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ABSTRACT 

White Matter Microstructural Correlates of Cognitive and Motor Functioning Revealed 

via Multimodal Multivariate Analysis  

Zaki Alasmar, B.Sc. 

Concordia University, 2023 

Recent advances in cognitive neuroscience emphasise the importance of healthy white 

matter (WM) in optimal behavioural functioning. It is now widely accepted that brain 

connectivity via WM contributes to the emergence of behaviour. However, the association 

between the microstructure of these fibres and behaviour is poorly understood. This is due to 

indirect and overlapping methods of assessing microstructure, and the use of simplifying 

approaches in assessing behaviour. Here, we used the Mahalanobis Distance (D2) to integrate 10 

metrics of WM derived from multimodal neuroimaging that have strong ties to microstructure. 

The D2 metric was chosen because it measures the voxelwise distance between every subject and 

the average, while also accounting for the covariance between the metrics. To examine WM-

behaviour associations, we used multivariate regression to examine the voxelwise correlates of 2 

cognitive and 2 motor tasks, which allowed us to compare within and across domains in WM. 

We observed that behaviour is organised in cognitive, motor, and integrative variables that are 

widespread in their associations with WM, from frontal to parietal regions. Our results highlight 

the complex nature of microstructure and behaviour, and show the need for multivariate 

modelling when examining brain-behaviour associations. 

 

Key words: white matter microstructure, behavioural analysis, multivariate statistics, cognition, 

motor skills  
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1. Introduction 

 Recent advances in neuroimaging techniques have allowed for the non-invasive 

assessments of brain structure and function in health and disease (Calhoun, 2018; Tardif et al., 

2016). These techniques have become crucial in understanding the neural underpinnings of 

several aspects of behaviour, such as cognitive and motor functions. The emergence of these 

functions is supported via the intricate connectivity of cortical regions through white matter 

(WM) structural connections (Thiebaut de Schotten et al., 2020; Thiebaut de Schotten & Forkel, 

2022). The structural connectivity of WM can be assessed via diffusion weighted imaging 

(DWI), a magnetic resonance imaging (MRI) sequence tailored to indirectly assess WM by 

measuring water diffusion in brain tissue. DWI allows for the visualisation of connectivity 

patterns between cortical areas, and also for the examination of WM microstructure (Duval et al., 

2017; Soares et al., 2013). For instance, WM organisation, myelination, and density can be 

assessed through several computational models. We can then relate the extracted microstructural 

metrics from these models to observable behaviour, thus assessing microstructure-behaviour 

associations. Examining these associations is crucial for enhancing our understanding of WM 

correlates of behaviour, their changes in pathology, and in turn improving treatment strategies 

(Thiebaut de Schotten & Forkel, 2022). 

 White matter is composed of axons that vary in their myelination, density, and overall 

composition between different regions, which are assessed via neuroimaging-derived metrics 

(Mezer et al., 2013; Stikov et al., 2015). Changes in healthy WM composition are largely due to 

the refinement of the signal conduction environment that WM provides (Hagmann et al., 2010), 

leading to observable effects such as enhanced or reduced performance on tasks. For instance, 

adaptive and maladaptive myelination shape this environment by enhancing signal conduction 

https://www.zotero.org/google-docs/?rNsgsY
https://www.zotero.org/google-docs/?rNsgsY
https://www.zotero.org/google-docs/?KGDveN
https://www.zotero.org/google-docs/?KGDveN
https://www.zotero.org/google-docs/?y4SH4N
https://www.zotero.org/google-docs/?y4SH4N
https://www.zotero.org/google-docs/?MKVLQh
https://www.zotero.org/google-docs/?GXCasf
https://www.zotero.org/google-docs/?jfzEOo
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(Knowles et al., 2022), and animal models have shown that myelin remodulation is required in 

motor skills and to maintain healthy cognitive functions (e.g. in memory; McKenzie et al., 2014; 

Pan et al., 2020). These findings are corroborated by human neuroimaging studies, which 

emphasised the putative role of WM microstructure in supporting and acquiring motor skills and 

memory (de Lange et al., 2017; Johansen-Berg et al., 2007; Scholz et al., 2009). This modulation 

of WM microstructure helps provide the optimal conduction medium for neural signals, which in 

turn leads to ideal cortical functioning and behaviour (Pajevic et al., 2014). The role of WM 

microstructure in cortical functioning, and in turn behaviour, constitutes a complex system of 

precise microstructure-function-behaviour mapping. While there is a large body of work in 

human neuroimaging focused on cortical function and its link to behaviour, the links between 

WM microstructure and behaviour have not been adequately examined. Indeed, one of the 

earliest studies examining WM appeared in 2007, and highlighted the need for a thorough 

understanding of microstructure (Johansen-Berg et al., 2007). Multiple studies followed showing 

the importance of healthy WM development in behaviour (Muetzel et al., 2008), and the 

experience-induced plastic changes that it undergoes (Steele et al., 2013). However, due to much 

of neuroscientific research being focused on cortical grey matter (GM), the patterns of 

connectivity between cortical areas through WM have been explored extensively at the expense 

of microstructure. Assessing how WM microstructure may vary across individuals is important 

for understanding behaviour since WM enables brain connectivity. A problem that arises in 

microstructural assessment studies is the use of neuroimaging-derived metrics with overlapping 

characteristics (Raghavan et al., 2021). Each of these metrics is an indirect measure of 

underlying tissue structure, providing overlapping complementary information. Thus, using 

univariate frameworks is suboptimal to comprehensively characterise WM microstructure. 

https://www.zotero.org/google-docs/?olE7tJ
https://www.zotero.org/google-docs/?3i1UqY
https://www.zotero.org/google-docs/?3i1UqY
https://www.zotero.org/google-docs/?kl4ncy
https://www.zotero.org/google-docs/?I0Iz5o
https://www.zotero.org/google-docs/?EsnlJ1
https://www.zotero.org/google-docs/?SQXEhu
https://www.zotero.org/google-docs/?IUbiKs
https://www.zotero.org/google-docs/?cCeBtJ
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Conversely, the use of multivariate frameworks aids in explaining how behaviour emerges from 

brain neuroanatomy and functional characteristics, and enhances our understanding of WM 

correlates of behaviour in health and different populations of disease states (Johansen-Berg, 

2010).  

One problem when examining brain-behaviour associations using univariate techniques is 

the inability to explicitly compare across tasks. Reducing a facet of behaviour into simpler 

components allows for an easier assessment of these components via behavioural tasks. In this 

paradigm, each component is assessed via one administered task. This approach overlooks the 

connectedness of these components, since the scores are typically analysed with respect to their 

association with microstructure in an independent statistical framework (Poldrack, 2010; 

Varoquaux et al., 2018). For instance, Varoquaux and Poldrack (2019) argue that a memory task 

does not probe only “memory”, but is also likely to include contributions from visual and motor 

functions. These problems arise due to the use of single assessments of behavioural measures, 

which are then compared qualitatively (e.g. by visualisation of the spatial extent of different 

statistical maps). It is also common to use one specific measure (e.g., grip strength), and then 

make generalised claims within the entire domain (e.g., the motor system). These problems 

warranted the development of advanced statistical modelling that incorporated data-driven 

approaches (Varoquaux & Poldrack, 2019), and integrative behavioural atlases (Varoquaux et 

al., 2018) in lieu of single-task paradigms. Additionally, using multivariate methods have shown 

promise in identifying latent factors that are tied to human functioning (Schöttner et al., 2023), 

which may have associations with WM microstructure that are very dissociable in their spatial 

locations. Given the accumulating evidence of the complexity of brain-behaviour relationships, 

recent directives in cognitive neuroscience support the use of multiple measures of behaviour. 

https://www.zotero.org/google-docs/?0cpHEW
https://www.zotero.org/google-docs/?0cpHEW
https://www.zotero.org/google-docs/?uV9NHV
https://www.zotero.org/google-docs/?uV9NHV
https://www.zotero.org/google-docs/?DfHRxt
https://www.zotero.org/google-docs/?5wIKS3
https://www.zotero.org/google-docs/?tlVb9r
https://www.zotero.org/google-docs/?tlVb9r
https://www.zotero.org/google-docs/?VTXi0G
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This paradigm enables the development of atlases of behavioural functioning (called ontologies), 

and then the identification of brain correlates of these ontologies (Price & Friston, 2005; 

Varoquaux et al., 2018). One approach to assess how brain neuroanatomy is related to 

multifaceted behaviour is through the use of multivariate modelling techniques. Applying these 

techniques has shown that multiple functionally and structurally connected regions are involved 

in memory and visually-guided motor function (Pur et al., 2022). Other studies have shown that 

multivariate techniques can help in extracting the sources of maximum brain-behaviour 

covariance in cognitive abilities, and ground it in brain structure (Ziegler et al., 2013) and 

function (Voigt et al., 2023). For instance, combining multiple measures of motor functions with 

multiple measures of cognition allows us to compare between and across behavioural domains 

(Schöttner et al., 2023). It is also possible to examine the associations between brain function and 

the extracted general behavioural domains as a whole by following these multivariate 

assessments of behaviour, combined with multimodal assessments of brain microstructure. 

Another problem is that the microstructural metrics used to assess WM are predominantly 

derived from non-invasive DWI, and provide indirect measures of myelination and fibre 

characteristics (Raffelt et al., 2017). For instance, the Diffusion Tensor model (DTI) is the most 

widely used model to assess WM microstructure (Soares et al., 2013), and can be used to 

compute multiple metrics from which fibre integrity and direction can be inferred. The Fractional 

Anisotropy (FA) and Mean, Axial, and Radial Diffusivity (MD, AD, RD) measures from the DTI 

model are commonly used to assess the integrity of white matter microstructure. In a typical 

DWI experiment, brain-behaviour associations are usually assessed via univariate statistical 

analysis (e.g. regression models) to identify relationships between the DTI metrics and behaviour 

(O’Donnell & Westin, 2011). However, in addition to their physiologically unspecific nature, the 

https://www.zotero.org/google-docs/?QpEFK5
https://www.zotero.org/google-docs/?QpEFK5
https://www.zotero.org/google-docs/?tmyhE5
https://www.zotero.org/google-docs/?Aexbym
https://www.zotero.org/google-docs/?zRKpv6
https://www.zotero.org/google-docs/?hDBhFQ
https://www.zotero.org/google-docs/?OZkjHx
https://www.zotero.org/google-docs/?uXjt2z
https://www.zotero.org/google-docs/?cj0ngW
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DTI metrics are correlated given their shared model characteristics and their dependence on the 

diffusion signal (Tremblay et al., 20231; Raghavan et al., 2021; Tardif et al., 2016). Therefore, 

disentangling the contributions of the underlying neurophysiological properties of each of these 

metrics, and in turn developing a more specific understanding of their links to behaviour, is 

difficult (Tardif et al., 2016; Zatorre et al., 2012). Other more complex models, such as the 

Constrained Spherical Deconvolution (CSD) and the Neurite Orientation Dispersion and Density 

Imaging (NODDI) models can also be computed from DWI with multi-shell high angular 

resolution protocols (Tournier et al., 2019; Zhang et al., 2012). It is possible to extract measures 

assessing WM fibres properties via CSD by fitting an orientation distribution function (ODF), 

which yields measures of fibre morphology (Raffelt et al., 2017). The ODF morphological 

metrics can measure fibre cross section (i.e. observed thickness or FC) and fibre density (FD) at 

the macro-level by organising WM in overlapping fibre elements, and computing morphological 

measures of these fibres. Therefore, the ODF elements are more robust measures when the 

complexity of fibres increases, such as in areas of crossing fibres (Raffelt et al., 2017). Given 

that WM fibres are composed of axons, increases in their thickness and density are indicative of 

increases in number of axons as well. This increase in the number of axons in a fibre bundle in 

turn leads to an increase in the information carrying capacity of those axons. Raffelt and 

colleagues (2017) hence describe the total information carrying capacity of the fibre as the 

modulation of fibre density by their cross section (FDC) in a specific location, giving rise to 

another more holistic measure of morphology at the macro-level organisation of WM. These 

metrics provide complementary information to DTI metrics, and a more holistic assessment of 

WM microstructure, but they still suffer from correlation with each other (Tremblay et al., 2023). 

 
1 Tremblay et al. 2023 is a co-first authored manuscript in preparation for submission and is included as Appendix 

B. 

https://www.zotero.org/google-docs/?5U2nCE
https://www.zotero.org/google-docs/?NMr6If
https://www.zotero.org/google-docs/?a4Wl04
https://www.zotero.org/google-docs/?T8BENB
https://www.zotero.org/google-docs/?JKslO0
https://www.zotero.org/google-docs/?C54hko
https://www.zotero.org/google-docs/?C54hko
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Whereas ODF metrics assess the macro-level microstructure of WM, NODDI modelling allows 

for the assessment of intracellular volumetric spaces at the micro-level. This model takes into 

account the complexity of white matter fibres, and also uses multi-shell DWI. It is possible to 

compartmentalise cellular versus extracellular contributions within each voxel, and measure the 

dispersion of the identified cellular compartments (Zhang et al., 2012). These measures can 

assess intracellular volumes of WM axons, and their orientation dispersion. Similar to the other 

two models, the microstructural metrics from NODDI are not independent and they suffer from 

inter-metric association. Overall, we and others have shown previously that there are associations 

between metrics within the same model as well as between models (Tremblay et al., 2023; Carter 

et al., 2022; Figley et al., 2022; Uddin et al., 2019). These associations impose great risks when 

attempting to examine brain-behaviour associations, because they might signify the same 

microstructural changes and overlapping information (Tardif et al., 2016; Zatorre et al., 2012) 

While most human neuroimaging studies have tended to focus on GM, studies examining 

WM have been increasing in number. However, most of these studies assess microstructure via 

univariate analyses of metrics with overlapping contributions of tissue properties (Tardif et al., 

2016). The non-specific nature of the metrics makes it difficult to disentangle the contribution of 

tissue properties to the imaging modalities, and gives rise to shared and overlapping changes in 

the MR signal. To help overcome this problem, we recently developed an integrative quantitative 

assessment of WM microstructure using multimodal neuroimaging (Tremblay et al., 2023). We 

proposed that combining neuroimaging metrics that are highly correlated and represent 

overlapping physiological tissue properties tie intimately to the underlying microstructure. This 

is achieved by integrating multiple metrics, while accounting for the covariance between them, 

in a single multivariate score. We developed mvComp, a toolbox to compute voxelwise 

https://www.zotero.org/google-docs/?udzAga
https://www.zotero.org/google-docs/?9ZAkpZ
https://www.zotero.org/google-docs/?9ZAkpZ
https://www.zotero.org/google-docs/?9ZAkpZ
https://www.zotero.org/google-docs/?33Eu8X
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Mahalanobis Distance (D2). D2 is a generalisation of the Euclidean distance that measures the 

distance between a point and a distribution in a multi-dimensional space (Mahalanobis, 1936). It 

also explicitly incorporates the covariance between all of the dimensions so as to not bias the 

distance with collinearity. In neuroimaging studies, D2 combining several MRI metrics has been 

used to characterise the extent of microstructural deviation between a subject and a group 

average at each voxel. For instance, a D2 framework integrating a single metric (e.g., FA) across 

several WM tracts has also been applied to study pathologies and was found to be strongly linked 

to epilepsy duration (Owen et al., 2021), and served as a strong marker of severity in traumatic 

brain injury (Taylor et al., 2020). Our previous work has shown that D2 provides a representation 

of WM microstructure in the corpus callosum (CC), and that it is possible to extract subsegments 

of the CC using machine learning and D2 (Tremblay et al., 2023).  

In the present study, we used the Mahalanobis distance (D2) to integrate neuroimaging 

metrics together and applied a partial least squares multivariate statistical analysis to examine the 

microstructural correlates of cognitive and motor function. We argue that since one behavioural 

task recruits multiple behavioural functions, using multiple measures and integrating them will 

provide a stronger brain-behavioural association. Therefore, the aim of this multivariate 

approach was to extract latent variables that decompose multifaceted behaviour on WM 

microstructure. We hypothesised that brain-behaviour associations are stronger when integrating 

multiple measures of microstructure and behaviour together, and that there will be differential 

patterns in D2’s relationship to behaviour across WM. 

https://www.zotero.org/google-docs/?e7CPFA
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2. Method 

a. Participants 

For this investigation, we used data from the WU-Minn Human connectome project 

(HCP S1200 release). The HCP is a large cohort of healthy young adults with MRI, DWI, and 

behavioural measures spanning cognition and motor functioning. The full procedure is 

described in depth elsewhere (Van Essen et al., 2013). Briefly, our sample consisted of 1001 

healthy young adults (Mage: 28.76 years, SDage: 3.68 years; 556 females), with no history of 

psychiatric, neurological, or neuropsychological disorders, and no history of substance abuse. 

We excluded participants with incomplete imaging data and/or invalid acquisitions.  

b. Multimodal Neuroimaging Protocols 

All imaging was conducted by the HCP on a custom 3T Connectome Skyra MRI scanner 

with a 32-channel head coil. Anatomical scans were acquired in the first session, and included 

T1-weighted as well as T2-weighted protocols (Van Essen et al., 2013). The T1w scans were 

acquired using a 3D-MPRAGE sequence while a 3D T2-SPACE sequence was used for T2w. 

Anatomical scans were acquired with a 0.7mm isotropic resolution (FOV=224x224). T1w had 

a TI=1000, TE=2.14, and TR=2400, while T2w TE was 565 and TR of 3200. The DWI data 

(TE/TR=89.5/5520 ms, FOV=210×180 mm) were multi-shell with b-values of 1000, 2000 and 

3000 s/mm2 and a 1.25 mm isotropic resolution, 90 uniformly distributed directions, and 6 B0 

volumes. More details on the acquisitions can be found at: 

https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging. The imaging data of 1065 

young healthy adults, those who had undergone T1w, T2w and diffusion-weighted imaging, 

were preprocessed. The data of 64 participants were excluded in the current study due to poor 

cerebellar coverage. 

https://www.zotero.org/google-docs/?3Yxd8I
https://www.zotero.org/google-docs/?lJoZBL
https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging
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c. Microstructural features from multimodal neuroimaging 

Neuroimaging preprocessing 

All MRI scans were preprocessed following the minimal preprocessing procedure by the 

HCP (Glasser et al., 2013). The HCP preprocessing procedure included intensity normalisation 

of B0 scans along with corrections for eddy current and susceptibility-induced distortions using 

the different phase encoding directions. It also included co-registration of DWI to native T1w 

with a rigid body transformation on the mean B0 scans, which was applied to realign all 

diffusion directions (Bvecs) as well. Finally, motion and gradient nonlinearity correction were 

applied. All subsequent data preprocessing steps as well as neuroimaging metric extraction are 

described in detail in Tremblay and colleagues (2023) and discussed briefly below.  

First, the preprocessed multishell diffusion data was bias-field corrected using the ANTs’ 

N4 algorithm via dwibiascorrect from MRtrix3 (Tustison et al., 2010). Using MRtrix3’s 

dwi2tensor (Tournier et al., 2019), we calculated the diffusion tensor and then extracted its 

metrics with tensor2metric, which yielded voxelwise fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). DTI metrics maps were 

transformed into the group template space as described below. We then used the multi-tissue 

Constrained Spherical Deconvolution (CSD) to estimate a white matter fibre response function, 

and later WM fibre composition. We first segmented all tissue types (WM, GM, CSF) by 

applying FSL’s 5ttgen (via the MRtrix3 wrapper, Smith et al., 2012; Tournier et al., 2019) on 

T1w scans. We computed the response function of each tissue type for all participants from the 

minimally preprocessed DWI data (without bias field correction) and the five-tissue-type (5tt) 

image using the msmt_5tt algorithm of the dwi2response function (Dhollander et al., 2016, 2018; 

Jeurissen et al., 2014; D. A. Raffelt et al., 2017). The response function represents the diffusion 

https://www.zotero.org/google-docs/?1ZTXd2
https://www.zotero.org/google-docs/?4Y2vFq
https://www.zotero.org/google-docs/?H4QPY8
https://www.zotero.org/google-docs/?sN62zg
https://www.zotero.org/google-docs/?sN62zg
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profile of a specific fibre population and is used to estimate the Orientation Distribution 

Functions (ODFs) with CSD. The WM, GM and CSF response functions were then averaged 

across all participants, resulting in a single response function for each of the three tissue types. 

Multi-shell multi-tissue CSD was then performed in each individual with the average response 

functions to obtain an estimation of orientation distribution functions (ODFs) for each tissue type 

(Jeurissen et al., 2014). This step is performed using the dwi2fod msmt_csd function of MRtrix3 

within a brain mask. Bias field correction and global intensity normalisation, which normalise 

signal amplitudes to make subjects comparable, were performed on the ODFs using the 

mtnormalise function in MRtrix3 (Dhollander et al., 2016, 2018; Jeurissen et al., 2014; D. A. 

Raffelt et al., 2017). 

Group space coregistration   

While most registration approaches are focused on optimising GM alignment, between 

different subjects and across modalities, we opted to perform a WM-focused registration. For 

this, we used a multi-contrast registration that was primarily driven by WM FODs but also  

included information about GM. We created population templates for WM, GM, and CSF FODs 

based on a subset of 200 participants using MRtrix3's population_template function, with the 

following parameters: nl_update_smooth= 1.0, nl_disp_smooth= 0.75 to apply a gaussian 

smoothing kernel on the gradient and displacement field, respectively. We subsequently 

computed the warps between all subjects and our population template using MRtrix3's 

mrregister function with identical regularisation parameters. These warps were subsequently 

applied to the brain masks extracted by using Brain Extraction Tool (BET) on T1w, WM FODs, 

DTI metrics (FA, MD, AD, and RD), T1-weighted (T1w), and T2-weighted (T2w) images 

through mrtransform (Raffelt et al., 2012). During this step, the WM FODs were transformed 

https://www.zotero.org/google-docs/?vXfnmn
https://www.zotero.org/google-docs/?SMbvS8
https://www.zotero.org/google-docs/?SMbvS8
https://www.zotero.org/google-docs/?s5Q1Xf
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without reorientation, aligning the image voxels but not the "fibre bundle elements" (fixels; see 

below and Raffelt et al., 2015). To create a template mask encompassing only the voxels with 

data from all subjects, we computed the intersection of all warped brain masks using the mrmath 

min function. Additionally, we warped the WM probability images from the five-tissue-type (5tt) 

segmentation to the group template space in order to generate a WM mask, and computed the 

group average probability of WM at each voxel. Lastly, we generated an FOD template average 

and retained the T1w and T2w images in their native resolution (0.7mm) and calculated the 

T1w/T2w ratio to generate a proxy myelin map, which was then warped to the FOD template 

(Glasser & Van Essen, 2011).  

The FOD template was then segmented to extract the WM fixel mask. This fixel mask 

determines the fibre bundle elements (fixels) within each voxel. Fixel segmentation is then 

performed on the WM FODs of each subject. The fixels are aligned with the template using 

subject-to-template warps (fixelreorient function) and mapped to the corresponding fixels in the 

fixel mask (fixelcorrespondence function). This ensures a consistent set of fixel directions for all 

subjects. We computed 2 fixel metrics in addition to the computation of the apparent fiber 

density (FD) of each fixel. First, the fibre bundle cross-section (FC) metric was computed to 

measure the expansion or contraction required for the fibre bundle to fit the fixel template, and 

the fibre density and cross-section (FDC) metric was calculated by multiplying the FD and FC 

metrics, representing the overall capacity of a fibre bundle to carry information. 

To incorporate all metrics into a unified multi-modal model, the fixel metric maps were 

summarised into voxelwise maps. Instead of deriving the measure of total fiber density (FDtotal) 

per voxel from fibre-specific FD, we used the sum of FOD lobe integrals. This summation 

yielded more reproducible estimates, as demonstrated in previous studies (Calamante et al., 

https://www.zotero.org/google-docs/?3yJflc
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2015). For the fibre cross-section voxel aggregate measure, we computed the weighted mean of 

FC using the fixel2voxel function's mean option. This measure represents the average expansion 

or contraction required to align fibre bundles within a voxel to the fixels in the template. The 

weighting factor was based on FD (fibre density), ensuring that bundles with higher density 

exerted a greater influence on the voxelwise FC value compared to those with lower density. 

Finally, to assess the overall information-carrying capacity at each voxel, we computed the 

voxelwise sum of FDC (fibre density and cross-section) using the fixel2voxel function's sum 

option. This measure represents the cumulative capacity to carry information within a voxel 

(Raffelt et al., 2017). 

The bias field-corrected DWI data was also fit with the neurite orientation dispersion and 

density imaging (NODDI) model using the python implementation of Accelerated 

Microstructure Imaging via Convex Optimization (AMICO) (Daducci et al., 2015; Zhang et al., 

2012). Initially, small variations in b values were addressed by assigning the nearest target b 

value (0, 1000, 2000, or 3000) to each value in the b-values file. This step aimed to prevent the 

fitting algorithm from considering slightly different b values as distinct diffusion shells, given 

that the b-vals from the HCP exhibit slight variations. Subsequently, a diffusion gradient scheme 

file was created based on the b-vectors and the modified b-values file. The response functions 

were computed for all compartments, and the fitting procedure was performed on the unbiased 

DWI volumes, specifically within the brain mask excluding non-brain voxels. The resulting 

parameters obtained from the fitting process were the intracellular volume fraction (ICVF) 

assessing neurite density (i.e. interpreted as axonal density in WM) and orientation dispersion 

index (OD) assessing the extent of dispersion around the mean orientation (Zhang et al., 2012).  

https://www.zotero.org/google-docs/?QMTNYd
https://www.zotero.org/google-docs/?VX5g34
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In total, 10 voxelwise microstructural measures were computed for each of the 1001 

subjects to use as features in our analyses. These features were 4 DTI measures (FA, MD, RD, 

AD), 3 ODF measures (FC, FD, FDC), and 2 NODDI measures (ICVF & OD) and T1w/T2w. 

We then computed voxelwise averages for each of these features and the covariance between 

each pair across all of WM voxels. 

d. Multivariate distance model 

We computed the Mahalanobis Distance (D2); a voxelwise multivariate distance to 

incorporate all 10 microstructural features while accounting for the covariance between them. 

Due to the high covariance between imaging features that capture shared and overlapping 

biological and physiological mechanisms (Raghavan et al., 2021; Tardif et al., 2016), accounting 

for it in an explicit statistical model is a more precise way to intimately tie derived metrics to 

microstructure (Tremblay et al., 2023). The voxelwise approach permits group-level analysis 

since it results in individual subject maps that are direct assessments of the multivariate 

differences from the average microstructure. To avoid biassing the average with each subject’s 

data when distances between the subject and the average is computed, a leave-one-subject-out 

approach was implemented. Here, each subject was removed from the calculated metric averages 

when that subject’s voxelwise D2 scores were computed.  

The distance between each subject’s microstructural features (i.e., the 10 features) and 

the average of those features at a given voxel is first calculated resulting in a subject distance 

vector of the shape 10x1. Then, the distance vector is divided by the covariance between features 

(in our MVComp approach, this is achieved by multiplication with the pseudoinverse of the 

covariance matrix; Tremblay et al., 2023). The same procedure is conducted for each voxel in 

every subject, resulting in voxelwise D2 maps for each of them. 

https://www.zotero.org/google-docs/?MjPzS0
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e. Detecting outliers 

We computed D2 for all 1001 subjects in our sample. Due to the large number of voxels 

and features used per subject, outliers were observed in these individualised D2 maps. 

Therefore, we removed every participant with extensive voxelwise outliers, based on a 

threshold of 5 standard deviations from their average D2 value. That is, if a participant’s D2 

map contained 55 or more voxels with D2 values larger than 5 SD (i.e. > 0.07% voxels) of their 

own voxelwise average, that participant was dropped from the analysis. This value was chosen 

as the optimal tradeoff between outlier removal and retaining a large sample - further increasing 

the cutoff results in an ~50% drop in sample size. As D2 is computed relative to the average, 

we reran the D2 computations on the resulting final smaller sample of 735 subjects. We then 

applied a power transformation at each voxel (across all subjects) to normalise the D2 

distribution and z-scored for standardisation. Lastly, standardised D2 z-scores with probabilities 

that exceeded 99.7% in each tail of the distribution were transformed to the closest value on a 

per-voxel basis since they were not deemed as outliers but rather large values (i.e. values larger 

than ~3SD were transformed to ~3SD). 

f. Behavioural tasks 

We used 4 tasks to assess cognition and motor functioning from the NIH toolbox, which 

were included with the HCP (Reuben et al., 2013; Weintraub et al., 2013). To assess motor 

functioning, we used the Grip Strength task (GST) and the 9-Hole Pegboard task (9-HPT), 

examining strength and dexterity respectively. In the GST, subjects were asked to squeeze a 

hand dynamometer as hard as they can, while in the 9-HPT, they are timed as they place 9 pegs 

in holes on a board and then remove them as quickly as possible. The tasks chosen to assess 

cognition were the card sorting task (CST) and the list sorting task (LST), both well validated 

https://www.zotero.org/google-docs/?wdvUqN


 

15 
 

and standardised tasks widely used in examining cognitive flexibility and working memory 

respectively. All behavioural measures were also power-transformed and z-scored. The 

voxelwise correlations between these tasks and D2 are shown in supplementary figure 1.  

g. Age and sex correction 

To account for the potentially confounding effects of age and sex in on neuroimaging 

metrics (Weber et al., 2022), each of the behavioural data as well as the voxelwise D2 values 

were fitted with a robust linear regression (task ~ age + sex, D2 ~ age + sex) and the residuals 

retained for subsequent analysis to statistically remove their effects. As with the imaging data, 

age and sex measures were power-transformed and z-scored prior to inclusion in the analyses.  

h. Statistical analyses 

A multivariate partial least squares-singular value decomposition (PLS-SVD) analysis 

was used to examine the association between D2 and the 4 behavioural measures (GST, 9-HPT, 

CST, and LST). This approach applies a singular value decomposition (SVD) to the brain-

behaviour covariance matrix to extract latent variables (LV) (McIntosh & Mišić, 2013). Given 

a matrix M of voxel and task associations, SVD decomposes M into USVT, such that U has the 

shape (voxel x LV), whereas VT is an (LV x task) matrix. Decomposing the covariance matrix 

allows for the extraction of latent variables that have the largest amount of explained brain-

behaviour covariance, along with the weight (importance) of each task and voxel on each latent 

variable. The weight of each voxel is represented by the columns of U, while the weight of each 

task is represented by the row of VT. Statistical significance of the LVs was assessed with a 

1000 permutation of the PLS-SVD decomposition. In other words, we conducted 1000 PLS-

SVD iterations, shuffling the behavioural input each time and extracting the explained 

covariance from each iteration. After extracting all the explained covariance values from each 

https://www.zotero.org/google-docs/?1f8SFe
https://www.zotero.org/google-docs/?ybpaAo
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iteration, those that were larger in the original decomposition than the shuffled iterations were 

deemed statistically significant. We conducted 1000 bootstrap iterations for each voxel and task 

of every latent variable to assess statistical significance of that voxel or task (by bootstrapping 

the U and VT matrices). For each bootstrapping iteration, behavioural as well as D2 data were 

resampled with replacement, and for each resampled set the PLS-SVD decomposition was 

rerun. This allowed us to calculate confidence intervals around each task/voxel weight. For 

permutation and bootstrap testing, the significance level was set to a family-wise error 

corrected p < 0.05. The outcomes from this analysis were the brain-behaviour explained 

covariance, behavioural and microstructural (i.e. D2) PLS scores for each subject, and task and 

voxel weights for each LV.  

 Significant findings were further assessed to identify their WM structural connectivity 

profiles using a normative model of whole-brain connectivity. For each significant LV, we 

chose a maximum of 3 regions of spatially connected voxels with large weights in order to 

individually identify the set of streamlines passing through them. This approach is identical to 

that used in identifying the network effects of brain lesions (Karnath et al., 2018; Talozzi et al., 

2023; Thiebaut de Schotten et al., 2020; Zayed et al., 2020). Here, we used a previously 

constructed streamline connectivity model that consisted of 10 million representative 

streamlines between all GM regions in our template space. After extracting the streamlines 

passing through the clusters, the GM connectivity profile of the WM passing through these 

clusters was summarised using the Automated anatomical labelling atlas 3 (AAL; Rolls et al., 

2015) and using the tck2connectome function of MRTrix3 (Tournier et al., 2019). 

https://www.zotero.org/google-docs/?FlfTX7
https://www.zotero.org/google-docs/?FlfTX7
https://www.zotero.org/google-docs/?PKkdWg
https://www.zotero.org/google-docs/?PKkdWg
https://www.zotero.org/google-docs/?m3SZ06
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We used the python package mvComp to compute voxelwise D2 scores for each subject, 

and to perform all data correction on D2 and behavioural data. We used MATLAB (R2021a) to 

run the PLS-SVD analysis as well the permutation and bootstrapping iterations.   

3. Results 

We used D2 and PLS-SVD to examine the multivariate relationship between 

microstructure and cognitive and motor behaviour. After 1000 permutations, we found that the 

first 3 latent variables extracted via PLS-SVD were statistically significant, and explained 

39.01%, 25.23%, and 19.04% of brain-behaviour covariance, respectively (Figure 1). The PLS 

scores of D2 and Behaviour were positively correlated in all LVs (r=0.39, r=0.69, r=0.70 for 

LV1, LV2 and Lv3, respectively; Panel a in fig 2,3,4). After 1000 bootstraps, we found that LV1 

was characterised by positive behavioural weights on both cognitive tasks (cognitive flexibility 

and working memory) and one motor task (manual dexterity) (Figure 2b). It also showed mostly 

negative weight of voxels that are distributed in WM underlying frontal and parietal regions, as 

well as cerebellar WM (Figure 2c). In contrast, grip strength had a strong positive weight on the 

second LV and cognitive flexibility weighed less heavily, while WM voxels showed positive and 

negative values in parietal and cerebellar WM (Figure 3b,c). Lastly, LV3 showed negative 

weights of working memory while manual dexterity weighed positively (Figure 4b). There were 

strong negative and positive weights in adjacent regions underlying frontal WM as well as in the 

corpus callosum (Figure 4c). Each of the next 3 sections discusses the results of one of the LVs.  
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Figure 1. Explained brain-behaviour covariance per extracted latent variable.  

 

Note. The first latent variable accounts for the largest amount of covariance (39.01%), followed 

by the second LV (25.23%), the third LV (19.04%), and lastly the fourth LV (16.72%). (*) 

denotes statistical significance after 1000 permutations (extracting all the explained covariance 

values from 1000 reshuffled iterations and comparing to the original decomposition). Statistical 

significance was assessed at family-wise error corrected p-value < 0.05.  
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a. Latent Variable 1 

The first LV revealed a moderate association between transformed D2 and behavioural 

scores (r = 0.39, p < 0.001; Figure 2a). We found that cognitive flexibility, working memory, and 

manual dexterity were statistically significant in their positive weights on LV1 (Figure 2b). 

White matter voxels adjacent to frontal, temporal, and cerebellar regions had negative weights, 

while parietal regions were either negatively weighted (e.g. corticospinal tract) or positively 

weighted (only in WM underlying the pericentral sulcal regions), as shown in Figure 2c. Put 

differently, these distributed negative voxels across the WM along with the positively weighted 

tasks are negatively correlated given their opposite signs, while the positively weighted voxels 

are positively correlated with behaviour. 

To examine the connectivity profile of some of the large voxel weights that are spatially 

connected, we extracted 3 clusters situated in WM underlying the left pericentral sulcus and left 

prefrontal WM, and in the right corticospinal tract. The connectivity profile of each is shown in 

Figure 2e. We observed that for the first cluster in Figure 2d, the left supplementary motor area 

(left SMA) had the most proportion of connections passing through  it, followed by the right 

SMA. For the cluster in prefrontal WM, the left putamen is maximally connected through this 

cluster, followed by the left frontal inferior orbital cortex. Lastly, the cluster in the corticospinal 

tract showed that the right thalamus, followed by right parietal cortices, then the right precuneus 

are maximally connected through it.  
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Figure 2. Decomposition results of the first latent variable that explained 39.01% of brain-

behaviour covariance.  

 

Note. (a) PLS score correlation showed strong association between microstructure (D2) and 

behaviour (r=0.39, p<0.001). After 1000 bootstraps we observed that, (b) weights of statistically 

significant tasks reflected cognitive representations on this LV, and (c) weights of statistically 

significant voxels were mostly negative and distributed in frontal, parietal, and cerebellar WM. 
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(d) We extracted 3 clusters of largest weights that served as regions of interest in our 

connectivity analysis, in posterior frontal (left), prefrontal (middle), and parietal (right). (e) 

connectivity profile of clusters shown in (d) based on automated anatomical atlas (AAL) that 

showed the involvement of high-order cognitive cortical regions as well premotor ones. 

Statistical significance was assessed at family-wise error corrected p-value < 0.05. 
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b. Latent Variable 2 

The second LV revealed a stronger association between PLS scores (D2 and tasks; r = 

0.69, p<0.05; Figure 3a). Two tasks were positively weighted on this LV; cognitive flexibility 

and grip strength. However, manual dexterity had a negative weight. This LV was predominantly 

weighted by grip strength, while working memory weight was not statistically significant after 

1000 bootstraps (Figure 3b). Unlike LV1, there were positively- and negatively- weighted voxels 

distributed in WM (Figure 3c). The positively weighted voxels were in the left parietal, right 

prefrontal, right temporal, and right superior cerebellar WM, whereas negatively weighted voxels 

were scattered in left frontal, colossal, and inferior cerebellar WM. The positive voxels in 

parietal and frontal regions are maximally positively correlated with cognitive flexibility and grip 

strength, but they are negatively correlated to manual dexterity. On the other hand, the negative 

voxels in frontal and colossal WM are negatively associated with cognitive flexibility and grip 

strength, but positively associated with manual dexterity. 

Again, to examine the connectivity profile of some of the statistically significant regions, 

we extracted 3 clusters situated in WM of the left corticospinal tract, genu of the corpus 

callosum, and WM underlying th in an k toe right primary mo.  tor area (Figure 3d). Similarly to 

what was observed in LV1, the connectivity profile of the first cluster was dominated by left 

thalamic and parietal regions. The genu of the corpus callosum was the main hub of 

interhemispheric connectivity, mainly the frontal cortices (e.g. superior medial cortex) and left 

and right caudate nuclei. As expected, the underlying WM of M1 largely affected the 

connectivity of M1, followed by the right thalamus and the putamen.  
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Figure 3. Decomposition results of the second latent variable that explained 25.23% of brain-

behaviour covariance.  

 

Note. (a) PLS score correlation showed strong association between microstructure (D2) and 

behaviour (r=0.69, p<0.001). After 1000 bootstraps we observed that, (b) weights of statistically 

significant tasks reflected gross vs fine motor representations on this LV, and (c) weights of 

statistically significant voxels were distributed in parietal, callosal, and cerebellar WM. (d) We 
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extracted 3 clusters of largest weights that served as regions of interest in our connectivity 

analysis, in parietal (left), genu of the corpus callosum (middle), and posterior frontal (right). (e) 

connectivity profile of clusters shown in (d) based on automated anatomical atlas (AAL) that 

showed the involvement of sensorimotor cortical and subcortical regions, frontal regions, and the 

motor strip. Statistical significance was assessed at family-wise error corrected p-value < 0.05. 
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c. Latent Variable 3 

The third latent variable (LV) showed a similar correlation of transformed brain-

behaviour scores to LV2, with a correlation coefficient of 0.70 (p<0.05; Figure 4a). Working 

memory and manual dexterity weighed heavily on this LV, albeit in opposite directions. Memory 

task was negatively weighted whereas dexterity weighed positively (Figure 4b). There were 

negatively and positively weighted voxels distributed in WM. Significant positive voxels were in 

prefrontal WM, adjacent to negative voxels. There were also positively weighted voxels in the 

right CST and in the splenium of the corpus callosum (Figure 4c). Manual dexterity was 

positively associated with the positive clusters in the left frontal, CST, and colossal WM while 

working memory was negatively associated with these regions, and vice versa. On the other 

hand,  

We identified 3 clusters of statistically significant weights (Figure 4d), 2 of which were 

in prefrontal WM and one in the CST. The negative prefrontal cluster showed streamlines 

connecting the left frontal inferior orbital cortex. The adjacent positive cluster contained 

streamlines of the left frontal superior medial cortex. Lastly, the positive cluster in the CST was 

the passage of streamlines connecting the right precuneus, thalamus, and parietal cortices. 
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Figure 4. Decomposition results of the third latent variable that explained 19.04% of brain-

behaviour covariance.  

 

 

 

Note. (a) PLS score correlation showed strong association between microstructure (D2) and 

behaviour (r=0.70, p<0.001). After 1000 bootstraps we observed that, (b) weights of statistically 
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significant tasks reflected cognitive and motor integration on this LV, and (c) weights of 

statistically significant voxels were distributed in prefrontal and parietal WM. (d) We extracted 3 

clusters of largest weights that served as regions of interest in our connectivity analysis, in 

prefrontal (left & middle), and parietal (right). (e) connectivity profile of clusters shown in (d) 

based on automated anatomical atlas (AAL) that showed the involvement of frontal and 

subcortical regions, as well as parietal cortex. Statistical significance was assessed at family-wise 

error corrected p-value < 0.05. 
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4. Discussion 

The goal of the current study was to examine the association between white matter 

microstructure and behaviour using multivariate analysis, incorporating 10 neuroimaging metrics 

and 4 behavioural tasks. By integrating these metrics, we were able to tie non-invasive 

neuroimaging to WM microstructure, and quantitatively compare across healthy cognitive and 

motor function. We used the MVComp toolbox to compute voxelwise D2 scores from 

neuroimaging metrics assessing WM myelination, density, and fibre thickness while accounting 

for their covariance. We then extracted latent variables of the spatial pattern of association 

between D2 and 4 tasks spanning motor and cognitive function. We sought to expand recent 

directives in neuroscience that emphasised the need for holistic mappings of behaviour on the 

brain (Varoquaux et al., 2018) to WM analysis. In order to do so, we used multivariate statistical 

integration of brain and behaviour which have shown enhanced validity and reliability compared 

to traditionally used techniques (Yoo et al., 2019). We extracted multidomain behavioural 

variables and found their WM microstructural correlates in a large sample of healthy young 

adults. We observed 3 statistically significant latent variables that explain a total of 83% of the 

brain-behaviour associations (Figure 1), and decompose behavioural functioning into higher 

order cognitive and premotor functioning (Figure 2), motor functioning (Figure 3), and 

integrative cognitive-motor functioning (Figure 4).  

We used D2 to integrate neuroimaging-derived metrics which have been shown to be 

linked strongly to WM microstructure as described in Tremblay and colleagues (2023). There 

have been recent implementations which suggest that D2 is a more sensitive biomarker in 

epilepsy, traumatic brain injury, and in detecting individual variability in WM connectivity 

(Guerrero-Gonzalez et al., 2022; Owen et al., 2021; Taylor et al., 2020). However, our approach 

https://www.zotero.org/google-docs/?mVd4ux
https://www.zotero.org/google-docs/?oKs9WB
https://www.zotero.org/google-docs/?dm2hjj
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differs from these studies in a number of ways. First, rather than integrating multiple correlated 

neuroimaging metrics, these studies integrated the same measure across multiple WM tracts. 

This approach results in a single D2 score per participant, which could be used as a severity, 

classification, or prediction score at the expense of spatial information. That is, it is not possible 

to determine the location of differences within WM for each subject. Alternatively, our results 

showed a whole-WM differential pattern by using multiple microstructural metrics at the voxel 

level, which was both specific to the subject and the location within WM. Given the specificity 

of our approach, we also performed multivariate statistical analysis to investigate the association 

between voxelwise D2 scores and 4 behavioural tasks. We used partial least squares techniques, 

which is increasing in popularity in neuroimaging research due to its robustness and sensitivity 

(McIntosh & Lobaugh, 2004; McIntosh & Mišić, 2013). This technique allowed us to provide a 

WM-behaviour mapping and to explore the holistic nature of the relationship between 

microstructure and cognitive and motor functions that would not have been possible with other 

approaches.  

The association between transformed scores of microstructure and behaviour were 

statistically significant for three of the four latent variables (panel a in Figure 2,3,4). This finding 

indicated that the latent variables we identified were stronger at explaining microstructural 

differences in our sample than each of the tasks separately (Supplementary Figure 1). That is, 

combining multiple cognitive and motor tasks allowed us to extract the microstructural correlates 

of behaviour that were stronger and more holistic than univariate techniques. In all cases, we 

observed that better performance on cognitive (Figure 2a), motor (Figure 3a), and integrative 

(Figure 4a) behaviours was correlated with greater distances (D2) in white matter microstructure. 

This is in agreement with the current frameworks in cognitive neuroscience that focus on the 

https://www.zotero.org/google-docs/?3VJHrc
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complex modelling of behaviour, starting with Price and Friston (2005), and more recently 

expanded on in Varoquaux and colleagues (2018) and Varoquaux and Poldrack (2019). These 

authors suggested that past and current neuroscientific evidence is overly reductionist, which 

limits its interpretability and generalizability across behavioural domains. Our method avoided 

oversimplifying behaviour in a reductionist way, and rather extracted latent variables that ground 

behaviour in microstructure. Thus it provided a path for the development of ontologies beyond 

the cortex and into WM. Overall, the effects we observed could be due to plastic changes in WM 

that lead to enhanced performance, or practice-induced changes in microstructure. Although it is 

not possible to assess which one precedes the other (Price & Friston, 2005), our technique shows 

that combining multiple measures of behaviour with multiple measures of microstructure was a 

stronger approach than independent univariate approaches.  

Based on the behavioural weights of each latent variable, we showed that the first LV 

represented higher order cognitive and premotor skills, the second LV represented motor skills, 

and the third LV represented integrative functioning (panel b, Figure 2,3,4). These findings 

emphasised the connectedness and interplay of different components of behaviour during a task 

(Schöttner et al., 2023). For instance, while cognitive tasks (i.e. cognitive flexibility and working 

memory) loaded strongly on LV1, the dexterity task weighed similarly. This is likely due to the 

premotor execution functions required in the task, which are the planning of the reaching and 

grasping motions (Figure 2b). Dexterity had been previously grouped with cognition tasks via 

experimental manipulation and when behavioural latent spaces were explored via machine 

learning (Rodríguez-Aranda et al., 2016; Schöttner et al., 2023). Previous studies examining the 

neural correlates of fine motor skills suggest that many cortical regions are involved in this 

complex task, including visuospatial and somatosensory areas (Sobinov & Bensmaia, 2021). 

https://www.zotero.org/google-docs/?RXR99D
https://www.zotero.org/google-docs/?Aprty8
https://www.zotero.org/google-docs/?JDhhHj
https://www.zotero.org/google-docs/?g3usgt
https://www.zotero.org/google-docs/?pD9hFx
https://www.zotero.org/google-docs/?Uqh51t
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This is contrasted with the second LV, where dexterity and grip strength weighed strongly, in 

addition to the cognitive flexibility task (Figure 3b). Of note, the working memory task is the 

only task in this study that did not require the participants to use their arms to perform it 

(Weintraub et al., 2013). This was supported by the lack of statistically significant weight of this 

task, and the positive weight of the cognitive flexibility task. Indeed, meta-analytical evidence 

from functional imaging during cognitive flexibility tasks showed activation in cognitive and 

motor areas of the cortex (Buchsbaum et al., 2005). Furthermore, we observed that tasks that 

require gross motor movement are dissociable from the fine motor ones. This was supported by 

the positive weights of cognitive flexibility and grip strength, and the negative weight of 

dexterity (Figure 3b). Lastly, the third LV showed strong positive and negative weights of 

cognitive and motor tasks, reflecting the integrative nature of this variable. This integrative 

nature could only be extracted using multivariate techniques, and the use of multiple tasks 

spanning multiple behavioural domains. However, this result did not match the clustering of 

Schöttner and colleagues (2023), which focused on similarity between the loadings of 

behavioural tasks. One potential reason for this mismatch between our work and theirs is that our 

decomposition aimed to extract latent brain-behavioural associations rather than behavioural 

associations alone. Thus, the incorporation of WM microstructure in behavioural analysis 

provided a grounding for behaviour in neuroanatomy. There is evidence for disrupted cognitive-

motor integration in traumatic brain injury in relation to cortical functioning (Sergio et al., 2020) 

and post-concussion temporal WM (Hurtubise et al., 2020). However, to our knowledge this was 

the first exploration of healthy integrative functioning in WM with such a multivariate approach. 

Therefore, considering our findings, further research is required to assess the effects of 

incorporating microstructure with behavioural findings.  

https://www.zotero.org/google-docs/?dkbdtr
https://www.zotero.org/google-docs/?0KmDRJ
https://www.zotero.org/google-docs/?MRBLZQ
https://www.zotero.org/google-docs/?de7Q2b
https://www.zotero.org/google-docs/?wIMXhY
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When examining the voxel weights, we observed widespread shared and overlapping 

patterns across WM in all LVs (panel c, Figure 2,3,4). These findings could expand our 

understanding of the complexity of brain-behaviour associations, emphasising the active role of 

white matter microstructure in supporting higher-order cognitive processes, motor skills, and the 

integration of cognitive and motor functions. This was evident in voxel weights that spanned 

traditionally labelled regions as cognitive, motor, and higher-order integration. Namely, frontal 

and parietal regions for cognitive functions, parietal, cerebellar, and frontal for motor skills, and 

prefrontal WM for integrative functioning. An interesting pattern of voxel weights emerged 

between LVs. First, the cognitive LV (LV1) was mostly negatively distributed indicating that 

better performance on cognitive tasks was associated with smaller deviations of WM 

microstructure (i.e. larger D2). This pattern was observed for anterior and posterior frontal in 

addition to parietal WM. Our results were concordant with stroke disconnectome research, which 

shows cognitive and dexterous impairments with stroke-related disconnection in these regions 

(Talozzi et al., 2023). Moreover, cortical regions involved in premotor functions, visuospatial 

imagery, and executive skills were connected through these WM regions (Krüger et al., 2020; 

Sobinov & Bensmaia, 2021; Suchan et al., 2002). Specifically, the left and right supplementary 

motor area, the left and right precuneus, and the left putamen and frontal cortices, respectively. 

Therefore, it is possible that an interplay between microstructure and connectivity within WM 

gives rise to these behaviours. However, since our results came from a large sample of healthy 

individuals, we demonstrated that it is possible to localise cognitive functioning in WM prior to 

injury with an individualised differences approach in assessing microstructure alone. This could 

aid in symptom prediction and personalised treatment following tissue damage, given the 

inability to extract connectivity profiles in these cases. Second, the motor LV was positively and 

https://www.zotero.org/google-docs/?lBryve
https://www.zotero.org/google-docs/?earFJV
https://www.zotero.org/google-docs/?earFJV
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negatively weighted differentially across all of WM. Unsurprisingly, the second LV’s positive 

voxels were highly associated with motor function, and were distributed in WM underlying left 

motor regions. This effect was largely due to the recruitment of these regions in signal 

conduction, and the modulation of the microstructure for optimal motor performance (Sampaio-

Baptista et al., 2013). The corticospinal tract was positively associated with gross motor 

performance, and negatively with fine motor skills. Here, all tasks required motor execution, and 

a simple motor task such as grip strength had the largest weight. This was also supported by the 

cortices most connected through these clusters. For instance, we observed maximal connectivity 

of the left thalamus, left and right peri-central and frontal superior cortices in these clusters. For 

the third latent variable, integration of motor functioning with cognitive abilities has been shown 

to involve prefrontal and parietal WM as well and the splenium of the corpus callosum. These 

are consistent findings linking motor, executive and working memory functioning to prefrontal 

areas (Thiebaut de Schotten & Forkel, 2022). Microstructural differences in these regions may be 

part of a larger network of cortical regions connected through WM, since the extracted cortical 

regions of prefrontal GM were involved in integrative functioning (Seidler et al., 2012). 

Therefore, our observations in the prefrontal WM indicated a modulation of microstructure to 

support cortical functioning.  

This study was not without limitations. We used 4 tasks spanning cognition and motor 

behaviours to provide a holistic brain-behaviour mapping. However, in order to provide a 

complete behavioural atlas grounded in WM microstructure, more tasks should be incorporated. 

Schöttner and colleagues (2023) showed that using dimensionality reduction on a large battery of 

tasks and extracting 4 factors provided a good trade-off between variance, reliability, and 

validity in behavioural assessments. Also, there are other functions for each of the measures we 
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used that are not accounted for with only 4 tasks, such as sensory and emotional behaviour (see 

Varoquaux & Poldrack, 2019). Therefore, future examinations should use similar dimensionality 

reduction techniques to Schöttner and colleagues (2023) while also incorporating emotional, 

language, and sensory measures. This will provide a more complete atlas of human behaviour, 

and help disentangle the contribution of microstructural differences across WM to healthy 

functioning. Moreover, the Mahalanobis distance suffers from two main issues. First, it is a 

squared metric that does not distinguish the directionality of deviation from the average. 

Therefore, it was not possible using our method to assess whether there has been an increase or a 

decrease from the average in WM microstructure. The directionality could be an important factor 

in assessing longitudinal change, where the average is substituted as the baseline. Second, given 

that it is a distance to the average, voxelwise D2 values are arbitrary units of the differences in 

microstructure for a given subject. Guerrero-Gonzalez and colleagues (2022) applied the Wilk’s 

criterion in order to define a statistical significance threshold for D2 scores (Penny, 1996), which 

would help in identifying the largest distance in a sample. However, given that D2 distributions 

require normality (Mahalanobis, 1936), computing a threshold of significance for this metric 

may be biased in non-normal large samples. In future studies, permutation approaches may prove 

more beneficial in identifying robust and significant D2 values, while also identifying small 

deviations in order to remove them. Future studies should also use longitudinal designs to 

explore within subject microstructural changes and their relationship to behaviour. The 

MVComp toolbox contains specific functions to perform within-subject analysis while also 

incorporating several microstructural metrics. 

In conclusion, we provided a holistic mapping between cognitive and motor behaviours 

and white matter microstructure. We achieved this goal by using the Mahalanobis distance (D2) 
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computed from 10 microstructural metrics, and 4 behavioural measures assessing cognitive 

flexibility, working memory, dexterity, and strength. We showed that using multivariate 

statistical analysis provides stronger brain-behaviour associations and is able to extract latent 

variables of cognitive, motor and integrative function. We also provided mappings between these 

3 domains of behaviour and WM microstructure displayed as the strongest associations across 

WM. We extended our analysis to the cortical GM, and showed that there exists an interplay 

between connectivity and microstructure in order to give rise to and sustain healthy human 

behavioural functioning.   

 

 

 

 

  



 

36 
 

5. References 

Buchsbaum, B. R., Greer, S., Chang, W., & Berman, K. F. (2005). Meta‐analysis of neuroimaging 

studies of the Wisconsin Card‐Sorting task and component processes. Human Brain 

Mapping, 25(1), 35–45. https://doi.org/10.1002/hbm.20128 

Calhoun, V. (2018). Data-driven approaches for identifying links between brain structure and 

function in health and disease. Dialogues in Clinical Neuroscience, 20(2), 87–99. 

https://doi.org/10.31887/DCNS.2018.20.2/vcalhoun 

Carter, F., Anwander, A., Goucha, T., Adamson, H., Friederici, A. D., Lutti, A., Gauthier, C. J., 

Weiskopf, N., Bazin, P.-L., & Steele, C. J. (2022). Assessing Quantitative MRI Techniques 

using Multimodal Comparisons (p. 2022.02.10.479780). bioRxiv. 

https://doi.org/10.1101/2022.02.10.479780 

de Lange, A.-M. G., Bråthen, A. C. S., Rohani, D. A., Grydeland, H., Fjell, A. M., & Walhovd, K. 

B. (2017). The effects of memory training on behavioral and microstructural plasticity in 

young and older adults. Human Brain Mapping, 38(11), 5666–5680. 

https://doi.org/10.1002/hbm.23756 

Dhollander, T., Raffelt, D., & Connelly, A. (2016, September 11). Unsupervised 3-tissue response 

function estimation from single-shell or multi-shell diffusion MR data without a co-

registered T1 image. 

Dhollander, T., Raffelt, D., & Connelly, A. (2018). Accuracy of response function estimation 

algorithms for 3-tissue spherical deconvolution of diverse quality diffusion MRI data. 

International Society for Magnetic Resonance in Medicine (ISMRM). 

https://archive.ismrm.org/2018/1569.html 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

37 
 

Duval, T., Stikov, N., & Cohen-Adad, J. (2017). Modeling white matter microstructure. 

Functional Neurology, 31(4), 217–228. https://doi.org/10.11138/FNeur/2016.31.4.217 

Figley, C. R., Uddin, M. N., Wong, K., Kornelsen, J., Puig, J., & Figley, T. D. (2022). Potential 

Pitfalls of Using Fractional Anisotropy, Axial Diffusivity, and Radial Diffusivity as 

Biomarkers of Cerebral White Matter Microstructure. Frontiers in Neuroscience, 15. 

https://www.frontiersin.org/articles/10.3389/fnins.2021.799576 

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, 

J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The 

minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 

105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127 

Guerrero-Gonzalez, J. M., Yeske, B., Kirk, G. R., Bell, M. J., Ferrazzano, P. A., & Alexander, A. 

L. (2022). Mahalanobis distance tractometry (MaD-Tract) – a framework for personalized 

white matter anomaly detection applied to TBI. NeuroImage, 260, 119475. 

https://doi.org/10.1016/j.neuroimage.2022.119475 

Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., Meuli, R., Thiran, 

J.-P., & Grant, P. E. (2010). White matter maturation reshapes structural connectivity in 

the late developing human brain. Proceedings of the National Academy of Sciences of the 

United States of America, 107(44), 19067–19072. 

https://doi.org/10.1073/pnas.1009073107 

Hurtubise, J. M., Gorbet, D. J., Hynes, L. M., Macpherson, A. K., & Sergio, L. E. (2020). White 

Matter Integrity and Its Relationship to Cognitive-Motor Integration in Females with and 

without Post-Concussion Syndrome. Journal of Neurotrauma, 37(13), 1528–1536. 

https://doi.org/10.1089/neu.2019.6765 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

38 
 

Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi-tissue 

constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI 

data. NeuroImage, 103, 411–426. https://doi.org/10.1016/j.neuroimage.2014.07.061 

Johansen-Berg, H. (2010). Behavioural relevance of variation in white matter microstructure. 

Current Opinion in Neurology, 23(4), 351–358. 

https://doi.org/10.1097/WCO.0b013e32833b7631 

Johansen-Berg, H., Della-Maggiore, V., Behrens, T. E., Smith, S. M., & Paus, T. (2007). Integrity 

of white matter in the corpus callosum correlates with bimanual co-ordination skills. 

NeuroImage, 36(Suppl 2), T16–T21. https://doi.org/10.1016/j.neuroimage.2007.03.041 

Karnath, H. O., Sperber, C., & Rorden, C. (2018). Mapping human brain lesions and their 

functional consequences. NeuroImage, 165, 180–189. 

https://doi.org/10.1016/j.neuroimage.2017.10.028 

Knowles, J. K., Batra, A., Xu, H., & Monje, M. (2022). Adaptive and maladaptive myelination in 

health and disease. Nature Reviews Neurology, 18(12), Article 12. 

https://doi.org/10.1038/s41582-022-00737-3 

Krüger, B., Hettwer, M., Zabicki, A., de Haas, B., Munzert, J., & Zentgraf, K. (2020). Practice 

modality of motor sequences impacts the neural signature of motor imagery. Scientific 

Reports, 10, 19176. https://doi.org/10.1038/s41598-020-76214-y 

Mahalanobis, P. C. (1936). On the Generalised Distance in Statistics. Proceedings of the National 

Institute of Sciences of India, 2(1), 49–55. 

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: 

Applications and advances. NeuroImage, 23, S250–S263. 

https://doi.org/10.1016/j.neuroimage.2004.07.020 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

39 
 

McIntosh, A. R., & Mišić, B. (2013). Multivariate Statistical Analyses for Neuroimaging Data. 

Annual Review of Psychology, 64(1), 499–525. https://doi.org/10.1146/annurev-psych-

113011-143804 

McKenzie, I. A., Ohayon, D., Li, H., Paes de Faria, J., Emery, B., Tohyama, K., & Richardson, W. 

D. (2014). Motor skill learning requires active central myelination. Science, 346(6207), 

318–322. https://doi.org/10.1126/science.1254960 

Mezer, A., Yeatman, J. D., Stikov, N., Kay, K. N., Cho, N., Dougherty, R. F., Perry, M. L., 

Parvizi, J., Hua, L. H., Butts-Pauly, K., & Wandell, B. (2013). Quantifying the local tissue 

volume and composition in individual brains with MRI. Nature Medicine, 19(12), 1667–

1672. https://doi.org/10.1038/nm.3390 

Muetzel, R. L., Collins, P. F., Mueller, B. A., M. Schissel, A., Lim, K. O., & Luciana, M. (2008). 

The development of corpus callosum microstructure and associations with bimanual task 

performance in healthy adolescents. NeuroImage, 39(4), 1918–1925. 

https://doi.org/10.1016/j.neuroimage.2007.10.018 

O’Donnell, L. J., & Westin, C.-F. (2011). An introduction to diffusion tensor image analysis. 

Neurosurgery Clinics of North America, 22(2), 185–viii. 

https://doi.org/10.1016/j.nec.2010.12.004 

Owen, T. W., de Tisi, J., Vos, S. B., Winston, G. P., Duncan, J. S., Wang, Y., & Taylor, P. N. 

(2021). Multivariate white matter alterations are associated with epilepsy duration. The 

European Journal of Neuroscience, 53(8), 2788–2803. https://doi.org/10.1111/ejn.15055 

Pajevic, S., Basser, P. J., & Fields, R. D. (2014). Role of Myelin Plasticity in Oscillations and 

Synchrony of Neuronal Activity. Neuroscience, 276, 135–147. 

https://doi.org/10.1016/j.neuroscience.2013.11.007 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

40 
 

Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R., & Kheirbek, M. A. (2020). Preservation of a 

remote fear memory requires new myelin formation. Nature Neuroscience, 23(4), 487–

499. https://doi.org/10.1038/s41593-019-0582-1 

Penny, K. I. (1996). Appropriate Critical Values When Testing for a Single Multivariate Outlier 

by Using the Mahalanobis Distance. Journal of the Royal Statistical Society Series C: 

Applied Statistics, 45(1), 73–81. https://doi.org/10.2307/2986224 

Poldrack, R. A. (2010). Mapping mental function to brain structure: How can cognitive 

neuroimaging succeed? Perspectives on Psychological Science : A Journal of the 

Association for Psychological Science, 5(5), 753–761. 

https://doi.org/10.1177/1745691610388777 

Price, C. J., & Friston, K. J. (2005). Functional ontologies for cognition: The systematic definition 

of structure and function. Cognitive Neuropsychology, 22(3–4), 262–275. 

https://doi.org/10.1080/02643290442000095 

Pur, D. R., Preti, M. G., de Ribaupierre, A., Van De Ville, D., Eagleson, R., Mella, N., & de 

Ribaupierre, S. (2022). Mapping of Structure-Function Age-Related Connectivity Changes 

on Cognition Using Multimodal MRI. Frontiers in Aging Neuroscience, 14, 757861. 

https://doi.org/10.3389/fnagi.2022.757861 

Raffelt, D. A., Smith, R. E., Ridgway, G. R., Tournier, J.-D., Vaughan, D. N., Rose, S., 

Henderson, R., & Connelly, A. (2015). Connectivity-based fixel enhancement: Whole-

brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. 

Neuroimage, 117, 40–55. https://doi.org/10.1016/j.neuroimage.2015.05.039 

Raffelt, D. A., Tournier, J.-D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., & 

Connelly, A. (2017). Investigating white matter fibre density and morphology using fixel-

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

41 
 

based analysis. NeuroImage, 144, 58–73. 

https://doi.org/10.1016/j.neuroimage.2016.09.029 

Raffelt, D., Tournier, J.-D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., Salvado, O., & 

Connelly, A. (2012). Apparent Fibre Density: A novel measure for the analysis of 

diffusion-weighted magnetic resonance images. NeuroImage, 59(4), 3976–3994. 

https://doi.org/10.1016/j.neuroimage.2011.10.045 

Raghavan, S., Reid, R. I., Przybelski, S. A., Lesnick, T. G., Graff-Radford, J., Schwarz, C. G., 

Knopman, D. S., Mielke, M. M., Machulda, M. M., Petersen, R. C., Jack, C. R., & Vemuri, 

P. (2021). Diffusion models reveal white matter microstructural changes with ageing, 

pathology and cognition. Brain Communications, 3(2), fcab106. 

https://doi.org/10.1093/braincomms/fcab106 

Reuben, D. B., Magasi, S., McCreath, H. E., Bohannon, R. W., Wang, Y. C., Bubela, D. J., 

Rymer, W. Z., Beaumont, J., Rine, R. M., Lai, J. S., & Gershon, R. C. (2013). Motor 

assessment using the NIH Toolbox. Neurology, 80(11 Suppl 3), S65–S65. 

https://doi.org/10.1212/wnl.0b013e3182872e01 

Rodríguez-Aranda, C., Mittner, M., & Vasylenko, O. (2016). Association Between Executive 

Functions, Working Memory, and Manual Dexterity in Young and Healthy Older Adults: 

An Exploratory Study. Perceptual and Motor Skills, 122(1), 165–192. 

https://doi.org/10.1177/0031512516628370 

Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of 

the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage, 122, 1–5. 

https://doi.org/10.1016/j.neuroimage.2015.07.075 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

42 
 

Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., 

DeLuca, G. C., Miller, K. L., Taylor, A. E., Thomas, N., Kleim, J. A., Sibson, N. R., 

Bannerman, D. M., & Johansen-Berg, H. (2013). Motor Skill Learning Induces Changes in 

White Matter Microstructure and Myelination. The Journal of Neuroscience, 33(50), 

19499–19503. https://doi.org/10.1523/jneurosci.3048-13.2013 

Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes 

in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371. 

https://doi.org/10.1038/nn.2412 

Schöttner, M., Bolton, T. A. W., Patel, J., Nahálka, A. T., Vieira, S., & Hagmann, P. (2023). 

Exploring the latent structure of behavior using the Human Connectome Project’s data. 

Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-022-27101-1 

Seidler, R. D., Bo, J., & Anguera, J. A. (2012). Neurocognitive Contributions to Motor Skill 

Learning: The Role of Working Memory. Journal of Motor Behavior, 44(6), 445–453. 

https://doi.org/10.1080/00222895.2012.672348 

Sergio, L. E., Gorbet, D. J., Adams, M. S., & Dobney, D. M. (2020). The Effects of Mild 

Traumatic Brain Injury on Cognitive-Motor Integration for Skilled Performance. Frontiers 

in Neurology, 11. https://www.frontiersin.org/articles/10.3389/fneur.2020.541630 

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained 

tractography: Improved diffusion MRI streamlines tractography through effective use of 

anatomical information. NeuroImage, 62(3), 1924–1938. 

https://doi.org/10.1016/j.neuroimage.2012.06.005 

Soares, J., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to diffusion tensor 

imaging. Frontiers in Neuroscience. http://dx.doi.org/10.3389/fnins.2013.00031 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

43 
 

Sobinov, A. R., & Bensmaia, S. J. (2021). The neural mechanisms of manual dexterity. Nature 

Reviews. Neuroscience, 22(12), 741–757. https://doi.org/10.1038/s41583-021-00528-7 

Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and 

white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of 

Neuroscience, 33(3), 1282–1290. https://doi.org/10.1523/JNEUROSCI.3578-12.2013 

Stikov, N., Campbell, J. S. W., Stroh, T., Lavelée, M., Frey, S., Novek, J., Nuara, S., Ho, M.-K., 

Bedell, B. J., Dougherty, R. F., Leppert, I. R., Boudreau, M., Narayanan, S., Duval, T., 

Cohen-Adad, J., Picard, P.-A., Gasecka, A., Côté, D., & Pike, G. B. (2015). In vivo 

histology of the myelin g-ratio with magnetic resonance imaging. NeuroImage, 118, 397–

405. https://doi.org/10.1016/j.neuroimage.2015.05.023 

Suchan, B., Yágüez, L., Wunderlich, G., Canavan, A. G. M., Herzog, H., Tellmann, L., Hömberg, 

V., & Seitz, R. J. (2002). Neural correlates of visuospatial imagery. Behavioural Brain 

Research, 131(1–2), 163–168. https://doi.org/10.1016/S0166-4328(01)00373-4 

Talozzi, L., Forkel, S. J., Pacella, V., Nozais, V., Allart, E., Piscicelli, C., Pérennou, D., Tranel, D., 

Boes, A., Corbetta, M., Nachev, P., & Thiebaut de Schotten, M. (2023). Latent 

disconnectome prediction of long-term cognitive-behavioural symptoms in stroke. Brain, 

146(5), 1963–1978. https://doi.org/10.1093/brain/awad013 

Tardif, C. L., Gauthier, C. J., Steele, C. J., Bazin, P.-L., Schäfer, A., Schaefer, A., Turner, R., & 

Villringer, A. (2016). Advanced MRI techniques to improve our understanding of 

experience-induced neuroplasticity. NeuroImage, 131, 55–72. 

https://doi.org/10.1016/j.neuroimage.2015.08.047 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

44 
 

Taylor, P. N., Silva, N. M. da, Blamire, A., Wang, Y., & Forsyth, R. (2020). Early deviation from 

normal structural connectivity: A novel intrinsic severity score for mild TBI. Neurology, 

94(10), e1021–e1026. https://doi.org/10.1212/WNL.0000000000008902 

Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. 

Science, 378(6619), 505–510. https://doi.org/10.1126/science.abq2591 

Thiebaut de Schotten, M., Foulon, C., & Nachev, P. (2020). Brain disconnections link structural 

connectivity with function and behaviour. Nature Communications, 11, 5094. 

https://doi.org/10.1038/s41467-020-18920-9 

Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., 

Jeurissen, B., Yeh, C.-H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open 

software framework for medical image processing and visualisation. NeuroImage, 202, 

116137. https://doi.org/10.1016/j.neuroimage.2019.116137 

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. 

(2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 

29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908 

Uddin, Md. N., Figley, T. D., Solar, K. G., Shatil, A. S., & Figley, C. R. (2019). Comparisons 

between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor 

imaging measures in healthy human brain structures. Scientific Reports, 9, 2500. 

https://doi.org/10.1038/s41598-019-39199-x 

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K. (2013). 

The WU-Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79. 

https://doi.org/10.1016/j.neuroimage.2013.05.041 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

45 
 

Varoquaux, G., & Poldrack, R. A. (2019). Predictive models avoid excessive reductionism in 

cognitive neuroimaging. Current Opinion in Neurobiology, 55, 1–6. 

https://doi.org/10.1016/j.conb.2018.11.002 

Varoquaux, G., Schwartz, Y., Poldrack, R. A., Gauthier, B., Bzdok, D., Poline, J.-B., & Thirion, 

B. (2018). Atlases of cognition with large-scale human brain mapping. PLOS 

Computational Biology, 14(11), e1006565. https://doi.org/10.1371/journal.pcbi.1006565 

Voigt, K., Liang, E. X., Misic, B., Ward, P. G. D., Egan, G. F., & Jamadar, S. D. (2023). 

Metabolic and functional connectivity provide unique and complementary insights into 

cognition-connectome relationships. Cerebral Cortex (New York, N.Y.: 1991), 33(4), 

1476–1488. https://doi.org/10.1093/cercor/bhac150 

Weber, K. A., Teplin, Z. M., Wager, T. D., Law, C. S. W., Prabhakar, N. K., Ashar, Y. K., Gilam, 

G., Banerjee, S., Delp, S. L., Glover, G. H., Hastie, T. J., & Mackey, S. (2022). Confounds 

in neuroimaging: A clear case of sex as a confound in brain-based prediction. Frontiers in 

Neurology, 13, 960760. https://doi.org/10.3389/fneur.2022.960760 

Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., Carlozzi, N. 

E., Slotkin, J., Blitz, D., Wallner-Allen, K., Fox, N. A., Beaumont, J. L., Mungas, D., 

Nowinski, C. J., Richler, J., Deocampo, J. A., Anderson, J. E., Manly, J. J., Borosh, B., … 

Gershon, R. C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80(11 

Suppl 3), S54. https://doi.org/10.1212/WNL.0b013e3182872ded 

Yoo, K., Rosenberg, M. D., Noble, S., Scheinost, D., Constable, R. T., & Chun, M. M. (2019). 

Multivariate approaches improve the reliability and validity of functional connectivity and 

prediction of individual behaviors. NeuroImage, 197, 212–223. 

https://doi.org/10.1016/j.neuroimage.2019.04.060 

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

46 
 

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in Gray and White. Nature 

Neuroscience, 15(4), 528–536. https://doi.org/10.1038/nn.3045 

Zayed, A., Iturria-Medina, Y., Villringer, A., Sehm, B., & Steele, C. J. (2020). Rapid 

Quantification of White Matter Disconnection in the Human Brain. 2020 42nd Annual 

International Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC), 1701–1704. https://doi.org/10.1109/EMBC44109.2020.9176229 

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: 

Practical in vivo neurite orientation dispersion and density imaging of the human brain. 

NeuroImage, 61(4), 1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072 

Ziegler, G., Dahnke, R., Winkler, A. D., & Gaser, C. (2013). Partial least squares 

correlation of multivariate cognitive abilities and local brain structure in children and 

adolescents. NeuroImage, 82, 284–294. https://doi.org/10.1016/j.neuroimage.2013.05.088  

https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN
https://www.zotero.org/google-docs/?vv0PyN


 

47 
 

6. Appendix A 

Supplementary figure 1: the association between each task and D2 scores at each voxel. 
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7. Appendix B 

The Manuscript in preparation for the presentation and validation of Mahalanobis Distance in 

neuroimaging analysis. Referred to in-text as Tremblay et al., 2023. 
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1. Introduction 

In the past decade, there has been exponential growth in the number of modelling 

approaches that link white matter (WM) microstructural properties and the MR signal (Novikov 

et al., 2018). Since none of the existing models (e.g., the diffusion tensor, neurite orientation 

dispersion and density imaging (NODDI), etc.) is a perfect representation of the underlying 

microstructure, choosing a model and contrast for analyses can be challenging and has the 

potential to lead to errors in interpretation (Novikov et al., 2018). Multi-modal imaging, and 

multivariate frameworks that combine several parameters derived from different models and 

modalities, have been suggested as a promising avenue to harness the complementarity of 

different neuroimaging-derived metrics to more accurately capture properties of the brain (Uddin 

et al., 2019; Tardif et al., 2016).  

Multivariate frameworks have the potential to counteract issues arising from the 

physiologically-unspecific nature of commonly used neuroimaging metrics and to capture the 

complexity and heterogeneity of biological properties (Tardif et al., 2016; Dean et al., 2017; 

Taylor et al., 2020; Seidlitz et al., 2018; Guberman et al., 2022). Multiple mechanisms give rise 

to brain structure such as myelination and cell proliferation. These mechanisms support 

neuroplastic change (Azzarito et al., 2023) and behavioral performance (Seidlitz et al., 2018; 

Thiebaut de Schotten & Forkel, 2022), and are involved in neurological disorders (Iturria-

Medina et al., 2017). Interpreting the results of univariate statistical analyses is thus challenging 

within this context. In addition to capturing a more nuanced picture of the expected mechanisms, 

multivariate statistical frameworks can offer greater statistical power than multiple univariate 

analyses as they reduce the amount of multiple comparisons correction required (Naylor et al., 

2014; Avants et al., 2008; Owen et al., 2020). Lastly, and perhaps most importantly, multivariate 
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frameworks can be leveraged to move away from group comparisons and towards individual-

level analyses, an essential step on the road to precision medicine (Chamberland et al., 2021; 

Marquand et al., 2016; Wolfers et al., 2018). 

Multivariate approaches that combine structural MRI metrics have been used in a number 

of promising contexts. At the group level, partial least squares (PLS) analyses and their variants 

can be used to assess the covariance of multiple metrics. Other multivariate approaches that can 

be used in group analyses include principal component analysis (PCA), independent component 

analysis (ICA) and non-negative matrix factorization. At the individual level, inter-regional 

correlations across multiple metrics can be used to create individual-specific correlational maps 

that can be linked to behavior (Seidlitz et al., 2018). Individual network maps provide a more 

comprehensive structural mapping that captures both biological complexity and individual 

variability because they integrate multiple MRI features (e.g., Whitaker et al., 2016; Vandekar et 

al., 2016). However, in this study, the shared covariance between metrics was not accounted 

for. This has the potential to bias inferences made from such analyses, as there is significant 

covariance between many common imaging parameters (Uddin et al., 2019). Various 

multivariate approaches that can overcome this issue exist, including multivariate linear 

regression (Young et al., 2010; Naylor et al., 2014), machine-learning (e.g., Guberman et al., 

2022; Carbonell et al., 2020), and Hotelling’s T2 test (Avants et al., 2008). However, many of 

these approaches (including multivariate linear regression and machine learning) are complicated 

to implement and computationally expensive (Gyebnár et al., 2019). The Hotelling’s T2 test, a 

multivariate extension of a two-sample t-test, is a simple yet powerful option for group 

comparisons (Hotelling, 1947; Avants et al., 2008), but provides little insight at the individual 

level (Guberman et al., 2022). 
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Here we propose using the Mahalanobis distance (D2; Mahalanobis, 1936), which is 

closely related to Hotelling’s T2, but provides an individual-level measure of deviation relative to 

a reference distribution. D2 is defined as the multivariate distance between a point and a 

distribution in which covariance between features (i.e., imaging metrics) is accounted for. 

Initially developed by P. C. Mahalanobis in 1936 to quantify racial similarities based on 

anthropometric measurements of skulls (Mahalanobis, 1927), D2 can be thought of as a 

multivariate z-score where the covariance between features is accounted for (Taylor et al., 2020). 

An example of the importance of taking covariance into account is shown in Figure 1. One can 

imagine calculating the Euclidean distance between a point and the centroid of a distribution (see 

Fig. 1a). Both points (A and B) have the same Euclidean distance from the centroid. However, 

we can intuitively see that point A (Fig. 1a) is more of an extreme value relative to the 

distribution than point B. When computing D2, the shape of the distribution is taken into account 

such that the values that are more likely (relative to the distribution) have lower distance values. 

In other words, D2 tells us how improbable a certain combination of features is. For example, 

because height and weight are highly correlated, very tall individuals that have a very low weight 

would appear outside of the distribution (e.g., Fig. 1a, point A) and would have a high D2 value. 

Relationships between variables are thus accounted for in the D2 framework by dividing the 

Euclidean distance by the covariance matrix, which also scales the variables to have unit 

variance (Fig. 1b).  

The Mahalanobis distance approach has been used extensively in outlier detection, cluster 

analysis, and classification applications (e.g., Kritzman & Li, 2010; Xiang et al., 2008; Ghorbani, 

2019). D2 has also previously been used in neuroimaging, mainly in the study of various 

disorders, to detect lesions (Gyebnár et al., 2019; Lindemer et al., 2015) or to evaluate the degree 
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of abnormality in the brains of patients relative to controls (Dean et al., 2017; Owen et al., 2021; 

Taylor et al., 2020), and to study healthy WM development (Kulikova et al., 2015). Despite 

promising implementations and its high versatility, D2 has not yet been widely adopted. To 

facilitate its use, we present here an open-source tool for computing D2 relative to a reference 

group or within a single individual: the MultiVariate Comparison (MVComp) toolbox. In this 

paper, we provide a step-by-step guide to computing D2 using the MVComp tool for two 

example cases: a) voxel-wise comparisons between a subject and a reference group and b) 

within-subject comparisons between voxels. Lastly, the results of these example cases are 

presented and the general approach is discussed. 
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Figure. 1. Schematic representation of the Mahalanobis distance concept for two dimensions. (a) 

We can identify two points (A and B) at the same distance from the distribution centroid. This 

illustrates the need to account for the amount of covariance between features in multivariate 

analyses. If covariance is not accounted for, both points would have the same Euclidean distance 

from the centroid of the distribution, even though one point is a clear outlier (A), as it lies outside 
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the distribution, while the other is not (B). (b) The Mahalanobis distance (D2) is computed by 

calculating the distance of a vector of data (e.g., the data of one subject; x1, x2, …, xn) from the 

mean (e.g., the group average data; m1, m2, …, mn) and multiplying by the inverse covariance 

matrix (C-1).   
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Figure. 2. Implementations of the D2 framework in neuroimaging studies. Analysis level: (1) 

Within-subject (left panel, in light blue): D2 can be computed between different voxels or brain 

regions (e.g., WM tracts) within a single subject. (2) Between subject-reference (right panel, 

light gray): D2 can be computed between a subject and a reference group (e.g., control group). 
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Resolution of D2: (a) Voxel-voxel matrix D2: For each voxel contained in a mask of analysis, 

we can compute the multivariate distance (D2) between that voxel and all other voxels, resulting 

in a D2 matrix of size n voxels x n voxels (only applicable to within-subject analyses). (b) 

Voxel-wise D2: A D2 value can be computed at each voxel, resulting in a D2 value per voxel. (c) 

ROI D2: In this case, a D2 value is obtained for each WM tract, or other brain region (ROI) 

defined by the user. (d) Subject D2: A single D2 value can be obtained per subject, resulting in a 

measure of global brain deviation from the reference (only applicable to between subject-

reference analyses). Dimensions combined: (i) MRI metrics: the dimensions combined through 

D2 can be MRI metrics. In this case the length of the vector of data is the number of metrics. (ii) 

Spatial dimensions: If WM tracts, or other parcellated brain regions, are combined through D2, 

the length of the vector of data is equal to the number of WM tracts (only applicable to between 

subject-reference analyses). 
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2. Method 

2.1 General framework 

Since D2 can be defined relative to virtually any reference of matching features, 

MVComp has been designed to support a wide range of flexible analysis approaches. The first 

step is to define the set of multivariate data that will serve as the reference for computing 

distance. This choice depends on the hypothesis of interest, and is defined at the Level of 

Analysis as either the individual or group level (Fig 2). D2 can be computed between different 

brain regions within an individual (with the individual’s data also serving as the reference) or 

between an individual and a group. In each case, multiple different Resolutions of analysis are 

possible, including voxel-wise and region of interest- (ROI) based comparisons. 

To ensure that each subject’s data will not bias their D2 values in single sample designs (i.e., 

where the entire sample is used as a reference) and to allow the evaluation of controls in two-

sample designs, a leave-one-subject-out approach is also possible. In this way, the subject under 

evaluation is excluded from the group mean and covariance matrix prior to calculating D2. 

Lastly, the choice of which dimensions to combine, either MRI-derived metrics or brain regions 

(e.g., WM tracts), depends on what we want to capture. Combining brain regions within a 

multivariate measure allows to capture the degree of deviation from a reference even in the 

presence of high spatial heterogeneity (e.g., Owen et al., 2020; Taylor et al., 2020), while 

combining features is useful in the presence of mechanistic heterogeneity (i.e, several 

concomitant underlying biological mechanisms) and when preserving regional specificity is 

desirable (e.g., Lindemer et al., 2015; Gyebnár et al., 2019). Once the level of analysis, 

resolution, and dimensions combined are determined, the set of multivariate data that will serve 

as the reference for computing distance should become clear. The examples below, which 
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illustrate the flexibility of the D2 approach, should make this even clearer:  

2.1.1 Comparisons between subject(s) and a reference  

Example 1 : White matter (WM) microstructural differences 

 Data: Diffusion MRI (dMRI) in one group 

 Level of Analysis: Between subjects, relative to group 

Feature Resolution: Voxel-wise (all WM voxels) 

Feature Dimensions: dMRI-derived metric maps (metrics) 

In this example the reference would be defined as the voxel-wise group average 

for each dMRI-derived metric (𝑚1, 𝑚2, 𝑚n, where n is the number of metrics) and since 

the resolution is voxel-wise, D2 is computed by comparing the feature values in each 

voxel of an individual to the reference (Fig. 3a-c). The resulting individual difference D2 

maps can then be entered into second-level analyses to, for example, identify brain-

behavior associations. If two groups are being analyzed (e.g., patients vs controls) the 

control group could be used to define the reference and D2 values would then represent 

voxel-wise multivariate distance from controls. 

Example 2 : White matter (WM) microstructural differences 

 Data: Diffusion MRI (dMRI) in one group 

 Level of Analysis: Between subjects, relative to group 

Feature Resolution: Mean FA in ROI 

Feature Dimensions: WM tracts (spatial locations) 

A single MRI metric can also be used and combined across multiple ROIs to 

serve as the feature dimensions (e.g., pre-defined WM tracts). If the reference is defined 

as the group mean of each tract (𝑚1, 𝑚2, 𝑚n, where n is the number of tracts), a single D2 
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value would be computed for each individual, representing how the combination of mean 

values within all tracts differ from the equivalent combination in the reference. 

2.1.2 Comparisons within a single subject 

Example 3: Lesions in the context of normal appearing white matter (NAWM) 

 Data: Diffusion MRI (dMRI) in one group 

 Level of Analysis: within an individual, relative to self 

Feature Resolution: voxel-wise within ROIs (all WM voxels, two ROIs) 

Feature Dimensions: dMRI-derived metric maps (metrics) 

Here, the level of analysis is within-subject, the dimensions combined are 

multiple MRI-derived metrics in each voxel, and the reference is the average of all voxels 

within a region of interest (ROI) for each metric. To investigate the distance between 

WM lesions and NAWM, the reference would be the average of all NAWM voxels (𝑚1, 

𝑚2, 𝑚n, where n is the number of metrics) and D2 would be computed for each voxel 

classified as a lesion. The feature resolution could also be changed to ROI, depending on 

whether the user wishes to obtain a D2 value for each voxel within lesion sites or a single 

D2 value per ROI. This within-subject approach can also be used to compute D2 between 

all WM voxels and a reference ROI (e.g., a voxel in cortico-spinal tract) (Fig. 3d). Voxels 

within the same WM tract as the reference ROI are likely to have lower D2 than voxels in 

other tracts or in areas of crossing fibers (Fig. 3e). 

Example 4 : 

Feature Resolution: voxel-wise 

Feature Dimensions: dMRI-derived metric maps (metrics) 

D2 can be calculated between every pair of voxels to compute a voxel-voxel D2 
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matrix by directly comparing across the feature dimensions. In this case, the reference for 

computing the covariance matrix would be the data in all voxels contained in the analysis 

mask.   
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Fig. 3. D2 workflow. Voxel-wise comparisons between a subject and a reference. (a) The 

multivariate space is illustrated here. In this example, we have a vector of 10 MRI metrics at 

each WM voxel for each subject. (b) The covariance matrix is computed from the reference 
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feature matrix of shape n voxels x n features. The plot shows the amount of correlation between 

features in the reference sample. (c) Voxel-wise D2 maps in two example subjects, where bright 

yellow represents areas of greater deviation from the reference population. Distinct patterns can 

be seen in the two subjects. Within-subject comparisons between all voxels and a reference 

ROI. (d) Schematic representation of the multivariate comparisons showing that D2 was 

computed between all WM voxels and a ROI of 24 voxels in the corticospinal tract (CST). (e) 

D2 map showing the multivariate distance between all voxels and the CST ROI (in pink). 
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2.2 Data preparation 

In all cases, data for all subjects should be preprocessed and all MRI metrics of interest 

computed and transformed to bring them into the same voxel space. Masks should also be 

generated to restrict analyses to chosen regions (e.g., white matter) and be transformed into the 

same space. Masks can be binary or thresholded at a later step. Moreover, in group analysis it is 

necessary to compute the average of each metric from the reference group 

(mvcomp.compute_average is included as a convenience function to perform this task). A leave-

one-out approach (where the individual to be compared to the standard is left out of the average) 

is preferred in cases where the individual subject is also a member of the reference group. This 

functionality is directly available in the model comparison function (model_comp). 

Combining spatial dimensions (Feature dimension: Regions of interest) 

 Summary metrics should be calculated from each region of interest (e.g., mean FA in 

each WM tract of interest) for each subject. Creating a group average is not necessary for this 

application since the group average of the reference is computed within a subsequent function 

(spatial_mvcomp).  

2.3 Computing the reference standard and covariance matrix 

  In the case of group analyses, the reference standard mean and covariance matrix are 

derived from either multiple features or multiple regions of interest in another group (e.g., 

control group). The comparison can also be between each individual and the mean of all other 

individuals if only a single group is available. In the case of analyses within an individual, 

multiple features across all voxels or a specific region of interest can be used.  

2.3.1 Comparisons between subjects and a reference 

Combining MRI metrics 
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 The mvcomp.feature_gen extracts the feature matrix from a set of input images. Run on 

the reference group mean images, it returns the feature matrix (m_f_mat of shape n voxels x n 

features) and a mask vector (mat_mask of shape n voxels). The mask array contains zeros at 

voxels where values are nan or inf for at least one of the reference average maps in addition to 

the voxels below the threshold set for the mask. The mvcomp.norm_covar_inv function is then 

used to compute the covariance matrix (s) and its pseudoinverse (pinv_s) from the reference 

feature and mask matrices (m_f_mat and mat_mask). The mvcomp.correlation_fig function can 

be used to generate a correlation matrix from the covariance matrix (s), which is informative to 

verify if expected relationships between features are present. If the leave-one-out approach is 

used, mvcomp.feature_gen is not necessary as the covariance matrix will be computed within the 

model_comp function from a group average that excludes the subject for which D2 is being 

computed. 

Combining spatial dimensions 

 The comparison mean values and covariance matrix are computed within the 

spatial_mvcomp function described in detail below. 

2.3.2 Within-subject comparisons  

Voxel-wise D2 resolution 

 If the reference ROI is a set of voxels in the CST, the covariance matrix will be computed 

based on all voxels within that ROI in that subject. The path of the images (i.e., one image per 

metric) can be provided to the feature_gen function, along with the ROI mask, to create the 

reference feature matrix (m_f_mat ) and mask vector (mat_mask). The  mvcomp.norm_covar_inv 

function is then used to compute the covariance matrix (s) and its pseudoinverse (pinv_s) from 

the feature and mask matrices. The mvcomp.correlation_fig function can again be used to 
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visualize relationships between metrics. 

Voxel-voxel matrix D2 resolution 

 For this approach, the covariance matrix is computed from a feature matrix that includes 

all voxels in the mask of analysis. For instance, if we are interested in computing D2 between 

each voxel and all other voxels in the whole WM, the covariance matrix is based on all WM 

voxels. Therefore the matrix provided to the norm_covar_inv function will be of shape n voxels 

in the mask x n features. 

2.4 Computing D2 

2.4.1 Comparisons between subjects and a reference  

Combining MRI metrics 

 The mvcomp.model_comp function allows the calculation of voxel-wise D2 between each 

subject contained in the provided subject_ids list and the reference (group average). The user 

should specify the directories and suffix of the subjects’ features and reference images 

(feature_in_dir, model_dir, suffix_name_comp and suffix_name_model), the mask of analysis 

(mask_f) and a threshold if the mask is not binary (mask_threshold). If subjects or features are to 

be excluded at this point, they can be specified with the exclude_subject_ids and the feat_sub 

options, respectively. If the leave-one-out approach is to be used, the 

exclude_comp_from_mean_cov option should be set to True, in which case the model_dir is not 

necessary. If this option is set to True, the mean (reference) and pinv_s are computed on each 

subject comparison, excluding the subject being compared before computing its D2.  

Combining spatial dimensions 

 The spatial_mvcomp function is used to compute D2 between each subject and the 

reference computed from all subjects. A matrix containing the data (e.g., mean FA in each WM 
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tract) of all subjects (n subjects x n tracts) should be provided to the function. The 

spatial_mvcomp function returns a vector with a single D2 value per subject. As in model_comp, 

setting the exclude_comp_from_mean_cov to True leaves out the current subject when 

computing the mean and covariance.  

2.4.2 Within-subject comparisons  

Voxel-wise D2 resolution 

 The mah_dist_mat_2_roi function is used to compute voxel-wise D2 between all voxels 

and a specific ROI. Here, in addition to the feature matrix containing the data for the voxels to be 

evaluated (n voxels x n features), the user will need to provide a vector of data for the reference 

ROI (i.e., mean across voxels in the ROI for each metric) and the inverse of the covariance 

matrix (pinv_s). 

Voxel-voxel matrix D2 resolution 

The mah_dist_mat_connectivity function is used to compute D2 between each voxel and 

all other voxels in a mask. This yields a symmetric 2-D matrix of size n voxels x n voxels 

containing D2 values between each pair of voxels.  

2.5 Statistical analysis  

2.5.1 Comparisons between subjects and a reference  

A two-samples t-test on D2 values would then allow group comparisons, in a similar 

manner as a Hotelling’s T2 test, or alternatively a statistical method such as the Bhattacharyya 

coefficient can be used to estimate the degree of overlap between the distribution of each group 

(where less overlap indicates a higher probability that the groups differ) as in (Dean et al., 2017). 

However, such group analyses are likely to average out interindividual variability and be 

problematic when heterogeneity is high (Guberman et al., 2022).  
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2.5.2 Within-subject comparisons  

Clustering approaches can be applied to the voxel-voxel matrix D2 to parcellate brain 

voxels into networks/subdivisions. Changes in D2, either from the group or subject-level,  can 

also be assessed through longitudinal analyses, to investigate WM damage progression or brain 

maturation for instance (e.g., Lindemer et al., 2015; Kulikova et al., 2015). D2, or changes in D2, 

can also be related to behavioral outcomes (e.g., cognitive score, performance on a skill test, or 

symptom severity) in the same way one would with univariate measures of fractional anisotropy 

for instance (Owen et al., 2020; Dean et al., 2017; Taylor et al., 2020). 

2.6 Determining feature importance 

2.6.1 Comparisons between subjects and a reference  

Combining MRI metrics 

 If the user is interested in understanding the physiological mechanisms underlying 

microstructural deviations in a region of interest (e.g., voxels where D2 is high), the return_raw 

option of the mvcomp.model_comp function can be used. This allows the extraction of each 

features’ weight in D2. If return_raw is set to True, the function returns a 3D array of size 

(number of voxels) x (number of features) x (number of subjects) that contains the voxel-wise 

distances for each feature and each subject. A mask of the region of interest (e.g., a region of 

high D2) can then be applied to the 3D array and the distances can be summarized across voxels 

and/or subjects to obtain a percent contribution to D2 for each feature within that region. 

Combining spatial dimensions 

 The return_raw option is also available in the spatial_mvcomp function. If set to True, a 

2D array of size (number of subjects) x (number of tracts) containing the distances between 

every subject's tract and the mean tract values is returned. These raw distances provide 
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information regarding the contribution of each WM tract to D2, which gives insights on the 

localization of greatest deviation for each subject. 

2.6.2 Within-subject comparisons 

Voxel-wise D2 resolution 

 The return_raw option of the mah_dist_mat_2_roi function can be used to extract 

features’ contributions. In this case, the distances between features in all voxels being compared 

and feature values in the ROI are returned. The output will be of shape (number of voxels) x 

(number of features). 

Voxel-voxel matrix D2 resolution 

The return_raw option of the mah_dist_mat_connectivity function can be used to extract 

features’ contributions. A matrix of shape (number of voxels) x (number of voxels) x (number of 

features) is returned, with the contribution of each feature to the voxel-voxel D2 positioned on 

the last axis. 

2.7 Experiments 

2.7.1 Data Description  

We computed 10 microstructural features for 1001 subjects from the Human Connectome 

Project S1200 data release (Van Essen et al., 2013) for these experiments. DWI, T1- and T2-

weighted data were acquired using a custom-made Siemens Connectom Skyra 3 Tesla scanner 

with a 32-channel head coil. The DWI data (TE/TR=89.5/5520 ms, FOV=210×180 mm) were 

multi-shell with b-values of 1000, 2000 and 3000 s/mm2 and a 1.25 mm isotropic resolution, 90 

uniformly distributed directions, and 6 b=0 volumes. T1-w data was acquired with a 3D-

MPRAGE sequence and T2w images with a 3D T2-SPACE sequence, both with a 0.7mm 

isotropic resolution (T1w: 0.7 mm iso, TI/TE/TR=1000/2.14/2400 ms, FOV=224×224 mm; 
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T2w: 0.7 mm iso, TE/TR=565/3200 ms, FOV=224×224 mm). Anatomical scans were acquired 

during the first session, and DWI data were acquired during the fourth session. More details on 

the acquisitions can be found at: https://www.humanconnectome.org/hcp-protocols-ya-3t-

imaging. The imaging data of 1065 young healthy adults, those who had undergone T1w, T2w 

and diffusion-weighted imaging, were preprocessed. The data of 64 participants were excluded 

due to poor cerebellar coverage. 

2.7.2 Preprocessing 

Diffusion Tensor Imaging  

The minimally preprocessed HCP data was used (Van Essen et al., 2013; Glasser et al., 

2013). The minimal preprocessing pipeline for DWI data includes intensity normalization of the 

b0 images, eddy current and susceptibility-induced distortions correction, using DWI volumes of 

opposite phase-encoding directions, motion correction and gradient nonlinearity correction. DWI 

data were registered to native structural space (T1w image), using a rigid transform computed 

from the mean b0 image, and diffusion gradient vectors (bvecs) were rotated accordingly.  

Most subsequent processing steps were performed using the MRtrix3 toolbox (Tournier 

et al., 2019). The minimally preprocessed DWI data was converted to the mif format, with the 

bvals and bvecs files embedded, after which a bias field correction was performed using the 

ANTs algorithm (N4) of the dwibiascorrect function of MRtrix3 (Tustison et al., 2010). The 

tensor was computed on the bias field-corrected DWI data (using dwi2tensor) and DTI metrics 

were then calculated (FA, MD, AD and RD) using tensor2metric (Basser & LeBihan, 1994; 

Veraart et al., 2013; Basser, Mattiello & LeBihan, 1994).  

Multi-tissue Multi-shell Constrained Spherical Deconvolution 

The multi-tissue Constrained Spherical Deconvolution (CSD) was performed following 

https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging
https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging
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the fixel-based analysis (FBA) workflow 

(https://mrtrix.readthedocs.io/en/latest/fixel_based_analysis/mt_fibre_density_cross-

section.html). The T1-w images were segmented using the 5ttgen FSL function of MRtrix3, 

which uses the FAST algorithm (Smith et al., 2012; Smith, 2002; Zhang et al., 2001; Patenaude 

et al., 2011; Smith et al., 2004). Response functions for each tissue type were then computed 

from the minimally preprocessed DWI data (without bias field correction) and the five-tissue-

type (5tt) image using the dwi2response function (msmt_5tt algorithm) (Jeurissen et al., 2014). 

The bias-uncorrected DWI data was used because bias field correction is performed at a later 

step in the FBA pipeline (Raffelt et al., 2017). The WM, GM and CSF response functions were 

then averaged across all participants, resulting in a single response function for each of the three 

tissue types. Multi-shell multi-tissue CSD was then performed based on the response functions to 

obtain an estimation of orientation distribution functions (ODFs) for each tissue type (Jeurissen 

et al., 2014). This step is performed using the dwi2fod msmt_csd function of MRtrix3 within a 

brain mask (i.e., nodif_brain_mask.nii.gz). Bias field correction and global intensity 

normalisation, which normalises signal amplitudes to make subjects comparable, were then 

performed on the ODFs, using the mtnormalise function in MRtrix3 (Raffelt et al., ISMRM, 

2017; Dhollander et al., ISMRM, 2021). 

Registration 

In order to optimize the alignment of WM as well as gray matter, multi-contrast 

registration was performed. Population templates were generated from the WM, GM and CSF 

FODs of a subset of 200 participants using the population_template function of MRtrix3 (with 

regularisation parameters: nl_update_smooth= 1.0 and nl_disp_smooth= 0.75; including the 

“nodif” brain masks), resulting in a group template for each of the three tissue types (Tournier et 
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al., 2019). 

Subject-to-template warps were computed using mrregister in MRtrix3 with the same 

regularisation parameters and warps were then applied to the brain masks, WM FODs, DTI 

metrics (i.e., FA, MD, AD and RD), T1w, and T2w images using mrtransform (Raffelt et al., 

2011). T1w and T2w images were kept in native resolution (0.7mm) and the ratio of T1w/T2w 

was calculated to produce a myelin map (Glasser & Van Essen, 2011). WM FODs were 

transformed but not reoriented at this step, which aligns the voxels of the images but not the 

fixels (“fibre bundle elements”). A template mask was computed as the intersection of all 

warped brain masks (mrmath min function). This template mask includes only the voxels that 

contain data in all subjects. The WM volumes of the five-tissue-type (5tt) 4-D images were also 

warped to the group template space since these will be used to generate a WM mask for analyses.  

  

Computing fixel metrics 

The WM FOD template was segmented to generate a fixel mask using the fod2fixel 

function (Smith et al., 2013; Raffelt et al., 2012). This mask determines the fiber bundle elements 

(i.e., fixels), within each voxel of the template mask, that will be considered for subsequent 

analyses. The fixel mask is stored in a specific file format which embeds information such as the 

number and direction of each fixel in every voxel. Fixel segmentation was then performed from 

the WM FODs of each subject using the fod2fixel function. The apparent fibre density (FD) of 

each fixel was also computed in this step. Since reorientation was not performed in the 

registration step above, the FODs of each subject are in the FOD template space voxel-wise, but 

the fixels are not aligned yet at this point. The fixelreorient function is thus used to align the 

fixels of each subject’s FOD to those of the template, based on the subject-to-template warps 
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applied previously. Next, each subject’s fixels were explicitly mapped to the corresponding fixels 

in the fixel mask using the fixelcorrespondence function. The FD data of each subject is thus 

expressed with respect to a single set of fixels common to all subjects (i.e., with a single set of 

fixels’ directions). The fibre bundle cross-section (FC) metric was then computed from the warps 

generated during registration (using the warp2metric function) as FC is a measure of how much 

a fiber bundle has to be expanded/contracted for it to fit the fiber bundles of the fixel template. 

Lastly, a combined metric, fibre density and cross-section (FDC), representing a fibre bundle’s 

total capacity to carry information, was computed as the product of FD and FC. 

Transforming fixel metrics into voxel space 

In order to integrate all metrics into the same multi-modal model, fixel metric maps were 

transformed into voxel-wise maps. As a voxel aggregate of fiber density, we chose to use the l=0 

term of the WM FOD spherical harmonic expansion (i.e., 1st volume of the WM FOD, which is 

equal to the sum of FOD lobe integrals) to obtain a measure of the total fibre density (FDtotal) per 

voxel since this was shown to result in more reproducible estimates than when deriving this 

measure from fiber specific FD (i.e., by summing the FD fixel metric) (Calamante et al., 2015). 

The FOD l=0 term was scaled by the spherical harmonic basis factor (by multiplying the 

intensity value at each voxel by the square root of 4π). 

For the fiber cross-section voxel aggregate measure, we opted for computing the mean of 

FC, weighed by FD, using the mean option of the fixel2voxel function. We thus obtained the 

typical expansion/contraction necessary to align fiber bundles in a voxel to the fixels in the 

template. Since this is weighted by FD, bundles with higher density have a greater influence on 

voxel-wise FC value than lower density bundles. 

Lastly, the voxel-wise sum of FDC, reflecting the total information-carrying capacity at 
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each voxel, was computed using the fixel2voxel sum option. 

NODDI metrics 

Bias field corrected DWI data was fitted to the neurite orientation dispersion and density 

imaging (NODDI) model using the python implementation of Accelerated Microstructure 

Imaging via Convex Optimization (AMICO) (Daducci et al., 2015; Zhang et al., 2012). First, 

small variations in b values were removed by assigning the closest target bval (0, 1000, 2000 or 

3000) to each value of the bvals file (Github link of Chris function). This is to prevent the fitting 

algorithm from interpreting every slightly different bval as a different diffusion shell. A diffusion 

gradient scheme file is then created from the bvecs, and the new bvals file. The response 

functions are computed for all compartments and fitting is then performed on the unbiased DWI 

volumes, within the non-diffusion weighted brain mask (nodif_brain_mask.nii.gz). The resulting 

parameters obtained are: the intracellular volume fraction (ICVF, also referred to as neurite 

density), the isotropic volume fraction (ISOVF), and the orientation dispersion index (OD). In 

this study, we will use ICVF and OD. 

Generating masks for analyses 

The maps  of each of the 10 metrics of interest (FA, AD, RD, MD, T1w/T2w, FDtotal, FCmean, 

FDCsum, ICVF and OD) were then averaged across all subjects. These average maps served as 

the reference. A WM mask was created by computing the group average of the corresponding 

volume of the T1 5tt image (volume 2). A threshold of 0.99 was applied within the MVComp 

toolbox’s functions.  

2.7.3 Experiment 1: Comparisons between subjects and a reference   

Here, we present an example case of using D2 in a large sample from the HCP dataset to 

quantify voxel-wise microstructural differences in WM according to several MRI metrics. Since 
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the dataset used in this study contains the data of healthy young adults, a relatively homogeneous 

population, the entire sample was set as the reference and the leave-one-out approach was used 

to exclude the subject under evaluation. The analysis was restricted to the corpus callosum (CC). 

Voxel-wise D2 values were computed in the CC for each subject from 10 microstructural 

features, yielding a D2 matrix of 1001 subjects X 2845 voxels. The D2 values represent voxel-

wise microstructural distances in an individual’s CC relative to the group average, while 

accounting for the covariance between features. Large D2 scores in a voxel indicate greater 

deviation from the group average, whereas scores closer to 0 indicate lower distance (i.e., more 

typical microstructure). Due to the large number of datapoints and potential effects of partial 

voluming, we observed several outliers in D2 maps of several subjects . We therefore excluded 

participants with at least 50 voxels that were deemed as outliers (i.e. exceeded a threshold of 5 

standard deviations from the voxel mean D2). This yielded a final sample of 723 participants. 

Past literature on CC neuroanatomy shows several segments that are distributed along the 

anterior to posterior axis, where each segment is defined by common microstructural properties 

and/or connectivity profile (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 2006). We 

therefore hypothesized that D2 values in the CC could extract these segments via unsupervised 

machine learning. We performed K-means clustering on the D2 matrix of size subject X voxel, 

setting the number of clusters to 9 based on literature on CC topography (Aboitiz et al., 1992; 

Chao et al., 2009; Hofer & Frahm, 2006). Prior to clustering, we applied z-score and power 

transformation on the D2 matrix to achieve gaussian distributions of standardized scores. Final 

visualization was done using BrainNet Viewer. 

2.7.4 Experiment 2: Within-subject comparisons  

The within-subject approach allows the computation of voxel-voxel D2 in a single 
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individual from multiple microstructural features. Here, D2 was calculated between each voxel 

and every other voxel in a subject’s CC, while accounting for the covariance between the 10 

microstructural features. All voxels within the CC of that subject are used to compute the 

covariance matrix and this same covariance matrix is used in the D2 calculation of every voxel. 

The resulting D2 matrix is a 2845 voxel X 2845 voxel dense matrix representing the distance 

between each voxel and every other voxel in the CC. We standardized the matrix to z-scores, and 

then applied Principal component analysis (PCA). We extracted the first principal component 

explaining the highest variance, and and the contributions of each metric to D2 were extracted 

within the voxels with the largest and the lowest scores on the first principal component. 
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3. Results 

3.1 Experiment 1: Comparisons between subjects and a reference   

 

Fig. 4. Voxel-wise comparisons between each subject and the reference. (a) Voxel-wise D2 is 

calculated between the reference (group average of the whole sample, except the subject under 

evaluation) and each subject’s data (feature (10) X voxel (2845) matrix), in voxels of the the 

corpus callosum (CC). (b) This results in a D2 matrix of size subject (1001) X voxel (2845) 

containing the multivariate distance between a subject’s data and the reference at each CC voxel 

for each of the 1001 subjects. (c) Applying k-means clustering to the D2 matrix, voxels of the 

CC were partitioned into 9 clusters distributed along the anterior-posterior axis, in close 

accordance with known topography of the CC as seen in (d). (d) Schematic representation of CC 

topography based on literature (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 2006).  
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Voxel-wise D2 was computed between each subject (feature X voxel matrix) and the 

reference (feature X voxel matrix of the reference group average). This computation was 

repeated for each voxel within the CC. K-means clustering was then applied to the resulting 

subject X voxel D2 matrix. We observed 9 clusters distributed along the anterior-posterior axis 

in accordance with past evidence on CC microstructure and connectivity (Aboitiz et al., 1992; 

Chao et al., 2009; Hofer & Frahm, 2006). Fig. 4b shows the clusters identified via k-means. The 

Genu of the CC is clustered into 3 segments, while the midbody displays 2 segments. The 

splenium was also clustered into 4 segments (with one segment positioned on the isthmus).  
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3.2 Experiment 2: Within-subject comparisons 

 

Fig. 5. Within-subject voxel-voxel comparisons. (a) D2 is computed from the features x voxels 

matrix of a subject and results in a (b) voxel x voxel D2 matrix. (c) PCA was applied to the D2 

matrix. (d) The metrics’s contributions to D2 are extracted in the voxels with the highest and 

lowest score on PC1. SumFDC contributed most to D2 in the voxel with the highest value, 

located in the genu of the CC. In the voxel with the lowest value on PC1, located in the midbody 
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of the CC, all metrics had approximately equal contribution to D2.   
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D2 was computed between each and every pair of voxels in a subject’s CC as a case 

example of the within-subject level of analysis. We applied PCA on the resulting voxel X voxel 

D2 matrix and extracted metrics’ contributions to D2 within the voxels with the largest and the 

lowest scores on the first principal component. Fig. 5 shows the steps involved in the within-

subject analysis. The first principal component explained 95% of the variance in the voxel X 

voxel dense D2 matrix. The largest and the lowest scores were in the genu and in the midbody of 

the CC, respectively (Fig. 5d). We then extracted metrics’ contributions in these voxels. In the 

voxel with the largest value on PC1, the fibre density and cross-section metric (sumFDC) 

contributed most to D2, while mean diffusivity (MD) contributed the least. On the other hand, in 

the voxel with the lowest score on PC1, all microstructural features had nearly equal 

contributions to D2, indicating minimal variability in this voxel.   



 

82 
 

4. Discussion 

White matter (WM) tracts have long been viewed as passive passageways, serving as 

routes for information transmission between neurons, to which were attributed most, if not all, 

the credit in higher-order functions. Since the 1965 seminal paper by Geschwind in which WM 

lesions were associated to neurobehavioral syndromes (Geschwind, 1965), the importance of 

WM to normal cognitive and affective functions has started to be acknowledged and it is now 

widely recognized by the scientific community (Filley, 1998; Fields, 2008a, 2008b). Early 

studies on disconnection of white matter and their role in neurobehavioral syndromes 

(Geschwind, 1965) to more recent work on subtle alterations to WM microstructure and their 

role in cognition and pathologies (Fields, 2008). Moreover, work in the last decade has 

highlighted the plastic potential of WM and its importance in learning, not only during 

development, but throughout life (Scholz et al., 2009; Fields 2015; Sampaio-Baptista & 

Johansen-Berg, 2017). Together, these studies highlight the importance of quantitatively 

assessing WM to evaluate alterations induced by pathology, training or inter-individual 

variability in healthy populations and to investigate the relationships between these deviations in 

WM microstructure and behavior. 

Quantifying even the most subtle abnormalities in WM health could have a profound 

impact on fields such as psychiatry and aging. For several psychiatric conditions, interventions 

are likely to be more effective if initiated at the earliest possible stage, before irreversible 

damage occurs and when there is likely more potential for neuroplasticity (Bonzano et al., 2014; 

Sachdev et al., 2013; Iturria-Medina et al., 2016, 2017). Since we do not have a cure for several 

neurological disorders, including Alzheimer’s disease and other dementias, prevention is 

currently the best line of treatment. Precise quantification of WM integrity could also have 
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important impacts in normal aging, where preventing neurological disorders could be achieved 

through early detection of WM alterations in at-risk populations (Poirier et al., 2021; Anazodo et 

al., 2019). 

Multiparametric approaches appear promising in studying pathological alterations in WM 

microstructure in a number of conditions. For instance, D2 incorporating fractional anisotropy 

(FA) in multiple WM tracts in epileptic patients was found to show stronger associations with 

epilepsy duration than any univariate measure (i.e., mean FA in a single WM tract) (Owen et al., 

2020). Another study reported better performance using D2 encompassing FA in several WM 

tracts than using univariate measures in discriminating between controls and individuals with 

TBI (Taylor et al., 2020). Their multivariate measure allowed for the discrimination of even mild 

TBI cases from controls and correlated significantly with cognitive scores. Similarly, D2 

combining both spatial (i.e., WM regions) and feature (i.e., different DTI metrics) dimensions 

showed greater delineation between autistic and typically developing individuals compared to 

univariate approaches or to D2 formed by combining brain regions only (Dean et al., 2017). 

Associations between D2 and autism symptom severity were also reported in this study, 

suggesting D2 served as a meaningful, behaviorally relevant, measure of WM abnormality.  

Other interesting implementations have used D2 to detect and characterize lesions. 

Gyebnár et al. (2019) combined DTI eigenvalues into a voxel-wise D2 distance measure between 

epilepsy patients and controls to detect cortical malformations in patients. Voxels were identified 

as lesion voxels if their D2 value exceeded a critical value calculated using Wilks’ criterion 

(Wilks, 1963), a criterion used for multivariate statistical outlier detection. In another 

implementation, D2 was employed to characterize the heterogeneity within WM lesions by 

computing the multivariate distance (combining T1-w, T2-w and PD-w signal intensities) 
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between voxels in regions of WM signal abnormalities (i.e., WM hyperintensities; WMSA) and 

those in regions of normal appearing WM (NAWM) (Lindemer et al., 2015). D2 within regions 

of WMSA, defined as WMSA quality by the authors, was shown to progress at a quicker rate in 

individuals who converted from mild cognitive impairment to Alzheimer’s disease (AD) 

compared to those who did not convert. Moreover, the time point of greatest rate of change 

coincided with the time of conversion to AD. Interestingly, the rate of change of WMSA volume 

(i.e., lesion load), a metric more commonly used (Schmidt et al., 2005; Bilello et al., 2015), did 

not differentiate converters from non-converters cross-sectionally and longitudinally, suggesting 

that a characterization of WM lesion heterogeneity through a multivariate framework was more 

informative than the volume of WM lesions (Lindemer et al., 2015). 

In previous work using the D2 approach, the loadings (or weights) of the elements 

combined in the multivariate measure (i.e., either WM tracts or MRI metrics) were not extracted 

and this was reported as a limitation of D2 in Dean et al. (2017). Characterizing the extent by 

which each element contributes to D2 can provide important insights into the physiological 

underpinnings of the alterations observed and/or their localization. Therefore, the MultiVariate 

Comparison (MVComp) tool we propose allows the extraction of features contribution to D2. 

Previous methods of examining neuroanatomical and microstructural differences using 

neuroimaging metrics have largely focused on univariate and some limited multivariate 

frameworks. Several of these frameworks do not offer the possibility to correct for the shared 

covariance between metrics, which arise from overlapping microstructural phenomena as well as 

from mathematical similarities between some modelling approaches. Non-quantitative nature of 

neuroimaging metrics 

Furthermore, the widely used acquisition protocols and their parameters are non-
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quantitative in nature, and hence do not tie intimately to microstructure. This stems from the 

mutual influence of several biological properties to the same neuroimaging metric. This also 

extends in the opposite direction, where multiple neuroimaging metrics indirectly reflect a 

similar underlying physiological property. Therefore, using a single neuroimaging metric, or 

metrics stemming from a single model, offers limited potential for interpretation and is biassed 

by the set of assumptions of the chosen model (Novikov et al., 2018). For instance, some models 

assume fixed compartment diffusivities (e.g., NODDI) while others attempt to estimate them 

(white matter tract integrity (WMTI)) (Novikov et al., 2018). While some multivariate 

frameworks have been implemented in the neuroimaging field, several of them are either 

applicable at the group level or at the subject level, and do not extend from one level to another. 

The D2 framework on the other hand is highly versatile and fairly easy to implement. Moreover, 

the open-source MVComp toolbox we propose makes the implementation of D2 in various 

research questions (see Fig.2) even more accessible. 

Here, we present MVComp, a multivariate comparisons framework that integrates 

multiple neuroimaging metrics while accounting for their shared covariance, applicable at either 

the group- or subject-levels. When applied at the group level, the clustering of D2 maps in the 

corpus callosum using the unsupervised K-Means clustering technique revealed high accordance 

between D2 and known WM microstructure properties. When applied at the subject level, 

principal component analysis on the dense voxel-voxel distance matrix showed extracted voxels 

with large and low variability in the underlying neuroimaging metrics, as could be seen in the 

highest and lowest values on the first principal component. 

Accounting for covariance between the neuroimaging metrics is crucial when these 

metrics share common underlying microstructural and biophysical characteristics. Therefore, D2 
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was able to resolve the microstructure of the CC. 

There are several advantages of using a multivariate distance via MVComp. First, The 

covariance between neuroimaging metrics is largely overlooked, and at its core, MVcomp 

accounts for the covariance while computing distances. This is done by computing the 

Mahalanobis distance (D2) at the level of analysis (group voxelwise, group ROI level, and within 

subject). The researcher hence decides on the features used in computing D2, with the possibility 

of integrating several diffusion models and their derived metrics. Therefore, MVComp provides 

a versatile framework in assessing microstructural differences in WM. Moreover, the toolbox is 

an easy-to-use python package with the options to compute the sample average, compute the 

pseudo covariance between metrics, and calculating D2 using well-documented functions. The 

MVComp tool also allows the extraction of raw distances, which gives information regarding the 

relative contribution of each metric to the multivariate distance (D2).  

We show that combining multiple neuroimaging metrics while accounting for their 

shared covariance exhibit ties to known microstructure. By applying K-Means clustering to the 

corpus callosum, we observed a clear and homogeneous segmentation along the anterior-

posterior axis similar to known anatomy. This high correspondence between clustered D2 and 

previously described CC topography indicates that the microstructural score obtained by 

combining several WM neuroimaging metrics while accounting for the shared covariance 

between metrics would provide a pertinent index encompassing several important 

microstructural properties. At the individual level D2 can capture the amount of (dis)similarity 

between voxels and through the extraction of features’ contributions we can infer the 

physiological mechanisms underlying this extent of (dis)similarity between voxels (it can capture 

the metrics/features with the highest variability/variance). SumFDC was the metric that 
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contributed most to D2 in the voxel with highest score on PC1: indicates that the amount of 

information-carrying capacity (combined fiber cross-section and density) is the feature that 

varies the most in the CC. MD was the metric that contributed least to D2 in the voxel with 

highest score on PC1: MD would likely be very low in all those CC voxels (tightly packed white 

matter tracts). These conclusions could further aid in assessing brain-behaviour associations, by 

maximising variability while reducing redundancy (shared information). 

 The link between D2 and white matter extends beyond healthy microstructure. Previous 

studies have shown the necessity of integrating neuroimaging metrics in disease via a 

multivariate way, and some proposed using D2 (Owen et al., 2021; Taylor et al., 2020). Our 

framework expands on these findings, and provides several levels of analysis that can be applied 

in cases of neurodegeneration and neural injury. The aim in these cases would be to evaluate the 

degree of microstructural differences between a control group (serving as the model) and the 

comparison group (e.g. AD). Since D2 is a measure of multivariate distance from a model, 

higher scores would indicate larger extents of damage at the voxel or tract level. It is possible to 

implement this comparison at a single subject level, where regions of maximum degeneration or 

extensive lesion would exhibit very large D2 scores that those with healthy tissue. As such,  we 

would expect that D2 scores would increase along a continuum from health to extensive tissue 

damage, and this continuum could exist from healthy ageing, to mild cognitive impairment, to 

AD or inversely correlated with the distance to damage location at the within-subject level.  

The MVcomp toolbox is easily extendable, and double multivariate steps could be 

implemented. It is possible to apply D2 computation at the voxel level, integrating multiple 

different measures of microstructure to extract D2 scores, and then apply spatial multivariate 

comparison to extract D2 at the tract level. In this case, each subject in a between-subject designs 

https://www.zotero.org/google-docs/?mnSh5i
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would have one D2 score, which could be used in brain-behaviour assessments or classification 

based on previously defined conditions. It is worth noting that in this case, spatial information is 

lost, and the location of highest D2 scores is masked when applying the spatial analysis. 

Given the interactivity between the brain and behaviour, where changes on one could 

alter the other (such is the case in experience-induced plasticity), we would expect high 

correlation between D2 and behavioural measures. For instance, it is possible to use MVcomp to 

extract D2 values in motor tracts, and examine the association between microstructural 

differences in a given sample and motor functioning. If high motor performance is due to 

microstructural differences, then a positive correlation between microstructure and motor tasks is 

to be observed. It is also possible to investigate the relationship between behavioural impairment 

and the extent of neural damage in targeted regions in a spatially specific manner while 

integrating multiple measures of microstructure, and then extract the most influential measure for 

further analysis. 

There are some limitations of D2 computation as presented in MVComp. First, the 

Mahalanobis Distance itself is a squared measure, thus the directionality of the difference 

(feature from the average) is non-specific. As it is currently implemented, it is not possible to 

determine whether a given subject’s features are higher or lower from the average. Future studies 

could address this limitation by using modeling techniques to define the average based on 

normative modeling techniques, and splitting groups based on expected direction of change. 

Then, the directions of deviations from the average could be hypothesized a priori and an 

additional statistical term could be included in formal statistical analyses.   
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