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Abstract 

Whole Brain Profile of Hub Alteration Patterns in Focal Epilepsy When Compared to Healthy 

Controls 

Arielle Dascal 

 

Using resting-state functional Magnetic Resonance Imaging (rs-fMRI), we can non-invasively 

measure functional connectivity (FC) between brain regions using the blood-oxygen-level-

dependent (BOLD) signal which characterizes slow fluctuations of hemodynamic processes. 

Through various FC analysis techniques, we can extract the resting state networks (RSNs) of the 

brain, and identify highly connected regions called hubs, which are important for long-range and 

efficient communication within the brain. In this thesis, we applied, adapted, and carefully 

investigated the method entitled SParsity-based Analysis of Reliable k-hubness (SPARK), 

introduced by our group, to identify and quantify in a reliable manner the reorganization of 

connector hubs for patients with frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE), 

when compared to healthy controls (HC). In this work, we used several metrics to characterize 

reorganization of connector hubs, aiming at generating whole-brain fingerprint models to 

characterize patients with epilepsy. We considered the following metrics, estimated on different 

parcellations of the brain in either nineteen anatomical regions or eleven functional networks: the 

hub disruption index (HDI), the hub emergence index (HEI), the hierarchical segregation index 

(HSI) and regional k-hubness. Our results are suggesting that we found more significant 

reorganization of hubness assessed using HDI and HEI when considering a segmentation in 

functional networks, as opposed to a segmentation in anatomical regions. We also reported 

significant decreases in regional k in epilepsy patients when compared to controls. In addition, we 

reported a significant decrease in HSI between epilepsy and controls as well. These preliminary 

results should be confirmed when applied on larger epilepsy cohorts, where we can use our 

proposed methodology and metrics combined with other non-invasive imaging modalities to 

discover potential biomarkers that could predict the postsurgical outcome of these patients.   
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Chapter 1 – Introduction 

Resting state (RS) functional magnetic resonance imaging (fMRI) was first introduced in (Biswal 

et al., 1995) where using the blood-oxygen-level-dependent (BOLD) signal, he demonstrated that 

there were spontaneous fluctuations of hemodynamic activity occurring when the subject was at 

rest, which resulted in spatial maps which were nearly identical to spatial maps produced through 

task-activation studies.  Investigations further validating this work started appearing, such as in 

(Binder et al., 1999; Cordes et al., 2000; Lowe et al., 1998) who all published on discovering 

various resting state networks (RSNs) using seed-based functional connectivity applied on resting 

state fMRI data. Today, many studies are designed within the framework of a resting-state study, 

and numerous ways of studying functional connectivity have been developed.  First, the 

aforementioned studies used seed based cross correlational analysis which uses the time course 

originating from a ‘seed region’ and cross correlates this time course with every other voxel in the 

brain through the use of Pearson correlation (McKeown & Sejnowski, 1998). Independent 

component analysis (ICA) works under the assumption that spatial temporal data can be 

decomposed in a set of statistically spatially independent maps (or networks), each of them being 

associated with a specific time course, within a linear mixing model (Zhao et al., 2004). Graph 

theory classifies the brain as a series of modules, nodes and edges and measures functional 

connectivity through the statistical dependencies of resting state functional topology of brain 

networks (Sporns, 2018; Van Den Heuvel & Hulshoff Pol, 2010). Graph theory allowed us to 

classify the functional connectivity of the human brain as having both the connectivity of small-

world and rich-club networks, therefore allowing rapid and efficient communication through the 

network through locally connected modules rapidly accessible using few long distance connections 

(Bassett & Bullmore, 2017; Kim & Min, 2020). Finally, through graph theory, the concepts of 

connector hubs and provincial hubs have been proposed (Royer, Bernhardt, et al., 2022), which 

are nodes which have a higher number of connections with other nodes within the brain network 

(Power et al., 2013).  

In the context of this Master thesis, we investigated a new functional connectivity method which 

was proposed by our group in (Lee et al., 2016) named SParsity-based Analysis of Reliable k-

hubness (SPARK). The method extracts the spatial resting state network maps and identifies 

connector hubs to form a k-hubness map of the brain. In these maps, the value of k-hubness is 

defined for each voxel in our image, which is the discrete number of overlapping resting state 

networks in the voxel (usually k < 10 networks). Furthermore, we also considered the metrics of 

hub disruption index (HDI), hub emergence index (HEI) (Lee et al., 2018) and hierarchical 

segregation index (HSI) (Lee & Wang, n.d.) to quantify the changes in functional connectivity 

which occur between our healthy population and our patient groups. 

In this manuscript, we proposed to study the reorganization of functional connectivity, and more 

specifically the reorganization of the distribution of connector hubs occurring in frontal lobe 

epilepsy (FLE) and temporal lobe epilepsy (TLE), in comparison with a healthy control group 

(HC). Epilepsy is a neurological disease which affects around 50 million people worldwide 
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(Kramer & Cash, 2012). Those who are diagnosed with epilepsy experience seizures, which are 

associated with a pattern of abnormal neuronal activity, and rapid firing of neurons (Blumenfeld, 

2014). Many studies have already shown that there are measurable changes in functional 

connectivity for those diagnosed with the disease (Bettus et al., 2010; He et al., 2015; Narasimhan 

et al., 2022; Pittau et al., 2012; Royer, Bernhardt, et al., 2022; Waites et al., 2006; Wills et al., 

2021; Woodward et al., 2014; X. Zhang et al., 2011). Furthermore, SPARK has been previously 

used to study changes in functional connectivity in temporal lobe epilepsy in the mesial temporal 

structures, where our group reported that hub disruption was occurring (Lee et al., 2018).  

Therefore, in this thesis, we will be using the SPARK methodology to study the populations of 

temporal lobe epilepsy patients and frontal lobe epilepsy patients while using a group of healthy 

controls as a baseline. There were two main analyses which were performed at a group level with 

our patient groups. First, we studied the group level comparison of connector hub reorganization 

using resting state fMRI data by calculating the hub disruption index and the hub emergence index. 

To perform this analysis, we segmented the brain two ways (i) through an anatomical segmentation 

with 19 regions of interest; (ii) through a functional network segmentation with 11 functional 

networks of interest. We further introduced a new validation scheme for the indices, using a 

nonparametric permutation test to assess whether the hub disruption and emergence indices which 

we obtained may be deemed significant or not. The aim of this analysis is to build a fingerprint 

model characterizing for the first time the reorganization of connector hubs within the whole brain 

for two patient populations, assessing what are the key regions exhibiting reorganization of 

connector hubs close to the presumed focus, but also in distant regions. 

This thesis is organized in the following manner: Chapter 2 will introduce the imaging modality 

of functional magnetic resonance imaging (fMRI) in further details, describing the physics behind 

the method, describe the acquisition and analysis of resting-state fMRI data and how impactful its 

contribution was to neuroscience field. We will then describe the evolution of some of the most 

common functional connectivity measures, describing both their advantages and disadvantages. 

Chapter 3 will further present the field of epilepsy, we will introduce the cohorts of frontal lobe 

and temporal lobe epilepsy patients, describing the typical seizures occurring for each group. We 

will then present some of the work which has been published describing changes in FC in epilepsy. 

Lastly, we will introduce the concept of epilepsy surgery and how it may be considered the only 

cure for patients and introduce the notion of a fingerprint model in epilepsy, and how they may be 

used in practice, and how it may relate to the work presented in this thesis. Finally, Chapter 4 will 

present our main study, entitled Whole brain profile of hub alteration patterns in focal epilepsy 

when compared to healthy controls. Chapter 5 will present our overall discussion and conclusions 

of the thesis and introduce future developments which can improve the SPARK methodology and 

the proposed metrics to assess hub reorganization.   
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Chapter 2 - Functional Magnetic Resonance Imaging 

2.1 – Magnetic Resonance Imaging 

Functional magnetic resonance imaging (fMRI) is the imaging modality used throughout the 

project presented in this thesis.  The uniqueness of this modality cannot be understated; due to its 

reliance on oxygen consumption, which occurs naturally in the body, fMRI is a non-invasive way 

to study the human brain (Ogawa et al., 1990). Furthermore, this imaging technique  benefits from 

a high spatial resolution, is widely available, and can be considered to perform longitudinal studies 

on patients without any adverse effects on their health  (Logothetis, 2008; Logothetis & Wandell, 

2004). Importantly, fMRI is a powerful tool which is used to study the functional connections in 

the brain, allowing us to investigate the architecture and the interaction within and between brain 

networks in physiological conditions (Hampson et al., 2002). In this chapter, there will be a brief 

introduction on the physics behind an fMRI acquisition, a description of the blood-oxygen-level-

dependent (BOLD) response, which is the signal being measured during a scan, and the two types 

of fMRI scans we can perform, resting state fMRI (rs-fMRI) and tasked based fMRI. Finally, we 

will review the different functional connectivity (FC) analysis methods which exist to study the 

results from these fMRI acquisitions.  

2.1.1 – Physics Principles of Magnetic Resonance Imaging  

A Magnetic resonance imaging (MRI) scanner is a versatile non-invasive imaging modality which 

can provide a wide range of images. Using MRI, we can obtain anatomical images from a T1w 

sequence, generate a contrast image which will boost the signal from moving blood to further 

highlight anatomical malformations in the body’s vasculature and assess lesions using a T2w or 

FLAIR sequence, model the flow of water molecules through the white matter tracts in the brain 

using diffusion weighted imaging and much more. Most relevant to this thesis, is the sequence 

known as functional MRI, which allows us to study brain activation and the hemodynamic 

response occurring in the brain in either task or resting conditions. Several steps are required during 

data acquisition to get usable results. The acquisition of an MRI image will be discussed in this 

section.  

MRI relies on the concept of nuclear magnetic resonance, mainly applied to hydrogen atoms due 

to their magnetic susceptibility and the significant amount of these atoms found in the body (Maier 

et al., 2018). These atoms have a spin, which is an intrinsic property of angular momentum (Levitt, 

2008). Once the subject is lying inside of the scanner, there is a large static uniform magnetic field 

B0, generated by a superconducting coil inside the MRI scanner, which aligns the spin of the 

hydrogen nuclei in the body either parallel or antiparallel to the direction of B0. At this point, the 

spins of the hydrogen atoms precess around B0 at a frequency 𝜔, named the Larmor frequency. 

This frequency is expressed by the following formula:  

𝜔 = 𝛾𝐁𝟎 

where 𝛾 is the gyromagnetic ratio (in MHz/T) which is the field strength dependent ratio for a 

given nucleus and B0 is the strength of the static magnetic field (in T) (Maier et al., 2018). Since 
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there are more hydrogen atoms which align themselves in a direction parallel to B0 than 

antiparallel, a net magnetization M is then generated in the direction of B0. The principle of nuclear 

magnetic resonance is then used to generate tissue specific signals of interest for imaging. To do 

so, a radiofrequency pulse (RF-pulse) sends radiofrequency waves into the body through an 

antenna.  The RF-pulse consists in applying a second magnetic field B1, which is orthogonal to of 

B0, rotating specifically at the Larmor frequency. Applying B1 will result in resonance and therefore 

tips M away from the direction of B0 into the transverse plane by using the same amount of energy 

as the Larmor frequency 𝜔. Once the RF-pulse is turned off, M precesses around the transverse 

plane until it reorients itself along B0. Here, the resulting magnetization will decrease within the 

transverse plane and will increase along B0, generating an observable nuclear magnetic resonance 

signal, called the free induction decay, in the transverse plane that can be measured with the same 

antenna.   

The chosen contrast of a magnetic resonance image will depend on the desired outcome for 

medical diagnosis. There are three major contrasts: proton density, T1w, and T2w. Proton density 

is highly susceptible to the density of water, where the change in water density across body allows 

for the differentiation between tissues (Maier et al., 2018). We may specify a particular pulse 

sequence which in turn will generate the desired image contrast by exploiting the relaxation 

parameter of said contrast, where relaxation is the change in net magnetization over time. 

Therefore, when we have an image which is T1w, a pulse sequence is chosen which exploits the 

longitudinal relaxation time, which is the amount of time it takes for the net magnetization M to 

reorient itself with B0 and return to its original energy state after excitation. Longitudinal 

relaxation, also called the spin-spin relaxation, is the recovery of M in the longitudinal direction 

while the spins of the nuclei return to a parallel to B0. The amount of time it takes for the recovery 

to take place is denoted by T1. When we wish to acquire a T2w image, a pulse sequence is chosen 

which exploits the transverse relaxation time of the tissue. The transverse relaxation time, also 

known as the spin-lattice relaxation, is time is the amount it times it takes for M to decay solely in 

the transverse plane due to the loss of coherence in phase between the spins of the nuclei. The time 

constant for the transverse relaxation time is denoted by T2 (Huettel et al., 2008). Due to the length 

Figure 2-1 Results of applying the different pulse sequences in the 

brain. Adapted figure from Elnakib, 2013.  
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of the relaxation time, different structures of the brain are highlighted in T1w and T2w images. In 

a T1w image, the white matter (WM) is the brightest, grey matter (GM) is the next brightest and 

cerebrospinal fluid (CSF) is the darkest element in the image. In contrast, in a T2w image, the CSF 

is the brightest structure, followed by GM and finally WM is the darkest element in the image 

(Filler, 2009; Logothetis & Wandell, 2004). The differences between the different contrasts can be 

seen in Figure 2-1.  

2.1.2 - Blood-Oxygen-Level-Dependent Response and functional MRI 

The blood-oxygen-level-dependent (BOLD) signal arises due to the local changes of the 

concentration of oxygenated (Hb) and deoxygenated hemoglobin (dHb) in the brain, following the 

response to neuronal stimuli (Hillman, 2014). The BOLD response is obtained through a T2* 

weighted contrast, which has a very similar pulse sequence to a T2 weighted contrast. The 

difference between the two sequences is that T2* takes field inhomogeneity into account 

(Logothetis & Wandell, 2004), which is when there is a deviation in the strength of the static 

magnetic field due to either the main magnet, the antenna or the subject themselves (Manson et 

al., 2022). Oxygenated hemoglobin is a diamagnetic substance, whereas deoxygenated 

hemoglobin is paramagnetic, which has a strong magnetic susceptibility. The change that we see 

in the MR signal in a T2* contrast image is due to the hemodynamic response function which can 

be described in four phases: (1) Upon an increase of neuronal activity, local changes in blood flow 

are not seen until 1 to 2 seconds following stimuli, but when it does occur, an initial dip is observed. 

This initial decrease in BOLD signal is up to two seconds long and occurs due to the local increase 

of deoxygenated hemoglobin, mainly driven by the local increase of oxygen consumption. (2) 

Following this initial dip, (which is usually difficult to measure in practice), the neurovascular 

Figure 2-2 The hemodynamic response function. (A) The blood-oxygen-level-dependent signal 

after stimulation. Adapted figure from Hu and Yacoub, 2012.  (B) The change in relative 

concentration of deoxygenated hemoglobin (dHb) and oxygenated hemoglobin (Hb). Source: Huettel 

et al., 2008 
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coupling process is characterized by a large local increase in cerebral blood flow due to vessel 

vasodilation, which will wash out local deoxyhemoglobin content by dilution and bring fresh 

oxygenated blood to the region (Hoge et al., 1999). This results in a large increase in BOLD signal, 

peaking around five seconds after the initial neuronal stimuli. The large decrease in the amount of 

paramagnetic deoxygenated hemoglobin results in less distortion of the magnetic field and 

therefore a large positive BOLD response.  An uptick of oxygenated hemoglobin results in a 

relative decrease in diamagnetic deoxygenated hemoglobin reducing the magnetic resonance 

signal. If the stimulus lasts for a long period of time, this peak turns into a plateau, with a constant 

stream of oxygenated hemoglobin being supplied to the area. (3) Once the neuronal activity has 

terminated, the hemodynamic response function returns to a level below the baseline, which is 

denoted as the undershoot. (4) Finally, the BOLD hemodynamic response function returns to the 

local baseline level (Huettel et al., 2008).  

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique which was used to 

gain insight on how the brain processes information regarding sensory input, movement and 

cognitive abilities (Logothetis, 2008). The modality was first invented by Dr. Ogawa and Dr. 

Kwong in the 1990’s and was tested on animals, where they discovered the BOLD contrast can be 

used to monitor the blood oxygenation in stimulated brain regions (Ogawa et al., 1990). After this 

discovery, researchers started using the BOLD contrast to study how brain regions responded to 

different stimuli using different types of tasks (such as finger tapping for motor tasks, sounds for 

auditory tasks, or pictures for visual tasks). These task-based activation studies used either a  block 

design, where the subject is performing a task for a set period of time and then is in a resting-state 

for an equivalent amount of time, or an event-related design, where discrete random events are 

occurring during the experiment (Huettel et al., 2008). Experiments are performed in this manner 

to observe how the stimuli are associated with a hemodynamic response in the region of interest 

when compared to the baseline BOLD signals (Kannurpatti et al., 2012). In 1992, Dr. Kwong 

published a paper which used task-based fMRI to map the functional activation of the visual and 

motor cortices. 

2.1.3 – Functional connectivity using fMRI 

The notion of resting state functional connectivity using fMRI started with the seminal work of 

(Biswal et al., 1995).  In his study, Dr. Biswal discovered that when they were scanning a subject 

in the absence of a task, there were low frequency fluctuations occurring (<0.1Hz) in the resting 

brain, and those resting state BOLD signals were spatially correlating (seed based connectivity) 

within similar brain regions involved during a bilateral finger tapping task in the primary 

sensorimotor cortex (Biswal et al., 1995). This was the beginning of studying resting state fMRI 

(rs-fMRI) functional connectivity, exhibiting the so-called sensorimotor resting state network 

(Figure 2-3). Nowadays, rs-fMRI studies are performed continuously during several minutes, 

where participants are instructed to keep their eyes closed or open  (fixed on a cross), while lying 

still and refrain from thinking of any specific thoughts and from falling asleep. (Fox & Raichle, 

2007).  
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The earliest resting state functional connectivity studies consisted of a seed based functional 

connectivity analysis. These studies extracted the BOLD signal from a region of interest and 

correlated it with the BOLD time course of all other voxels in the brain. The results were resting 

state functional connectivity maps associated with this specific seed (Binder et al., 1999; Biswal 

et al., 1995; Cordes et al., 2000; Lowe et al., 1998).  

2.1.4 – Resting State Networks 

Resting state networks (RSNs) are an ensemble of brain regions which demonstrate synchronous 

functional connectivity without exposing the brain to any external stimuli (Seitzman et al., 2019), 

and can be visualized by mapping them spatially on the brain. As previously stated, the study 

performed by (Biswal et al., 1995) was the first time participants were studied while resting in the 

scanner. In this study, Biswal and his colleagues uncovered what we now know as the sensorimotor 

network, which was found to exhibit resting state low frequency fluctuations in the motor cortex, 

sharing a similar activation pattern as the BOLD response elicited by a bilateral finger tapping 

task. These results were replicated in (Lowe et al., 1998), confirming the existence of resting state 

networks. In (Cordes et al., 2000), resting state connectivity was further explored when they 

compared seed regions in functional connectivity maps to the activation maps which arose from a 

finger tapping task, an auditory task, and a visual task, further confirming the existence of the 

sensorimotor network, but also discovering what we now know as the auditory and lateral visual 

resting state networks. In (Binder et al., 1999), it was found that when a subject was awake but at 

rest, the brain enters a ‘default state’ of brain activity, which deactivates when the brain becomes 

engaged with a task to allocate the necessary resources to other brain regions. This network is now 

known as the default mode network. (Raichle et al., 2001) further confirmed the existence of this 

network. As time progressed, many more studies further supported our knowledge of resting state 

networks  of the brain, as in (Hampson et al., 2002) who reported a language network and (Mazoyer 

et al., 2001) who reported the frontal-parietal network which was emotion driven. Today, the 

mapping of resting state networks is used to describe the functional connections of the brain, with 

Figure 2-3 Task activation map and the corresponding resting state 

network. (A) The activation seen after a bilateral finger tapping task. (B) 

The resting state network found in the corresponding region. Source: 

Biswal et al., 1995.  
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the most known networks being the somatomotor network, vision network, auditory network, 

default mode network, dorsal attention network, ventral attention network, language network, 

frontoparietal network, cinguloopercular network, salience network, parietal memory network, 

medial temporal lobe network, and the parietooccipital network (Seitzman et al., 2019).  

2.2 –  Statistical Approaches to Study Resting State Functional Connectivity 

Measures of functional connectivity have been used in both task-based and resting-state studies. 

This section will describe the evolution of studying functional connectivity in the brain.   

2.2.1 –  Seed Based Cross Correlational Analysis  

Seed based cross correlational analysis is a univariate technique which takes the time course of a 

given region of interest (‘seed region’) and cross correlates this time course with every other voxel 

in the brain through the use of the Pearson correlation (McKeown & Sejnowski, 1998). This means 

that the seed region must be carefully chosen, as the size, and location of it will have an impact on 

the resulting spatial map (Ma et al., 2007).  This approach of functional connectivity analysis is 

designed to test a specific hypothesis, due to the a priori knowledge required for the selection of 

the seed region (Beckmann et al., 2005). Furthermore, there are some disadvantages which arise 

when working with the cross correlational analysis technique. Firstly, it is imperative that the seed 

region chosen is not near any large blood vessels or veins, as they will contaminate the time course 

of the voxel with noise, resulting in poor spatial maps full of noise. Second, for each spatial map 

being studied, a new seed region will need to be defined, meaning this method can only  be applied 

considering one seed region BOLD time course at a time. (Ma et al., 2007). When performing 

fMRI connectivity studies, it is important to remove signals not related to the BOLD response, 

such as head motion, cardiac, respiratory, and vascular noise. Head motion is critical to correct 

since we are studying the correlation between voxels in a particular anatomical region over time, 

while the physiological signals will mix with the low frequency signal of <0.1Hz of the resting 

state networks. To remove these confounds to prevent potential aliasing and bias in the results, 

motion correction and a regression of physiological signals occurs during the preprocessing of the 

fMRI data (Soares et al., 2016). 

 

Figure 2-4 A seed-based cross correlational connectivity analysis map. (A) The results after a CCA 

analysis performed on a subject exposed to a visual paradigm. (B) The results after selecting a seed region 

(where the cross hairs are located) and performing a cross correlational analysis on the low frequency 

fluctuations, uncovering a visual resting state network. Source: Cordes et al., 2000.   
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2.2.2 –  Independent Component Analysis 

Independent Component Analysis (ICA) is a commonly used and robust multivariate analysis 

technique when performing BOLD-fMRI studies, which can generate multiple statistically 

independent spatial maps describing the underlying spatio-temporal structure of the data (Ma et 

al., 2007). Considering either temporal or spatial ICA, ICA aims at decomposing spatio-temporal 

data into a reduced set of N ‘sources’ or components, consisting either in N statistically 

independent time courses (and associated spatial maps) or N statistically independent spatial maps 

(and associated time courses), within a linear mixing model. For fMRI analysis, spatial ICA is 

usually considered. Once ICA has been applied to resting state fMRI data, the output results in 

individual statistically independent spatial maps, each of them associated with their own unique, 

characteristic time courses and yields easy to manipulate outputs due to linearity (Zhao et al., 

2004). The algorithm was formally proposed for use in fMRI studies in (Mckeown et al., 1998), 

but was originally proposed in (Bell & Sejnowski, 1995). Although ICA is a reliable methodology  

when compared to cross correlational analysis  since it does not require any a priori knowledge, 

such as selecting the seed location of interest, (Ma et al., 2007), an important assumption of the 

model relies on the fact that data can be linearly decomposed in a sum of spatially independent 

maps and corresponding time courses (McKeown & Sejnowski, 1998; Zhao et al., 2004). 

Furthermore, when being compared to cross correlational analysis, ICA analysis is usually more 

efficient when dealing with noise, since the underlying spatial structure of noisy components 

(motion, respiration, and cardiac fluctuations) are fulfilling the hypothesis of statistical 

independence with the maps of interest (Ma et al., 2007). One of the main limitations of ICA is 

Figure 2-5 An example of the resting state networks extracted using ICA. An adapted figure from Smith et al., 

2009.The resting state networks are as follows:  I20, 220, 320 are the visual networks (medial, occipital, lateral), 420 

is the default mode network, 520 is the cerebellum network, 620 is the sensorimotor networks, 720 is the auditory 

network, 820 is the executive control network, 920, 1020 are the frontoparietal network. 
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that the total number of ICA components to be extracted should be set a priori. If the number of 

components is too low, many spatial maps will be mixed into others, whereas if this number is too 

high, those same spatial maps would end up being separated into multiple, smaller networks. (Ma 

et al., 2007; D. Zhang & Raichle, 2010). In (Smith et al., 2009), an ICA decomposition was 

performed with 20 components, and the resulting spatial maps were compared to known 

‘behavioral domains’, which were the known task-activation maps. This allowed the team to 

associate each resulting RSN with a particular behavior, allowing them to report a significant 

cognitive role for every RSN. The results from this study are shown in Figure 2-5. 

2.2.3 – Graph Theory and Hubs 

Graph theory is a functional connectivity analysis tool aiming at describing statistical 

dependencies of resting state functional topology of brain networks in the form of a connectivity 

graph composed of edges and nodes (Sporns, 2018; Van Den Heuvel & Hulshoff Pol, 2010). 

Starting from a connectome matrix reporting pairwise Pearson correlations between brain regions 

or voxels, a connectivity graph is extracted, where the nodes represent a different anatomical brain 

regions (such as brain regions defined through a template or fMRI voxels), and the edges 

representing the functional connections (i.e.: correlation values) between each of the nodes. Within 

such a graph model, the so called resting state networks usually appear as modules, which are a 

group of predefined nodes (Van Den Heuvel & Hulshoff Pol, 2010). The modules are typically 

defined through brain atlases, which segment the brain into either functional networks (Thomas 

Yeo et al., 2011; Urchs et al., 2017) or anatomical parcels (Rolls et al., 2020). Graph theory allows 

for studying functional connectivity properties both at the local nodal scale and at the global brain 

network scale (Sporns, 2018). Several key metrics have been proposed to characterize brain 

networks, for instance:  

• The degree of a node represents the total number of connections to a given node, and plays 

a key role in identifying highly connected hubs (Royer, Bernhardt, et al., 2022; Van Den 

Heuvel & Hulshoff Pol, 2010). These hubs will be later discussed.  

• The clustering coefficient, which is a value ranging between zero and one, is a ratio 

between degree of a node i and the number of connections of the neighbors of node i. When 

the clustering coefficient is close to one, it means that the number of connections between 

the neighbors of  node i is similar to the degree of node i  (Achard et al., 2006; Van Den 

Heuvel & Hulshoff Pol, 2010).  

• The path length of a node i estimates the minimum number of edges required to connect 

two nodes in the graph, without repeats, providing information regarding the efficiency and 

the transfer of information within the network (Achard et al., 2006; Sporns, 2018; Van Den 

Heuvel & Hulshoff Pol, 2010).  

• The centrality of a node is the number of shortest pathlengths of the network which go 

through node i,  and is a vital measure in finding the hubs of the network, which are vital 

for overall network efficiency (Sporns, 2018; Van Den Heuvel & Hulshoff Pol, 2010).  
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• The modularity is when the whole brain network can successfully be divided into distinct, 

nonoverlapping modules (Newman, 2006; Rubinov & Sporns, 2010). The number of 

connections which are found within each module is much larger than the connections which 

occur between modules. The nodes which connect the different modules are denoted as 

connector hubs (Kim & Min, 2020), which will be further discussed later.  

By using graph theory in neuroscience, the behavior of brain networks can be expressed as both 

small-world and rich-club networks using these metrics, which are typical properties 

characterizing several network architectures, including brain networks. When a network is 

classified as small-world, the brain network has a large average clustering coefficient, meaning the 

nodes are more highly interconnected with each other inside a cluster or module, while exhibiting 

few long distance connections between modules, through the rich club hubs (Achard et al., 2006; 

Watts & Strogatz, 1998). Indeed, a small-world networks are also characterized by short 

pathlengths, allowing for rapid and efficient long distance communication through and between 

networks (Bassett & Bullmore, 2017; Kim & Min, 2020).  In addition, the human brain has also 

been deemed a rich-club, which is where the highly connected nodes (i.e. the hubs) are more 

interconnected with each other than with non-hub nodes of the network (Kim & Min, 2020) 

therefore ensuring within and between network (or modular) communication. In the first rich-club 

study (Van Den Heuvel & Sporns, 2011), it was found through the use of diffusion tensor imaging 

(DTI) data that the rich-club interconnections are found in the bilateral superior parietal lobe, 

precuneus, superior frontal cortex, putamen, hippocampus, and thalamus, making them important 

regions of interest for hub studies. 

 

Hubs are important regions of the brain as they are instrumental to its overall function and 

efficiency. Hubs are nodes which have many connections with other nodes in the brain network 

(Power et al., 2013), and based on the participation of a node within their own module, or their 

Figure 2-6 Visual representation of Graph theory and the identification of connector hubs. (A) Nodes are 

connected by edges, and the number of edges connected to the node can result in centrality measures for the node, 

determining if it is a hub or no. (B) Modules are connected by connector hubs, allowing for a ‘rich club’ 

organization to take place. Within each module, there are provincial hubs which connect the other nodes within the 

module. Source: Royer et al., 2022. 
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connection to any other modules, the node can be either deemed as a connector hub or a provincial 

hub (Royer, Bernhardt, et al., 2022). The participation coefficient is a measure of the connectivity 

of the node to the rest of the graph; if a node is completely restricted to its own module, it has a 

participation coefficient of zero. When a node is only connected to other networks, the 

participation coefficient is one (Power et al., 2013). Therefore, nodes which have a high degree of 

intra-modular connections and a low participation coefficient are provincial hubs, whereas nodes 

which have a high participation coefficient are connector hubs, which facilitate inter-module 

communication (Rubinov & Sporns, 2010).    

2.2.4 – SParsity-based Analysis of Reliable k-hubness (SPARK) 

SParsity-based Analysis of Reliable k-hubness (SPARK) is a sparse coding methodology 

developed by our collaborator Dr. Kangjoo Lee, former PhD student of our laboratory, now 

postdoctoral fellow at Yale University. SPARK was designed to specifically assess spatial overlaps 

between resting state network structures, whereas the notion of spatial overlap between resting 

state networks is not considered by other standard approaches such as ICA (Mckeown et al., 1998) 

or hierarchical clustering (Bellec et al., 2010). Within the SPARK framework, we define hubness, 

which is the property of a voxel to exhibit connections with multiple resting state networks. 

Therefore, we may define k-hubness for each voxel in our image, where k is the discrete number 

of overlapping resting state networks in the voxel. If there is a voxel with k =1, we know that the 

voxel is associated with only one resting state network, whereas if a voxel has k > 1, the voxel is 

associated with multiple resting state networks and is denoted as a connector hub. Importantly, 

SPARK is providing a sparse decomposition of the signal of each voxel, therefore providing a 

unique realistic description of what are the few discrete networks connected within a specific voxel 

(k < 10 networks)(Lee et al., 2016), as opposed to a metric such as degree centrality which is 

counting the very large number of regions or voxels connected to a specific voxel (or region) after 

thresholding the connectome.  

SPARK is built upon the sparse coding algorithm K-SVD to solve a general linear model by 

decomposing fMRI time series into multiple sparse atoms, i.e. specific time courses that would 

have been learnt from the data using a dictionary learning approach. Then, each atom was found 

to be associated with a spatial network. The original sparse GLM method developed in (Lee, 2011) 

employed a sparse dictionary learning algorithm called K-SVD (Aharon et al., 2006), where SVD 

stands for Singular Value Decomposition and K indicates a sparsity assumption (k) applied for the 

algorithm. Note that the sparsity assumption means that the inter-network connection is sparse (in 

general k<10 networks). In order to ensure reproducibility of the atoms, our team then proposed 

to launch K-SVD several times after generating several bootstrap samples of the data, using a 

modified version of circular bootstrap resampling as suggested in (Bellec et al., 2010). To find a 

spatially reproducible set of resting state networks across the B = 100 resampled datasets, we then 

applied nearest neighbor spatial clustering across to the collection of all B × N spatial maps to 

identify N stable and reliable clusters. The spatial maps were then spatially averaged within each 
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cluster, therefore only retaining most the most reproducible results at the individual level (N final 

spatial maps).  

SPARK is unique as it removes some of the issues which have been proposed regarding graph 

theory. In graph theory, many studies have solely focused on studying non-overlapping modules, 

therefore assuming that the brain is functionally segregated, which is unlikely due to the existence 

of connector hubs. Graph theory also introduces the issue of multicollinearity, which is alleviated 

by SPARK. To further define, if we have A correlated with B, and B correlated with C, A and C 

can exhibit signs of correlation, even if they do not belong to the same functional network (Lee et 

al., 2016). Furthermore, SPARK has the advantage of not assuming independence such as in ICA 

and encourages the assumption of the existence of overlapping networks when compared to ICA. 

SPARK is the methodology used in this thesis for fMRI analysis. The method will be further 

elaborated in Chapter 4. 

In conclusion, in Chapter 2, we introduced the main physics principles of MRI acquisitions and 

the most popular acquisition sequences which are used with the modality. Furthermore, we have 

introduced the concept of fMRI and different statistical functional connectivity analyses which can 

be applied on the data.  In the following chapter, we will study how functional connectivity changes 

due to frontal lobe and temporal lobe epilepsy.  
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Chapter 3 -  Epilepsy 

3.1  – The Epilepsy Disease 

Epilepsy is a neurological disease which affects around 50 million people worldwide (Kramer & 

Cash, 2012). In 2014, the International League Against Epilepsy (ILAE) refined the definition of 

the disease to include any of the following conditions: “1-  At least two unprovoked seizures 

occurring > 24 hours apart; 2- One unprovoked seizure and the probability of further seizures 

similar to the general recurrence risk (at least 60%) after two unprovoked seizures occurring over 

the next 10 years; 3- Diagnosis of an epilepsy syndrome” (Fisher et al., 2014). A seizure is a 

manifestation of abnormal neuronal activity, caused by the rapid firing of neurons (Blumenfeld, 

2014). Individuals who are diagnosed with the disease tend to display signs of cognitive 

impairment, as well as  increased cases of depression and anxiety when compared to healthy 

cohorts (Theodore et al., 2006). Due to the all-encompassing nature of the disease, it is important 

that research continues forward to enable those diagnosed to return to a healthy and productive 

lifestyle.  

Around 30% of all epilepsy cases are drug-resistant, meaning the seizures cannot be controlled 

through the use of medication (Kalilani et al., 2018). Standard surgical intervention in these cases 

consist of a resection which targets the epileptic focus, the brain region where seizures are initiated, 

however the reoccurring pattern of long-term and post-operative failures which occur in 25% to 

50% of patients leads to questioning whether the best possible treatment is being offered (Krucoff 

et al., 2017; Spencer & Huh, 2008; Tellez-Zenteno et al., 2007). Patients who are considered as 

candidates for surgery will undergo a wide range of presurgical evaluations, namely using video-

electroencephalography, psychological testing, anatomical MRI, positron emission tomography 

(PET) and single proton emission tomography (SPECT) (Sala-Padro et al., 2021). It has been 

suggested that resting state functional connectivity can play a role in the presurgical workup for a 

patient, as abnormalities in the rs-FC can aid in identifying the epilepsy network and the epileptic 

focus, and in surgery outcome prediction (Tracy & Doucet, 2015).  

In the following sections, we will discuss two common types of epilepsy, frontal lobe epilepsy 

(FLE) and temporal lobe epilepsy (TLE), and how functional connectivity, which was discussed 

in Chapter 2, is altered in those conditions. Furthermore, we will then discuss how surgery may 

be the only solution to becoming seizure free in the case of drug-resistant epilepsy. Finally, we will 

discuss the emerging field of fingerprinting, as a new tool which can help with the prediction of 

post-surgical outcome. 

3.1.1 – Frontal Lobe Epilepsy and Temporal Lobe Epilepsy 

Frontal Lobe Epilepsy and Temporal Lobe Epilepsy are both forms of focal epilepsy, characterized 

by the fact that the seizures originate from a specific focal region of the brain, meaning they have 

either frontal or temporal lobe origins. With focal epilepsy, the seizures may or may not propagate 

throughout the brain, and there are specific symptoms which can occur depending on where the 

focus is located (Kramer & Cash, 2012).  
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In this thesis, we will be focusing our analysis on patients with drug-resistant Frontal Lobe 

Epilepsy (FLE) and Temporal Lobe Epilepsy (TLE), who were all scanned as a part of their 

presurgical investigation. For those with FLE, the epileptic focus (EF) is located somewhere in the 

frontal lobe of the brain. Of all drug-resistant focal epilepsy cases, 25% of those diagnosed are 

FLE (Beleza & Pinho, 2011). These patients are often reported to have poor executive functions 

and behavioral problems (Culhane-Shelburne et al., 2002). Those diagnosed with FLE may 

experience either unilateral clonic seizures (unvoluntary twitching or jerking of muscle groups on 

one side of the body), tonic asymmetric seizures with preserved consciousness (sustained muscle 

contractions on a random side of the body, with preference for a specific side while remaining 

conscious), and hyperkinetic seizures (pedaling, thrusting, thrashing movements). Surgery for FLE 

patients accounts for less than 50% of all surgical cases, but for those who undergo surgery, they 

have a 55.7% probability of being seizure free at one year, with the chances of being seizure free 

after 5 years down to 30.1% (Beleza & Pinho, 2011; Blume et al., 2002). In the case of TLE, the 

EF is localized within the temporal lobe structures of the brain, and account for nearly 66% of all 

diagnosed focal epilepsy cases (Abarrategui et al., 2021). Those who are diagnosed with TLE tend 

to lack adaptive skills (Culhane-Shelburne et al., 2002), and often experience focal seizures 

without loss of consciousness, and experience an aura, which can range from a feeling of 

familiarity, to fear and panic, and altered senses (Blumenfeld, 2014). Furthermore, impaired 

consciousness is also reported in temporal lobe seizures (Englot et al., 2010). In TLE, the seizures 

often originate from the hippocampus and propagate outwards throughout the brain (Morgan et al., 

2021). Of all TLE patients, up to 71% are drug-resistant and may be considered for surgery 

(Abarrategui et al., 2021).  

3.1.2 - Functional Connectivity in Epilepsy  

Using only a few minutes of resting state fMRI recordings, often without the simultaneous 

recording of EEG, many studies have demonstrated that the epileptic brain is characterized by 

reorganization of functional connectivity patterns. Particularly, many studies have focused on the 

changes in functional connectivity within the mesial temporal lobe and the subcortical regions for 

patients. In TLE studies, it has been found that there are volume decreases in the subcortical 

structures of the caudate (X. Zhang et al., 2011) and the thalamus (Wills et al., 2021). This 

anatomical modification of the underlying structures could be at the origin of changes in the 

strength of the functional connections. When studying the thalamus, (He et al., 2015) used cross 

correlational analysis and thalamic segmentations to study the functional connectivity between the 

different regions of the thalamus and the cortical surface, which have been shown to have a strong 

functional connectivity in healthy controls (Behrens et al., 2003; D. Zhang et al., 2008). In the 

results of (He et al., 2015), they report that although FC was preserved between these regions in 

TLE patients, the strength of FC had decreased. As the hippocampus is the main seizure generator 

in TLE, it is an important ROI that has been considered as a seed for FC studies, reporting mainly 

decreases in FC with contralateral mesio-temporal structures as well as with the default mode 

network (Bettus et al., 2010; Pittau et al., 2012). In addition, (Waites et al., 2006) used seed-based 

functional connectivity analysis where they reported a decrease in FC between the different 
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language areas of the brain in TLE when compared to healthy controls. In a study involving both 

FLE and TLE patients using graph theory, (Výtvarová et al., 2017) reported: (i) for TLE patients, 

a decrease in functional connectivity of the nodes of the mesial temporal structure and the temporal 

and frontal lateral cortices, insula and the cingulate cortex; (ii) for FLE patients,  there was a 

significant decrease of FC between the nodes in the frontal lobe when compared to controls, and 

reported that there were slight changes not reaching the significance threshold between the nodes 

for a within-region analysis of temporal and posterior regions of the brain. In another study 

investigating FLE patients, (Woodward et al., 2014) using seed-based analysis suggested a 

decrease of functional connectivity between the two hemispheres of the sensorimotor network, 

decreased connectivity in the memory networks, and showed that the frontal lobe became less 

connected with other brain regions.  

There is a theory that, to make up for the decrease in functional connectivity experienced on the 

ipsilateral side, the epileptic brain creates compensatory mechanisms in the contralateral side to 

the seizure onset zone. For example, (Bettus et al., 2009) studied the epileptogenic zone (EZ) of 

mesial TLE patients using seed based analysis, and found that there was a decrease in functional 

connectivity in the EZ relative to healthy subjects, and an increased connectivity on the 

contralateral region to the EZ.  

It is of interest to study the changes in functional connectivity of connector hubs in epilepsy. Using 

a complex network analysis to estimate hubs from resting state fMRI, (Výtvarová et al., 2017), 

found that the connector hubs were exhibiting a decrease of functional connections in the 

subcortical regions of the putamen, caudate and pallidum when compared to healthy controls. In 

their review (Royer, Bernhardt, et al., 2022) discussed how changes in hubness at the global (i.e: 

entire brain network) and regional (RSNs) levels in TLE may directly impact the efficiency of the 

entire network, affecting signal transmission throughout the brain. Finally, in a study performed 

by our group using SPARK, (Lee et al., 2018), reported specific reorganization patterns of 

connector hubs involved in mesial temporal structures in left and right TLE patients. They reported 

overall hub disruption (i.e.: a loss of hubness) in the mesial temporal regions and the default mode 

network.  

3.1.3 – The Need for Epilepsy Surgery due to Drug Resistance 

Drug resistant epilepsy occurs when the disease is not adequately controlled through the use of 

anti-epileptic drugs, and occurs in nearly a third of all of those diagnosed (Löscher et al., 2020). 

In these cases, epilepsy surgery in the form of a resection, ablation or neurostimulation 

(Narasimhan et al., 2022) of the epileptic focus (EF) is the final opportunity for the patient to 

become seizure free. Therefore, in the hopes of having a positive surgical outcome, localization of 

the seizure focus is needed (Bettus et al., 2010; Wills et al., 2021). In the work of (Negishi et al., 

2011), is was proposed that studying rs-fMRI functional connectivity analysis around the EF 

region can provide us further information regarding the postsurgical outcome. Although epilepsy 

surgery may be an effective treatment course for some, there is a pattern of long-term post 

operative failures which occur in 25% to 50% of patients, leading to questioning if the most 
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optimal treatment is being recommended (Krucoff et al., 2017; Spencer & Huh, 2008; Tellez-

Zenteno et al., 2007). 

3.1.4 – Fingerprinting in Epilepsy 

When developing a fingerprint, one is searching for unique identifying features belonging to a 

population which can be used as an identifier for the research question they wish to address.  

Recently, there have been an emerging number of studies which are considering fingerprinting for 

the automatic prediction of the epileptogenic zone (Grinenko et al., 2018; Woolfe et al., 2019), 

generating presurgical prediction tools (Morgan et al., 2022; Sala-Padro et al., 2021), and even for 

the diagnosis of the disease (Liao et al., 2018).  

 

In Figure 3-1, we are reporting results from (Morgan et al., 2022), presenting an example of a 

fingerprint model which uses whole brain functional and structural connectivity to characterize 

emerging patterns that can predict postsurgical outcome. The fingerprint, shown in Figure 3-1A, 

was proposed for TLE patients using both functional and structural connectivity patterns in 

different regions. It is a specific connectivity profile which was generated using connectivity data 

from seizure free TLE patients and is therefore a model representing a seizure-free outcome after 

surgery. The goal is to use the fingerprint on presurgical connectivity data on test groups, to assess 

if it could accurately predict the surgery outcome. In Figure 3-1B, we see the connectivity profiles 

of few test subjects showing Engel IA outcome (seizure-freedom) in blue, Engel III (non-seizure 

free) in red and the fingerprint in black. In this thesis, we propose to build a similar approach using 

reliable measurements of hubness provided by SPARK. 

Figure 3-1 Sample of a fingerprint developed as a surgical prediction model. FC is a measurement 

of functional connectivity and SC is a measurement of structural connectivity. The regions of interest 

are: pref = prefrontal lobe; par = parietal lobe; occ = occipital lobe; temp = temporal lobe; mot/com = 

motor and sensorimotor lobe; sub = subcortical structures. (A) The functional and structural 

connectivity profile of the TLE fingerprint. (B) The connectivity profiles of five patients. Adapted 

Figure from Morgan et al., 2022. 
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In conclusion, in Chapter 3, we introduced the epilepsy disease. We provided examples of the 

types of seizures experienced by frontal lobe epilepsy and temporal lobe epilepsy patients. 

Furthermore, we discussed some of the work which has been published in the field of functional 

connectivity and epilepsy. In the following chapter, we will begin our data analysis, where we 

attempt to generate a fingerprint model to describe emerging functional connectivity patterns 

occurring in FLE and TLE using our SPARK methodology.   
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Chapter 4 – Whole brain profile of hub alteration patterns in focal epilepsy 

when compared to healthy controls 

4.1 – Introduction 

In this work, we intend to apply three previously proposed methods associated with the SPARK 

methodology, hub disruption index (HDI), hub emergence index (HEI), and the hierarchical 

segregation index (HSI)  (Achard et al., 2012; Lee et al., 2018; Lee & Wang, n.d.; Wang, 2022) to 

generate a whole brain profile of hub alteration patterns occurring in focal epilepsy. Our overall 

objective is to investigate whether specific spatial profiles of connector hub reorganization can be 

associated with biomarkers of frontal lobe epilepsy and temporal lobe epilepsy to develop a 

fingerprint model to using HDI, HEI and HSI which show patterns of altered functional 

connectivity. Then, eventually, we will aim at developing a post-surgical prediction model to 

determine if a patient will present with either a surgical success or a surgical failure depending on 

the hubness reorganization patterns found with SPARK. 

For this study, we hypothesize that on a group level, there will be hub disruption, hub emergence 

and hierarchical segregation patterns which are specific to either frontal lobe epilepsy patients or 

temporal lobe epilepsy patients. We wish to investigate connector hub reorganization not only in 

the presumed focus, but also for the first time in several other anatomical regions in the two 

populations of patients. Long term, upon the availability of post-surgical data, and an increased 

number of subjects, we hypothesize that connector hub reorganization in epilepsy will allow for 

the prediction of postsurgical outcome from non-invasive neuroimaging techniques: i) For an 

epileptic focus (EF) located in a region identified as a non-hub region in healthy subjects, we 

hypothesize that hub disruption will tend to isolate the epileptic network (EN) from the rest of the 

brain, resulting in local EN. Resection of a local EN would likely be associated with a good surgical 

outcome. ii) For an EF located in a region classified as a connector hub in healthy subjects, hub 

disruption and emergence will result in a widespread EN involving distant brain regions. Such 

epilepsy will be difficult to treat with focal resection.  

4.2 – Proposed Methodology 

This study was completed in close collaboration of Dr. Boris Bernhardt, Jessica Royer, Dr. Raul 

Rodriguez-Cruces, and Dr. Birgit Frauscher, who collected the data and performed most of the 

fMRI preprocessing using the MICApipe fMRI toolbox developed by the group of Dr. Bernhardt  

(Cruces et al., 2022). The healthy controls used in this project are also a part of an open source 

MRI dataset (Royer, Rodríguez-Cruces, et al., 2022). Furthermore, Yimeng Wang performed the 

additional fMRI preprocessing on the data, and collaborated on the identification of noisy atoms 

as a part of her MSc thesis (Wang, 2022). Finally, Dr. Kangjoo Lee provided input related to the 

SPARK metrics being used in this study. In this analysis, we propose to apply the SPARK 

methodology introduced in Section 2.2.4 on this dataset and perform hub disruption (Achard et 

al., 2006; Lee et al., 2018), and hub segregation (Lee & Wang, n.d.) analyses on a group of TLE 

and FLE patients when compared to a group of healthy controls, while we try to develop a 

fingerprint model which show patterns of altered functional connectivity in the connector hub 

regions for TLE and FLE. 
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4.2.1 – Participant Selection 

26 Healthy Controls (HC), 14 TLE patients (11 left-lateralized, 1 right-lateralized, and 2 bilateral), 

and 11 FLE patients (5 left-lateralized, 6 right-lateralized) were included in this study. Controls 

and patients were age and sex matched. All healthy subjects reported no history of neurological 

and/or psychiatric illness.  

4.2.2 – Data Acquisition 

The subjects were scanned at the McConnell Brain Imaging Centre of the Montreal Neurological 

Institute and Hospital. Using a 3T Siemens MRI system with a 64-channel head coil, all 

participants undertook two T1-weighted structural scans, diffusion weighted imaging (DWI) scans, 

and rs-fMRI. The rs-fMRI data were acquired using multiband acceleration 2D-BOLD imaging, 

for a total duration of 7 minutes, with 3mm isotropic voxels. There was a TR = 600ms, and TE = 

30ms. All subjects were instructed to keep their eyes open while looking at a fixed cross, and 

refrain from falling asleep. The details regarding the scanning parameters can be found in (Royer, 

Rodríguez-Cruces, et al., 2022) (Wang, 2022).  

4.2.3 – fMRI data preprocessing 

The first part of the fMRI preprocessing was done using the MICApipe pipeline developed in the 

lab of Dr. Bernhardt (Cruces et al., 2022). In this phase of the preprocessing, the first 5 TRs were 

removed. Motion correction and distortion correction within the scans was applied using the 

‘3dvolreg’ function from AFNI (Cox, 1996). The function ‘fsl_motion_outliers’ from FSL was 

applied, identifying the timeframes exhibiting excessive motion and saving them as confounds 

(Woolrich et al., 2009). A high-pass filter of >0.1Hz was applied to remove unwanted frequencies. 

ICA-FIX from FSL was applied to remove nuisance variable signals (instead of removing signal 

from the white matter and cerebral spinal fluid) (Griffanti et al., 2014; Salimi-Khorshidi et al., 

2014).  

The second part of the fMRI preprocessing was completed to ensure data compatibility with 

SPARK, and was performed by Yimeng Wang during her Master’s degree. Segmentation of the 

brain mask was obtained, and brain extraction took place by applying the ‘recon-all’ function by 

FreeSurfer (Reuter et al., 2012) on T1-weighted anatomical data and applying the BET toolbox on 

the fMRI data (Smith, 2002). Next, all fMRI data (3mm isotopic voxels) were first co-registered 

to the corresponding T1-weighted anatomical MRI (0.8mm isotopic voxels), and then co-

registered and resampled at a 2mm resolution on the asymmetric nonlinear MNI152 template 

(Fonov et al., 2011) using FLIRT from FSL with 12 parameters affine transformation (Greve & 

Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001). The 2mm MNI-space was finally 

down-sampled to 4mm resolution. Spatial smoothing with a full width at half maximum (FWHM) 

of 6mm was applied. The motion outlier confounds estimated from MICApipe were regressed out 

from the fMRI data through ‘despiking’ using FSL (Wang, 2022).  
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4.2.4 – Brain Masking and atlases 

The SPARK methodology was applied to a grey matter mask, which was generated by Dr. Kangjoo 

Lee and Yimeng Wang for their upcoming publication (Lee & Wang, n.d.). The mask was 

generated by selecting only the grey matter voxels from a modified version of the AAL template 

(Tzourio-Mazoyer et al., 2002). The modified AAL template was generated by the Neuroimaging 

Analysis Toolkit NIAK (Bellec et al., 2010) using non-linear coregistration to the MNI ICBM 152 

template. The AAL template was then resampled to a voxel resolution of 4 × 4 × 4 mm3 (Wang, 

2022).  

For the proposed hub disruption and hierarchical segregation regional analysis, we considered two 

types of brain parcellations to exploit the different distribution of k-hubness values within 

differently sized regions: an anatomical parcellation and a functional network parcellation. The 

anatomical parcellation used the refined AAL template. Originally, the template comprised of 116 

regions of interest (ROIs) that were then grouped into 19 ROIs with the help of neurologist Dr. 

Chifaou Abdallah.  The resulting the 19 anatomical region  ROIs were the following: (1) mesial 

motor and premotor cortex, (2) lateral motor cortex, (3) mesial frontal lobe, (4) lateral frontal lobe, 

(5) middle frontal lobe, (6) inferior frontal lobe, (7) olfactory cortex and rectus, (8) mesial temporal 

lobe, (9) temporal poles, (10) temporal gyri, (11) basal temporal lobe, (12) mesial parietal lobe and 

posterior cingulum, (13) lateral parietal lobe, (14) insula, (15) cingulum, (16) mesial occipital lobe, 

(17) lateral occipital lobe, (18) subcortical nuclei, and (19) cerebellum. We generated our 

functional network parcellation by using a modified version of the MIST_20 atlas (Urchs et al., 

2017). The MIST_20 atlas was first resampled to a 4 × 4 × 4 mm3 voxel resolution using 

‘mincresample’ from the minc-toolkit (http://bic-mni.github.io/). The MIST_20 atlas has 7 parent 

functional network regions, which are divided into 20 children ((1) cerebellum – 2 children, (2) 

mesolimbic – 3 children, (3) somatomotor – 2 children, (4) visual – 2 children, (5) default mode – 

4 children, (6) fronto-parietal and visual downstream – 3 children, (7) ventral attention, salience 

network, basal ganglia and thalamus – 4 children). The 20 children were regrouped to study the 

following 11 ROIs: (1) cerebellum, (2) mesolimbic, (3) somatomotor, (4) medial visual, (5) lateral 

visual, (6) default mode network, (7) ventral & dorsal visual stream, (8) frontoparietal network, 

(9) ventral attention, (10) auditory, (11) basal ganglia. The purpose of the regrouping was to fuse 

the four children of the default mode network and keep the children of the visual network 

separated. This would not be possible if the MIST_12 atlas would have been used. We decided to 

combine the children of the default mode network and separate the children of the visual network 

to keep the networks consistent with the most common spatial maps found by SPARK.  

4.2.5 – Estimation of Hubs of the brain network using SPARK 

For each selected subject, we used 7 minute runs of resting state fMRI data. Each preprocessed 

fMRI run had the SPARK methodology (Lee et al., 2016, 2018, 2022; Lee & Wang, n.d.; 

Razavipour et al., 2023; Wang, 2022) applied to estimate the organization of connector hubs for 

each individual at a whole brain level. SPARK uses a sparse-dictionary learning algorithm within 

a sparse Generalized Linear Model (GLM), which decomposes the fMRI signal of each voxel as a 

http://bic-mni.github.io/
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linear sparse decomposition in N temporal time courses, learned iteratively from the data. Each of 

these dictionary time courses, entitled atoms, corresponds to a spatial map therefore defining N 

resting state networks. This is subject-specific dictionary learning. SPARK was implemented on 

as follows:  

Step 1 – Sparse dictionary learning and spatial clustering: The core of the SPARK methodology 

consists in applying the vK-SVD algorithm, which is a variant of the K-SVD algorithm (Aharon 

et al., 2006), allowing for a voxel-level analysis. This algorithm was applied to each spatio-

temporal fMRI dataset Y. The output of the vK-SVD iterative algorithm is dictionary learned from 

the data (as a list of characteristic atom time courses), as well as a sparse coding matrix assessing 

how the BOLD time course in each voxel could be decomposed, using the few (sparse) atom time 

courses. Each row in the sparse coding matrix is considered as a spatial map, characterizing an 

underlying RSN. For each voxel, k-hubness can be estimated as the number of non-zero sparse 

coefficients describing the specific time course of the voxel of interest, therefore providing a 

hubness map at the voxel level.  

Step 2 - Bootstrap resampling of rs-fMRI data: To ensure SPARK would provide reliable estimates 

of k-hubness, the vK-SVD algorithm was applied to several bootstrap resampled datasets Yb of the 

original data Y, following the methodology proposed in (Bellec et al., 2010). To do so, a circular 

bootstrap resampling of the preprocessed fMRI data was applied to generate b = 1, …. 100 

resampled datasets Yb, with equal dimensions to ensure individual level reproducibility of the 

sparse GLM decomposition. The length of each block was randomly chosen between 20 to 55 

continuous sample time samples (Bellec et al., 2010). For each resampled dataset (Yb), the same 

sparse GLM applied on the original dataset was applied. It is expected that each Yb has a similar 

number of atoms. To find a spatially reproducible set of resting state networks across the B = 100 

resampled datasets, we finally applied nearest neighbor spatial clustering to the collection of all B 

× N spatial maps to identify N stable and reliable clusters. The spatial maps were then spatially 

averaged within each cluster, therefore only retaining the most reproducible results at the 

individual level (N final spatial maps).  

Step 3 – Removal of background noise: Any element which was inconsistent with a low signal 

amplitude in the averaged maps were considered as gaussian noise and removed by thresholding 

(p<0.05).  

Step 4 – Removal of physiological noise: The spatial maps were visually inspected by myself and 

Yimeng Wang in order to exclude any maps which were contaminated with either physiological 

noise or motion (Griffanti et al., 2014; Lee et al., 2019). Furthermore, any spatial map which 

consisted of 30 voxels or less was also removed from the final sparse matrix (Figure 4-1). 

Step 5 – Generation of the final k-hubness map: After this last thresholding of noisy non 

reproducible results over the averaged sparse coding matrix, we can now estimate a sparse matrix 

which is free of physiological noise, motion, background noise and small clusters. If we were to 

count the number of non-zero elements of each column will give us the discrete number of RSNs 
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associated with each voxel, which is the k-hubness value for said voxel. We can then generate the 

resulting k-map, which will show the location of all the connector hubs in the individual’s brain.  

 

4.2.6 – Incorrect removal of noisy atoms 

While processing data, we found out that there was a small error in the code which was used to 

remove the atoms which were visually marked as noisy. This issue led to a mislabeling of the 

atoms, and therefore removal of the incorrect atoms. Due to this issue, atoms which were marked 

as noise could have remained in the analysis, and atoms which were marked as RSNs were 

accidentally being removed. When dealing with small and discrete k values (i.e: k = 1,2,3,4….), 

we first wanted to study the impact the issue had on our dataset before correcting it. Therefore, 

along with my colleague Édouard Delaire, we classified the number of mislabeled atoms, the 

difference in the percentage of k-hubness which occurred at a group level for each population. 

Finally, to visualize the regions impacted by the error, we calculated the difference in the average 

k-hubness maps for all three populations:  

< 𝑘𝑚𝑎𝑝𝑛𝑒𝑤 > −< 𝑘𝑚𝑎𝑝𝑜𝑙𝑑 > 

Where 𝑘𝑚𝑎𝑝𝑛𝑒𝑤 are the k-hubness maps after fixing the error, and 𝑘𝑚𝑎𝑝𝑜𝑙𝑑 are the k-hubness 

maps which included the error. 

Figure 4-1 Summary of SPARK workflow. Source: Lee et al., 2016 
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4.2.7 – Probability maps of k-hubness distribution and the impact of zeros 

It is worth mentioning that voxels which did not exhibit reliable reproducible results over all 

bootstrap samples, which were thresholded at step 3 in Section 4.2.5, were therefore exhibiting k-

hubness values of zero, mainly because no reliable findings could be exploited from those voxels. 

Before performing our analysis, we wanted to first characterize the spatial distribution of hubness 

within the brain. To do so, we generated maps, estimating for each voxel the probability of finding 

a specific k-hubness value across each population (HC, TLE, FLE) for k = 0, 1, 2, 3, 4,  to 

understand where the hubs would be found in the brain. The purpose of this was to see if there 

were any ROIs we should focus on. Therefore, we generated maps which calculated the probability 

of finding a particular k-value across each population (HC, TLE, FLE). We may define the 

probability as:  

𝑃𝑟𝑜𝑏(𝑘) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ (𝑘)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  

where k is the k-hubness value of interest, with discrete values of 0, 1, 2, 3, 4.  

 

4.2.8 – Hub Disruption in TLE and FLE 

The hub disruption index (HDI) was first proposed by (Achard et al., 2012) and was applied to the 

SPARK framework and further validated by (Lee et al., 2018, 2022). 

In this study, we wish to study HDI at the group level by comparing the distribution of k-hubness 

values of each participant to the distribution of the k-hubness values of the healthy control group. 

To achieve this, the following linear regression model was applied to the data: 

𝑑𝑃 = 𝑎
𝜇𝑘

𝐶

𝜎𝑘
𝐶 + 𝑏 

𝑑𝑃 =
𝜇𝑘

𝑃 − 𝜇𝑘
𝐶

𝜎𝑘
𝐶  

In this model, 𝜇𝑘
𝐶 represents the mean k-hubness values across the healthy controls estimated for a 

particular voxel in a defined ROI, 𝜇𝑘
𝑃 represents the mean k-hubness values across a patient group 

(in this case of this study, FLE or TLE) for a voxel in a defined ROI, and 𝜎𝑘
𝐶  is the standard 

deviation of the k-hubness values across the healthy controls for a voxel in a defined ROI. The 

variable a represents the slope of the regression line, which is the HDI value; and the variable b 

represents the y-intercept of the regression line, which is the HEI value. As this is a linear 

regression model, 𝑑𝑃represents y-axis values and 𝜇𝑘
𝐶/𝜎𝑘

𝐶  represents x-axis values, a scatterplot 

with N datapoint will be generated (with N being the number of voxels in the ROI). 

If the HDI value (i.e.: the slope) is negative, it means that a voxel which was considered a hub in 

the healthy population becomes a non-hub in the patient group, representing an overall hub 
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disruption within the ROI. If the HDI value is positive, it means that a voxel which was a hub in 

controls is becoming even more connected in the patient population. This means more connections 

are formed with distant brain regions, leading to ‘hyperconnectivity’. For HEI, if we have a 

positive value (i.e.: a positive y-intercept), it means that a voxel which was considered a non-hub 

in the healthy population is becoming a hub in patients. HEI cannot be negative as a voxel cannot 

be associated with a negative number of networks (Lee et al., 2018, 2022). 

To determine if the HDI and HEI values obtained were significant, for each defined ROI in both 

the anatomical and functional network segmentations, we performed a permutation test. Null data 

was created from mixing each individual subject group with the healthy subjects (i.e.: randomized 

FLE-HC data and TLE-HC data). We then created equally sized groups of our original cohorts 

using the randomized datasets. HDI and HEI were then calculated 1000 times and the empirical p-

value was calculated from the null data (p<0.05). This validation scheme was inspired by (Lee et 

al., 2022). 

4.2.9 – Hierarchical Segregation in TLE and FLE 

To determine if a ROI is functionally segregated or divided into sub-networks, (Lee & Wang, n.d.) 

proposed the metric of the Hierarchical Segregation Index (HSI). In this context, HSIi is defined 

for each voxel i as the ratio of regional k-hubness for the ROI of which the voxel belongs to (𝑘𝑖∈𝑅
𝑅 ) 

and the corresponding voxel-level k-hubness (𝑘𝑖
𝑉):  

𝐻𝑆𝐼𝑖 =
𝑘𝑖∈𝑅

𝑅

𝑘𝑖
𝑉  

The regional k-hubness (𝑘𝑖∈𝑅
𝑅 ) is estimated by counting the number of resting state networks 

involved in a specific ROI. First, the voxels which are associated with the ROI are identified using 

our predefined regions, and subsequently are extracted from the sparse coefficient matrix, 

generating a sub-matrix where each voxel is a member of the ROI. We then calculate the 

percentage voxels that each network occupies in the ROI by:  

%𝑣𝑜𝑙𝑗
𝑅 =

𝑛𝑗
𝑅

𝑛𝑅
× 100% 

where %𝑣𝑜𝑙𝑗
𝑅 is the percentage of voxels occupied by the network in the ROI, 𝑛𝑗

𝑅 is the count of 

the number of voxels belonging to the ROI involved with each network j, and 𝑛𝑅 is the total 

number of voxels in the ROI. Finally, when estimating regional-k, we only want to consider the 

major networks involved in the ROI. We therefore set a threshold where %𝑣𝑜𝑙𝑗
𝑅 > 6%, following 

(Wang, 2022).  

 For a given voxel, having a high HSI value implies that the number of RSNs involved in the 

defined ROI is greater than the number of RSNs associated with the voxel, suggesting within-

region inhomogeneity of the ROI, meaning that there are sub-networks involved within ROI, 

indicating functional network segregation. If we were to have a low HSI, it implies that the voxel 
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is involved in a similar number of RSNs as the total number of RSNs found in the ROI. Having a 

low HSI implies within-region homogeneity, or integration between subnetworks within the ROI. 

Having a voxel with a low HSI volume represents a voxel which is well integrated and is highly 

valuable within the ROI.  

 

4.2.10 – Voxel-wise between group comparisons for population k-maps, and HSI maps 

To compare the resulting voxel level results for our group average k-maps and group average HSI 

maps between populations, we performed a voxel-wise two sample non-parametric permutation 

test where we tested for inter-population variability. We considered n individual hubness maps 

across subject groups A and B (i.e: HC and TLE), and calculated the group average k-hubness 

values 〈ℎ〉𝐴 and 〈ℎ〉𝐵 by average the k-hubness values for each voxel i across all subjects n. This 

generated a test-statistic T as the observed difference for each voxel.  

𝑇 =
𝑚𝑒𝑎𝑛𝐴 − 𝑚𝑒𝑎𝑛𝐵

(𝑛𝐴 − 1) × 𝑣𝑎𝑟𝐴2 + (𝑛𝐵 − 1) × 𝑣𝑎𝑟𝐵2

𝑛𝐴 + 𝑛𝐵 − 2 × √ 1
𝑛𝐴 +

1
𝑛𝐵 

 

where 𝑚𝑒𝑎𝑛𝐴 is the mean of our first population, 𝑚𝑒𝑎𝑛𝐵 is the mean of our second population, 

𝑛𝐴 is the number of subjects in the first population, 𝑛𝐵 is the number of subjects in the second 

population, 𝑣𝑎𝑟𝐴 is the variance of the first populations and 𝑣𝑎𝑟𝐵 is the variance of the second 

population. 

To determine if our results were statistically significant, null data was generated using 10,000 

permutations. For each permutation, the n hubness maps were pooled and randomly mixed to 

generate two randomized states A’ and B’, each consisting of either nA or nB randomly selected 

maps. The 𝑇𝑛𝑢𝑙𝑙 statistic was calculated using the aforementioned statistic. A p-value was estimated 

Figure 4-2 The method of the hierarchical segregation index (HSI). HSI is computed for each voxel as 

the ratio of the regional k-hubness value and the voxel level k-hubness value. In this simplistic example, 

the regional-k (𝒌𝒊∈𝑹
𝑹 ) value is equal to three, as there are three networks in the ROI. The voxel-level k-

hubness (𝒌𝒊
𝑽) for this voxel is 3, due to the three networks belonging to the voxel. Therefore, HSI for this 

voxel will be low (i.e.: there is more integration or there is less segregation in the region). Adapted figure 

from (Lee & Wang, n.d) 
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from each T statistic for each voxel and was adjusted using the false discovery rate (FDR) 

correction (Benjamini & Hochberg, 1995). The resulting maps were thresholded at 𝑝𝐹𝐷𝑅 < 0.05.  

4.3  – Results 

4.3.1 – Impact on the incorrect removal of noisy atoms 

The problem with the mislabeling occurred after the manual denoising of the atoms took place. An 

example of the manual denoising process can be seen in Figure 4-1- Atom Maps and is a step 

where we manually remove atoms which exhibit physiological, respiratory or motion signals.  

Once noisy atom maps have been identified visually, they should be discarded from further 

analysis and the sparse matrix needs to be updated to estimate the final k-map, not impacted by 

physiological noise (i.e.: cardiac, respiration, motion).  

At the time of writing this thesis, we were under the assumption as a team that the error had 

impacted all previous work involving SPARK, which was either published, or under review for 

publication. We decided to do an in-depth analysis on the impact of the error to determine whether 

it was necessary to further investigate the impact on our previous datasets. As a team, we were 

worried that there was a possibility that we would need to publish revision articles and redo all 

previous analyses. Thankfully, we concluded that the error only affected this dataset onwards, 

which has little impact on the previously completed work in the lab. We decided to include this 

analysis in the thesis to demonstrate the significant impact the error would have had on our 

subsequent analyses in this document, and future work done in the lab as well.     

In fact, the software was generating two final sparse matrices: the first one entitled (‘thrfinal’) still 

contained the atoms with < 30 voxels, and the second entitled (‘thrfinalX’) from which atoms with 

less than 30 voxels were already removed. Unfortunately, we found out that the thrfinal was being 

loaded, and therefore atoms which needed to be manually discarded were being removed before 

removing atoms featuring less than 30 voxels. This confusion led to a mislabeling between the 

atoms. In Table 4-1 an example of such mislabeling of the atoms is provided. In this example, 

there were 18 atoms which were available for manual classification and denoising. Through the 

manual denoising process, we had determined that atoms 2, 4, 10, and 13 were noisy atoms and 

needed to be removed from the sparse matrix. What happened was the thrfinal matrix was being 

loaded, and we removed the atoms with the indices 2, 4, 10, 13, even though there was one extra 

atom in the matrix (which was atom 3). This led to a mislabeling of the noisy and non-noisy atoms, 

meaning some of the atoms which were labeled as noise (4, 10, 13) were then labeled as non-noise, 

and atoms which were labeled as non-noise (5, 11, 14) ended up being labeled as noise and were 

removed from the sparse matrix. This resulted in physiological and motion noise being kept, 

whereas RSNs of interest were removed.  
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Total Number of 

displayed atoms 

Number of atoms  

< 30 voxels 

Atoms manually 

classified as noise 

Atoms misclassified 

as noise 

18 1 2, 4, 10, 13 2, 5, 11, 14 

Table 4-1 Example of misclassification of atoms due to error in the code after manual denoising. 

 

We wanted to further quantify impact of such misclassification. The number of misclassified atoms 

for each subject which can be found in Figure 4-3 and are presented as follows: (1) the number of 

atoms which were classified as a RSN and remained a true RSN despite mislabelling (i.e: a true 

positive), (2) the number of atoms which were classified as noise and remained noise despite 

mislabeling (i.e: a true negative), (3) the number of atoms which were originally classified as  RSN 

and became noise (i.e: a false negative), and (4) the number of atoms which were classified as 

noise and became considered as RSN (i.e: a false positive). From Figure 4-3, we found that around 

50% of our subjects were impacted by the error, and had the wrong atoms being discarded from 

further analysis. This is a significant impact since we are working with small, discrete numbers for 

the k-hubness values (i.e: k = 1,2,3,4,5…), therefore an accidental removal of networks can 

drastically change the regions of connector hubs which would lead to false k-maps and impact all 

further analyses.  
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Figure 4-3 The impact of the misclassification of atoms for every subject.  For each graph, blue is the number of atoms 

which were classified as a RSN and remained a RSN (i.e: a true positive), orange is  the number of atoms which were classified 

as noise and remained noise (i.e: a true negative), yellow is the number of atoms which were classified as noise and became a 

RSN (i.e: a false positive) and purple is the number of atoms which were classified as a RSN and became noise (i.e: a false 

negative). Each subject is represented along the x-axis, while the number of atoms is along the y-axis. (A) Shows the analysis 

for Healthy Controls, (B) shows the analysis for Temporal Lobe Epilepsy and (C) shows the analysis for FLE patients.  

A B C 
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To continue, we performed an analysis to study the impact of such misclassification of noisy atoms 

by studying the overall changes k-hubness values. This analysis was important for us to perform 

Figure 4-4 Difference in k-hubness after correcting the error due to manual denoising. Each colored dot 

represents one patient. The colored dots do not coincide between the two figures. (A) The percentage of k-hubness 

values for each voxel for every subject for the k-hubness maps with the error (blue) and the k-hubness maps without 

the error (green). (B) The percentage of voxels which had a difference of k-hubness values of either -3, -2, -1, 0, 1, 2, 

3 between the k-hubness maps with the error and without the error for FLE, TLE, and HC. 

A 

B 
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since we are dealing with such small discrete values. Simply the change from a k-hubness value 

from one to two unveils a connector hub which was originally not there. In Figure 4-4Error! 

Reference source not found. we are displaying the overall change in k-hubness values as a 

percentage of all affected voxels for all participants. In Figure 4-4A, we can see the trend that the 

percentage of voxels which had a k-hubness of zero decreases in FLE and TLE cases, indicating 

that full RSNs have been restored after correcting the misclassification. Finally, in Figure 4-4B, 

we are able to see that the majority of voxels exhibited no change in the difference of k-hubness 

values, but there were some voxels which were associated with a change of k-hubness of -2, 

indicating that the region was influenced by noisy atoms.  

Finally, to visualize the regions which were the most affected by such an error, we generated spatial 

maps which showed the difference between the average k-hubness maps across the three 

population groups. In Figure 4-5, blue regions represent areas where 𝑘𝑚𝑎𝑝𝑛𝑒𝑤 < 𝑘𝑚𝑎𝑝𝑜𝑙𝑑, 

resulting in a negative difference in average k-hubness. These results suggest that these regions in 

𝑘𝑚𝑎𝑝𝑜𝑙𝑑 were mainly impacted by the presence of noisy atoms, which were then removed and 

therefore decreased the k-hubness values in 𝑘𝑚𝑎𝑝𝑛𝑒𝑤. Regions which are yellow represented areas 

where 𝑘𝑚𝑎𝑝𝑛𝑒𝑤 > 𝑘𝑚𝑎𝑝𝑜𝑙𝑑, indicating that full resting state networks have been reinstated into 

the analysis after correction of the mislabelling. The spatial maps indicate that many of these 

changes happened along the cortical surface, where most RSNs are found. 

 

Figure 4-5 Impact of the mislabeling of noisy atoms during manual denoising. The difference between the group 

average voxel level (𝒌𝑽) k-hubness maps < 𝒌𝒎𝒂𝒑𝒏𝒆𝒘 >  − < 𝒌𝒎𝒂𝒑𝒐𝒍𝒅 >.  
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4.3.2 – Probability maps of k-hubness distribution and the impact of zeros 

After applying fMRI preprocessing and SPARK to estimate k-hubness values at an individual level, 

we generated probability maps to assess inter-subject reproducibility between resulting k-maps. To 

do so, for each discrete k value (k = 0, 1, 2, 3, >4), we estimated as the probability of finding such 

a k value at the voxel level along our studied population.  

In Figure 4-6, we are displaying these probabilistic k-hubness maps, while emphasizing the 

probability map for k = 0 in Figure 4-6A, reporting voxels that were found less reliable at the 

subject level over the different bootstrap resamples. We found that the probability of observing k 

= 0 was very high and above 80% for the subcortical nuclei regions, and the temporal lobes after 

Figure 4-6 Functional hubness probability maps for FLE, TLE and HC subjects. The maps show the 

probability of finding a particular value of k at any voxel i. (A) Probability map for k = 0 in the axial and 

coronal plane for FLE, TLE and HC. (B) Probability maps for k = 0, 1, 2, 3, 4 for FLE, TLE and HC in the 

sagittal plane. 
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denoising across all three populations Within the SPARK framework, whenever a voxel was 

attributed a k = 0 value, it does not mean that there was no resting state network associated with 

the voxel.  The presence of zeros may rather indicate lack of stability and reliability over all 

bootstrap vK-SVD analyses or by large the influence of noisy components (such as physiological 

noise, cardiac, respiration, and motion artifact) which were removed during the manual denoising 

process. The physiological noise fluctuations were more likely of larger amplitude than the slow 

fluctuations of the resting state networks. It might also be the case that low sparse coefficients 

associated with those voxels were removed after the thresholding which takes place during the 

background noise thresholding (step 3 in Section 4.2.5), therefore suggesting voxels exhibiting 

poor reproducibility over bootstrap samples. Importantly, we found that mesio-temporal regions 

as well as subcortical regions, which are quite important when studying TLE and FLE data were 

exhibiting a large proportion of k = 0 values. We also noticed that the cerebellar region also 

exhibited a high probability of k = 0 in healthy controls, whereas this was less the case for patients 

with epilepsy, suggesting hub reorganizations. These findings are important and could potentially 

impact future analyses which will take place in these regions since there might be an unreliable 

baseline which we are comparing to.  

When assessing the k-hubness probability maps for our k= 1, 2, 3, 4 values, our findings reproduce 

other work by our group (Razavipour et al., 2023), showing regions involving the largest hubness 

values (k = 3, 4) were the posterior cingulate and the anterior mesial frontal lobe, as well as 

bilateral fontal and parietal regions. Regions exhibiting non-hubness values (k = 1) were mainly 

composed of central bilateral regions, and the cerebellum, whereas the visual cortex is 

characterized by hubness values of k = 1 and k = 2.  

4.3.3 – Assessment of Hub Disruption and Hub Emergence Profiles in TLE and FLE 

Whereas in our groups first study, (Lee et al., 2018), HDI and HEI were only evaluated within 

mesio-temporal regions and default mode networks in TLE patients, in this present analysis, our 

goal was to expand such analysis and explore a complete spatial distribution of HDI values within 

the whole brain in both TLE and FLE patients when compared to healthy controls. Therefore, we 

proposed two parcellations of the brain: (1) an anatomical segmentation consisting of 19 regions 

of interest covering the entire brain and (2) a functional resting state network segmentation 

consisting of 11 networks of interest. We believed that performing these two analyses were 

important to carefully assess whether hub disruption would be influenced by larger networks 

composed of multiple anatomical regions throughout the brain. We also believe that the functional 

segmentation will be less influenced by the presence of voxels with k = 0 values, leading to a more 

reliable HDI value when compared to the anatomical segmentation. This section will have the 

anatomical analysis presented first, and the functional analysis second. 

In previous studies using this metric by our group (Lee et al., 2018; Wang, 2022), the hub 

disruption and emergence indices were extracted and used as a final conclusion to characterize the 

change in hubness in specific regions of interest. In this work, to assess whether the difference we 

found in HDI and HEI were indeed driven by differences between the two populations of interest 
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(i.e.: TLE versus controls and FLE versus controls), rather than by anatomical distribution of hub 

values in both populations, we performed a further validation by generating a null hypothesis 

distribution of HDI and HEI values. This was obtained by performing random permutations 

between the two groups of interest (i.e.: TLE versus controls and FLE versus controls) before 

estimating HDI and HEI values under such a null hypothesis, following the method proposed in 

(Lee et al., 2022). To generate the null data, we randomly assigned k-maps to each group (epilepsy 

or control), of equal size to the original groups and calculated HDI 1000 times. We then performed 

a unilateral uncorrected permutation test p < 0.05 to determine regions of significance, i.e: when 

HDI and HEI values measured on our patient population were significantly deviating from our null 

hypothesis empirical distribution.  

Anatomical Segmentation Analysis 

In Figure 4-7, we are presenting the anatomical segmentation with the 19 regions of interest for 

which we calculated HDI and HEI metrics.  

 

In the plot found in Error! Reference source not found., we have a sample of the linear regression 

line plot from which we extract our HDI (slope) and HEI (intercept) values. In this figure, we are 

studying the cerebellum ROI. In red, we have the TLE group and in blue we have the FLE group. 

In the figure, we have included the HDI and HEI values for both TLE and FLE. We have also 

included the R2 metric which describes the fit of the regression line, showing the strength of the 

correlation between our patients and controls. The shaded region behind the regression line 

represents a 95% confidence interval, which is a visual representation of the error on the fit of the 

line. In the calculation for HDI and HEI, we are evaluating hub reorganization in our patient 

population when compared to our healthy controls.  On the plot, each point represents a voxel in 

the ROI. For every voxel in the ROI, the x-value is equal to the mean k-hubness values across 

Figure 4-7 Anatomical brain segmentation. The anatomical segmentation has 19 regions of interest for 

which we will be calculating HDI and HEI. 
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healthy controls (𝜇𝑘
𝐶), divided by the standard deviation of the k-hubness values across healthy 

controls (𝜎𝑘
𝐶). The y-value of each datapoint is equal to the mean k-hubness values across the 

patient population (𝜇𝑘
𝑃) of interest subtracted by the mean k-hubness values across the healthy 

population (𝜇𝑘
𝐶), which is then all divided by the standard deviation of healthy patients (𝜎𝑘

𝐶) in 

each voxel. The plots for the calculation of HDI and HEI in all the 19 anatomically defined regions 

can be found in Figure 4-9. 

If we were to perform an analysis of HDI and HEI for healthy controls, the resulting regression 

line would have both a slope and intercept of zero by design. For this explanation, we shall define 

our ‘baseline healthy controls’ as Group A and our ‘patient healthy controls’ as Group B. 

Theoretically, the average k-hubness values across Group A and Group B should be similar to one 

another, as they are two groups of patients taken from the same population. In turn, this would 

make the difference calculation on the y-axis between the two populations equal to nearly zero, if 

not zero. This would lead to minimal to no variation along the y-axis. The only variation which 

Figure 4-8 The linear regression plot for the cerebellum ROI in the anatomical segmentation. The FLE regression 

plot is demonstrated in blue and the TLE regression plot is demonstrated in red. Each point on the plot represents one 

voxel in the cerebellum ROI. The x-axis is the mean of the k-hubness values of the control group (𝜇𝑘
𝐶) divided by the 

standard deviation of the control group (𝜎𝑘
𝐶). The y-axis is the difference in the mean k-hubness between the patient 

population (𝜇𝑘
𝑃) and the control group (𝜇𝑘

𝐶), divided by the standard deviation (𝜎𝑘
𝐶). These calculations were performed 

for each voxel in the ROI across all subjects. In this example, 𝐻𝐷𝐼𝐹𝐿𝐸 = −0.607 and 𝐻𝐷𝐼𝑇𝐿𝐸 = −0.383. A negative 

HDI value suggests that a connector hub found in our control population is becoming less connected, or a non-hub in 

our patient population.  Furthermore, 𝐻𝐸𝐼𝐹𝐿𝐸 = 0.681 and 𝐻𝐸𝐼𝑇𝐿𝐸 = 0.460. A positive HEI suggests that a non-hub 

in controls is becoming a hub in patients. The 𝑅2𝐹𝐿𝐸 = 0.263 and 𝑅2𝑇𝐿𝐸 = 0.163, are indicating there a decent 

correlation between the two variables. The shaded region behind the regression line represents a 95% confidence 

interval, visualizing the error on the fit of the line.  
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would occur would be along the x-axis, where we would be calculating the average k-hubness 

values for Group A. The resulting regression line would be a horizontal line at y = 0.     

Figure 4-9 Hub disruption and hub emergence plots for all 19 anatomically defined regions. Frontal lobe 

epilepsy patients are shown in blue and temporal lobe epilepsy patients are in red. The HDI is the slope of the 

linear regression line and HEI is the y-intercept of the regression line. The x-axis is 𝝁𝒌
𝑪/𝝈𝒌

𝑪, where 𝝁𝒌
𝑪is the mean 

k-hubness across all subjects in a voxel in healthy controls, 𝝈𝒌
𝑪 is the standard deviation of the k-hubness values 

in a voxel across all controls and 𝝁𝒌
𝑷 is the average k-hubness for a voxel across patients.  
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Figure 4-9 Hub disruption and hub emergence plots for all 19 anatomically defined regions (continued). 

Frontal lobe epilepsy patients are shown in blue and temporal lobe epilepsy patients are in red. The HDI is the 

slope of the linear regression line and HEI is the y-intercept of the regression line. The x-axis is 𝝁𝒌
𝑪/𝝈𝒌

𝑪, where 

𝝁𝒌
𝑪is the mean k-hubness across all subjects in a voxel in healthy controls, 𝝈𝒌

𝑪 is the standard deviation of the k-

hubness values in a voxel across all controls and 𝝁𝒌
𝑷 is the average k-hubness for a voxel across patients.  
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In Figure 4-11, we have our estimated HDI (Figure 4-11A) and HEI values (Figure 4-11B) plotted 

in dark blue for FLE and dark red for TLE patients against the null distribution for each group, 

which is light blue for FLE and light red for TLE. For HDI, after performing the permutation tests, 

we found that only the mesial motor and premotor cortex (p = 0.03, HDI = 0.031) were showing 

a significant increase in HDI value when compared to the null distribution for TLE. For FLE, the 

lateral frontal lobe (p = 0.04, HDI = -0.402), mesial parietal and posterior cingulum (p = 0.03, HDI 

= -0.390), lateral parietal lobe (p = 0.03, HDI = -0.338), cingulum (p = 0.02, HDI = -0.408) and 

cerebellum (p = 0.02, HDI = -0.607) were all exhibiting a significant decrease in HDI values when 

compared to the null distribution. For HEI, we found that for TLE, only the mesial parietal and 

posterior cingulum region (p = 0.02, HEI = 0.483) displayed a significant increase in HEI from the 

null distribution. For FLE, we found that the mesial motor and premotor cortex (p = 0.04, HEI = 

0.277), and the cerebellum (p = 0.02, HEI = 0.681) displayed a significant increase in HEI when 

compared to the null distribution. Surprisingly, the lateral occipital lobe (p = 0.008, HEI = -0.241) 

showed a significant decrease in HEI compared to the null distribution, resulting in a negative HEI 

value which does not follow the theory of the metric, since exhibiting less hubness in patients than 

a non hub region in controls is not possible, therefore raising suspicions regarding the accuracy of 

this region. Such a specific finding should be investigated in further detail.  

Figure 4-9 Hub disruption and hub emergence plots for all 19 anatomically defined regions (continued). 

Frontal lobe epilepsy patients are shown in blue and temporal lobe epilepsy patients are in red. The HDI is the 

slope of the linear regression line and HEI is the y-intercept of the regression line. The x-axis is 𝝁𝒌
𝑪/𝝈𝒌

𝑪, where 

𝝁𝒌
𝑪is the mean k-hubness across all subjects in a voxel in healthy controls, 𝝈𝒌

𝑪 is the standard deviation of the k-

hubness values in a voxel across all controls and 𝝁𝒌
𝑷 is the average k-hubness for a voxel across patients.  
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In Figure 4-10,we are showing the anatomical regions which showed either significant hub 

disruption or hub emergence superimposed on the volume of the brain. 

 

 

 

Figure 4-10 Anatomical regions which showed significant HDI and HEI values when compared to the null 

datasets. The colors are simply a way to differentiate the anatomical regions which were found to be significant and 

correspond with the colors found in Figure 4-7. (A) Significant increase in HDI for TLE was found in the mesial motor 

and premotor cortex. (B) Significant decrease in HDI for FLE was found in the lateral frontal lobe, mesial parietal and 

posterior cingulum, lateral parietal lobe, cingulum, and cerebellum. (C) Significant increase in HEI for TLE was found 

in the mesial parietal and posterior cingulum. (D) Significant increase in HEI for FLE was found in the mesial motor 

and premotor cortex and the cerebellum. There was a significant decrease in HEI for FLE found in the lateral occipital 

lobe.  
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Figure 4-11 Hub disruption and emergence distribution for the anatomical segmentation. The null distribution 

for FLE is showed in light blue, the null distribution for TLE is shown in light red, the HDI values for FLE and TLE 

from Figure 4-9 are in dark blue and dark red respectively. A unilateral uncorrected permutation test (1000 

permutations, p < 0.05) was used to define regions of significance. Regions of significance are indicated with a purple 

bar for FLE and a green bar for TLE. (top) HDI analysis. (bottom) HEI analysis. 
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Functional Network Segmentation Analysis 

In Figure 4-12, we are presenting the functional network segmentation with the 11 resting state 

networks for which we calculated HDI and HEI metrics. In Figure 4-13, we have the linear 

regression plots from which we extract our HDI (the slope) and HEI (the intercept) values. In these 

plots, TLE is found in red and FLE is found in blue. We have also included the R2 metric which 

describes the fit of the line, showing us the strength of the correlation between our patients and 

controls. For all of the plots in Figure 4-13 except for the basal ganglia and auditory networks, the 

error on the fit of the line in Figure 4-9 is pretty strong as the shaded regions represent a 95% 

confidence interval.  

When studying HDI with the functional network segmentation, we found that for FLE, the 

cerebellar network (p = 0.02, HDI = -0.666), the default mode network (p = 0.04, HDI = -0.312) 

and the ventral dorsal visual stream (p = 0.03, HDI = -0.267) are all exhibiting a significant 

decrease in HDI values when compared to the null data distribution, suggesting overall hub 

disruption within those networks in FLE patients. When investigating TLE data, we found that the 

somatomotor network (p = 0.03, HDI = 0.075), the ventral attention network (p = 0.049, HDI = -

0.013), and the auditory network (p = 0.003, HDI = -0.098) showed significant increases when 

compared to the null distributions, whereas the HDI value were still overall negative, except for 

the somatomotor network, suggesting values close to zero, i.e: hub disruption similar to healthy 

subjects as previously described. These results are surprising and are not in agreement with our 

previous investigations. When studying HEI with the functional network segmentations, we found 

that for FLE, only the cerebellum (p = 0.02, HEI = 0.751) exhibited a significant increase of HEI 

value when compared to the null dataset, suggesting emergence of new hubs when compared to 

healthy controls. When investigating TLE data, we found that the cerebellum (p = 0.04, HEI = 

0.512) and the medial visual network (p = 0.04, HEI = 0.441) showed a significant increase of 

HEI values when compared to the null dataset, suggesting the emergence of new hubs within those 

regions.  

 

Figure 4-12 Functional brain segmentation. The functional segmentation has 11 regions of interest for which we 

will be calculating HDI and HEI. 
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Figure 4-13 Hub disruption and hub emergence plots for all 11 functionally defined regions. Frontal lobe epilepsy 

patients are shown in blue and temporal lobe epilepsy patients are in red. The x-axis is 𝝁𝒌
𝑪/𝝈𝒌

𝑪, where 𝝁𝒌
𝑪is the mean 

k-hubness across all subjects in a voxel in healthy controls, 𝝈𝒌
𝑪 is the standard deviation of the k-hubness values in a 

voxel across all controls and 𝝁𝒌
𝑷 is the average k-hubness for a voxel across patients. 
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In Figure 4-14, we are showing the functional networks which showed significant HDI and HEI 

values in this analysis in FLE and TLE cases. 

D 

Figure 4-13 Hub disruption and hub emergence plots for all 11 functionally defined regions (continued). 

Frontal lobe epilepsy patients are shown in blue and temporal lobe epilepsy patients are in red. The x-axis is 𝝁𝒌
𝑪/𝝈𝒌

𝑪, 

where 𝝁𝒌
𝑪is the mean k-hubness across all subjects in a voxel in healthy controls, 𝝈𝒌

𝑪 is the standard deviation of 

the k-hubness values in a voxel across all controls and 𝝁𝒌
𝑷 is the average k-hubness for a voxel across patients. 

 

Figure 4-14 Functional network regions which showed significant HDI and HEI values when compared to 

the null datasets. The colors correspond to the functional network color code found in Figure 4-12. (A) 

Significant decreases in HDI for FLE was found in the cerebellum, default mode network, and the ventral dorsal 

and visual stream. (B) Significant increases in HDI for TLE were found in the somatomotor, ventral attention and 

auditory networks. (C) A significant increase of HEI was found in the cerebellum for FLE. (D) A significant 

increase in HEI was found in the cerebellum and medial visual network for TLE.  
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Figure 4-15 Hub disruption and hub emergence distributions for the functional segmentation. The null distribution 

for FLE is showed in light blue, the null distribution for TLE is shown in light red, the HEI values for FLE and TLE from 

Figure 4-13 are in dark blue and dark red respectively. A unilateral uncorrected permutation test (1000 permutations, 

p<0.05) was used to define regions of significance. Regions of significance are indicated with a purple bar for FLE and 

a green bar for TLE (A) HDI analysis. (B) HEI analysis. 
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4.3.4 - Voxel Wise Group Comparisons 

In Figure 4-16A, we are showing the group average k-hubness maps for each population, where 

we find higher hubness located in the posterior regions of the brain for each population. We 

performed two sample FDR corrected non-parametric permutation test at a voxel level between 

populations to determine if there were any significant differences in k-hubness occurring between 

populations. In Figure 4-16Error! Reference source not found.B, we found significant increases 

in hubness found between frontal lobe epilepsy patients and controls (FLE > HC) in the subcortical 

regions, and in the cerebellum (FLE > HC, TLE > HC). We believe that these results are strongly 

influenced by a poor fMRI signal, and the influence of k-hubness equaling zero in the region. This 

impact will be further discussed in Section 4.4.  

 

 

 

 

Figure 4-16 Group average k-hubness. (A) Voxel-wise group average k-hubness maps for the three subject groups, 

frontal lobe epilepsy, healthy controls, and temporal lobe epilepsy. (B) t-statistics map comparing voxel-level average k-

hubness between subject groups: FLE > HC (top) and TLE > HC (bottom). 𝑝𝐹𝐷𝑅 < 0.05 using a two-sample 

permutation test with 10,000 permutations. 
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4.3.5 – Hierarchical Segregation of TLE and FLE 

We performed a hierarchical segregation index analysis on the three subject groups using 

functional network segmentation. HSI was estimated as the ratio between regional level k-value 

over voxel level k-value. A large HSI value should therefore be interpreted as local segregation 

within the network (i.e.: more networks involved at the regional level which are less interconnected 

at the voxel level), whereas a small HSI would suggest more network integration within a specific 

region or network. Since the total number of atoms usually considered by SPARK is around 20, 

one should consider less regions to estimate regional-k values for this hierarchical measure. This 

is the reason why our group previously proposed and applied the HSI metric using a functional 

brain segmentation in nine networks when investigative reorganization of functional networks 

during sleep (Lee & Wang, n.d.). Our proposed analysis will investigate HSI once again at the 

functional network level, but we will follow the same functional regions we considered to estimate 

HDI and HEI values. For determining the regional k-hubness, a threshold must be set to quantify 

the number of major networks that are contributing to a specific region. This threshold was set at 

6%, following the work from (Lee & Wang, n.d.). This threshold indicates that to be considered as 

major network within the region of interest, it must involve at least 6% of the voxels of this region.  

 

Figure 4-17 Group level regional k values for FLE, HC and TLE. The mean regional k value and standard deviation 

for each population and region. A Mann Whitney U Test, (p< 0.05, Bonferroni corrected for 33 tests) was applied to 

determine significant differences in regional k between populations. Populations which displayed significant 

differences are indicated with the bars on top of the plot: Teal bar is p<0.002 between FLE and HC, yellow bar is 

p<0.002 between TLE and HC, and purple bar is p<0.002 between TLE and FLE.   
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Figure 4-18 Group HSI and group regional k-hubness analysis performed with the functional segmentation. 

(A) Group average HSI plots across every voxel for frontal lobe epilepsy patients, healthy controls, and temporal 

lobe epilepsy patients. (B) Group average regional k-hubness for the 11 defined functional network regions. (C) t-

statistics map comparing voxel-level HSI between subject groups: FLE > HC (top), TLE > HC (middle), FLE > TLE 

(bottom). 𝑝𝐹𝐷𝑅 < 0.05 using a two-sample permutation test with 10,000 permutations. 
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In Figure 4-18A, we are presenting the group level HSI results, and are showing regions which 

demonstrated either a significant increase or decrease in HSI in epilepsy when compared to healthy 

controls in Figure 4-18C after performing a two-sample nonparametric permutation test with 

10,000 permutations and corrected using FDR. We found that there was a significant decrease in 

HSI between frontal lobe epilepsy patients and healthy controls (FLE > HC) in the outer parts of 

the cerebellum, default mode network, frontoparietal network and the ventral attention network, 

suggesting that these networks are getting less segregated in FLE patients when compared to HC. 

When studying the changes of HSI between temporal lobe epilepsy and healthy controls (TLE > 

HC), we also found a significant decrease in HSI in the default mode network, the frontoparietal 

network and the auditory network, suggesting less segregation, i.e.: more network integration 

within these structures in TLE patients. Furthermore, we found a significant increase of HSI in the 

mesial cerebellum. Finally, when comparing the two epilepsy groups (FLE > TLE), we found 

mainly a significant increase in HSI in the medial visual network, suggesting more network 

segregation in FLE patients when compared to TLE patients.   

Moreover, we also found significant differences occurring when investigating regional k between 

all three populations. The regional-k values are projected onto the cortical surface in Figure 4-18B, 

and the significant differences between the populations are shown in Figure 4-17 after performing 

a Mann Whitney U Test, (p< 0.05) with Bonferroni correction for 33 tests, we found that only the 

basal ganglia network did not show a significant difference in regional k between FLE and TLE 

patients (p = 0.3202), but both FLE and TLE experienced a significant decrease in regional-k when 

compared to HC within the basal ganglia network. All comparisons except for the one between 

FLE and TLE in the basal ganglia network were significant at p < 0.001. 

 

4.4 - Discussion and Conclusion 

First, we found that the mislabeling of noisy atoms had a significant impact on the results, and we 

have corrected this error. Since we are working with small, discrete values of k-hubness (i.e: 

between k=1 to k=5), accidentally leaving in noisy atoms or removing network atoms would impact 

the resulting k-maps and all subsequent analyses. To study the impact throughout the whole brain, 

we calculated the difference in average k-hubness maps between the old average k-maps In 

particular,  Figure 4-5 shows us the spatial brain regions which were the most affected by the 

mislabeling error. In the figure, whenever the resulting map is blue, we are seeing areas where  

𝑘𝑚𝑎𝑝𝑛𝑒𝑤 < 𝑘𝑚𝑎𝑝𝑜𝑙𝑑, resulting in a negative difference in average k-hubness. These results 

suggest that these regions in 𝑘𝑚𝑎𝑝𝑜𝑙𝑑 were biased by noisy atoms which were accidentally kept 

in the k-map, and which were subsequently removed after correcting the mislabeling. The removal 

of these atoms therefore decreased the k-hubness values in 𝑘𝑚𝑎𝑝𝑛𝑒𝑤. In contrast, regions which 

are yellow represented areas where 𝑘𝑚𝑎𝑝𝑛𝑒𝑤 > 𝑘𝑚𝑎𝑝𝑜𝑙𝑑, indicating that resting state networks 

were accidentally removed from the k-maps, and were reinstated when the mislabeling error was 

fixed. We found that the regions which were most impacted are shown in Figure 4-5, where we 

wish to highlight a few key, and important regions which may give us some insight into our 
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following results. Firstly, we can see that the frontal regions in slices 133, 144, and 157 all 

exhibited an increase in average k-hubness after the correction, shown by a deep orange color, 

meaning that we are reinstating networks in these regions. Secondly, we also observed an increase 

in k-hubness in the posterior cingulate cortex, as presented in slice 106. Furthermore, we can 

clearly see the impact of the sagittal sinus vein, particularly in slices 157 and 173, resulting in 

decreasing k-hubness after correcting the labeling. Leaving these results in would have creating 

false k-hubness values in critical regions for studying temporal lobe epilepsy, such as notably the 

mesial temporal structure regions that were highly impacted by the presence of cardiac 

physiological fluctuations. We also observed that the region of the basal ganglia, also had a large 

amount of mislabeling of noise, which could have had an impact on our results in that region. It is 

worth mentioning that our denoising scheme was probably too conservative, notably for mesio-

temporal and subcortical structures. We find that noisy atoms involving those regions were often 

associated with a mixture of physiological fluctuations (i.e.: cardiac, respiration) and network 

patterns of interest that were not well separated. We are currently investigating new procedures to 

further denoise these structures in a more optimal manner. At the time of writing this thesis, we 

believed that there would have been an impact on all the previous work published by the lab using 

SPARK. Therefore, we wanted to perform this investigation to see the gravity of the impact, to 

determine if the error would have been significant enough to warrant an investigation into previous 

datasets. While we determined that the error had a impact on the results of this dataset, we 

thankfully able to conclude that it did not affect other work done in the lab. We deemed it necessary 

to include this analysis in the thesis as we believed there would have been a more widespread 

impact than there was in the end.   

The analysis of k-hubness the probability maps reported in Figure 4-6. Particularly, in Figure 

4-6A, we are studying the probability of a voxel having a k-hubness value of 0 across all subjects 

in each group. The results show that there were many regions where this probability was close to 

100%, particularly in the regions of the basal ganglia, the mesial temporal lobe, and the medial 

cerebellum, therefore suggesting poorly reproducible results not passing our background noise 

thresholding or regions highly impacted by the manual removal of ‘noisy’ atoms. From the 

literature, we expect to see a decrease of functional connectivity in the basal ganglia network 

(Bettus et al., 2009), and the mesial temporal lobe (Vaughan et al., 2016), which theoretically 

through the SPARK framework would reduce the connector hubs down to a to a k-hubness value 

of k=1, meaning that a connector hub region would become a non-hub region, participating in only 

one RSN. However, our results in these regions are not showing such a pattern since they are 

mainly associated with k = 0 unstable results. This phenomenon may have occurred due to either 

of the following scenarios: (1) The SPARK method was not able to successfully characterize low 

amplitude signals within these regions, resulting in either an unstable or unreliable SPARK results 

that were filtered out from bootstrap analysis after background noise removal. This scenario is 

very likely for the region of the basal ganglia, as the algorithm randomly choses a starting seed 

within the brain to find correlating time courses with when learning the dictionary of time courses 

of key networks, in a purely iterative data driven manner. Out of the whole brain, the chance of 
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having signals resulting from the basal ganglia or mesiotemporal structures contributing to the 

dictionary is therefore small, especially knowing that deeper structures are usually associated with 

low Signal to Noise Ratio BOLD signals. (2) The SPARK method found atoms involving these 

regions, but they were highly contaminated with an amount of noise which required the atoms to 

be removed, especially remaining cardiac and respiration fluctuations, even if they were supposed 

to be removed by ICAFix during preprocessing. This scenario was most likely what resulted in the 

mesial temporal lobe and the medial cerebellum having many k = 0 voxels, since they are two 

regions which are very close to large blood vessels in the brain. Whatever the reason for the number 

of k = 0, the number of zeros present in these regions would have a direct influence on the plots 

presented in Figure 4-9, where there is a straight line which gives (x,y) pairs where they are of 

equal value. This ‘line’ of points only occurs when the mean k-hubness across all patients in a 

voxel is equal to zero, and we are therefore plotting the value of the mean k-hubness of the controls 

against itself. We believe that this so called “zero line” may have a small influence on pulling down 

the HDI and HEI values for every region in which occurs.  

Regarding the number of zeros which were found, while not much can be done to fix scenario 2, 

it is critical that the SPARK methodology should be less biased by cortical large SNR regions 

during the dictionary learning phase. This work has already been assigned as the PhD project of a 

fellow member of the lab, proposing a new SPARK version where the dictionary would only be 

learnt from deep cortical and mesio-temporal regions. As the continuation of this thesis (during 

my PhD), we propose to carefully investigate why the analysis of this specific dataset resulted in 

so many k = 0 values (which was not the case in other SPARK analyses in the lab), reviewing 

carefully the different preprocessing steps (most notably ICAFix), which could have already 

removed some information of interest before we applied SPARK, as well as the investigate the 

impact of the number of bootstrap samples involved (B = 100 instead of 200 in our previous 

investigations).  

For the main analysis of the thesis, we aimed to generate a whole brain profile of hub alterations 

in focal epilepsy when compared to healthy controls. Our overarching goal was to build a 

fingerprint model characterizing for the first time the reorganization of connector hubs within the 

whole brain for two patient populations, assessing what are the key regions exhibiting 

reorganization of connector hubs close to the presumed focus but also in distant regions. In the 

long term, following postsurgical workup of the patients, we expect to use these fingerprint models 

combining HDI and HEI as a tool to predict postsurgical outcome. We further adapted the work 

performed by our group on HDI and HEI in (Lee et al., 2018), by generating a null dataset of HDI 

and HEI values by randomizing the patient and healthy control cohorts, inspired by (Lee et al., 

2022). We used the null dataset to perform a unilateral uncorrected permutation test with 1000 

permutations to define regions exhibiting statistical significance for p < 0.05 when considering 

either the anatomical or the functional network segmentations when mapping for HDI and HEI 

values. It is important to note that the cerebellum and the basal ganglia were defined as nearly 
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identical regions within the two segmentation schemes, since they both constitute an anatomical 

brain region and a known resting state network.   

The results for our anatomical segmentation are presented in Figure 4-11. We found that the mesial 

motor and premotor cortex was the only anatomically defined region exhibiting a significant 

change in HDI value for the TLE cohort. However, we surprisingly found a significant increase in 

HDI when compared to our null dataset. This was an interesting and unexpected finding, as we 

ended up with an 𝐻𝐷𝐼 = 0.031, indicating that there is a slight positive HDI value, which would 

suggest that a hub in controls would become even more connected in the case of temporal lobe 

epilepsy patients. While the result was shown as significant through our statistical test, when 

looking at the plot for the mesial motor and premotor cortex in Figure 4-9, we can see that the fit 

of the regression line was 𝑅2 = 0.001, which is telling us that the regression is a very poor fit for 

the TLE patients. Therefore, this result should not be deemed reliable, as there was no true 

correlation found through the regression, suggesting rather not much change occuring in connector 

hub profiles when comparing healthy controls and TLE patients. When studying the results of HDI 

for the FLE cohort, we found a significant decrease in the lateral frontal lobe (𝐻𝐷𝐼 =  −0.402), 

mesial parietal and posterior cingulum (𝐻𝐷𝐼 =  −0.390), lateral parietal lobe (𝐻𝐷𝐼 =  −0.338), 

cingulum (𝐻𝐷𝐼 =  −0.408) and cerebellum (𝐻𝐷𝐼 =  −0.607), suggesting hub disruption within 

those regions, i.e.: hubs in healthy population become non-hub regions in FLE patients. Each of 

these regions actually exhibited a strong negative trend in their individual plots in Figure 4-9, each 

associated with a relatively strong R2 values ranging from R2 = 0.189 for the lateral parietal lobe 

to R2 = 0.334 for the mesial parietal and posterior cingulum. We would therefore deem these 

results reliable, and we can confidently conclude that we have found significant hub disruption 

occurring in these regions, which imply that a hub in controls is becomes less connected in FLE 

patients. It is of great interest that regions a part of the fontal lobe were involved in such hub 

reorganization (i.e.: the lateral frontal lobe ROI) in FLE, but also more distant regions belonging 

to the default mode network (i.e.: the mesial parietal and posterior cingulum, the lateral parietal 

lobe and cingulum) and the cerebellum, suggesting extensive reorganization of brain networks 

architecture in the context of focal epilepsy. When studying HEI with this segmentation, we found 

a significant increase in HEI for TLE in the mesial parietal and posterior cingulum region (𝐻𝐸𝐼 =

0.483) when compared to the null dataset. The regional plots further confirm that we have a decent 

negative linear trend occurring in region (R2 = 0.146). A significant positive HEI value, i.e.: the 

appearance of a positive intercept in the linear fit, should be interpretated as the emergence of new 

hubs in patients, in regions considered as non-hubs in the healthy population, suggesting more 

connections being formed in the region, probably reflecting a compensatory mechanism in distant 

regions, associated with the hub disruption occurring elsewhere in the brain (such as suggesting 

new connections associated with the posterior cingulate region, a key region of the default mode 

network). When studying HEI in our FLE patients, we found that the mesial motor and premotor 

cortex (𝐻𝐸𝐼 =  0.277), and the cerebellum (𝐻𝐸𝐼 =  0.681) displayed a significant increase in 

HEI compared to the null distribution. Both regions show display a decent negative trend (R2 = 

0.123 and R2=0.263 respectively), providing confidence in those results. Surprisingly, the lateral 



51 

 

occipital lobe (𝐻𝐸𝐼 =  −0.241) showed a significant decrease in HEI when compared to the null 

distribution, resulting in a negative HEI value. Having a negative HEI value does not follow the 

theory associated with the metric, since a voxel cannot be associated with a negative number of 

networks. However, it is worth mentioning that the linear fit was poor for this region where 𝑅2 =

 0. Therefore, we should not consider this finding significant as the linear model was unreliable. 

The results with our functional network segmentation are found in Figure 4-15. We found when 

studying the changes in HDI in FLE that the cerebellar network (𝐻𝐷𝐼 =  −0.666), the default 

mode network (𝐻𝐷𝐼 =  −0.312) and the ventral dorsal visual stream (𝐻𝐷𝐼 =  −0.267) all 

showed a significant decrease in HDI when compared to the null data. As previously mentioned, 

the cerebellum network nearly identical to the anatomically defined region, therefore we would 

expect the region to remain significant. These results are very interesting since they are suggesting 

hub disruption in several key regions. The default mode network has been previously found to 

exhibit a decrease in functional connectivity with mesio-temporal structure in temporal lobe 

epilepsy (Pittau et al., 2012), so finding a significant change in in the default mode network in 

frontal lobe epilepsy was of interest. The best fit line for the ventral dorsal visual stream and the 

default mode network are both decent (R2 = 0.177 and R2 = 0.213 respectively), with both plots 

showing a clear negative trend for FLE in Figure 4-13. When studying the TLE distribution, we 

found that the somatomotor network (𝐻𝐷𝐼 =  0.075), the ventral attention network (𝐻𝐷𝐼 =

 −0.013), and the auditory network (𝐻𝐷𝐼 =  −0.098) all exhibited surprising significant 

increases when compared to the null distribution. However, exploring the linear fits in more detail 

(see Figure 4-13), the R2 values for all three regions were all very close to zero, ranging from R2 

= 0 for the ventral attention network to R2 = 0.01 for the auditory network,  indicating no true 

correlation could be inferred. Therefore, we concluded that these TLE results are unreliable and 

should not be considered. Finally, when studying HEI with the functional segmentation, we found 

that for FLE, only the cerebellum (𝐻𝐸𝐼 =  0.751) exhibited a significant increase of HEI value 

when compared to the null dataset, in agreement with the results in the anatomical segmentation. 

When studying the TLE distribution, we found that the cerebellum (𝐻𝐸𝐼 =  0.512) and the medial 

visual network (𝐻𝐸𝐼 =  0.441) showed a significant increase of HEI values when compared to 

the null dataset. Both regional plots in Figure 4-13 show decent R2 values (R2 = 0.191 for the 

cerebellum and R2 = 0.188 for the medial visual network) where we can determine that these are 

truly significant results for HEI.  

Overall, we found interesting hub reorganization patterns for FLE patients, whereas not much was 

found for TLE patients. It is worth mentioning that our results are likely biased by the occurrence 

of too many k = 0 values, suggesting unstable SPRAK analyses, especially in mesio-temporal, 

subcortical and cerebellum regions. Therefore, our results should still be interpreted with caution. 

Several detailed further analyses should be considered to carefully investigate SPARK analysis on 

this dataset: (i) carefully investigating the impact of the preprocessing steps and notably ICAfix 

and the fact that we did not remove frame with motion (scrubbing as in our previous studies (Lee 

et al., 2016, 2018)) but here we rather regressed our the ‘spiking’ effect using motion outlier 
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confounds estimated from MICApipe using FSL. (ii) Investigating the impact of the number of 

bootstrap samples that occur (here B = 100 instead of B = 200 in our previous studies). (iii) 

Improving the separation between physiological noise fluctuations and signals of interest in those 

mesial structures by proposing a dictionary learning informed specifically by those structures. 

In Figure 4-16 we are reporting a voxel-level permutation test of all individual k-hubness maps to 

determine if there were significant differences between epilepsy patients and healthy controls. Our 

results indicate that there was a significant increase in average k-hubness in both the subcortical 

and cerebellum for FLE > HC, and in the cerebellum for TLE > HC. These results must be 

interpreted with caution since these regions were highly influenced by k = 0 in our probability 

maps in Figure 4-6. Therefore, we can conclude since we are comparing some non-zero values in 

epilepsy to the mostly zeros in our healthy cohort, we will obviously obtain a significant increase. 

However, finding these results in the cerebellum were more stable in epilepsy patients (k = 1) than 

in healthy controls (k = 0) is a finding of interest. 

We then introduced the notion of regional k value by assessing the overall number of networks 

identified by SPARK within a specific predefined functional network (see Figure 4-17). When 

studying the differences in regional k across the three populations, we indeed found strong 

significant results for every comparison except within the basal ganglia network for FLE and TLE. 

These results are presented in Figure 4-17, and most tests we found highly significant (p < 0.001). 

When comparing regional-k for FLE and HC, we found a significant decrease in regional-k in the 

cerebellum, mesolimbic, somatomotor, medial visual, lateral visual, default mode, ventral dorsal 

visual stream, and the basal ganglia networks, indicating that there is an overall reduction of the 

number of networks involved within those regions. We also found a significant increase in 

regional-k in the ventral attention and auditory networks, indicating that the networks may have 

been rearranged due to the disease and are now involved in those regions. Moreover, we also found 

a significant decrease in regional-k between TLE and HC in all networks investigated. When 

comparing the two patient populations, we found a significant decrease in networks in FLE when 

compared to TLE in the cerebellum, mesolimbic, somatomotor, ventral dorsal visual stream, and 

frontoparietal networks. All other regions displayed a decrease in TLE. These results suggest that 

the resting state networks are less connected with each other in epilepsy, supporting the concept of 

hub disruption in Figure 4-15.  

Additionally, in this project, we performed a hierarchical segregation index (HSI) analysis on our 

three groups using our proposed functional network segmentation. HSI was estimated as the ratio 

between regional level k-value over voxel level k-value. A large HSI value should therefore be 

interpreted as local segregation within the network (i.e.: more networks involved at the regional 

level which are less interconnected at the voxel level), whereas a small HSI would suggest more 

network integration within a specific region or network. This metric has been proposed as a 

SPARK generalization of functional clustering ratio metric of integration or segregation within 

hierarchical models of brain networks originally proposed by (Boly et al., 2012). The uniqueness 

of HSI as well as k-hubness mapping, provides us the ability to use study metrics at the voxel level, 
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whereas other metrics proposed in the literature only allow investigation at the regional level. 

Overall, our findings suggest there is a significant increase of HSI between FLE patients and HC 

medial cerebellum (more segregation), and a decrease of HSI in the default mode network, 

frontoparietal network, and the ventral attention network (more integration). When comparing 

TLE and HC, we found that regions within the default mode network, the frontoparietal network 

and the auditory network exhibited a significant decrease in HSI (more integration). We also found 

that when we compare the two epilepsy groups, there was a significant increase in HSI in the 

medial visual network, suggesting more segregation in FLE when compared to TLE.    
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Chapter 5 – Conclusion 

 

In Chapter 2, we introduced the imaging modality of magnetic resonance imaging (MRI) which 

was used for this study. In this chapter, we introduced the physics of the modality, and introduced 

the blood-oxygen-level-dependent (BOLD) signal, which is used to obtain functional MRI (fMRI), 

which is used to study the activation patterns in the brain in either a task or resting-state condition. 

Furthermore, in this chapter, we introduced the popular measures of functional connectivity, and 

introduce the method developed in our lab, SParsity-based Analysis of Reliable k-hubness 

(SPARK). In Chapter 3 we introduced the epilepsy disease and the patient cohorts we will be 

studying, frontal lobe epilepsy and temporal lobe epilepsy. In Chapter 4, we used our SPARK 

methodology (Lee et al., 2016) and the metrics of hub disruption index (HDI) and hub emergence 

index (Lee et al., 2018) to generate a fingerprint model characterizing for the first time the 

reorganization of connector hubs within the whole brain for two patient populations, assessing 

what are the key regions exhibiting reorganization of connector hubs either close to the presumed 

focus but also in distant regions. Furthermore, we also further investigated the functional 

connectivity in FLE and TLE when compared to healthy controls by comparing voxel-level k-

hubness values, a regional k-hubness metric and the hierarchical segregation index (HSI) as a 

measure of network integration and segregation, recently proposed in (Lee & Wang, n.d.).  

To generate our whole brain fingerprint, we calculated HDI and HEI for each region of interest 

while considering either an anatomical brain segmentation with 19 regions or a functional network 

segmentation with 11 networks. To determine if our calculated HDI and HEI values were deemed 

significant, we generated a null dataset by randomizing the k-maps of the healthy controls and the 

epilepsy group of interest. We wanted to determine if there was a better way in which to segment 

the brain for this analysis. We found that the functional network segmentation exhibited more 

significant regions for the TLE cohort, while the anatomical segmentation exhibited more 

significant regions for the FLE cohort. In addition, there were some regions which were identified 

as significant, in fact were unreliable due to their line of best fit due to their regional plots. As a 

final analysis, we also compared voxel-level HSI for each population, as well as group regional-k 

hubness to determine if any patterns arose between epilepsy groups and healthy controls. We found 

highly significant changes in regional-k when comparing each epilepsy group to healthy controls, 

indicating that hubs are becoming less connected in epilepsy.  

There were some limitations which greatly impacted the work of this thesis. Most importantly, the 

presence of k = 0 has a large influence on many results.  Further investigation is required as to 

why SPARK has problems in certain regions, and an update to the method is necessary if we would 

like to have SPARK known as a reliable functional connectivity tool. Finally, we believe that we 

can further optimize the generation of the null data for our HDI and HEI permutations. We believe 

that randomizing the healthy controls and epilepsy population might inherently create bias in the 

null-dataset, since we are inherently dragging down the null-dataset through the inclusion of 

patients since they theoretically all have lower k-hubness values by design. In the future, we wish 

to propose a bootstrap among the controls, where we calculate the average from a subgroup of the 

controls many times. We believe by taking the average of all the bootstraps, we will have a more 



55 

 

stable result for the healthy controls, and therefore a more reliable baseline to compare our epilepsy 

data with. 

Finally, there are many future directions which can be taken in both the use of SPARK and the 

metrics used in this study. Firstly, regarding the SPARK methodology, we can start using the 

method as the first step to studying connector hubs in other modalities. We can use SPARK to 

locate the connector hubs in the brain, and then use other modalities such as diffusion weighting 

imaging (DWI), and positron emission tomography (PET) to study the anatomical and metabolic 

substrate associated with the connector hubs in patients when compared to healthy controls. 

Furthermore, SPARK can be used outside the scope of epilepsy, and be used to study hub 

reorganization of other neurological diseases or neurological disorders. Furthermore, as mentioned 

previously, we would eventually like to develop a surgical prediction model, by using the metrics 

of HDI, HEI, HSI, and regional-k to find possible biomarkers to predict if a patient will have a 

positive or negative outcome after surgery. Finally, SPARK and its metrics can be adapted to work 

in the individual subject space, which will allow the method to transform from a more research-

based method to a clinical tool in the future.     
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