
Unsupervised Domain Adaptation for Estimating
Occupancy and Recognizing Activities in Smart Buildings

Jawher Dridi

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Quality Systems Engineering) at

Concordia University

Montréal, Québec, Canada

August 2023

© Jawher Dridi, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Jawher Dridi

Entitled: Unsupervised Domain Adaptation for Estimating Occupancy and Rec-

ognizing Activities in Smart Buildings

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair and Examiner
Dr. Amr Youssef

Examiner
Dr. Chadi Assi

Supervisor
Dr. Manar Amayri

Supervisor
Dr. Nizar Bouguila

Approved by
Chun Wang, Chair
Department of Concordia Institute for Information Systems Engi-
neering

2023
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Unsupervised Domain Adaptation for Estimating Occupancy and Recognizing Activities
in Smart Buildings

Jawher Dridi

Activities Recognition (AR) and Occupancy Estimation (OE) are topics of current interest.

AR and OE can develop many smart building applications such as energy management and can help

provide good services for residents. Prior research on AR and OE has typically focused on super-

vised machine learning methods. For a specific smart building domain, a model is trained using

data collected from the current environment (domain). The created model will not generalize well

when evaluated in a new related domain due to data distribution differences. Creating a model for

each smart building environment is infeasible due to the lack of labeled data. Indeed, data collection

is a tedious and time-consuming task. Unsupervised Domain Adaptation (UDA) is a good solution

for the considered case. UDA solves the problem of the lack of labeled data in the target domain

by allowing knowledge transfer across domains. In this research, we provide several UDA methods

that mitigate the data distribution shift between source and target domains using unlabeled target

data for OE and AR with and without direct access to labeled source data. Firstly, we consider

techniques that use only a trained source model instead of a huge amount of labeled source data to

make domain adaptation. We adapted and tested several UDA methods such as Source HypOthesis

Transfer (SHOT), Higher-Order Moment Matching (HoMM), and Source data Free Domain Adap-

tation (SFDA) on smart building data. Secondly, we adapt and develop several UDA methods that

use labeled source data to estimate the number of occupants and recognize activities. The developed

methods that have direct access to the source data are the Virtual Adversarial Domain Adaptation

(VADA), Sliced Wasserstein Discrepancy (SWD), and Adaptive Feature Norm (AFN). Finally, we

make a comparative analysis between several newly adapted deep UDA methods, applied to the

tasks of AR and OE, with and without access to labeled source data.

iii

Acknowledgments

I would like to thank my supervisor Dr. Nizar Bouguila for his support and encouragement

during my entire journey at Concordia University.

I would like to thank also my supervisor Dr. Manar Amayri for her advice and valuable com-

ments that helped me develop further my research.

Many thanks to my friends, my family, and especially my lovely parents who were there when

I needed them all the time.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Problem statement . 1

1.2 Theoretical background and related works . 2

1.2.1 Domain adaptation (DA) fundamentals 2

1.2.2 Literature review . 4

1.3 Contributions . 7

1.4 Thesis Overview . 8

2 Unsupervised Domain Adaptation without Source Data for Estimating Occupancy and

Recognizing Activities in Smart Buildings 10

2.1 Introduction . 10

2.2 The considered methods . 12

2.2.1 Creating the source model . 12

2.2.2 Source HypOthesis Transfer with Information Maximization (SHOT-IM) . 13

2.2.3 SHOT augmented with self-supervised pseudo-labeling 14

2.2.4 Source hypothesis network architecture and general algorithm 15

2.2.5 Higher-Order Moment Matching (HoMM) 15

2.2.6 Source data Free Domain Adaptation (SFDA) 18

v

2.3 Experimental setup and results . 22

2.3.1 Datasets . 22

2.3.2 Metrics . 22

2.3.3 Experimental results . 23

3 Unsupervised Domain Adaptation with Source Data for Estimating Occupancy and

Recognizing Activities in Smart Buildings 32

3.1 Introduction . 32

3.2 Proposed methods . 34

3.2.1 Virtual Adversarial Domain Adaptation (VADA) 34

3.2.2 Sliced Wasserstein Discrepancy (SWD) 37

3.2.3 Adaptive Feature Norm (AFN) . 40

3.2.4 Data poisoning technique . 43

3.3 Experimental setup and results . 44

3.3.1 Datasets . 44

3.3.2 Metrics . 45

3.3.3 Experimental results . 45

4 Unsupervised Domain Adaptation With and Without Access to Source Data for Esti-

mating Occupancy and Recognizing Activities in Smart Buildings 54

4.1 Introduction . 54

4.2 The proposed approaches . 58

4.2.1 Methods with access to source data . 58

4.2.2 Methods without access to source data . 65

4.3 Experimental setup and results . 72

4.3.1 Datasets . 72

4.3.2 Metrics . 73

4.3.3 Experimental results . 74

4.3.4 Comparison and discussion . 81

vi

5 Conclusion 84

Bibliography 87

vii

List of Figures

Figure 2.1 SHOT pipeline . 13

Figure 2.2 Source model network architecture . 16

Figure 2.3 HoMM pipeline . 16

Figure 2.4 HoMM model network architecture . 18

Figure 2.5 SFDA pipeline . 19

Figure 2.6 SFDA model network architecture . 20

Figure 2.7 AR results for balanced (accuracy) and unbalanced (F1-score) datasets . . . 27

Figure 2.8 OE results for balanced (accuracy) and unbalanced (F1-score) datasets . . . 31

Figure 3.1 Feature extractor architecture. 36

Figure 3.2 Task-classifier architecture . 37

Figure 3.3 Discriminator architecture. 38

Figure 3.4 Feature extractor architecture. 39

Figure 3.5 Classifiers architecture. 39

Figure 3.6 Feature extractor architecture for AFN. 41

Figure 3.7 Classifier architecture for AFN. 41

Figure 3.8 UDA methods results for balanced AR 5 labels (1), AR 3 labels (2), OE 3

labels (3), and OE 2 labels(4). 49

Figure 3.9 UDA methods results for unbalanced AR 5 labels (1), AR 3 labels (2), OE 3

labels (3), and OE 2 labels(4). 53

Figure 4.1 Features visualization for AR (a) and OE (b) datasets 73

Figure 4.2 Label imbalance for SHOT-IM method . 81

viii

Figure 4.3 Accuracies for all the methods with balanced labels 82

Figure 4.4 F1-scores for all the methods with unbalanced labels 83

Figure 4.5 Accuracies for all the methods with unbalanced labels 83

Figure 4.6 F1-scores for all the methods with balanced labels 83

ix

List of Tables

Table 2.1 AR scores for 5 labels in an unbalanced data 23

Table 2.2 AR scores for 5 labels in an unbalanced data: labels scores 24

Table 2.3 AR scores for 3 labels in an unbalanced data 24

Table 2.4 AR scores for 3 labels in an unbalanced data: labels scores 25

Table 2.5 AR accuracies for 5 labels in a balanced data 26

Table 2.6 AR accuracies for 3 labels in a balanced data 26

Table 2.7 OE scores for 3 labels in an unbalanced data 28

Table 2.8 OE scores for 3 labels in an unbalanced data: labels scores 28

Table 2.9 OE P/A scores for 2 labels in an unbalanced data 29

Table 2.10 OE P/A scores for 2 labels in an unbalanced data: labels scores 29

Table 2.11 OE accuracies for 3 labels in a balanced data 30

Table 2.12 OE P/A accuracies for 2 labels in a balanced data 31

Table 3.1 Accuracies for AR with 5 balanced labels 46

Table 3.2 Accuracies for AR with 3 balanced labels 47

Table 3.3 Accuracies for OE with 3 balanced labels 48

Table 3.4 Accuracies for OE with 2 balanced labels 48

Table 3.5 F1-scores for AR with 5 unbalanced labels 50

Table 3.6 F1-scores for AR with 3 unbalanced labels 51

Table 3.7 F1-scores for OE with 3 unbalanced labels 51

Table 3.8 F1-scores for OE with 2 unbalanced labels 52

Table 3.9 VADA accuracies with WiFi dataset . 52

x

Table 4.1 Classification of the considered UDA methods 58

Table 4.2 Number of samples per class for AR and OE dataset 73

Table 4.3 Accuracies for AR with 5 balanced labels and F1-scores for AR with 5 unbal-

anced labels . 75

Table 4.4 Accuracies for AR with 3 balanced labels and F1-scores for AR with 3 unbal-

anced labels . 77

Table 4.5 Accuracies for OE with 3 balanced labels and F1-scores for OE with 3 unbal-

anced labels . 78

Table 4.6 Accuracies for OE with 2 balanced labels and F1-scores for OE with 2 unbal-

anced labels . 80

xi

Chapter 1

Introduction

1.1 Problem statement

Activities Recognition (AR) [1, 2, 3, 4, 5, 6, 7, 8, 9] and Occupancy Estimation (OE) [10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21] are interesting smart building [22, 23, 24] tasks that can

improve several applications such as energy management. Indeed, OE can help provide optimal

energy management for smart homes by reducing energy consumption and by optimally distribut-

ing energy across all the building’s apartments [25, 19, 20, 26, 27, 28, 29, 30]. Detecting humans

and recognizing their activities provide more security for smart homes by identifying authorized

actions [31, 32, 33]. Recognizing activities allows managers of buildings to optimize HVAC (heat-

ing, ventilation, and air conditioning) systems by understanding occupants’ behavior in each room,

providing inhabitants with more comfort [34, 35]. Smart building models created in a specific en-

vironment [25, 13, 27, 36] (room or apartment) can not generalize well to other domains due to

different apartment architectures (e.g., locations and types of the used sensors). Training a model

for each room or apartment is an expensive and challenging task because of labeled data scarcity

[25, 37, 38]. Labeling smart home data is a tedious, costly, and time-consuming task that can not

be feasible in some cases due to privacy issues [25, 13, 24, 39, 40, 41, 42]. Domain adaptation

(DA) [43, 44, 45, 46, 47, 48, 49, 50] can mitigate data distribution shifts between source and target

domains in smart homes. Thus, it can solve the problem of data scarcity [25, 37, 38], and share

knowledge gained in a smart home where labeled data are available to other smart buildings where

1

labeled data are scarce or not available. Sharing knowledge between domains helps increase the

performance of models as well as their robustness. Indeed, creating models that generalize well for

related domains decreases sensitivity to domain shift, providing robust methods. Some approaches

of DA can solve privacy issues by avoiding access to source data while sharing information across

environments. Indeed, they get access only to trained models from source domains without access-

ing original data.

1.2 Theoretical background and related works

1.2.1 Domain adaptation (DA) fundamentals

Definition of DA

Before giving the definition of domain adaptation, let us start by defining some terms related to

DA.

Domain: A domain is an environment usually denoted D. It is composed of a feature space and a

marginal distribution. We denote the feature space with X and the marginal distribution with P (X)

[51, 52], where X is an instance of the feature space X , X = {xi|xi ∈ X , i = 1, . . . , n}.

Task: A task is a prediction that is usually denoted T . It is composed of a label space Y and a

decision function ℧ , T = {Y,℧}. The decision function is learned from the input data [51, 52].

Domain adaptation: Let us define a source domain as DS , a target domain as DT , a source task

as TS , and a target task as TT . Domain adaptation is a type of transductive transfer learning where

the source and target tasks are the same but the domains differ. The goal of DA is to improve and

enhance the performance of the decision function ℧T of the target task by using the knowledge

gained from the source domain DS and transferred by minimizing domain discrepancy between

source and target domains [51, 52, 53].

2

Domain adaptation methods

Homogeneous DA: Homogeneous domain adaptation is defined as the scenario where we have

the same feature representation and task between source domains and the target domain (XS =

XT ,YS = YT), but the feature distributions differ between domains (P (XS) ̸= P (XT)) [54].

Several methods have been considered for homogeneous domain adaptation as follows. Instance

re-weighting is the case where we assume that the conditional distributions of the tasks given the

feature representations are the same between source and target domains (P (Y |XS) = P (Y |XT)).

In this case, a model learned from a source domain can be used to estimate the target instances

(P (Y |XT)) [54]. However, given that P (XS) ̸= P (XT), the target model may show poor per-

formance in predicting target instances [54]. Instance re-weighting solves the encountered prob-

lem by re-weighting source and target instances giving large weights to target instances that are

miss-classified while training and decreasing weights for source samples that are miss-classified

to ignore them in the training [54]. Parameter adaptation does not require the assumption that

conditional distributions of tasks given the features representations are the same between domains

(P (Y |XS) = P (Y |XT)). Indeed, it works in a semi-supervised way by using a small number of

labeled target data to enhance and adapt the performance of a source-trained classifier for a target

task. It uses the knowledge collected by the small number of labeled sets to generalize the classifica-

tion process and reduce error [54]. For instance, the domain transfer SVM [55] uses the maximum

mean discrepancy (MMD) to reduce the difference between domains and creates the target decision

function to estimate target samples. Feature space alignment seeks an alignment between source

domains and target domain by minimizing the discrepancy between the sub-spaces obtained using

principal component analysis (PCA) of the source and target domains [54]. The minimized dis-

tance is the Bregman divergence distance [54]. The unsupervised feature transformation technique

is based on methods that do not use labeled data from the target domain to align data distribution

across different domains. Transfer Component Analysis (TCA) [54, 56] looks for common feature

distributions between source and target domains without changing the intrinsic structure of the orig-

inal domains. Domain Invariant Projection [54, 57] improves the discrepancy distance used to com-

pare the distributions from a simple distance in the lower dimensional space to a distance defined in

3

the RKHS (Reproducing Kernel Hilbert Space). The supervised feature transformation technique is

based on methods that use labeled data while adapting source and target domains. Semi-Supervised

TCA [54, 56, 58] makes domain adaptation using an objective function that contains, additionally to

the distance between the domains, a label discrepancy term to maximize domain adaptation. Other

approaches use conditional distributions including target predictions and source labels as described

in the adaptive kernel approach [59]. Source domain weighting is a technique in the case of multiple

source domain adaptation. It selects the most significant domains that provide the most interesting

information that helps align data distribution. Indeed, the process is done by giving large weights to

the important domains and by penalizing the other ones [54].

Heterogeneous DA: Heterogeneous domain adaptation is the scenario where the source and tar-

get domains have different feature representations. Several methods have been considered for the

defined scenario as follows. Symmetric feature transformation is a technique used to create a new

common feature space between source and target domains. Indeed, it projects the two domains into

a new domain where knowledge transfer is possible and the target decision function can be learned

in an efficient way [54, 25]. PCA has been used in several methods considered in [25] to create

a common domain between source and target feature spaces, then mapping between features has

been made using Jensen-Shannon divergence (JSD) distance. Asymmetric feature transformation is

a domain adaptation technique that instead of learning a new common domain between the source

and target domains, transforms the source feature representation to fit the target domain. Thus,

we minimize the discrepancy between source and target domains and we allow the target decision

function to be enhanced using source knowledge [54].

1.2.2 Literature review

Activities recognition

For the activities recognition task, several domains adaptation methods have been introduced to

transfer knowledge across domains in an efficient way. Also, different types of domain adaptation

have been considered such as supervised, semi-supervised, and unsupervised approaches. Indeed,

for smart building tasks, unsupervised approaches are recommended to be used due to the lack of

4

labeled data. [60] has proposed a hybrid deep domain adaptation neural network framework called

”Hydranet” which is a supervised DA approach. It is called ”hybrid” because we have a hetero-

geneous domain adaptation with some common features between source and target domains that

uses sensor data (magnetometer, gyroscope, and accelerometer) based on motions to train the target

model. The proposed framework maps common features between domains, then it approximates

the missing features from both domains to obtain a homogeneous common domain between source

and target data. [61] has proposed supervised approaches based on several machine learning mod-

els such as naive Bayes, nearest neighbor, neural network, support vector machines, and random

forest. The main objective of these models is to recognize hand activities using sensor data gath-

ered from the accelerometer and gyroscope attached to the wrist. [62] has shown several sensor

data-based approaches that have been developed previously to recognize activities in a supervised

and unsupervised manner. The presented approaches use different machine learning models such as

naive Bayes, neural networks, support vector machines, decision trees, hidden Markov models, and

conditional random fields. [25] has considered several supervised DA methods that are based on

PCA to perform domain alignment between source and target spaces. The approaches used binary

reed switch sensor data to evaluate the performance of the developed methods. Using PCA, the

original data from the source and target domains are transformed into a new common domain, and

the transformed features from both domains are mapped based on the values of their divergence

calculated using JSD distance. [63] has proposed a convolutional neural network (CNNs)-based

model called Heterogeneous Deep Convolutional Neural Network (”HDCNN”) which is a super-

vised DA method. The considered approach uses accelerometer data to adjust weights in the neural

network layers to minimize the divergence in data distributions between source and target domains

[63]. [64] has proposed an approach to recognize hand gestures and daily activities for a human

being using wearable sensors attached to several parts of the body such as fingers, waist, and ankle.

The method is based on neural networks and hidden Markov models, and it uses sensing data such

as an accelerometer. [65] has used accelerometers in smartphones to gather required sensing data

to recognize human physical activities (sitting, standing, laying, walking, and jogging). [65] has

developed a supervised approach that uses the K-nearest neighbors algorithm to predict activities.

[66] has proposed a supervised DA approach based on deep generative domain adaptation that uses

5

wearable sensors (gyroscope and accelerometer). The method approximates the posterior of the

feature distributions and uses it as a tool to align feature spaces between source and target domains.

[67] has proposed a semi-supervised DA approach called ”AdaptNet” that uses accelerometer data

with a small number of labeled data in the target domain to align data distributions between do-

mains. The method makes bilateral DA using deep translation networks [67]. [68] has considered

an unsupervised DA method called local domain adaptation (LDA). The method groups data into

clusters and maps the clusters from each domain to make data distribution alignment at the cluster

level. The data used to train the models is collected using wearable sensors such as accelerometers,

gyroscopes, and magnetometers. [69] has developed an unsupervised adversarial deep domain adap-

tation method called ”XHAR” that uses motion sensor data such as data collected from accelerom-

eters and gyroscopes. ”XHAR” uses CNNs and Bidirectional Gated Recurrent Units (BiGRU) to

extract significant features. Then, it removes domain discrepancies using domain discriminators.

[70] has used several types of sensor data (wireless motion sensor, passive infrared, switch, and

pressure sensors) to evaluate an unsupervised DA approach called ”UDAR”. The method applies

variational autoencoder (VAE) to adapt feature distributions across source and target domains.

Occupancy estimation

For the OE task, a lot of DA approaches have been introduced like the AR task. Also, the

methods are of different types such as supervised, semi-supervised, and unsupervised learning.

[25] has used PCA transformation to perform supervised domain adaptation to transfer knowl-

edge from a source domain to a target domain. [25] has used ambient sensors to collect the

used data such as pressure sensors, CO2 concentration sensors, motion sensors, etc. The con-

sidered methods are based on PCA to create a new common domain. Then, the mapping be-

tween the transformed features has been done based on JSD distance values. [71] has developed a

semi-supervised/unsupervised DA technique based on recurrent neural networks (RNNs) to transfer

knowledge of models trained on source domains to a target domain where there is a lack of la-

beled data. The method has been tested on BMS sensor data such as temperature sensors, humidity

sensors, motion sensors, etc. [72, 73] have introduced a semi-supervised DA method called do-

main adaptation method for carbon dioxide - Human Occupancy Counter (DA-HOC). It uses CO2

6

concentration sensors to collect data to train models.

1.3 Contributions

This thesis has several contributions that can be listed as follows:

• Unsupervised Domain Adaptation without Source Data for Estimating Occupancy and

Recognizing Activities in Smart Buildings: In this research, we have adapted several UDA

methods, that have no direct access to labeled source data, from a 2-dimensional environment

(image data) to a 1-Dimensional environment (sensor data). The adapted methods are Source

HypOthesis Transfer (SHOT) [74], Source HypOthesis Transfer with Information Maximiza-

tion (SHOT-IM) [74], Higher-Order Moment Matching (HoMM) [75], and Source data Free

Domain Adaptation (SFDA) [44]. We have provided new feature extractors and classifiers

architectures so that they fit sensor data. The adapted methods can fit any 1-Dimensional data

and not necessarily smart building data. In a lot of testing scenarios, the obtained scores of

the adapted methods are better than supervised machine learning methods scores.

This research has been submitted to Energy and Buildings - Special Issue: ”Efficiency and

Energy Integration in Buildings - Smart Cities” [76].

• Unsupervised Domain Adaptation with Source Data for Estimating Occupancy and Rec-

ognizing Activities in Smart Buildings: In this research, we have adapted several methods

for smart buildings data (AR and OE) that have direct access to labeled source data, and

they can fit sensor data. The considered unsupervised domain adaptation approaches are Vir-

tual Adversarial Domain Adaptation (VADA) method [77], Sliced Wasserstein Discrepancy

(SWD) method [78], Hard Adaptive Feature Norm (HAFN) [79], Stepwise Adaptive Feature

Norm (SAFN) [79], and SAFN with entropy minimization (SAFN+ENTM) [79]. We pro-

vided new deep neural network architectures for the feature extractors and classifiers in most

of the considered methods. We evaluated these methods on AR and OE datasets and showed

their strengths and weaknesses by analyzing the findings and by applying a data poisoning

technique [80].

7

This research has been submitted to IEEE Transactions on Artificial Intelligence [81].

• Unsupervised Domain Adaptation With and Without Access to Source Data for Esti-

mating Occupancy and Recognizing Activities in Smart Buildings: In this research, we

have adapted several UDA approaches for smart buildings data (AR and OE) so that they can

work with any 1-Dimensional data such as sensor data, and we have tested them on smart

buildings datasets (private and public datasets). We have 6 adapted approaches for UDA with

access to labeled source data: domain separation networks (DSN) [82], cluster alignment

with a teacher (CAT) [83], CAT+ gradient reversal (RevGrad) [83], CAT + robust RevGrad

(rRevGrad) [83], Auxiliary Target Domain-Oriented Classifier (ATDOC) with nearest cen-

troid classifier (NC), and ATDOC with neighborhood aggregation (NA) [84]. Also, we have

6 adapted methods for UDA without labeled source data: confidence score weighting adap-

tation using joint model data structure (CoWA-JMDS) [85], CoWA-JMDS without weights

mixup [85], divide and contrast (DaC) [86], attracting and dispersing (AaD) [87], source hy-

pothesis transfer with information maximization (SHOT-IM) [74, 88], and source hypothesis

transfer with self-supervised pseudo-labeling (SHOT-Pseudo-labeling) [74, 88]. We have cre-

ated novel deep neural network architectures for most of the considered methods. Indeed, all

the feature extractors and classifiers have been changed with new ones based on convolutional

neural networks that are adaptable to sensor data. We have made a comparative analysis be-

tween UDA methods’ performance with and without direct access to labeled source data, and

we have chosen the best approach based on several factors such as privacy issues.

This research has been accepted in Building and Environment [89].

1.4 Thesis Overview

• In chapter 1, we introduce some theoretical background of domain adaptation and some re-

lated works of activities recognition and occupancy estimation.

• In chapter 2, we considered techniques that use only a trained source model instead of a huge

amount of labeled source data to make domain adaption in order to estimate the number of

8

occupants and recognize activities.

• In chapter 3, we adapt and develop several UDA methods that have direct access to labeled

source data to estimate the number of occupants and recognize activities.

• In chapter 4, we make a comparative analysis between several adapted deep UDA methods,

applied to the tasks of AR and OE, with and without access to labeled source data.

• In conclusion, we summarize our main findings and contributions.

9

Chapter 2

Unsupervised Domain Adaptation

without Source Data for Estimating

Occupancy and Recognizing Activities in

Smart Buildings

2.1 Introduction

Nowadays, buildings consume more than 32% of the world’s electrical energy [90]. Smart

buildings [22, 23, 24] have been introduced in the last two decades to ease people’s lives and to

solve many problems such as energy management [27, 28, 29, 30]. It helps provide optimal energy

distribution and reduce energy consumption. Using sensor data, researchers considered multiple

smart building tasks such as AR [1, 2, 3, 4, 5, 6, 7, 8, 9] and OE [10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21]. Prior research on AR and OE typically has focused on supervised machine learning

methods [13]. Models are trained and evaluated using data from the same domain. Researchers

have assumed that data distribution does not change across environments which is not true in most

cases.

In this research, we consider domain adaptation methods that do not require labeled data in

10

the target domain [74, 75, 44]. Labeled data have been a primary problem for researchers in smart

building tasks. The collection of labeled data is tedious, time-consuming, and can affect the behavior

of the collector with time. Knowledge transfer using domain adaptation is a good solution to avoid

data collection and to obtain models with good performance. It helps gain knowledge from source

domains and apply it to a target domain in order to improve performance or solve problems like

computational power and lack of data. Domain adaptation (DA) methods typically require access

to the source data, but the UDA methods that we are considering in this research do not require

explicit access to source data. They only use a trained source model instead of source data. Using a

trained model has two direct benefits related to privacy and storage [74, 91]. Indeed, it protects data

privacy which is one of the blocks to data collection in most cases. Also, adapting domains using

models instead of data will help us avoid the huge amount of storage needed to store source data.

The first considered method called Source HypOthesis Transfer (SHOT) [74] is inspired by [92]

and it consists of a feature encoding module and a classifier module (hypothesis). SHOT freezes

the source hypothesis and learns a target feature extractor that gives a target data representation like

the source data representation without having access to source data or target labels. In this case, the

source classifier can infer the labels of target instances. The feature encoding module of the target is

learned by information maximization (IM) [93] and a novel self-supervised pseudo-labeling method

[74]. Even though IM helps align feature representation to the source classifier, it is not an optimal

method. That is why a self-supervised pseudo-labeling method has been used. To enhance the

performance of domain adaptation, batch normalization [94], weight normalization [95] and label

smoothing [96] have been introduced in the source network. The second considered method called

Higher-Order Moment Matching (HoMM) [75] freezes the source feature extractor module and

learns a target classifier to make data alignment using a source-trained model. It also uses pseudo-

labeling for target samples to enhance model performance [75]. The third considered method called

Source data Free Domain Adaptation (SFDA) [44] uses a target model that is initialized by the

weights of the source pre-trained model. Then, the target model is trained in a progressive way

using two losses without using any labeled source data. The first loss aims to prevent the target

model from biasing by using source pseudo labels of target samples generated by the source pre-

trained model [44]. The second loss trains the target model using target pseudo labels generated by

11

the trainable target model in each iteration [44]. In this research, we contributed by providing new

model architectures for the feature extractors and the classifiers to fit sensor data. We also tested

the considered methods in a new field of data (sensor data instead of image data). Moreover, we

are the first to apply these methods to the fields of smart buildings (AR and OE). In a lot of cases,

the obtained results using the considered methods are better than the results of supervised machine

learning methods even though we are training target models with unlabeled data. All these findings

prove the efficiency of the considered methods.

The rest of the chapter is organized into 2 sections. In section 2, we introduce the considered

methods and, in section 3, we discuss the experimental results.

2.2 The considered methods

In this research, we adapted unsupervised DA methods called SHOT [74], HoMM [75] and

SFDA [44] for smart building tasks (AR and OE). The tested methods use only a pre-trained model

from the source domain without the need of getting access to source data. From the source environ-

ment, we are given a set of source samples Xs =
{
xis
}ns

i=1
and a set of source labels Ys =

{
yis
}ns

i=1
,

where ns is the number of source instances. From the target environment, we are given a set of un-

labeled target samples Xt =
{
xit
}nt

i=1
, where nt is the number of target instances. Using the source

prediction function fs : Xs −→ Ys and the target unlabeled samples Xt, the goal of the algorithm

SHOT is to learn the target prediction function ft : Xt −→ Yt and predict Yt =
{
yit
}nt

i=1
, where Yt

is a set of target labels [74].

The realization of the considered method is done by generating the source model, transferring

the source model to the target domain without accessing the source data, and enhancing the adapta-

tion method by acting on the network architecture.

2.2.1 Creating the source model

The first step in developing the considered methods is to generate the source model. To obtain

the source model fs : Xs −→ Ys, we need to develop a deep learning model and minimize the

following objective function with label smoothing [74] for the SHOT method. Label smoothing

12

helps to enhance the discriminability of the source model [96].

Lls
s (fs; Xs,Ys) = −E(xs,ys)∈Xs×Ys

K∑
k=1

qlsk log δk(fs(xs)), (1)

where δk(u) =
exp(uk)∑
i exp(ui)

represents the k-th element of the softmax output for a given vector

u of a dimension K. K is the number of classes, and q is one-of-K encoding of ys. qk takes 1 for

the correct cases and 0 otherwise. The smoothed label is defined as qlss = (1−α)qk +α/K and the

smoothing parameter is set to 0.1.

2.2.2 Source HypOthesis Transfer with Information Maximization (SHOT-IM)

As shown in Figure 2.1 [74], the source model consists of a feature extractor module gs :

Xs −→ Rd and a classifier module hs : Rd −→ RK , where d is the dimension of the feature

space of the input instances and K is the number of classes. Here, the source model is defined

as fs(x) = hs(gs(x)). SHOT freezes the source classifier hs = ht and it learns a target feature

encoding module gt : Xt −→ Rd such that the output target data distribution p(gt(xt)) matches

the data distribution of the source data p(gs(xs)). Hence, it can be classified accurately using the

source classifier. It is important to note that SHOT does not use the source data while creating the

target feature extractor and it uses the source feature encoder as initialization [74].

Figure 2.1: SHOT pipeline

13

Information maximization (IM) [93, 97] loss has been employed to learn the target feature en-

coder module as follows:

Lent(ft; Xt) = −Ext∈Xt

K∑
k=1

δk(ft(xt)) log δk(ft(xt)),

Ldiv(ft; Xt) =
K∑
k=1

p̂k log p̂k = DKL(p̂,
1

K
1K)− log(K)

(2)

where DKL is the Kullback-Leibler divergence, 1K is a ones vector of dimension K, p̂ =

Ext∈Xt(δk(f
(k)
t (xt))) is the average output embedding of the target environment.

2.2.3 SHOT augmented with self-supervised pseudo-labeling

To further enhance the performance of the target model, pseudo-labeling [98] for target unla-

beled data has been introduced and specifically a self-supervised pseudo-labeling strategy inspired

from [99]. Pseudo-labeling is defined as giving unlabeled data labels using supervised models.

Pseudo-labels of target data can be generated using the source model, but due to the domain shift

between source and target domains, a new strategy has been considered to provide unlabeled target

data with pseudo-labels [74]. To apply the proposed strategy, we create a centroid for each class of

the target environment like in weighted k-means clustering and we infer the pseudo labels as follows

[74]:

c
(0)
k =

∑
xt∈Xt

δk(f̂t(xt))ĝt(xt)∑
xt∈Xt

δk(f̂t(xt))
,

ŷt = argmin
k

Df (ĝt(xt), c
(0)
k)

(3)

where f̂t represents the previously learned target model and it is defined as f̂t = ĝt(ht), and Df

represents the cosine distance.

In the next step, we calculate the target centroids and the new pseudo labels based on the ob-

tained updates.

14

c
(1)
k =

∑
xt∈Xt

1(ŷt = k)ĝt(xt)∑
xt∈Xt

1(ŷt = k)
,

ŷt = argmin
k

Df (ĝt(xt), c
(1)
k)

(4)

The centroids are generated in an unsupervised way which is why ŷt are called self-supervised

pseudo labels. We keep updating the centroids and the labels until we obtain good pseudo labels.

To sum up, SHOT uses the following general objective function L(gt) to determine the feature

encoder [74]:

L(gt) = Lent(ft; Xt) + Ldiv(ft; Xt)− βE(xt,ŷt)∈Xt×Ŷt

K∑
k=1

1[K=ŷt] log δk(ft(xt)) (5)

where β > 0 is a balancing hyper-parameter.

2.2.4 Source hypothesis network architecture and general algorithm

For the network architecture, we followed the network DTN introduced in [74] but we adapted

it to fit sensors data as shown in Figure 2.2.

The general algorithm of the SHOT method [74] is defined in Algorithm 1.

Algorithm 1 SHOT algorithm
Require: Source hypothesis fs, unlabeled target data, balancing hyperparameter β, number of epochs T .

1: Initialization: Freezing the source classifier hs = ht, and using gs as an initialization.
2: for i = 1 → T do
3: Generate self-supervised pseudo labels using Eq.(4).
4: for j = 1 → nbatch do
5: Obtain the pseudo labels for a given batch from target data.
6: Using L(gt) in Eq.(5), update gt.
7: end for
8: end for

2.2.5 Higher-Order Moment Matching (HoMM)

HoMM is a deep unsupervised domain adaptation method that transfers weights of the source

feature extractor module to the target model, and it performs data alignment on the classifier module

15

Figure 2.2: Source model network architecture

[75] as shown in Figure 2.3.

Figure 2.3: HoMM pipeline

Based on [75], a domain adaptation algorithm should include at least the source domain loss Ls

and the domain discrepancy loss Ld as shown in Eq.(6).

L(θ|Xs,Ys,Xt) = Ls + λdLd
(6)

16

Ls =
1

ns

ns∑
i=1

J(fθ(x
i
s)) (7)

where J represents the cross-entropy loss function, θ is the parameter of the model that we want to

learn, and λ is a Lagrange multiplier.

Most of the existing discrepancy minimization methods focus on the first and second-order

statistics to perform distance minimization between sources and target domains [75]. In this work,

we focus on higher-order statistics between domains as presented in the following equation [75].

Ld =
1

Lp

∥∥∥∥∥
(

1

ns

ns∑
i=1

Ξθ(x
i
s)

⊗p − 1

nt

nt∑
i=1

Ξθ(x
i
t)
⊗p

)∥∥∥∥∥
2

F

(8)

where nt = ns = batch size, L is the number of hidden cells in the aligned layer, ⊗p(p ≥ 3) is

the p-level tensor power, and Ξθ represents the output of the activation function of the aligned layer.

Eq.(8) of higher-order moment matching has been generalized into reproducing kernel Hilbert

spaces (RKHS) [75].

For a good data distribution alignment between source domain features and target domain fea-

tures, the unsupervised domain adaptation task turns into a semi-supervised domain adaptation task

where we have some target samples with a high level of confidence [75]. We use the predicted

samples with a high level of confidence (probability ≥ η) to create pseudo-labels, and apply

discriminative clustering using the following loss function [75] by penalizing the distance of the

pseudo-label samples and their centers. Discriminative clustering is encouraged for the case of

unsupervised domain adaptation where we do not have labeled data on the target domain [75].

Ldc =
1

nt

nt∑
i=1

∥∥∥hit − cŷit

∥∥∥2
2

(9)

where ŷit are the pseudo-labels of the target samples with the high confidence level, cŷit are the

17

class centers of the pseudo-labels ŷit, and hit = Ξθ(x
i
t).

Finally, we obtain the full loss function defined as the sum of all the loss functions [75].

L = Ls + λdLd + λdcLdc
(10)

where λd and λdc are Lagrange multipliers.

For the network architecture, we created our private architecture defined in Figure 2.4.

Figure 2.4: HoMM model network architecture

The network is defined as 5 sets of convolutional, batch normalization, and Relu function blocks,

followed by 3 fully connected layers using Relu and SoftMax functions.

2.2.6 Source data Free Domain Adaptation (SFDA)

SFDA is a deep unsupervised domain adaptation method that does not use source-labeled data

to train the target model, but instead, it uses a pre-trained model from the source domain [44]. It op-

timizes two losses to train the target model. The first loss uses pseudo labels of target samples using

the pre-trained source model, and the second loss uses pseudo labels of target samples generated by

the trainable target model periodically.

18

Figure 2.5: SFDA pipeline

Figure 2.5 illustrates the general architecture of the SDFA approach [44]. The considered

method contains two types of models. A pre-trained source model with a feature extractor Fs

and a classifier Cs. The parameters of the source model remain the same during all the algorithm

steps. The target model is initialized with source model parameters at first, then it is trained in a

progressive way. It contains a feature extractor Ft and two classifiers: Cs2t is trained using source

model pseudo labels of target samples ŷs and Ct is trained using target model pseudo labels ŷt of

target samples generated by adaptive prototype memory (APM). The obtained pseudo labels from

APM ŷt are further filtered using point-to-set distance-based confidence to keep only samples with

a high confidence level. SDFA optimizes two loss functions to obtain the final target model. The

first loss aims to prevent the target model from biasing by using source pseudo labels of target sam-

ples generated by the source pre-trained model. The second loss trains the target model using target

pseudo labels generated by the trainable target model in each iteration. The general architecture of

the source pre-trained model used in this approach is illustrated in Figure 2.6.

Adaptive prototype memory (APM)

Since the source pre-trained model has fixed parameters during the training of the target model.

Then, all the pseudo labels of Cs2t of the target samples do not change during the training of the

19

Figure 2.6: SFDA model network architecture

target model [44]. To create the final target model with good performance, we give pseudo labels

to all the target samples (multiprototypes) using APM. At first, we compute the normalized entropy

for each target sample as follows:

H(xt) = − 1

logNc

∑
l(xt) log(l(xt)) (11)

where l(xt) is the Ct predicted probability and Nc is the number of classes.

Then, we choose multiprototypes that are going to represent each class based on the values of

the entropy. We select the lowest entropy for each class and we set the largest values among the

selected entropies as a threshold. The chosen threshold will be used to choose target samples to

represent each class. Indeed, only samples with values less than the threshold are considered for

each class. The threshold is not static but it decreases as the training goes on, and this improves the

performance of the trained target model as small values of the threshold remove the noisy samples

for each class [44].

20

Pseudo labeling and Confidence-Based Filtering

We can calculate pseudo labels for target samples by feeding them into the target feature extrac-

tor Ft. Then, we are going to obtain embeddings ft that we will compare to the multiprototypes of

the different classes using a similarity score to make the affectation.

Using the obtained pseudo labels in APM we can train the target model. However, mistakes

may happen since we are dealing with unlabeled data. So, a filtering technique has been considered

based on point-to-set distance inspired by Hausdorff distance to keep only samples with a high level

of confidence [44].

Optimization

The loss function that we are optimizing in this method is a combination of two loss functions

from the two classifiers Cs2t and Ct. The source model pseudo labels ŷs are used to train Cs2t using

the following loss function that maintains knowledge from a source domain to the target model [44].

Lsource(Dt) = −Ext

Nc∑
c=1

1c=ŷs log(σ(Cs2t(Ft(xt))) (12)

where 1 is an indicator function and σ is a sofmax function.

The pseudo labels ŷt generated by APM are used to train the Ct classifier using the following

loss function:

Lself (Dt) = −Ext

Nc∑
c=1

w(xt)1c=ŷs log(σ(Cs2t(Ft(xt))) (13)

where w(.) is the confidence score of the confident samples.

The total loss function is defined as a weighted sum of the two loss functions.

Ltotal(Dt) = (1− α)Lsource(Dt) + αLself (Dt) (14)

where α is a hyperparameter that balances the two loss functions.

21

2.3 Experimental setup and results

2.3.1 Datasets

For the AR task, we used public datasets of Washington State University (WSU) Center for

Advanced Studies in Adaptive Systems (CASAS) [100]. The datasets are single-resident apart-

ment data. They have been collected using several types of sensors (Ambient PIR motion sensors,

door/temperature sensors, and light switch sensors). The considered activities are cooking breakfast,

cooking lunch, cooking dinner, watching TV, and toileting.

For the OE task, we used our private datasets [13, 14] that are collected from two similar offices

(H355 and H358) located at Grenoble Institute of Technology. The data has been collected using

many smart building sensors like power consumption sensors, CO2 concentration sensors, humidity

sensors, temperature sensors, door and window contact sensors, and acoustic pressure sensors. The

considered levels of occupants are 0, 1, and 2.

For both tasks AR and OE, we extracted balanced and unbalanced datasets to test the efficiency

of the considered method for different scenarios.

2.3.2 Metrics

For the evaluation, we used 2 metrics depending on the scenario that we are examining. We

used accuracy as a metric in the case where we are dealing with balanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

We used the F1 score as a metric in the scenario where we are dealing with unbalanced datasets.

Precision (Pr) =
1

N

N∑
i=1

TPi

TPi + FPi
(16)

22

Recall (Rc) =
1

N

N∑
i=1

TPi

TPi + FNi
(17)

F-score (F1) =
2× Precision×Recall

Precision+Recall
(18)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

2.3.3 Experimental results

AR scores

For unbalanced datasets with 5 activities, SHOT-IM gives 62.71%, and full SHOT improved

with self-supervised pseudo-labeling gives 58.74% weighted F1 scores which are good achieve-

ments. However, HoMM gives a lower weighted F1 score (almost 38%) compared to the previous

methods. Indeed, it is less than the supervised method, SHOT-IM, and SHOT pseudo-labeling with

51.63%, 31.34%, and 27.37%, respectively. The obtained results are expected due to the complexity

of the task (five activities), the unsupervised manner, and the highly unbalanced datasets. Pseudo-

labeling is misleading in the current case of predicting 5 activity levels with a highly unbalanced

data set. That is why the obtained results for the full SHOT improved with pseudo-labeling are

lower than SHOT-IM. Table 2.1 illustrates all the presented results.

Table 2.1: AR scores for 5 labels in an unbalanced data

Method (Source −→ Target) F1score(%)

SHOT-IM 62.71
SHOT-Pseudo-labeling 58.74

HoMM 38.45
Target Supervised Model 90.08

Table 2.2 gives the detailed F1-scores for the different activities in the case of the unbalanced

data set. Indeed, the correctness of the prediction of the 5 activities differs between the three meth-

ods and inside each method as well. Activities with more numbers of samples (1st activity) are

23

always well classified. In addition, activities with few instances can be well classified by the pro-

posed methods such as the case of the 3rd and the 5th activities in the SHOT-IM method. However,

in some cases, categories with a small number of instances while training cannot be well classified

by the model and provide lower results such as the 5th category result (0.0%) in the HoMM method.

Table 2.2: AR scores for 5 labels in an unbalanced data: labels scores

Method—Activity 1st 2nd 3rd 4th 5th
SHOT-IM 88.88 20.66 92.99 15.53 65.49

SHOT-Pseudo-labeling 90.69 31.52 92.99 39.74 32.18
HoMM 72.33 23.301 18.59 40.46 0.0

When we decreased the complexity of the task on only 3 activities, we have seen a huge im-

provement in the performance of all the methods with almost 30% of f1-score (+30.60% for SHOT-

IM, +28.96% for full SHOT, and +31.73% for HoMM). Even though the data sets are unbalanced,

SHOT-IM and full SHOT are giving very good weighted F1 scores (93.31% and 87.70%) that are

comparable to supervised approaches results (95.58%) and better than HoMM results (70.18%) for

this case. SHOT-IM is better than full SHOT (pseudo-labeling) for this case and this makes us

deduce that self-supervised pseudo-labeling created for the unlabeled target data is misleading for

the case of AR, as shown in Table 2.3. In other words, the pseudo-labels created using the Full

SHOT method are not so accurate for the considered case. SFDA has also given excellent results for

the considered task with 92.00% of F1 score which is comparable to supervised learning methods

scores.

Table 2.3: AR scores for 3 labels in an unbalanced data

Method (Source −→ Target) F1score(%)

SHOT-IM 93.31
SHOT-Pseudo-labeling 87.70

HoMM 70.18
SFDA 92.00

Target Supervised Model 95.58

By decreasing the number of activities, we fixed the issue related to the prediction correctness

of each label. Indeed, as shown in Table 2.4, all the activities are classified with a high level

of correctness and the models are able to capture information related to all labels better than in

24

the previous task (5 activities) where some labels have been ignored by the models. The data

distribution of the AR task with a huge number of features was one of the reasons that made it

difficult for the model to capture all the information of the data. Also, the similarities between some

tasks for 5 activities such as preparing lunch and preparing dinner is a reason for the model to get

confused while predicting. Indeed, this is an issue that we will work on in the following research

trying to obtain DA models that provide good performance for higher levels of tasks. The minimum

prediction score that we obtained is with the HoMM method for the 3rd category with a 52.60%

f1-score which is acceptable. We can conclude that as the complexity of the task goes up, and that’s

what we are interested in to obtain powerful models, the accuracies of the models start to decrease,

and vice versa. Indeed, these findings are expected since the more complicated the task is the more

difficult for the model to predict it correctly.

Table 2.4: AR scores for 3 labels in an unbalanced data: labels scores

Method 1st activity 2nd activity 3rd activity
SHOT-IM 95.26 92.13 90.32

SHOT-Pseudo-labeling 88.84 84.83 88.54
HoMM 83.08 59.21 52.60
SFDA 95.15 93.89 85.67

For balanced data sets, evaluating SHOT on AR task with 5 activities gives significant results

for SHOT methods compared to the unbalanced data set results. As shown in Table 2.5, SHOT

improved with self-supervised pseudo-labeling outperforms SHOT-IM by almost 3%. Full SHOT

provides good results (68.00%) in an unsupervised manner that are comparable to supervised model

results. In this case, the created pseudo labels for the unsupervised task have helped to increase

the performance of the target model and provide good results compared to SHOT-IM. However,

HoMM with the increase of activities number (complexity) for the case of balanced data set did

perform poorly with 38.20% weighted F1-score. HoMM is unable to provide good results with the

increase of complexity (more than 3 categories) of the target task for both balanced and unbalanced

AR data sets.

By reducing the number of classes for AR, we have seen a significant improvement in SHOT per-

formance (88.80%) and HoMM (61.25%) as shown in Table 2.6. The removed activities (Cooking

25

Table 2.5: AR accuracies for 5 labels in a balanced data

Method (Source −→ Target) Accuracy (%)
SHOT-IM 65.40

SHOT-Pseudo-labeling 68.00
HoMM 38.20

Target Supervised Model 80.80

lunch and cooking dinner) have been chosen wisely. Indeed, these 2 activities have a lot of similari-

ties when it comes to the activated sensors while performing these tasks. It is clear that the activated

sensors while ’watching TV’ or ’toileting’ will be most of them different than the tasks related to the

kitchen (preparing breakfast, lunch, and dinner). That is why we choose to keep just one task related

to the kitchen (preparing breakfast) and remove the comparable tasks to make it easy for the model

to better make a difference between the labels. The obtained results are expected since we have re-

duced the complexity of the task (AR), and the increase in the performance is not influenced by the

type of activities that we have removed but influenced only by the task complexity in this case. The

scores exceed classical supervised methods performances with 0.8% for the case of SHOT methods.

HoMM with reduced target task complexity (less than 3 labels) for both balanced and unbalanced

data sets, provides good prediction results that can be considered for further research works. SFDA,

by progressively updating the target model in a self-learning manner, has given the best scores and

has exceeded all the considered methods with 96.67% of accuracy.

Table 2.6: AR accuracies for 3 labels in a balanced data

Method (Source −→ Target) Accuracy (%)
SHOT-IM 88.80

SHOT-Pseudo-labeling 78.80
HoMM 61.25
SFDA 96.67

Target Supervised Model 88.00

Figure 2.7 gives all the obtained scores for balanced (accuracy) and unbalanced (F1-score)

datasets compared to their references (target supervised models).

26

Figure 2.7: AR results for balanced (accuracy) and unbalanced (F1-score) datasets

OE scores

OE data sets that have been tested on the considered methods, have been also used before to

test several supervised basic transfer learning methods [25] such as the PCA-like method and PCA-

SMOTE method. That is why we included the previously obtained results to make a comparison

between basic and deep transfer learning methods.

For unbalanced data sets, full SHOT and SHOT-IM gave great results for the task of OE with 3

levels of occupants. The self-supervised pseudo-labeling method did give the same performance as

the SHOT-IM method. Indeed, the created pseudo-labels, in this case, did not improve the results

of the basic SHOT method. SFDA gave great results that are less than SHOT methods, but greater

than HoMM results with almost 7% of F1 score. Indeed, progressively updating the target model

in a self-learning manner has proved its efficiency in the case of the SFDA method. HoMM did

give a good result (69.66%), but it is less than the SHOT method results. The results of SHOT

methods are better than classical supervised method results with 0.5%, and they are comparable to

the supervised PCA-like method [25]. Indeed, these results prove the robustness of the considered

methods in the considered unsupervised case. Table 2.7 presents the obtained results for OE with 3

labels.

27

Table 2.7: OE scores for 3 labels in an unbalanced data

Method (Source −→ Target) F1score(%)

SHOT-IM 82.57
SHOT-Pseudo-labeling 82.57

HoMM 69.69
SFDA 76.92

Target Supervised Model 82.07
Supervised PCA-like method 85.96

Table 2.8 gives the detailed scores for the different OE levels. Indeed, we can notice some

differences in the prediction correctness of the different labels for each method. The difference in

scores is due to the unbalanced data sets that we are using. Labels with a huge number of samples

get always the best prediction scores. For the considered SHOT methods, the results are good for

all the levels of occupancy even though the data sets are unbalanced.

Table 2.8: OE scores for 3 labels in an unbalanced data: labels scores

Method 1st label 2nd label 3rd label
SHOT-IM 92.90 53.85 73.85

SHOT-Pseudo-labeling 92.90 53.85 73.85
HoMM 85.10 32.94 50.76
SFDA 88.49 54.55 12.44

Supervised PCA-like method 92.88 61.01 73.33

By decreasing the complexity of the OE task, we notice an improvement in all the methods,

and this is expected as we have explained before. In the case of the OE task, we were able to

decrease the occupancy levels without removing instances. Indeed, we have merged levels with

high levels of occupancy because it is clear that as the number of occupancy levels increases the

values of the activated sensors (such as CO2 concentration, and motion counting) will increase as

well. Full SHOT and SHOT-IM keep giving great results (87.62% and 87.63%, respectively) that

are close to supervised methods score (88.65%) even though they are unsupervised approaches. Full

SHOT enhanced with self-supervised pseudo-labeling is slightly better than SHOT-IM in this case as

shown in Table 2.9. HoMM with 2 levels of occupancy provides a better result than SHOT methods

(83.23%). Indeed, we can notice that HoMM performs pretty well with the decrease in the target

task complexity. All the obtained results for the considered methods are almost the same as the

supervised PCA-like method [25] (almost 1.5% of score difference) which is a good achievement

28

for unsupervised learning methods. Even though, we have noticed an increase in the performance

of the SFDA method (+6.41%), it is a bit far from the supervised PCA-like method compared to the

rest of the methods. We can conclude that HoMM has benefited from the complexity decrease of

the task to improve its performance dramatically and has exceeded all the considered methods.

Table 2.9: OE P/A scores for 2 labels in an unbalanced data

Method (Source −→ Target) F1score(%)

SHOT-IM 87.62
SHOT-Pseudo-labeling 87.63

HoMM 88.23
SFDA 83.33

Target Supervised Model 88.65
Supervised PCA-like method 89.88

Table 2.10 illustrates all the scores of the two levels of occupancy for the different considered

methods. Indeed, it is clear that the first label has more samples than the second label since all

the methods have classified the first label with a high level of correctness. Even though the results

between the first and second labels are different, both of labels have very good prediction results.

Table 2.10: OE P/A scores for 2 labels in an unbalanced data: labels scores

Method 1st label 2nd label
SHOT-IM 91.63 73.97

SHOT-Pseudo-labeling 91.63 73.97
HoMM 91.87 69.27
SFDA 91.82 70.23

Supervised PCA-SMOTE method 93.28 79.54

For balanced datasets, evaluating OE task with 3 levels of occupancy gives good performance

for SHOT-IM, SFDA, and HoMM (73.80%, 68.00%, and 63.75%, respectively). The obtained re-

sults are comparable to classical supervised method results, and they show an important increase

compared to SHOT-Pseudo-labeling (6.55% for HoMM, 9.80% for SFDA and 16.60% for SHOT-

IM, of accuracies increase). Full SHOT enhanced with self-supervised pseudo-labeling did not

perform well compared to SHOT-IM. Indeed, this may be because the considered method requires

a big number of samples to learn the target feature encoder. Also, in the used datasets, all the

occupancy levels greater than 2 are considered as a 2-level of occupancy and this can affect the

created pseudo-labels. Table 2.11 illustrates all the presented scores. In previous works, we tested

29

a supervised transfer learning method for the balanced data set called PCA-SMOTE method [25],

and it has given 90.93% of accuracy. SHOT-IM, as an unsupervised transfer learning method, with

73.80% of accuracy is considered a good achievement compared to the supervised transfer learning

method that we have tested before.

Table 2.11: OE accuracies for 3 labels in a balanced data

Method (Source −→ Target) Accuracy (%)
SHOT-IM 73.80

SHOT-Pseudo-labeling 57.20
HoMM 63.75
SFDA 68.00

Target Supervised Model 83.00
Supervised PCA-SMOTE method 90.93

When we considered the task of Presence/Absence of Occupancy, we reduced the number of oc-

cupancy levels and we obtained better performances as shown in Table 2.12. The improvement in

scores is expected due to the complexity decrease. In contrast to the case of the unbalanced dataset

for the OE task when HoMM exceeded all the methods by reducing the number of occupancy levels,

SFDA, in the current case (balanced dataset), has exceeded all the proposed methods and has given

a score 90.00% which is even better than supervised machine learning methods. SHOT enhanced

with self-supervised pseudo-labeling (86.40%) gives the same results as SHOT-IM (86.40%) and

outperforms HoMM (82.50%). It gives also results so close to classical supervised method scores

(88.80%) and supervised PCA-SMOTE method [25] even though it is an unsupervised method. The

performances of all the methods are so close and very promising. We can understand that label dis-

tribution (balanced or unbalanced datasets) has an impact on the behavior of the methods (HoMM

and SFDA).

We can notice that SHOT pseudo-labeling results for the unbalanced data sets are better than its

results for the balanced data sets. This can be explained by the usefulness of label weights in the

data set to create the pseudo labels with a high level of confidence. Thus, we obtain better results in

the model prediction.

Figure 2.8 gives all the obtained scores for balanced (accuracy) and unbalanced (F1-score)

datasets compared to their references (target supervised models).

30

Table 2.12: OE P/A accuracies for 2 labels in a balanced data

Method (Source −→ Target) Accuracy (%)
SHOT-IM 86.40

SHOT-Pseudo-labeling 86.40
HoMM 82.50
SFDA 90.00

Target Supervised Model 88.80
Supervised PCA-like method 90.27

Figure 2.8: OE results for balanced (accuracy) and unbalanced (F1-score) datasets

31

Chapter 3

Unsupervised Domain Adaptation with

Source Data for Estimating Occupancy

and Recognizing Activities in Smart

Buildings

3.1 Introduction

In the last few years, machine learning [101, 102, 103, 45] gained significant interest in smart

buildings [104] due to the increase of data produced by sensors and IoT devices [105, 106, 107, 25,

26]. In particular, researchers have considered two vital smart building tasks which are occupancy

estimation (OE) and activities recognition (AR) due to the several advantages generated by them [25,

26, 108, 109, 13, 18, 110, 111, 112, 113, 114]. Indeed, OE can be helpful for energy management by

accurately estimating occupancy in the different areas of a building. Thus, managers can optimally

distribute energy over all the buildings [25, 26, 115]. Also, detecting and estimating occupancy

in a smart building can help identify unauthorized access to the building, providing more security

for the inhabitants [31, 32, 33]. Recognizing activities allows managers of buildings to optimize

HVAC (heating, ventilation, and air conditioning) systems by understanding occupants’ behavior

32

in each room, providing inhabitants with more comfort [34, 35]. AR and OE machine learning

models [13, 116, 117] trained on a particular smart building environment may not generalize well

on unknown sensor domains due to several reasons such as feature representation difference (type

of sensors) and data distribution shift (sensors locations). Creating a machine learning model for

each smart building environment is a costly and time-consuming task due to data scarcity [25, 38].

For that reason, domain adaptation [43, 44, 45, 46, 47, 48, 49, 50] can be used as a solution to solve

these problems. Indeed, domain adaptation solves the problem of data requirements by mitigating

data distribution shifts between environments, allowing knowledge transfer across related smart

building domains [25, 118]. Sharing knowledge between domains helps increase the performance

of models as well as their robustness. Indeed, creating models that generalize well for related

domains decreases sensitivity to domain shift, providing robust methods.

In this research, we introduce several unsupervised domain adaptation methods where we have

access to only labeled data from the source domain and unlabeled data from the target domain.

The goal is to mitigate data distribution shifts between source and target domains so that we can

transfer knowledge across the environments, and build generalized, accurate, and robust models.

We also test the robustness of all the considered methods using a data poisoning technique [80].

Indeed, the data poisoning technique used in this research adds mislabeled data samples to the

training and compares the behavior of the model before and after the data poisoning [80]. The

considered unsupervised domain adaptation approaches are Virtual Adversarial Domain Adaptation

(VADA) method [77], Sliced Wasserstein Discrepancy (SWD) method [78], Hard Adaptive Feature

Norm (HAFN) [79], Stepwise Adaptive Feature Norm (SAFN) [79], and SAFN with entropy mini-

mization (SAFN+ENTM) [79]. Firstly, VADA [77] is a deep UDA technique that includes domain

adversarial training and a penalty term to punish the violation of the cluster assumption. Domain

adversarial training is done using 3 components: a feature extractor, a domain classifier, and a task-

specific classifier. The goal of the feature extractor and the task-specific classifier is to predict the

target task with high accuracy as well as fooling the domain classifier in distinguishing between data

representations coming from different domains. Thus, the feature extractor provides data represen-

tations that generalize for different domains. Secondly, the SWD method [78] is an UDA technique

that uses task-specific decision boundaries of machine learning models from different domains as

33

well as the Wasserstein metric to make domain adaptation. The Wasserstein distance is used to mea-

sure the discrepancy between the probability distributions defined by the models [78]. Lastly, the 3

Adaptive Feature Norm (AFN): Hard Adaptive Feature Norm (HAFN), Stepwise Adaptive Feature

Norm (SAFN), and SAFN with entropy minimization are deep UDA that adapt the feature norms of

the models to allow information transferability between domains [79]. HAFN mitigates the domains

discrepancy by limiting the expected feature norms of the two domains to a fixed scalar. However,

SAFN allows the increase of feature norms in a progressive way for each sample across domains

[79], providing an increase in knowledge transfer compared to HAFN. Also, the SAFN+ENTM is

improved compared to the SAFN with the entropy minimization term while training [79] which

further increases the transfer gains compared to SAFN. This research has several contributions. In-

deed, we have adapted all the considered methods for smart buildings data (AR and OE) so that

the approaches work without problems with sensor data, providing good performances. Also, we

provided new deep neural network architectures for the feature extractors and classifiers in most

of the considered methods. Moreover, we evaluated these methods on AR and OE datasets and

showed their strengths and weaknesses by analyzing the findings and by applying a data poisoning

technique.

The rest of the chapter is organized into 2 sections. In section 2, we introduce and explain the

considered approaches and, in section 3, we discuss the research findings.

3.2 Proposed methods

3.2.1 Virtual Adversarial Domain Adaptation (VADA)

Virtual Adversarial Domain Adaptation (VADA) [77] is an unsupervised deep domain adap-

tation method that uses labeled source data and unlabeled target data to align data distributions

between source and target domains in order to enhance target model performance. VADA is a mix-

ture of adversarial domain adaptation that trains a source model to fit a target domain by reducing

domain shift, and a conditional entropy loss added to the optimization function that punishes the

cluster assumption violation which assumes that samples with close data distributions belong to the

same class [77].

34

Domain adversarial training is defined by solving the following optimization function [77]:

min
θ

Ly(θ;Ds) + λdLd(θ;Ds,Dt) (19)

where λd is a weighting parameter, θ is a hyperparameter, y is the labels vector, Ds and Dt are

joint distributions for source and target input data x, Ly and Ld are loss functions.

Ly is defined as the cross-entropy loss, and Ld is a loss function that allows the creation of

a feature extractor f that minimizes the distance between the source feature space f(Xs) and the

target feature space f(Xt) with X is a marginal data distribution and f is an embedding function

[77].

Ly(θ;Ds) = Ex,y∼Ds [y
T lnhθ(x)] (20)

Ld(θ;Ds,Dt) = sup
D

{Ex∼Ds [lnD(fθ(x))] + Ex∼Dt [ln(1−D(fθ(x)))]} (21)

where h is a classifier defined with the hyperparameter θ, and D is a discriminator. Domain

adversarial training improves the performance of the target task by making the source model invari-

ant to the domain shift. Indeed, the discriminator D tries to predict the domain of samples, and

the task classifier tries to confuse the discriminator by creating feature representations that are not

informative about the origin of the samples.

The feature extractor, the classifier as well as the discriminator are defined as a series of convo-

lutional and normalization layers as follows.

The feature extractor is created using 2 blocks of layers, each layer is composed of 3 blocks of

convolutional, batch normalization, and LeakyReLu activation function, as well as a max-pooling

layer and a Gaussian noise as presented in Figure 3.1.

The classifier is composed of 3 blocks of convolutional, batch normalization, and LeakyReLu

activation function layers, as well as an adaptive average pooling layer and a convolutional layer as

illustrated in Figure 3.2.

35

Figure 3.1: Feature extractor architecture.

The discriminator is developed using 2 Linear layers and the Relu activation function as defined

in Figure 3.3. Adversarial domain adaptation may fail to generalize for target domains in the case

where the feature extractor f has a high capacity or the source-target tasks are different [77]. In

our current case, we may encounter the problem of high feature extractor capacity. In other words,

the feature extractor is able to capture deep and detailed information of the source data, leading to

overfitting to the source domain [77]. To avoid this problem, we add constraints to the loss function

to ensure that domain adaptation is being enhanced as defined in Eq. (22).

min
θ

{Ly(θ;Ds) + λdLd(θ;Ds,Dt) + λsLv(θ;Ds) + λt[Lv(θ;Dt) + Lc(θ;Dt)]} (22)

where λs and λt are hyperparameters, Lc and Lv are defined in Eq. (23) and Eq. (24), respec-

tively.

Lc(θ;Dt) = −Ex∼Dt

[
hθ(x)

T lnhθ(x)
]

(23)

Lc is a loss function that applies the cluster assumption. Indeed, it states that every input data is

36

Figure 3.2: Task-classifier architecture

a set of clusters and all samples of each cluster are related to the same class [77]. Thus, the model

will push the decision boundaries of each class away from dense areas of unlabeled target data.

Lv(θ;D) = Ex∼D

[
max
∥r∥≤ϵ

DKL (hθ(x)∥hθ(x+ r))

]
(24)

where ϵ is a generalization error function, r is a parameter, and DKL is Kullback–Leibler diver-

gence. Lv is a loss function that applies the locally-Lipschitz constraint [77] to further enhance the

decision boundaries placement and to prevent it to be placed near training samples.

3.2.2 Sliced Wasserstein Discrepancy (SWD)

Sliced Wasserstein Discrepancy (SWD) [78] is a deep learning method that mitigates features

distributions shift between source and target domains using labeled source data and unlabeled target

data (unsupervised learning). It aims to enhance and improve the performance of a target domain

where data is scarce by sharing knowledge from a source domain where labeled data availability is

high. SWD is developed using Wasserstein discrepancy distance and task-specific decision bound-

aries. At first, SWD trains a feature extractor, and two classifiers to fit source data. Then, it freezes

the feature extractor and maximizes the discrepancy between the output of the two classifiers using

37

Figure 3.3: Discriminator architecture.

the Wasserstein Discrepancy distance to identify target samples with distributions different from

the source data distribution. Finally, it freezes the classifiers’ weights, and it updates the feature

extractor to minimize the discovered discrepancy, providing domain adaptation between source and

target data [78].

To establish unsupervised domain adaptation using SWD, we follow three steps. Firstly, we

train a feature extractor G as well as two classifiers C1 and C2 on the source data to predict the

labels of the samples accurately by solving Eq. (25).

min
G,C1,C2

Ls(Xs, Ys) (25)

where Xs, Ys is the source domain, and Ls is a typical loss function such as cross-entropy [78].

Secondly, we freeze the feature extractor, and we train the two classifiers on the target samples

aiming to maximize the difference between the outputs of the two classifiers. Thus, we can detect

the target instances that are not supported by the source model. In other words, we identify target

samples with data distribution different from the source data distribution [78]. Eq. (26) illustrates

the optimization function to solve.

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt) (26)

where Xt is the target set, LDIS is the discrepancy loss, and Ls is the source loss function that

38

aims to keep information from source domain [78]. Finally, we mitigate the discrepancy between

the source and target domains by training the feature generator on the target data Xt and by freezing

the two classifiers C1 and C2 as shown in Eq. (27).

min
G

LDIS(Xt) (27)

The neural network architecture for the feature generator G as well as for the classifiers C1 and

C2 are given in Figure 3.4 and Figure 3.5.

Figure 3.4: Feature extractor architecture.

Figure 3.5: Classifiers architecture.

The architectures of the feature extractor G as well as the two classifiers C1 and C2 are cre-

ated using fully connected layers with ReLu activation functions. For the classifiers, they provide

39

probability values for each class in the last layer using the Sigmoid activation function.

In this research, the Wasserstein distance has been used to enhance the data alignment of source

and target domain [78]. It has received huge attention since it is better than several distance metrics

such as Jensen-Shannon divergence. Indeed, it takes into consideration the geometry of data distri-

bution space while calculating the distance between sample distributions [78]. For the classification

task, the distance is defined in Eq. (28).

SWD(µ, ν) =

M∑
m=1

N∑
i=1

c(Rθmµαi ,Rθmνβi
) (28)

where c : Ω×Ω → R+ is a quadratic geodesic metric that calculates the shortest length between

two projections, Ω is a probability space, θ is a uniform measure, µ and ν are probabilities, α and

β are permutations, Rθ are projections of N samples, and M is the number of uniform measures θ

[78].

3.2.3 Adaptive Feature Norm (AFN)

In this research, we consider three deep unsupervised domain adaptation approaches called

Hard Adaptive Feature Norm (HAFN), Stepwise Adaptive Feature Norm (SAFN), and SAFN with

entropy minimization (SAFN+ENTM). All these methods use labeled source data and unlabelled

target data to mitigate domain shifts across both environments by aligning and enlarging feature

norms between domains as well as adding new penalty terms to the main objective function [79].

The AFN framework is constructed using a feature generator G and task-specific classifier F . The

classifier F is a combination of l fully-connected layers. We calculate label probabilities using the

last layer Fy by applying a Softmax activation function [79]. The first l − 1 layers called Ff , give

as output the bottleneck feature embeddings f which are specific for each domain and are difficult

to transfer across different domains [79]. The architecture of the feature extractor module as well

as the classifier are given in Figure 3.6 and Figure 3.7. G is composed of three fully-connected

(FC) layers with ReLu activation function, and F is a sequence of a FC-ReLu-Batchnorm-ReLu-

Dropout-FC-Softmax layers.

In this research, we aim, using only source labeled data and unlabeled target data, to create a

40

Figure 3.6: Feature extractor architecture for AFN.

Figure 3.7: Classifier architecture for AFN.

domain adaptation method that will calculate features f = Ff (G(·)) that are transferable across

different but related domains. Thus, we considered constraining feature norms of source and target

data to a given scalar using HAFN. Then, we tested also SAFN that enlarges feature norms of source

and target samples progressively. Finally, we evaluated SAFN with entropy minimization.

Hard Adaptive Feature Norm (HAFN)

To mitigate data distribution shift using HAFN, we solve the objective function defined in Eq.

(29) [79]:

41

C1(θg, θf , θy) =
1

ns

∑
(xi,yi)∈Ds

Ly(xi, yi) + λ(Ld(
1

ns

∑
xi∈Ds

h(xi), R) + Ld(
1

nt

∑
xi∈Dt

h(xi), R))

(29)

where (θg, θf , θy) are the parameters of G, Ff , and Fy, respectively. (ns, nt) are the numbers

of samples in the source domain Ds = {(xsi , ysi)}
ns
i=1, and the target domain Dt = {xti}

nt
i=1. H

represents all the functions h(x) = (∥ · ∥2 ◦ Ff ◦ G)(x) defined using the L2-norm operator. λ is

a parameter, and R is a scalar that restricts the mean feature norms of the two data distributions to

mitigate covariate shifts. Ld, defined as an L2-distance, is a penalty added to the objective function

to mitigate feature-norm differences [79]. Ly is the source loss function to learn source feature

distributions defined in Eq. (30).

Ly(x
s
i , y

s
i ; θg, θf , θy) = −

|Cs|∑
k=1

1[k=ysi]
log pk (30)

where Cs is the source labels space and p is the output of the Softmax activation function in the

classifier F . HAFN with small mean feature norms has given acceptable performances. However,

with large values of R, we still obtain better results. Thus, we want to explore large values of R

aiming to increase model performances using SAFN [79].

Stepwise Adaptive Feature Norm (SAFN)

In this section, we consider an improved version of HAFN where we aim to explore larger

values of mean feature norms progressively while learning the task-specific features by solving the

objective function in Eq. (31) [79].

C2(θg, θf , θy) =
1

ns

∑
(xi,yi)∈Ds

Ly(xi, yi) +
λ

ns + nt

∑
xi∈Ds∪Dt

Ld(h(xi; θ0) + ∆r, h(xi; θ)) (31)

where θ is the updating model parameters in the last iteration defined as θ = θg ∪ θf , and θ0

is the updated parameters model in the current iteration [79]. ∆r is a positive value that controls

42

the enlargement of mean feature-norms, defined as the difference between the current and the last

mean feature-norm values. The second term in the optimization function allows mean feature-norm

increase controlled by ∆r. SAFN allows the exploration of more information. Thus, it increases the

domain information transferability [79]. It is possible to restrict the mean feature-norms enlarge-

ment by changing the second penalty term as indicated in Eq. (32).

Ld(max(h(xi; θ0) + ∆r,R), h(xi; θ)) (32)

SAFN with entropy minimization (SAFN + ENTM)

The considered method SAFN can be combined with other domain adaptation techniques such

as entropy minimization (ENTM) [79]. ENTM is widely used in domain shift mitigation. Indeed, it

encourages target decision boundaries to pass through regions where sample densities are low [79].

In this research, we have explored the impact of entropy minimization by adding it as a penalty term

[119] to the main optimization function of the SAFN method, and by comparing its results to the

rest of AFN techniques.

3.2.4 Data poisoning technique

In this research, we have evaluated the efficiency and robustness of the considered models with

a data poisoning technique. [80] has presented several types of data poisoning techniques that can

be used for several tasks. However, for our current research, we have chosen one technique to test

the robustness of our domain adaptation approaches. Indeed, the developed method creates mis-

labeled data from source and target domains and trains the considered domain adaptation methods

with poisoned data aiming to fool these approaches. The poison rates that we considered are 0%,

5%, and 10% of the original data (source and target data). The failure of the considered methods

demonstrates their limits to generalizing for unknown domains and can allow us to improve the poor

methods in future research.

43

3.3 Experimental setup and results

3.3.1 Datasets

The Washington State University (WSU) Center for Advanced Studies in Adaptive Systems

(CASAS) dataset [55] has been used to evaluate the task of activities recognition. It is a public

dataset containing data from several apartments with several types of features and tasks. Indeed, it

provides several types of activities, but we have focused only on the following activities: cooking

breakfast, cooking lunch, cooking dinner, watching TV, and toileting. The choice of these labels was

well-studied since they are related to some of our objectives such as energy management. Multiple

types of sensors were at the origin of the dataset creation in different single-resident apartments

such as Ambient PIR motion sensors, door/temperature sensors, and light switch sensors.

WiFi AR dataset [120, 63] has been used to evaluate the performance of the VADA method with

our new setup compared to the previous research. The dataset is public and it uses Wi-Fi Channel

State Information (CSI) to recognize human activities such as standing. It has 7 activities: walk, sit,

stand, lay, get up, get down, and no activity [120, 63].

Datasets collected from our offices (H355 and H358) located in Grenoble Institute of Technol-

ogy have been used to evaluate the tasks of occupancy estimation [3]. The considered datasets have

multiple levels of occupancy. However, we evaluated three levels of occupancy (0, 1, and 2 occu-

pants) for the current task. Internet of Things (IoT) sensors such as power consumption sensors,

CO2 concentration sensors, humidity sensors, temperature sensors, door and window contact sen-

sors, and acoustic pressure sensors, were at the origin of our private datasets that we used for the

considered approaches in this research.

For all the considered methods and tasks (AR and OE), we used both balanced and unbalanced

datasets while training and evaluating the approaches in order to see the robustness of these methods

to label proportion change.

44

3.3.2 Metrics

To test the considered methods, we choose two metrics to use: accuracy and F1-score. In the

case of balanced datasets, accuracy is a great metric to consider in order to evaluate model predic-

tion as defined in Eq. (33) [3].

Accuracy =
TP + TN

TP + TN + FP + FN
(33)

However, for the case where we have unbalanced datasets [67] the F1-score is the best metric to use

in order to see the efficiency of the developed methods [3].

Precision (Pr) =
1

N

N∑
i=1

TPi

TPi + FPi
(34)

Recall (Rc) =
1

N

N∑
i=1

TPi

TPi + FNi
(35)

F-score (F1) =
2× Precision×Recall

Precision+Recall
(36)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

3.3.3 Experimental results

Balanced datasets

In this section, we consider AR and OE tasks for the case where we have balanced datasets. For

AR with 5 labels classification (’cook breakfast’, ’cook lunch’, ’cook dinner’, ’toileting’, ’watching

TV’), the accuracies are collected in Table 3.1. For model performances without data poisoning,

VADA is the best approach compared to the rest with 69.20% of accuracy which is good for unsu-

pervised domain adaptation methods compared to supervised machine learning methods (80.80%).

45

HAFN gives acceptable performance (54.66%) when restricting mean feature norms to a given

scalar. However, SAFN exceeds the HAFN score (62.00%) when enlarging mean feature norms so

that we can discover more feature information. It is expected that SAFN strengthened with entropy

minimization will enhance model performance as shown in Table 3.1 (63.33%). For the AR dataset,

the SWD gives poor performance with and without data poisoning. The used Wasserstein distance

can be the cause of the poor model performance with AR data. We have tested the robustness of

the considered approaches by applying data poisoning at 2 levels (5% and 10% of data poison in

the training datasets). For the VADA method, we see that the model remains robust for 5% of

poison, and it drops a bit (65.10%) at 10% of poison compared to other models presented in other

research [121]. Indeed, most of the models presented in [121] have reached 0% of accuracy at 10%

of data poisoning. From these results, we can see the robustness of VADA for the considered task.

The same observation applies to SAFN where we see a decrease of 3% when adding poison data.

However, for HAFN and SAFN+ENTM, we see that the performances are almost the same with or

without data poisoning. Thus, these two models are the most robust for this task of AR. We can

conclude that entropy minimization helped increase the robustness of SAFN.

Table 3.1: Accuracies for AR with 5 balanced labels

Method Accuracy (0%P) Accuracy (5%P) Accuracy (10%P)
VADA 69.20 71.40 65.10
SWD 20.04 20.04 20.04

HAFN 54.66 56.66 54.00
SAFN 62.00 58.66 58.66

SAFN + ENTM 63.33 62.00 62.66
SMLM 80.80 – –

For AR with 3 label classifications (’cook breakfast’, ’toileting’, ’watching TV’), the models

scores are presented in Table 3.2. We can notice a huge increase in models performances in gen-

eral. Indeed, it is expected since we have decreased the number of labels. Thus, it will be easy

for the model to predict a task of 3 classification levels than a task of 5 classification levels [3].

SAFN+ENTM has the best performance compared to the rest of the methods with 98.00% of ac-

curacy, exceeding supervised machine learning methods’ performances with a huge gap of almost

10%. SAFN+ENTM is totally robust to data poison without any drop in scores for all the data poison

levels. SAFN without entropy minimization did also give a good performance that is comparable to

46

SAFN+ENTM (97.33%). However, without entropy minimization, we can see that the model is less

robust compared to SAFN+ENTM. Indeed, it has a decrease of accuracy of around 8%. HAFN has

less performance than the rest of AFN methods with 95.33% of accuracy. However, it is robust to

data poisoning, and it has performance better than supervised machine learning methods (88.00%).

VADA has also shown great performance like the previously stated methods for classifying activi-

ties with 95.40% of accuracy. However, data poisoning has a small effect on the model performance

with 7% of accuracy reduction at 10% of poisoned training data. The SWD method did not perform

well for the task of AR, and the poor results can be due to the used Wasserstein distance while

adapting domains.

Table 3.2: Accuracies for AR with 3 balanced labels

Method Accuracy (0%P) Accuracy (5%P) Accuracy (10%P)
VADA 95.40 93.20 88.60
SWD 33.20 33.20 33.20

HAFN 95.33 96.00 94.66
SAFN 97.33 89.33 92.66

SAFN + ENTM 98.00 98.00 98.00
SMLM 88.00 – –

For OE with 3 levels of occupants, all the scores for the different methods are presented in

Table 3.3. VADA has the best performance compared to the rest of the approaches with 76.40%

of accuracy, and it is robust to data poisoning even though the small drop in performance while

increasing the number of mislabeled samples in the training data (10% of accuracy reduction for

10% of poison data). SAFN is not far away compared to VADA. Indeed, it has a good performance

with 74.40% of accuracy, and it is robust to data poisoning (almost the same performance for 10% of

data poisoning). SAFN is so much better than SAFN+ENTM in terms of robustness and accuracy.

Indeed, in this case, the entropy minimization was not helpful for the model. However, it was a

cause to a decrease in its performance with 69.80% of accuracy that decreases till 66.80% when we

poison the data. When we restrict mean features norms to a given small scalar (HAFN), we see a

decrease in AFN method performance till reaching 63.20%, but it remains robust for data poison.

In this case, SWD has shown great robustness for data poisoning with a slight decrease of accuracy

from 63.20% till 62.20%, and it has shown acceptable performance in terms of accuracy. VADA

and SAFN have performances that are comparable to supervised machine learning methods results,

47

and this is a great achievement.

Table 3.3: Accuracies for OE with 3 balanced labels

Method Accuracy (0%P) Accuracy (5%P) Accuracy (10%P)
VADA 76.40 69.80 66.40
SWD 63.13 62.80 62.20

HAFN 63.20 58.60 63.20
SAFN 74.40 70.40 75.00

SAFN + ENTM 69.80 65.80 66.80
SMLM 83.00 – –

For OE with 2 balanced labels, all the obtained scores are presented in Table 3.4. We can

see an increase in the models’ performances, and it is expected as discussed before [3] since we

have decreased the task levels. All the considered methods have almost the same performance as

supervised machine learning performance, and this proves their efficiency. VADA and SAFN have

the best scores with 88% of accuracy. However, VADA is perfectly robust to data poison, and

HAFN is slightly affected by the amount of mislabeled data added to the training process (2% of

accuracy reduction). SAFN has shown great robustness while increasing the feature norms, but

it has shown a small drop in accuracy (85.60%) as well compared to HAFN (88%). Adding the

entropy minimization penalty term to the SAFN loss function has increased the accuracy of the

model and kept its robustness. Indeed, it is considered one of the best models for the current task

(87.80%).

Table 3.4: Accuracies for OE with 2 balanced labels

Method Accuracy (0%P) Accuracy (5%P) Accuracy (10%P)
VADA 88.00 88.00 88.00
SWD 86.70 87.60 85.60

HAFN 88.00 86.40 86.20
SAFN 85.60 85.80 88.60

SAFN + ENTM 87.80 87.80 88.20
SMLM 88.80 – –

In Figure 3.8, we present all models scores for the different tasks without data poisoning. Indeed,

we see that SWD has better performance with OE tasks than AR tasks. Indeed, for AR it did not

perform well, and it has given the lowest scores compared to the rest of the methods. For OE with 2

labels, all the models have comparable performances. Indeed, it can be explained by the simplicity

48

of the binary task in this case. For all the tasks, VADA has shown all time great performances, and it

is one of the best-considered approaches. For AR with 3 labels, except SWD, all the methods have

great results. Indeed, as explained before, the simplicity of the task makes the performances of all

the methods comparable.

Figure 3.8: UDA methods results for balanced AR 5 labels (1), AR 3 labels (2), OE 3 labels (3),
and OE 2 labels(4).

Unbalanced datasets

In this section, we evaluate the models’ performances with the unbalanced datasets and test their

robustness for the label proportion change for both tasks AR and OE. For AR with 5 unbalanced

labels, we can see that VADA is performing well thanks to its domain adversarial training as well as

its punishment of cluster violations. It has 71.76% of F1-score, and it is not too far from supervised

machine learning methods performance (80.80% of F1-score) even though it is an unsupervised

learning method. VADA has also shown good robustness while training it with mislabeled data

from source and target domains. Indeed, the models’ scores remain stable (around 72%) without

any noticeable drop. SWD seems to give acceptable results (51.94%). However, the model scores

remain exactly the same even though we have poisoned the data, and this creates doubts about the

model’s efficiency for the current task. Indeed, the used Wasserstein Discrepancy distance to reduce

49

domain shift may not perform well with the current features for AR tasks. HAFN has given accept-

able results for an unsupervised learning task (48.07%) while restricting mean feature norms to a

given scalar. However, it is not perfectly robust to data poisoning since its performance drops while

increasing the mislabeled training data (44.59% of F1-score at 10% of poison data). Discovering

new mean feature norm scales with SAFN has made the method more robust to data poison. Indeed,

with and without data poison, SAFN has scores (47%). Adding entropy minimization to SAFN did

not enhance its performance. However, we can see a drop in performance with SAFN+ENTM of

2% compared to SAFN. Table 3.5 presents all the discussed results.

Table 3.5: F1-scores for AR with 5 unbalanced labels

Method F1-score (0%P) F1-score (5%P) F1-score (10%P)
VADA 71.76 71.76 72.14
SWD 51.94 51.94 51.94
HAFN 48.07 43.57 44.59
SAFN 46.80 45.04 47.07

SAFN + ENTM 44.19 43.20 45.25
SMLM 90.08 – –

For AR with 3 unbalanced labels, Table 3.6 collects all the obtained scores with the different

approaches. It is clear that there is a dramatic increase in the scores, and this is expected since we

reduced the number of labels from 3 levels of occupancy to 2 levels of occupancy. Except for SWD

which is not performing well for the task of AR, all the remaining methods are giving excellent

results comparable to supervised machine learning methods and with a high level of robustness.

HAFN with a small scale of mean feature norms has shown great performance (95.41% of F1-score)

with great robustness as well. Indeed, at 10% of data poisoning, the model is giving 94.72% of F1-

score which is almost the same as the performance of the trained model without data poisoning.

Enlarging mean feature norms with SAFN has hurt a bit the model performance (4% of F1-score

decrease), but it did keep its robustness. However, adding the entropy minimization penalty term for

the SAFN optimization function has increased significantly the performance of the SAFN+ENTM

model (97.37% of F1-score), allowing it to exceed all the considered methods with a high level of

robustness (97.37% of F1-score at 10% of data poisoning). VADA is also giving good results for

the current method with 91.01% of the F1-score. However, its robustness (72.48% of F1-score at

10% of poison data) is not that perfect but it is still considered good for an unsupervised domain

50

adaptation method.

Table 3.6: F1-scores for AR with 3 unbalanced labels

Method F1-score (0%P) F1-score (5%P) F1-score (10%P)
VADA 91.01 71.33 72.48
SWD 36.44 36.44 36.44
HAFN 95.41 92.79 94.72
SAFN 91.42 91.49 89.57

SAFN + ENTM 97.37 96.66 97.37
SMLM 95.58 – –

For OE with 3 unbalanced labels, all the obtained scores are shown in Table 3.7. SAFN, the

method that explores more feature space information by increasing mean features norms, is giving

the best scores (81.61% of F1-score), and it is perfectly robust. Indeed, with 10% of data poisoning

in the training data, SAFN performance remains the same (82.56% of F1-score) without a noticeable

drop. Adding entropy minimization to SAFN has almost no impact on the models’ robustness and

performance. Indeed, SAFN+ENTM is perfectly robust for data poisoning with 80.99% of the F1-

score. Restricting mean feature norms to a given scalar (HAFN) did not hurt the model’s robustness.

However, we can see a noticeable drop in the model’s score (3% of score reduction). VADA has a

comparable score to HAFN (79.23%), but it is not perfectly robust to mislabeled samples in training

data. Indeed, for 10% of data poisoning, VADA scores decrease to 71.25%. For this task, SWD has

shown great robustness, and it has acceptable results (70.42% of F1-score) compared to the rest of

the considered techniques.

Table 3.7: F1-scores for OE with 3 unbalanced labels

Method F1-score (0%P) F1-score (5%P) F1-score (10%P)
VADA 79.23 81.18 71.25
SWD 70.42 71.32 71.33
HAFN 78.82 78.53 77.41
SAFN 81.61 79.63 82.56

SAFN + ENTM 80.99 81.56 82.18
SMLM 82.07 – –

For OE with 2 unbalanced labels, as noticed before, we see a noticeable increase in models

performances. Indeed, it is expected due to the task complexity decrease [3]. SAFN and HAFN

have almost the same scores without data poisoning (89.70% and 89.78%, respectively). SAFN is

51

perfectly robust to data poisoning without a noticeable drop in model scores. However, HAFN, with

the limited mean features norms scale compared to SAFN, has decreased with almost 4% of the F1-

score while poisoning the training datasets. VADA is all the time showing great performances and

robustness. In this case, it is perfectly robust to poisoned training data with 85.94% of the F1-score.

SWD has also given acceptable results for this task compared to AR tasks. Indeed, it has 75.32%

of F1-score, and it is robust to data poisoning with a small drop while adding mislabeled data to

training (2% of score decrease).

Table 3.8: F1-scores for OE with 2 unbalanced labels

Method F1-score (0%P) F1-score (5%P) F1-score (10%P)
VADA 85.94 85.95 85.25
SWD 75.32 74.35 73.68
HAFN 89.78 87.97 85.94
SAFN 89.70 88.23 89.62

SAFN + ENTM 88.33 88.23 87.63
SMLM 88.65 – –

Figure 3.9 compares all the obtained scores for the different models and tasks. We can notice

that for unbalanced datasets, SWD is giving better results compared to balanced datasets, especially

for AR tasks. Indeed, with balanced datasets, SWD did not perform well for AR tasks. We can

conclude that labels proportion change has a good impact on the SWD method. As discussed in

balanced datasets, VADA remains one of the best models due to its consistency across all the tasks.

Except for AR with 5 labels, most of the methods are giving excellent scores for the rest of the tasks.

VADA with WiFi dataset

VADA has been tested on the WiFi dataset to recognize human activities such as walking. In

previous research, VADA has given an accuracy of 53%. However, in our current research, we have

exceeded the previous score reaching 53.60% of accuracy as shown in Table 3.9. The new accuracy

score is obtained due to new hyperparameters fine-tuning, and data processing.

Table 3.9: VADA accuracies with WiFi dataset

Method Accuracy (%)
Our VADA 53.60

Previous VADA 53.00

52

Figure 3.9: UDA methods results for unbalanced AR 5 labels (1), AR 3 labels (2), OE 3 labels (3),
and OE 2 labels(4).

53

Chapter 4

Unsupervised Domain Adaptation With

and Without Access to Source Data for

Estimating Occupancy and Recognizing

Activities in Smart Buildings

4.1 Introduction

In the last few years, it has been estimated that buildings’ energy consumption is around 32%

of the world’s electrical energy [90]. Thanks to the evolution of sensors and IoT technologies

[25, 13, 18, 19, 20, 122, 123, 124], smart buildings [25, 13, 19, 20, 30, 125, 126, 127, 128] have

emerged, bringing several benefits such as energy management [25, 19, 20, 26, 27, 28, 29, 30,

129, 130, 131]. Researchers have focused on several vital smart building tasks such as activities

recognition (AR) [25, 22, 132, 2, 1, 3, 133, 134, 135] and occupancy estimation (OE) [25, 13, 18,

27, 42, 136, 36, 137, 21, 138, 139, 140, 11]. OE can help provide optimal energy management

for smart homes by reducing energy consumption and by optimally distributing energy across all

the building’s apartments [25, 19, 20, 26, 27, 28, 29, 30]. Detecting humans and recognizing their

activities provide more security for smart homes by identifying authorized actions [31, 32, 33].

54

AR can enhance HVAC (heating, ventilation, and air conditioning) systems in smart homes using

information gathered from each apartment, providing residents with good services [23]. Smart

building models created in a specific environment [25, 13, 27, 36] (room or apartment) can not

generalize well to other domains due to different apartment architectures (e.g., locations and types

of the used sensors). Training a model for each room or apartment is an expensive and challenging

task because of labeled data scarcity [25, 37, 38]. Labeling smart home data is a tedious, costly, and

time-consuming task that can not be feasible in some cases due to privacy issues [25, 13, 24, 39, 40,

41, 42]. Domain adaptation (DA) [43, 44, 45, 46, 47, 48, 49, 50] can mitigate data distribution shifts

between source and target domains in smart homes. Thus, it can solve the problem of data scarcity

[25, 37, 38], and share knowledge gained in a smart home where labeled data are available to other

smart buildings where labeled data are scarce or not available. Some approaches of DA can solve

privacy issues by avoiding access to source data while sharing information across environments.

Indeed, they get access only to trained models from source domains without accessing original

data.

In this work, we make a comparative analysis between deep unsupervised domain adaptation

(UDA) methods, applied to the tasks of AR and OE, with and without access to labeled source data.

We aim to choose between these two types of approaches, taking into consideration several factors

such as models’ performances and privacy issues. We have considered adapting the latest UDA

approaches. Indeed, we have 6 adapted approaches for UDA with access to labeled source data:

domain separation networks (DSN) [82], cluster alignment with a teacher (CAT) [83], CAT+ gra-

dient reversal (RevGrad) [83], CAT + robust RevGrad (rRevGrad) [83], Auxiliary Target Domain-

Oriented Classifier (ATDOC) with nearest centroid classifier (NC), and ATDOC with neighborhood

aggregation (NA) [84]. Also, we have 6 adapted methods for UDA without labeled source data: con-

fidence score weighting adaptation using joint model data structure (CoWA-JMDS) [85], CoWA-

JMDS without weights mixup [85], divide and contrast (DaC) [86], attracting and dispersing (AaD)

[87], source hypothesis transfer with information maximization (SHOT-IM) [74, 88], and source

hypothesis transfer with self-supervised pseudo-labeling (SHOT-Pseudo-labeling) [74, 88]. DSN

extracts representations that are shared between source and target domains and representations that

are private to each domain [82]. By finding the private subspaces that are orthogonal to the shared

55

subspace, DSN is able to differentiate between shared information and unique information for each

domain. Then, it uses these representations to reconstruct sample features from both environments

[82]. CAT trains a teacher model on source-labeled data and uses it to predict pseudo-labels for

the unlabeled target samples [83]. CAT uses the generated pseudo-labels to make discriminative

clustering by pushing features with the same class to be concentrated together, and features with

different classes to be separated from each other [83]. CAT uses an objective loss to align clusters

with the same class coming from different domains [83]. CAT has been enhanced with gradient

reversal (CAT+RevGrad), and robust gradient reversal (CAT+rRevGrad) [83]. Gradient reversal

and robust gradient reversal deal with target samples with low classification confidence and a high

chance of being misclassified by the model while training [83]. ATDOC enhances the quality of

the generated pseudo-labels by creating two classifiers (NC and NA) and using a memory mecha-

nism to store all the information related to the unlabeled target data [84]. ATDOC+NC trains the

nearest centroid classifier where all the information related to the class centroids are being stored in

a given memory bank [84]. The centroids are being updated using an exponential moving average

strategy [84]. ATDOC+NA creates a large memory bank storing the features with their predictions

to train its classifier [84]. Using prediction aggregation and a confidence-weighted classification

loss, the NA classifier is being dynamically updated [84]. CoWA-JMDS takes into consideration

data points’ importance by using JMDS score with exploited knowledge from both domains (source

and target domains) [85]. CoWA-JMDS has been tested with and without weights mixup [85]. The

goal of weights mixup is to make more use of target data points with low confidence scores [85].

DaC uses a source pre-trained model to divide target data points into source-like and target-specific

data points [86], and reduce data distribution shift between them using a loss function based on

maximum mean discrepancy (MMD) [86]. The source-like samples with a high level of prediction

confidence have been used to learn the global class clustering. However, the target-specific samples

with a low level of prediction confidence have been used to learn the local structures of the instances

[86]. AaD takes into consideration the assumption that features from the same cluster should have

the same class prediction while optimizing the objective. AaD clusters and assigns close features

from both domains to reduce data distributions shift and to make domain adaptation [87]. SHOT

56

methods use a source pre-trained model which has a good performance while classifying data sam-

ples from the source domain. They transfer the weights from the source hypothesis module to the

target classifier module and freeze them during the whole training process. However, they learn a

new feature encoding module so that the discrepancy between the output of the target feature extrac-

tor and the source feature extractor is minimum [74, 88]. The information maximization (IM) and a

novel self-supervised pseudo-labeling method have been used to learn the feature extractor module

of the target model [74, 88, 97, 93]. In Table 4.1, we have provided a classification of the considered

UDA composed of 3 categories [141]. Firstly, domain invariant methods learn data representations

that are invariant between source and target domains, then they reduce the discrepancy between

them. Secondly, self-training methods create pseudo-labels for the unlabeled target data, then they

train the target model with the generated pseudo-labels. Finally, self-supervision methods create a

pre-trained model, then they fine-tune its parameters to fit the target domain. The considered UDA

methods have been evaluated using our private datasets for OE [25] as well as public datasets for AR

[100]. The datasets have been collected using ambient sensors such as CO2 concentration sensors

[25, 100]. In this research, we have made several contributions. Indeed, we have adapted all the

considered methods to smart building tasks (AR and OE) so that they can work with sensor data,

and we have tested them on smart buildings datasets (private and public datasets). Also, we have

created novel deep neural network architectures for most of the considered methods. Indeed, all the

feature extractors and classifiers have been changed with new ones based on convolutional neural

networks [83, 85, 86, 87, 100] that are adaptable to sensor data. Moreover, we have made a compar-

ative analysis between UDA methods’ performance with and without direct access to labeled source

data, and we have chosen the best approach based on several factors such as privacy issues.

The rest of the chapter is organized into 2 sections. In section 2, we introduce and explain the

considered methods. In section 3, we present and discuss the research findings.

57

Table 4.1: Classification of the considered UDA methods

Method Domain-invariant Self-training Self-supervision
DSN ✓
CAT ✓

CAT+RevGrad ✓
CAT+rRevGrad ✓

ATDOC+NC ✓
ATDOC+NA ✓
CoWA-JMDS ✓

CoWA-JMDS w/o WM ✓
DaC ✓ ✓ ✓
AaD ✓

SHOT-IM ✓
SHOT-Pseudo-labeling ✓ ✓

4.2 The proposed approaches

4.2.1 Methods with access to source data

Domain separation networks (DSN)

The domain separation networks (DSN) goal [82], as with most domain adaptation methods, is

to train a classifier on labeled source data that generalizes well on target data from another smart

building environment. The trained model gives source feature representations that are comparable

to the target feature space. Thus, a trained model from the source domain can be applied to predict

unlabeled target data. However, the newly created representation between source and target domains

might include noise that can affect the model predictions and can reduce performance [82]. DSN

partitions the feature representations into a shared feature space and a private feature space that is

unique to each domain. Splitting data representations in this way allows a trained classifier to gen-

eralize well for both source and target domains without being affected by the representations that

are unique to each environment [82]. The model has used two loss functions that encourage the sep-

aration of shared and private representations and ensure the usefulness of the private representations

to make domain adaptation.

Let XS = {(xsi , ysi)}
Ns
i=0 be a labeled source dataset with Ns instances from the source domain

xsi ∼ DS , and XT = {(xti)}
Nt
i=0 be an unlabeled target dataset with Nt instances from the target

domain xti ∼ DT . A given input sample x is transformed and mapped to new common and private

58

feature representations (hc and hp) using mapping functions Ec(x; θc) and Ep(x; θp), respectively,

where θc and θp are parameters [82]. A reconstructed sample x̂ is created by mapping a hidden

feature representation h using a decoding function D(h; θd), where θd is a parameter [82]. A task-

specific prediction ŷ is created using a task-specific function G(h; θg), where θg is a parameter [82].

For DSN model [82], x̂ = D(Ec(x) + Ep(x)) and ŷ = G(Ec(x)). The goal of the approach is to

minimize the following optimization function:

L = Ltask + αLrecon + βLdifference + γLsimilarity (37)

where α, β, and γ are weight parameters to control the influence of each loss function. Ltask

is the loss function used to train the model on labeled source data assuming that the target domain

contains only unlabeled samples. Ltaskis defined as follows:

Ltask = −
Ns∑
i=0

ysi · log ŷsi (38)

where ysi and ŷsi are the source ground-truth and predicted labels [82]. Lrecon is a reconstruction

loss based on scale invariant mean squared error that penalizes samples’ predictions that are correct

by a scaling factor [142]. The reconstruction loss function is defined using Eq.(39) and Eq.(40).

Lrecon =

Ns∑
i=1

Lsi−mse(x
s
i , x̂

s
i) +

Nt∑
i=1

Lsi−mse(x
t
i, x̂

t
i) (39)

Lsi−mse(x, x̂) =
1

k
∥x− x̂∥22 −

1

k2
([x− x̂] · 1k)2 (40)

where ∥.∥22 is the squared L2-norm, k is the number of features in each sample, 1k is a ones

vector. The loss difference, defined in Eq.(41), creates different representation inputs for source and

target domains using soft subspace orthogonality constraints applied between private and shared

feature representation spaces for source and target environments [82].

Ldifference =

(∥∥∥Hs
c
THs

p

∥∥∥2
F
+
∥∥∥Ht

c
T
Ht

p

∥∥∥2
F

)
(41)

59

where Hc and Hp are matrices containing common and private feature representations in source

and target domains, and ∥.∥2F is the squared Frobenius norm [82]. For the similarity loss, its goal

is to create feature representations similar between source and target domains so that the model

trained on source data can predict samples from the target domain [82]. In this research, we apply

a domain adversarial similarity loss to confuse the classifier while predicting the origin (source or

target data) of each data point. The confusion process has been done using a domain classifier to

predict the domain with a Gradient Reversal Layer (GRL) [82]. The loss functions are defined in

the following equations:

LDANN
similarity =

Ns+Nt∑
i=0

di log d̂i + (1− di) log(1− d̂i) (42)

where di ∈ (0, 1) depending on the domain of each data point i. Maximum Mean Discrepancy

(MMD) has been used as a metric to reduce the discrepancy between the shared hidden representa-

tions of source and target domains (hsci, h
t
ci).

LMMD
similarity =

1

N2
s

Ns∑
i,j=0

κ(hsci, h
s
cj) − 2

NsNt

Ns,Nt∑
i,j=0

κ(hsci, h
t
cj) +

1

N2
t

Nt∑
i,j=0

κ(htci, h
t
cj)

κ(xi, xj) =
∑
n

ηn exp

{
− 1

2σn
∥xi − xj∥2

}
(43)

where σn and ηn are the standard deviations and the weights.

Cluster Alignment with a Teacher (CAT)

Let us consider a set of labeled source data Let Xs = {(xis, yis)}Ni=1 with yis ∈ (1, 2, ...,K),

and a set of unlabeled target data Xt = {xit}Mi=1. Typically, the source and the target data have

different feature distributions (domains shift), and a trained source model will not perform well on

unlabeled target data [83]. Thus, researchers have tried to mitigate domains shift so that classifiers

(h = g ◦ f) from the source domain can accurately predict inputs from unlabeled target data points

[83], where f is a function that creates domain-invariant feature representations, and g predicts the

60

novel inputs created by f . Normally, mitigating discrepancy between domains is done by optimizing

the following supervised and discrepancy loss functions [83]:

min
θ

Ly =
1

N

N∑
i=1

l(h(xis; θ), y
i
s) (44)

min
θ

Ld(Xs, Xt) = D(f(Xs, θ), f(Xt, θ)) (45)

where l is a cross-entropy loss and D is a distance. Most UDA methods minimize the expected

error on the source data points and the distance between source and target data distributions. How-

ever, they ignore minimizing the expected error between source and target labeling functions [83],

which can lead to unsatisfying model accuracy. In this research, we present cluster alignment with

a teacher (CAT) that takes into consideration the class-conditional distributions of two domains to

mitigate the discrepancy between source and target labeling functions [83]. CAT solves the opti-

mization function in Eq.(46).

min
θ

Ly + α(Lcl + La), (46)

where Lcl creates discriminative clusters for features from both domains, La aligns clusters with

the same labels from both environments and α is a hyperparameter. A teacher has been developed to

provide pseudo-labels for unlabeled target data points. The obtained pseudo-labels will be used by

the two losses Lcl and La. The discriminative clustering with a teacher is done using Lcl, and it can

be adjusted based on obtained pseudo-labels from the teacher [83]. Lcl is defined in the following

equation:

Lcl(Xs, Xt) = Lcl(Xs) + Lcl(Xt) (47)

Lcl(X) =
1

|X|2

|X|∑
i=1

|X|∑
j=1

[δijd(f(x
i), f(xj)) + (1 − δij)max(0,m − d(f(xi), f(xj)))]

61

where m is a given margin, d is the squared Euclidean distance, and δij is an indicator function

that gives 1 in case the prediction of the source model or the teacher model for samples xi and xj are

the same [83]. Lcl clusters features from the same labels together, and pushes away features with

high discrepancy from each other using margin m. After obtaining features with good discriminative

cluster structure, the source-trained classifier g may continue to fail to classify the obtained clusters

due to the mismatch between source and target clusters with the same labels [83]. That is why, a

cluster alignment process is required at this step to enhance the framework prediction accuracy. The

cluster alignment is done using La defined in Eq.(48):

La(Xs, Xt) =
1

K

K∑
k=1

∥(λs,k − λt,k)∥22 (48)

where λs,k and λt,k are defined in the following equation with subsets Xs,k and Xt,k from Xs

and Xt, respectively, whose labels are k:

λs,k =
1

|Xs,k|
∑

xi
s∈Xs,k

f(xis), λt,k =
1

|Xt,k|
∑

xi
t∈Xt,k

f(xit) (49)

Lcl and La combined together provide us with aligned class-conditional structures for source and

target environments [83]. CAT creates a student model trained on the labeled source data, and

it generates a teacher model as an implicit ensemble of the source model. The teacher model is

used to provide pseudo-labels for the unlabeled target data. Using Lcl, CAT forces features from

the same label to be clustered together. Then, CAT uses La to mitigate the discrepancy between

clusters from source and target domains which updates the teacher model. We combined CAT

with other domain alignment methods to enhance the cluster alignment between source and target

domains [83]. Indeed, CAT has been extended with gradient reversal (CAT+RevGrad) [83, 143],

and robust gradient reversal (CAT+rRevGrad) [83]. Gradient reversal and robust gradient reversal

are confidence-thresholding techniques used to prevent certain instances from being aligned with a

confidence score less than a given value p. rRevGrad is an upgraded version of RevGrad with the

following loss function:

62

min
θ

max
ϕ

Ld(Xs, Xt) =
1

N

N∑
i=1

log c(f(xis; θ);ϕ) +
1

M̃

M̃∑
i=1

[log(1 − c(f(xit; θ);ϕ))γi]

(50)

where γi is an indicator function with value 1 if the model’s confidence for the sample xit exceeds

the value p, ϕ is a parameter, and c is the critic model.

Auxiliary target domain-oriented classifier (ATDOC)

ATDOC reduces data distribution shifts between source and target domains in this research by

learning a target classifier Ft with unlabeled target data. ATDOC exploits the source-like instances

in the target data, which have close data distribution to source samples, to build the target classifier

and label the remaining target samples [84]. To obtain pseudo-labels with high confidence levels,

ATDOC exploits a memory module to store all the information related to the target samples while

training [84]. ATDOC has generated 2 types of target classifiers: nearest centroid classifier (NC)

and neighborhood aggregation (NA).

Nearest centroid classifier (NC): NC uses label centroids to reduce domain shift between source

and target data distribution [84]. It uses a memory bank to store all the gathered information while

training (class centroids), and it iteratively labels the target unlabeled samples (pseudo-labels) [84].

The centroids in the memory banks are being dynamically updated using the target pseudo-labels

obtained using Eq.(51) and the exponential moving averaging (EMA) technique [84].

ŷi = argmax
k

pi,k, i = 1, 2, . . . , Nt (51)

cj =

∑
i∈Bt

1[j=ŷi]G(xit)∑
i∈Bt

1[j=ŷi]
, (52)

cmj = γcj + (1− γ)cmj , m = 1, 2, . . . ,K (53)

63

where Nt is the number of target samples, pi = F (G(xti)) is a prediction vector of dimension

K the number of classes, F is a classifier module, G is a feature extractor module, xti is a sample

from the target domain Dt = {xti}Ki=1, γ is a hyperparameter for smoothing, and Bt is a target batch

set. The nearest centroid classifier is built using the obtained centroids. Then, it generates updated

pseudo-labels for the target samples using the following equation:

ŷi = arg
K
min
j=1

d(G(xti), c
m
j), i = 1, 2, . . . , Nt (54)

where d(., .) is the cosine distance. Then, we develop a cross-entropy loss function as follows:

Lnc = − λ

Nt

Nt∑
i=1

log pi,ŷi (55)

Neighborhood aggregation (NA): NA classifier generation requires a large memory bank to store

all local information related to each target sample structure which is different from NC strategy

where we consider only the global domain structure [84]. While updating the memory bank, we do

not use the moving average technique. However, to avoid obtaining ambiguous predictions for the

unlabeled target data xi ∈ Dt, we scale the predictions pi using a hyperparameter T as defined in

the following equation [84]:

p̃mi,k =
p

1
T
i,k∑
k p

1
T
i,k

(56)

The neighborhood aggregation strategy uses the cosine similarity distance to measure the dis-

crepancy between the sample target features and the memory bank module features, to get m nearest

neighbors [84]. The nearest neighbors’ predictions p̃j are aggregated using the following equations:

q̂i =
1

m

∑
j ̸=i,j∈Ni

p̃j , (57)

where Ni represents the neighbors set for a given target sample xti in the memory bank module.

This strategy gives new probability predictions while training on all the target data [84]. Based on

these probabilities, we obtain pseudo-labels for all unlabeled target data using Eq.(51). We define a

64

confidence-weighted cross-entropy loss that uses q̂i,ŷi as confidence weights for each pseudo-label

defined as follows:

Lna = − λ

Nt

Nt∑
i=1

q̂i,ŷi log pi,ŷi (58)

For a labeled source domain D∫ and unlabeled target domain D⊔, we combine several loss

functions: Lna(Dt) or Lnc(Dt) with Llsr(Ds) the stand cross-entropy loss with label-smoothing

regularization [144] to obtain the final objective function defined as follows:

L = Llsr(Ds) + Lnc/na(Dt) (59)

For binary tasks (2 levels of occupancy), we can add additional domain shift mitigation techniques

such as CDAN [145] to enhance performance.

4.2.2 Methods without access to source data

Confidence score weighting adaptation using the joint model data structure (CoWA-JMDS)

For CoWA-JMDS, we have access to unlabeled target data Xt = {xti}
nt

i=1 with nt samples, and

a model M trained using labeled source data Xs = {xsi , ysi }
ns

i=1 with ns data points. Using the

pre-trained model M , we generate the pseudo-labels Ŷt = {yti}
nt

i=1 that we will be using them in the

UDA process [85]. A pre-trained source model M is a combination of a feature encoding f with d

features and a classifier g with K labels [85]. The model gives its prediction for a given instance

based on the values of probabilities obtained using Eq.(60):

pM (Xt) = softmax(f(g(Xt))) (60)

where softmax is an activation function applied to the output layer of g.

In this research, the proposed JMDS confidence score is a combination of the Log-Probability

Gap (LPG) score based on data-structure-wise probability and Model Probability of Pseudo-label

(MPPL) score based on the model-wise probability [85]. Gaussian Mixture Modelling (GMM) has

been used to create clusters and pseudo-labels for the unlabeled data from the target environment.

65

GMM gives data-structure-wise probability pdata(Xt) which improves its confidence compared to

other clustering methods [85]. The LPG score is a data-structure-wise confidence score based on

GMM probabilities related to the unlabeled target domain [85]. LPG is defined as follows:

LPG(xti) =
MINGAP(xti)

maxj MINGAP(xtj)
(61)

MINGAP(xti) = min
a

(log pdata(x
t
i)ŷti − log pdata(x

t
i)a) (62)

where ŷti = argmaxc pdata(x
t
i)c, a ∈ 1, 2, ...,K , and a ̸= ŷti . LPG has high confidence levels

for data points far from decision boundaries. The MPPL score is a model-wise probability score

based on the generated pseudo-label Ŷt [85]. Indeed, instances with high confidence levels are

the ones that have the same pseudo-labels evaluated using pdata(Xt) and pM (Xt) as described in

Eq.(63) [85]:

MPPL(xti) = pM (xti)ŷti (63)

JMDS is the only probability score defined between 0 and 1 as the product of LPG with MPPL

that provides knowledge from both domains. Indeed, MPPL provides information on the model and

LPG provides information on the data structure [85]:

JMDS(xti) = LPG(xti) ·MPPL(xti) (64)

The generated pseudo-labels Ŷt from GMM and JMDS score are used to enhance and train the

model M in order to increase its prediction performance on target domain [85]. To deal with noisy

labels (pseudo-labels) that are not perfectly accurate, we use a confidence score based on sample

weighting as defined in the following equation:

LCoWA-JMDS(x
t
i) = JMDS(xti) · LCE(pM (xti), ŷ

i
t) (65)

where LCE is a cross-entropy loss defined as follows:

66

JMDS(xti) · LCE(pM (xti), ŷ
i
t) = − log pM (xti)ŷit (66)

By using confidence scores, we ignore samples with low scores while training. Indeed, it means

that the target domain information is not totally used which can lead to model failure in some

particular situations [85]. To solve this issue, we propose to apply CoWA-JMDS with and without

weight mixup [85, 146] to allow training with samples with low and high confidence scores so that

the model can be more robust to incorrect pseudo-labels while training [85]. The weight mixup loss

function is defined in Eq.(67). Indeed, it gives low weights for samples with low confidence scores

and vice-versa:

LMixup(x̃
t, ỹt) = w(x̃t) · Eỹt [− log pM (x̃t)] (67)

where w(x̃t) is a defined weight function for each sample based on its confidence score [85].

Divide and Contrast (DaC)

DaC method extracts two types of data from the unlabeled target domain DT based on the pre-

trained source model predictions: source-like instances DS and target-specific outliers DO [86].

The method loss function is weighted with α and β parameters, containing three main losses as

shown in Eq.(68) [86]:

L = Lcon + αLself + βLEMMD (68)

where Lself is used to apply class-wise adaptation at first using the generated pseudo-labels

for unlabeled target data, Lcon is an adaptive contrastive loss that uses target-specific instances for

local consistency regularization and uses source-like instances for robust class-wise adaptation, and

LEMMD is used to mitigate the difference between DS and DO (distribution alignment) [86].

Firstly, we perform class-wise adaptation by predicting pseudo-labels for the unlabeled target

dataset. The pseudo-labels are updated with the centroids multiple times until they converge using

the approach proposed in [86, 74]. Indeed, each class has a centroid ck that groups all the nearest

67

samples as defined in the following equations:

Ỹ = {ỹi|ỹi = argmax
k

cos(ϕ(xi), ck), xi ∈ DT } (69)

ck =

∑nt
i=1 1(ỹi = k)fi∑nt
i=1 1(ỹi = k)

(70)

where fi is the model feature extractor, cos (., .) is the cosine similarity, and 1(.) is the indicator

function. While training, the training instances from the target data are transformed into two views

using two created transformations [86]. Instances are divided into source-like and target-specific

samples based on the newly created views [86]. For adaptive contrastive learning, we create an

updated memory bank containing all the target domain features F = {zi}nt
i=1, and it creates in

each iteration source-like centroids and target specific features [86]. Indeed, with source-like sam-

ples, contrastive learning employs class-wise adaptation, considering source-like samples as class

centroid [86]. However, with the noisy target-specific samples, contrastive learning takes into con-

sideration the local consistency regularization [86]. Memory bank helps conserve information from

the source domain. It is updated at each iteration, and it generates, to the contrastive learning ap-

proach, the needed source-like centroids and target-specific samples [86]. The last step performed

by this UDA method is distribution alignment. Indeed, we align source-like and target-specific

samples using maximum mean discrepancy (MMD) defined as follows:

dMMD(S, T) =
1

m

m∑
i=1

si(

m∑
i′=1

si′ − 1

n

n∑
j′=1

tj′) +
1

n

n∑
i=1

ti(
1

n

n∑
j′=1

tj′ − 1

m

m∑
i′=1

si′)

where (S, T) are the source and target domains, (s, t) are the source-like and target-specific

features, and (m,n) are the number of features for both domains batch.

Attracting and Dispersing (AaD)

For the AaD method, we have in hand a pre-trained model from the source domain with Nt

unlabeled samples Dt = {xti}
Nt
i=1 from the target domain with C labels. In this approach, UDA is

68

performed without access to source data [87]. The source pre-trained model is a combination of a

feature encoding f and a classifier g. The considered method works by grouping features that have

close or the same predictions and dispersing features that have different predictions [87]. To make

this evaluation, we defined a probability pij function between two features to measure the similarity

between them:

pij =
ep

T
i pj∑

Nt
ep

T
i pk

(71)

For each feature zi, we define a space grouping its close features called C and space grouping

the rest of features called B [87]. We store all the obtained information about target features in two

memory banks while training. To perform feature clustering for AaD, we minimize the following

loss function L̃:

L̃i(Ci,Bi) = − log
P (Ci)
P (Bi)

(72)

where P is defined in the next equations for a model with θ parameters [87]:

P (Ci|θ) =
∏
j∈Ci

pij =
∏
j∈Ci

ep
T
i pj∑

Nt
ep

T
i pk

(73)

P (Bi|θ) =
∏
j∈Bi

pij =
∏
j∈Bi

ep
T
i pj∑

Nt
ep

T
i pk

(74)

Optimizing Eq.(72) will simultaneously perform feature clustering and cluster assignment [87].

The considered optimization function can be simplified to a new loss function that does the same

function as Eq.(72) which is defined as follows:

L = E(L̃i(Ci,Bi)),E(L̃i(Ci,Bi)) = −
∑
j∈Ci

pTi pj + λ
∑
m∈Bi

pTi pm (75)

where λ is a hyperparameter. The first term of the new loss function will encourage prediction

consistency features from C, and the second term will disperse prediction of features from B [87].

69

Source HypOthesis Transfer (SHOT)

SHOT uses a source pre-trained model which has a good performance while classifying data

samples from the source domain. The used source model, defined as fs(x) = hs(gs(x)), is a

combination of a feature extractor gs : Xs −→ Rd with d number of features, and a classifier

hs : Rd −→ RK with K number of labels. SHOT transfers the weights from the source hypoth-

esis module (classifier module) to the target classifier module, and freezes them during the whole

training process hs = ht. However, it learns a new feature encoding module gt : Xt −→ Rd so that

the discrepancy between the output of the target feature extractor and the source feature extractor

is minimum. In other words, the data distribution (p(gt(xt)), p(gs(xs))) difference between source

and target domains will be minimized [74, 88].

SHOT with Information Maximization (SHOT-IM): SHOT-IM uses information maximization

[74, 88, 97, 93] while updating the weights of the target feature extractor as defined in the following

loss function:

Lent(ft; Xt) = −Ext∈Xt

K∑
k=1

δk(ft(xt)) log δk(ft(xt)),

Ldiv(ft; Xt) =
K∑
k=1

p̂k log p̂k = DKL(p̂,
1

K
1K)− log(K)

(76)

where 1K is a vector containing K values of one, p̂ = Ext∈Xt(δk(f
(k)
t (xt))) is defined as

the mean output embedding of the target domain, and DKL is defined as the Kullback-Leibler

divergence.

SHOT with self-supervised pseudo-labeling: Pseudo-labeling has been employed in this re-

search to provide unlabeled data from the target domain with labels so that we can see a perfor-

mance increase compared to SHOT-IM performance [74, 88]. Pseudo-labeling is a technique that

uses supervised machine learning models to label unlabeled data. In our case, it can be done by the

70

source pre-trained model, however, due to the domain’s discrepancy between source and target do-

mains a self-supervised pseudo-labeling technique has been considered [74, 88]. the self-supervised

pseudo-labeling strategy generates a centroid for each target domain label in an unsupervised way

and infers the pseudo labels as defined in the following equation:

c
(0)
k =

∑
xt∈Xt

δk(f̂t(xt))ĝt(xt)∑
xt∈Xt

δk(f̂t(xt))
,

ŷt = argmin
k

Df (ĝt(xt), c
(0)
k)

(77)

where Df is defined as the cosine distance, and f̂t = ĝt(ht) is defined as the previously learned

target model. Then, using the previously obtained updates, we calculate the new centroids and

pseudo-labels defined as follows:

c
(1)
k =

∑
xt∈Xt

1(ŷt = k)ĝt(xt)∑
xt∈Xt

1(ŷt = k)
,

ŷt = argmin
k

Df (ĝt(xt), c
(1)
k)

(78)

We keep doing this step several times until we obtained pseudo-labels confident pseudo-labels.

The obtained pseudo-labels are called self-supervised pseudo-labels because the centroids are cre-

ated in an unsupervised way [74, 88]. SHOT solves the following objective function L(gt) to create

the target feature extractor [74, 88], and its general steps are defined in Algorithm 2:

L(gt) = Lent(ft; Xt) + Ldiv(ft; Xt)− βE(xt,ŷt)∈Xt×Ŷt

K∑
k=1

1[K=ŷt] log δk(ft(xt)) (79)

where β > 0 is a balancing hyper-parameter.

71

Algorithm 2 SHOT algorithm
Require: Source hypothesis fs, unlabeled target data, balancing hyperparameter β, number of epochs T .

1: Initialization: Freezing the source classifier hs = ht, and using gs as an initialization.
2: for i = 1 → T do
3: Generate self-supervised pseudo labels using Eq.(78).
4: for j = 1 → nbatch do
5: Obtain the pseudo labels for a given batch from target data.
6: Using L(gt) in Eq.(79), update gt.
7: end for
8: end for

4.3 Experimental setup and results

4.3.1 Datasets

For AR, we have evaluated the considered methods using the public dataset of The Washington

State University (WSU) Center for Advanced Studies in Adaptive Systems (CASAS) [100]. It

has been collected using several types of sensors such as motion sensors, door contact sensors,

temperature sensors, and light switch sensors. It contains multiple tasks but we have only focused

on predicting the following labels that are highly related to energy management: cooking breakfast,

cooking lunch, cooking dinner, watching TV, and toileting [100]. For the evaluation task, we have

considered predicting using five labels at first as mentioned in Table 1. Then, we reduced the number

of labels to three labels and compared the obtained results. For OE, we have used datasets collected

from two offices (H355 and H358) located in Grenoble Institute of Technology using several types

of sensors such as door/window contact sensors, temperature sensors, CO2 concentration sensors,

and power consumption sensors [25, 13, 14]. We have evaluated two tasks: three levels of occupancy

and two levels of occupancy as mentioned in Table 2. For both tasks (AR and OE), we considered

testing all the approaches with both balanced and unbalanced datasets to see the robustness of these

methods to class proportion change. The used datasets for both tasks AR and OE contain several

features and labels. In Figure 4.1, we visualize some of the features of the 3-label AR (Toileting,

watching TV, and Cooking breakfast) dataset as well as some of the features of the 2-label OE.

Based on the boxplots of the chosen features, we can see that there is no correlation between the

AR features as well as the OE features.

72

Figure 4.1: Features visualization for AR (a) and OE (b) datasets

4.3.2 Metrics

In this research, we have evaluated the considered approaches with multiple types of metrics

depending on the scenario (balanced or unbalanced dataset). For balanced datasets, we have used a

typical score which is the accuracy [25] defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(80)

Table 4.2: Number of samples per class for AR and OE dataset

Labels Source Target
Watch TV 61312 3577

Cook Breakfast 16279 10167
Toilet 13727 10421

Cook Dinner 5557 7550
Cook Lunch 3197 5165
0 individual 1045 772
1 individual 177 191
2 individuals 148 78
3 individuals 44 27
4 individuals 26 -

73

For unbalanced datasets, the accuracy is not recommended as a score since it does not show the

scores of the model prediction for each label. Thus, it does not show the failure of the model at

some specific labels. For this reason, we have considered different scores to evaluate the obtained

prediction such as the F1-score [25] defined as follows:

Precision (Pr) =
1

N

N∑
i=1

TPi

TPi + FPi
(81)

Recall (Rc) =
1

N

N∑
i=1

TPi

TPi + FNi
(82)

F-score (F1) =
2× Precision×Recall

Precision+Recall
(83)

where TP is the number of true positive samples, TN is the number of true negative samples, FP is

the number of false positive samples, and FN is the number of false negative samples.

4.3.3 Experimental results

We have developed new neural network architectures for most of the considered methods for the

feature extractors and classifiers as presented in the shared code. For all the smart buildings tasks,

we present and discuss the results for unbalanced and balanced datasets.

5-label AR

For the balanced dataset, the prediction task was poor for most of the methods due to the high

complexity of the predicted labels as shown in Table 3. Indeed, we are predicting 5 labels which

is a bit challenging to make a difference between them using the available dataset. CAT+RevGrad,

using a teacher to cluster the unlabeled target data enhanced with gradient reversal, was able to give

almost acceptable results for the considered task with 49% of accuracy. DaC, splitting the target

data points into source-like points and target-specific points to make UDA, was able to provide good

performance while predicting five labels of activities (56.08%). SHOT methods have given the best

74

accuracies with (65.40%) for SHOT enhanced with information maximization, and (68.00%) for

SHOT with self-supervised pseudo-labels. In the current case, we can see the efficiency of labeling

the unlabeled target data while training compared to the use of information maximization.

Table 4.3: Accuracies for AR with 5 balanced labels and F1-scores for AR with 5 unbalanced labels

Method Accuracy (%) F1-score (%)
DSN 20.66 23.12
CAT 38.00 55.64

CAT+RevGrad 49.00 51.15
CAT+rRevGrad 41.00 60.82
CoWA-JMDS 30.68 18.20

CoWA-JMDS w/o WM 24.40 10.85
DaC 56.08 36.65
AaD 33.19 14.67

SHOT-IM 65.40 62.71
SHOT-Pseudo-labeling 68.00 58.74

Extending our work to the unbalanced dataset with different label proportions aims to provide

an idea about the robustness of the considered approach. Training with unequal label proportion

has increased CAT methods performance giving 51.15% of accuracy for CAT+RevGrad, 55.64%

of accuracy for CAT, and 60.82% of accuracy for CAT+rRevGrad as shown in Table 3. Indeed,

CAT methods have gained more information from the unbalanced dataset thanks to the difference in

label rates. CAT enhanced with robust gradient reversal has given good performance compared to

the rest of the CAT methods. However, gradient reversal only was not beneficial for CAT+RevGrad

with a decrease in performance compared to CAT due to the high complexity of the predicted task

(5 labels). Indeed, gradient reversal and robust gradient reversal deal with target instances with low

classification confidence having a high chance of being misclassified by the model while training. It

was difficult to cluster data and align clusters using a teacher for DaC in the current scenario due to

the predicted task complexity. Thus, we have seen a decrease in DaC performance compared to the

previous scenario (balanced dataset). SHOT methods have given good results in this scenario. Un-

like the balanced dataset, SHOT-Pseudo-labeling has given acceptable accuracy (58.74%), however,

SHOT enhanced with information maximization was better than SHOT-Pseudo-labeling providing

the best score of the current task with (62.71%) of accuracy.

75

3-label AR

By decreasing the complexity of the task (reducing the number of activities), we have seen an in-

crease in most of the approaches’ performance except one UDA with source data (DSN) as shown in

Table 4. DSN finds private and shared information for source and target domains, and it uses this in-

formation to reconstruct features from both environments. The reason behind this low performance

from DSN is the difficulty to distinguish between private and shared representations of features

for the current OE task. CAT methods have given very good results with CAT+RevGrad having

an excellent performance (87%) followed by CAT (78%) and CAT+rRevGrad (65.50%). Gradi-

ent reversal has made a huge impact on CAT method performance with 10% of accuracy increase.

ATDOC+NC enhances the quality of the generated pseudo-labels by creating the nearest centroid

classifier and using a memory mechanism to store all the information related to the unlabeled target

data. ATDOC+NC has given a good score with 84.00% of accuracy. Applying CoWA-JMDS with

weight mixup has given 65.07% of accuracy. However, eliminating weight mixup has reduced the

accuracy of the method to 58%, and this demonstrates the efficiency of weight mixup for the cur-

rent scenario. CoWA-JMDS considers samples’ importance using a score called JMDS that exploits

knowledge from both source and target domains. In the current task, weight mixup is so beneficial

for the model’s prediction by taking into consideration target samples with low confidence scores.

AaD has given very good results (58.09%) compared to the previous task thanks to its clustering and

assigning methodology. Moreover, the decrease in task complexity has helped increase AaD perfor-

mance. AaD assumes that features from the same cluster should have the same class, and it uses this

assumption to reduce the data distribution shift between the source and target domain by aligning

features from the same clusters. SHOT-Pseudo-labeling kept giving good accuracy (78.80%), how-

ever, SHOT-IM has given the best score with 88.80%. Indeed, SHOT-IM takes into consideration

the efficiency of information maximization while updating the weights of the target feature extractor

in order to reduce the discrepancy between source and target domains.

Changing the proportion of labels did show some difference in performance for multiple meth-

ods as shown in Table 4. For UDA without source data, DaC keeps giving good results (79.78% of

F1-score). Indeed, DaC divides target samples into source-like and target-specific instances using a

76

Table 4.4: Accuracies for AR with 3 balanced labels and F1-scores for AR with 3 unbalanced labels

Method Accuracy (%) F1-score (%)
DSN 39.00 45.54
CAT 78.00 80.00

CAT+RevGrad 87.00 75.79
CAT+rRevGrad 65.50 80.68

ATDOC+NC 84.00 87.35
CoWA-JMDS 65.07 46.79

CoWA-JMDS w/o WM 58.00 33.28
DaC 81.93 79.78
AaD 58.09 25.18

SHOT-IM 88.80 93.31
SHOT-Pseudo-labeling 78.80 87.70

source pre-trained model, then it uses a loss function based on maximum mean discrepancy (MMD)

to mitigate the distribution shift between source and target domains. SHOT methods have given the

best results with 87.70% of F1-score for SHOT-Pseudo-labeling, and 93.31% of F1-score for SHOT-

IM. The obtained results prove the efficiency of the data distribution alignment between source and

target domains employed by SHOT. However, we notice a decrease in performance for the rest of the

methods which can be expected with some techniques due to the labels’ proportion difference. For

UDA with source data, CAT methods have shown good robustness to the unbalanced dataset with

80.68% of F1-score for CAT+rRevGrad. CAT and CAT+RevGrad have also shown good perfor-

mance with 80% and 75.79% scores, respectively. In the current task, we can notice the efficiency

of adding robust gradient reversal for the CAT method by considering samples with low prediction

confidence while training. The difference in performance obtained by CAT+RevGrad compared to

CAT can be explained by the use of an unbalanced dataset. ATDOC+NC has also given excellent

performance which is not far from the best scores with 87.35% of F1-score.

3-label OE

For balanced datasets, estimating occupancy with 3 labels has very good results with CAT meth-

ods for UDA with source data as shown in Table 5. Indeed, CAT results were comparable with a

small increase in performance when adding gradient reversal (73% of accuracy). Adding robust gra-

dient reversal to the CAT approach did not enhance performance (68.75% of accuracy) compared

77

to only adding gradient reversal. The small increase in performance while adding gradient rever-

sal shows, for the current task, that the performance is based on the discriminative clustering for

features made by the CAT method. ATDOC+NC has given acceptable performance with 68.00%

of accuracy. For source-free approaches, CoWA-JMDS has given poor performance compared to

the rest of the methods. CoWA-JMDS uses the JMDS confidence score to evaluate samples’ im-

portance based on the predicted pseudo-labels for the unlabeled target instances. The reason behind

the obtained performance for CoWA-JMDS can be explained by the accuracy of confidence scores

obtained using JMDS for the target pseudo-labels. Moreover, weight mixup was not beneficial for

CoWA-JMDS. Indeed, its performance without adding weight mixup is greater than when adding it

(40.59% to 49.05%), and this proves that weight mixup was misleading in the current task. DaC,

based on confidence scores of the predicted pseudo-labels, has given good results with 66.84% of

accuracy. AaD has the best performance for source-free methods with 70.04% of accuracy. In-

deed, it mitigates distribution shifts between source and target domains by clustering and assigning

close features. SHOT-IM using information maximization while mitigating the discrepancy between

source and target domains has given the best accuracy which is slightly better than CAT+RevGrad

(73.80%).

Table 4.5: Accuracies for OE with 3 balanced labels and F1-scores for OE with 3 unbalanced labels

Method Accuracy (%) F1-score (%)
DSN 34.80 57.01
CAT 72.40 66.67

CAT+RevGrad 73.00 61.54
CAT+rRevGrad 68.75 65.31

ATDOC+NC 68.00 64.24
CoWA-JMDS 40.59 54.72

CoWA-JMDS w/o WM 49.05 55.51
DaC 66.84 80.68
AaD 70.04 76.79

SHOT-IM 73.80 82.57
SHOT-Pseudo-labeling 57.20 82.57

Extending the prediction tasks for three unbalanced labels, we aim to evaluate the efficiency of

the considered methods with the current tasks (OE). Changing the label’s proportion has brought

enhancement and new information to almost all the methods as shown in Table 5. Indeed, we can

78

see that all the methods are giving acceptable and good results. For UDA with source data methods,

DSN got enhanced with 57.01% of F-score. Indeed, DSN extracts representations that are shared

between source and target domains and representations that are private to each domain to make

UDA. Compared to the balanced dataset, CAT methods have seen a small decrease in performance,

but they are still having good performances with 66.67% of F-score for the CAT method without

gradient reversal. ATDOC+NC has given good performance with 64.24% of F1-score. For source-

free methods, both CoWA-JMDS with and without weight mixup got enhanced with 54.72% and

55.51% of F-score, respectively. AaD got a big increase in F-score with 6%, and DaC got a dramatic

increase in F-score with 14% reaching the score compared to all the methods (80.68%). SHOT

methods keep dominating all the rest of the approaches with an excellent F1-score equal to 82.57%

thanks to the self-supervised pseudo-labeling and the information maximization techniques.

2-label OE

Reducing the complexity of occupancy levels from three states to two states has led to a huge

increase in the considered methods scores which is expected as explained in [25]. Indeed, for a

machine learning model, it is easier to predict data with fewer labels [25]. For the balanced dataset,

Table 6 illustrates the obtained accuracies. Indeed, with direct use of source data, CAT methods

have the best scores (around 89.80% of accuracy) compared to the DSN with 56% of accuracy

which is still considered a good result. For the rest of the methods that do not use labeled source

data, CoWA-JMDS has been proven again to have greater results without weight mixup (76.55%)

than with weight mixup (85.88%). AaD has greater results than CoWA-JMDS w/o WM with 2% of

accuracy. DaC has given the best performance of all the considered UDA methods without source

data for the current task with 89.51% of accuracy. SHOT methods, enhanced with pseudo-labels

and information maximization, have also given good results with 86.40% of accuracy. ATDOC+NA

creates a large memory bank storing the features with their predictions to train its classifier. Using

prediction aggregation and a confidence-weighted classification loss, the NA classifier is being dy-

namically updated. In the current scenario, ATDOC+NA has given excellent scores with 88.68% of

accuracy which is not far from the best accuracy (89.80%).

Evaluating the current task of occupancy estimation with the unbalanced dataset has led to a

79

Table 4.6: Accuracies for OE with 2 balanced labels and F1-scores for OE with 2 unbalanced labels

Method Accuracy (%) F1-score (%)
DSN 56.00 63.87
CAT 89.80 65.22

CAT+RevGrad 88.80 68.18
CAT+rRevGrad 89.50 73.68

ATDOC+NC 82.65 86.19
ATDOC+NA 88.68 90.57
CoWA-JMDS 76.55 72.31

CoWA-JMDS w/o WM 85.88 72.31
DaC 89.51 87.77
AaD 87.30 80.07

SHOT-IM 86.40 87.62
SHOT-Pseudo-labeling 86.40 87.63

change in performance for most of the methods. Indeed, some source-dependent methods like DSN

have seen an increase in performance with 63.87%. However, CAT methods have seen a decrease in

performance compared to the previous tasks reaching 65.22% for the CAT method without reversal

gradient which can be explained by the change in the label’s proportion. For source-free methods,

most of the approaches remain with the same performance except CoWA-JMDS w/o WM which has

seen a decrease reaching 72.31% of F-score, and AaD reaching 80.07% of F-score due to label’s

proportion change. DaC has given an excellent performance with 87.77% of the score which is a

good achievement. However, SHOT methods are not so far from DaC with excellent scores for both

approaches (87.62%). ATDOC+NA has given the best performance compared to all the methods

with 90.57% of F1-score which is a great achievement for the considered method.

SHOT-IM: label imbalance

In this section, we evaluate the effect of the label’s proportion imbalance for the best method

SHOT-IM. The method uses a source pre-trained model which has a good performance while clas-

sifying data samples from the source domain. It transfers the weights from the source hypothesis

module to the target classifier module and freezes them during the whole training process. However,

it learns a new feature encoding module so that the discrepancy between the output of the target fea-

ture extractor and the source feature extractor is minimum [74, 88]. The information maximization

(IM) has been used to learn the feature extractor module of the target model [74, 88, 97, 93]. For

80

the label’s proportion, we considered 4 levels: level 1: labels are balanced, level 2: the major la-

bel is 70% of the total labels, level 3: the major label is 80% of the total labels, and level 4: the

major label is 90% of the total labels. Based on the obtained results, we can see that although the

label’s imbalance, SHOT-IM continues to give excellent F1-scores. For almost all the tasks, as long

as we increase the unbalanced level, SHOT-IM performance increases or remains the same. This

experiment shows how efficient is the SHOT-IM method for label imbalance.

Figure 4.2: Label imbalance for SHOT-IM method

4.3.4 Comparison and discussion

For all the considered UDA methods with and without the use of source data, we notice a

close performance for each task (AR and OE) as shown in Figure 4.3 and Figure 4.4. Indeed, if

we move from left to right in both figures with the 12 considered methods on the x-axis, we can

notice that most of the time the difference in performance (scores) is not huge. Also, we can see

that most of the methods have given good scores for all the tasks. Decreasing the complexity of

the tasks by decreasing the number of labels (AR and OE) has all the time a positive effect on

the models’ performances. Indeed, we can see all the time the curve of 2-label OE is above the

curve of 3-label OE, and the curve of 3-label AR is all the time above the curve of 5-label AR. The

developed methods have been tested on only two smart building tasks (AR and OE). However, they

81

can generalize to any smart building application that is based on sensor data which is a potential

achievement for our research. Also, they can be applied to any AI area as long as the data is 1-

dimensional. UDA with source data has direct access to data from the source domains like the

behavior of occupants (activities) which can lead to privacy issues [25, 13, 24, 39, 40, 41, 42]. Data

privacy is a topic of interest in smart building applications that most researchers try to preserve by

developing techniques that get advantage of data while protecting its privacy. In contrast, source-

free UDA does not get access to the generated data, but it uses only trained models that do not

contain any private information about people which protects residents’ privacy. The considered

methods are trained with unlabeled target data (unsupervised approaches), and they have given very

good results for most of the tasks which is a good achievement for our research.

Figure 4.3: Accuracies for all the methods with balanced labels

In our current case, we have good and close performance between both scenarios (UDA with and

without source data) and we have source-free methods with the advantages of preserving privacy

compared to the rest of the techniques. We suggest choosing the scenario that preserves privacy

which is source-free UDA.

82

Figure 4.4: F1-scores for all the methods with unbalanced labels

Figure 4.5: Accuracies for all the methods with unbalanced labels

Figure 4.6: F1-scores for all the methods with balanced labels

83

Chapter 5

Conclusion

In this thesis, firstly, we consider unsupervised domain adaptation methods, that do not have

direct access to labeled source data, called SHOT, SFDA, and HoMM. SHOT exploits information

maximization and self-supervised pseudo-labeling to create a target feature encoder so that the

target data distribution fits the target classifier. It freezes the classifier from the source. HoMM

also uses pseudo-labeling for the target samples to enhance data alignment. Indeed, it freezes the

feature extractor of the source model and it creates a new classifier for the target model. SFDA

progressively updates a target model by selecting reliable target samples using source knowledge.

All methods use a pre-trained model from the source domain instead of source data to preserve

data privacy. In this research, we have provided new model architectures of the different methods

to fit the smart building data. SHOT, SFDA, and HoMM have given good results in all the tasks

of AR and OE with balanced and unbalanced datasets. On average, SHOT is better than SFDA

and HoMM, but there are some tasks where SFDA and HoMM outperform SHOT. Decreasing the

complexity of the task by reducing the number of activities or the number of occupancy levels, has

shown a remarkable increase in the performance of the considered approaches. Even though all

methods are unsupervised, they give scores comparable to supervised methods results, and in some

cases, they exceed supervised machine learning methods’ performances.

Secondly, we considered unsupervised domain adaptation methods that use labeled source data

and unlabeled target data to mitigate domain shifts between source and target environments. We

have considered 5 UDA techniques called VADA, SWD, HAFN, SAFN, and SAFN+ENTM. VADA

84

combines domain adversarial training and a penalty term to punish the violation of cluster assump-

tion. SWD uses task-specific decision boundaries from source and target domains and the Wasser-

stein distance to make domain adaptation. HAFN mitigates the domain discrepancy by limiting the

expected feature norms of the source and target environments to a given scalar. SAFN enlarges

mean features norms progressively to explore more information in features spaces. SAFN+ENTM

enhances SAFN with entropy minimization to increase knowledge transfer across domains. All the

considered techniques have been evaluated on AR and OE datasets for balanced and unbalanced

label proportions. VADA has shown remarkable performance for all the considered tasks, and it has

a high level of robustness for data poisoning. AFN methods have also shown great performances

for most of the tasks with an acceptable level of robustness for mislabeled samples added to training

data. Enlarging the mean features norms scale has enhanced the performance of the model in most

cases. Also, entropy minimization has enhanced the performance of SAFN for several AR and OE

tasks. SWD with Wasserstein discrepancy minimization did not perform well for the AR task. How-

ever, for unbalanced labels proportion, we have seen an enhancement for all AR predictions with

SWD. VADA evaluated in the WiFi dataset has shown better performance in recognizing human

activities than in previous research.

Finally, we have made a comparative analysis between unsupervised domain adaptation methods

with and without labeled source data to estimate occupancy and recognize activities in smart build-

ings. We have evaluated 12 UDA methods for both scenarios (with and without source data). For

UDA with source data, we considered DSN, CAT, CAT+RevGrad, CAT+rRevGrad, ATDOC+NC,

and ATDOC+NA. DSN creates more meaningful data representations by extracting information that

is shared between source and target domains, and information that is unique to each domain. CAT

trains a teacher model on the source data to cluster labeled source samples and unlabeled target

samples. Then, it uses the obtained clusters from both domains to align source and target clus-

ters. CAT has been extended with gradient reversal (CAT+RevGrad), and robust gradient reversal

(CAT+rRevGrad) to enhance domain adaptation performance. ATDOC methods enhance the qual-

ity of the generated pseudo-labels by creating two classifiers (NC and NA) and using a memory

mechanism to store all the information related to the unlabeled target data. For source-free UDA,

85

we considered CoWA-JMDS, CoWA-JMDS w/o weight mixup, AaD, DaC, SHOT-IM, and SHOT-

pseudo-labeling. CoWA-JMDS uses the JMDS confidence score to evaluate data points’ importance

based on the predicted pseudo-labels by exploiting knowledge from both domains. CoWA-JMDS

has been extended to weight mixup to make more use of target data points with low confidence

scores. AaD optimizes an objective that is based on the assumption that features from the same

cluster or from close clusters have closer predictions than other features to adapt domains. DaC

uses the confidence scores of the predicted pseudo-labels using the source pre-trained model to

split the target data points into source-like points and target-specific points to make UDA. SHOT

methods transfer the weights from the source hypothesis module to the target classifier module and

freeze them during the whole training process, and they learn a new feature encoding module so that

the discrepancy between the output of the target feature extractor and the source feature extractor

is minimum. The considered methods can be applied to any sensor-comparable domain. Most of

the methods have given excellent and comparable results for all the tasks of OE and AR which is

a good achievement for smart building applications. Source-free UDA methods have the advantage

of preserving privacy compared to the rest of the methods because they do not have direct access

to the source data. Thus, we recommend the use of source-free UDA methods since they preserve

privacy, especially with sensitive data.

All the considered methods have been adapted from a 2-dimensional environment (image data)

to a 1-Dimensional environment (sensor data), and they can fit any 1-Dimensional data and not

necessarily smart building data. The impressive results that we have obtained in this research prove

the efficiency of the considered techniques.

86

Bibliography

[1] Q. Zhou, J. Xing, and Q. Yang, “Device-free occupant activity recognition in smart offices

using intrinsic wi-fi components,” Building and Environment, vol. 172, p. 106737, 2020.

[2] H. Chen, S. H. Cha, and T. W. Kim, “A framework for group activity detection and recogni-

tion using smartphone sensors and beacons,” Building and Environment, vol. 158, pp. 205–

216, 2019.

[3] S. H. Cha, J. Seo, S. H. Baek, and C. Koo, “Towards a well-planned, activity-based work

environment: Automated recognition of office activities using accelerometers,” Building and

Environment, vol. 144, pp. 86–93, 2018.

[4] Y.-T. Chiang, C.-H. Lu, and J. Y.-j. Hsu, “A feature-based knowledge transfer framework for

cross-environment activity recognition toward smart home applications,” IEEE Transactions

on Human-Machine Systems, vol. 47, no. 3, pp. 310–322, 2017.

[5] W.-H. Chen, P.-C. Cho, and Y.-L. Jiang, “Activity recognition using transfer learning,” Sens.

Mater, vol. 29, no. 7, pp. 897–904, 2017.

[6] W. Lu, F. Fan, J. Chu, P. Jing, and S. Yuting, “Wearable computing for internet of things:

A discriminant approach for human activity recognition,” IEEE Internet of Things Journal,

vol. 6, no. 2, pp. 2749–2759, 2018.

[7] H. Zhang, Z. Xiao, J. Wang, F. Li, and E. Szczerbicki, “A novel iot-perceptive human activity

recognition (har) approach using multihead convolutional attention,” IEEE Internet of Things

Journal, vol. 7, no. 2, pp. 1072–1080, 2019.

87

[8] H. Huang, X. Li, S. Liu, S. Hu, and Y. Sun, “Tribomotion: A self-powered triboelectric

motion sensor in wearable internet of things for human activity recognition and energy har-

vesting,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4441–4453, 2018.

[9] D. Tao, Y. Wen, and R. Hong, “Multicolumn bidirectional long short-term memory for mobile

devices-based human activity recognition,” IEEE Internet of Things Journal, vol. 3, no. 6,

pp. 1124–1134, 2016.

[10] Z. Chen, C. Jiang, and L. Xie, “Building occupancy estimation and detection: A review,”

Energy and Buildings, vol. 169, pp. 260–270, 2018.

[11] Y. Zhou, J. Chen, Z. J. Yu, J. Li, G. Huang, F. Haghighat, and G. Zhang, “A novel model based

on multi-grained cascade forests with wavelet denoising for indoor occupancy estimation,”

Building and Environment, vol. 167, p. 106461, 2020.

[12] S. H. Ryu and H. J. Moon, “Development of an occupancy prediction model using in-

door environmental data based on machine learning techniques,” Building and Environment,

vol. 107, pp. 1–9, 2016.

[13] M. Amayri, A. Arora, S. Ploix, S. Bandhyopadyay, Q.-D. Ngo, and V. R. Badarla, “Esti-

mating occupancy in heterogeneous sensor environment,” Energy and Buildings, vol. 129,

pp. 46–58, 2016.

[14] M. Amayri and S. Ploix, “Decision tree and parametrized classifier for estimating occupancy

in energy management,” in 2018 5th International Conference on Control, Decision and

Information Technologies (CoDIT), pp. 397–402, IEEE, 2018.

[15] L. Zimmermann, R. Weigel, and G. Fischer, “Fusion of nonintrusive environmental sensors

for occupancy detection in smart homes,” IEEE Internet of Things Journal, vol. 5, no. 4,

pp. 2343–2352, 2017.

[16] S. Hu, P. Wang, C. Hoare, and J. O’Donnell, “Building occupancy detection and localisation

using cctv camera and deep learning,” IEEE Internet of Things Journal, 2022.

88

[17] B. S. Ciftler, S. Dikmese, İ. Güvenç, K. Akkaya, and A. Kadri, “Occupancy counting with

burst and intermittent signals in smart buildings,” IEEE Internet of Things Journal, vol. 5,

no. 2, pp. 724–735, 2017.

[18] M. Amayri, S. Ploix, N. Bouguila, and F. Wurtz, “Database quality assessment for interactive

learning: Application to occupancy estimation,” Energy and Buildings, vol. 209, p. 109578,

2020.

[19] J. B. Silva, M. Amayri, S. Ploix, P. Reignier, and C. S. Silva, “Cooperative and interac-

tive learning to estimate human behaviours for energy applications,” Energy and Buildings,

vol. 258, p. 111727, 2022.

[20] S. S. Abolhassani, A. Zandifar, N. Ghourchian, M. Amayri, N. Bouguila, and U. Eicker, “Im-

proving residential building energy simulations through occupancy data derived from com-

mercial off-the-shelf wi-fi sensing technology,” Energy and Buildings, vol. 272, p. 112354,

2022.

[21] O. Bouhamed, M. Amayri, and N. Bouguila, “Weakly supervised occupancy prediction using

training data collected via interactive learning,” Sensors, vol. 22, no. 9, p. 3186, 2022.

[22] Y. Benezeth, H. Laurent, B. Emile, and C. Rosenberger, “Towards a sensor for detecting

human presence and characterizing activity,” Energy and Buildings, vol. 43, no. 2-3, pp. 305–

314, 2011.

[23] M. Aftab, C. Chen, C.-K. Chau, and T. Rahwan, “Automatic hvac control with real-time

occupancy recognition and simulation-guided model predictive control in low-cost embedded

system,” Energy and Buildings, vol. 154, pp. 141–156, 2017.

[24] M. Aksoezen, M. Daniel, U. Hassler, and N. Kohler, “Building age as an indicator for energy

consumption,” Energy and Buildings, vol. 87, pp. 74–86, 2015.

[25] J. Dridi, M. Amayri, and N. Bouguila, “Transfer learning for estimating occupancy and rec-

ognizing activities in smart buildings,” Building and Environment, vol. 217, p. 109057, 2022.

89

[26] K. Prabhakaran, J. Dridi, M. Amayri, and N. Bouguila, “Explainable k-means clustering for

occupancy estimation,” Procedia Computer Science, vol. 203, pp. 326–333, 2022.

[27] P. Kumar, C. Martani, L. Morawska, L. Norford, R. Choudhary, M. Bell, and M. Leach, “In-

door air quality and energy management through real-time sensing in commercial buildings,”

Energy and Buildings, vol. 111, pp. 145–153, 2016.

[28] H. Zhang, A. Davigny, F. Colas, Y. Poste, and B. Robyns, “Fuzzy logic based energy man-

agement strategy for commercial buildings integrating photovoltaic and storage systems,”

Energy and Buildings, vol. 54, pp. 196–206, 2012.

[29] J. Clarke, J. Cockroft, S. Conner, J. Hand, N. Kelly, R. Moore, T. O’brien, and P. Strachan,

“Simulation-assisted control in building energy management systems,” Energy and buildings,

vol. 34, no. 9, pp. 933–940, 2002.

[30] R. Missaoui, H. Joumaa, S. Ploix, and S. Bacha, “Managing energy smart homes according

to energy prices: analysis of a building energy management system,” Energy and Buildings,

vol. 71, pp. 155–167, 2014.

[31] V. Chidurala and X. Li, “Occupancy estimation using thermal imaging sensors and machine

learning algorithms,” IEEE Sensors Journal, vol. 21, no. 6, pp. 8627–8638, 2021.

[32] S. Munir, R. S. Arora, C. Hesling, J. Li, J. Francis, C. Shelton, C. Martin, A. Rowe, and

M. Berges, “Real-time fine grained occupancy estimation using depth sensors on arm em-

bedded platforms,” in 2017 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pp. 295–306, IEEE, 2017.

[33] A. Tyndall, R. Cardell-Oliver, and A. Keating, “Occupancy estimation using a low-pixel

count thermal imager,” IEEE Sensors Journal, vol. 16, no. 10, pp. 3784–3791, 2016.

[34] P. W. Tien, J. K. Calautit, J. Darkwa, C. Wood, S. Wei, C. A. J. Pantua, and W. Xu, “A

deep learning framework for energy management and optimisation of hvac systems,” in IOP

Conference Series: Earth and Environmental Science, vol. 463, p. 012026, IOP Publishing,

2020.

90

[35] R. Rana, B. Kusy, J. Wall, and W. Hu, “Novel activity classification and occupancy estimation

methods for intelligent hvac (heating, ventilation and air conditioning) systems,” Energy,

vol. 93, pp. 245–255, 2015.

[36] N. Zamzami, M. Amayri, N. Bouguila, and S. Ploix, “Online clustering for estimating occu-

pancy in an office setting,” in 2019 IEEE 28th International Symposium on Industrial Elec-

tronics (ISIE), pp. 2195–2200, IEEE, 2019.

[37] J. P. Real, C. Rasmussen, R. Li, K. Leerbeck, O. M. Jensen, K. B. Wittchen, and H. Mad-

sen, “Characterisation of thermal energy dynamics of residential buildings with scarce data,”

Energy and Buildings, vol. 230, p. 110530, 2021.

[38] B. Chidlovskii, S. Clinchant, and G. Csurka, “Domain adaptation in the absence of source

domain data,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pp. 451–460, 2016.

[39] M. W. Ahmad, M. Mourshed, D. Mundow, M. Sisinni, and Y. Rezgui, “Building energy

metering and environmental monitoring–a state-of-the-art review and directions for future

research,” Energy and Buildings, vol. 120, pp. 85–102, 2016.

[40] H. Kazmi, F. Mehmood, and M. Amayri, “Smart home futures: Algorithmic challenges and

opportunities,” in 2017 14th International Symposium on Pervasive Systems, Algorithms and

Networks & 2017 11th International Conference on Frontier of Computer Science and Tech-

nology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC),

pp. 441–448, IEEE, 2017.

[41] Z. Luo, M. Amayri, W. Fan, and N. Bouguila, “Cross-collection latent beta-liouville alloca-

tion model training with privacy protection and applications,” Applied Intelligence, pp. 1–25,

2023.

[42] M. Amayri, S. Ploix, N. Bouguila, and F. Wurtz, “Estimating occupancy using interactive

learning with a sensor environment: Real-time experiments,” IEEE Access, vol. 7, pp. 53932–

53944, 2019.

91

[43] A. K. Sharma and N. K. Verma, “Quick learning mechanism with cross-domain adaptation

for intelligent fault diagnosis,” IEEE Transactions on Artificial Intelligence, vol. 3, no. 3,

pp. 381–390, 2021.

[44] Y. Kim, D. Cho, K. Han, P. Panda, and S. Hong, “Domain adaptation without source data,”

arXiv preprint arXiv:2007.01524, 2020.

[45] I. Kalita and M. Roy, “Deep neural network-based heterogeneous domain adaptation using

ensemble decision making in land cover classification,” IEEE Transactions on Artificial In-

telligence, vol. 1, no. 2, pp. 167–180, 2020.

[46] Y. Li, Y. Sun, K. Horoshenkov, and S. M. Naqvi, “Domain adaptation and autoencoder-based

unsupervised speech enhancement,” IEEE Transactions on Artificial Intelligence, vol. 3,

no. 1, pp. 43–52, 2021.

[47] T. Kyono and M. Van der Schaar, “Exploiting causal structure for robust model selection in

unsupervised domain adaptation,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 6,

pp. 494–507, 2021.

[48] Y. Zhu, X. Wu, Y. Li, J. Qiang, and Y. Yuan, “Self-adaptive imbalanced domain adaptation

with deep sparse autoencoder,” IEEE Transactions on Artificial Intelligence, 2022.

[49] A. Braytee, M. Naji, and P. J. Kennedy, “Unsupervised domain-adaptation-based tensor fea-

ture learning with structure preservation,” IEEE Transactions on Artificial Intelligence, vol. 3,

no. 3, pp. 370–380, 2022.

[50] S. Dhar, N. D. Jana, and S. Das, “An adaptive learning based generative adversarial network

for one-to-one voice conversion,” IEEE Transactions on Artificial Intelligence, 2022.

[51] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive

survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[52] D. Cook, K. D. Feuz, and N. C. Krishnan, “Transfer learning for activity recognition: A

survey,” Knowledge and information systems, vol. 36, no. 3, pp. 537–556, 2013.

92

[53] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” ACM Trans-

actions on Intelligent Systems and Technology (TIST), vol. 11, no. 5, pp. 1–46, 2020.

[54] G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” arXiv

preprint arXiv:1702.05374, 2017.

[55] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, “Domain transfer svm for video concept

detection,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1375–

1381, IEEE, 2009.

[56] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component

analysis,” IEEE transactions on neural networks, vol. 22, no. 2, pp. 199–210, 2010.

[57] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann, “Unsupervised domain

adaptation by domain invariant projection,” in Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 769–776, 2013.

[58] G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia, “Semisupervised transfer

component analysis for domain adaptation in remote sensing image classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3550–3564, 2015.

[59] E. Zhong, W. Fan, J. Peng, K. Zhang, J. Ren, D. Turaga, and O. Verscheure, “Cross do-

main distribution adaptation via kernel mapping,” in Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 1027–1036, 2009.

[60] A. G. Prabono, B. N. Yahya, and S.-L. Lee, “Hybrid domain adaptation with deep network ar-

chitecture for end-to-end cross-domain human activity recognition,” Computers & Industrial

Engineering, vol. 151, p. 106953, 2021.

[61] C. Shen, Y. Chen, G. Yang, and X. Guan, “Toward hand-dominated activity recognition sys-

tems with wristband-interaction behavior analysis,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 50, no. 7, pp. 2501–2511, 2018.

93

[62] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based activity recognition,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

vol. 42, no. 6, pp. 790–808, 2012.

[63] M. A. A. H. Khan, N. Roy, and A. Misra, “Scaling human activity recognition via deep

learning-based domain adaptation,” in 2018 IEEE international conference on pervasive

computing and communications (PerCom), pp. 1–9, IEEE, 2018.

[64] C. Zhu and W. Sheng, “Wearable sensor-based hand gesture and daily activity recognition for

robot-assisted living,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, vol. 41, no. 3, pp. 569–573, 2011.

[65] J. Wannenburg and R. Malekian, “Physical activity recognition from smartphone accelerom-

eter data for user context awareness sensing,” IEEE Transactions on Systems, Man, and Cy-

bernetics: Systems, vol. 47, no. 12, pp. 3142–3149, 2016.

[66] A. Akbari and R. Jafari, “Transferring activity recognition models for new wearable sensors

with deep generative domain adaptation,” in Proceedings of the 18th International Confer-

ence on Information Processing in Sensor Networks, pp. 85–96, 2019.

[67] S. An, A. Medda, M. N. Sawka, C. J. Hutto, M. L. Millard-Stafford, S. Appling, K. L.

Richardson, and O. T. Inan, “Adaptnet: Human activity recognition via bilateral domain

adaptation using semi-supervised deep translation networks,” IEEE Sensors Journal, vol. 21,

no. 18, pp. 20398–20411, 2021.

[68] J. Zhao, F. Deng, H. He, and J. Chen, “Local domain adaptation for cross-domain activity

recognition,” IEEE Transactions on Human-Machine Systems, vol. 51, no. 1, pp. 12–21,

2020.

[69] Z. Zhou, Y. Zhang, X. Yu, P. Yang, X.-Y. Li, J. Zhao, and H. Zhou, “Xhar: Deep domain

adaptation for human activity recognition with smart devices,” in 2020 17th Annual IEEE

International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9,

IEEE, 2020.

94

[70] A. R. Sanabria and J. Ye, “Unsupervised domain adaptation for activity recognition across

heterogeneous datasets,” Pervasive and Mobile Computing, vol. 64, p. 101147, 2020.

[71] T. Zhang and O. Ardakanian, “A domain adaptation technique for fine-grained occupancy

estimation in commercial buildings,” in Proceedings of the International Conference on In-

ternet of Things Design and Implementation, pp. 148–159, 2019.

[72] I. B. Arief-Ang, F. D. Salim, and M. Hamilton, “Da-hoc: semi-supervised domain adaptation

for room occupancy prediction using co2 sensor data,” in Proceedings of the 4th ACM Inter-

national Conference on Systems for Energy-Efficient Built Environments, pp. 1–10, 2017.

[73] I. B. Arief-Ang, M. Hamilton, and F. D. Salim, “A scalable room occupancy prediction with

transferable time series decomposition of co2 sensor data,” ACM Transactions on Sensor

Networks (TOSN), vol. 14, no. 3-4, pp. 1–28, 2018.

[74] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data? source hypoth-

esis transfer for unsupervised domain adaptation,” in International Conference on Machine

Learning, pp. 6028–6039, PMLR, 2020.

[75] C. Chen, Z. Fu, Z. Chen, S. Jin, Z. Cheng, X. Jin, and X.-S. Hua, “Homm: Higher-order mo-

ment matching for unsupervised domain adaptation,” in Proceedings of the AAAI conference

on artificial intelligence, vol. 34, pp. 3422–3429, 2020.

[76] J. Dridi, M. Amayri, and N. Bouguila, “Unsupervised domain adaptation without source

data for estimating occupancy and recognizing activities in smart buildings,” Energy and

Buildings, submitted.

[77] R. Shu, H. H. Bui, H. Narui, and S. Ermon, “A dirt-t approach to unsupervised domain

adaptation,” arXiv preprint arXiv:1802.08735, 2018.

[78] C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht, “Sliced wasserstein discrepancy for un-

supervised domain adaptation,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 10285–10295, 2019.

95

[79] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable: An adaptive feature norm

approach for unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 1426–1435, 2019.

[80] A. Mehra, B. Kailkhura, P.-Y. Chen, and J. Hamm, “Understanding the limits of unsupervised

domain adaptation via data poisoning,” Advances in Neural Information Processing Systems,

vol. 34, pp. 17347–17359, 2021.

[81] J. Dridi, M. Amayri, and N. Bouguila, “Unsupervised domain adaptation with source data

for estimating occupancy and recognizing activities in smart buildings,” IEEE Transactions

on Artificial Intelligence, submitted.

[82] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Domain separation

networks,” Advances in neural information processing systems, vol. 29, 2016.

[83] Z. Deng, Y. Luo, and J. Zhu, “Cluster alignment with a teacher for unsupervised domain

adaptation,” in Proceedings of the IEEE/CVF international conference on computer vision,

pp. 9944–9953, 2019.

[84] J. Liang, D. Hu, and J. Feng, “Domain adaptation with auxiliary target domain-oriented clas-

sifier,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-

tion, pp. 16632–16642, 2021.

[85] J. Lee, D. Jung, J. Yim, and S. Yoon, “Confidence score for source-free unsupervised domain

adaptation,” in International Conference on Machine Learning, pp. 12365–12377, PMLR,

2022.

[86] Z. Zhang, W. Chen, H. Cheng, Z. Li, S. Li, L. Lin, and G. Li, “Divide and contrast: Source-

free domain adaptation via adaptive contrastive learning,” arXiv preprint arXiv:2211.06612,

2022.

[87] S. Yang, Y. Wang, K. Wang, S. Jui, et al., “Attracting and dispersing: A simple approach

for source-free domain adaptation,” in Advances in Neural Information Processing Systems,

2022.

96

[88] J. Liang, D. Hu, Y. Wang, R. He, and J. Feng, “Source data-absent unsupervised domain

adaptation through hypothesis transfer and labeling transfer,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8602–8617, 2021.

[89] J. Dridi, M. Amayri, and N. Bouguila, “Unsupervised domain adaptation with and without

access to source data for estimating occupancy and recognizing activities in smart buildings,”

Building and Environment, accepted.

[90] J. A. Pinzon, P. P. Vergara, L. C. Da Silva, and M. J. Rider, “Optimal management of energy

consumption and comfort for smart buildings operating in a microgrid,” IEEE Transactions

on Smart Grid, vol. 10, no. 3, pp. 3236–3247, 2018.

[91] I. Kuzborskij and F. Orabona, “Stability and hypothesis transfer learning,” in International

Conference on Machine Learning, pp. 942–950, PMLR, 2013.

[92] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adap-

tation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 7167–7176, 2017.

[93] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning discrete represen-

tations via information maximizing self-augmented training,” in International conference on

machine learning, pp. 1558–1567, PMLR, 2017.

[94] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-

ing internal covariate shift,” in International conference on machine learning, pp. 448–456,

PMLR, 2015.

[95] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accel-

erate training of deep neural networks,” Advances in neural information processing systems,

vol. 29, pp. 901–909, 2016.

97

[96] Y. Gao, W. Wang, C. Herold, Z. Yang, and H. Ney, “Towards a better understanding of label

smoothing in neural machine translation,” in Proceedings of the 1st Conference of the Asia-

Pacific Chapter of the Association for Computational Linguistics and the 10th International

Joint Conference on Natural Language Processing, pp. 212–223, 2020.

[97] A. Krause, P. Perona, and R. Gomes, “Discriminative clustering by regularized information

maximization,” Advances in neural information processing systems, vol. 23, 2010.

[98] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method

for deep neural networks,” in Workshop on challenges in representation learning, ICML,

vol. 3, p. 896, 2013.

[99] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learn-

ing of visual features,” in Proceedings of the European Conference on Computer Vision

(ECCV), pp. 132–149, 2018.

[100] D. J. Cook, “Learning setting-generalized activity models for smart spaces,” IEEE intelligent

systems, vol. 2010, no. 99, p. 1, 2010.

[101] S. Liu, P. Reviriego, X. Tang, W. Tang, and F. Lombardi, “Result-based re-computation for

error-tolerant classification by a support vector machine,” IEEE Transactions on Artificial

Intelligence, vol. 1, no. 1, pp. 62–73, 2020.

[102] U. K. Dutta, M. Harandi, and C. C. Sekhar, “Unsupervised deep metric learning via orthog-

onality based probabilistic loss,” IEEE Transactions on Artificial Intelligence, vol. 1, no. 1,

pp. 74–84, 2020.

[103] S. Niu, Y. Liu, J. Wang, and H. Song, “A decade survey of transfer learning (2010–2020),”

IEEE Transactions on Artificial Intelligence, vol. 1, no. 2, pp. 151–166, 2020.

[104] M. Amiribesheli and H. Bouchachia, “A tailored smart home for dementia care,” Journal of

Ambient Intelligence and Humanized Computing, vol. 9, pp. 1755–1782, 2018.

98

[105] D. Djenouri, R. Laidi, Y. Djenouri, and I. Balasingham, “Machine learning for smart building

applications: Review and taxonomy,” ACM Computing Surveys (CSUR), vol. 52, no. 2, pp. 1–

36, 2019.

[106] L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan, “A review of deep reinforcement

learning for smart building energy management,” IEEE Internet of Things Journal, vol. 8,

no. 15, pp. 12046–12063, 2021.

[107] K. Alanne and S. Sierla, “An overview of machine learning applications for smart buildings,”

Sustainable Cities and Society, vol. 76, p. 103445, 2022.

[108] J. Guo, M. Amayri, F. Najar, W. Fan, and N. Bouguila, “Occupancy estimation in smart

buildings using predictive modeling in imbalanced domains,” Journal of Ambient Intelligence

and Humanized Computing, pp. 1–13, 2022.

[109] A. Arora, M. Amayri, V. Badarla, S. Ploix, and S. Bandyopadhyay, “Occupancy estimation

using non intrusive sensors in energy efficient buildings,” in 14th Conference of International

Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015., 2015.

[110] M. Amayri, S. Ali, N. Bouguila, and S. Ploix, “Machine learning for activity recognition in

smart buildings: A survey,” Towards Energy Smart Homes: Algorithms, Technologies, and

Applications, pp. 199–228, 2021.

[111] N. Manouchehri, O. Dalhoumi, M. Amayri, and N. Bouguila, “Variational learning of a

shifted scaled dirichlet model with component splitting approach,” in 2020 Third Interna-

tional Conference on Artificial Intelligence for Industries (AI4I), pp. 75–78, IEEE, 2020.

[112] O. Dalhoumi, M. Amayri, and N. Bouguila, “A review of neural networks for buildings oc-

cupancy measurement,” in 2022 IEEE International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology (IAICT), pp. 29–35, IEEE, 2022.

[113] A. Benmansour, A. Bouchachia, and M. Feham, “Multioccupant activity recognition in per-

vasive smart home environments,” ACM Computing Surveys (CSUR), vol. 48, no. 3, pp. 1–36,

2015.

99

[114] S. Mohamad, M. Sayed-Mouchaweh, and A. Bouchachia, “Online active learning for human

activity recognition from sensory data streams,” Neurocomputing, vol. 390, pp. 341–358,

2020.

[115] K. Akkaya, I. Guvenc, R. Aygun, N. Pala, and A. Kadri, “Iot-based occupancy monitoring

techniques for energy-efficient smart buildings,” in 2015 IEEE Wireless communications and

networking conference workshops (WCNCW), pp. 58–63, IEEE, 2015.

[116] M. Azam, M. Blayo, J.-S. Venne, and M. Allegue-Martinez, “Occupancy estimation using

wifi motion detection via supervised machine learning algorithms,” in 2019 ieee global con-

ference on signal and information processing (GlobalSIP), pp. 1–5, IEEE, 2019.

[117] Q. Zhu, Z. Chen, and Y. C. Soh, “A novel semisupervised deep learning method for human

activity recognition,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3821–

3830, 2018.

[118] D. Tuia, C. Persello, and L. Bruzzone, “Domain adaptation for the classification of remote

sensing data: An overview of recent advances,” IEEE geoscience and remote sensing maga-

zine, vol. 4, no. 2, pp. 41–57, 2016.

[119] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” Advances

in neural information processing systems, vol. 17, 2004.

[120] I. K. Ihianle, A. O. Nwajana, S. H. Ebenuwa, R. I. Otuka, K. Owa, and M. O. Orisatoki, “A

deep learning approach for human activities recognition from multimodal sensing devices,”

IEEE Access, vol. 8, pp. 179028–179038, 2020.

[121] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and

data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[122] K. Yan, X. Zhou, and B. Yang, “Ai and iot applications of smart buildings and smart environ-

ment design, construction and maintenance,” 2022.

100

[123] M. Shahinmoghadam, W. Natephra, and A. Motamedi, “Bim-and iot-based virtual reality tool

for real-time thermal comfort assessment in building enclosures,” Building and environment,

vol. 199, p. 107905, 2021.

[124] Z. D. Tekler, R. Low, C. Yuen, and L. Blessing, “Plug-mate: An iot-based occupancy-driven

plug load management system in smart buildings,” Building and Environment, vol. 223,

p. 109472, 2022.

[125] Q. Li, X. Wang, P. Wang, W. Zhang, and J. Yin, “Farda: A fog-based anonymous reward

data aggregation security scheme in smart buildings,” Building and Environment, vol. 225,

p. 109578, 2022.

[126] K. Li, J. Zhao, J. Hu, and Y. Chen, “Dynamic energy efficient task offloading and resource

allocation for noma-enabled iot in smart buildings and environment,” Building and Environ-

ment, vol. 226, p. 109513, 2022.

[127] J. Xu, D. Li, W. Gu, and Y. Chen, “Uav-assisted task offloading for iot in smart buildings

and environment via deep reinforcement learning,” Building and Environment, vol. 222,

p. 109218, 2022.

[128] J. Cui, J. Pan, S. Wang, M. O. Okoye, J. Yang, Y. Li, and H. Wang, “Improved normal-

boundary intersection algorithm: A method for energy optimization strategy in smart build-

ings,” Building and Environment, vol. 212, p. 108846, 2022.

[129] R. Galvin, “Policy pressure to retrofit germany’s residential buildings to higher energy effi-

ciency standards: A cost-effective way to reduce co2 emissions?,” Building and Environment,

p. 110316, 2023.

[130] R. Slabe-Erker, M. Dominko, A. Bayar, B. Majcen, and K. Primc, “Energy efficiency in

residential and non-residential buildings: Short-term macroeconomic implications,” Building

and Environment, vol. 222, p. 109364, 2022.

101

[131] W. Du, M. Li, Y. Wang, X. Ma, C. Hu, Y. Zhang, and Z. Zhang, “Dynamic energy efficiency

characteristics analysis of a distributed solar photovoltaic direct-drive solar cold storage,”

Building and Environment, vol. 206, p. 108324, 2021.

[132] W. Duan, Y. Wang, J. Li, Y. Zheng, C. Ning, and P. Duan, “Real-time surveillance-video-

based personalized thermal comfort recognition,” Energy and Buildings, vol. 244, p. 110989,

2021.

[133] J. Kim, K. Min, M. Jung, and S. Chi, “Occupant behavior monitoring and emergency event

detection in single-person households using deep learning-based sound recognition,” Build-

ing and Environment, vol. 181, p. 107092, 2020.

[134] K. Rezaee, X. Yang, M. R. Khosravi, R. Zhang, W. Lin, and G. Jeon, “Fusion-based learn-

ing for stress recognition in smart home: an iomt framework,” Building and Environment,

vol. 216, p. 108988, 2022.

[135] Q. Zhou, Q. Yang, and J. Xing, “Enabling efficient wifi-based occupant behavior recognition

using insufficient samples,” Building and Environment, vol. 212, p. 108806, 2022.

[136] H. Nguyen, M. Rahmanpour, N. Manouchehri, K. Maanicshah, M. Amayri, and N. Bouguila,

“A statistical approach for unsupervised occupancy detection and estimation in smart build-

ings,” in 2019 IEEE International Smart Cities Conference (ISC2), pp. 414–419, IEEE, 2019.

[137] S. Ali and N. Bouguila, “Towards scalable deployment of hidden markov models in occu-

pancy estimation: A novel methodology applied to the study case of occupancy detection,”

Energy and Buildings, vol. 254, p. 111594, 2022.

[138] S. M. Islam, A. Droitcour, E. Yavari, V. M. Lubecke, and O. Boric-Lubecke, “Building oc-

cupancy estimation using microwave doppler radar and wavelet transform,” Building and

Environment, vol. 236, p. 110233, 2023.

[139] K. Sun, P. Liu, T. Xing, Q. Zhao, and X. Wang, “A fusion framework for vision-based indoor

occupancy estimation,” Building and Environment, vol. 225, p. 109631, 2022.

102

[140] R. C. Navarro, A. R. Ruiz, F. J. V. Molina, M. J. S. Romero, J. D. Chaparro, D. V. Alises, and

J. C. L. Lopez, “Indoor occupancy estimation for smart utilities: A novel approach based on

depth sensors,” Building and Environment, vol. 222, p. 109406, 2022.

[141] S. Sagawa, P. W. Koh, T. Lee, I. Gao, S. M. Xie, K. Shen, A. Kumar, W. Hu, M. Yasunaga,

H. Marklund, et al., “Extending the wilds benchmark for unsupervised adaptation,” arXiv

preprint arXiv:2112.05090, 2021.

[142] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using

a multi-scale deep network,” Advances in neural information processing systems, vol. 27,

2014.

[143] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Inter-

national conference on machine learning, pp. 1180–1189, PMLR, 2015.

[144] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception ar-

chitecture for computer vision,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 2818–2826, 2016.

[145] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,”

Advances in neural information processing systems, vol. 31, 2018.

[146] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk

minimization,” arXiv preprint arXiv:1710.09412, 2017.

103

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Theoretical background and related works
	Domain adaptation (DA) fundamentals
	Literature review

	Contributions
	Thesis Overview

	Unsupervised Domain Adaptation without Source Data for Estimating Occupancy and Recognizing Activities in Smart Buildings
	Introduction
	The considered methods
	Creating the source model
	Source HypOthesis Transfer with Information Maximization (SHOT-IM)
	SHOT augmented with self-supervised pseudo-labeling
	Source hypothesis network architecture and general algorithm
	Higher-Order Moment Matching (HoMM)
	Source data Free Domain Adaptation (SFDA)

	Experimental setup and results
	Datasets
	Metrics
	Experimental results

	Unsupervised Domain Adaptation with Source Data for Estimating Occupancy and Recognizing Activities in Smart Buildings
	Introduction
	Proposed methods
	Virtual Adversarial Domain Adaptation (VADA)
	Sliced Wasserstein Discrepancy (SWD)
	Adaptive Feature Norm (AFN)
	Data poisoning technique

	Experimental setup and results
	Datasets
	Metrics
	Experimental results

	Unsupervised Domain Adaptation With and Without Access to Source Data for Estimating Occupancy and Recognizing Activities in Smart Buildings
	Introduction
	The proposed approaches
	Methods with access to source data
	Methods without access to source data

	Experimental setup and results
	Datasets
	Metrics
	Experimental results
	Comparison and discussion

	Conclusion
	Bibliography

