ReduceValuesIter(); ◦ -

20 values.informReduceProcess(); ◦ -

21 }

22 }
◦ -

Figure 15: An example of the execution path analysis for path score computation.
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4.3.5 Calculating the Final Suspiciousness Score.

To incorporates the vector space model, log analysis and path analysis into one com-

bined component, we calculate the final suspisiciousness score by summing up the

normalized VSM score, log score, and path score (as shown in Formula 9).

FinalScore(f, br) = N(V SMScore(f, br))+LogScore(f, br)+PathScore(f, br) (9)

4.4 Case Study Setup

4.4.1 Data Collection

We evaluate the performance of our proposed fault localization approach on the bug

reports, which contain logs (i.e., either log snippets, stack traces, or both), collected

from eight open source systems. These systems are large in size, actively maintained,

well-documented, and cover various domains ranging from big data processing to

message brokers. For each system, we collect the bug reports as follows. The bug

reports for all eight studied systems are available on the JIRA bug tracking reposi-

tory [22]. Therefore, we implement a web crawler to collect bug reports from JIRA.

We first select the bug reports that have the resolution status labeled as “Resolved”

or “Fixed”, the priority field is marked as “Major”, “Critical”, or “Blocker”, and the

creation date is 2010 or later. We download these bug reports in JSON format using

the JIRA API [76]. Then, we examine the source code repository to further select the

bug reports that have corresponding bug fixes by following prior studies [85, 209]. All

the studied systems follow the convention to include the bug report identifier (e.g.,

HADOOP-1234) at the start of the commit messages (e.g., HADOOP-1234. Fix a

typo in FileA.java) [18] and host the source code on Github. Therefore, we run the git

command, git log | grep bug_report_identifier[^\d], to check if a bug report iden-

tifier exists in any commit message. If a bug report identifier appears in a commit

message, then there is a bug fix for the bug and we identify the commit as the bug

fixing commit. Finally, to reduce noise, we exclude the bug reports in which no Java

files were modified in the bug fixes. At the end of this process, we collected a total of

6,535 bug reports in the eight studied systems. After collecting the bug reports that

have corresponding bug fixes, we further categorize the bug reports into with logs and
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Table 9: An overview of our studied systems, where BRWL denotes bug reports with

logs, and BRNL denotes bug reports without logs.

System LOC # Bug reports # BRWL # BRNL

ActiveMQ 338k 594 86 (14%) 508 (86%)

Hadoop Common 190k 725 257 (35%) 468 (65%)

HDFS 285k 1,166 229 (20%) 937 (80%)

MapReduce 198k 575 166 (29%) 409 (71%)

YARN 548k 576 241 (42%) 335 (58%)

Hive 1.2M 2,231 195 (9%) 2,036 (91%)

Storm 275k 380 61 (16%) 319 (84%)

ZooKeeper 79k 288 38 (13%) 250 (87%)

Total 3.1M 6,535 1,273 5,262

without logs.

Table 9 shows an overview of the bug reports that we collected. We denote bug

reports with logs as BRWL and bug reports without logs as BRNL. In total, there are

1,273 bug reports with logs and 5,262 bug reports without logs. Although there are

fewer bug reports with logs, the number is still non-negligible (around 20% of all bug

reports). Thus, if we can leverage the embedded information in logs, we may better

help improve fault localization.

4.4.2 Metrics for Evaluating Pathidea

To evaluate the effectiveness of our approach, we consider several commonly-used

evaluation metrics for IR-based fault localization approaches [101, 171, 175]. First,

we calculate the precision, recall, and F1-measure for the Top@N results (i.e., when

examining the highest ranked N files). Then, we calculate the mean average precision

and mean reciprocal rank (as described in Section 2.5). Below, we briefly describe

the precision, recall, and F1-measure for Top@N results.

Precision@N . Given Top@N , the precision metric calculates the percentage of

faulty files that are correctly located in the highest ranked N files. Precision@N is
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calculated as:

Precision@N =
# faulty files in top N

N
(10)

Recall@N . Given Top@N , the recall metric calculates the percentage of faulty files

(out of all faulty files) that were located in the highest ranked N files. Recall@N is

calculated as:

Recall@N =
# faulty files in top N

# total faulty files
(11)

F1@N . F1-measure, also called F1 score is the weighted harmonic mean of precision

and recall. This metric calculates the Top@N accuracy of the ranked results and

offers a good trade-off between the precision and recall. F1 score is calculated as:

F1@N = 2 · Precision@N · Recall@N

Precision@N +Recall@N
(12)

4.5 Case Study Results

In this section, we discuss the results of our three research questions (RQs).

4.5.1 RQ1: Effectiveness of Pathidea Over State-of-the-art

Approaches

Motivation: Most prior research that uses IRFL only considers the textual infor-

mation that is available in the bug report. Although logs contain textual information

of the occurred events, logs can also be further mapped to source code and assist

developers with understanding the system execution during debugging and main-

tenance [108, 195]. Such system execution information may further help improve

the performance of IRFL approaches. Therefore, in this RQ, we want to compare

Pathidea with existing IRFL approaches.

Approach: As discussed in Section 4.3, for each bug report, we compute the final

suspiciousness score for the files in the corresponding commit. We choose to use

the commit that is prior to the bug fixing commit to avoid biases. We compare the
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performance of Pathidea with two baseline IRFL approaches. A recent study [101]

shows that, among state-of-the-art IRFL approaches, BRTracer achieves the best

results in terms of MAP and MRR. In addition, similar to Pathidea, BRTracer uses

information in stack traces to improve fault localization results [180]. Hence, for the

first baseline, we compare our approach with BRTracer. For the second baseline,

we compare Pathidea with the vanilla approach that uses the basic vector space

model (VSM) for fault localization. We apply the approaches on all eight studied

systems and compare their performance in terms of precision, recall, and F1-measure

at the top 1, top 5, and top 10 ranked files. We also compare the MAP and MRR

scores of the approaches. Finally, we use the Wilcoxon rank-sum test to investigate

whether Pathidea achieves a statistically significant improvement over the baselines.

We choose the Wilcoxon rank-sum test since it is a non-parametric test that does not

have an assumption on the distribution of the underlying data [127].

Result: Pathidea significantly outperforms BRTracer and VSM in all stud-

ied systems with respect to all evaluation metrics. Table 10 compares the

results between VSM, BRTracer, and Pathidea. We find that for every studied sys-

tem, VSM performs the worst among the three IRFL approaches. Thus, we focus our

comparison between BRTracer and Pathidea. The numbers in the parentheses show

the percentage of the improvement of Pathidea over BRTracer. Compared to BR-

Tracer, Pathidea achieves an average MAP of 35% across the studied systems, which

is a 13% improvement over that of BRTracer (i.e., 31%). Across the studied systems,

the improvement in MAP varies from 8% to 24%. For MRR, Pathidea achieves an

average of 43% across the studied systems, which is a 12% improvement over that of

BRTracer (i.e., 38%).

Pathidea achieves an average Recall@10 of 50.3%, which shows that it can

identify half of the faulty files in a relatively short list. Pathidea shows a large

improvement in terms of Precision@N and Recall@N . Pathidea achieves, on average,

16%, 12%, and 11% improvement in Precision@1, 5, 10, respectively. For the average

Recall@1, 5, 10, we see 20%, 14%, and 10% improvement, respectively. Regarding the

F1-measures, Pathidea achieves an improvement between 15.5% and 31% for Top@1,

and between 13.8% and 24.0% for Top@5. The average precision values indicate that

30.6% of the located files are actually faulty at Top@1, 13.6% at Top@5, and 8.2% at

Top@10. The high average recall values indicate that Pathidea can locate 22.3% of
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Table 10: Comparisons of results between VSM, BRTracer and Pathidea. For each metric, we calculate the percentage of

improvements that Pathidea achieves over BRTracer.

System Approach Top@1 Top@5 Top@10 MAP MRR

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

ActiveMQ

VSM 7.0 3.6 4.7 4.7 14.9 7.1 3.4 20.2 5.8 0.11 0.15

BRTracer 23.3 16.6 19.4 10.9 33.5 16.5 6.9 40.1 11.7 0.28 0.34

Pathidea 29.1 (+25%) 21.4 (+29%) 24.6 (+27%) 14.4 (+32%) 43.7 (+30%) 21.7 (+32%) 9.0 (+31%) 48.3 (+21%) 15.1 (+29%) 0.34 (+21%) 0.41 (+21%)

Hadoop
Common

VSM 14.0 9.8 11.5 7.5 24.3 11.4 5.1 31.9 8.8 0.20 0.23

BRTracer 33.1 24.4 28.1 13.2 44.1 20.3 7.8 50.6 13.5 0.37 0.44

Pathidea 36.2 (+9%) 27.2 (+11%) 31.0 (+10%) 13.9 (+6%) 46.9 (+7%) 21.5 (+6%) 8.2 (+5%) 53.4 (+6%) 14.2 (+5%) 0.40 (+8%) 0.47 (+7%)

HDFS

VSM 16.2 10.6 12.8 10.1 30.3 15.2 7.1 38.9 12.0 0.23 0.29

BRTracer 25.8 19.4 22.1 14.3 44.8 21.7 9.1 53.2 15.6 0.35 0.41

Pathidea 31.9 (+24%) 23.8 (+23%) 27.2 (+23%) 15.8 (+10%) 50.4 (+12%) 24.0 (+10%) 9.9 (+8%) 57.7 (+9%) 16.9 (+8%) 0.40 (+14%) 0.46 (+12%)

MapReduce

VSM 13.3 9.1 10.8 6.5 21.4 10.0 4.2 27.7 7.3 0.17 0.21

BRTracer 18.7 13.8 15.9 10.7 38.4 16.8 6.4 44.4 11.2 0.27 0.32

Pathidea 22.3 (+19%) 17.1 (+24%) 19.4 (+22%) 11.2 (+4%) 41.1 (+7%) 17.6 (+5%) 6.6 (+3%) 46.5 (+5%) 11.5 (+3%) 0.30 (+11%) 0.35 (+9%)

YARN

VSM 14.9 9.7 11.7 8.4 26.1 12.7 5.6 34.2 9.6 0.20 0.25

BRTracer 27.0 18.9 22.2 13.7 45.0 21.0 8.0 52.1 13.9 0.34 0.42

Pathidea 35.3 (+31%) 26.0 (+38%) 30.0 (+35%) 15.4 (+12%) 51.9 (+15%) 23.7 (+13%) 8.7 (+8%) 56.8 (+9%) 15.0 (+8%) 0.41 (+21%) 0.48 (+14%)

Hive

VSM 9.7 5.2 6.8 7.2 17.7 10.2 5.4 26.9 9.0 0.15 0.20

BRTracer 37.4 23.9 29.2 13.9 40.3 20.7 7.8 44.4 13.3 0.35 0.46

Pathidea 37.4 (+0%) 24.1 (+1%) 29.3 (+0%) 15.5 (+11%) 47.5 (+18%) 23.4 (+13%) 8.8 (+12%) 53.1 (+20%) 15.1 (+13%) 0.38 (+9%) 0.50 (+9%)

Storm

VSM 18.0 11.7 14.2 9.8 28.2 14.6 5.9 33.8 10.0 0.22 0.28

BRTracer 32.8 22.5 26.7 12.5 40.9 19.1 7.5 47.6 13.0 0.33 0.42

Pathidea 34.4 (+5%) 25.0 (+11%) 29.0 (+8%) 14.1 (+13%) 45.7 (+12%) 21.5 (+13%) 8.2 (+9%) 50.5 (+6%) 14.1 (+8%) 0.37 (+12%) 0.45 (+5%)

ZooKeeper

VSM 5.3 2.8 3.7 3.2 9.0 4.7 2.9 14.9 4.8 0.10 0.12

BRTracer 13.2 9.4 11.0 7.9 26.3 12.1 5.0 32.0 8.6 0.21 0.24

Pathidea 18.4 (+40%) 13.4 (+42%) 15.5 (+41%) 8.9 (+13%) 30.2 (+15%) 13.8 (+14%) 5.8 (+16%) 36.1 (+13%) 10.0 (+15%) 0.25 (+19%) 0.29 (+21%)

Average across BRTracer 26.4 18.6 21.8 12.1 39.2 18.5 7.3 45.6 12.6 0.31 0.38

studied systems Pathidea 30.6 (+16%) 22.3 (+20%) 25.8 (+18%) 13.6 (+12%) 44.7 (+14%) 20.9 (+13%) 8.2 (+11%) 50.3 (+10%) 14.0 (+11%) 0.35 (+13%) 0.43 (+13%)
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all the faulty files at Top@1, 44.7% at Top@5, and 50.3% at Top@10. Note that since

the number of faulty files is often small (i.e., the median number of faulty files is three

in the studied systems), it is difficult to achieve a high precision in the ranked results.

However, our approach is able to achieve a relatively high recall within a small N .

Hence, by only investigating a small number of files, developers may identify around

half of the faulty files. We also use the Wilcoxon rank-sum test [179] to examine

whether the improvements of Pathidea over BRTracer are statistically significant.

Our results show that the improvements are statistically significant in terms of MAP,

MRR, recall, and precision values (p-value < 0.05).

Across the studied systems, Pathidea achieves an improvement that varies from

8% to 21% and 5% to 21% over BRTracer in terms of MAP and MRR across

the studied systems, respectively. We also find that both Pathidea and BRTracer

outperform the vanilla VSM in identifying faulty files. Moreover, Pathidea can

identify faulty files with an average Recall@10 of 50.3%.

4.5.2 RQ2: Effectiveness of Path Analysis

Motivation: Previous studies [55, 180] leveraged logs to improve the ranking of

the potential faulty files for further investigation. However, these approaches either

directly consider logs (i.e., stack traces) as plain text, or only retrieve the files that

appear directly in logs. In practice, developers not only examine the logs, but they

also leverage the logs to re-construct the run-time execution paths of the system for

debugging [108, 195]. Such path information may be helpful to not only Pathidea but

also other IRFL approaches. Therefore, in this RQ, we study the effect of the path

analysis on the performance of existing IRFL approaches.

Approach: Our goal is to study how much additional improvement can path analysis

provide to IRFL approaches. Thus, we first examine the effectiveness of Pathidea

with and without path analysis. Then, we further study if path analysis can help

improve existing IRFL approaches. In particular, we apply path analysis to BRTracer,

because it is shown to have one of the highest MAP and MRR among the IRFL

approaches [101]. Moreover, BRTracer leverages logs for fault localization (i.e., the

class names that are recorded in stack traces), so we can study if path analysis

provides additional information to BRTracer’s log analysis. We also use the Wilcoxon
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signed-rank test [179] to investigate whether our path analysis provides a statistically

significant improvement to these two IRFL approaches.

Result: Considering path analysis improves the overall effectiveness of

Pathidea by up to 20% in terms of the evaluation metrics. Table 11 compares

the results of Pathidea when considering different components. We show the evalua-

tion metrics when different components are considered and evaluate the improvement

over the VSM baseline. We focus on evaluating the effectiveness of Pathidea with

and without path analysis. Specifically, when considering path analysis (i.e., VSM

+ log + path), Pathidea has an improvement of MAP that varies from 4% to 20%

over the ones without path analysis (i.e., VSM + log) across the studied systems.

The improvement of MRR varies from 4% to 17% across the studied systems. We

also observe an average improvement of 14%, 4%, and 4% on Precision@1, 5, 10, re-

spectively. For the average recall values, the improvements are 23%, 6%, and 3%

for Recall@1, 5, 10, respectively. The Wilcoxon signed-rank test also shows that, for

all the studied systems, the improvements are statistically significant for Recall@1,

Recall@5, Precision@1, Precision@5, and F1@1 (p-value < 0.05). Our finding shows

that the path analysis is able to help promote the ranking of the faulty files in the

result.

When applying path analysis on an existing IRFL approach (i.e., BR-

Tracer), there is a 10% and 8% improvement in terms of MAP and MRR,

respectively. Table 12 compares the results of BRTracer with and without consid-

ering path analysis. We observe that, when considering path analysis, the MAP and

MRR of BRTracer receive a 10% and 7% improvement, respectively. We also observe

an improvement on the precision, recall, and F1, and most notably on Precision@1

and Recall@1. Specifically, the path analysis improves the average precision values

by 12%, 5%, 5% for Precision@1, 5, 10, respectively. The improvement on the average

recall values are 14%, 5%, 4% for Recall@1, 5, 10, respectively. Our finding shows that

the path analysis may provide the largest improvement to BRTracer especially when

N equals to 1. The Wilcoxon signed-rank test shows that, for all studied systems,

the improvements are statistically significant for precision, recall, and F1. Compared

to Table 11, we find that the path analysis provides more improvement to BRTracer

compared to Pathidea. For example, in YARN, adding the path analysis to BRTracer

improves all the evaluation metrics when Top@1 (from 28% to 30%), where as the
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Table 11: Comparisons of Pathidea’s results when considering different components. For each added component, we show

the percentage of improvements over the VSM baseline.

System Approach Top@1 Top@5 Top@10 MAP MRR

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

ActiveMQ

VSM 7.0 3.6 4.7 4.7 14.9 7.1 3.4 20.2 5.8 0.11 0.15

VSM + log 26.7 (+283%) 18.6 (+416%) 21.9 (+362%) 12.8 (+175%) 39.1 (+162%) 19.3 (+172%) 8.7 (+159%) 47.1 (+133%) 14.7 (+155%) 0.32 (+191%) 0.39 (+160%)

VSM + log + path 29.1 (+317%) 21.4 (+495%) 24.6 (+419%) 14.4 (+210%) 43.7 (+193%) 21.7 (+206%) 9.0 (+166%) 48.3 (+140%) 15.1 (+161%) 0.34 (+209%) 0.41 (+173%)

Hadoop
Common

VSM 14.0 9.8 11.5 7.5 24.3 11.4 5.1 31.9 8.8 0.20 0.23

VSM + log 35.4 (+153%) 25.9 (+165%) 29.9 (+160%) 13.8 (+84%) 46.2 (+90%) 21.2 (+86%) 8.1 (+59%) 52.6 (+65%) 14.0 (+60%) 0.39 (+95%) 0.46 (+100%)

VSM + log + path 36.2 (+158%) 27.2 (+177%) 31.0 (+169%) 13.9 (+86%) 46.9 (+93%) 21.5 (+88%) 8.2 (+60%) 53.4 (+68%) 14.2 (+61%) 0.40 (+100%) 0.47 (+104%)

HDFS

VSM 16.2 10.6 12.8 10.1 30.3 15.2 7.1 38.9 12.0 0.23 0.29

VSM + log 30.1 (+86%) 22.3 (+110%) 25.7 (+100%) 15.8 (+56%) 50.1 (+66%) 24.0 (+58%) 9.8 (+39%) 57.4 (+47%) 16.8 (+40%) 0.38 (+65%) 0.45 (+55%)

VSM + log + path 31.9 (+97%) 23.8 (+123%) 27.2 (+112%) 15.8 (+56%) 50.4 (+67%) 24.0 (+58%) 9.9 (+40%) 57.7 (+48%) 16.9 (+41%) 0.40 (+74%) 0.46 (+59%)

MapReduce

VSM 13.3 9.1 10.8 6.5 21.4 10.0 4.2 27.7 7.3 0.17 0.21

VSM + log 20.5 (+55%) 15.6 (+71%) 17.7 (+64%) 11.1 (+70%) 40.5 (+89%) 17.4 (+74%) 6.5 (+54%) 45.5 (+65%) 11.4 (+56%) 0.28 (+65%) 0.33 (+57%)

VSM + log + path 22.3 (+68%) 17.1 (+88%) 19.4 (+79%) 11.2 (+72%) 41.1 (+92%) 17.6 (+76%) 6.6 (+56%) 46.5 (+68%) 11.5 (+57%) 0.30 (+76%) 0.35 (+67%)

YARN

VSM 14.9 9.7 11.7 8.4 26.1 12.7 5.6 34.2 9.6 0.20 0.25

VSM + log 33.2 (+122%) 23.5 (+142%) 27.5 (+134%) 14.9 (+78%) 50.4 (+93%) 23.0 (+82%) 8.6 (+54%) 56.5 (+65%) 14.9 (+56%) 0.39 (+95%) 0.47 (+88%)

VSM + log + path 35.3 (+136%) 26.0 (+169%) 30.0 (+155%) 15.4 (+83%) 51.9 (+99%) 23.7 (+87%) 8.7 (+56%) 56.8 (+66%) 15.0 (+57%) 0.40 (+100%) 0.48 (+92%)

Hive

VSM 9.7 5.2 6.8 7.2 17.7 10.2 5.4 26.9 9.0 0.15 0.20

VSM + log 36.9 (+279%) 22.7 (+336%) 28.1 (+314%) 15.3 (+113%) 46.7 (+164%) 23.0 (+125%) 8.6 (+60%) 52.0 (+93%) 14.8 (+65%) 0.37 (+147%) 0.49 (+145%)

VSM + log + path 37.4 (+284%) 24.1 (+362%) 29.3 (+331%) 15.5 (+116%) 47.5 (+168%) 23.4 (+129%) 8.8 (+64%) 53.1 (+98%) 15.1 (+69%) 0.38 (+153%) 0.50 (+150%)

Storm

VSM 18.0 11.7 14.2 9.8 28.2 14.6 5.9 33.8 10.0 0.22 0.28

VSM + log 32.8 (+82%) 23.3 (+99%) 27.3 (+92%) 14.4 (+47%) 47.3 (+68%) 22.1 (+52%) 8.2 (+39%) 50.5 (+49%) 14.1 (+40%) 0.36 (+64%) 0.44 (+57%)

VSM + log + path 34.4 (+91%) 25.0 (+113%) 29.0 (+104%) 14.1 (+43%) 45.7 (+62%) 21.5 (+48%) 8.2 (+39%) 50.5 (+49%) 14.1 (+40%) 0.37 (+68%) 0.45 (+61%)

ZooKeeper

VSM 5.3 2.8 3.7 3.2 9.0 4.7 2.9 14.9 4.8 0.10 0.12

VSM + log 15.8 (+200%) 12.0 (+325%) 13.7 (+271%) 8.4 (+167%) 27.6 (+208%) 12.9 (+176%) 5.3 (+82%) 33.3 (+124%) 9.1 (+88%) 0.23 (+130%) 0.27 (+125%)

VSM + log + path 18.4 (+250%) 13.4 (+371%) 15.5 (+320%) 8.9 (+183%) 30.2 (+237%) 13.8 (+196%) 5.8 (+100%) 36.1 (+143%) 10.0 (+106%) 0.25 (+150%) 0.29 (+142%)

Average across VSM 12.3 7.8 9.5 7.2 21.5 10.7 5.0 28.6 8.4 0.17 0.22

studied systems VSM + log 28.9 (+135%) 20.5 (+162%) 24.0 (+152%) 13.3 (+86%) 43.5 (+102%) 20.4 (+90%) 8.0 (+61%) 49.4 (+73%) 13.7 (+63%) 0.34 (+97%) 0.41 (+91%)

VSM + log + path 30.6 (+149%) 22.2 (+185%) 25.8 (+170%) 13.6 (+90%) 44.7 (+108%) 20.9 (+95%) 8.2 (+65%) 50.3 (+76%) 14.0 (+66%) 0.35 (+106%) 0.43 (+97%)
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Table 12: Comparisons of BRTracer’s results with and without path analysis. For each added component, we show the

percentage improvement over the original BRTracer.

System Approach Top@1 Top@5 Top@10 MAP MRR

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

ActiveMQ
BRTracer 23.3 16.6 19.4 10.9 33.5 16.5 6.9 40.1 11.7 0.28 0.34

BRTracer+ path 26.7 (+15%) 19.1 (+15%) 22.3 (+15%) 12.1 (+11%) 36.7 (+10%) 18.2 (+10%) 7.2 (+5%) 42.0 (+5%) 12.3 (+5%) 0.30 (+7%) 0.37 (+8%)

Hadoop
Common

BRTracer 33.1 24.4 28.1 13.2 44.1 20.3 7.8 50.6 13.5 0.37 0.44

BRTracer+ path 35.0 (+6%) 26.4 (+8%) 30.1 (+7%) 13.9 (+6%) 46.6 (+6%) 21.4 (+6%) 8.1 (+4%) 52.3 (+3%) 14.0 (+4%) 0.39 (+5%) 0.46 (+5%)

HDFS
BRTracer 25.8 19.4 22.1 14.3 44.8 21.7 9.1 53.2 15.6 0.35 0.41

BRTracer+ path 30.1 (+17%) 22.8 (+18%) 25.9 (+17%) 15.1 (+5%) 47.5 (+6%) 22.9 (+6%) 9.7 (+6%) 56.3 (+6%) 16.5 (+6%) 0.38 (+9%) 0.45 (+10%)

MapReduce
BRTracer 18.7 13.8 15.9 10.7 38.4 16.8 6.4 44.4 11.2 0.27 0.32

BRTracer+ path 21.1 (+13%) 16.3 (+18%) 18.4 (+16%) 10.7 (0%) 39.5 (+3%) 16.9 (+1%) 6.4 (0%) 44.8 (+1%) 11.2 (0%) 0.29 (+7%) 0.33 (+3%)

YARN
BRTracer 27.0 18.9 22.2 13.7 45.0 21.0 8.0 52.1 13.9 0.34 0.42

BRTracer+ path 34.4 (+28%) 24.9 (+32%) 28.9 (+30%) 14.9 (+8%) 49.5 (+10%) 22.9 (+9%) 8.4 (+5%) 54.7 (+5%) 14.6 (+5%) 0.39 (+15%) 0.48 (+14%)

Hive
BRTracer 37.4 23.9 29.2 13.9 40.3 20.7 7.8 44.4 13.3 0.35 0.46

BRTracer+ path 37.4 (0%) 24.3 (+2%) 29.5 (+1%) 14.3 (+2%) 42.0 (+4%) 21.3 (+3%) 7.9 (+1%) 45.6 (+3%) 13.5 (+2%) 0.36 (+3%) 0.47 (+2%)

Storm
BRTracer 32.8 22.5 26.7 12.5 40.9 19.1 7.5 47.6 13.0 0.33 0.43

BRTracer+ path 32.8 (0%) 22.5 (0%) 26.7 (0%) 12.5 (0%) 40.9 (0%) 19.1 (0%) 7.4 (-2%) 47.1 (-1%) 12.8 (-2%) 0.33 (0%) 0.43 (0%)

ZooKeeper
BRTracer 13.2 9.4 11.0 7.9 26.3 12.1 5.0 32.0 8.6 0.21 0.24

BRTracer+ path 18.4 (+40%) 13.4 (+42%) 15.5 (+41%) 8.4 (+7%) 27.6 (+5%) 12.9 (+6%) 6.1 (+21%) 36.3 (+14%) 10.4 (+20%) 0.25 (+19%) 0.29 (+21%)

Average across BRTracer 26.4 18.6 21.8 12.1 39.2 18.5 7.3 45.6 12.6 0.31 0.38

studied systems BRTracer+ path 29.5 (+12%) 21.2 (+14%) 24.7 (+13%) 12.7 (+5%) 41.3 (+5%) 19.5 (+5%) 7.7 (+5%) 47.4 (+4%) 13.2 (+5%) 0.34 (+10%) 0.41 (+8%)
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improvement in Pathidea is only 6% to 11%. Our finding shows that the path anal-

ysis can provide additional information to not only Pathidea, but also other IRFL

approaches (e.g., BRTracer). Future studies may consider integrating the path infor-

mation to improve fault localization performance.

The re-constructed execution paths can complement BRTracer by providing a

10% and 8% improvement in MAP and MRR, respectively. We also find that

Pathidea provides an average of 16% improvement over BRTracer on Precision@1.

Future IRFL research may consider combining information in the source code (e.g.,

execution paths re-constructed from logs) to further improve fault localization

performance.

4.5.3 RQ3: Parameter Sensitivity of Pathidea

Motivation: As mentioned in Section 4.3, Pathidea uses two parameters α and β

to calculate the final suspiciousness score. In each system, there may be some system-

specific characteristics (e.g., lexical similarity, semantic redundancy of source code,

and log density) that make the contribution of one component more important than

others. For instance, if a system allocates a significant amount of effort on improving

and maintaining logging statements for debugging, then the attached logs in the bug

reports may contain more information compared to other systems. In such case, we

may want to attribute more weight to the α parameter which is related to the logging

statements. Therefore, in this RQ, we want to further investigate the sensitivity of

the parameters on the overall effectiveness of Pathidea.

Approach: The parameter α serves to attribute a suspiciousness score to each file

that appears in the logs (i.e., calculating LogScore in Equation 7). The parameter

β serves as a magnifier that adjusts the weight of VSMScore to favor the files on

the re-constructed execution paths (i.e., calculating PathScore in Equation 8). To

understand the effect of these parameters on Pathidea, we perform a sensitivity anal-

ysis on the parameters separately by changing the values between 0.1 to 1.0, with an

interval of 0.1, to quantify their effects in terms of the MAP and MRR values.

Result: Overall, the MAP and MRR values reach the highest when α and

β are in the range of 0.1 and 0.2. However, we also observe some variations

among the studied systems. Figure 16a shows the effectiveness of Pathidea when
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Figure 16: Effect of α and β on Pathidea in terms of MAP and MRR.
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varying the parameter α. We observe a relatively stable impact of α across the studied

systems. For Hadoop Common, Hive, MAPREDUCE, YARN and ZooKeeper, when

α increases from 0.1 to 0.2, we observe an improvement in terms of the MAP and

MRR values. From 0.3 to 0.7, the MAP and MRR values remain relatively stable.

Starting from 0.8 to 1.0, the MAP and MRR values decrease. The effect of α on

ActiveMQ is different from the other systems. In ActiveMQ, the values of MAP

and MRR decrease when the parameter α value increases. For MapReduce and

Storm, the MAP and MRR values remain stable no matter how the parameter α

varies. Figure 16b shows the effectiveness of Pathidea when varying the parameter

β. Almost all systems achieve the highest MAP and MRR values when β is between

0.1 and 0.2. The further increase of β does not improve the MAP and MRR values

for AMQ, MapReduce and Storm. In these three systems, the values of MAP and

MRR decrease when β varies from 0.3 to 1.0. In summary, practitioners and future

studies may consider setting the value of α and β between the range of 0.1 and 0.2

when applying Pathidea.

In general, Pathidea has the highest MRR and MAP values when the values of

α and β are in the range of 0.1 and 0.2. Practitioners and future studies may

consider choosing these values when integrating or applying Pathidea.

4.6 Discussion

Studying the effectiveness of the path analysis when added to BRTracer.

In Section 4.5.2 (RQ2), we observe that Storm and Hive experience the least im-

provement when applying the path analysis on BRTracer (i.e., Table 12). In Hive,

the improvements are 3% for MAP and 2% for MRR; and in Storm, the improve-

ments for MAP and MRR are both 0%. After some investigation, we find that there

is one possible factor that may be correlated with the relatively lower improvement

when the path analysis is applied to BRTracer. We find that, among all the studied

systems, Storm and Hive have the largest percentage of bug reports that contain only

stack traces. 86.5% and 69.8% of the bug reports with logs contain only stack traces

but no log snippets in Hive and Storm, respectively. On the other hand, there is only

an average of 50.7% of such bug reports in other studied systems. A prior study [36]
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finds that many of the bug fixing locations may not be directly related to the re-

ported stack traces. The stack traces may only show the symptom of the bug (e.g.,

NullPointerException), but the actual bug may manifest in a file that was called ear-

lier during the execution (e.g., developers did not check the returned value in earlier

method calls, which eventually results in a NullPointerException). Therefore, it may

be possible that some faulty files are not related to the files on the re-constructed

paths. In other words, path analysis may be less effective on the bug reports that

only have stack traces than the ones that have both stack traces and log snippets.

Note that the path analysis still has a relatively larger improvement for Storm and

Hive when added to Pathidea. The possible reason may be that Pathidea has a dif-

ferent log score computation than BRTracer, which may provide larger improvements

to the bug reports that contain log snippets. Future studies are needed to further

understand the effect of log quality on the fault localization performance.

Another possible factor that affects the effectiveness of path analysis is the log

density of a system. The log density is calculated by the ratio between thousands of

lines of logging code and LOC ( lines of logging code
thousands of lines of code

). Intuitively, less noise would be

introduced when re-constructing an execution paths with the reported log snippets if

the log density is higher. To test our assumption, we calculate the log density of all the

studied systems (Table 13). For instance, when considering path analysis on either

Pathidea or BRTracer, we observe a substantial improvement in ZooKeeper (i.e., it

has the highest log density among all studied systems) under all metrics. Specifically,

when the path analysis is applied on BRTracer, the metrics of Precision@1, Recall@1

and F1@1 increase by 40%, 42% and 41%, respectively. The improvement is 19%

for MAP, and 21% for MRR. ZooKeeper has the highest log density (Table 13).

There is one line of logging code for every 33 lines of code. In Hive, where its log

density is the lowest among the studied systems, we observe that the improvements

are relatively small. Future studies are needed to examine the effect of log density on

the effectiveness of the re-constructed execution paths in fault localization.

Effectiveness of segmentation. Table 14 shows the effectiveness of segmentation

at different segment sizes. We evaluate the effectiveness based on Precision@1, Pre-

cision@5, Precision@10, MAP and MRR. We observe that, for most of the studied

systems (i.e., ActiveMQ, Hadoop, Hive, Storm and ZooKeeper), 400 is the segment

size that yields the most effective metrics, while the most effective segment size is 600
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Table 13: Log density across studied systems, where LOC is referred to as lines of

code, and LOLC is referred as lines of logging code. Note that we exclude code

comments and empty lines.

System LOC LOLC LOLC per every

thousand LOC

ActiveMQ (5.15.13) 337,533 8,055 24

Hadoop Common (2.7.6) 189,744 2,471 13

HDFS (2.7.0) 285,071 5,971 21

MapReduce (3.1.4) 197,996 3,279 17

YARN (3.1.2) 548,043 6,854 13

Hive (2.7.0) 1,180,562 9,918 8

Storm (2.2.0) 274,860 5,620 20

ZooKeeper (3.6.0) 78,684 2,518 32

Total 3,092,493 44,686 19

for HDFS and MapReduce, and 800 for Yarn. Although the optimal segmentation

size is different for each studied system, we observe a trend where smaller segmenta-

tion sizes (e.g., around or below 800) yields better localization results. Future studies

and practitioners may consider using smaller segmentation sizes (e.g., 800 or below)

when adopting the technique.

Parameters settings. Throughout our experiment, we have tuned these parameters

to evaluate the effectiveness of our approach at different thresholds. Our experiment

indicates that, for most of the studied systems, the MAP and MRR values achieve

the best localization results when α and β are in the range of 0.1 and 0.2, and when

the segment size is between 400 to 800. Although the optimized parameter setting

can vary from system to system, some system characteristics may be related to the

most effective parameter values. We observe a trend that smaller segmentation sizes

(e.g., 800 or below) yield the best localization results, especially for smaller systems.

For instance, Zookeeper, which is the smallest among all studied systems, has the

best localization results when the segment size is 400. In contrast, Hive, which is the

largest among all studied systems, has the best localization results when the segment

size is 1,000. Therefore, future studies and practitioners may consider starting with
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Table 14: Effectiveness of segmentation at different segment sizes, where Size column

refers to segment size.

System Size Precision@1 Precision@5 Precision@10 MAP MRR

ActiveMQ

400 10.5 4.9 4.1 0.13 0.18

600 8.1 5.3 3.4 0.12 0.16

800 7.0 4.7 3.4 0.11 0.15

1000 4.7 4.4 3.3 0.09 0.12

1200 4.7 4.7 3.4 0.09 0.12

Hadoop

400 17.1 9.3 6.1 0.22 0.28

600 16.0 8.4 5.6 0.21 0.26

800 14.0 7.5 5.1 0.20 0.23

1000 13.6 7.1 5.1 0.19 0.22

1200 12.5 6.6 4.7 0.18 0.20

HDFS

400 18.8 9.9 6.7 0.24 0.30

600 21.4 10.7 6.9 0.26 0.32

800 16.2 10.1 7.1 0.23 0.29

1000 17.5 10.0 6.6 0.23 0.29

1200 17.0 9.3 6.4 0.22 0.28

MapReduce

400 12.0 7.1 5.2 0.17 0.21

600 12.7 6.9 5.1 0.18 0.21

800 13.3 6.5 4.3 0.17 0.21

1000 10.8 5.7 3.9 0.16 0.19

1200 13.9 5.7 3.9 0.16 0.20

YARN

400 14.5 8.1 5.6 0.20 0.25

600 12.4 8.3 5.8 0.18 0.23

800 14.9 8.4 5.6 0.20 0.25

1000 14.1 8.2 5.5 0.20 0.24

1200 13.3 8.5 5.6 0.19 0.23

Hive

400 11.7 7.1 5.6 0.15 0.20

600 10.2 7.2 5.5 0.14 0.20

800 10.8 7.3 5.4 0.15 0.20

1000 13.8 7.3 5.0 0.14 0.22

1200 12.8 7.1 4.5 0.14 0.21

Storm

400 21.3 10.2 6.9 0.25 0.31

600 19.7 9.2 6.4 0.22 0.29

800 18.0 10.2 6.1 0.22 0.28

1000 21.3 8.5 5.6 0.22 0.29

1200 21.3 8.2 5.2 0.22 0.29

ZooKeeper

400 13.2 5.3 3.9 0.15 0.20

600 7.9 4.7 2.9 0.12 0.15

800 5.3 3.2 2.9 0.10 0.12

1000 7.9 4.2 3.4 0.11 0.15

1200 7.9 3.7 3.2 0.11 0.14
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a smaller segment size for smaller systems and gradually increase the segment size to

find the optimal value. We also observe that, when the logging statements are too far

from each other (i.e., low log density), there may be more noises when we re-construct

the execution path. The α value decides on how the logged classes are boosted. In

general, we observe that the systems with a higher log density are more sensitive to

the change of α value (i.e., the magnifier parameter given to the files found in the

reported logs). In Figure 16a, the two systems with the highest log density, AMQ

and ZooKeeper, have a large variation in their effectiveness as the α value varies and

increases. Therefore, we suggest that future studies and practitioners may want to

start with a smaller α when the log density of the system is larger. β, which serves

as a magnifier for PathScore, decides on how the classes in the path are boosted. A

higher β value attributes larger weight to the classes that are on the execution paths.

For larger systems that have a low log density, such as Hive, we observe that the

localization accuracy is the highest when the β value remains small. In Figure 16b,

we observe that both the MAP and MRR values for Hive fall drastically as the β

value increases. This may be that larger systems with lower log density value will

have longer execution paths, which leads to a considerable amount of classes boosted

by the β parameter. The localization accuracy decreases when too many classes are

boosted (i.e., more noise). Thus, we suggest that future studies and practitioners may

want to start with a smaller β when the system has a lower log density. In summary,

we recommend future studies to set the initial parameter values small and increase

them slowly (e.g., by 0.1) to find the optimal parameter values for the system.

4.7 Threats to Vaidility

External validity. Threats to external validity relates to the generalizability of our

findings. To reduce this threat, we conduct our case study on eight large-scale open

source systems that vary in size and infrastructures (i.e., data warehouse, realtime

computation system, distributed file system). These systems are actively maintained

and widely used. Although all the systems are Java-based, our approach is not limited

to Java systems. We present our approach in a generic way that can easily be adapted

to fit other programming languages. For uncovering the execution paths, another AST

parser that fits the programming language should be used to replace Javaparser (e.g.,
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ast module [3] for Python, and cppast library [2] for C++). Apart from execution

paths, the mapping of the user-reported logs to the logging statements should be

customized to fit the logging practice of the programming language. Future research

is encouraged to be conducted on more bug reports from more systems written in

different programming languages.

Construct Validity. Threats to construct validity refer to the suitability of the set

of evaluation metrics that we use in this study. To reduce the threat, we use five

evaluation metrics in our study: Recall@N , Precision@N , F1@N , MAP, and MRR.

These metrics are commonly used in information retrieval and have been used to

evaluate many prior fault localization techniques [101, 172, 173, 175]. We did not

consider control flow analysis in our approach. In some cases, considering the control

flow may provide more information. However, one challenge is that logs are relatively

sparse in the code, so the accuracy of finer-grained control flow analysis will be low.

Moreover, in previous chapter [38], we investigated the benefits and challenges of

analyzing logs in bug reports. We found that developers may have made some code

changes (i.e., the version that the user reported the issue is an older version and

the code has changed), and the logging statements might be removed throughout the

source code evolution (i.e., the user reported logs can no longer be found in the source

code). Therefore, to reduce some noises caused by code evolution and the sparseness

of logs, we decided to design the approach by generating the call graph and conduct

the analysis at the file level.
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Part II

Fault Localization in Continuous

Integration
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Chapter 5

T-Evos: A Large-Scale

Longitudinal Study on CI Test

Execution and Failure

Previous chapters of this dissertation have focused on addressing the lack of effec-

tiveness in fault localization. Chapter 3 examined the use of user-reported logs as

a debugging information to locate faults in the source code. Chapter 4 proposed

an information-retrieval based fault localization technique, Pathidea, that leverages

logs to enhance effectiveness. By employing this technique, developers can effectively

identify the faulty locations when bugs occur in production, thereby minimizing their

impact on users and enhancing quality assurance and reliability practices. However,

resolving bugs in production is already too late, as they have already affected users.

This gives rise to a specific research challenge: how can we detect problems before

they impact users?

In modern software development, CI has been widely adopted for building and

testing newer versions of the system, with automated execution of functional tests.

For instance, in Apache Math, over 4,000 tests are automatically executed on a daily

basis. As a result, CI practices provide valuable debugging information, including

code changes, code coverage, and test results. These pieces of information have proven

crucial for developers in understanding faults, and therefore presenting opportunities

for future fault localization techniques to gain new insights.

Unfortunately, there is currently no CI benchmark available that incorporates
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continuous test execution and failure. This presents a challenge as developers lack

knowledge on how to utilize such benchmarks, and researchers do not have access to

this type of data within existing benchmarks. Building a comprehensive CI bench-

mark can require a significant effort. CI involves continuous data, and constructing

every single commit in the version control history can be time-consuming. Addition-

ally, if the system has been in existence for over 10 years, resolving compilation issues

with outdated third-party dependencies can require extensive manual effort. Despite

these challenges, the development of a large-scale CI benchmark would greatly ben-

efit the research community by providing a realistic environment for evaluating and

designing fault localization techniques.

To address the research gap, this chapter presents a large-scale longitudinal study

on continuous test execution and failure, that aims to help gain a better understanding

of the operational data available in CI. Moreover, we introduce T-Evos, a benchmark

dataset for CI fault localization, which covers 8,093 commits from 12 Java open-source

projects. The dataset comprises various operational data, including the evolution

of statement-level code coverage for both passed and failed test cases, test results,

build information, code changes, and corresponding bug reports. Through an initial

analysis, we provide insights into the dataset, focusing on the characteristics of test

failures in CI settings. Specifically, we examine the relationship between code changes

and test failures, shedding light on potential directions for future automated testing

research. Our findings represent a crucial initial step in comprehending the evolution

of code coverage and test failures in a continuous environment.

In the next chapter, we proposed a changed-based fault localization technique by

leveraging the CI data.

An earlier version of this chapter has been published at IEEE Trans-

actions on Software Engineering (TSE) journal, 2022. Pages 2352-2365.

Chen et al. [41]
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5.1 Motivation

Software systems are continuously evolving. To ensure system quality, developers

nowadays often execute regression tests in a CI setting. In CI, for every commit

or a small set of code changes, developers would execute all the test cases to check

whether the new code changes have caused any test failure. Therefore, when a test

failure happens, developers may investigate the most recent code changes to identify

the cause. Different from traditional software testing practices, which only run all the

test cases before releases, CI allows developers to reduce the needed time to deliver

the changes to the clients by catching test failures as early as possible and reducing

integration overhead.

Prior studies have proposed various automated testing techniques that leverage

code coverage or test execution information to assist developers with test failure

diagnosis or repair. For example, researchers have proposed using code coverage

information in failed test cases for tasks such as fault localization [17, 78, 95, 150, 183]

and automated program repair [98, 176, 191]. These studies rely on the general

assumption that the faulty code may be related to the execution path of a failed test

case. However, most of prior techniques only consider snapshots of the project, while

in CI settings, the code changes are integrated and tested continuously. The evolution

data (e.g., recent code and coverage changes) may provide additional values that can

help improve automated testing techniques and CI testing practices.

To help facilitate software testing research, many researchers have created several

datasets and benchmarks. Just et al. [79] created the Defects4J benchmark that

contains failed test cases caused by real faults, code coverage of the failing test cases,

and the corresponding fixes. Lin et al. [110] presented the QuixBugs benchmark

that contains both passed and failed test cases of known bugs. Le Goues et al. [100]

presented the ManyBugs and IntroClass datasets that allow researchers to reproduce

many real-world bugs and benchmark automated program repair techniques. Elbaum

et al. [58] collected test execution result over time at Google. Although these datasets

provide great benefits to the research community, they also have common limitations.

The datasets only provide a clean snapshot of the projects: namely, selected bugs,

their fixes, and the corresponding code coverage. Yet, there is no project evolution

information, such as how the code coverage evolves and the relationship between

recent code changes and test failures, which is crucial in CI settings.
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In this chapter, we present T-Evos, a dataset that contains the evolution of test

execution information across 12 Java projects over the course of 8,093 commits. For

every commit, T-Evos contains the code coverage at the statement level (i.e., the

specific lines that are covered), test status (i.e., pass or fail), build log, test execution

stack traces, and code changes. To execute the test cases and generate individual

test case coverage, we need to ensure that all the studied projects can successfully

compile. To that end, we manually resolve the compilation issues, and then integrate

the resolution into automation scripts. For each studied project, we also automate

the manual process of adding project-specific configurations to collect code coverage.

In total, we spent hundreds of hours resolving the issues that we encountered when

executing the test cases. The size of the resulting dataset is around 3.3TB and took

over 10 CPU years to generate. Different from prior datasets, T-Evos provides a

fine-grained dataset on the evolution of test execution in CI settings, which may be

used by future research that aims to leverage such continuous information to improve

automated testing techniques.

5.2 Data Collection

CI is widely adopted in software evolution and most prior studies focus on test anal-

ysis at the release level or do not contain test execution information (e.g., code cov-

erage) [58, 79, 100, 121]. However, there exists no dataset that collects fine-grained

code coverage in a continuous environment (i.e., commit by commit over a period of

time). Such dataset can benefit researchers in conducting various software studies

(e.g., provide a realistic CI setting, or develop a new technique that leverages the de-

velopment evolution). Therefore, our goals are: 1) to provide a dataset that contains

continuous test execution of statement level at the commit-level, which could be used

for future research and benchmarking; 2) to conduct an empirical analysis on test

failure and resolution in a CI environment, which may inspire future research on how

to better leverage the code evolution information (e.g., code changes in prior com-

mits) to assist developers in various aspects, such as improving test failure diagnose,

quality assurance, and CI practices (particularly in testing).

Although many projects may execute test cases in a continuous fashion, the

recorded code coverage data mostly contains only general coverage results (e.g., the
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Figure 17: An overview of our data collection process and the collected data.

branch coverage) without knowing which code statements were executed. Moreover,

such code coverage data is only kept for a small period of time [143]. Thus, to achieve

the goals, we need to execute the test cases for every commit, collect the individual

code coverage for each test case, and analyze the changes between commits. To collect

the code coverage at the statement level for each commit of the studied projects, our

approach consists of three steps, as illustrated in Figure 17. First, for every commit,

we build (i.e., compile) the project with the Maven Surefire plugin [7] to identify a

list of test cases for each studied project. We need to perform this step for every

commit because there may be newly added test cases, and some test cases may be

deleted or disabled [83, 145]. We then execute the identified test cases, and analyze

the code coverage information using JaCoCo [6] for the individual test case. Finally,

some test cases may be flaky (i.e., sometimes pass and sometimes fail). Flaky tests

can introduce biases in the dataset when analyzing test failure [91, 120, 140, 205]. To

reduce the bias, we detect and remove such flaky tests from the dataset [24].

The overall process is challenging and requires a significant amount of both manual

and computing effort, because 1) a project may contain thousands of test cases and

we need to run each test case for every commit to collect all the statement-level

coverage information; 2) To make each test case run, we need to manually resolve
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many compilation issues. In the following subsections, we discuss our data collection,

test execution process, and the associated challenges in detail.

5.2.1 Test Case Identification and Execution

Studied Projects. We select 10 projects that are also used in the Defects4J bench-

mark [79] for our study. We choose these projects because Defects4J is widely used

and the research community is familiar with the projects. Note that, the data in

Defects4J only contains snapshots of a subset of the test execution (e.g., the failing

test cases before a bug is fixed), while our goal is to collect continuous test execu-

tion and failure data on a per-commit basis. To increase the diversity of the studied

projects, our study includes additional projects (i.e., fastjson and junit4) of different

software foundations. We query the top Java Maven projects on GitHub based on the

number of GitHub Stars. The two projects, fastjson and junit4, have 23.7k and 8.2k

GitHub Stars, respectively. The selected projects are well-maintained and contain

active tests. We also manually verify that the selected projects can be successfully

built and the test cases can be executed. In total, we conduct our study on 12 projects

and Table 15 presents their details. For each project, we execute the test cases in all

the commits (i.e., code changes) specified in the time range shown in Table 15. On

average, each commit executes from 230 to over 4,000 test cases. We study the 1,000

latest commits at the time when our analysis is conducted. We chose to study 1,000

commits in each project because it is a relatively large number, but still feasible for

us to manually resolve compilation issues. Based on the first and last commit of the

1,000 commits, we then compute the start and end date of our study. In other words,

the time range refers to the time between the latest commit (at the time of our data

collection) to 1,000 commits prior to it. We determine those commits by executing

the “git log -n 1000” command. Note that for the project commons-cli, the repository

only contains 965 commits at the time of the study.
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Table 15: An overview of the studied projects, where Total LOC is the total lines of code, Test LOC (%) is the line of test

code, and its percentage over total lines of code and Average test cases shows the average number of test cases per commit.

Project Total LOC Test LOC (%) Date range Avg test cases Studied Compiled

(Start, End) per commit commits commits

commons-cli 12.2k 4.3k (35%) (2002/06/10, 2020/09/19) 362 965 558

commons-codec 30.9k 14.6k (47%) (2012/08/20, 2020/10/11) 799 1,000 709

commons-compress 65.8k 23.1k (35%) (2017/01/07, 2020/10/13) 1,006 1,000 337

commons-csv 10.3k 7.2k (70%) (2013/03/20, 2020/10/03) 230 1,000 936

commons-math 199.2k 76.0k (38%) (2015/04/26, 2020/08/10) 4,200 1,000 551

gson 38.4k 15.2k (40%) (2011/03/29, 2020/05/13) 1,103 1,000 942

jackson-core 50.8k 19.0k (37%) 2014/12/05, 2019/12/30) 320 1,000 453

jackson-dataformat-xml 564.7k 7.6k (1%) (2014/11/12, 2020/10/16) 270 1,000 203

jfreechart 159.1k 40.0k (25%) (2013/08/15, 2020/03/10) 2,477 1,000 439

jsoup 86.8k 9.4k (11%) (2011/07/02, 2020/03/07) 532 1,000 990

junit4 37.9k 20.4k (54%) (2013/02/05, 2021/02/13) 826 1,000 997

fastjson 354.6k 138.0k (39%) (2018/09/03, 2021/04/05) 4,768 1,000 978

85



Handling compilation issues. Compiling the projects is not always straightfor-

ward. We perform the following steps to ensure that we can compile the projects and

execute test cases in the studied commits. First, each project requires a considerable

number of manual configurations to successfully compile. For instance, some projects

may require a specific version of Java Runtime or Java Development Kit (JDK).

Therefore, to automate the compilation and test execution process, we manually re-

solve all the compilation issues that we encounter and integrate the resolution in the

automation scripts (e.g., changing JDK versions if needed). Second, some projects

may not use JaCoCo [6] for code coverage analysis, so we need to manually config-

ure the maven build script to add the JaCoCo dependency. Since the projects may

have multiple modules, we need to identify all the maven build scripts when adding

the JaCoCo dependence. Moreover, most of the studied projects use a handful of

third-party libraries, so there may be other dependency issues that require manual

fixes (e.g., some libraries are no longer available in the central Maven repository and

need to be manually downloaded). We manually resolve the issues and update our

automation scripts accordingly. Finally, even after the projects are successfully com-

piled, there may still be commit-specific configuration that prevents the test cases

from executing. For instance, developers might refactor the structure of the configu-

ration file (i.e., pom.xml) that specifies the dependencies. Thus, we need to modify

our code accordingly to add the JaCoCo dependency. It took hundreds of hours of

manual effort to resolve the compilation issues. Although we tried our best to resolve

compilation issues, some commits may not be compilable even after we tried to man-

ually resolve the issues due to reasons such as lack of dependencies. In total, we were

able to successfully compile 8,093 commits.

Identifying test cases. After we successfully compile the projects, our next step is

to identify a list of test cases that we need to execute. As found by Kim et al. [83],

developers may disable some test cases during development. Therefore, we need to

first identify the test cases that are active and will be executed in the CI process. Since

all the studied projects use Maven as the build system, we track the list of active test

cases by compiling the projects using the Maven Surefire plugin [7]. More specifically,

when the project is built and compiled, the Maven test and verify lifecycles execute

the unit and integration tests, respectively. Once the test cases are executed, the

Surefire plugin then generates a surefire-reports folder containing the information of
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all the executed test suites (i.e., test class) in XML format. We then parse the XML

files to identify the list of test cases (e.g., test methods annotated with @Test in the

test class) that belong to each executed test suite.

Executing the test cases. Since we have 12 studied projects and each with hun-

dreds of commits to compile and run test cases, we used six servers to speed up the

execution. All the servers have the same hardware specification: a four-core Intel

Xeon (Skylake, IBRS) CPU (2.10 GHz) and 5 GB of RAM. Four of the servers ran

Ubuntu 20.04, while the other two ran Ubuntu 18.04. To collect the coverage of

each individual test case, we need to run each test case one-by-one. Therefore, we

implement scripts to automate the process of checking out a commit (i.e., in a Git

repository), updating the Maven build file to include needed dependencies such as

JaCoCo [6], compiling the project, and running each individual test case separately.

We need to run each test case separately because JaCoCo only generates statement

level coverage information (i.e., which specific lines a test case covers) when the test

cases are executed one-by-one. To avoid dirty states that may affect the test result,

we also automate test cleanup before and after running each test case. Note that we

re-executed test cases in different servers to make sure that the nature of the failures

is not sensitive to its environment or configuration (e.g., executing a test at a different

time zone might cause a test to fail).

We created five worker threads in each of the six virtual machine servers. Each

worker has its own sets of commits and projects to run to further parallelize the

test execution process. Despite that the execution of the test case requires no re-

compilation, Maven performs additional checks before the test execution (e.g., prede-

fined coding style checks), which adds additional overheads to every test case execu-

tion. The building and testing time of each commit vary from 2 to 32 minutes, while

the time of running a single test case is usually less than a minute. In total, our data

collection and test execution took over 10 CPU years.

Distribution of compilable commits. Figure 18 summarizes the proportion of

compilable commits by time interval. Most projects contain large time intervals cov-

ered by a large proportion of compilable commits. However, the overall proportion

of compilable commits is smaller in three out of the 12 projects, namely, commons-

codec, commons-compress and jackson-dataformat-xml. In those projects, the num-

ber of compiled commits remains zero for a specific time range, indicating that the
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Figure 18: Proportion of compilable commits by time interval, where each square

shows the proportion between the compilable commits and the uncompilable ones.

The proportion ranges from 0.0 to 1.0, where values closer to 0.0 indicate less compi-

lable commits, and values closer to 1.0 indicate more compilable commits.
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compilation continuously fails for a sequence of commits. For the time range where

the proportion of compilable commits are non-zeros, the average proportion is 0.8 for

commons-codec, 0.4 for commons-compress, and 0.4 for jackson-dataformat-xml.

Overall, we find that on average 44% of the uncompilable commits fall into one

single continuous time interval, which suggests that the uncompilable commits are

grouped in the same time interval, rather than sparsely distributed at different time

periods. In addition, we observed an average of 64 consecutive compilable commits

between uncompilable commits. This represents a relatively large number of com-

pilable commits in sequence, considering the average number of commits pushed to

those projects in a year is 142. Therefore, we believe the impact of uncompilable

commits on the continuation of our dataset is limited.

However, uncompilable commits can still impact our results in two special sce-

narios (as illustrated in Figure 19). First, if a compilation issue precedes or succeeds

with test failure instances, then test failures can start or end on the uncompilable

commit, which may introduce biases on our results. We show an example of such

cases in Figure 19. Given that commit Ci is uncompilable, the test failure 1 might

start either at commit Ci or Ci+1. To better evaluate the impact of such cases, we

further investigate the number of uncompilable commits that precede or succeed test

failures (i.e., continuous sequence of test failure instances). Note that this scenario

only happens when there is at least one uncompilable commit before or after a test

failure. Our investigation shows that, overall, only 4% of the uncompilable commits

belong to this scenario, which is the upper boundary (since some commits may be

uncompilable but have no test failure). Therefore, this scenario is less likely to bias

our findings. Second, it is possible for test failures to exist entirely within uncompil-

able commits, and thus some of the uncompilable commits could have contained test

failures that were dismissed in our analysis. We discuss this in Section 5.6 as a threat

to our construct validity.

5.2.2 Code Coverage Analysis

We want to collect the detailed coverage of each test case in a continuous fashion.

Hence, we conduct code coverage analysis on every commit.

Integrating Code Coverage Tool. We use JaCoCo [6] to generate the code cover-

age report. JaCoCo is one of the most popular code coverage tools that instruments
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Figure 19: Example of uncompilable commit before a test failure.

bytecode to trace the execution during the test run. We integrate JaCoCo as a Maven

plugin. While the integration is straightforward for most Maven projects, for the

multi-module Maven projects, we need to manually modify the Maven configuration

to collect code coverage. More specifically, when integrating JaCoCo into a module,

the collected code coverage is limited to the classes of that module. However, in the

case of a test case covering several different modules in the system (e.g., integration

tests), the out-of-module class coverage will not be shown. Therefore, when some

test cases cover multiple modules, we add an extra report-aggregate goal to the par-

ent Maven build script (i.e., the pom file). Additionally, we add the JaCoCo plugin

to every module. Every time a test is run, JaCoCo updates the covered classes in the

coverage report of the module that they belong to. A coverage collector, which we

implemented, will then parse and merge the coverage from every module.

Analyzing Code Coverage Results. Once the test is executed, we collect the

code coverage of the individual test from the JaCoCo report at three different levels

of granularity: 1) covered classes, 2) covered methods, 3) covered line of statements.

In addition, we also collect the test status (i.e., passed or failed) and some general

coverage metrics (i.e., branch coverage).

5.2.3 Flaky Tests Analysis

Prior studies [24, 91, 120] found that some test cases may be flaky. Namely, the test

result may sometimes pass and sometimes fail, even if the code remains the same. To

reduce the noise caused by flaky tests when analyzing test results, we remove flaky

tests from our list of active test cases. We use DeFlaker [24] to compare the code

change with the coverage of the failing test cases to identify the flaky tests. A failed
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test case is considered flaky if there is no overlap between the failure introducing code

changes (i.e., the test case fails after the code changes) and the coverage of the failed

test case. Namely, the failed test cases do not have overlap with the code changes.

For every newly observed test case failure, we analyze whether any of the changed

code is covered by test case, and if not, we mark the test failure as flaky.

5.2.4 Bug Reports Identification

To provide more information on the collected commits, we also identify the corre-

sponding bug reports through the commit messages. The studied projects use the

JIRA issue tracking system, where each bug report receives a unique bug report iden-

tifier (e.g., CLI-121). In addition, all 12 projects follow standards of including the bug

report identifier in commit messages. Therefore, we use the git command “git show -s

–format=%B” to mine the commit messages, and use regular expressions to capture

bug report identifiers. For instance, for the studied project commons-cli, we use the

regular expression “CLI-\d+”. Then, we further leverage JIRA APIs [76] to verify

that the detected identifiers are of type Bug rather than other types (e.g., Feature

request). In total, we collect 221 bug reports.

5.2.5 The Collected Data

Figure 17 shows an overview of our data collection process and the collected data.

At the end of our test execution and data collection process, we built 8,093 commits

across 12 studied projects. The dataset includes: 1) all the build logs that were

generated when compiling every studied commit; 2) the test status of every executed

test case; 3) the code coverage of every passed and failed test case and how the

coverage evolve overtime; 4) the code or configuration changes that developers made

over time and their effect on the test result (e.g., a test case passes or fails after the

change); 5) the stack traces generated by failed tests; 6) the associated bug reports.

In total, the size of our collected data is 3.3 TB. Future studies may use our collected

data to understand various testing practices in CI and help improve automated testing

techniques.
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5.3 Studying the Characteristics of Test Failures

in CI Settings

As discussed in Section 5.2, we execute the test cases in over 8,093 commits to collect

information such as code coverage and test status. To the best of our knowledge, we

are the first to study and provide a dataset that contains commit-by-commit code

coverage and failure information throughout the version control history. We believe

that such dataset has great potentials for future research. Therefore, we conduct an

analysis to provide an initial overview. Specifically, in this section, we provide an

overview of the collected dataset and study test failure introduction and resolution

across the studied time period. In particular, we answer the two following research

questions:

• RQ1: How often do test failure instances occur?

• RQ2: How long does it take for developers to fix a test failure?

5.3.1 RQ1: How often do test failure instances occur?

Continuous testing in CI helps expose software faults that might negatively impact

the functionality of the system under test. A prior study [26] found that test failures

constitute the main reason why builds fail in CI. Labuschagne et al. [89] showed in

their study that 18% of test executions in CI fail. However, previous studies only

consider instances of test failure that last for exactly one commit, rather than a

prolonged period of time. In such cases, we cannot have a complete picture on the

prevalence of test failures throughout the project evolution, since the same test can

fail repeatedly (e.g., spanning multiple consecutive commits). Therefore, in this RQ,

we study test failures both in their prevalence of happening on the individual commit,

and the prevalence of the same test failure lasting through consecutive commits.

To better understand the prevalence of test failures in the studied projects, we

identify and track each test failure. To ease the explanation, we refer to a test failure

that happens across at least one consecutive commit (i.e., without being resolved) as

a test failure, and an instance of test failure that occurred in a single commit as a test

failure instance. We further illustrate them using our example shown in Figure 20.

Given that Test 1 fails at commits Ci+1 and Ci+2, a test failure is the consecutive
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Figure 20: Example of test failures and test failure instances.

test failure happening across commits Ci+1 and Ci+2 (illustrated as Test failure 1 ),

and the test failure instances are the individual failures happening on Ci+1 and Ci+2

(which may be the same test failure). We provide quantitative details of the test

failures at two different levels of granularity: commits that contain failed test cases

and individual failed test cases (i.e., a test case may fail multiple times before it is

resolved). We further analyze the test failures to investigate how many are newly

introduced and how many are resolved during the continuous process. Our findings

provide a more comprehensive understanding of the test failures and their distribution

over commits in the context of CI, and provide insights for future research.

A considerable number (34%) of the analyzed commits contain at least

one test failure instance. Table 16 presents an overview of the prevalence of test

failures for each studied project. In total, we compile and execute the test cases

in 8,093 commits across the studied projects. Among these 8,093 commits, we find

that 2,724 (34%) of them contain at least one test failure instance. The percentage

of the commits that contain at least one test failure instance ranges from 2% to

78% among the projects. Our finding shows that although the studied projects, in

general, contain a large number of failed commits, the prevalence of test failures varies

noticeably among projects. Regression testing in CI aims to guarantee the quality

of software with each commit. However, we observe different degrees of test failure

prevalence across the studied projects. Future research may use our dataset to
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Table 16: The total studied commits and the commits that contain test failure. Test passing instances show the number

of times that a test executes without failure across all studied commits. Test failure instances show the number of failures

that occur across all studied commits (a test failure may remain unresolved across multiple commits producing instances of

test failure). Test failures show the number of new/resolved test failures (if a test case fails multiple times consecutively, it

is counted as one test failure).

Project
Total Commits Test passing Test failure instances Test failures

commits with failure instances Total Flaky Non-flaky New Resolved

(failure ratio) (in millions) failure failure

commons-cli 558 121 (22%) 0.17 183 53 130 60 60

commons-codec 709 340 (48%) 0.44 4,351 1,105 3,246 58 47

commons-compress 337 182 (55%) 0.29 3,812 3,697 115 192 191

commons-csv 936 23 (2%) 0.23 80 28 52 32 32

commons-math 551 95 (17%) 3.33 221 188 33 2 2

gson 942 253 (27%) 0.84 6,129 4,949 1,180 53 43

jackson-core 453 344 (76%) 0.48 2,672 162 2,510 99 97

jackson-dataformat-xml 203 153 (76%) 0.04 156 4 152 10 10

jfreechart 439 342 (78%) 1.02 1,253 635 618 27 13

junit4 997 321 (54%) 0.91 386 347 39 35 35

jsoup 990 42 (5%) 0.49 66 0 66 23 23

fastjson 978 333 (35%) 3.99 553 10 543 230 230

Total 8,093 2,724 (34%) 12.23 19,862 11,178 8,684 821 783
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investigate the reasons that may cause such differences across projects.

We find that flaky test failure instances account for over 58% of the test

failure instances. For non-flaky test cases, the same test failure might

occur multiple times in the sequential commits. We find that flaky test failure

instances are common in the studied projects. Out of the 19,862 test failure instances

found across 8,093 commits, we observe 11,178 (56%) of them are flaky (shown in

the Test Failure Instances column in Table 16). In contrast, 44% of the test failure

instances are identified as non-flaky. Our finding shows that failures caused by flaky

tests may be common. Note that a non-flaky test case may remain unsolved and fail

multiple times across the studied commits. Therefore, we further study the number of

new and resolved test failures in each project from the non-flaky test failure instances.

The New failure column in Table 16 shows the number of newly introduced failures

(i.e., a test case fails after a commit). Similarly, the Resolved failure column shows the

number of resolved failures (i.e., the test case no longer fails after a commit). Overall,

we find that there were only 821 new failures and 783 resolved failures. Given the

small number of resolved test failures and the large number of test failure instances,

our finding shows the same test failure might occur multiple times for the test failing

repetitively in the sequential commits. Future studies may be needed to study these

repeatedly failed test cases, whether flaky or not, and how they may affect software

quality in general.

Most failures are concentrated in a small set of test cases. To study how

the failures are distributed across the test cases, we count the number of unique test

cases that result in failure across the studied commits. Note that we count a test

case as one unique failing test case even if the test case has failed and been resolved

more than once. We find that there are only 332 unique failing test cases (i.e., out of

8,684 non-flaky test failures) across all projects. This result implies that test failures

are concentrated in only a small number of test cases, and most test cases never fail.

After some manual investigation, we find that these test cases are often related to

the main functionality or complex business logic of a project. For example, jsoup

is a HTML parser and one of its core features is to parse HTML documents into

Document Java objects. The same set of test cases in the test suite DocumentTest

(which tests object conversation and parsing) fail multiple times during the studied

period, although the fixes were applied at different locations and for different reasons.

95



One possible reason may be that some parts of the code undergo more changes, so

the corresponding test cases are more likely to fail.

Our dataset provides a complete picture of how often test failures occur across

commits in the CI context and the distribution of such test failures across commits

and test cases. Future research may use the dataset to study how code evolution

causes test failures and how to prioritize test execution. In addition, one interesting

point as revealed by the results is that test failures are concentrated in only a small

number of test cases, while most test cases never fail. Future research may further

study the quality and effectiveness of the tests that never fail.

Test failure is prevalent in the evolution of the 34% of commits that contain test

failures. Among the test failure instances, 44% are non-flaky test failure instances.

We also find that many test cases fail multiple times across commits, and most

failures are concentrated in a small set of test cases.

5.3.2 RQ2: How long does it take for developers to fix a test

failure?

In the CI context, the detection of test failures presents a compensatory benefit of

continuous testing, especially when failures detect real faults. However, prior research

found that test failures, despite being detected, might not be resolved for various

reasons. Beller et al. [25] found that up to 30% of the failing tests are not repaired

immediately although developers detect them directly in IDEs. Rogers [148] found

that sometimes, developers might allow known test failures into CI, as long as those

failures are resolved by the end of the development iteration. However, it is unknown

how long test failures last in evolutionary settings. Therefore, in this RQ, we study

the resolution time it takes for developers to fix a test failure, and how failures are

distributed at different resolution times.

To calculate how long it takes for developers to resolve a test failure, we analyze

every test failure in the version history and look for the failure-introducing commit

(i.e., the first commit in which the test failure occurs) and the failure-resolving commit

(i.e., the commit where the test failure is resolved). Then, we compute the time

difference between the failure-introducing commit and the failure-resolving commit.

Note that if the same test case fails again after a resolution, we consider it as a
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Table 17: The resolution time of test failures.

Project
Resolution time

Min Max Mean Median < 1 day > 7 days

commons-cli < 1 day 63 days 4 days < 1 day 77% 12%

commons-codec < 1 day 102 days 2 days < 1 day 87% 2%

commons-compress < 1 day 3 days < 1 day < 1 day 83% 0%

commons-csv < 1 day 2 days < 1 day < 1 day 97% 0%

commons-math < 1 day < 1 day < 1 day < 1 day 100% 0%

gson < 1 day 15 days 4 days 1 day 49% 23%

jackson-core < 1 day 53 days 2 days < 1 day 60% 4%

jackson-dataformat-xml < 1 day < 1 day < 1 day < 1 day 100% 0%

jfreechart < 1 day < 1 day < 1 day < 1 day 100% 0%

junit4 < 1 day 22 days 4 days 1 day 43% 26%

jsoup < 1 day 17 days < 1 day < 1 day 96% 4%

fastjson < 1 day 16 days < 1 day < 1 day 88% 1%

Average < 1 day 21 day 1 day < 1 day 75% 5%

different test failure as developers have already made changes to resolve the failure.

While most test failures are resolved within one day, some may require

more than a week to resolve. Table 17 shows the resolution time of the test

failures. The mean resolution time across all the studied projects is 1 day, while the

average of the median resolution time is less than 1 day. In addition, 10 out of 12

studied projects have more than 75% of the test failures resolved within a day. More

than one third of the studied projects do not have any test failure extending for more

than 7 days. On average, across the projects, more than 75% of the total test failures

are resolved within a day, and only 5% of the failures persist more than 7 days. While

our findings show that developers are actively trying to resolve the test failure once

they occur, there are still some exceptional cases.

As shown in Table 16, while most of the studied test failures (783 out of 821)

are resolved, there are still 38 test failures that were introduced but never resolved.

Thus, we further studied those test failures, and calculated how long they are lasting.

We find that most of the failures happen near the end of the studied periods of the
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projects. Around half of these 38 test failures were introduced no more than three

days before the end of the studied periods. The maximum time difference between

their introducing time and the ending period of the studied projects is no more than

23 days. In short, it is possible that the test failures were not resolved due to the

time periods that we analyzed did not include their fixes.

By calculating the mean resolution time, we observe that most test failures, if

ever resolved, are resolved within one day. Even when they are not resolved, they are

new failures that were introduced for no more than 21 days. However, some projects

contain a maximum test resolution time that is significantly longer than the majority

of the dataset (e.g., several weeks compared to within one day). Our dataset identifies

the test failures that may have different characteristics, which causes the fixing time

to be much longer. Future testing research may use our dataset to better understand

the characteristics of such long-lasting test failures, and further assist developers with

improving code quality.

While most of the test failures are resolved within one day, we still find some

failures that take more than a week to resolve. Future research may use our

dataset to study the characteristics of the test failures and understand the reasons

for such differences.

5.4 Studying Code Changes and Their Relation-

ship With Test Failures

Our collected dataset includes the complete code coverage evolution at the state-

ment level and the code changes that developers made throughout the version control

history. In this section, we study the changes that developers made when introduc-

ing/resolving test failures, and how code coverage change before and after fixing the

failure. Our findings provide an understanding on the relationship between code cov-

erage and test failure, and provide insights and a new dataset for future automated

testing research such as fault localization. In particular, we answer the two following

research questions:

• RQ3: How does the code change when the test failure first happens?

• RQ4: How does the code change when the test failure is resolved?
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5.4.1 RQ3: How does the code change when the test failure

first happens?

Prior research studied the characteristics of test failures in relation to the source

code. Pinto et al. [145] showed that test execution might fail for three major reasons

including removal of the required source class or method, catching runtime excep-

tions, and assertion violation. Marsavina et al. [122] further examined, in the case of

introduction of test failure, how production and test code were changed. They found

that many failed test cases may be added by developers while working on produc-

tion code. In this RQ, we study the changes that developers made when introducing

test failures, and how code coverage changes (which shows the dynamic execution

information) before and after introducing the failure. Studying the change in code

coverage may give insights on why test failure happens and provides an understanding

of the relationship between code coverage and test failure.

To better understand the evolution of code coverage when the test failure first

happens, we record the code coverage of each test failure. We provide quantitative

analyses to study the test failure in CI settings where code coverage is one of the few

pieces of information available to developers. First, we investigate how developers

introduce test failures. In particular, we derive categories of code changes based on

the types of files changed, and present the number of test failures belonging to each

category. By studying what type of code changes might introduce the test failures,

future research might inspire from our findings to better help developers with test

failures. Then, we evaluate the impacts of test failures on code coverage. In other

words, when test failures occur what can we observe from the code coverage? We

present the coverage change based on the total line coverage increased and decreased.

To investigate which files were modified, for each test failure, we conduct quanti-

tative analyses on the failure-introducing commits. We categorize the files with .java

extension as either source code or test files, and otherwise as non-code files (e.g., data

and configuration files). We use the list of active tests identified in Section 5.2.1 to

further distinguish between source code and test files.

To investigate how the code coverage changes after failure introduction, we first

compute the per-method line increased and decreased from the failure-introducing

commit and the commit before it. Rather than checking whether the overall coverage

increases or decreases, we calculate the individual line increased and decreased in

99



each covered method. In this way, we can obtain finer-grained results and identify

the case where the line coverage has changed but the overall coverage remains the

same. Then, we sum up the per-method line increased and decreased from all the

covered methods to get the total lines increased and decreased. We quantify the

coverage change based on the total line increased and decreased. As the line coverage

counts the lines of code without including the conditional statements (e.g., if and

while), we further compute the branch coverage in the case where we observe no

difference in line coverage. Similar to the line coverage calculation, we calculate the

individual branch increased and decreased from each covered method.

We find that many failed test cases may be added by developers while

trying to resolve an issue. Figure 21 shows the types of files that were modified in

failure-introducing commits. Overall, we find that many failure-introducing changes

modify both source code and test files (52% on average), while just 35% modify only

source code files. We also find that many of the commits that modify both source

code and test files may be adding new test cases to address newly reported bugs.

For instance, in fastjson, which is a JSON processor for data streaming, 63% of its

failure-introducing commits (i.e., 147/233) modify both test and source code files.

We find that nearly 99% (146/147) of those modifications added new test files to the

project. Those new test files either contain or are named after some bug ID (e.g.,

Issue2133 ), which may indicate that the test files were added when developers were

trying to resolve the bugs. Overall, we find that 18% (150/821) of the test failures

in the studied projects either modified or added test files that contain the failed test

cases. Moreover, 13% of the failure-introducing commits modify only test files. In

other words, developers may be fixing a bug while modifying or adding test files.

Automated testing techniques (e.g., fault localization) use the information of run-

ning test cases to assist developers in identifying bugs. Our finding shows that, if

a dataset is collected without considering such newly added test cases that are used

to resolve the faults, there may be potential biases in the result. Namely, develop-

ers were already trying to address the fault by adding new test cases based on their

knowledge. For instance, if such newly added (and failing) test cases were used for

evaluating techniques such as fault localization, one may be implicitly using develop-

ers’ knowledge of the faulty location to assist the automated techniques. In contrast,

our dataset specifically shows whether a failure-introducing commit modifies either
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Figure 21: The categories of the files that were modified in failure-introducing com-

mits.

101



Table 18: Average code coverage before and after the failure-introducing commit.

Project
Method level Line level

Increased Decreased Increased Decreased

commons-cli 10 12 36 68

commons-codec 4 8 18 56

commons-compress 5 16 16 82

commons-csv 2 26 7 136

fastjson 15 27 329 511

gson 0 28 1 511

jackson-core 15 17 89 101

jfreechart 7 18 49 119

junit4 13 29 54 124

Average 8 20 67 190

source code, test file, or both. Future studies may use our dataset to filter out those

newly added or modified test cases (e.g., the test is being modified by developers to

capture the fault, so it is failing) to better evaluate automated testing techniques

such as fault localization.

Test execution may stop prematurely when it encounters a failure in test

files (e.g., assertion statement is invalid), which results in a decrease in

code coverage. Table 18 shows the changes in the average code coverage (i.e.,

averaged across all failure-introducing commits in a project) before and after the

failure-introducing commit. We report the changes in both method-level and line-

level coverage. To note that we perform our coverage analysis on 468 (57%) new

failures instead of all the new failures (821), as not all failures have code coverage

change between the failure-introducing commit and the prior commit. In addition,

there were some test cases that did not exist before the failure-introducing commit

(i.e., new test cases).

Overall, we find that the failure-introducing commits decreased more coverage

than increased. For example, the average decreased covered lines are 190, while the

increased covered lines were only 67. We notice that since we generate the coverage

based on the executed test code, when a test case fails, the part of the test code

102



Table 19: Test failures with and without coverage change for different introduction

categories.

Test Only Source Only Both

Changed Unchanged Changed Unchanged Changed Unchanged

26 38 140 74 159 31

that is beyond the failing location will not be executed and will not be included in

the coverage data. If a test case fails at the beginning of the execution, the code

coverage may be empty in some cases (e.g., the pre-test check fails). For example, we

observe a serialization test (i.e., Issue3436#test for issue) from fastjson, which fails

with a JSONException. The failure happens at the beginning of the test case, so the

remaining test code is not executed and no code coverage report is generated.

Our dataset provides both the code coverage before the failure-introducing com-

mits and the code coverage of the failed commit. Future studies may use our dataset

to study how the coverage evolution data may help locate where a fault is introduced

when the coverage of the failed test cases is incomplete.

Around 6% of the failure-introducing changes do not change the line cover-

age, nor the branch coverage. When analyzing the coverage change with different

categories of failure-introducing changes, we find that around 44% (200/468) of the

failure-introducing changes do not change line coverage, even though the changes

modify source code or test files, as described in Table 19. While those failures do not

have changes on the line coverage, 87% (174/200) of them do have a different branch

coverage. The remaining 13% (26/200) of the test failures do not involve coverage

change at all (e.g., the failed assertion statement is the last line in the test case and

the test failure is due to incorrect test setup or variable value).

As we found, the coverage (i.e., line or method coverage) might not always change

when the test failures are first introduced. Our dataset and findings may inspire re-

searchers and practitioners to further investigate the prevalence of software regression

and refactoring that caused test failures.
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Many failed test cases may be added when developers are trying to resolve an issue,

and 13% of the failure-introducing commits only modify test files. We also find

that, compared to the prior passing commit, the code coverage generally decreases

in failure-introducing commits.

5.4.2 RQ4: How does the code change when the test failure

is resolved?

Understanding the changes that developers apply when resolving a test failure may

help improve future automated testing techniques. In this RQ, we study the types

of files that are modified in failure-resolving commits, and how do code coverage

changes when the failure is resolved. Specifically, we answer the RQ by answering

two sub-RQs: What types of changes do developers apply when fixing a test failure?

and Are there overlaps between the code coverage of the failed test cases and the

failure-resolving location?

RQ4.1: What types of changes do developers apply when fixing a test

failure?

We study the test failure resolution in two steps: 1) we investigate which files were

modified during the resolution, and then 2) we study how the coverage changes after

failure resolution. To investigate which files were modified, for each test failure, we

examined the changed files in failure-resolving commits. Same as RQ3, we categorize

the files with .java extension as either source code or test files, and otherwise as non-

code files (e.g., data and configuration files). To investigate how the code coverage

changes after failure resolution, similar to RQ3, we quantify the coverage change based

on the total line increased and decreased. In other words, we sum up the per-method

line added and deleted from all the covered methods to get the total increased and

decreased lines. Knowing which files were modified during the resolution and how

the coverage changes may help better understand how do developers fix a test failure

and improve automated testing techniques.

Developers often resolve test failures by modifying non-code files (21%) or

only test files (14%). Figure 22 shows the distribution of the files that were mod-

ified in failure-resolving commits. Overall, we find that 34% of the failure-resolving

commits modify both test and source code files, and 31% of the commits modify only
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Figure 22: The types of files that were modified in failure-resolving commits.

the source code files. We also find that developers commonly modify non-code files

(21%), or only the test files (14%) in failure-resolving commits. The types of modified

files vary across the studied projects. For instance, in fastjson, we observe 91% of

the failure-resolving commits modify either only source code files, or both test and

source code files. Only 6% of failure-resolving commits modify test files. However,

in another project (i.e., commons-codec), we observe that more than 36% of the test

failures are resolved by modifying only test files. In other projects, such as gson and

jackson-core, developers might also only modify the non-code files, such as data or

configuration files, to fix the test failures. We observe more than 49% and 76% of the

failures are fixed through non-code changes in gson and jackson-core, respectively.

Our findings show that the resolution of the test failure does not only limit to source

code files, but also the test and non-code files. When studying test failures, future

research might consider non-code files as a potential fix for failures, as well as the test

files that might already contain some issues related to the failures.

Around 19% of the failure-resolving changes do not alter code coverage,
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Table 20: Test failures with and without coverage change count for different resolution

categories.

Test Only Source Only Both

Changed Unchanged Changed Unchanged Changed Unchanged

71 22 183 46 130 21

even though the changes modify source code or test files. In Table 20, we show

the number of resolved test failures with and without coverage change. We find that

there is a non-negligible number of failure-resolving changes that did not change code

coverage. 23.7% (22/93), 20.1% (46/229), and 14.0% (21/151) of the test-resolving

commits did not change code coverage in each resolution category (i.e., modify only

test files, only source code files, or both), respectively. To note that we perform our

coverage analysis on 473 (60%, out of 783) among all the resolved failures because the

code coverage information may not be available for the failure-resolving commit or

the commit before (i.e., the failing commit). Some test cases may be removed in the

failure-resolving commit (as found by previous research [82, 145]), and there may be

no coverage for some failing test cases (e.g., a test case fails early when no coverage

is available yet). In addition, as discussed above, developers may modify non-code

files (e.g., test configuration or data files) that are not visible through code coverage.

The data files may be used in test cases to verify the expected test output, and some

configuration issues may cause test cases to fail.

To better understand in what situation do failure-resolving commits have no code

coverage change, we manually studied the test failures. We performed our manual

study on all 310 resolved test failures in which the failure-resolving commits did

not introduce any code coverage change. We manually examined the code changes

applied to the failure-resolving commit, and the code coverage. This information

provides hints on the relationship between the changed code and test execution. By

leveraging this information, we uncovered a list of categories of code changes that

may result in no code coverage change. Then, we systematically verified the assigned

categories. In case of any discrepancy, we further carried on discussions to reach a

consensus. We observed four main types of changes: 1) test assertion changes, 2)

method parameter changes, 3) invisible dynamic changes, 4) conditional statement
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changes. Each of these four types of changes can result in resolved test failures

without coverage change. We briefly present the four types of changes as follows:

Test assertion changes: changes performed on assertion statements in the test

cases. As only the assertion statement is modified, the dynamic execution is un-

changed. For instance, one test failure captured in fastjson modified the expected

string value in the assertion statement assertEquals(expected str, actual str) to adapt

to recent changes in the source code that necessitate a new expected string value in

the test.

Method parameter changes: changes that modified the parameter value inside method

invocations. An example of such is correcting a wrong parameter to fix the test failure.

Invisible dynamic changes: changes that modified the flow of the third-party code

which is not reported in the coverage report. For example, modifying the string

format of a datetime object before passing it to a special third-party json datetime

formatter (where the software will use the output).

Conditional statement changes: changes that modified the conditional statements

(e.g., ifelse or while) to fix logical errors. For example, developers may add a new

condition (e.g., from while(condition1) to while(condition1 && condition2)) to fix a

logical error. However, since the change does not add new code and the test may not

be updated, there is no coverage change.

Our findings show that the resolution of test failure is not always visible through

code coverage change. Moreover, the system dynamic behavior may change, even

if developers fix the test failure and the code coverage remains the same. Future

research may use our dataset to further evaluate whether existing automated testing

techniques (e.g., fault localization or automated program repair) need to be tailored

to work on this type of issues.

RQ4.2: Are there overlaps between the coverage of the failed test cases

and the failure-resolving location?

Many automated testing techniques (e.g., fault localization) leverage code coverage

to help developers identify faulty code [17, 78, 95, 150, 183]. The general assumption of

such techniques is that the faulty code is on the execution path of a failed test. In this

RQ, we wish to investigate whether the coverage of the failed test can provide useful

insights on the failure-resolving location. By understanding this, we may provide

insights for future research.
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Here, we analyze the results of 473 test failures that have the code coverage infor-

mation. We first extract a list of covered files (fcovered) from the coverage information

of the commits that have failing test cases. Then, we compare fcovered with the changed

files in failure-resolving commits (fchanged) and compute an overlap between them. We

calculate the percentage of the overlap based on the total number of changed files as

follows:

Percentage Overlap =
#fcovered ∩#fchanged

#fchanged
(13)

In all the studied projects except one, many modified files in the failure-

resolving commits do not have overlap with the executed files in the failing

commit. Table 21 shows the overlaps between fcovered and fchanged. We find that a

notable number of the changed files are not on the execution path covered by the

test cases in the failure-resolving commit. The average percentage overlap across the

studied projects is 66% (except for jfreechart, where the overlap is 100%). We ob-

serve that the reason for a relatively low overlap may be that the coverage of failed

test cases may be incomplete if the test case fails during the early execution stage.

Such incomplete code coverage might present a limitation to existing automated test-

ing techniques that analyzes code coverage (e.g., fault localization). We also find a

non-trivial number of instances (i.e., 10% of the overlaps) where the failure-resolving

commits only modify the failed test case and the coverage did not change. By ex-

amining these instances, we observe that some of the test failures were resolved in

unconventional ways. For instance, as also reported in a prior study [83], developers

may disable the assertion statements in the test code (e.g., the code is commented

out), but the issue remains unsolved.

Developers often resolve test failures by modifying non-code files (21%) or only

test files (14%). Even when modifying source code or test files, around 19% of the

failure-resolving changes do not alter code coverage. In addition, in all studied

projects except one, we observe that a notable number of the changed files are not

on the execution path covered by the test cases in the failure-resolving commit.
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Table 21: Overlaps between the coverage of the failed test case and the failure-resolving location.

Project commons-cli commons-codec commons-compress commons-csv fastjson gson jackson-core jfreechart junit

Overlaps(%) 64 76 65 90 71 14 58 100 58
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5.5 Future Research Directions

As described in Section 5.2, we executed the test cases on consecutive sequences of

commits in 12 studied projects. We collected the data and made it publicly avail-

able [12]. Our data is 3.3TB and may be used in future testing research or bench-

marking different techniques. Below, we discuss some possible research directions

using our data.

Studying and understanding quality issues in test code: In RQ4, we found

that developers may only modify test files to resolve test failures. We also found

that some test cases may be failing already when they were first added. Our findings

indicate that there may be pre-existing issues causing test cases to fail. Future studies

may use our dataset to study the quality of test code throughout software evolution.

Studying code coverage evolution: We observed that some test failures do not

involve any coverage change either in the failure introduction or the failure resolution

in all studied projects in RQ3 and RQ4. Future studies may use our dataset to study

the evolution of such test failures and their coverage throughout their entire lifetime.

We observe that the time of resolving test failures and how the failures are resolved

is project-specific and our study provides the first-step insights towards studying the

relationship between test failure and code coverage. Future studies may investigate

whether there exists any correlation between the increased coverage and faster failure

resolution time. It is also interesting to investigate whether better coverage helps to

detect and resolve the failures.

Studying the roles of test cases that failed repetitively: In RQ1, our results

show that most test failures are concentrated in a small number of test cases. Namely,

the test failure may be resolved but the same test case may fail again multiple times

during the evolution due to other reasons. Our dataset may be used to study the

characteristics of such test cases, and whether it is possible to help developers enhance

the quality of both the test code and the tested source code to prevent future bugs.

Studying how code change history may assist fault localization and pro-

gram repair techniques: In RQ3, our findings show that test execution may stop

prematurely when it encounters a test failure, which might result in a decrease in

code coverage. As there exist many automated testing techniques that leverage code

coverage (i.e., fault localization and program repair techniques), future studies may
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use our dataset to propose new or enhance current techniques. Future studies may

mine the past code coverage data to complement the decrease in coverage. In addi-

tion, future studies may analyze the code changes that we collected in the dataset and

examine how recent code changes contribute to test failures. Future studies might

even use our dataset for benchmarking automated testing techniques.

Studying how build configurations may affect test result: Our dataset con-

tains all the build logs that we collected when compiling and executing the test cases

in the studied commits. As we found in RQ4, some failure-resolving commits only

modify non-code files such as configuration files. Future studies may analyze the build

logs to study how the quality of the build scripts contributes to test failures.

5.6 Threats to Validity

External validity. Our studied projects are all open source and implemented in

Java, so our findings may not be generalizable to other projects. To minimize the

threat, we try to choose the projects that are well studied in the research community

or are commonly used by many systems around the world (e.g., junit4). Future

research may consider collect similar datasets for projects that are implemented in

other programming languages and verify with our findings. We base our findings

on the data in the studied time range from each project. In some cases, studying a

different time range may lead to slightly different results. To generalize our results

as much as possible, we select a large range of commits (1,000 commits per studied

project). This time range of commits was chosen because it is a relatively large

number but still feasible to manually resolve compilation issues. Note that for some

projects (e.g., commons-cli), the total number of commits is less than 1,000 commits

as of September 2020. In total, we compile and execute the test cases in 8,093 commits

across the studied projects.

Construct validity. In our study, the starting date varies from 2002 to 2018, which

implies that the studied projects may be at different stages of development. While

this can increase the diversity of the studied systems, it can also be a threat to the

construct validity of our results. Nevertheless, our findings are consistent in general.

We encourage future research to leverage our dataset and further explore the differ-

ences among the projects and their relationship between different time ranges. When
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analyzing code coverage, we notice that some test cases may have empty coverage. To

ensure the validity of our results, we re-run all the failing tests in a new environment.

Then, if there is still any test failure without coverage, we randomly select some tests

to run manually. Based on our manual study, we observe that the code coverage might

not be generated when the test case fails in the early stage of the execution where no

source code is yet covered. Future studies should consider this situation when apply-

ing automated testing techniques that leverage coverage information. Even though

we tried our best to compile and run the test cases in the studied projects, some of

the excluded commits (e.g., we cannot compile) may still be compilable. Neverthe-

less, our dataset still includes over 8,000 compiled commits and test execution results,

which we share with the research community. There are uncompilable commits be-

tween sequences of compilable commits, which might affect the continuation of our

dataset. In Section 4.3, we conducted analyses and showed that, despite the presence

of uncompilable commits in some projects, in general, our dataset contains long and

consecutive sequences of compilable commits. We encourage future studies to further

investigate those compilation issues.

There are many factors that can influence the compilation of the commits (e.g.,

availability of past dependencies, inappropriate Java Development Kit version). For

instance, most of the studied projects use a handful of third-party libraries, so there

may be other dependency issues that require manual fixes (e.g., some libraries are

no longer available in the central Maven repository and need to be manually down-

loaded). We manually resolve the issues and update our automation scripts accord-

ingly. We spent our best effort to manually resolve the compilation issues. To provide

better confidence on the accuracy of our results and allow continuous improvement

on our dataset, we made all the data that we collected publicly available [12], as

transparent as possible with this chapter. Due to the size of the code coverage data,

we published it separately in a Zenodo repository [13].

5.7 Related Work

Testing in Continuous Integration. Some prior research [26, 89, 148] have aimed

to study CI testing practices. Rogers [148] found that developers might allow known
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test failures into CI, as long as those failures are resolved by the end of the devel-

opment iteration. In this chapter, we also found that, despite the presence of CI

environment, there are a non-negligible number of test failures that persist over mul-

tiple days. Beller et al. [26] observed that testing constitutes the main reason why

builds fail in CI, with test failures responsible for 59% of broken builds. Labuschagne

et al. [89] showed that 18% of test executions in CI fail and that 13% of these test

failures are flaky. In their study, they categorized the resolution of failed tests into

three categories: code fixes, test fixes, and combination of code and test fixes. In this

chapter, we found that non-code changes (e.g., data files) might also constitute the

resolution of test failure.

Previous studies [122, 145] also discussed some characteristics of test failure by

exploring how the test code evolved over time. Marsavina et al. [122] discussed co-

evolution patterns of production and test code. Our study further examines how code

coverage, production and test code change upon the introduction of a test failure.

We find that, compared to the prior passing commit, the code coverage generally

decreases. They also found that, in some studied projects, up to 47% of all code

changes are performed on test files. In our manual study, our goal is to study how

the code changes when developers resolve the test failures. We find that 48% of the

code changes modified test files when resolving test failures (i.e., 34% modifying both

test and source code files, 14% on only the test files). Pinto et al. [145] studied the

effect of newly added tests on code coverage, and found that, on average, 56% of the

newly added tests do not change the previous code coverage (i.e., branch coverage).

In this chapter, we observe that test failures might impact code coverage, since the

test execution may stop prematurely which results in a decrease in code coverage.

Testing Practices. Prior studies conducted empirical studies on test code, and pro-

posed suggestions to help improve testing practices [67, 80, 82, 114]. Just et al. [80]

evaluated the developer-provided tests (from version history) and the user-provided

tests (from bug reports) on fault localization and automated program repair tech-

niques. They found that developer-provided tests contain more information to detect

bugs, as the tests are specifically tailored to cover the buggy code. Kim et al. [82]

conducted an empirical study on the evolution and maintenance of test annotations.

They found that developers may use test annotations to remove or disable failed

tests. Liu et al. [114] discussed the potential bias of over-fitting issue in automated
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program repair, where test failure may be resolved without actually fixing the bug.

Our results confirm this finding as we found that developers may disable the assertion

statements to make failed tests pass again. Hilton et al. [67] evaluated the coverage

change between project revisions and assessed the impact of code changes on test

quality. Zaidman et al. [200] studied the co-evolution of source and test code. They

investigated the test coverage evolution based on its relation with test-writing activ-

ity. Beller et al. [25] suggested in their study that the production and test code have

some tendency to change together, but the production code change does not always

involve test change and vice versa. Catolino et al. [35] surveyed developers to under-

stand how assertion density relates to the quality of test code. In this chapter, we

present the test result and test coverage in the context of CI where the code changes

are integrated and tested continuously.

Bug and Test Datasets. Many studies [58, 79, 100, 121, 154] have proposed bench-

mark or dataset on failed (and passed) tests to facilitate research on automated testing

techniques. Just et al. [79] proposed Defects4J which records the information on the

failed tests before and after the failure resolution. Le Goues et al. [100] proposed

ManyBugs and IntroClass for C projects that have the test failure, the version in

which it occurs, and the repairs to the failure that describes expected behavior. El-

baum et al. [58] collected a dataset at Google that includes over 3.5M records of test

suite executions. Madeiral et al. [121] shared BEARS-BENCHMARK that contains

the test failures before and after the resolution. Saha et al. [154] presented Bugs.jar

that contains test failures for existing bugs. We present T-Evos as a dataset that

contains the evolution of test execution. As the code changes are integrated and

tested continuously, the evolution data provide additional values in CI settings. Our

dataset may also complement existing datasets and benchmarks.
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Chapter 6

Extending Fault Localization via

Code Change Information in

Continuous Integration

Chapter 5 explores the evolution of code coverage and test failures in a continuous

environment, using the T-Evos dataset. This dataset offers new possibilities for future

research on automated testing techniques in continuous integration settings. We

discuss a specific fault localization technique that can leverage operational data in

continuous integration.

Previous studies [15, 16, 17, 49, 72, 203] have proposed SBFL techniques (pre-

sented in Section 2.4) to identify faulty locations at the statement or method level,

which may be used for resolving test failures. However, most of these studies eval-

uate SBFL techniques in traditional software development settings, where only a

single snapshot of the system is considered. In contrast, modern software develop-

ment, particularly in the context of CI, involves continuous and fine-grained changes

to the system. Therefore, when a new test failure occurs, the detailed information

associated with these changes can provide additional insights for locating the fault.

Furthermore, the atomic nature of code changes limits the unintended consequences

and makes fault isolation more feasible with accessible and cost-effective diagnosis

metrics.

In this chapter, we conduct an empirical study to evaluate the effectiveness of

integrating change information for fault localization in CI settings. Specifically, we
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examine two types of change information: code changes and coverage changes. These

two types capture both the static and dynamic aspects of the system. We analyze

real-world faults to characterize change information and derive design insights for

leveraging such information in fault localization. Our key idea is to consider code

changes and coverage changes as valuable debugging knowledge that can enhance

fault localization, given their availability in systems following CI practices.

Through extensive evaluation, we demonstrate that code changes can significantly

reduce effort and play a crucial role in fault localization. To the best of our knowledge,

this study is the first to integrate change information from CI to improve SBFL

techniques. Our findings highlight the importance of considering change information

for effective fault localization. Future research may explore ways to leverage change

information to complement existing fault localization techniques. Furthermore, our

study emphasizes the need to leverage CI practices and the valuable information it

provides for improving fault localization techniques in modern software development.

An earlier version of this chapter has been published at IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE), 2022.

Michigan, USA. Chen et al. [40]
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6.1 Motivation

CI is a software development practice by which developers regularly deliver into a

central repository. CI has been widely established in modern software systems [59,

66, 134, 170]. With continuous delivery, developers automatically build and test

new code changes incrementally. This practice helps to identify faults early in the

development cycle, making them less expensive to fix.

Prior studies [15, 16, 44, 45, 94, 183, 186] focused on studying the use of code

coverage in locating faults under traditional software development settings. However,

under CI settings, the changes are incremental. Those finer-grained change informa-

tion may provide helpful hints on the faulty locations. Typically, there are two types

of change information: code changes, which track the modified code statements in

a commit; and coverage changes, which record the changes in code coverage before

and after the commit.

As pointed out by prior studies [31, 175, 178], changes to the system may help

reveal hints on the faults. In this chapter, we examine the two aforementioned change

information and study whether they can provide additional information compared to

code coverage, which is widely used in traditional SBFL techniques. We examine code

and coverage change information in the CI context where changes are continuous

and finer-grained. We consider these two types of change information since they

are less expensive to obtain and may be readily available for systems following CI

practices. Studying such change information may open new directions to improve

fault localization. Below, we discuss the two types of changes in detail.

Coverage Changes. Coverage changes are the effect of the code changes from

the coverage aspect. Coverage changes include two types of changed statements:

statically and dynamically changed statements. While both types lead to changes

in coverage execution, they are different in how the statements are changed. For

the statically changed statements, changes happen because the original statements

are modified based on the code changes. For instance, when developers modify a

statement that is part of the code coverage, the coverage execution naturally changes

from the original statement to the recently updated statement. For the dynamically

changed statements, changes happen because the dynamic execution (e.g., control

flow) in the system is different. The coverage changes as a result of the system

taking an alternative execution path. Together, statically and dynamically changed
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statements provide different in-depth information on the changes performed on the

system.

There are two benefits to leveraging such change information. First, the coverage

changes can help characterize the source code from a new perspective — the perspec-

tive of the statements statically and dynamically influenced by the code changes. This

perspective may gain new insights into existing problems, such as tie issue in fault

localization. Tie issue is a well-investigated problem in traditional spectrum-based

fault localization techniques [15, 16, 17, 49, 72, 203], which is caused by the exceeding

number of statements within the code coverage. The coverage changes may help pri-

oritize faulty locations within the coverage based on the statically and dynamically

changed statements. Another advantage of using the coverage changes is that it helps

limit the search space (i.e., coverage change is a subset of code coverage), which offers

more opportunities for improving the precision in fault localization.

Let us illustrate the coverage changes through an example adapted from fault

Time 2 in the Defects4J benchmark. In Figure 23, we show the source code, and

the coverage of the test failing in the fault inducing commit (denoted as Faulty)

and passing in the prior commit (denoted as Prior). First, when updating from

the prior commit to the fault-inducing commit, we observe that the statements are

modified at line 463 and 464. Those modifications change the code coverage by

covering a different Partial constructor, as well as introducing new coverage based

on the statements within that new constructor. We highlight (in red) those coverage

changes in Figure 23. While the code changes reveal what is being done to the

system, the aforementioned coverage changes show the effect of the code changes on

the system. In this fault, the faulty statements locate at line 218 in the Partial.java file,

and at line 227 in the UnsupportedDurationField.java file where the coverage changes. A

prior study [19] suggests there exist correlations between the statements dynamically

affected by code changes and the faulty locations. This study finds that by inspecting

only the dynamically changed statements, developers may reduce the inspection cost

and find faults faster. The above observations motivate us to study the usefulness of

coverage changes in fault localization.
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// Commit: 3ba9ba7

// Partial.java

189: Partial(DateTimeFieldType[] types, int[] values, Chronology

chronology){

212: DurationField lastUnitField = null;

217: int compare = lastUnitField.compareTo(loopUnitField);

218: if (compare < 0 || (compare != 0 && ..)) {

219: throw new IllegalArgumentException(..);

...

426: public Partial with(DateTimeFieldType fieldType, int value) {

463: - Partial newPartial = new Partial(iChronology, newTypes, newValues);

463: + // use public constructor to ensure full validation

464: + Partial newPartial = new Partial(newTypes, newValues, iChronology);

465: iChronology.validate(newPartial, newValues);

466: return newPartial;

474: }

// UnsupportedDurationField.java

226: public int compareTo(DurationField field){

227: return 0;

228: }

s Prior Faulty

Partial.java

189

212 •
217 •
218 •
219 •

426

463 •

464 •
465 • •
466 • •
474

UnsupportedDurationField.java

226

227 •
228

Figure 23: Coverage of the fault-triggering test from Time-2, where Faulty denotes the fault-inducing commit and Prior

denotes the commit prior to the fault-inducing commit.
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Code Changes. In CI, code changes are one of the mostly used information by

developers. They show the modified methods/code statements that cause the fault-

triggering test to fail. Such change information is important to developers in practice,

as it can provide developers with better understanding on the root cause of the faults.

For instance, in the example illustrated in Figure 23, the code changes at line 463 and

464 provide a new perspective on the static change of the system, orthogonal to the

coverage changes. Prior studies [31, 175] analyze the change metric (e.g., the com-

plexity of the introduced code hunks), and suggest that code changes can be closely

correlated to the faulty locations. However, the usefulness of code changes remains

unknown in the context of CI and fault localization, where the changes are continuous

and finer-grained. Based on the above observations, we further investigate how the

code changes might contribute to enhancing existing fault localization techniques in

CI.

6.2 Experimental Setup

In this section, we first present the studied systems and fault dataset. Then, we

discuss the data collection process, and the challenges that we encountered in test

execution.

6.2.1 Studied Systems and Fault Dataset

Although there are several open source fault datasets such as Defects4J [79], none

of them includes the code evolution details (e.g., the test result and code coverage

information prior to the fault). Therefore, we collect the dataset using five studied

systems from the Defects4J benchmark (version 1.0) and two additional systems (i.e.,

Fastjson and Jackson-core). In total, we collected 192 faults and the corresponding

test failures across seven studied systems.

We choose the Defects4J benchmark because it has been widely used in prior fault

localization studies [105, 142, 162, 177, 203]. The benchmark contains a clean dataset

that allows researchers to reproduce the faults easily. For each fault, it provides the

faulty commit, the fix commit, and fault-triggering tests. However, Defects4J is not

applicable for studies in CI context due to the following reasons. First, the faulty

commit identified by Defects4J does not fit the CI setting. The faulty commit is
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defined as one of the commits where fault happens, but not the first commit. However,

testing begins as soon as the commits are submitted into CI, and if some tests fail,

developers will investigate the issue at the failing commit, which differs from the

faulty commit identified by Defects4J. To simulate a CI setting, we need to conduct

the study on the the fault-inducing commit (i.e., where test failure occurs). Following

prior studies [31, 177], we identify the matching fault-inducing commits by using “git

bisect” to run the fault-triggering tests on previous commits of the system.

Second, the fault-triggering test at the fault-inducing commit may have different

points of failure and reason of failing compared to the fault-fixing commit provided

by Defects4J. As these provided fault-fixing commits serve as the ground truth for

evaluating the effectiveness of fault localization techniques, they indicate the location

where developers should change to fix the faults. However, there might have been code

changes between the fault-fixing commit provided by Defects4J and the fault-inducing

commit. Therefore, we need to make sure that the test is failing due to the same

reason on both commits. To address this challenge, we extract the fault-triggering

test from the fault-fixing commit and execute it on the fault-inducing commits by

following a prior study [178]. Specifically, we first execute the fault-triggering test

on the commit prior to the fault-fixing commit (i.e., where the fault still occurs) to

obtain the point of failure (e.g., assertion statement). We then execute the same test

on the fault-inducing commit and exclude the fault if the point of failure is different.

We use this approach on all the 357 faults from the Defects4J 1.0 benchmark. At the

end of this process, we collect 83 faults from the Defects4J 1.0 benchmark.

To further increase the size of the fault dataset, we added two additional systems

(i.e., Fastjson and Jackson-core, which follow the CI practices) and increase the fault

data in three Defects4J systems (i.e., Chart, Lang, and Time) that have the least

number of faults after our previous data validation step. Fastjson is a popular open

source Java system used for JSON object conversion (with 24k stars on GitHub).

Fastjson has been used in prior research [57, 165] to study code evolution in the CI

context. Jackson Project is a well-known Java JSON library, and its fundamental

component, Jackson-core, is frequently used in prior fault localization studies [74,

130].

To collect the fault dataset in these five systems, we automatically compile and

execute the tests for the 1,000 latest commits at the time when we conduct our case
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Table 22: An overview of studied systems.

System # Faults KLOC # Test cases

Fastjson 88 183 4,736

Lang 6 22 2,245

Math 22 85 3,602

Closure 41 147 7,927

JacksonCore 12 45 664

Time 5 28 4,130

Chart 18 96 2,205

Total 192 606 25,509

study in May 2021. Our goal is to find the fault-inducing commit where a fault

is first introduced. We sort the commits by their creation time and find the first

occurrence for each test failure. Because a test failure may continuously occur in

sequential commits until the fault is fixed, we isolate and identify the first occurrence

of the test failure as the fault-inducing commit. At the end of this process, we collect

109 additional faults (with a total of 192 faults, as shown in Table 22) and their

corresponding fault-inducing commit.

6.2.2 Data Collection Process

In the previous subsection, we discuss the dataset that we collected and used in our

study. In this subsection, we provide a detailed explanation of our data collection

process.

6.2.2.1 Identifying the Commit Prior to Fault-Inducing Commit

To obtain the code and coverage changes that resulted in test failure, we need to

identify the commit prior to the fault-inducing commit. Namely, the commit where

the fault has not yet been introduced or triggered by the tests. We identify the prior

passing commit using the Git command “git rev−parse commitˆ” where commit refers

to the fault-inducing commit. In the case where there are multiple parent commits,

the caret annotation (ˆ) helps to locate the first immediate parent.

122



6.2.2.2 Collecting Code Changes

As mentioned in Section 6.1, we want to analyze the code changes to study the benefits

of leveraging such change information in fault localization. To collect code change

information, we first use the “git diff” command to capture the change information

between the fault-inducing commit and the prior commit. This change information

includes the modified files, the modified code statements, and their corresponding line

numbers. To perform a more comprehensive analysis, we also trace higher granularity

information (i.e., method in which the modified line belongs to). We use a static

analysis tool (i.e., JavaParser [137]) to derive the per-method abstract syntax tree

(AST) for each modified file. Since the generated ASTs contain the starting and

ending line number for each method, we check whether the line number of the modified

statement is within the range of the starting and ending line numbers of the ASTs to

determine its corresponding method.

6.2.2.3 Collecting Code Coverage

Our goal is to compare the change information to the conventional code coverage

when leveraged in fault localization. Therefore, we collect the code coverage on

the fault-inducing commit, and also on the prior commit, to identify the changes in

code coverage. To automate this process, we integrate GZoltar [9] into each studied

system as a Maven plug-in. GZoltar is a Java framework for automatic debugging

and coverage generation. On every test execution, GZoltar instruments the source

files to obtain a coverage matrix. The coverage matrix provides information on which

statements were executed and by which tests. Thus, we collect the coverage matrix

to compute the code coverage for each test.

6.2.2.4 Identifying Coverage Changes

In addition to code changes, we also want to study whether changes in code coverage

help improving fault localization techniques. As our goal is to identify the code that

is likely to be affected by faults, we compute the changes based on the coverage of

the fault-triggering test, between the fault-inducing commit and the prior commit.

We first represent each covered statement using the code statements (e.g., Re-

ducer r = new Reducer(..)), rather than the conventional location information (e.g.,

123



Reducer.java, line 33). When comparing the code coverage between two different

commits, the location information is not reflective on what is the exact code state-

ments been covered, which might introduce bias. For instance, if the code statement

at line 33 changes, then there is a coverage change at line 33, despite the location

information remaining the same (i.e., line 33 is covered) on the fault-inducing com-

mit and the prior commit. Therefore, we map the code statements to code coverage

and denote the code coverage as Cov = {s1, s2, ..., sn}, where s represents the code

statement covered. Then, we compare the statements covered on the fault-inducing

commit (i.e., Covfail) with the prior commit where the test passed (i.e., Covpass). We

locate the changes by identifying the newly added and changed code statements on

the Covfail. We do not consider the deleted statements, because when we localize

faults on the fault-inducing commit, only the existent statements are helpful for anal-

ysis. For instance, given Covfail = {s1, s2, s3} and Covpass = {s2, s3, s4}, the change

is Covchange = {s1}. Once we locate the changes, we describe them with the location

representation.

6.2.3 Resolving Challenges in Test Execution

Building the systems and running the tests require non-trivial effort [166, 169]. As

neither the fault-inducing commit nor the prior commit is readily available on De-

fects4J, we first need to find the two commits, build and compile the systems, and

execute the tests multiple times. In total, we spent hundreds of hours of manual effort

compiling the code, executing the tests, and collecting code coverage. To encourage

future studies in the area and ease the replication of our study, we made the replica-

tion package publicly available [12]. It should be noted that while the data collection

has been challenging, gathering the code coverage information requires lower over-

heads in practice. In Section 6.4.2, we further discuss about the time costs associated

with using the change information in fault localization.

Below, we share how we resolve the challenges that we encountered, which may

help future studies create benchmarks in CI settings.

Automatically compiling evolving code. The project structure may change as

the system evolves. As a result, we need to update the location of the build file in

our automation scripts accordingly. For instance, in the earlier versions of the system

Time, the build file and the source files were placed inside a nested directory rather
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than at the root. In order to compile the system on the earlier versions, we need

to manually resolve the issue and update our automation script to include the new

location of the build file.

Fixing test execution issues. Compiling fault-triggering tests on the fault-inducing

commit is not always straightforward. For instance, the JUnit 3 framework is not

able to evaluate test annotations with excepted exception (e.g., @Test(expected =

Exception) that is featured in JUnit 4. Hence, running a fault-triggering test that is

implemented with JUnit 4 syntax on the fault-inducing commit that still uses JUnit

3 will result in a test compilation error. To solve this error, we manually refactor the

tests to ensure there is no compilation issue.

Handling JDK compilation. Some studied systems may depend on specific ver-

sions of the Java Development Kit (JDK). To address this challenge, we manually

determine the required JDK version for each studied system and build an automated

script to switch between versions when needed.

Handling flaky tests. To ensure the reliability of our results, we need to remove

flaky tests from the fault-inducing commit and the prior passing commit. Flaky tests

generate inconsistent code coverage because of their non-deterministic nature. We

run Deflaker [8, 24], a state-of-the-art flaky tests detection tool, on both the fault-

inducing commit and the prior commit to detect flaky tests, and exclude them from

the suspiciousness score computation.

6.2.4 Evaluation Metrics

To measure the effectiveness of leveraging fine-grained change information for fault lo-

calization, we consider the following three evaluation metrics discussed in Section 2.5:

top ranked N (Top-N), mean average precision (MAP), and mean reciprocal rank

(MRR), as they have been widely used in fault localization [39, 172, 175, 180, 192, 206].

Below, we briefly discuss each metric.

Top-N: Given a number N, the Top-N metric defines the number of faults whose

faulty program elements (i.e., methods in our experiment) are ranked in the top n

ranking positions. Top-N evaluates the ability to find relevant methods among the

top ranked n methods. When the suspiciousness score is the same, we randomly break

the tie, and repeat the process three times to calculate the average result.

MAP: The MAP metric first computes the average precision for each fault, then
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calculates the mean of the average precision. We define the average precision (AP) as

the average of precision values at all ranks where relevant methods are found. MAP

assesses the ability in finding all relevant methods.

AP =

∑︁m
i=1 i/Pos(i)

m
(14)

MRR: The MRR metric calculates the mean of the reciprocal position at which the

first relevant method is found. MRR assesses the ability to find the first relevant

method.

MRR =
1

K

K∑︂
i=1

1

ranki
(15)

6.3 Experiment Results

In this section, we present our experiment results by answering three research ques-

tions (RQs). For each RQ, we present the motivation, approach, and results and

discussion.

RQ1: What Are the Overlaps Between the Change Informa-

tion and Faulty Locations

Motivation: Prior research has widely studied code coverage-based fault localization

techniques (e.g., SBFL) [16, 181, 201, 203, 208]. Despite their popularity, these

techniques suffer from precision issues due to the broad search space [16, 78, 162, 201].

Intuitively, coverage changes are subsets of code coverage which implies a smaller

search space. The code changes can also help restrict the search space while providing

new information (e.g., the changed code may not have corresponding tests to cover

it). Hence, in this RQ, we investigate how the change information overlaps with the

faults, and whether they are helpful in fault localization.

Approach: To understand how the change information contributes to finding faulty

locations, we analyze the number of faulty methods covered by each type of change

information, and code coverage. We define faulty methods as the methods that were

modified by developers to fix the faults (i.e., faulty locations). For each fault, we first

identify a set of faulty methods from the fault-resolving commits. Then, we study how
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many faulty methods have code changes or coverage changes, and compare them to

code coverage. Furthermore, we use faulty method ratio to study the percentage of

faulty methods among all the covered methods. A higher faulty method ratio means

that the identified search space has more faulty methods, which may be leveraged to

improve the precision of fault localization techniques.

Results: Although coverage changes cover only 67% of the faulty methods

from the code coverage, its faulty method ratio is 7 times higher. As shown

in Table 23, coverage changes have overlaps with 170 faulty methods in the reduced

search space (since coverage changes are a subset of code coverage) and code coverage

has overlaps with 254 faulty methods. Although coverage changes cover fewer faulty

methods, the covered methods have a much higher faulty method ratio (i.e., 7 times

higher, 5.7% compared to 0.7% from code coverage) and significantly fewer methods

compared to code coverage (i.e., 2,963 methods v.s. 35,483 methods). The results

show that the coverage changes, as a subset of the code coverage, cover 12 times

fewer total methods than the code coverage, which may help in the ranking of faulty

locations. Nevertheless, the coverage changes provide as much as 67% of the faulty

methods within the reduced search space. This means that, when leveraging the

coverage changes, we can perform the fault localization on a much smaller number of

methods, while identifying a good percentage of faulty methods. The above findings

suggest initial evidence for the potentials of leveraging coverage changes to improve

the precision of fault localization.

Code changes cover additional faulty methods over code coverage, and

provide faulty method ratio that is 14 times higher. In Table 23, code changes

overlap with 173 faulty methods in the reduced search space while code coverage

overlaps with 254 faulty methods. Even though code changes cover fewer faulty

methods, its faulty method ratio is 14 times higher (i.e., 10.7%, compared to 0.7%

from code coverage). Code changes’ search space is also smaller, covering 22 times

fewer methods compared to code coverage (i.e., 1,614 methods v.s. 35,483 methods).

We also find that code changes have overlap with 14% additional faulty methods

that code coverage is not able to cover. After some manual investigation, we find

that the reason is these faulty methods do not have a corresponding test and code

coverage (i.e., not tested in the system). Hence, these additional faulty methods that

code changes have overlap with may further help coverage-based fault localization
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Table 23: The number of total methods covered by code coverage, code changes and

coverage changes, and the number of faulty methods captured in each information.

Total and Faulty denote the number of total and faulty methods. Faulty ratio denotes

faulty method ratio, which is the percentage of faulty methods per the total methods

covered.

System Code Coverage Code Changes Coverage Changes

Total Faulty Faulty Ratio Total Faulty Faulty Ratio Total Faulty Faulty Ratio

Fastjson 7,538 135 1.8% 283 88 31.1% 443 82 18.5%

Lang 41 6 14.6% 7 6 85.7% 8 5 62.5%

Math 827 18 2.2% 264 15 5.7% 90 14 15.6%

Closure 22,572 27 0.1% 293 12 4.1% 2,169 12 0.6%

JacksonCore 1,022 40 3.9% 185 31 16.8% 95 31 32.6%

Time 1,872 7 0.4% 41 5 12.2% 90 7 7.8%

Chart 1,611 21 1.3% 541 16 3.0% 68 19 27.9%

Total 35,483 254 0.7% 1,614 173 10.7% 2,963 170 5.7%

techniques identify more faults.

In short, we find that both types of change information have a higher percentage

of faulty method ratio within the identified search space. Moreover, code changes

overlap with faulty methods that code coverage fails to identify. These findings shed

lights on the potentials of incorporating change information to improve coverage-based

fault localization in CI settings.

Both types of change information cover a higher percentage of faulty methods

compared to code coverage in their reduced search space. Code changes also cover

additional faulty methods that do not have code coverage.

RQ2: How Does Change Information Perform in Fault Local-

ization?

Motivation: In RQ1, we found that change information achieves a higher faulty

method ratio in the reduced search space. However, it is yet to explore whether both

types of change information can be used for fault localization. Therefore, in this

RQ, we propose three change-based techniques derived from change information and

evaluate their effectiveness in fault localization techniques under CI settings.
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Approach: Our goal is to systematically study the effectiveness of each type of

change information in fault localization. We adopt three change-based techniques

to characterize the change information with fault proneness. These change-based

techniques are based on the size of code changes, the size of coverage changes, and the

size of the statements affected by coverage changes. CodeChange, CoverageChange,

and CoverageExecution denote these three change-based techniques respectively, and

they each exclusively leverages one of the aforementioned change-based metrics. We

want to investigate how each change-based technique performs in fault localization.

We conduct our analysis at the method level. For each method, we compute its

suspiciousness score by computing and aggregating the suspiciousness scores across

all the statements within the method. Prior studies [103, 115, 162, 203, 204] have also

demonstrated that such method level aggregation helps better distinguish the non-

faulty statements from the faulty ones. We compare the change-based techniques with

Ochiai, a commonly used SBFL technique [62, 94, 204, 208]. We choose Ochiai since it

outperforms other SBFL formulas in terms of fault localization performance [94, 118,

203]. For evaluating the results, we examine the Top-1, Top-5 and Top-10 accuracy,

MAP, and MRR values (defined in Section 6.2.4).

We design CodeChange to rank methods with the most changes to be more suspi-

cious. Namely, a method is ranked to be more suspicious if it contains more modified

statements. For instance, we rank the method with the most changed statements at

position 1, indicating it is the most suspicious method. For methods without any

code changes, the technique considers them as non-suspicious, and removes them

from the ranking to reduce noise. We design CodeChange this way since we want

to study how vanilla code changes may be used for fault localization, and previous

research [129, 132, 185] observe that the size of a change is a good indicator of fault

proneness.

We design CoverageChange to rank methods with most coverage changes as more

suspicious. Within a method, each code statement with coverage change receives a

suspiciousness score of 1. Within a method, we count the number of code statements

with coverage change, and rank the method with the most changed statements at

position 1. Hence, a method is ranked more suspicious if more changes happen in

code coverage. A previous research [19] found that the size of changes gives good

indication on the fault proneness. Therefore, we apply the same concept to study the
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effect of cover changes on fault localization. For the methods that do not have any

coverage change, the technique considers them as non-suspicious, and removes them

from the ranking to reduce noise.

We design CoverageExecution to rank methods with the most statements affected

by the coverage changes to be more suspicious. Previous studies [124, 174, 183] found

that the size of the execution affected by the faults can provide additional guidance

towards the faulty locations. Intuitively, if there is a coverage change (either dynamic

or static change) at any statement within a method, the internal state (i.e., dynamic

execution) of the subsequent statements is likely affected. Therefore, we design this

technique to boost the methods that are “likely affected” by the change. We identify

the methods with the most affected statements to be more suspicious. For instance,

if the first occurrence of the coverage changes locates at line 33 of a given method,

then starting from line 33, we count the number of statements that were executed by

the code coverage. If the number of statements executed (affected) in that method is

higher than other methods, then it is considered as the most suspicious method. The

methods without any coverage change are considered as non-suspicious, and removed

from the ranking to reduce noise.

Results: On average, CodeChange, CoverageChange and CoverageExecu-

tion achieve 13%, 7% and 23% improvement over Ochiai for MAP, re-

spectively, and 17%, 17% and 24% improvement for MRR, respectively.

Table 24 shows the fault localization results in terms of MAP, MRR, Top-1, Top-5,

and Top-10. We observe that all three techniques derived from change information,

on average, perform better than Ochiai in fault localization. In particular, Coverage-

Execution has the best overall Top-5 and Top-10 (i.e., locating 109 and 118 faults),

and the highest average MAP and MRR (i.e., with an average MAP of 0.37 and MRR

of 0.52). CoverageExecution achieves an improvement of 23% for average MAP and

24% for MRR.

CoverageChange achieves the second best overall performance, improving the av-

erage MAP and MRR by 13% and 17% respectively (i.e., with an average MAP of

0.37 and MRR of 0.52.). CodeChange achieves an improvement of 7% and 17% for

average MAP and MRR (i.e., with an average MAP of and MRR of 0.49). The results

show that even simple techniques that rank by the size of code changes or coverage

changes tend to perform well.
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Table 24: Effectiveness of Ochiai, CodeChange, CoverageChange and CoverageExe-

cution in terms of Top-1, Top-5, Top-10, MAP and MRR. For each project, we show

the best MAP and MRR in bold. The last rows of the table show the sum values

for Top-N, and the weighted average for MAP and MRR across the studied systems.

The last row of the table shows the sum values for Top-N, and the weighted average

for MAP and MRR.

System Approach Top-N MAP MRR

N=1 N=5 N=10

F
as
tj
so
n

Ochiai 31 45 45 0.20 0.36

CodeChange 45 53 55 0.29 (+45%) 0.56 (+56%)

CoverageChange 54 62 65 0.38 (+90%) 0.65 (+81%)

CoverageExecution 46 60 65 0.35 (+75%) 0.61 (+69%)

L
an

g

Ochiai 4 4 4 0.69 0.71

CodeChange 4 5 5 0.78 (+13%) 0.90 (+27%)

CoverageChange 4 5 5 0.72 (+4%) 0.90 (+27%)

CoverageExecution 4 5 5 0.72 (+4%) 0.90 (+27%)

M
at
h

Ochiai 9 10 13 0.51 0.51

CodeChange 10 12 12 0.53 (+4%) 0.54 (+6%)

CoverageChange 8 13 13 0.47 (-8%) 0.49 (-4%)

CoverageExecution 8 14 14 0.50 (-2%) 0.52 (+2%)

C
lo
su
re

Ochiai 4 10 13 0.18 0.16

CodeChange 7 10 11 0.22 (+22%) 0.24 (+20%)

CoverageChange 2 3 5 0.07 (-61%) 0.09 (-55%)

CoverageExecution 2 8 9 0.12 (-33%) 0.13 (-35%)

J
ac
k
so
n
C
or
e

Ochiai 0 1 1 0.02 0.02

CodeChange 7 7 7 0.21 (+950%) 0.58 (+2800%)

CoverageChange 1 5 6 0.20 (+900%) 0.26 (+1200%)

CoverageExecution 4 5 6 0.19 (+850%) 0.39 (+1850%)

T
im

e

Ochiai 3 4 4 0.63 0.50

CodeChange 2 2 4 0.29 (-54%) 0.46 (-8%)

CoverageChange 1 2 2 0.24 (-62%) 0.32 (-36%)

CoverageExecution 2 2 3 0.43 (-32%) 0.43 (-14%)

C
h
ar
t

Ochiai 14 16 16 0.80 0.83

CodeChange 6 7 8 0.50 (-38%) 0.54 (-35%)

CoverageChange 7 15 16 0.57 (-29%) 0.62 (-25%)

CoverageExecution 14 15 16 0.76 (-5%) 0.81 (-2%)

S
u
m
/A

v
g.

Ochiai 65 90 96 0.30 0.42

CodeChange 81 96 102 0.32 (+7%) 0.49 (+17%)

CoverageChange 77 105 112 0.34 (+13%) 0.49 (+17%)

CoverageExecution 80 109 118 0.37 (+23%) 0.52 (+24%)
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All three techniques achieve improvements in the overall Top-N values. CodeChange

locates the most faults at Top-1 (i.e., locating 81 faults at Top-1), followed by Cov-

erageExecution (i.e., locating 80 faults at Top-1), and CoverageChange also achieves

improvements over Ochiai (i.e., locating 77 faults at Top-1). In terms of the Top-5

and Top-10, CoverageExecution achieves the most faults (i.e., locating 109 at Top-5,

and 118 at Top-10), followed by CoverageChange (i.e., locating 105 at Top-5, and 112

at Top-10), and CodeChange (i.e., locating 96 at Top-5, and 102 at Top-10).

In short, the change-based techniques have a better fault localization performance

compared to Ochiai. Even though change information has a reduced search space, our

findings show that change information may be better at ranking the faulty methods

and reducing possible investigation effort from developers. Future fault localization

studies should consider change information due to its effectiveness and availability in

CI settings.

The three change-based techniques achieve an improvement that varies from 7%

to 23% and 17% to 24% over Ochiai for the average MAP and MRR, respectively.

The results also indicate that all three change-based techniques outperform Ochiai

in locating faults across all studied Top-N metrics.

RQ3: Can Change Information Complement Existing Fault

Localization Techniques?

Motivation: In RQ2, our findings show that the change-based techniques achieve

better fault localization results compared to the coverage-based baseline (Ochiai).

However, as found in RQ1, code coverage still covers more faulty methods compared

to coverage and code changes. Therefore, we hypothesize that the two types of in-

formation (i.e., coverage and change information) may complement coverage-based

SBFL techniques when combined together. In this RQ, we experiment with different

combinations of Ochiai and the three proposed change-based techniques, and then

we discuss their fault localization results.

Approach: To answer this RQ, we study the effectiveness of adding five different

combinations of the change-based techniques to Ochiai. These combinations includes

Ochiai + CC, Ochiai + CovC, Ochiai + CovE, Ochiai + CovC + CC, and Ochiai +

CovE + CC, where we denote the size of code changes and coverage changes as CC
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and CovC respectively, and CovE as the size of the execution affected by coverage

changes. Similar to RQ1 and RQ2, we conduct the fault localization at the method

level by aggregating the suspiciousness scores of the code statements within a method

(by taking the highest score). We compare the results of Top-1, Top-5, Top-10, MAP

and MRR. Below, we describe how we combine Ochiai with CC, CovC and CovE.

Ochiai + CC: We combine the size of code changes with Ochiai by following a

similar equation (Equation 16 below) defined in prior studies [39, 173, 180] to calculate

a boost score for each code statement.

BoostScore(s) =

⎧⎪⎨⎪⎩
1

rank
if s ∈ RankedStatements

0 otherwise
(16)

The intuition is that the methods with more changes are ranked higher, and thus

the corresponding statements receive a higher boost score. If a method is ranked

second, then the boost score is 0.5 (1/2). If a method is not part of the coverage

changes (and therefore not ranked), then the boost score is 0. We calculate the

suspiciousness score for each code statement by adding the boost score to the initial

suspiciousness score computed by Ochiai. Finally, we aggregate the suspiciousness

score for all code statements within a method, and calculate method-level ranking.

Ochiai + CovC: We combine the size of coverage changes with Ochiai by also

following Equation 16. The methods with more coverage changes are ranked higher,

and thus more likely to be faulty. We attribute a higher boost score to the code

statements within that method. Similarly, we calculate the suspiciousness score for

each code statement by adding the boost score to the initial suspiciousness score

computed by Ochiai.

Ochiai + CovE: We combine the size of the execution affected by coverage changes

with Ochiai by following Equation 16. The methods with more affected execution

are ranked higher, and thus more likely to be faulty. Similarly, we add the boost

score to the initial suspiciousness score computed by Ochiai to come up with a final

suspiciousness score.

Ochiai + CovC + CC and Ochiai + CovE + CC: We combine the change-

based techniques from different change information together to examine the effect of

each change metric on the performance Ochiai. To combine both change information

in Ochiai, for each code statement, we add the boost scores calculated from each of
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technique to the suspiciousness score computed by Ochiai. We base our recommen-

dation of results on the resulting suspiciousness score.

Results: Overall, Ochiai + CovE + CC achieves the best performance,

improving the MAP and MRR values from Ochiai by 53% and 52% re-

spectively. Table 25 compares the performance of Ochiai with different change

information considered. We calculate the evaluation metrics for each combination

and compute its improvement over Ochiai. On average, all techniques outperform

Ochiai. Specifically, adopting both the size of affected statements and the size of

code changes in Ochiai (i.e., Ochiai + CovE + CC) achieves the best overall MAP

and MRR, and the highest Top-N values. Ochiai + CovE + CC achieves the opti-

mum improvement of 53% and 52% for MAP and MRR over Ochiai (i.e., with an

average MAP of 0.46 and MRR of 0.64). Ochiai + CovC + CC achieves the second

best improvement of 40% and 45% for MAP and MRR (i.e., with an average MAP

of 0.42 and MRR of 0.61).

Adopting the individual change metric also yields better results for Ochiai. Specif-

ically, for Ochiai + CC, Ochiai + CovC and Ochiai + CovE, the improvements for

MAP are 32%, 20% and 33%, respectively, and the improvements for MRR are 38%,

26% and 36%, respectively. We observe similar results in terms of the Top-N values.

Our finding shows that any type of the studied change information provides noticeable

benefits when combined with Ochiai.

We find that adopting both change information in Ochiai achieves the best per-

formance on average. Either of the two combinations (i.e., Ochiai + CovC + CC and

Ochiai + CovE + CC) provides better results than adopting individual change infor-

mation. In particular, Ochiai + CovC + CC improves the overall MAP and MRR

by 20% and 19% when compared to Ochiai + CovC, and 8% and 7% when com-

pared to Ochiai + CC. We observe that combining CovE with CC produces better

results compared to combining CovC with CC. The results suggest that CovE with

CC complement each other better and can help further improve the fault localization

results.

Adopting the size of code changes alone (i.e., Ochiai + CC) can significantly

improve Ochiai. We observe an improvement of 33% and 38% for average MAP and

MRR respectively. Moreover, Ochiai + CC achieves 92 faults at Top-1, locating 27

more faults than Ochiai. This result suggests that, by only investigating the first
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Table 25: Effectiveness of Ochiai when applied different combination of change infor-

mation. For each combination, we evaluate the performance in terms of MAP and

MRR. CC denotes the code change information. CovC denotes the coverage change

information. CovE denotes the coverage execution information. The best performing

approach is marked in bold. The last row of the table shows the sum values for Top-N,

and the weighted average for MAP and MRR.

System Approach Top-N MAP MRR

N=1 N=5 N=10

F
as
tj
so
n

Ochiai 31 45 45 0.20 0.36

Ochiai + CC 46 61 61 0.28 (+40%) 0.58 (+61%)

Ochiai + CovC 48 67 74 0.35 (+75%) 0.63 (+75%)

Ochiai + CovE 46 68 72 0.35 (+75%) 0.62 (+72%)

Ochiai + CovC + CC 54 74 76 0.39 (+95%) 0.70 (+94%)

Ochiai + CovE + CC 55 75 75 0.38 (+90%) 0.69 (+92%)

L
an

g

Ochiai 4 4 4 0.69 0.71

Ochiai + CC 4 5 5 0.85 (+23%) 0.90 (+27%)

Ochiai + CovC 4 5 5 0.83 (+20%) 0.90 (+27%)

Ochiai + CovE 4 5 5 0.83 (+20%) 0.90 (+27%)

Ochiai + CovC + CC 4 5 5 0.83 (+20%) 0.90 (+27%)

Ochiai + CovE + CC 4 5 5 0.83 (+20%) 0.90 (+27%)

M
at
h

Ochiai 9 10 13 0.51 0.51

Ochiai + CC 14 15 16 0.71 (+39%) 0.73 (+43%)

Ochiai + CovC 9 13 15 0.53 (+4%) 0.56 (+10%)

Ochiai + CovE 9 13 15 0.53 (+4%) 0.55 (+8%)

Ochiai + CovC + CC 12 15 16 0.65 (+27%) 0.67 (+31%)

Ochiai + CovE + CC 13 15 16 0.68 (+33%) 0.71 (+39%)

C
lo
su
re

Ochiai 4 10 13 0.18 0.16

Ochiai + CC 8 12 16 0.27 (+50%) 0.29 (+81%)

Ochiai + CovC 4 10 13 0.17 (-6%) 0.20 (+25%)

Ochiai + CovE 5 11 16 0.22 (+22%) 0.24 (+50%)

Ochiai + CovC + CC 6 11 16 0.24 (+33%) 0.27 (+69%)

Ochiai + CovE + CC 9 13 16 0.30 (+67%) 0.33 (+106%)

J
ac
k
so
n
C
or
e

Ochiai 0 1 1 0.02 0.02

Ochiai + CC 1 7 7 0.14 (+600%) 0.33 (+1550%)

Ochiai + CovC 1 6 6 0.08 (+300%) 0.22 (+1000%)

Ochiai + CovE 4 6 6 0.10 (+400%) 0.38 (+1800%)

Ochiai + CovC + CC 6 7 7 0.19 (+850%) 0.53 (+2550%)

Ochiai + CovE + CC 6 7 7 0.22 (+1000%) 0.53 (+2550%)

T
im

e

Ochiai 3 4 4 0.63 0.50

Ochiai + CC 2 4 4 0.51 (-19%) 0.51 (+2%)

Ochiai + CovC 2 4 4 0.42 (-33%) 0.51 (+2%)

Ochiai + CovE 2 3 4 0.48 (-31%) 0.48 (-4%)

Ochiai + CovC + CC 2 4 4 0.44 (-30%) 0.49 (-2%)

Ochiai + CovE + CC 2 3 4 0.48 (-24%) 0.48 (-4%)

C
h
ar
t

Ochiai 14 16 16 0.80 0.83

Ochiai + CC 17 18 18 0.90 (+13%) 0.96 (+16%)

Ochiai + CovC 8 18 18 0.66 (-18%) 0.71 (-14%)

Ochiai + CovE 16 18 18 0.88 (+10%) 0.93 (+8%)

Ochiai + CovC + CC 9 18 18 0.69 (-14%) 0.74 (-11%)

Ochiai + CovE + CC 17 18 18 0.92 (+14%) 0.96 (+16%)

S
u
m
/A

v
g.

Ochiai 65 90 96 0.30 0.42

Ochiai + CC 92 122 127 0.40 (+33%) 0.57 (+38%)

Ochiai + CovC 76 123 135 0.36 (+20%) 0.53 (+26%)

Ochiai + CovE 86 124 136 0.40 (+33%) 0.56 (+36%)

Ochiai + CovC + CC 93 134 142 0.42 (+40%) 0.61 (+45%)

Ochiai + CovE + CC 106 136 141 0.46 (+53%) 0.64 (+52%)
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position, the developers might locate 48% (i.e., 92 out of 192 faults) of the faults.

The above findings illustrate the effort reduction for developers in practice, and show

the usefulness of code changes metric in fault localization. Compared to the use of

two other change-based techniques (i.e., Ochiai + CovC and Ochiai + CovE), Ochiai

+ CC achieves better performance in fault localization. Particularly, in three out of

the seven studied systems (i.e., Math, Closure and Chart), Ochiai + CC locates more

faults at Top-1 than the two other metrics. This is because, different from the two

other change-based techniques that are both based on the code coverage, the code

changes leverage a different search space. The additional information as discussed in

RQ1 helps to cover more faults.

We observe that the system, Time, experiences a decrease in fault localization

performance when leveraging some of the change-based techniques. For instance,

all of the combinations locate one less fault at Top-1, and up to one less fault at

Top-5. After our investigation, we find that one specific fault, Time 16, contributes

to this result. As the code changes and coverage changes are large in size (due to

potential refactoring that happens when fixing the fault), it introduces much noise

(i.e., non-faulty statements), making it more challenging to locate the faulty locations.

Nevertheless, in Ochiai + CovE, Ochiai + CovC + CC and Ochiai + CovE + CC,

the faulty statement is only ranked at a slightly lower position (i.e., from position

1 to 4). Note that considering there are only five faults in Time, this difference is

further magnified when looking at the percentages of difference in MAP and MRR

values, but having a small impact on the overall results. The results still demonstrate

the usefulness of the change information in locating faults, considering the overall

performance improvement. Future studies are needed to explore different techniques

to leveraging change-based techniques in fault localization.

The change information can complement Ochiai by providing up to 53% and

52% improvement in MAP and MRR respectively, and locating 41 more faults at

Top-1. Future fault localization techniques may consider combining both change

information to further improve the performance.
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6.4 Discussion

6.4.1 Effectiveness of Change Metrics

Although the combination of the change metrics and Ochiai achieves promising fault

localization results, the change metrics do not contribute to locating some of the

faults. In this section, we discuss the reasons and hope the finding can provide

insights for future studies in CI and fault localization.

Conventional statement coverage may not be sufficient for capturing the

behaviour changes in some code statements (20/32). While common code

coverage tools (e.g., JaCoCo, Cobertura, and GZoltar) report coverage at various

levels such as code statement or branch (aggregated per method), they do not report

the condition coverage within each code statement. Therefore, coverage change that

happens at the condition-level may be missed. For example, in fault Closure-85, based

on the coverage change analysis, the covered code statements are identical between

the fault inducing commit and the prior passing commit. However, based on our

manual study, the condition coverage changes at line 199. The statement at line 199

was:

if (n.isEmpty() —— (n.isBlock() && !n.hasChildren()))

Although both the fault inducing commit and prior passing commit cover this code

statement, the condition coverage is different. In fact, the prior commit only covers

the first condition n.isEmpty() while the fault inducing commit covers both conditions.

This change in condition coverage is relevant to the root cause of the fault, but has not

been captured because of the absence of condition coverage information. Note that

the above-mentioned condition coverage refers to per-statement condition coverage,

which is different from the term “condition coverage” used in Cobertura [5] (also

called “branch coverage” in JaCoCo [6]) which shows the percentage of conditions

covered throughout a method.

Our findings show that despite the advantages of leveraging coverage change in-

formation, there is a need for finer-granularity coverage information. Future studies

are encouraged to study the usefulness of finer-granularity coverage information in

fault localization.

Noise introduced when combining the change metrics (12/32). To better

examine the effect of each change metric on the performance, we adopt the design
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of our approach to combine the change metrics following prior studies [39, 180]. We

find that, in some faults, such combinations may introduce noises (i.e., prioritizing

non-faulty statements). For instance, on fault Closure 120, we observe that neither

the code changes, nor the coverage changes contain the faulty statements, thus the

approach boosts the non-faulty statements to a higher position. This causes the rank

of the faulty statements to be further pushed down in the ranking, which reduces the

performance. While faults are affected by noises, the result demonstrates that the

effect on the overall performance is trivial.

6.4.2 Overheads of Change-based Techniques

In this subsection, we discuss the overheads for integrating change-based fault local-

ization techniques into CI.

To evaluate the overheads, we measure the processing time in seconds for locating

a fault. The localization breaks down into four steps. In particular, step 1 refers to

collecting and analyzing code change. Step 2 refers to collecting code coverage. Step

3 refers to performing code coverage change analysis. Finally, step 4 refers to ranking

suspicious methods. On average, it takes less than 42 seconds in total to determine the

final ranking of suspicious methods. In practice, this processing time only represents

a small overhead considering a single build can take more than 12 minutes to run

in some projects (i.e., Fastjson). The main source of overheads originates from the

second step to collect code coverage. This step requires compilations from the fault-

inducing commit and the prior passing commit. Therefore, depending on the size of

the system, it takes 13 to 43 seconds to successfully compile both commits. Collecting

the code coverage of failing tests can take up to 8 to 24 seconds. While this step

contributes to significant time cost, the compilation of the system is a necessary

procedure in CI to run the builds. And thus, in practice, the compiled source code

can be directly used to collect the code coverage when test failures are identified. This

can help to reduce the overheads associated with the compilation time. Eventually,

as part of the continuous practice, change-based techniques can be automatically

triggered when test failures happen during nightly builds. As some tests might take

longer time to run, this procedure allows the collection of additional information on

the test failures overnight (e.g., list of suspicious methods, change information), which

can assist developers in debugging later.
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6.5 Threats to Validity

External Validity. One potential threat to external validity is the generalizability

of our results based on the studied systems. To mitigate this threat, we conduct

our experiments on seven real-world open source Java systems each with different

characteristics and infrastructures. On top of the five studied systems provided by

the Defects4J benchmark, we carefully select two additional systems that are actively

maintained, widely used, and follow the CI practices. While we cannot confirm

the generalization of our findings to fault localization approaches written in other

programming languages, we design our approaches of leveraging the change metrics

as generic as possible. Future study can easily adopt our approaches to fit other

programming languages.

Construct Validity. One potential threat is our design decision of combining the

change information to Ochiai in RQ3. There may be better ways of combining the

change information that further explore their benefits. We adopt the approaches fol-

lowing existing studies [39, 173, 180] to provide insights on the effects of combining

the change information together. Such design helps better illustrate the improvement

over the baseline (i.e., Ochiai), and can be easily integrated into the CI context. We

encourage future studies to explore other ways of combining the change information,

and release the data online [12] to facilitate replication. In addition, we did not con-

sider mutation analysis in our approach. While the mutation analysis may provide

more information, one challenge is that mutation is very costly, and thus does not fit

the CI scenario. Moreover, in this study, we focus on two change information as they

provide accurate information on the internal execution changes of the system. How-

ever, there are other change information that may be leveraged in fault localization.

Future study is needed to investigate other change metrics.
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Part III

Fault Localization Data Cleanness

140



Chapter 7

Studying Data Cleanness in

Defects4J and its Impact on Fault

Localization

Previous chapters illustrated that locating and fixing bugs is an expensive and time-

consuming task, especially due to the ever-increasing complexity of modern software.

Particularly, understanding the cause and locating the bug is often the most chal-

lenging step [64, 111, 141, 183]. Developers need to analyze all the available in-

formation, such as test failures and program execution details, to identify potential

buggy code statements in the system and develop a bug fix. To assist developers in

locating and fixing bugs, prior research has proposed techniques such as spectrum-

based fault (SBFL) localization [113, 142, 162, 173, 203] and automated program

repair [104, 106, 153].

Given the increasing community attention on software testing research, prior stud-

ies introduced benchmarks for automatic program repair and fault localization. For

example, there are many benchmarks available for both C and Java, such as Many-

Bugs [100] QuixBugs [110], Bugs.jar [154], Bugswarm [167], and Defects4J [4]. These

benchmarks often provide test coverage, test failure information, and the correspond-

ing bug fix. Hence, researchers can easily apply the proposed techniques for evaluation

by using these benchmarks. In Chapter 5, we also proposed T-Evos, a benchmark on

continuous integration test execution and failure.

Among these existing benchmarks, Defects4J is one of the most widely-used for
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evaluating the effectiveness of fault localization and program repair techniques [123,

131, 142, 162, 203]. Defects4J aims to provide a controlled environment to study real

bugs collected from real systems. The latest version of Defects4J, v2.0, contains 835

bugs from 17 open source Java systems. Each bug in the Defects4J benchmark is

accompanied by at least one failing test that triggers the bug (i.e., fault-triggering

test), where the tests and bug fixes are mined from the system commit history.

Although Defects4J has significantly helped advance software testing research,

prior studies [80, 87, 113] pointed out concerns that some tests in Defects4J may

contain developer knowledge of the bugs. As found by Liu et al. [113], some fault-

triggering tests may be taken from a version of the system where the bug has already

been resolved. These tests may provide hints to fault localization techniques about

the location of the bug. Therefore, having such developer knowledge in the tests may

impact the evaluation of existing fault localization techniques.

In this chapter, we conduct a study on the fault-triggering tests in Defects4J. The

goal of this study is to provide insights into the prevalence of developer knowledge

in fault-triggering tests and its impact on fault localization techniques. First, we

classify the tests in relation to developers’ bug-fixing activities (e.g., a test is newly

added or modified after a bug was reported), which may help future studies to better

utilize Defects4J when evaluating SBFL techniques. Second, we analyze developers’

modifications on the fault-triggering tests and identify different categories of reasons

why developers modify them. Finally, we study the impact of developer knowledge

on the results of fault localization techniques. We apply state-of-the-art SBFL tech-

niques on the commit before and after the bugs were fixed. Our experimental results

show that the state-of-the-art spectrum-based fault localization techniques perform

significantly worse in the absence of developer knowledge in the tests.

An earlier version of this chapter has been submitted to an international

conference on software engineering, 2023.
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Table 26: An excerpt of the Bug report CLI-51 from the Defects4J benchmark.

BugID CLI-51

Summary Parameter value “-something” misinterpreted as a parame-

ter

Developer’s com-

ment

“Fix so parser doesn’t burst options which are not defined.

(-s) in the above case.

Includes unit test [BugCLI51Test].”

7.1 Motivation

The Defects4J v2.0 benchmark contains 835 bugs from 17 Java open source sys-

tems [4]. All 835 bugs are extracted from different phases of software development,

and the 17 projects span a wide range of domains and maturities. The objective of

this benchmark is to facilitate research in software testing and debugging. Due to its

ease of use and the realistic nature of the bugs, Defects4J has been widely used for

conducting research in fault localization [113, 142, 162, 173, 203], automated program

repair [73, 123, 131, 189], and automated test generation [61, 159, 194].

In Defects4J, each bug comes with at least one failed test to ensure reproducibility.

This failed test is known as the fault-triggering test. As not all bugs are guaranteed

to have a fault-triggering test at the time they are first uncovered, Defects4J uti-

lizes an automated step to mine candidate fault-triggering tests from the bug fix and

buggy commit of the system [4]. Specifically, a fault-triggering test must determin-

istically pass on the fixed commit and fail on the buggy commit. Every bug and

fault-triggering test is then manually examined to eliminate irrelevant code changes,

such as the addition of new features. By default, Defects4J uses developer-written

tests as fault-triggering tests to reproduce the bugs.

However, fault-triggering tests may be mined from the bug-fixing commit where

developers may have already fixed the bug or were in the process of fixing it. This can

include developer knowledge (i.e., information about the bug that was not available

at the time the bug was reported) in the tests. Table 26 provides an excerpt of a bug,

CLI-51, from the Defects4J benchmark with a test that has developer knowledge.

CLI-51 is a bug from Commons-Cli where the code misinterpreted parameter values
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as new parameters. When developers first received this bug report, there was no test

failure in the system. Developers provided a patch to fix the bug and commented

in the report that a fault-triggering test (i.e., BugCLI51Test) was developed as part

of the patch for regression testing. The fault-triggering was introduced after the

corresponding bug fixes. In particular, developers developed the test based on the

content of the bug report and the bug fix. The fault-triggering test verifies the

parameter value “-t -something” that triggers the bug, as mentioned in the bug report.

As a result, the test contains developer knowledge, which provides hints on the causes

and location of the bug in the source code.

Although prior research studies [40, 87, 177] suggest that some tests in Defects4J

may contain developer knowledge, there is no systematic study on the prevalence

of such tests and their impact on the results of fault localization techniques. Fault

localization is an important step in assisting developers locate faults [23, 116, 142, 208]

and in guiding automated program repair techniques [96, 113, 136]. Under- or over-

estimating the effectiveness of fault localization techniques may affect their adoption

in practice. Hence, in this chapter, we study the fault-triggering tests in Defects4J

in relation to the bug fixes, and their impact on the fault localization results. Our

experimental results reveal that a majority of the fault-triggering tests (77%) are

affected by developer knowledge. We also provide a classification of the bugs in

Defects4J based on our findings and future research may consider our dataset when

evaluating fault localization techniques.

7.2 Research Questions

In this section, we first discuss an overview of the studied systems. Then, we present

the motivation, approach, and results of the three research questions (RQs) that we

seek to answer.

7.2.1 Overview of the Studied Systems

We performed our study on the Defects4J (V2.0.0) benchmark [4], which includes

real and reproducible faults from a wide range of systems. Defects4J forms the basis

of many prior studies on fault localization [103, 113, 142, 162, 177, 203], where these

studies use Defects4J as the benchmark dataset for evaluation and comparison with
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state-of-the-art. Table 27 provides an overview of our studied systems (we collected

the metrics from the HEAD version of each system). The sizes of the studied systems

in Defects4J range from 4K to 90K lines of code, and the benchmark contains 1,655

fault-triggering tests. We excluded the system, Chart, from Defects4J since it does

not use Git as the version control system, and we rely on analyzing the development

history in Git repositories to understand the changes on the fault-triggering tests for

our study. In total, we conducted our experiments on 809 bugs from 16 systems.

Note that, one bug may have more than one fault-triggering test, so there are more

fault-triggering tests than the number of bugs.

7.2.2 RQ1: Were Fault-triggering Tests Added/Modified Af-

ter a Bug Was Reported?

Motivation. Defects4J is commonly used by prior SBFL research as a benchmark

to evaluate the accuracy of fault localization techniques [14, 15, 40, 177, 187, 203].

When localizing faults, SBFL techniques rely mainly on analyzing the coverage of the

fault-triggering tests. However, prior research [40, 87, 177] suggests that Defects4J

may contain some tests that were added by developers after the bug was reported or

fixed. Such tests may contain developer knowledge of the bug, which compromises

the reliability of the results of fault localization techniques. Therefore, in this RQ,

we study the timelines of test modification/addition for every bug, starting from the

creation of the bug report until its resolution. We also study whether or not the

changes in tests bring developer knowledge of the bugs to the test. The findings will

provide initial evidence on how many bugs from Defects4J whose fault-triggering tests

may have developer knowledge.

Approach. We conducted a tool-assisted manual study on the timelines of events

for every bug. We first collected the bug report, fault-triggering tests, and bug-fixing

patches for all of the 809 studied bugs. We then identified the events (e.g., bug report

creation) associated with each piece of information. We analyze these events auto-

matically in relation to bug resolution and manually reviewed the test modifications

to ensure their relevance to the bug. Below, we discuss our data collection process in

detail.

Bug report creation and resolution date: To determine the time interval of the bug
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Table 27: An overview of our studied systems from Defects4J v2.0.

System #Bugs LOC #Tests Fault-triggering

Tests

Cli 39 4K 94 66

Closure 174 90K 7,911 545

Codec 18 7K 206 43

Collections 4 65K 1,286 4

Compress 47 9K 73 72

Csv 16 2K 54 24

Gson 18 14K 720 34

JacksonCore 26 22K 206 53

JacksonDatabind 112 4K 1,098 132

JacksonXml 6 9K 138 12

Jsoup 93 8K 139 144

JxPath 22 25K 308 37

Lang 64 22K 2,291 121

Math 106 85K 4,378 176

Mockito 38 11K 1,379 118

Time 26 28K 4,041 74

Total 809 409K 25,708 1,655

resolution and identify whether the fault-triggering tests were modified during this

period, we collected the creation and resolution time of the bug reports. We retrieved

the bug reports from the bug tracking systems (i.e., Jira and GitHub) using REST

APIs and the bug IDs provided in Defects4J. We then extracted the creation and

resolution time from the “Created” and “Resolved” fields (or the issue creation and

closed dates on GitHub) of each bug report. By using the creation and resolution

date, we are able to determine if a test was added/modified after a bug was reported

or fixed.

Date of fault-triggering test creation and modification: We identified all the commits

that are associated with the fault-triggering tests and analyzed when the commits

happened (e.g., before or after the bug was reported/fixed). We used the git command
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“git log -L:[funcname]:[file]” to identify the list of commits that modified the

fault-triggering test and the modification date.

Bug fix date: In addition to the bug report creation/resolution time, we study the

time of the bug fix to understand if a test was modified before or after the fix became

available. We used the “git log [commit]” command to determine the exact date

and time of the bug fixes. We then align the time of the bug fixes with modifications

made to the fault-triggering tests.

Change patterns of the tests and their relevance to the bugs: We arranged the events –

bug report creation and resolution, creation and modification of fault-triggering tests,

and bug fix time – in chronological order to reconstruct the timeline. In particular,

we focused on the creation and modifications of fault-triggering tests with respect to

bug resolution. We used an automated script to sequence the events into timelines.

We then manually studied the commit messages and related code changes to examine

if the added/modified tests include developer knowledge about the bug. Our collected

data is publicly available [1].

Results. We find that 77.2% of the fault-triggering tests in Defects4J in-

clude developer knowledge of the bugs, bringing hints on the groundtruth

of the buggy location in the data. In total, we uncovered four timelines of

change patterns on the fault-triggering tests. Table 28 shows the uncovered change

patterns and corresponding timelines of the events. In summary, through our manual

analysis, we find that developers’ modification or addition of tests adds bug-related

information to all of the tests from Pattern 1 and Pattern 2, and most of the tests

from Pattern 3 (357/362). Below, we discuss each pattern in detail.

Pattern 1: Test created after bug report creation (53%). When developers are trying

to fix a bug, they often rely on fault-triggering tests to understand and replicate the

problem [20, 40, 52, 163, 178]. However, as illustrated in Table 28, we found that in

Defects4J, a large portion of these fault-triggering tests may not exist before the bug

report was created. The most common change pattern is that the tests were added

to the system only after developers began to fix the bug. As an example, in CLI-144,

the bug report was created on August 17, 2007. On July 23, 2008, developers created

a new fault-triggering test called BugCLI144Test as part of the bug fixing commit (the

test was named using the bug report ID). This new fault-triggering test was added

because existing tests were unable to capture the reported bug. Thus, the test
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Table 28: Timelines of the changes on the fault-triggering tests. Note that the same bug may belong to more than one

pattern because a bug may have more than one fault-triggering test.

Patterns Description Example Timeline #Tests #Bugs

Pattern 1 Fault-triggering tests were newly added

after the bug was reported.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Aug 17, 2007 July 23, 2008

872 (53%) 558

Pattern 2 Fault-triggering tests were newly added

then modified, after the bug was re-

ported.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Modified

Dec 31, 2009 Dec 30, 2009

43 (2%) 30

Pattern 3 Fault-triggering tests were modified af-

ter the bug was reported and before the

bug was marked as fixed.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

Dec 5, 2011

Modified

March 3, 2009

362 (22%) 155

Pattern 4 Fault-triggering tests were not modified

after the bug was reported and before

the bug was marked as fixed.

Bug report

Triggering test

Bug fix

Created

Created

Created

Closed

March 3, 2011July 1, 2010

378 (23%) 150

Total 1,655 -
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contains information on the groundtruth of the bug-fixing location. However, this

test was marked as the fault-triggering test in Defects4J. Through manual inspection,

we found that all the fault-triggering tests that belong to this pattern were added

by developers as part of the bug-fixing process. Namely, nearly 50% of the fault-

triggering tests in Defects4J were regression tests that were added deliberately to

replicate/prevent the bug.

Pattern 2: Test created and modified after bug report creation (2%). As shown in

Table 28, after a bug report is created, developers may create initial versions of the

fault-triggering tests that require further enhancement (e.g., the initial version is not

able to cover all possible scenarios). Nevertheless, in our manual analysis, similar to

Pattern 1, we found that these fault-triggering tests were created for regression testing

purposes and contained developer knowledge of the bug. As an example, in MATH-

320, the developer initially added a bug fix and a new test to reproduce the bug.

However, the developer commented that the fix was incomplete and shared the test

to facilitate discussions with other developers. Later, the developer applied a patch

to fix the bug along with the updated test. For all the tests that belong to Pattern

2, either the commit messages or the names of these fault-triggering tests contain the

ID of the bug report, further confirming that they contain developer knowledge of

the bug.

Pattern 3: Test modified after bug report creation (22%). In practice, some bugs re-

ported by users or other developers cannot be revealed by existing tests. Hence, when

fixing these bugs, developers may modify and enhance the tests for regression testing

purposes. For example, in COMPRESS-10, the test UTF8ZipFilesTest was enhanced

as part of the bug fix. Developers modified the assertions to better capture the bug.

It is possible that the test modification is not related to the bug fix. However, after

our manual analysis, we found that 99% (357/362) of the tests contained changes that

alter the test execution for replicating the bug, while the remaining 1% (5/362) did

not introduce new knowledge to the tests (e.g., code re-styling, and enabling or dis-

abling a failed test). In short, we find that most modifications to the fault-triggering

tests were done after the bug was reported and were adding developers’ knowledge of

the bug in the tests.

Pattern 4: Test unmodified during bug resolution (23%).We found that developers may

fix the bug without making any changes to the fault-triggering tests. As an example
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(CLOSURE-79), when the problem was initially uncovered, the fault-triggering test

testPropReferenceInExterns3 failed. Developers work on the bug fix without having to

change the test as it was working as intended (i.e., failing upon unexpected behaviour).

Therefore, the fault-triggering tests were not changed during the resolution of the bug

report. In total, we found 378 manually-verified fault-triggering tests that belong to

this pattern.

Discussion. In our manual analysis, we identified four common change patterns

on the fault-triggering tests. Based on the results of Pattern 1 and 2, we observed

that 55% (915/1,655) of the fault-triggering tests were created after the bug report was

created. These tests did not exist before the bugs were reported, so they could not have

helped in identifying the bugs. Moreover, these tests contain developers’ knowledge of

the bug, adding hints on the groundtruth of the bug location. Leveraging these tests

in fault localization introduces biases in how well code coverage can help locate the

faults. We also observed that developers may modify the tests after the creation of the

bug report, which is the case in 22% (362/1,655) of the studied fault-triggering tests.

This can lead to a similar problem where tests were modified with bug specifications

(i.e., developer knowledge). In particular, the modified version of the test can differ

significantly from the initial version, and it may be modified to specifically address the

problem described in the bug report. In short, we find that only 23% of the studied

fault-triggering tests were actually able to detect the bugs (i.e., the tests failed).

The majority of the fault-triggering tests in Defects4J (77%) contain developer

knowledge. These tests were either newly added or modified to replicate the bug

or to prevent future regression. Only 23% of the tests were able to detect the bugs

as intended (the tests failed).

7.2.3 RQ2: How Do Developers Modify the Fault-triggering

Tests?

Motivation. When fixing a bug, developers may look for test failures to help in

debugging and understanding the root causes of the bug [41, 70, 84, 89]. However,

as we found in RQ1, many fault-triggering tests may not exist before the bug report.

Even when they do exist, they can only trigger the bug after developers made mod-

ifications to them during the bug-fixing process. In this RQ, we manually study the
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modifications made by developers to the fault-triggering tests and discuss the com-

mon reasons behind them. Studying why developers modify these tests can help us

understand what motivates them to make changes and how these changes relate to

fixing the bugs.

Manual Study Process. We conduct our manual study on all 16 studied systems.

For a 95% confidence level and a 5% confidence interval, we randomly sample 300

fault-triggering tests from 1,361 modified tests that were collected from Patterns 1,

2, and 3. We use the stratified sampling strategy [135] to obtain the number of

samples for each studied system that is proportional to their total number of tests.

For each test, we study its code changes, code comments, commit message, and

corresponding bug report and bug fix to understand the potential motivation leading

to its modification. Following prior studies [56, 92, 107, 109], we conduct our manual

study in three phases using the open coding method.

Phase 1: We manually review the tests to create a preliminary list of categories

for 100 fault-triggering tests that are randomly selected. We additionally list the

justifications for creating each category in terms of its code changes, code comments,

commit message, bug report, and bug fix. We revise the list of categories and address

any discrepancies.

Phase 2: We review the remaining of the 300 tests independently based on the dis-

cussed categories and assign the test to one of the uncovered categories from Phase

1.

Phase 3: We compare their assigned categories and discuss any disagreements until we

reach a consensus. During this phase, our results show that we reached a substantial

level of agreement, achieving a Cohen’s Kappa of 0.86 [51].

Results. Other than test addition, most changes on the fault-triggering

tests are related to improving test oracles or updating tests in response to

source code changes. In our manual analysis, we uncover five categories of reasons

why developers changed the fault-triggering tests as shown in Table 29. Below, we

discuss each category in detail.
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Table 29: List of categories of the modifications to fault-triggering tests.

Category Description Count Percentage

Adding New Test Developers added a new test to reproduce

the bug.

189 63%

Test Co-evolution Developers modified the expected output

in tests to cope with source code evolution.

58 20%

Adding New Assertion Developers added a new assertion to repli-

cate the bug and for regression testing pur-

poses.

41 13%

Improving Test Logic During Bug Fixes While modifying a test to replicate the

bug, developers also enhance the structure

or the logic in the test.

7 2%

Others Developers reformated the style in the

test (e.g., indentation), or eliminated code

that is not essential to the reproduction of

faults.

2 1%

Adding New Test (189/300, 63%). We found that some tests are specifically created

to aid in the reproduction of a bug. As developers work towards resolving a bug,

they may create new tests designed to replicate the problematic behavior. Once the

bug is fixed, developers often incorporate these tests into their patch to ensure that

the bug does not re-occur in future releases (i.e., regression testing). All test changes

from this category belong to Patterns 1 and 2 that we found in RQ1. These tests are

often named after the bug report ID to ease traceability and management.

Test Co-evolution (58/300, 19%). We find that developers may change the test code

to accommodate the bug-fixing changes in the source code. For example, developers

fixed bug #207 in JacksonCore by modifying the calcHash method in the source code

(as shown below). In addition to the bug fix, developers patched the test testSynthet-

icWithBytesNew responsible for verifying the stability of the hash code, which failed

after the new bug fix. One of the developers highlighted in a comment that this bug

fix improved “hashing [with regards to] existing test”. The system is expected to have

a different distribution of collision count. Therefore, developers modified the test to

match its expected output to the actual behavior of the system.
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// ByteQuadsCanonicalizer.java

public int calcHash(int q1){

int hash = q1 ^ _seed;

hash += (hash >>> 16); // to xor hi- and low- 16-bits

- hash ^= (hash >>> 12); // as well as lowest 2 bytes

+ hash ^= (hash << 3); // shuffle back a bit

+ hash += (hash >>> 12); // and bit more

return hash;

}

// TestSymbolTables.java

public void testSyntheticWithBytesNew() throws IOException{

...

// anywhere between 70-80% primary matches

- assertEquals(8524, symbols.primaryCount());

+ assertEquals(8534, symbols.primaryCount());

}

Adding New Assertion (41/300, 14%). During the bug-fixing process, developers may

add new assertions to help reproduce a bug (belongs to Pattern 3 from RQ1). Typi-

cally, as we found in our manual study, the modification to the test involves adding

single-line assertion statements. For example, as seen in the test testCreateNumber

below (LANG-822), developers added a new assertion to reproduce the bug. The as-

sertion checks whether the method createNumber can execute as expected if the input

starts with the string “--”. According to the developer’s comment, there are numer-

ous edge cases that can expose problematic behaviors when calling the method, so

whenever a new edge case arises, it is added to the test as a new assertion statement.

public void testCreateNumber() {

// a lot of things can go wrong

...

// LANG-693

assertEquals("createNumber(String) LANG-693 failed", Double.valueOf(Double.MAX_VALUE),

NumberUtils.createNumber("" + Double.MAX_VALUE));

+

+ // LANG-822

+ assertFalse("createNumber(String) LANG-822 succeeded", checkCreateNumber("--1.1E-700F"));

}
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Improving Test Logic During Bug Fixes (7/300, 2%). Developers may modify tests

to change the logic of the tests when trying to fix a bug. Typically, these modifi-

cations happen when developers are trying to replicate the bug in a test. Examples

of modifications include simplifying complex logic and reorganizing the code struc-

ture, which can alter the execution of the test. An example of a test modification in

this category is the JsonAdapterNullSafeTest from issue #800 in GSON. During the

bug-fixing process, developers discussed providing a “simpler” test to reproduce the

bug. They incorporated new changes that simplified the initialization of the Device

class from the test and removed logic that was irrelevant in triggering the fault. This

contributed to improving the quality and maintenance of the test.

public void testNullSafeBugDeserialize() throws Exception {

- String json = "\"\\\"id\\\":\\\"ec57803e2\\\",\\\"category\\\":2\"";
- Device device = gson.fromJson(json, Device.class);

+ Device device = gson.fromJson("’id’:’ec57803e2’", Device.class);

...

@JsonAdapter(Device.JsonAdapterFactory.class)

private static final class Device {

String id;

- int category;

- Device(String id, int category)

+ Device(String id)

...

}

Others (2/300, 1%). We find two other reasons why developers may modify the tests,

which do not belong to any of the above categories. In particular, we observe that

developers may reformat the source code files without necessarily changing any of the

logic in the code. For instance, developers removed the extra indentation in the test

to improve its readability. We also observe that developers may clean up the test

which entails eliminating any obsolete variables or comments.

Developers often add new tests (63%) or assertions (14%) to replicate the bug, and

sometimes improve tests (21%), e.g., reflecting the fix in source code or improving

test logic, to regression test the bugs that they are fixing.
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7.2.4 RQ3: How does Having Developer Knowledge in Fault-

triggering Tests Affect Fault Localization Results?

Motivation. In the previous RQs, we found that many tests are newly added or

modified for replicating the bugs and regressing testing. Such tests contain developer

knowledge of the bugs that may affect the effectiveness of fault localization techniques.

Therefore, in this RQ, we study the impact of using developer-modified tests for fault

localization. The findings will provide insight into the impact of using these tests for

fault localization, and whether there is a need to improve the benchmark.

Approach. We study the impact of having developer-modified tests on the results of

state-of-the-art SBFL techniques. Among existing fault localization techniques, SBFL

is one of the most widely studied techniques as it provides an accurate ranking of the

potentially buggy statements [14, 81, 103]. SBFL techniques are also an important

building block for automated program repair techniques since they rely on SBFL to

provide a list of potentially buggy locations to start repairing [113]. SBFL techniques

differentiate the buggy statements from the non-buggy ones through the program

spectrum (code coverage profile). Intuitively, a statement covered by more failed

tests but fewer passed tests is more likely to contain the bug. Therefore, developer-

modified fault-triggering tests can significantly impact the performance of SBFL, as

these tests may not have existed when the bug was first reported, or might not have

been able to trigger the bug (i.e., do not fail) when initially introduced to the system.

In particular, we study the effectiveness of SBFL techniques on the bugs whose

fault-triggering tests existed before the bug report and were modified after the bugs

were reported. This is done to enable a comparison of fault localization techniques

with and without developer knowledge of the bug. The tests that belong to Pattern

3 existed before the bug report and were modified after the bugs were reported, and

we found that most of the modifications added developer knowledge of the bug to

the tests (RQ2). Therefore, we perform our study on bugs that belong to Pattern

3. To study the impact of including developer knowledge on SBFL, we compare the

performance of SBFL techniques in two versions: 1) vBuggy: when the bug was first

reported, and 2) vD4J: the version provided by Defects4J (the tests were modified

during bug fixes). We perform our comparison on all 155 bugs that contain fault-

triggering tests belonging to Pattern 3.
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Since Defects4J only provides the test coverage and test execution result for vD4J,

we need to collect the data for vBuggy. To collect vBuggy, for each bug, we extract

the timestamp when the bug report was created and identify the nearest commit

before the bug was reported. In practice, the bugs remain unfixed in these commits,

and if there are any test failures, they are more likely to be related to the bug. We

checkout these commits on Git, compile the systems, and execute the tests. Note

that, if a bug does not have any failed tests in either vBuggy or vD4J, we exclude the

bug from our analysis for a more direct comparison between the two versions. Since

most systems do not report test coverage, we manually modified the systems to use

JaCoCo to collect the coverage information. In total, we spent hundreds of hours

configuring JaCoCo and resolving compilation issues such as missing dependencies

and incompatible environment settings. We release the data publicly to encourage

replication and future research [1].

After collecting the data for vBuggy, we apply SBFL techniques on both vBuggy

and vD4J and compare the localization result. In particular, we use four follow-

ing commonly used SBFL techniques [33]: Ochiai [14], Tarantula [77], DStar [182],

and Barinel [17]. To evaluate the fault localization techniques, we use the following

metrics:

Top-N is defined as the number of faults with at least one faulty statement correctly

identified within the first N statements in the ranking. Therefore, a better Top-N

result indicates that developers are able to find faulty statements by examining fewer

statements. We set N to 1, 3, and 5 in our evaluation.

Mean Average Rank (MAR) first calculates the average rank of all the faulty state-

ments for a bug. Then, MAR calculates the average of the ranks from all the bugs.

A smaller value means that the faulty statements are ranked earlier.

Mean First Rank (MFR) calculates, for all the bugs, the mean of the first faulty

statement in the ranked result. Therefore, a smaller value means that the technique,

on average, is able to identify a faulty statement early in the ranked list.

In contrast to MAP and MRR discussed in the previous chapters, MAR and MFR

represent the ranked positions instead of the inverse of the rank positions. The use of

these two metrics in this chapter enables a direct comparison of the impact of future

tests on the rank position of the faulty statements.

Results. For all the four fault localization techniques that we studied, the
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Table 30: Fault localization results for the bugs that belong to Pattern 3 (fault-

triggering tests exist but were modified). We compare the results of running the

techniques in the commits before the bugs were reported (vBuggy) and in the commits

that were provided by Defects4J (vD4J). Top-N is the number of times a faulty

element ranked in Top-N.

Technique Version Bugs Top-1 Top-3 Top-5 MFR MAR

Ochiai
vBuggy 118 3 3 3 2,965 (-415%) 3,254 (-268%)

vD4J 118 49 64 70 714 1,214

Tarantula
vBuggy 118 4 4 4 2,988 (-424%) 3,244 (-262%)

vD4J 118 47 62 66 705 1,238

D-Start
vBuggy 118 10 11 15 2,827 (-104%) 3,231 (-701%)

vD4J 118 29 39 44 273 461

Barinel
vBuggy 118 3 3 3 2,954 (-378%) 3,282 (-272%)

vD4J 118 45 60 65 781 1,208

localization results degrade significantly on vBuggy compared to vD4J on

bugs in Pattern 3. Table 30 shows the fault localization (FL) results on vBuggy and

vD4J for the bugs whose fault-triggering tests belong to Pattern 3 (fault-triggering

tests exist but were modified after the bug was reported). Out of the 155 unique bugs

that we considered, 118 of them caused test failures. The remaining 25 bugs either

did not lead to any test failures or their commits before the bug report (vBuggy)

were too old and could not be retrieved. Thus, we perform our analysis on 118 bugs.

Table 30 shows that the results in vBuggy are significantly worse than that of vD4J for

all the metrics. All four FL techniques in vBuggy have much fewer times of a faulty

element ranked in Top-1, Top-3, and Top-5 than that in vD4J. The finding indicates

that in the best scenario 15 of the bugs have faulty statements that are ranked early

in the list. In comparison, for vD4J, the number of a faulty element being ranked in

Top-1 and Top 5 is around 40 and 60, respectively. The MFR and MAR results for

vBuggy are in the range of 3,000, whereas the results for vD4J are in the range of

200 to 1200. In other words, most faulty statements are ranked very low in vBuggy

and the ranking results cannot help developers with locating the bugs. The decrease

in MRF and MAR value are in the range of 100% to 700%. In short, the findings

157



Table 31: Fault localization results for the bugs that belong to Pattern 4 (the fault-

triggering tests were not modified). We compare the results of running the techniques

in the commits before the bugs were reported (vBuggy) and in the commits that were

provided by Defects4J (vD4J). Top-N is the number of times a faulty element ranked

in Top-N.

Technique Version Bugs Top-1 Top-3 Top-5 MFR MAR

Ochiai
vBuggy 105 2 2 6 2,097 (-245%) 2,561 (-203%)

vD4J 105 10 18 26 855 1,264

Tarantula
vBuggy 105 2 2 6 2,100 (-247%) 2,587 (-206%)

vD4J 105 12 17 28 851 1,254

D-Start
vBuggy 105 2 2 5 2,073 (-250%) 2,553 (-195%)

vD4J 105 10 16 23 829 1,309

Barinel
vBuggy 105 2 2 5 2,075 (-234%) 2,564 (-185%)

vD4J 105 9 17 28 888 1,389

indicate that, in vBuggy, the fault-triggering tests (without Pattern 3 tests having

prior developer knowledge) are not able to help locate the bugs.

As a comparison, we also study the effectiveness of fault localization (FL) tech-

niques on vBuggy and vD4J for the bugs that belong to Pattern 4 (the fault-triggering

tests were not modified). Different from the bugs that belong to Pattern 3, as shown

in Table 28, Pattern 4 consists of 150 bugs where the fault-triggering tests were not

modified by developers. This implies that the bugs of Pattern 4 may provide a more

realistic setting for fault localization. We perform similar analysis on bugs in Pattern

4. Out of the 150 unique bugs we analyzed, 105 had test failures, while the remaining

45 bugs either had no test failures or the commits before the bug report (vBuggy)

were too old to be retrieved. Surprisingly, we find that the fault localization results

for the bugs that belong to Pattern 4 also have become worse. Table 31 shows that

for Top-1, Top-3, and Top-5, vBuggy ranges from 2 to 6 while vD4J ranges from 9 to

28. Similarly, MFR and MAR are much higher for vBuggy (in the range of 2,000),

meaning that developers need to investigate an average of 2,000 ranked results before

find the faulty ones. The MFR and MAR are in the range of 800 to 1,300 for vD4J.

The decrease in MRF and MAR value is around 200%.
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The fault localization results on vBuggy (MFR and MAR around 3,000) are sig-

nificantly worse than that on vD4J (MFR and MAR around 700 and 1200). Our

findings show that the fault localization results using Defects4J may be signifi-

cantly different from practical settings.

Discussion. Since the effectiveness of fault localization techniques degrades signif-

icantly, we further investigate the possible causes, other than that the tests contain

developer knowledge of the bug. We examine how many bugs whose fault-triggering

tests (from Pattern 3 and 4) actually failed in vBuggy (i.e., the version when the bug

was first reported). Note that our study focuses on 263 out of 305 bugs, as some

earlier versions of the system could not be retrieved. Table 32 shows the number of

bugs with failed fault-triggering tests in vBuggy. We noticed that in both Pattern

3 and Pattern 4, a small percentage (15%) of fault-triggering tests did not cause

any failure in vBuggy, indicating that they were unable to detect the fault. On the

other hand, the remaining fault-triggering tests (85%) failed and assisted in fault

localization. Through manual analysis of bugs in Pattern 4, we observe that even

though developers did not modify the fault-triggering tests, they may still have in-

troduced developers’ knowledge affecting fault localization results. Developers may

introduce their knowledge in different ways, such as modifying functions involved in

test execution or adjusting the test setup configuration. Let’s take bug Lang 57 as

an example. In this bug, the test suite LocaleUtilsTest was modified by adding an ex-

tra setUp method that runs before each test case. This modification was made after

the bug report was submitted. The purpose of the added setUp method is to ensure

that fault-triggering tests fail if the fields are not correctly initialized before the test

execution starts. Thus, the results of fault localization is overestimated in vD4J as

developers’ knowledge was introduced in the test setup configuration. Our finding

shows that developers’ knowledge may not always be directly incorporated into the

fault-triggering tests themselves. Future research may explore bugs from Pattern 4 to

investigate and characterize the instances where developers’ knowledge is introduced

outside of the fault-triggering tests.

Future studies may consider utilizing the fault-triggering tests that were not mod-

ified by developers after the bug report to investigate and characterize instances

where developers’ knowledge is introduced outside of the fault-triggering tests.
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Table 32: The number of bugs with failed fault-triggering tests on the buggy commit

(vBuggy). We consider the bugs whose fault-triggering tests belong to Pattern 3 and

Pattern 4 (Table 28).

Project Total #Bugs with no #Bugs with

bugs failed tests failed tests

Pattern 3 Pattern 4 Pattern 3 Pattern 4

Cli 17 0 2 9 6

Closure 93 11 3 32 47

Codec 5 1 0 3 1

Collections 0 0 0 0 0

Compress 14 1 2 8 3

Csv 2 1 0 1 0

Gson 9 1 6 1 1

JacksonCore 7 2 3 1 1

JacksonXml 1 1 0 0 0

JacksonDatabind 17 0 0 10 7

JxPath 1 1 0 0 0

Lang 27 0 0 22 5

Math 36 2 2 30 2

Mockito 31 1 0 2 28

Time 3 0 0 2 1

Total 263 22 18 121 102
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7.3 Discussion and Future Work

In this chapter, we studied the bugs and their corresponding fault-triggering tests

in Defects4J. We classified the bugs based on whether their tests contain developer

knowledge and also the test coverage data on the buggy commit (i.e., the commit

prior to the bug report creation). We made the dataset publicly available [1] and we

believe that the dataset can inspire future research. Below, we discuss the implication

of our findings and potential future research directions.

7.3.1 Future research may use our annotated data to re-

evaluate fault localization and automated program re-

pair techniques.

We find that a majority of the fault-triggering tests in Defects4J contain developer

knowledge, and such knowledge can degrade the fault localization results. Our find-

ings provide insights into the effectiveness of fault localization techniques in a more

realistic setting where developers may use these techniques in practice (e.g., analyze

the failing tests associated with a reported bug). Our dataset also annotates the

fault-triggering tests and whether or not they contain developer knowledge. We be-

lieve the dataset can be used in three directions. First, future studies can leverage

the dataset to re-evaluate the effectiveness of fault localization or automated program

repair techniques based on fault-triggering tests that do not have developer knowl-

edge. Second, future research may use our dataset to have a separate evaluation of

the bugs (e.g., with and without developer knowledge) in Defects4J. Third, future

studies may use our dataset to investigate the characteristics of fault-triggering tests

that require less maintenance during bug fixes, such as tests that involve little to no

code changes (e.g., tests in Pattern 4).

7.3.2 Future studies may need to consider developers’ bug-

fixing process when creating benchmarks.

In RQ2, we found that fault-triggering tests may not be available when developers

receive a bug report. Developers may then develop fault-triggering tests while working

on a bug fix to replicate the bug. Hence, our findings call for more empirical studies
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to further understand developers’ bug-fixing activities, and how to consider such

activities when creating benchmark datasets. Future studies may use our dataset as

an initial step to understand the bug-fixing process and expand the study on other

systems and settings.

7.3.3 There is a need for more comprehensive and realistic

benchmarks.

To help facilitate software testing research, researchers have proposed several bug

benchmarks. Among these benchmarks, Defects4J [79] is the most popular and widely

used benchmark. However, as we found in this chapter, some fault-triggering tests

in Defects4J contain developer knowledge of the bug, which affect the result of fault

localization techniques. The bugs and tests from Defects4J were manually extracted

and may contain data from “future” commits. As a result, we believe that there is a

need for benchmarks that are more comprehensive and realistic. The T-Evos dataset,

discussed in Chapter 5, compiles and executes a consecutive sequence of commits

in multiple systems while collecting test coverage data. The continuous data from

benchmarks like T-Evos provides a more realistic setting for evaluating fault localiza-

tion and automated program repair techniques under modern software development.

It also highlights the need for more comprehensive and realistic benchmarks in the

field of software testing research.

7.4 Threats to Validity

Internal Validity. Threats to internal validity are related to experiment errors or

biases. One main threat comes from the human analysis in our study. In RQ1, we

conducted a manual analysis to assess the relevance of test modifications to bugs.

However, the majority of the work in extracting events related to bug resolution was

performed automatically, with manual verification limited to identifying any errors

in the generated results. We manually analyzed and categorized the modifications on

fault-triggering tests in RQ2. However, we adopted the manual analysis approaches

used in prior studies [56, 92, 107, 109] to mitigate subjectivity. Three phrases were

used and we were independently involved in the analysis. The analysis results achieve

a Cohen’s Kappa of 0.86, which indicates a substantial level of agreement [51].
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External Validity. Threats to external validity are related to the generalization of

our results. In this chapter, we mainly focus on the Defects4J dataset. Conducting

the study on different datasets with test cases and bug information may have dif-

ferent results. The Defects4J dataset is the most used benchmark in the important

software engineering tasks, such as fault localization and automated program repair.

Quite a large body of literature, e.g., in automated program repair, heavily rely on

the Defects4J dataset for the evaluation on Java programs. The discussions, such as

developer knowledge in fault-triggering tests and the identified categorizes of mod-

ifications on fault-triggering, derived from the analysis of Defects4J in this chapter

could be beneficial to future research, such as evaluating the research in the settings

of no developer knowledge that is known in the tests.
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Chapter 8

Conclusion

This chapter provides a summary of the key ideas presented in this dissertation. In

the following section, we propose future work related to mining software repositories

and leveraging program analysis to improve the debugging process.

Software debugging is a challenging and time-consuming task [32, 38, 41, 46]. To

expedite this process, researchers have developed automated debugging techniques.

One such technique that has gained significant attention is fault localization. By

utilizing fault localization techniques, developers can automatically identify and lo-

cate faults in the source code, thereby speeding up the debugging process. While the

industry has shown interest in these techniques, their effectiveness may be limited,

hindering their widespread adoption. Furthermore, the integration of fault local-

ization in modern software development has not been extensively studied, further

limiting their evaluation in practical settings. We believe that leveraging operational

data can enhance the effectiveness and applicability of fault localization in modern

software development, particularly in continuous integration settings. In this disser-

tation, we highlight two types of operational data that can extend the adoption of

fault localization in practice: user-reported logs, which facilitate the reconstruction

of execution paths and provide deeper debugging information, and continuous and

finer-grained changes, which enable the detection of new faults and enhance the adapt-

ability of fault localization in modern software development. Our results demonstrate

the value of our approaches for software engineering practitioners and highlight the

importance of extending the reach of automated debugging solutions.
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8.1 Contributions

This dissertation focuses on first understanding the debugging information, then

proposing approaches to help build more effective and efficient fault localization tech-

niques. The contributions of this dissertation also fill the research gap of missing

continuous integration fault localization benchmark, as demonstrated in our large-

scale longitudinal study in Chapter 5. In our study conducted in Chapter 6, we also

identify the bias that may exist, in which state-of-the-art fault localization techniques

perform significantly worse in the absence of developer knowledge in the tests. Below,

we outline the key contributions of this dissertation:

1. Leveraging User-reported Logs in Debugging. We conduct an empirical

study on the challenges that developers may encounter when analyzing the user-

provided logs and their benefits. Our findings show that: 1) BRWL takes longer

time (median ranges from 3 to 91 days) to resolve compared to BRNL (median

ranges from 1 to 25 days). We also find that reporters may not attach accurate

or sufficient logs (i.e., developers often ask for additional logs in the Comments

section of a bug report), which extends the bug resolution time. 2) Logs often

provide a good indication of where a bug is located. Most bug reports (73%)

have overlaps between the classes that generate the logs and their corresponding

fixed classes. However, there is still a large number of bug reports where there

is no overlap between the logged and fixed classes. 3) Our manual study finds

that there is often missing system execution information in the logs. Many logs

only show the point of failure (e.g., exception) and do not provide a direct hint

on the actual root cause. In fact, through call graph analysis, we find that

28% of the studied bug reports have the fixed classes reachable from the logged

classes, while are not visible in the logs attached in bug reports. To facilitate

the reproducibility, we have made the data available online [11].

2. Adopting Logs in Fault Localization Techniques. To assist developers,

we first propose Pathidea, an IRFL approach that utilizes logs from bug reports

to reconstruct execution paths and enhance fault localization results. Pathidea

uses static analysis to create a file-level call graph, and re-constructs the call

paths from the reported logs. We find that Pathidea achieves a high recall

(up to 51.9% for Top@5). On average, Pathidea achieves an improvement that
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varies from 8% to 21% and 5% to 21% over BRTracer in terms of Mean Average

Precision (MAP) and Mean Reciprocal Rank (MRR) across studied systems, re-

spectively. Moreover, we find that the re-constructed execution paths can also

complement other IRFL approaches by providing a 10% and 8% improvement

in terms of MAP and MRR, respectively. Finally, we conduct a parameter sen-

sitivity analysis and provide recommendations on setting the parameter values

when applying Pathidea. To facilitate the reproducibility, we have made the

data available online [37].

3. Benchmarking for Automated Testing Research. To fill the research

gap of missing CI benchmark, we introduce T-Evos [12], a large-scale dataset

on test result and coverage evolution, covering 8,093 commits across 12 open-

source Java projects. Our dataset includes the evolution of statement-level

code coverage for every test case (either passed and failed), test result, all

the builds information, code changes, and the corresponding bug reports. We

conduct an initial analysis to demonstrate the overall dataset. In addition,

we conduct an empirical study using T-Evos to study the characteristics of

test failures in CI settings. We find that test failures are frequent, and while

most failures are resolved within a day, some failures require several weeks to

resolve. We highlight the relationship between code changes and test failure,

and provide insights for future automated testing research. Our dataset may be

used for future testing research and benchmarking in CI. Our findings provide an

important first step in understanding code coverage evolution and test failures

in a continuous environment.

4. Automatically Locating Faults in Continuous Integration. While the

continuous nature of CI requires the code changes to be atomic and presents

fine-grained information on what part of the system is being changed, traditional

SBFL techniques do not benefit from it. We propose to integrate the code and

coverage change information in fault localization under CI settings. First, code

changes show how faults are introduced into the system, and provide developers

with better understanding on the root cause. Second, coverage changes show

how the code coverage is impacted when faults are introduced. This change

information can help limit the search space of code coverage, which offers more

opportunities for improving fault localization techniques. Based on the above
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observations, we propose three new change-based fault localization techniques,

and compare them with Ochiai, a commonly used SBFL technique. Our results

show that all three change-based techniques outperform Ochiai on the Defects4J

dataset. In particular, the improvement varies from 7% to 23% and 17% to 24%

for average MAP and MRR, respectively. Moreover, we find that our change-

based fault localization techniques can be integrated with Ochiai, and boost its

performance by up to 53% and 52% for average MAP and MRR, respectively.

To facilitate the reproducibility, we have made the data available online [10].

5. Studying Data Cleanness in Fault Localization. To facilitate research in

software testing, researchers have proposed several benchmark datasets for the

community to evaluate fault localization techniques. Among them, Defects4J is

the most widely used benchmark due to its clean and controlled environment for

studying real bugs collected from popular open source systems. However, prior

research suggests that Defects4J may contain some tests that were added by

developers after the bug was reported or fixed. Such tests may contain developer

knowledge of the bug, which compromises the effectiveness of fault localization

techniques. Thus, we conduct a comprehensive study on the fault-triggering

tests in Defects4J. We study the timelines of the changes that developers made

to the fault-triggering tests with respect to bug report creation time. Then,

we study the effectiveness of SBFL techniques without developer knowledge in

the tests. We found that 1) 55% of the fault-triggering tests were newly added

to replicate the bug or to test for regression; 2) 20% of the fault-triggering

tests were modified after the bug reports were created, containing developer

knowledge of the bug; 3) developers often modify the tests to include new

assertions or change the test code to reflect the changes in the source code; and

4) the performance of SBFL techniques degrades significantly (up to –415% for

Mean First Rank) when evaluated on the bugs without developer knowledge.

Our results can help future studies conduct in-depth evaluations of their SBFL

techniques in different settings when using Defects4J. Our findings also provide

insight into the development activities that need to be considered when creating

future bug benchmarks. To facilitate the reproducibility, we have made the data

available online [1].
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8.2 Future Research Directions

In this dissertation, we have proposed several fault localization techniques that are

effective and easy to integrate within modern software development settings. However,

there are still many challenges that can be addressed in future research. In the

following sections, we discuss each of these challenges.

8.2.1 Providing Assistance on Which Logs to Include in Bug

Reports

The earlier chapters of this dissertation investigate the use of user-reported logs in

bug reports, focusing on their role in debugging (Chapter 3) and fault localization

(Chapter 4). However, more often than not, reporters are unable to provide accurate

logs that effectively illustrate the problem. Therefore, future research should assist

reporters in providing more accurate logs that can better facilitate the debugging

process.

8.2.2 Detecting and Understanding Logging Code Evolution

As shown in Chapter 3, even when reporters provide high-quality logs, it is not un-

common for logging statements or methods mentioned in stack traces to be removed

from the source code when developers start debugging. For developers who are not

familiar with the system, such changes in logging statements can pose additional

challenges during debugging. Future studies should consider analyzing the software

development history and assisting developers in locating user-provided logs, specially

when the corresponding logging statements or methods have been deleted or moved.

Additionally, understanding the evolution of logging code in relation to the source

code (i.e., logs and source code co-evolution) is crucial. Future studies should investi-

gate the mismatches between user-provided logs and the logging statements in most

recent code repository, taking into account the continuous and frequent changes that

occur in modern software development.
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8.2.3 Leveraging Operational Data to Improve Software Qual-

ity

As demonstrated in Chapter 3 and Chapter 4, we can leverage user-reported logs

to assist developers in debugging and improving software quality. However, modern

software development offers additional operational data, particularly in the context

of CI, which contain rich debugging information. For instance, in Chapter 5, we

introduced T-Evos, a dataset that captures the continuous evolution of test status

and code coverage. This dataset can be utilized to study the quality of test code

throughout software evolution. Future studies can further explore this dataset to

investigate the evolution of test code over time and to help improve it.

8.2.4 Evaluating Data Cleanness in Fault Localization and

Automated Program Repair

As highlighted in Chapter 7, a majority of the fault-triggering tests in Defects4J con-

tain developer knowledge, which can affect fault localization results. These findings

provide insights into the effectiveness of fault localization techniques in a more realis-

tic setting, where developers may utilize these techniques in practice (e.g., analyzing

failing tests associated with reported bugs). Our dataset also annotates whether

fault-triggering tests contain developer knowledge. Future studies can leverage this

dataset to re-evaluate the effectiveness of fault localization or automated program

repair techniques based on fault-triggering tests that do not involve developer knowl-

edge. Additionally, the dataset can be used to investigate the characteristics of fault-

triggering tests that require less maintenance during bug fixes, such as tests that

involve minimal or no code changes.
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