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Abstract
Graph Representation Learning for 3D Human Pose Estimation

Zaedul Islam

Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose

estimation. By naturally modeling the skeleton structure of the human body as a graph, GCNs are

able to capture the spatial relationships between joints and learn an efficient representation of

the underlying pose. However, most GCN-based methods use a shared weight matrix, making it

challenging to accurately capture the different and complex relationships between joints. In this

thesis, we introduce an iterative graph filtering framework for 3D human pose estimation, which

aims to predict the 3D joint positions given a set of 2D joint locations in images. Our approach

builds upon the idea of iteratively solving graph filtering with Laplacian regularization via the

Gauss-Seidel iterative method. Motivated by this iterative solution, we design a Gauss-Seidel

network architecture, which makes use of weight and adjacency modulation, skip connection, and

a pure convolutional block with layer normalization. Adjacency modulation facilitates the learning

of edges that go beyond the inherent connections of body joints, resulting in an adjusted graph

structure that reflects the human skeleton, while skip connections help maintain crucial information

from the input layer’s initial features as the network depth increases. Our experimental results

demonstrate that our approach outperforms the baseline methods on standard benchmark datasets.

This thesis makes another significant contribution by designing a spatio-temporal 3D human

pose estimation model. Accurate 3D human pose estimation is a challenging task due to occlusion

and depth ambiguity. To address these issues, we introduce a novel approach called Multi-hop

Graph Transformer Network, which combines the strengths of multi-head self-attention and multi-

hop graph convolutional networks with disentangled neighborhoods to capture spatio-temporal

dependencies and handle long-range interactions. The proposed network architecture consists of

two main blocks: a graph attention block composed of stacked layers of multi-head self-attention

and graph convolution with learnable adjacency matrix, and a multi-hop graph convolutional block

comprised of multi-hop convolutional and dilated convolutional layers. Extensive experiments

demonstrate the effectiveness and generalization ability of our model, achieving state-of-the-art

performance on benchmark datasets while maintaining a compact model size.
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1
Introduction

In this chapter, we present the underlying motivation for this work, followed by a concise problem

statement, a comprehensive review of the relevant literature, and thesis contributions. The literature

review section provides an overview of 3D human pose estimation, graph convolutional networks,

transformer based methods, and spatial-temporal based methods.

1.1 Framework, Motivation and Background

The goal of 3D human pose estimation is to predict the 3D locations of human body joints in the

camera coordinate system from images or videos, with the aim of providing a way to interpret

human movements and actions in computer vision applications, such as action recognition [10],

human-computer interaction, sports performance analysis, and pedestrian behavior analysis [11].

Pose estimation can also be used in various healthcare applications, such as monitoring the physical

therapy progress of patients or detecting abnormalities in movement patterns, and assisted living

in retirement homes [12].

Despite significant progress in recent years [13], 3D human pose estimation remains a challeng-

ing task. This is largely attributed to two main challenges: (i) self-occlusions that occur when a

body part is obscured by another part, and hence making it difficult for the model to accurately

estimate the position of the occluded body part; and (ii) depth ambiguity that arises due to occlu-

sions, self-occlusions, and variations in body shape, where there can be multiple 3D poses that

correspond to the same 2D projection of a person in an image.

Recent approaches to 3D human pose estimation have focused on improving the accuracy and
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robustness of existing methods, as well as addressing the challenges of occlusion and depth am-

biguity. These approaches can be grouped into two main categories: one-stage and two-stage

methods. One-stage methods [14–21], also known as direct regression methods, aim to directly

predict the 3D joint locations from an input image or video without requiring any intermediate

predictions. However, these methods usually suffer from depth ambiguity, which arises because

the 3D pose estimation problem is inherently under-constrained, meaning that there are multiple

possible 3D poses that can explain the same 2D observations. Also, they do not perform well when

dealing with complex poses or occlusions. On the other hand, two-stage methods [4,7,22–37], also

known as indirect regression methods, first predict intermediate representations such as 2D joint

locations and then use them to predict the 3D joint locations. These methods are usually more

accurate than one-stage methods, particularly when combined with robust 2D joint detectors, since

they can better handle the depth ambiguity and occlusions. Pavllo et al. [4] demonstrate the uti-

lization of dilated temporal convolutions to effectively leverage temporal correlations within 2D

pose sequences for the purpose of video data analysis.

Residual Connections. Residual connections are a crucial architectural innovation in deep learn-

ing models, especially in deep neural networks with numerous layers. They were first introduced

in the context of residual networks (ResNets) and have since become a fundamental building block

in various state-of-the-art architectures. In light of this insight, incorporating residual connec-

tions into our architecture also proves beneficial. Traditional deep neural networks can encounter

difficulties in training as the number of layers increases. By introducing residual connections,

deeper networks become easier to optimize, as they enable the model to retain essential informa-

tion from earlier layers and build upon it in subsequent layers. This facilitates the training process

and allows the network to explore more complex and meaningful representations. In addition,

residual connections enable the reuse of learned features from previous layers in subsequent ones.

Moreover, residual connections effectively allow a neural network to learn identity mapping, i.e.,

passing the input directly to the output. This is crucial when the optimal mapping between input

and output is close to an identity mapping. Without residual connections, the network would need

to learn this mapping from scratch, which can be inefficient and challenging, especially in very

deep architectures.

Layer Normalization. Layer Normalization is a technique used in deep learning to normalize the

inputs of each layer in a neural network. It is an alternative to other normalization techniques, like

Batch Normalization. The main objective of Layer Normalization is to address the issue of internal

covariate shift, which refers to the change in the distribution of intermediate activations that occurs

during training. Layer Normalization normalizes the inputs of each layer independently, regardless
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of the batch size. For each feature in the layer, the mean and variance are computed across all

the samples within that specific layer. This normalization is applied individually to each training

sample. The normalization process is given by the following formula:

LayerNorm(x) = α⊙ x− µ√
σ2 + ϵ

+ β, (1.1)

where where ⊙ is an element-wise product (i.e., the Hadamard product), µ and σ are the mean and

variance of x, α and β are learned scaling factors and bias terms.

Dropout. Dropout is a regularization technique used in neural networks to mitigate the problem

of overfitting. Overfitting occurs when a neural network becomes too specialized in learning from

the training data and fails to generalize well to unseen or new data. In a typical neural network,

each neuron in a layer connects to neurons in the previous and subsequent layers, forming a dense

network of connections. During training, dropout randomly “deactivates” or “turns off” a certain

fraction of neurons in the network with a probability p. This means that those neurons and their

connections are temporarily ignored for the current forward and backward pass. Therefore, we

also apply dropout layers to our models.

1.2 Objectives

In this thesis, we propose deep learning approaches for 3D human pose estimation.

• We propose a Gauss-Seidel graph neural network (GS-Net) whose layer-wise propagation

rule is obtained by iteratively solving graph filtering with Laplacian regularization via the

Gauss-Seidel iterative method. Our framework follows the two-stage paradigm for 3D hu-

man pose estimation, where GS-Net is employed as a lifting network to predict the 3D pose

locations from 2D predictions.

• We also propose a multi-hop graph transformer network (MGT-Net), which leverages multi-

head self-attention, multi-hop graph convolutions with disentangled neighborhoods, and di-

lated convolutions to effectively capture both long-range dependencies and local-global con-

textual information.

1.3 Literature Review

The basic goal of 3D human pose estimation is to determine the 3D positions of the joints of

a person in a given image or video. These joints can include the head, torso, arms, legs, and

3



hands, and the accurate estimation of 3D human pose can provide valuable insights into human

movement. Several lines of work are related to ours. In this section, we provide an overview of 3D

human pose estimation methods, a discussion of approaches based on graph convolutional neworks

(GCNs), Transformers, and spatial-temporal methods.

Graph Convolutional Network based Methods. In recent years, GCNs have emerged as a pow-

erful approach for 3D human pose estimation, leveraging the inherent graph structure of human

skeletons to capture spatial dependencies between body joints. Early works [30–37] primarily fo-

cused on exploiting graph representations to model human body structures. This arises from the

fact that the human skeleton can naturally be represented as a graph, with nodes corresponding to

joints and edges capturing the connections between the joints. Zhao et al. [30] propose SemGCN,

a semantic graph convolutional network that has the ability to learn and encode semantic infor-

mation such as both local and global node relationships, which may not be explicitly represented

in the graph structure. Zou et al. [31] design a high-order graph convolutional network to capture

high-order dependencies between body joints by considering neighbors that are multiple hops away

when updating the joint features in an effort to reduce the uncertainty that arises from occlusion or

depth ambiguity. In [34], a modulated GCN comprised of weight modulation and adjacency mod-

ulation is proposed, where weight modulation enables the learning of unique modulation vectors

for individual nodes and adjacency modulation modifies the graph structure to account for addi-

tional edges beyond the human skeleton that can be modeled. Building upon modulated GCN, Lee

et al. [36] design multi-hop modulated GCN, an architecture in which the features of multi-hop

neighbors are modulated and fused by a learnable matrix designed to assign higher weights to fea-

tures of neighbors that are closer in hop distance. Zhang et al. [37] introduce GroupGCN, which

is inspired by the concept of group convolution in convolutional neural networks. The GroupGCN

architecture includes group convolution that is used to ensure that each group has its own weight

matrix and spatial aggregation kernel, and group interaction that allows features to interact between

groups and take into account global information for better performance.

Transformer-based Methods. Inspired by the success of Transformers in natural language pro-

cessing and computer vision tasks [38, 39], Transformer-based methods for 3D human pose esti-

mation have recently emerged as a promising approach for capturing long-range dependencies and

global context between body joints in video sequences by leveraging self-attention mechanisms.

Self-attention allows each body joint to interact with all other joints in the sequence, capturing

their relative importance and relevance. Zhao et al. [40] present GraFormer, a model built on the

Transformer architecture to model the relations between the different joints. It is comprised of a

graph attention module and a Chebyshev graph convolutional module. However, Chebyshev graph
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convolutions approximate the spectral graph convolution by truncating the Chebyshev polynomial

expansion. This approximation introduces errors, which can lead to the mixing of information

from distant body joints into local joint features. Such errors can negatively impact the accu-

racy of pose estimation, especially for complex poses. Zheng et al. [3] introduce PoseFormer,

a Transformer-based model composed of a spatial transformer module that employs spatial self-

attention layers, considering the positional information of 2D joints, to generate a latent feature

representation for each frame, and a temporal transformer module that analyzes global dependen-

cies across frames. Since PoseFormer is a pure Transformer-based model that directly models the

spatial and temporal aspects of the input video sequence, it does not explicitly consider the graph

structure of the human body, and hence it may not fully exploit the inherent graph relationships that

exist between body joints, potentially leading to suboptimal performance. More recently, Cai et al.

propose HTNet [9], a human topology aware network comprised of a local joint-level connection

module based on GCNs to model physical connections between adjacent joints at the joint level,

an intra-part constraint module to provide constraints for intra-part joints at the part level, and a

global body-level interaction module based on multi-head self-attention to extract global features

among inter-part joints at the body level. However, one key limitation of HTNet is the challenge in

designing an optimal connection structure for its three modules. Also, the series structure, where

the modules are connected sequentially, can increase the model size.

3D Human Pose Estimation. As mentioned earlier, there are two general approaches for 3D

human pose estimation: one-stage and two-stage. In the one-stage approach [15, 17, 20, 41–43],

3D human pose estimation is performed in a single step without any intermediate processing. This

approach typically involves training a deep learning model such as a convolutional neural network

or a graph neural network to directly predict the 3D pose of the person in the image or video.

The network takes the input image or video frame as input and outputs the 3D pose as a set of

joint coordinates. The inherent ambiguity of 2D-to-3D mapping can, however, lead to multiple

possible 3D pose solutions for a given 2D input. For example, Toshev et al. [44] introduce the

application of Deep Neural Networks (DNNs) to human pose estimation, leveraging a DNN-based

regression approach to joint coordinates and a cascaded regressor system that provides the advan-

tage of holistic pose reasoning and context awareness. Pavlakos et al. [17] uses a coarse-to-fine

method to predict the 3D pose, where the coarse predictions guide the fine-grained predictions.

This method works by first generating a coarse 3D volumetric representation of the human body

using a 3D convolutional neural network (CNN). The coarse volumetric representation is then

used to guide the fine-grained prediction of the 3D pose by training a 2D CNN to regress the 2D

joint locations, followed by a 3D refinement network that refines the predicted 3D pose by taking
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into account the coarse volumetric representation. Another common approach to 3D human pose

estimation is multi-view fusion, which leverages multiple camera views and fuses 2D poses to

generate 3D pose estimates. Qiu et al. [45] present an novel approach for estimating 3D human

poses from multiple calibrated cameras, utilizing a CNN-based multi-view feature fusion method

to enhance 2D pose estimation accuracy and a recursive pictorial structure model to estimate 3D

poses from the multi-view 2D poses. He et al. [46] introduce the epipolar transformer, enabling 2D

pose detectors to utilize 3D-aware features by fusing features along epipolar lines of neighboring

views, along with a recursive pictorial structure model to reconstruct the 3D pose from multi-view

2D poses. Liu et al. [47] present a dual consecutive network for multi-frame person pose estima-

tion, leveraging a pose temporal merger and a pose residual fusion module to extract contextual

information from adjacent frames, resulting in localized search ranges and improved accuracy in

locating keypoints. Also, Liu et al. [48] explore the multi-frame human pose estimation task by

emphasizing the effective utilization of temporal contexts through feature alignment and comple-

mentary information mining, achieved by introducing a hierarchical coarse-to-fine network that

progressively aligns supporting frame features with the key frame feature. While 3D pose estima-

tion typically focuses on predicting the positions of skeleton joints, the task of 3D human body

mesh recovery [49] from monocular images aims to reconstruct the complete mesh representation

of the human body, encompassing both pose and shape.

In the two-stage approach [4, 7, 22–31, 50], 3D human pose estimation is performed in two

steps: first, the 2D keypoints of the person are detected in the input image or video frame using an

off-the-shelf 2D pose detector [51, 52], and then the 3D pose is estimated from the 2D keypoints

using a 2D-to-3D lifting network. For instance, Martinez et al. [22] propose a simple multilayer

neural network architecture with a building block comprised primarily of a linear layer, followed

by batch normalization, dropout, a Rectified Linear Unit (RELU) activation function, as well as

a residual connection to help improve generalization performance and reduce training time. Li

et al. [50] introduce multi-hypothesis Transformer, a novel three-stage framework based on the

Transformer architecture, designed to address the ambiguous inverse problem of 3D human pose

estimation from monocular videos by generating multiple pose hypotheses in the spatial domain

and facilitating communication between them in both independent and mutual manners in the

temporal domain. Our approach falls under the category of two-stage methods, and we employ

the proposed GS-Net model as a lifting network. We first estimate the 2D joint coordinates in the

input image using a 2D pose estimator, and then we use these 2D joint locations as input to GS-Net

to predict 3D joint coordinates. A key advantage of using GS-Net as our lifting network is that

we can leverage the key components (i.e., skip connection, weight and adjacency modulation, and
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ConvNeXt) present in the model architecture to effectively estimate the 3D joint positions.

Spatial-temporal based Methods. Recent approaches have utilized temporal information from

video to produce more accurate predictions of 3D human pose estimation. To mitigate the chal-

lenges of depth ambiguity and visual jitters in static images, Hossain et al. [53] introduce a re-

current neural network composed of Long Short-Term Memory (LSTM) units with shortcut con-

nections to exploit temporal information from human pose sequences. Their normalized LSTM

network first encodes 2D poses into a fixed feature vector and decodes it into a 3D pose. However,

encoding the spatial configuration of 2D poses into a one-dimensional vector ignores the represen-

tation of the spatial arrangement of these poses. Moreover, Pavlo et al. [4] propose a fully convolu-

tional based model based on dilated temporal convolutions to estimate 3D poses over 2D keypoint

sequences. Other recent methods incorporate both spatial configuration constraints and temporal

information to estimate 3D poses. For instance, Cai et al. [5] exploit graph pooling and graph

unsampling to learn multi-scale feature representations pertaining to different semantic meanings.

However, their local-to-global network architectures are limited to embedding fixed-length spatial-

temporal sequences, making it less efficient at capturing global context information across frames.

Building upon [4], Liu et al. [54] utilize attention mechanisms to model local and global spatial

information and employ the dilated temporal model to process varying skeleton sequences.

Our approach differs from these GCN-based approaches in that instead of using GCN as a 2D-

to-3D lifting network, we design a new graph neural network with skip connections, together

with weight and adjacency modulation. We leverage skip connections, which are integrated by

design in our network architecture, allowing the network to reuse lower-level features in higher-

level layers, thereby helping the model to learn more complex representations. In addition, we

employ a variant of the ConvNeXt block in our network architecture. ConvNeXt has demonstrated

competitive accuracy and scalability [55] compared to Transformers, while retaining the simplicity

and efficiency of standard convolutional neural networks. We also propose MGT-Net, which, in

comparison to the aforementioned methods, combines the strengths of multi-head self-attention

and multi-hop graph convolutions with disentangled neighborhoods. By leveraging both local and

global contextual information and capturing long-range dependencies effectively, MGT-Net aims

to improve the accuracy and robustness of 3D human pose estimation in challenging scenarios.

Moreover, we integrate dilated graph convolutions into our network architecture to enhance the

model’s receptive field, enabling it to capture larger contextual information and better understand

the dependencies between body joints across different scales and distances.

7



1.4 Overview and Contributions

This thesis is structured as follows:

• Chapter 1 begins with a comprehensive exploration of the motivations and goals driving this

study. Subsequently, the problem statement is articulated, followed by a clear definition

of the study’s objective. Additionally, a detailed literature review is conducted, offering

valuable insights into relevant algorithms employed in the domain of deep learning for 3D

human pose estimation.

• In Chapter 2, we propose a novel Gauss-Seidel graph neural network (GS-Net) [56] whose

layer-wise propagation rule is obtained by iteratively solving graph filtering with Laplacian

regularization via the Gauss-Seidel iterative method. In addition, we design a network ar-

chitecture comprised of weight and adjacency modulation, skip connection, and a variant of

the ConvNeXt residual block. We demonstrate through extensive experiments and ablation

studies the effectiveness and generalization ability of the proposed GS-Net model, achieving

competitive performance on two benchmark datasets.

• In Chapter 3, we propose a multi-hop graph transformer network (MGT-Net), which lever-

ages multi-head self-attention, multi-hop graph convolutions with disentangled neighbor-

hoods, and dilated convolutions to effectively capture both long-range dependencies and

local-global contextual information. In addition, we design a network architecture composed

of a graph attention block and a multi-hop graph convolutional block to capture spatial de-

pendencies and model the complex interactions among body joints. We also demonstrate

through extensive experiments and ablation studies the effectiveness and generalization abil-

ity of the proposed MGT-Net model, achieving competitive performance in 3D human pose

estimation on two benchmark datasets while retaining a small model size.

• Chapter 4 encapsulates the thesis’s key contributions, addresses its limitations, and delineates

promising avenues for future research in this area of study.
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Iterative Graph Filtering Network for 3D Human

Pose Estimation

In this chapter, we introduce an iterative graph filtering framework for 3D human pose estima-

tion, which aims to predict the 3D joint positions given a set of 2D joint locations in images. Our

approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization

via the Gauss-Seidel iterative method. Motivated by this iterative solution, we design a Gauss-

Seidel network (GS-Net) architecture, which makes use of weight and adjacency modulation, skip

connection, and a pure convolutional block with layer normalization. Adjacency modulation fa-

cilitates the learning of edges that go beyond the inherent connections of body joints, resulting in

an adjusted graph structure that reflects the human skeleton, while skip connections help main-

tain crucial information from the input layer’s initial features as the network depth increases. We

evaluate our proposed model on two standard benchmark datasets, and compare it with a compre-

hensive set of strong baseline methods for 3D human pose estimation. Our experimental results

demonstrate that our approach outperforms the baseline methods on both datasets, achieving state-

of-the-art performance. Furthermore, we conduct ablation studies to analyze the contributions of

different components of our model architecture and show that the skip connection and adjacency

modulation help improve the model performance.
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2.1 Introduction

In traditional 3D human pose estimation methods [22], each joint in the human skeleton is local-

ized independently, and the spatial relationship between the joints is not considered. This can lead

to incorrect poses, especially in cases where joints occlude each other. To tackle this potential

weakness, graph convolutional networks (GCNs) have recently shown promising results in 3D hu-

man pose estimation [30], yielding improved performance over traditional methods. By naturally

modeling the skeleton structure of the human body as a graph, where each joint is represented as a

node and the edges represent the relationships between the joints, GCNs are able to capture the spa-

tial relationships between joints and learn an efficient representation of the underlying pose. One

of the main benefits of using GCNs is that they can capture the dependencies between the joints.

The position of each joint is dependent on the position of other joints in the body, and GCNs can

model these dependencies explicitly. This allows the model to reason about the body as a con-

nected system and to make accurate predictions even when some joints are occluded. Despite their

promising results, GCNs suffer from several shortcomings [32]. First, they use a shared weight

matrix (i.e., the same set of weights is used for all nodes in the graph) to determine the impor-

tance of neighboring joints when computing the representation of a particular joint. However, the

shared weight matrix can be limited in its ability to capture complex relationships between joints

in a human body, and may not be able to capture the nuances of joint relationships. This can limit

the expressiveness of the model, making it difficult to learn more complex relationships between

joints, thereby resulting in suboptimal performance [34]. Second, GCNs without skip connections

are limited by the receptive field of their filters, which only allow them to capture information from

the local neighborhood of each joint in the graph. Skip connections allow for the flow of informa-

tion to bypass certain layers in the network and improve the modeling of long-range dependencies

in the graph without sacrificing performance. Third, GCNs that use only local information can lead

to over-smoothing [57–60], where the learned node representations become too similar, especially

when the network depth increases.

More recently, Transformer-based models [40, 61, 62] have been shown to be an effective ap-

proach for 3D human pose estimation due to their ability to capture long-range dependencies be-

tween the joints. The basic idea is to treat the 3D poses of human bodies as a sequence of tokens,

each of which represents a joint in the human body, and the goal is to predict the 3D coordinates of

each joint. However, there are some challenges associated with using Transformers for 3D human

pose estimation, such as the need for large amounts of training data and the computational cost

of processing long sequences of joint tokens. To mitigate some of these challenges, Zhuang et

al. [55] introduce ConvNeXt, an architecture that solely utilizes CNN modules and performs com-
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petitively with Transformers in both accuracy and scalability, yielding superior performance over

the Swin Transformer [63]. Unlike the Swin Transformer, specialized modules like shifted window

attention or relative position biases are not needed for ConvNeXt. The ConvNeXt residual block

is fully convolutional, and uses a layer normalization, followed by the Gaussian Error Linear Unit

activation function. This motivates us to explore and eventually design a variant of the ConvNeXt

block for skeleton-based representation learning.

In this chapter, we propose a Gauss-Seidel graph neural network (GS-Net), an architecture that

incorporates a skip connection, weight and adjacency modulation, and a variant of the ConvNeXt

residual block while upholding the flexibility of models intended for broad applications, including

3D human pose estimation, which is the primary focus of this work. Using an iterative graph fil-

tering approach for solving a linear system of sparse equations, we start by deriving the layer-wise

propagation rule of the proposed network via the Gauss-Seidel iterative method. Our framework

follows the two-stage paradigm for 3D human pose estimation, where GS-Net is employed as a

lifting network to predict the 3D pose locations from 2D predictions. Inspired by the regular-

ized elastic net regression method, we train our model using a flexible loss function defined as a

weighted sum of the mean squared and mean absolute errors between the 3D ground truth coor-

dinates and estimated 3D joint coordinates over a training set consisting of human poses. Experi-

ments on two large-scale datasets verify the effectiveness of our model using both quantitative and

qualitative evaluations. Moreover, our ablation studies highlight the potential for further improve-

ments through the incorporation of skip connections and adjacency modulation. Our contributions

can be summarized as follows:

• We propose a novel Gauss-Seidel graph neural network (GS-Net) whose layer-wise propa-

gation rule is obtained by iteratively solving graph filtering with Laplacian regularization via

the Gauss-Seidel iterative method.

• We design a network architecture comprised of weight and adjacency modulation, skip con-

nection, and a variant of the ConvNeXt residual block.

• We demonstrate through extensive experiments and ablation studies the effectiveness and

generalization ability of the proposed GS-Net model, achieving competitive performance on

two benchmark datasets.

The remainder of this chapter is organized as follows. Section 2.2 presents the methodology,

including the problem formulation, propagation rule, model architecture, and model training and

prediction. The experimental setup and results are presented in Section 2.3.

11



2.2 Proposed Method

2.2.1 Preliminaries and Problem Statement

Basic Notions. Let G = (V , E ,X) be an attributed graph, where V = {1, . . . , N} is a set of

nodes that correspond to body joints, E is the set of edges representing connections between two

neighboring body joints, and X = (x1, ...,xN)
⊺ is an N×F feature matrix of node attributes whose

i-th row xi is an F -dimensional feature vector associated to node i. The graph structure is encoded

by an N × N adjacency matrix A whose (i, j)-th entry is equal to 1 if there the edge between

neighboring nodes i and j, and 0 otherwise. We denote by Â = D−1/2AD−1/2 the normalized

adjacency matrix, where D = diag(A1) is the diagonal degree matrix and 1 is an N -dimensional

vector of all ones.

Gauss-Seidel Method. Let Φ be an N × N matrix whose diagonal entries are all nonzero, and

consider the matrix decomposition Φ = Λ− (E + F), where Λ is the diagonal matrix of Φ, E is

its strictly lower triangular part, and F is its strictly upper triangular part. Given a vector x ∈ RN ,

the Gauss-Seidel iteration [64] for solving a matrix equation Φh = x is given by

h(k+1) = (Λ− E)−1Fh(k) + (Λ− E)−1x, (2.1)

where h(k) and h(k+1) are the k-th and (k + 1)-th iterations of the unknown h, respectively.

Problem Formulation. Let D = {(xi,yi)}Ni=1 be a training set consisting of 2D joint positions

xi ∈ X ⊂ R2 and their associated ground-truth 3D joint positions yi ∈ Y ⊂ R3. The aim of 3D

human pose estimation is to learn the parameters w of a regression model f : X → Y by finding

a minimizer of the following loss function

w∗ = argmin
w

1

N

N∑
i=1

l(f(xi),yi), (2.2)

where l(f(xi),yi) is an empirical loss function defined by the learning task. Since human pose

estimation is a regression task, we define l(f(xi),yi) as a weighted sum (convex combination) of

the ℓ2 and ℓ1 loss functions

l = (1− α)
N∑
i=1

∥yi − f(xi)∥22 + α

N∑
i=1

∥yi − f(xi)∥1, (2.3)

where α ∈ [0, 1] is a weighting factor that controls the mixing amount between the ℓ2 and ℓ1

penalties. It is worth pointing out that the proposed loss function draws inspiration from the penalty

function used in the elastic net regression model [65], which is a weighted combination of lasso
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and ridge regularization. When α = 0, the penalty function is equivalent to lasso regression, and

when α = 1, it is equivalent to ridge regression. A key advantage of elastic net regression is that

it reduces the impact of irrelevant predictors by shrinking their coefficients towards zero, unlike

ridge regression which only reduces the size of the coefficients.

2.2.2 Iterative Graph Filtering

Graph filtering refers to the process of enhancing signals defined on graphs while preserving the

underlying graph structure. It typically employs graph Laplacian regularization, which aims to in-

corporate the underlying graph structure into optimization problems to achieve desirable properties

in the solutions while encouraging the filtered signal to be smooth and to vary smoothly across the

graph. More specifically, the goal of graph filtering with Laplacian regularization is to minimize

the following objective function

J (H) =
1

2
∥H−X∥2F +

β

2
tr(H

⊺
LH), (2.4)

where X is the initial feature matrix, H is the filtered feature matrix, L = I− Â is the normalized

Laplacian matrix, β ∈ (0, 1) is a regularization parameter, and ∥·∥F and tr(·) denote the Frobenius

norm and trace operator, respectively. The first term on the right-hand side represents a fitting

constraint or data fidelity, where a filtered feature matrix is expected to exhibit limited deviation

from the initial feature matrix. The second term represents a smoothness constraint, which requires

an effective filtered feature matrix to have consistent behavior in the vicinity of neighboring graph

nodes (i.e., adjacent nodes should have similar node features). The trade-off parameter β controls

how much emphasis to put on data fidelity versus smoothness. A larger value of β corresponds to

a stronger regularization effect and a greater emphasis on smoothness of the filtered feature matrix

at the expense of fitting the initial data matrix more closely, while a smaller value places more

emphasis on the data fidelity term and results in a better fit to the initial feature matrix.

Taking the derivative of J and set it to zero, we have

∂J
∂H

= H−X+ βLH = 0, (2.5)

which yields a system of sparse equations given by

(I+ βL)H = X, (2.6)

where β controls the smoothness of the filtered graph signal. It is important to point out that the

matrix I + βL is symmetric positive definite with minimal eigenvalue equal to 1 and maximal

eigenvalue bounded from above by 1 + 2β.
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Iterative Solution. Using the matrix decomposition for the Gauss-Seidel method, we can express

I + βL as the sum of a diagonal matrix, a strictly lower triangular matrix, and a strictly upper

triangular matrix as follows:

I+ βL = (1 + β)I− βÂ = Λβ − (Â
⊺
β + Âβ), (2.7)

where Λβ = (1 + β)I is a diagonal matrix (i.e., uniformly scaled identity matrix), and Âβ denotes

the upper triangular matrix of βÂ. Since the uniformly scaled and normalized adjacency matrix

βÂ is symmetric with zero diagonal entries, its lower triangular part is Â⊺
β . Hence, the Gauss-

Seidel iterative solution of (I+ βL)H = X is given by

H(k+1) = (Λβ − Â
⊺
β)

−1ÂβH
(k) + (Λβ − Â

⊺
β)

−1X, (2.8)

Since matrix inversion can be computationally expensive, especially for large matrices, a common

approach to approximate the inverse of a matrix is to use a truncated series approximation such

as the Neumann series expansion, which involves summing a finite number of terms of an infinite

series, providing a good approximation of the inverse.

Lemma 1 Let S be an N ×N matrix with spectral radius ρ(S) < 1. Then, I−S is invertible and

we have

(I− S)−1 =
∞∑
i=1

Si. (2.9)

Recall that the eigenvalues of a lower or upper triangular matrix are its diagonal entries. Hence,

the spectral radius of the lower triangular matrix Â⊺
β − βI is equal to β. Since β ∈ (0, 1), we can

approximate the inverse of Λβ − Â⊺
β using Lemma 1 with first order approximation as follows:

(Λβ − Â
⊺
β)

−1 = (I− (Â
⊺
β − βI))−1 ≈ (1− β)I+ Â

⊺
β. (2.10)

Therefore, the Gauss-Seidel iterative solution becomes

H(k+1) = ((1− β)I+ Â
⊺
β)ÂβH

(k) + ((1− β)I+ Â
⊺
β)X. (2.11)

2.2.3 Gauss-Seidel Network

Propagation rules in graph neural networks such as GCNs generally define how information is

passed between nodes in a graph during the forward pass of the network. These rules are used to

update the feature representations of nodes in the graph based on information from their neighbors,

and are a critical component in the learning process of graph neural networks. Motivated by the
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Gauss-Seidel iterative solution (2.11) of graph filtering with Laplacian regularization, we propose

a Gauss-Seidel network (GS-Net) with the following layer-wise propagation rule:

H(ℓ+1) = σ
(
((1− β)I+ Â

⊺
β)ÂβH

(ℓ)W(ℓ) + ((1− β)I+ Â
⊺
β)XW̃(ℓ)

)
, (2.12)

where W(ℓ) ∈ RFℓ×Fℓ+1 and W̃(ℓ) ∈ RF×Fℓ+1 are learnable weight matrices, σ(·) is an element-

wise nonlinear activation function such as the Gaussian Error Linear Unit (GELU), H(ℓ) ∈ RN×Fℓ

is the input feature matrix of the ℓ-th layer and H(ℓ+1) ∈ RN×Fℓ+1 is the output feature matrix. The

input of the first layer is the initial feature matrix H(0) = X.

Note that the second term on the right-hand side of the propagation rule is basically a skip con-

nection that provides a effective way to pass information directly from the initial feature matrix to

the next network layer, without any nonlinear transformation in between. This allows the informa-

tion to be preserved and can help improve the flow of information through the network, enabling

the model to learn richer, more expressive feature representations.

Weight Modulation. One of the main shortcomings of GCNs is that they share the weight ma-

trix, meaning that they treat all nodes in the graph equally, without considering their individual

characteristics. This can lead to over-smoothing, where the learned representations of nodes be-

come too similar, reducing the ability of the model to distinguish between different nodes in the

graph. To circumvent this limitation, we leverage weight modulation [34], which employs a com-

mon weight matrix, but a learnable weight modulation vector is introduced for each node, which

scales the weight matrix according to the local topology of the node. This enables each node to

have a unique and adaptive representation, which can capture more fine-grained information about

the node’s local structure and its position in the graph. Hence, the layer-wise propagation rule with

weight modulation can be written as

H(ℓ+1) = σ
(
((1− β)I+ Â

⊺
β)Âβ(M

(ℓ)⊙(H(ℓ)W(ℓ)))

+ ((1− β)I+ Â
⊺
β)(M

(ℓ)⊙(XW̃(ℓ)))
)
,

(2.13)

where M(ℓ) ∈ RN×Fℓ+1 is a learnable weight modulation matrix, and ⊙ denotes element-wise

multiplication.

Adjacency Modulation. We modulate the normalized adjacency matrix to capture not just the

interactions between adjacent nodes, but also the relationships between distant nodes beyond the

natural connections of body joints [34].

Ǎ = Â+Q, (2.14)
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where Q(ℓ) ∈ RN×N is a learnable adjacency modulation matrix. Since the skeleton graph is

symmetric, we symmetrize the adjacency modulation matrix by taking the average of the matrix

and its transpose, i.e., (Q+QT )/2. Therefore, the layer-wise propagation rule of the Gauss-Seidel

graph network with weight and adjacency modulation can be written as

H(ℓ+1) = σ
(
((1− β)I+ Ǎ

⊺
β)Ǎβ(M

(ℓ)⊙(H(ℓ)W(ℓ))).

+ ((1− β)I+ Ǎ
⊺
β)(M

(ℓ)⊙(XW̃(ℓ)))
)
.

(2.15)

In adjacency modulation, a weight modulation vector is introduced for each node, which is learned

during training and is used to modulate the weights of the adjacency matrix. This enables the

adjacency matrix to be dynamically adjusted based on the local node features, which can lead to

better performance on 3D human pose estimation.

Model Architecture. Figure 2.1 illustrates the architecture of our proposed GS-Net model for

3D human pose estimation. The input to the model consists of 2D keypoints, obtained via an off-

the-shelf 2D detector [51]. Inspired by the architectural design of the ConvNeXt block [55], our

residual block consists of two graph convolutional (GS-NetConv) layers. The first convolutional

layer is followed by layer normalization, while the second convolutional layer is followed by a

GELU activation function, which is a smoother version of ReLU and is commonly used in Trans-

formers based approaches. This residual block is repeated four times. We also employ a non-local

layer [66] before the last convolutional layer. The last layer of the network generates the 3D pose.
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Figure 2.1: Network architecture of the proposed GS-Net model for 3D human pose estimation.
Our model accepts 2D pose coordinates (16 or 17 joints) as input and generates 3D pose predictions
(16 or 17 joints) as output. We use ten Gauss-Seidel graph convolutional layers with four residual
blocks. In each residual block, the first convolutional layer is followed by layer normalization,
while the second convolutional layer is followed by a GELU activation function, except for the last
convolutional layer, which is preceded by a non-local layer.

Model Prediction. The output of the last graph convolutional layer of GS-Net contains the final

output node embeddings, which are given by

Ŷ = (ŷ1, . . . , ŷN)
⊺ ∈ RN×3, (2.16)
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where ŷi is a 3D row vector of predicted 3D pose coordinates. This predicted set of 3D joint

coordinates can be visualized in a 3D space, allowing for interactive manipulation and analysis of

the pose.

Model Training. The parameters (i.e., weight matrices for different layers) of the proposed GS-

Net model for 3D human pose estimation are learned by minimizing the following loss function

L =
1

N

[
(1− α)

N∑
i=1

∥yi − ŷi∥22 + α

N∑
i=1

∥yi − ŷi∥1

]
, (2.17)

which is a weighted sum of the mean squared and mean absolute errors between the 3D ground

truth coordinates yi and estimated 3D joint coordinates ŷi over a training set consisting of N

human poses. For the mean squared error, the squared differences between the predicted and

ground truth coordinates are averaged, meaning that larger errors have a greater impact on the

overall score. In other words, the mean squared error is more sensitive to outliers and penalizes

larger errors more heavily than the mean absolute error, which is more robust to outliers and treats

all errors equally. The weighting factor α balances the contribution of each loss term. When

α = 0, our loss function reduces to the mean squared error (i.e., ridge regression) and when α = 1,

it reduces to the mean absolute error (i.e., lasso regression).

2.3 Experiments

In this section, we present the results of our proposed framework against competing baselines for

3D human pose estimation. We begin by outlining the experimental setup, followed by providing

an overview of evaluation protocols and implementation details. Then, we present both quan-

titative and qualitative results on two benchmark datasets using various evaluation metrics. We

also conduct ablation studies on the significance of various components in our model in an effort

to provide valuable insight into the effectiveness of the model. The source code is available at:

https://github.com/zaedulislam/GS-Net.

2.3.1 Experimental Setup

Datasets. We comprehensively evaluate our model on Human 3.6M [1] and MPI-INF-3DHP [2],

which are standard large-scale benchmark datasets for 3D human pose estimation.

Human3.6M is a large-scale dataset comprised of 3.6 million images captured at 50Hz by 4 syn-

chronized cameras in different positions and perspectives. A total of 11 professional actors (6 men
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and 5 women) perform 15 actions (Directions, Discussion, Eating, Greeting, Phoning, Posing, Pur-

chases, Sitting, Sitting Down, Smoking, Photo, Waiting, Walk Dog, Walking, and Walk Together)

in an interior setting, as depicted in Figure 2.2. A motion capture system captures the annotations

of precise 3D body joint coordinates, while projection with known intrinsic and extrinsic camera

parameters yields the 2D poses. Annotated 3D joints are available for 7 subjects. The dataset is

split into two sets: a training set and a test set. The training set contains data from five of the

actors (S1, S5, S6, S7, S8), while the test set contains data from the remaining two actors (S9 and

S11). These training and test sets are balanced, meaning that they contain an equal number of

samples for each activity and for each subject. For data preprocessing [22, 30, 31, 67], we apply

standard normalization to the 2D and 3D poses before feeding the data to the model. To achieve

zero-centering, the hip joint is adopted as the root joint of the 3D poses.

MPI-INF-3DHP is a benchmark dataset for 3D human pose estimation from monocular RGB im-

ages, and comprises both indoor environments with limited space and complex outdoor scenes, as

illustrated in Figure 2.3. A total of 8 actors (4 men and 4 women) were captured on camera from

14 camera views, each performing 8 sets of activities that encompassed a wider range of pose cate-

gories than the Human3.6M dataset. The activities varied from simple movements such as walking

and sitting to more challenging exercises and dynamic actions. The duration of each activity set is

approximately one minute, and the actors were dressed in two different sets of clothing that were

rotated across the activity sets. One clothing set consisted of casual wear suitable for everyday use,

while the other set was plain-colored to facilitate easy augmentation. The dataset also includes

ground-truth annotations of the 3D joint positions.

Evaluation Protocols and Metrics. For the Human 3.6M benchmark, there are two standard

evaluation protocols used for training and testing [22], referred to as Protocol #1 and Protocol

#2. Under Protocol #1, we report mean per-joint position error (MPJPE), which computes the

average Euclidean distance between the predicted and ground-truth 3D positions of each joint

after aligning the root joint (i.e., hip joint). Another commonly used metric for evaluating the

accuracy of 3D human pose estimation models is the Procrustes-aligned mean per-joint position

error (PA-MPJPE), where MPJPE is computed after rigid alignment of the prediction with respect

to the ground truth. The PA-MPJPE metric first applies Procrustes analysis to align the predicted

and ground-truth joint positions to a common coordinate system. This alignment is performed

by scaling, rotating, and translating the predicted joint positions to minimize the sum of squared

distances between the predicted and ground-truth joint positions. Once the joint positions are

aligned, the PA-MPJPE is calculated by computing the mean of the Euclidean distances between

the aligned predicted and ground-truth joint positions for each joint. Both MPJPE and PA-MPJPE
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Directions Discussion Greeting Phone Photo

Posing Purchase Sitting Sitting Down Walking

Figure 2.2: Examples of actions performed by different actors in the Human3.6M dataset [1].

Figure 2.3: Examples of activities in the MPI-INF-3DHP dataset [2].

are measured in millimeter (mm), and lower error values imply better performance. Both Protocol

#1 and Protocol #2 use five subjects (S1, S5, S6, S7 and S8) for training and two subjects (S9 and

S11) for testing. All camera views are trained with a single model for all actions. For the MPI-
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INF-3DHP dataset, we use Percentage of Correct Keypoint (PCK) with a threshold of 150mm and

Area Under Curve (AUC) for a range of PCK thresholds as evaluation metrics [19, 24, 68–71].

Both the PCK and AUC metrics provide a measure of how well the predicted joint positions align

with the ground-truth joint positions within a certain distance threshold. Higher PCK and AUC

scores indicate better performance.

Baseline Methods. We compare the performance of our model against various state-of-the-art

GCN-based approaches for estimating 3D poses, including SemGCN [30], a GCN-based model

that uses a multi-task learning approach to jointly optimize for 3D joint positions and body joint

angles; CompGCN [35], a hierarchical composition approach that uses a multi-level attention

mechanism to adaptively weight the contributions of different body parts at different levels of

the hierarchy; High-order GCN [31], a baseline method that employs high-order GCNs to model

the complex interactions between body joints; Weight Unsharing [32], a comprehensive study that

analyzes the trade-offs between sharing weights across different body parts versus having sepa-

rate weights for each body part in GCNs; MM-GCN [36], a multi-hop GCN-based method that

incorporates modulated attention mechanisms to capture the interactions between different body

joints across multiple hops; GroupGCN [37], a decoupling GCN for 3D human pose estimation

consisting of group convolution and group interaction; and Modulated GCN [34], a GCN-based

architecture that employs weight and adjacency modulation mechanisms to capture the complex

relationships between different body parts in the human body.

Implementation Details. We implement our model in PyTorch, and conduct all experiments on

a single NVIDIA GeForce RTX 3070 GPU with 8GB of memory. For both 2D ground truth and

2D pose detections [51], we train our model for 30 epochs using the AMSGrad optimizer, and we

set the initial learning rate to 0.005, the decay factor to 0.65 per 4 epochs, the batch size to 512,

and the number of channels to 384. We set the hyperparameter β to 0.2, which was computed via

grid search with cross-validation on the training set. We also set the weighting factor α to 0.01. We

apply dropout with a factor of 0.2 after each graph convolution layer to prevent overfitting. We also

integrate a non-local layer [66] and a pose refinement module [23]. Incorporating an additional

pose refinement network, comprised of two fully-connected layers, helps improve performance.

However, in the ablation study we exclude the pose refinement network and the non-local layer to

ensure a fair comparison.

2.3.2 Results and Analysis

Quantitative Results on Human3.6M. In Tables 2.1 and 2.2, we summarize the performance

comparison results between our GS-Net model and various state-of-the-art methods for 3D pose
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estimation on Human3.6M. In both tables, we report results for all 15 actions, as well as the average

performance. As can be seen in Table 2.1, our method achieves on average 47.1mm and 38.7mm

in terms of MPJPE and PA-MPJPE, respectively, outperforming all the baselines. Under Protocol

#1, Table 2.1 reveals that our GS-Net model performs better than Modulated GCN [34] in 13 out

of 15 actions, yielding 2.3mm error reduction on average, improving upon this best performing

baseline by a relative improvement of 4.65%, while maintaining a fairly small number of learnable

parameters. Our method also consistently performs better in almost all actions and outperforms

SemGCN [30] by a significant relative improvement of 18.23% on average. Moreover, our model

achieves better predictions than the best baseline on challenging actions (i.e., hard poses) that in-

volve self-occlusion such as “Eating”, “Sitting” and “Smoking”, yielding relative error reductions

of 5.9%, 5.22% and 7.04%, respectively, in terms of MPJPE. These self-occlusions can make hu-

man pose estimation more challenging because they limit the visible information available to the

model. For instance, when eating or smoking, the hands and arms of a person can occlude parts

of their face and upper body. Also, when a person is sitting, their legs and arms can occlude other

body parts, such as the torso or feet.

Table 2.1: Performance comparison of our model and baseline methods using MPJPE (in millime-
ters) between the ground truth and estimated pose on Human3.6M under Protocol #1. The last
column report the average errors. Boldface numbers indicate the best 3D pose estimation perfor-
mance, whereas the underlined numbers indicate the second best performance.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez et al. [22] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Sun et al. [18] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
Yang et al. [19] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Fang et al. [72] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Hossain & Little [53] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Pavlakos et al. [69] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Sharma et al. [73] 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
Zhao et al. [30] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
Li et al. [74] 62.0 69.7 64.3 73.6 75.1 84.8 68.7 75.0 81.2 104.3 70.2 72.0 75.0 67.0 69.0 73.9
Banik et al. [75] 51.0 55.3 54.0 54.6 62.4 76.0 51.6 52.7 79.3 87.1 58.4 56.0 61.8 48.1 44.1 59.5
Xu et al. [76] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1
Zou et al. [31] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6
Quan et al. [33] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8
Zou et al. [35] 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9
Liu et al. [32] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Zou et al. [34] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Lee et al. [36] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
Zhang et al. [37] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6

Ours 41.1 46.6 43.0 48.0 48.6 52.4 44.6 41.9 54.5 65.9 46.2 46.1 48.2 38.6 40.9 47.1
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Under Protocol #2, Table 2.2 shows that our model on average reduces the error by 1.83%

compared to Modulated GCN [34], and achieves better results in 12 out of 15 actions. Also,

our method outperforms Modulated GCN on the challenging actions of “Eating”, “Sitting” and

“Smoking”, yielding relative error reductions of 3.58%, 4.74% and 5.68%, respectively, in terms

of PA-MPJPE. Moreover, our model performs better than Modulated GCN on the challenging

“Photo” action, yielding a relative error reduction of 4.72%. In addition, GS-Net outperforms

High-order GCN [31] by a relative improvement of 4.86% on average, as well as on all actions.

Table 2.2: Performance comparison of our model and baseline methods using PA-MPJPE between
the ground truth and estimated pose on Human3.6M under Protocol #2.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Pavlakos et al. [17] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Zhou et al. [77] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3
Martinez et al. [22] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Sun et al. [18] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
Fang et al. [72] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Hossain & Little [53] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Lee et al. [21] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2
Li et al. [74] 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3
Banik et al. [75] 38.4 43.1 42.9 44.0 47.8 56.0 39.3 39.8 61.8 67.1 46.1 43.4 48.4 40.7 35.1 46.4
Xu et al. [76] 36.7 39.5 41.5 42.6 46.9 53.5 38.2 36.5 52.1 61.5 45.0 42.7 45.2 35.3 40.2 43.8
Zou et al. [31] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7
Quan et al. [33] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9
Zou et al. [35] 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8
Liu et al. [32] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Zou et al. [34] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Lee et al. [36] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
Zhang et al. [37] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1

Ours 34.5 38.4 35.0 40.9 38.9 42.4 35.9 33.9 44.2 55.9 38.2 36.7 40.6 30.4 33.8 38.7

Cross-Dataset Results on MPI-INF-3DHP. In Table 3.2, we compare our method against strong

baselines to test its generalization ability across different datasets. We train our model on the

Human3.6M dataset and test it on the MPI-INF-3DHP dataset. The results show that our approach

achieves the highest PCK and AUC scores, consistently yielding superior performance over the

baseline methods in both indoor and outdoor scenes. Compared to the best performing baseline,

our model yields relative improvements of 2.68% and 5.37% in terms of the PCK and AUC metrics,

respectively. Although our model is only trained with indoor scenes on Human3.6M, it produces

satisfactory results with outdoor settings. This verifies the strong generalization ability of our

approach to unseen scenarios and datasets.
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Table 2.3: Performance comparison of our model and baseline methods on the MPI-INF-3DHP
dataset using PCK and AUC as evaluation metrics. Higher values in boldface indicate the best
performance, whereas the underlined numbers indicate the second best performance.

Method PCK (↑) AUC (↑)

Martinez et al. [22] 42.5 17.0
Mehta et al. [2] 64.7 31.7
Li et al. [78] 67.9 -
Yang et al. [19] 69.0 32.0
Zhou et al. [77] 69.2 32.5
Habibie et al. [68] 70.4 36.0
Pavlakos et al. [69] 71.9 35.3
Wang et al. [79] 71.9 35.8
Quan et al. [33] 72.8 36.5
Ci et al. [24] 74.0 36.7
Zhou et al. [80] 75.3 38.0
Zeng et al. [6] 77.6 43.8
Liu et al. [32] 79.3 47.6
Zhou et al. [35] 79.3 45.9
Xu et al. [67] 80.1 45.8
Zeng et al. [70] 82.1 46.2
Lee et al. [36] 81.6 50.3
Zhang et al. [37] 81.1 49.9

Ours 84.3 53.0

Qualitative Results. In Figure 3.5, we show the visual results obtained by GS-Net on the Hu-

man3.6M dataset for various actions. The effectiveness of our proposed approach in addressing

the 2D-to-3D pose estimation task is demonstrated by the close match between the inferred 3D

poses and the ground truth, as evidenced by the accurate results produced by our model from input

images. Compared to Modulated GCN, our model yields pose predictions that are closer to the

ground truth, even when dealing with challenging actions that involve self-occlusion.

Quantitative Results using Ground Truth. We also compare our model with GCN-based meth-

ods, including SemGCN [30], High-order GCN [31], HOIF-Net [33], Weight Unsharing [32], and

Modulated GCN [34] using ground truth. The results are reported in Table 2.4, which shows that

our model consistently yields better performance than GCN-based approaches under both Proto-

cols #1 and #2. Under Protocol #1, our model outperforms SemGCN, High-order GCN, HOIF-Net,

Modulated GCN, and Weight Unsharing by 4.73mm, 2.11mm, 0.71mm, 0.84mm, and 0.42mm, re-

spectively, resulting in relative error reductions of 11.22%, 5.34%, 1.86%, 2.20%, and 1.11%. Un-

der Protocol #2, our model also outperforms SemGCN, High-order GCN, HOIF-Net, Modulated
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Figure 4: Visual comparison between GS-Net, Modulated GCN and ground truth on the Human3.6M test set. Compared to
Modulated GCN, our model is able to produce better predictions.

Table 3: Performance comparison of our model and baseline
methods on the MPI-INF-3DHP dataset using PCK and AUC
as evaluation metrics. Higher values in boldface indicate the
best performance, whereas the underlined numbers indicate the
second best performance.

Method PCK (↑) AUC (↑)
Martinez et al. [13] 42.5 17.0
Mehta et al. [47] 64.7 31.7
Li et al. [61] 67.9 -
Yang et al. [10] 69.0 32.0
Zhou et al. [60] 69.2 32.5
Habibie et al. [49] 70.4 36.0
Pavlakos et al. [50] 71.9 35.3
Wang et al. [62] 71.9 35.8
Quan et al. [26] 72.8 36.5
Ci et al. [15] 74.0 36.7
Zhou et al. [63] 75.3 38.0
Zeng et al. [64] 77.6 43.8
Liu et al. [25] 79.3 47.6
Zhou et al. [28] 79.3 45.9
Xu et al. [48] 80.1 45.8
Zeng et al. [51] 82.1 46.2
Lee et al. [29] 81.6 50.3
Zhang et al. [30] 81.1 49.9

Ours 84.3 53.0

error reductions of 13.69%, 6.86%, 2.69%, 3.73%, and 3.82%,
respectively.

Table 4: Performance comparison of our model and other state-
of-the-art GCN-based methods. Our proposed GS-Net method
achieves the best performance, as indicated by boldface num-
bers. All errors are measured in millimeters (mm).

Method MPJPE (↓) PA-MPJPE (↓)
SemGCN [23] 42.14 33.53
High-order GCN [24] 39.52 31.07
HOIF-Net [26] 38.12 29.74
Modulated GCN [27] 38.25 30.06
Weight Unsharing [25] 37.83 30.09

Ours 37.41 28.94

4.3 Ablation Study

In order to better understand the impact of the design choices
made for our network architecture, we perform ablation experi-
ments on Human3.6M under controlled settings. We report the
results using 2D ground truth for training and testing to elimi-
nate the added uncertainty from 2D pose detectors. These abla-
tion studies demonstrate the efficacy of the key components of
our model.

Impact of Skip Connection. We analyze how the weighted
initial skip connection in the layer-wise propagation rule affects
the model performance, and we report the results in Table 5.
We can see that our model benefits from the weighted initial
skip connection, yielding relative error reductions of 3.43% and
2.91% in terms of MPJPE and PA-MPJPE, respectively.

Impact of Residual Block Design. We compare two residual

91

Figure 2.4: Visual comparison between GS-Net, Modulated GCN and ground truth on the Hu-
man3.6M test set. Compared to Modulated GCN, our model is able to produce better predictions.

GCN, and Weight Unsharing by 4.59mm, 2.13mm, 0.8mm, 1.12mm, and 1.15mm, with relative

error reductions of 13.69%, 6.86%, 2.69%, 3.73%, and 3.82%, respectively.
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Table 2.4: Performance comparison of our model and other state-of-the-art GCN-based methods.
Our proposed GS-Net method achieves the best performance, as indicated by boldface numbers.
All errors are measured in millimeters (mm).

Method MPJPE (↓) PA-MPJPE (↓)

SemGCN [30] 42.14 33.53
High-order GCN [31] 39.52 31.07
HOIF-Net [33] 38.12 29.74
Modulated GCN [34] 38.25 30.06
Weight Unsharing [32] 37.83 30.09

Ours 37.41 28.94

2.3.3 Ablation Study

In order to better understand the impact of the design choices made for our network architecture,

we perform ablation experiments on Human3.6M under controlled settings. We report the results

using 2D ground truth for training and testing to eliminate the added uncertainty from 2D pose

detectors. These ablation studies demonstrate the efficacy of the key components of our model.

Impact of Skip Connection. We analyze how the weighted initial skip connection in the layer-

wise propagation rule affects the model performance, and we report the results in Table 2.5. We

can see that our model benefits from the weighted initial skip connection, yielding relative error

reductions of 3.43% and 2.91% in terms of MPJPE and PA-MPJPE, respectively.

Table 2.5: Effectiveness of initial skip connection (ISC). Boldface numbers indicate better perfor-
mance.

Method MPJPE (↓) PA-MPJPE (↓)

w/o ISC 38.74 29.79
w ISC 37.41 28.94

Impact of Residual Block Design. We compare two residual block designs and report the re-

sults in the Table 2.6. The first design employs blocks consisting of convolutional layers, followed

by batch normalization (BatchNorm) and a ReLU activation function. By contrast, the second de-

sign uses blocks comprised of convolutional layers, followed by layer normalization (LayerNorm)

and a GELU activation function. We incorporate the latter design into the proposed architecture,

resulting in improved performance compared to the first design. The results show that our model

with ConvNeXt block achieves a 0.63% decrease in error in terms of the MPJPE metric and yields

comparable performance in terms of the PA-MPJPE metric. In this part of the ablation study,
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we supply 2D keypoints obtained from the 2D pose detector as input to our model to examine

the model reliability. We also include the pose refinement module and the non-local layer in the

network.

Table 2.6: Effect of residual block design on the performance of our model. Lower values in
boldface indicate better performance.

Method MPJPE (↓) PA-MPJPE (↓)

Ours w/ BatchNorm and ReLU 47.40 38.62
Ours w/ LayerNorm and GELU 47.10 38.65

Impact of Pose Refinement. We also scrutinize the effectiveness of the pose refinement network.

The results in Table 2.7 show that on average the MPJPE and PA-MPJPE errors are reduced by

3.74mm and 1mm, respectively, demonstrating the advantage of using pose refinement in achiev-

ing better performance under both protocols. To reinforce our claim, we report our findings in

Figure 2.5 that shows the performance comparison with or without the pose refinement model un-

der Protocol #1 (top) and Protocol #2 (bottom) for various challenging actions such as “Eating”

and “Photo”. For example, relative error reductions of 10.62% and 5.98% are achieved for the

“Eating” action in terms of MPJPE and PA-MPJPE, respectively.

Table 2.7: Effectiveness of the pose refinement network (PRN). Boldface numbers indicate better
performance.

Method MPJPE (↓) PA-MPJPE (↓)

w/o PRN 37.41 28.94
w PRN 33.67 27.94

Impact of Symmetrizing Adjacency Modulation. As reported in Table 2.8, symmetrizing

the modulated adjacency modulation matrix helps reduce the MPJPE and PA-MPJPE errors by

1.25mm and 0.48mm, respectively.

Table 2.8: Effectiveness of symmetrizing adjacency modulation. Boldface numbers indicate better
performance.

Method MPJPE (↓) PA-MPJPE (↓)

w/o Symmetry 38.66 29.42
w Symmetry 37.41 28.94
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Figure 2.5: Performance comparison of our model with and without pose refinement using MPJPE
(top) and PA-MPJPE (bottom). When coupled with a pose refinement network, GS-Net performs
consistently better on challenging actions.
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Impact of Loss Functions. The results in Table 2.9 validate our design decision to adopt a

weighted loss function comprised of ℓ1 and ℓ2 penalty terms. It is evident that using the weighted

sum of both penalty terms results in better performance in terms of MPJPE and PA-MPJPE. This

better performance is largely attributed to the fact that using a weighted sum of both loss functions

helps balance the trade-offs between robustness and sensitivity to smaller errors. In other words,

we can take advantage of the robustness of ℓ1 loss while still providing some level of sensitivity to

large errors.

Table 2.9: Effectiveness of the loss functions. Boldface numbers indicate better performance.

Method MPJPE (↓) PA-MPJPE (↓)

Only ℓ1 loss 37.43 29.29
Only ℓ2 loss 37.62 29.25
Weighted sum of ℓ1 and ℓ2 losses 37.41 28.94

Impact of Batch/Filter Size. In Figure 2.6, we analyze the effect of varying batch and filter sizes

on our model performance. We can see that a batch size of 512 and a filter size of 384 yield the

best results in terms of MPJPE and PA-MPJPE, respectively.

Hyperparameter Sensitivity Analysis. We also examine the influence of the Laplacian regular-

ization hyperparameter β on model performance by plotting the error metrics vs. β for a range

of values in the interval (0, 1). This hyperparameter controls the strength of the Laplacian reg-

ularization term in the objective function. It determines how much emphasis is placed on the

regularization term relative to the data fidelity term in the objective function. A larger value of the

regularization parameter corresponds to a stronger regularization effect, places more emphasis on

smoothness in the filtered feature vectors of neighboring graph nodes, but at the expense of how

well the filtered feature vectors match the initial feature vectors. Conversely, a smaller value of β

places more emphasis on the data fidelity term and results in a smaller error between the initial and

filtered feature vectors. As shown in Figure 2.7, the best results are typically obtained when the

regularization parameter is small. We can observe that our model achieves the lowest error values

of MPJPE and PA-MPJPE when β = 0.2, respectively.

2.3.4 Runtime Analysis

We also analyze the model’s inference time, which is a crucial factor in determining the efficiency

of the performance of our proposed approach. By examining the inference time, we aim to under-

stand the speed at which our model processes and generates the output. The inference time results

are reported in Table 3.11, which shows that our model significantly outperforms strong baselines.
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Table 2.10: Runtime analysis of our model in comparison with competing baselines.

Method Inference Time

SemGCN [30] .012s
High-Order GCN [31] .013s
HOIF-Net [33] .016s
Weight Unsharing [32] .032s
MM-GCN [36] .009s
Modulated GCN [34] .010s

Ours .003s
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Multi-hop Graph Transformer Network for 3D

Human Pose Estimation

In this chapter, we introduce a novel approach called Multi-hop Graph Transformer Network

(MGT-Net), which combines the strengths of multi-head self-attention and multi-hop graph convo-

lutional networks with disentangled neighborhoods to capture spatio-temporal dependencies and

handle long-range interactions. Disentangling the neighborhoods helps remove redundant depen-

dencies between further and closer neighborhoods, allowing the model to effectively capture long-

range dependencies between graph nodes. The proposed network architecture consists of two main

blocks: a graph attention block composed of stacked layers of multi-head self-attention and graph

convolution with learnable adjacency matrix, and a multi-hop graph convolutional block comprised

of multi-hop convolutional and dilated convolutional layers. The combination of multi-head self-

attention and multi-hop graph convolutional layers enables the model to capture both local and

global dependencies, while the integration of dilated convolutional layers enhances the model’s

ability to handle spatial details required for accurate localization of the human body joints. Exten-

sive experiments demonstrate the effectiveness and generalization ability of our model, achieving

state-of-the-art performance on benchmark datasets while maintaining a compact model size.

3.1 Introduction

3D human pose estimation is a fundamental and challenging task in computer vision, with a myr-

iad of applications spanning action recognition [10, 81], autonomous driving [82], sports analyt-

31



ics [83], and healthcare diagnostics [84]. At its core, it involves the prediction of 3D coordinates of

human body joints from images or videos with the goal of understanding human movements and

interactions. In healthcare, for instance, 3D human pose estimation can be used to monitor patient

rehabilitation and assess physical therapy exercises, thereby enabling healthcare professionals to

offer tailored treatments, track recovery, and enhance the quality of care provided to patients.

With the advent of deep learning, several deep neural networks [14–21, 41–43] have been de-

vised for 3D human pose estimation, classified into one-stage and two-stage approaches. One-stage

methods aim to directly regress the 3D pose from input images, whereas two-stage methods first

predict intermediate representations, such as 2D joint locations, using 2D pose detectors before

lifting them to 3D space. Two-stage methods typically exhibit better performance compared to

one-stage approaches, particularly when combined with robust 2D joint detectors, as they improve

the accuracy of 3D pose estimation while addressing depth ambiguity challenges. Despite notable

progress [13], several challenges persist in 3D human pose estimation. Self-occlusions often occur

when body parts obscure each other, making it difficult for the model to accurately estimate the

position of occluded joints. Moreover, depth ambiguity arises due to variations in body shape,

occlusions, and self-occlusions, leading to multiple 3D pose possibilities for the same 2D projec-

tions. Overcoming these challenges remains critical for improving the robustness and accuracy of

3D human pose estimation methods.

In recent years, graph convolutional network (GCN)-based methods [30,37,85] and approaches

built on the Transformer architecture [3, 40] have become more prevalent in 3D human pose esti-

mation. While effective, GCN-based methods are limited in their ability to capture dependencies

between body joints that are beyond immediate neighbors. The standard GCN architecture, which

relies on the adjacency matrix to propagate information, considers only the direct connections

between nodes in the graph, resulting in a relatively local view of the graph structure. As a conse-

quence, these methods may not fully exploit the long-range interactions and complex dependencies

that exist in human body movements. To address this challenge, various approaches [31, 33] em-

ploy high-order graph convolutions, which leverage higher powers of the adjacency matrix, thereby

allowing information to be propagated through multiple hops in the graph. By using higher powers

of the adjacency matrix, the model can gather information from not only the immediate neighbors

but also nodes that are further away in the graph, enhancing its ability to consider global context

and complex relationships between body joints. Using higher powers can, however, lead to the

biased weighting problem [86]. This issue arises due to the nature of undirected graphs, which

can contain cyclic walks. In such graphs, edge weights can be influenced by the number of hops

or steps required to traverse from one node to another. As a result, the weights tend to be biased
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towards nodes that are closer in terms of hop count, and this bias can lead to an overemphasis on

local connections while neglecting long-range dependencies. To mitigate this issue, we incorporate

disentangled neighborhoods in our proposed framework so that our model can capture information

from nodes that are further away without being overly influenced by local connections. This helps

enhance the ability of our model to capture both short-range and long-range dependencies effec-

tively. Also, GCN-based methods are constrained by the limited receptive fields. To address this

limitation, we incorporate dilated graph convolutions into our model architecture. By adjusting the

dilation rate of the convolutional kernels, our model can capture information from a wider region of

the graph, effectively incorporating global contextual information into the feature representation.

On the other hand, Transformer-based methods [3, 40] leverage self-attention mechanisms [38]

to process a sequence of 2D joint locations across frames in a video, enabling them to efficiently

model dependencies between different body joints in the sequence. By attending to relevant joints

in the sequence, Transformers can effectively capture the temporal and spatial relationships [3]

between body joints, leading to improved pose estimation accuracy. Although self-attention mech-

anisms enable the body joints to interact by capturing global visual information through long-

range dependencies and contextual information, they often neglect the inherent graph structure

information among the joints (i.e., the adjacency relation of joints). By neglecting the graph struc-

ture, Transformer-based methods might overlook the specific dependencies between joints, poten-

tially leading to suboptimal predictions. To overcome this limitation, we combine the strengths of

Transformer-based methods with GCNs by incorporating multi-hop graph convolutions with the

aim of explicitly taking advantage of the graph structure information, allowing our model to better

capture the relationships between body joints from various hop distances. We achieve this integra-

tion through a two-pathway design, where one pathway handles the self-attention mechanisms of

the Transformer, capturing global visual information, and the other pathway performs graph con-

volutions to consider the graph structure information and interactions between joints. Specifically,

we present a novel approach, dubbed Multi-hop Graph Transformer Network (MGT-Net), whose

architecture is comprised of two main building blocks: a graph attention block and a multi-hop

graph convolutional block. The graph attention block is composed of a multi-head self-attention

layer that allows each body joint in the skeleton graph to attend to its neighboring joints and learn

relationships between them, and a graph convolutional layer with learnable adjacency matrix. By

learning the adjacency matrix, our model can adaptively adjust the connections between the body

joints, allowing it to capture complex dependencies in the graph. The multi-hop graph convolu-

tional block, on the other hand, consists of multi-hop graph convolutional layers with disentangled

neighborhoods that enable the model to capture dependencies between nodes at varying hop dis-
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tances and dilated convolutional layers to enhance the model’s receptive field without increasing

the number of learnable parameters. One of the key strengths of our proposed model is its sim-

plicity, which stands in contrast to many existing spatio-temporal approaches for 3D human pose

estimation. Despite its straightforward design, our model achieves competitive performance, sur-

passing strong baseline methods in accuracy, as demonstrated in Figure 3.1. This is particularly

noteworthy as our model maintains a compact model size, making it computationally efficient. In

summary, we make the following key contributions:

• We propose a multi-hop graph transformer network (MGT-Net), which leverages multi-head

self-attention, multi-hop graph convolutions with disentangled neighborhoods, and dilated

convolutions to effectively capture both long-range dependencies and local-global contextual

information.

• We design a network architecture composed of a graph attention block and a multi-hop

graph convolutional block to capture spatial dependencies and model the complex interac-

tions among body joints.

• We demonstrate through extensive experiments and ablation studies the effectiveness and

generalization ability of the proposed MGT-Net model, achieving competitive performance

in 3D human pose estimation on two benchmark datasets while retaining a small model size.

The remainder of this chapter is structured as follows. In Section 3.2, we present our proposed

framework, which encompasses the problem formulation, the main building blocks of our network

architecture, and model training. In Section 3.3, we present empirical results comparing our model

with state-of-the-art approaches on two standard benchmarks.

3.2 Proposed Method

In this section, we begin by defining the learning task of 3D human pose estimation, which in-

volves predicting the accurate 3D joint positions of a human body given 2D poses. We then delve

into GCNs and their high-order extensions, followed by introducing a multi-hop GCN with dis-

entangled neighborhoods, which is an extension of GCN that addresses the challenges of biased

weighting and redundant dependencies between different neighborhoods. The aim is to enhance

the modeling capabilities of GCNs by incorporating multi-scale aggregation and disentangling

neighborhood features, thereby enabling more comprehensive and effective representation of joint

relationships in the human skeleton. Subsequently, we present the main building blocks of the

proposed network architecture.
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Figure 3.1: Performance and model size comparison between our model and state-of-the-art tem-
poral methods for 3D human pose estimation, including PoseFormer [3], VideoPose3D [4], ST-
GCN [5], SRNet [6], Attention3D [7], Anatomy3D [8], and HTNet [9]. Lower Mean Per Joint
Position Error (MPJPE) values indicate better performance. Evaluation is conducted on the Hu-
man3.6M dataset using detected 2D joints as input.

3.2.1 Preliminaries and Problem Statement

Basic Notions. Let G = (V , E ,X) be an attributed graph, where V = {1, . . . , N} is a set of

nodes that correspond to body joints, E is the set of edges representing connections between two

neighboring body joints, and X is an N × F feature matrix of node attributes whose i-th row is an

F -dimensional feature vector associated to node i. The graph structure is encoded by an N × N

adjacency matrix A whose (i, j)-th entry is equal to 1 if there the edge between neighboring nodes

i and j, and 0 otherwise. We denote by Â = D̃− 1
2 ÃD̃− 1

2 the normalized adjacency matrix with

self-added loops, where Ã = A+ I, I is the identity matrix, D̃ = diag(Ã1) is the diagonal degree

matrix, and 1 is an N -dimensional vector of all ones.

Problem Formulation. Let D = {(xi,yi)}Ni=1 be a training set consisting of 2D joint positions

xi ∈ X ⊂ R2 and their associated ground-truth 3D joint positions yi ∈ Y ⊂ R3. The aim of 3D

human pose estimation is to learn the parameters w of a regression model f : X → Y by finding
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a minimizer of the following loss function

w∗ = argmin
w

1

N

N∑
i=1

l(f(xi),yi), (3.1)

where l(f(xi),yi) is an empirical loss function defined by the learning task. Since human pose

estimation is a regression task, we define l(f(xi),yi) as a weighted sum (convex combination) of

the ℓ2 and ℓ1 loss functions

l = (1− α)
N∑
i=1

∥yi − f(xi)∥22 + α
N∑
i=1

∥yi − f(xi)∥1, (3.2)

where α ∈ [0, 1] is a weighting factor that controls the mixing amount between the ℓ2 and ℓ1

penalties. It is worth pointing out that the proposed loss function draws inspiration from the penalty

function used in the elastic net regression model [65], which is a weighted combination of lasso

and ridge regularization. When α = 0, the penalty function is equivalent to lasso regression, and

when α = 1, it is equivalent to ridge regression. A key advantage of elastic net regression is that

it reduces the impact of irrelevant predictors by shrinking their coefficients towards zero, unlike

ridge regression which only reduces the size of the coefficients.

3.2.2 Multi-hop Graph Convolutional Networks

Graph convolutional networks and their variants have emerged as a promising approach for 3D

human pose estimation, addressing the challenges of modeling complex spatial relationships and

capturing contextual dependencies between body joints. By representing the human skeleton as

a graph and leveraging graph convolution operations, these networks can effectively learn joint

interactions and infer accurate 3D pose estimations.

Graph Convolutional Networks. Given an input feature matrix H(ℓ) ∈ RN×Fℓ of the ℓ-th layer

with Fℓ feature maps, the output feature matrix H(ℓ+1) of GCN is obtained by applying the follow-

ing layer-wise propagation rule:

H(ℓ+1) = σ(ÂH(ℓ)W(ℓ)), ℓ = 0, . . . , L− 1, (3.3)

where Â is the normalized adjacency matrix with self-added loops, W(ℓ) ∈ RFℓ×Fℓ+1 is a trainable

weight matrix with Fℓ+1 feature maps, and L is the number of layers. The GCN propagation rule

can be interpreted as follows: The input node features H(ℓ) are transformed by the trainable weight

matrix W(ℓ). Then, the transformed features are multiplied by the normalized adjacency matrix Â

to aggregate information from neighboring nodes. The normalized adjacency matrix represents the
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connections between nodes and is scaled by the degree of each node to ensure stability and effective

information propagation. Finally, an activation function σ(·) such as ReLU(·) = max(0, ·) is

applied to introduce non-linearity to the aggregated features. The input of the first layer is the

initial feature matrix H(0) = X. By applying the propagation rule iteratively for multiple layers,

the GCN can capture and propagate information through the graph, enabling it to learn meaningful

node representations.

Revisiting High-order GCNs. The aggregation scheme of GCN is limited to using immediate

neighboring nodes as illustrated in Figure 3.2 (left), which means it only considers direct connec-

tions between nodes. Hence, it fails to capture long-range dependencies that may exist between

nodes that are further apart in the graph. To address this limitation, high-order GCNs are often

employed [31, 33], as they extend the aggregation scheme to K-hop neighbors, allowing for the

capture of long-range dependencies between nodes in the graph via the following update rule:

H(ℓ+1) = σ

(
K∑
k=0

ÂkH(ℓ)W
(ℓ)
k

)
, (3.4)

where Âk is the k-th power of the normalized adjacency matrix whose (i, j)-th element counts the

number of walks of length k between nodes i and j, and W
(ℓ)
k is a learnable weight matrix asso-

ciated with Âk. The update rule sums the contributions from different powers of the normalized

adjacency matrix, ranging from k = 0 to k = K, where K represents the maximum number of

hops considered. This summation allows the model to capture information from neighboring nodes

up to K hops away. By considering multiple hops, high-order GCNs can incorporate information

from more distant nodes and enhance their ability to capture global context and relationships within

the graph structure.

While high-order GCNs are effective at capturing long-range dependencies, they are, however,

prone to the biased weighting problem. This issue arises because undirected graphs can have

cyclic walks, which can result in edge weights being biased towards closer nodes compared to

further nodes, leading to preferential emphasis on local connections and neglecting long-range

dependencies. Also, as the value of k increases, the influence of each node’s features spreads to

increasingly distant neighbors. This can result in oversmoothing, where the node representations

become overly similar and lose local discriminative information. In addition, computing higher

powers of the normalized adjacency matrix can be computationally expensive, especially for large

graphs. The computational complexity grows exponentially with the power of the normalized

adjacency matrix, limiting the scalability of the approach. To address these limitations, we em-

ploy a multi-hop GCN aggregation scheme that leverages the k-adjacency matrix with the aim of

removing redundant dependencies between node features from different neighborhoods [86]. In
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contrast to the k-th power of the normalized adjacency matrix that focuses on the number of walks

of length k, the k-adjacency matrix emphasizes the direct connections within k hops, as depicted

in Figure 3.2 (right).
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Figure 3.2: Visual comparison between the standard graph convolution, which only considers
the 1-hop neighbors, and the multi-hop graph convolution, which takes into account neighbors at
different distances. The node label k ∈ {0, . . . , 5} indicates that the corresponding body joint is a
k-hop neighbor of the pelvis (i.e., root node denoted by 0).

Multi-hop GCNs with Disentangled Neighborhoods. We aim to address the biased weighting

problem and capture long-range dependencies more effectively. To this end, we leverage the k-

adjacency matrix Ãk whose (i, j)-th element is given by

[Ãk]ij =


1 if dij = k,

1 if i = j,

0 otherwise,

(3.5)

where dij denotes the shortest distance in the number of hops between nodes i and j. It is important

to note that incorporating self-loops in the k-adjacency matrix allows each joint to have a connec-

tion with itself, ensuring that the identity information of each joint is preserved. This is particularly

important when dealing with nodes that do not have k-hop neighbors. The self-loop ensures that

each joint’s features are taken into account during the aggregation process, even if it does not have

any direct neighbors within the specified hop distance. Note that Ãk can be seen as an exten-

sion of the standard adjacency matrix Ã with self-added loops to incorporate relationships beyond

immediate neighbors. While Ã captures the connections between directly connected nodes, the

k-adjacency matrix Ãk considers relationships up to a distance of k hops, thereby capturing the

relationships between neighboring joints up to a distance of k hops.
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Using the k-adjacency matrix, the layer-wise propagation rule of the multi-hop GCN can be

defined as follows:

H(ℓ+1) = σ

(
K∑
k=0

ÂkH
(ℓ)Ŵ

(ℓ)
k

)
, (3.6)

where Âk = D̃
− 1

2
k ÃkD̃

− 1
2

k is the normalized k-adjacency matrix, and D̃k = diag(Ãk1) is the as-

sociated diagonal degree matrix. The multiplication ÂkH
(ℓ)Ŵ

(ℓ)
k performs the graph convolution

operation, where the normalized k-adjacency matrix Âk is applied to the input features H(ℓ) and

Ŵ
(ℓ)
k is is the associated weight matrix. The result is then passed through the activation function

σ(·) to introduce non-linearity. The updated feature matrix H(ℓ+1) is obtained by aggregating in-

formation from neighboring nodes up to K hops away, using the weighted sum of the convolved

features. In fact, each term ÂkH
(ℓ) represents the aggregation of information from nodes within

k hops of each node, weighted by the normalized k-adjacency matrix. This allows the model to

capture multi-hop dependencies and incorporate information from distant nodes in the graph dur-

ing the convolutional operation, thereby capturing both local and long-range dependencies in the

graph structure. By disentangling the features under multi-hop aggregation, we ensure that the

weights assigned to further neighborhoods are not biased due to their distance from the central

node [86]. This disentanglement process allows our model to effectively capture graph-wide joint

relationships on human skeletons, leading to more accurate modeling of long-range dependencies

and improving the performance of GCNs in capturing complex relationships between body joints.

The key advantage of using the k-adjacency matrix is that it allows for flexible modeling of long-

range relationships between body joints. Also, one important characteristic of the k-adjacency

matrices is that the relationships they represent have low correlations with each other. This means

that the relationships captured by the k-adjacency matrices of different hops are distinct and pro-

vide unique information. As a result, the k-adjacency matrix structure enables the modeling of

diverse and long-range relationships between body joints, even in cases where direct neighbors

might not exist or are limited within the specified hop distance. By considering further neighbor-

hoods, the k-adjacency matrix provides a broader view of the graph structure and captures more

distant dependencies between nodes. It allows for modeling long-range relationships and capturing

complex interactions among nodes that may not be apparent in the standard adjacency matrix with

self-added loops.

By incorporating additional hops with larger values of k, the aggregation rule of the multi-hop

GCN aggregates information in an additive manner, allowing for effective modeling of long-range

dependencies, as the model can capture relationships between joints that are further apart. In terms

of sparsity, the k-adjacency matrix is generally more sparse than the k-th power of the normalized
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adjacency matrix, especially for large values of k as shown in Figure 3.3. In general, as k increases,

the number of non-zero entries in the k-th power of the adjacency matrix tends to increase, poten-

tially leading to a denser representation. Hence, the sparsity property of the k-adjacency matrix

is beneficial as it reduces the computational complexity and memory requirements of the model,

resulting in more efficient representations.
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Ã2 Ã3 Ã4
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Figure 3.3: Comparing the sparsity of the k-th power of the adjacency matrix (top row) and the
k-adjacency matrix (bottom row). As the value of k increases, the k-th power representation tends
to become denser, while the k-adjacency matrix maintains higher sparsity. The sparsity of the k-
adjacency matrix makes it an efficient choice for capturing long-range dependencies in the multi-
hop GCN with disentangled neighborhoods, reducing computational complexity and memory us-
age.

3.2.3 Multi-hop Graph Transformer Network

The overall framework of our proposed MGT-Net is shown in Figure 3.4. The network architecture

is comprised of three main components: skeleton embedding, a graph attention block and a multi-

hop graph convolutional block. The input is a sequence of 2D human poses, which are obtained

using an off-the-shelf 2D detector [43], and the output is a 3D human pose. The multi-head self-

attention mechanism enables our model to capture long-range dependencies and encode global

context information, while multi-hop graph convolutions leverage the graph structure of body joints

to exchange information between non-neighboring joints, allowing for the modeling of higher-

order relationships.
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Figure 3.4: Network architecture of the proposed MGT-Net for 3D human pose estimation. Our
model takes a sequence of 2D pose coordinates as input and generates 3D pose predictions as
output. The core building blocks of the network are a graph attention block and a multi-hop
graph convolutional block, which are stacked together. We use a total of five layers for these
stacks. In the graph attention block, the multi-head attention layer is followed by two consecutive
graph convolutional layers with learnable adjacency matrix (LAM-GConv). The multi-hop graph
convolutional block is composed of two subblocks, each of which comprises a multi-hopGConv
layer, followed by a dilated convolutional layer.

Skeleton Embedding

In order to incorporate temporal information into our model, we take a 2D pose sequence as input.

Specifically, given a 2D pose sequence S ∈ RN×2×T represented as a tensor, where T denotes

the number of frames and N is the number of joints, we first reshape it into a matrix S̃ ∈ RN×2T

by concatenating the 2D coordinates of all frames along the time axis. This allows us to consider

the 2D coordinates of all frames for each joint as a continuous sequence, effectively capturing the

temporal dependencies and changes of the joints over time. Then, we pass it through a multi-hop

graph convolution layer, resulting in an N × F embedding matrix X of joint attributes whose i-th

row is an F -dimensional feature vector associated to the i-th joint of the skeleton graph. This

skeleton embedding matrix serves as a fundamental representation that incorporates both spatial

41



and temporal information from the 2D pose sequence. It forms the basis for subsequent compo-

nents of our network architecture, facilitating the integration of both spatial and temporal context

into the model.

Graph Attention Block

The graph attention block consists of stacked layers of multi-head self-attention and graph con-

volution, leveraging a learnable adjacency matrix. This block allows our model to capture both

global and local dependencies within the graph structure. The multi-head self-attention mecha-

nism enables the model to weigh the importance of different nodes, while the graph convolutional

layers help propagate information across neighboring nodes.

Multi-head Self Attention. At their core, Transformers [38] rely on self-attention, which allows

the model to weigh the importance of different tokens within a given input sequence when making

predictions. Self-attention operates on the embedding matrix X ∈ RN×F consisting of N fea-

ture vectors, each of which has an embedding dimension F . The input matrix X is first linearly

projected into a query matrix Q, a key matrix K and a value matrix V as follows:

Q = XWq, K = XWk,V = XWv, (3.7)

where Wq ∈ RF×dk , Wk ∈ RF×dk and Wv ∈ RF×dk are learnable weight matrices, and dk is

the projection dimension. Then, the self-attention (SA) output is the weighted sum of the value

vectors for each token

SA(X) = softmax
(
QK⊺

√
dk

)
V ∈ RN×dk , (3.8)

where the weights are attention scores computed as the dot product between the query and key

vectors, scaled by the square root of the projection dimension, and followed by softmax applied

row-wise. These attention weights determine the importance of each value vector, enabling the

model to capture contextual dependencies. Scaling the dot product between the query and key

vectors by
√
dk helps stabilize the attention weights and prevents them from becoming too large,

which can lead to numerical instability during training. This ensures that the attention weights are

more balanced and can better capture the relationships between different feature vectors.

In practice, Transformers employ multi-head attention to capture different types of relationships

and patterns in the input sequence. This involves performing multiple self-attention operations in

parallel, each with its own set of weight matrices, allowing the model to capture different types

of dependencies and attending to different parts of the input sequence. For simplicity, we assume

dk = F/h, where h is the number of attention heads (i.e., self-attention operations). The outputs

42



of h heads are concatenated and linearly transformed using an F ×F learnable weight matrix Wo

to obtain the output of the multi-head self-attention (MSA) as follows:

MSA(X) = Concat(Y1, . . . ,Yh)Wo, (3.9)

where Yi = SAi(X) ∈ RN×F
h is the output of the i-th attention head. Hence, the final output of

concatenated attention heads is Y = MSA(X) ∈ RN×F .

Taking inspiration from the architectural design of Graformer [40], our graph attention block is

composed of a multi-head attention layer and two graph convolutional layers. Each convolutional

layer is equipped with a learnable adjacency matrix (LAM-GConv), which enables the model to

adaptively learn the relationships between joints, making the graph convolution operation more

flexible and effective in capturing local interactions. The combination of the multi-head attention

layer and the LAM-GConv layers in our graph attention block allows for the integration of both

global and local information, enhancing the model’s ability to exploit the relationships among

joints and capture important features for 3D human pose estimation. The output Y of the multi-

head self-attention is passed through a LAM-GConv layer, which applies graph convolution to

aggregate information from neighboring joints based on the learnable adjacency matrix. This step

helps refine and update the joint features by considering their relationships with adjacent joints.

We also apply a layer normalization layer (LayerNorm) to normalize the features across the joint

dimension and a dropout layer to prevent overfitting and improve generalization. Moreover, a skip

connection is employed to facilitate information flow, enabling the model to preserve important

features from earlier stages of processing and pass them directly to subsequent layers.

Multi-hop Graph Convolutional Block

The multi-hop graph convolutional block combines multi-hop convolutional and dilated convolu-

tional layers. This block facilitates the modeling of long-range dependencies and captures spatial

relationships across different hops in the graph. A key benefit of using the dilated convolutional

layer is that it can capture contextual information from a wider context thanks, in large part, to

its larger receptive field. This is particularly useful in tasks where long-range dependencies and

global patterns are important, such as 3D human pose estimation.

Multi-hop Graph Convolution. The multi-hop graph convolutional layer exchanges informa-

tion between non-neighboring nodes, enabling the model to capture broader context and larger

receptive fields, incorporating the influence of distant joints on the pose estimation. This is partic-

ularly important for understanding the global structure and relationships among different parts of

the graph, even when they are not directly connected in the graph representation. Also, the ability
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to aggregate information from different hops allows the model to effectively learn and represent

the hierarchical structure of the pose, capturing both local details and global patterns. Moreover,

by focusing on distinct and non-redundant neighborhoods, the multi-hop graph convolutional layer

with disentangled neighborhoods can better discern meaningful information and discard irrelevant

signals.

Dilated Convolution. In traditional convolutional networks, the receptive field is determined by

the kernel size, which directly affects the size of the local neighborhood that each convolutional

operation considers. In contrast, dilated convolutional networks utilize dilated kernels to increase

the receptive field of the convolutional layer [87]. Specifically, given a 2D input X and a kernel

filter w of size (2m+ 1)× (2m+ 1), the dilated convolution, denoted by ∗d, is defined as

(X ∗d w)(i, j) =
m∑

r,s=−m

X(i+ d× r, j + d× s)w(r, s), (3.10)

where d is a dilation rate parameter, which controls the spacing between the kernel elements. By

increasing the dilation rate, the kernel can effectively “expand” and cover a larger region of the

input feature map. This expansion leads to an increased receptive field without the need for larger

kernel sizes.

By applying a dilated convolutional layer after a multi-hop graph convolutional layer, we can

leverage the strengths of both operations. The multi-hop graph convolutional layer captures local

relationships and structural dependencies among nodes, while the dilated convolutional layer fur-

ther enhances the receptive field by incorporating larger contextual information without increasing

the number of parameters. This is crucial for 3D human pose estimation, as it allows the model to

consider the relationships and dependencies between body joints across a broader region, provid-

ing a more comprehensive understanding of the pose. Moreover, dilated convolutions are effective

at capturing long-range dependencies by considering information from distant nodes of the graph,

and also at handling occlusion scenarios where body joints may be temporarily hidden or obscured.

3.2.4 Model Training

The parameters (i.e., weight matrices for different layers) of the proposed MGT-Net for 3D human

pose estimation are learned by minimizing the following loss function

L =
1

N

[
(1− α)

N∑
i=1

∥yi − ŷi∥22 + α
N∑
i=1

∥yi − ŷi∥1
]
, (3.11)

which is a weighted sum of the mean squared and mean absolute errors between the 3D ground

truth coordinates yi and estimated 3D joint coordinates ŷi over a training set consisting of N
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human poses. These estimated 3D poses are generated by the last multi-hop graph convolutional

layer of MGT-Net, as illustrated in Figure 3.4. For the mean squared error, the squared differences

between the predicted and ground truth coordinates are averaged, meaning that larger errors have

a greater impact on the overall score. In other words, the mean squared error is more sensitive to

outliers and penalizes larger errors more heavily than the mean absolute error, which is more robust

to outliers and treats all errors equally. The weighting factor α balances the contribution of each

loss term. When α = 0, our loss function reduces to the mean squared error (i.e., ridge regression)

and when α = 1, it reduces to the mean absolute error (i.e., lasso regression). The value of the

weighting factor is determined by performing a grid search over a range of possible values for α.

In our experiments, the best performance on the validation set is achieved with α = 0.01.

3.3 Experiments

In this section, we present a comprehensive evaluation of the proposed method by comparing it

with competing baselines. We provide details of the experimental setup, including dataset descrip-

tions, evaluation metrics, baselines for comparison, and implementation details to ensure result

reproducibility. We also present quantitative and qualitative results, and include ablation studies to

assess the model’s performance.

3.3.1 Experimental Setup

Datasets. We conduct a comprehensive evaluation of our model on two standard benchmark

datasets for 3D human pose estimation: Human3.6M [1] and MPI-INF-3DHP [2]. These datasets

provide robust evaluation scenarios for assessing the model performance.

Human3.6M is a large-scale dataset comprised of 3.6 million images that are captured at a rate of

50 Hz using four synchronized cameras positioned at different locations and angles. The dataset

features performances by 11 actors (6 men and 5 women) engaged in 15 distinct actions (Direc-

tions, Discussion, Eating, Greeting, Phoning, Posing, Purchases, Sitting, Sitting Down, Smoking,

Photo, Waiting, Walk Dog, Walking, and Walk Together) within an indoor environment. Precise

annotations of 3D body joint coordinates are obtained through a motion capture system, while 2D

poses are derived through projection using known intrinsic and extrinsic camera parameters. The

annotations for 3D joints are available for 7 of the subjects. The dataset is partitioned into a train-

ing set and a test set. The training set encompasses data from five actors (S1, S5, S6, S7, S8), while

the test set comprises data from the remaining two actors (S9 and S11). Both sets are balanced,

ensuring an equal number of samples for each activity and subject. Prior to feeding the data into
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the model, standard normalization techniques [22, 30, 31, 67] are applied to normalize the 2D and

3D poses. The root joint of the 3D poses is designated as the hip joint to achieve zero-centering.

MPI-INF-3DHP is a benchmark dataset for estimating 3D human pose using monocular RGB im-

ages. It encompasses a diverse range of environments, including indoor spaces with limited room

and complex outdoor scenes. The dataset features recordings of 8 actors (comprising 4 men and 4

women) from 14 different camera views. These actors engage in 8 sets of activities, which encom-

pass a broader spectrum of pose categories compared to the Human3.6M dataset. The activities

encompass a variety of movements, ranging from simple actions like walking and sitting to more

challenging exercises and dynamic motions. Each activity set lasts approximately one minute,

and the actors wear two distinct sets of clothing that are alternated across the activity sets. One

clothing set consists of everyday casual wear, while the other set has plain colors to facilitate easy

augmentation. Moreover, the dataset provides ground-truth annotations of the 3D joint positions.

Evaluation Protocols and Metrics. We adopt two standard evaluation protocols used for train-

ing and testing [22], referred to as Protocol #1 and Protocol #2, for the Human3.6M benchmark.

Protocol #1 utilizes the mean per-joint position error (MPJPE) metric, which calculates the av-

erage Euclidean distance between the predicted and ground truth 3D positions of each joint after

aligning the root joint (hip joint). Another commonly used metric is the Procrustes-aligned mean

per-joint position error (PA-MPJPE), which applies Procrustes analysis to align the predicted and

ground truth joint positions to a shared coordinate system. This alignment involves scaling, rotat-

ing, and translating the predicted joint positions to minimize the sum of squared distances between

the predicted and ground truth joint positions. Subsequently, PA-MPJPE is computed by determin-

ing the mean Euclidean distances between the aligned predicted and ground-truth joint positions

for each joint. Both MPJPE and PA-MPJPE are measured in millimeters (mm), and lower error

values indicate better performance. Protocol #1 and Protocol #2 employ five subjects (S1, S5, S6,

S7, and S8) for training and two subjects (S9 and S11) for testing, using a single model for all

camera views and actions. In the case of the MPI-INF-3DHP dataset, evaluation metrics include

the Percentage of Correct Keypoint (PCK) using a threshold of 150mm and the Area Under Curve

(AUC) for a range of PCK thresholds [69]. Both PCK and AUC provide measures of how well

the predicted joint positions align with the ground-truth joint positions within a specified distance

threshold, with higher PCK and AUC scores indicating superior performance.

Baseline Methods. We evaluate the performance of our MGT-Net against various state-of-

the-art methods, including SemGCN [30], MöbiusGCN [85], GroupGCN [37], MM-GCN [88],

MGCN [34], GraFormer [40], PoseFormer [3], VideoPose3D [4], ST-GCN [5], SRNet [6], Atten-

tion3D [7], Anatomy3D [8], GAST-Net [54], Skeletal-GNN [70], and HTNet [9].
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Implementation Details. We implement our model in PyTorch and conduct all experiments on

a single NVIDIA RTX A4500 with 20GB memory. For both 2D ground truth and 2D pose detec-

tions [51], we train our model using the AMSGrad optimizer for 30 epochs with an initial learning

rate of 0.005, and a decay factor of 0.90 per 4 epochs. We set the batch size to 128, the number of

layers L = 5, and adopt h = 4 heads for self-attention. For 2D pose detections [51], we set the

middle feature dimension F = 256, whereas for the 2D ground truth, we set F = 128. We set the

weighting factor α = 0.01, and the total number of input frames T = 243 for both 2D detected

poses and ground truth poses. To prevent overfitting, we apply dropout with a factor of 0.2 after

each multi-head attention and LAM-GConv layers in the graph attention block. After each Multi-

hopGConv and dilated convolutional layer in the Multi-hopGConv block, we also apply dropout

with a factor of 0.1. Moreover, we incorporate a pose refinement module [5], which consists of

two fully-connected layers and is designed to refine the predicted poses.

3.3.2 Results and Analysis

Quantitative Results on Human3.6M. We report the performance comparison results for all

15 actions, along with the average performance, in Table 3.1. Our MGT-Net outperforms several

state-of-the-art methods when using the detected 2D pose as input. As can be seen, our method

achieves on average 44.1mm and 36.2mm in terms of MPJPE and PA-MPJPE, respectively, out-

performing all the baselines. These findings demonstrate the model’s competitiveness, which is

largely attributed to the fact that the MGT-Net can better exploit joint connections through the

multi-hop graph propagation rule and learn not only the global information from all the nodes,

but also the explicit adjacency structure of nodes. Under Protocol #1, Table 1 reveals that our

MGT-Net model performs better than GAST-Net [54] in 11 out of 15 actions, yielding 0.8mm

error reduction on average, improving upon this best performing temporal baseline by a relative

improvement of 1.78%, while maintaining a fairly small number of learnable parameters. In com-

parison to MGCN [34], our method consistently achieves superior performance across 14 out of

15 actions, demonstrating an average error reduction of 5.3mm. This improvement represents a

significant relative enhancement of 10.73% over the strong MGCN baseline.

Under Protocol #2, Table 3.1 shows that our model, on average, reduces the error by 0.82%

compared to Anatomy3D [8], which is the best spatio-temporal baseline, and achieves better results

in 10 out of 15 actions. Also, our method outperforms GroupGCN in all 15 actions, yielding a

relative error reduction of 9.73% in terms of PA-MPJPE.

Cross-Dataset Results on MPI-INF-3DHP. In Table 3.2, we report the quantitative compari-

son results of the MGT-Net using a single frame against strong baselines on the MPI-INF-3DHP

47



Table 3.1: Performance comparison of our model and baseline methods on Human3.6M under
Protocol #1 and Protocol #2 using the detected 2D pose as input. MPJPE and PA-MPJPE errors
are in millimeters. The average errors are reported in the last column. Boldface numbers indicate
the best performance, whereas the underlined numbers indicate the second best performance. T
denotes the number of input frames used in each spatio-temporal method.

Action

Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

SemGCN [30] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6
MöbiusGCN [85] 46.7 60.7 47.3 50.7 64.1 61.5 46.2 45.3 67.1 80.4 54.6 51.4 55.4 43.2 48.6 52.1
GroupGCN [37] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6
MM-GCN [88] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7
MGCN [34] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
GraFormer [40] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Hossain et al. [53] (T = 5) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9
Skeletal-GNN [70] (T = 9) - - - - - - - - - - - - - - - 45.7
ST-GCN [5] (T = 7) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
HTNet [9] (T = 9) - - - - - - - - - - - - - - - 47.2
Lin et al. [89] (T = 50) 42.5 44.8 42.6 44.2 48.5 57.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
VideoPose3D [4] (T = 243) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Attention3D [7] (T = 243) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
SRNet [6] (T = 243) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
GAST-Net [54] (T = 243) 43.3 46.1 40.9 44.6 46.6 54.0 44.1 42.9 55.3 57.9 45.8 43.4 47.3 30.4 30.3 44.9
Anatomy3D [8] (T = 243) 42.5 45.4 42.3 45.2 49.1 56.1 43.8 44.9 56.3 64.3 47.9 43.6 48.1 34.3 35.2 46.6
PoseFormer [3] (T = 81) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

Ours (T = 243) 38.7 43.9 42.3 43.8 44.8 48.1 42.4 41.2 52.6 63.8 43.5 42.7 44.7 34.1 34.5 44.1

Protocol #2 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Li et al. [90] 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3
High-order GCN [31] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7
HOIF-Net [33] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9
MM-GCN [88] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
GroupGCN [37] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1
MM-GCN [88] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3
MGCN [34] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Hossain et al. [53] (T = 5) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0
ST-GCN [5] (T = 7) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Lin et al. [89] (T = 50) 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
VideoPose3D [4] (T = 243) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Anatomy3D [8] (T = 243) 33.6 36.0 34.4 36.6 37.5 42.6 33.5 33.8 44.4 51.0 38.3 33.6 37.7 26.7 28.2 36.5
GAST-Net [54] (T = 243) 34.9 37.5 34.9 38.3 37.4 44.0 34.4 34.6 45.1 48.0 49.3 34.8 37.7 26.2 27.1 36.9

Ours (T = 243) 33.0 36.1 34.1 37.4 36.2 40.4 33.6 32.4 44.1 54.4 36.5 34.5 36.2 26.4 27.4 36.2

dataset. We train our model on the Human3.6M dataset and evaluate its performance on the MPI-

INF-3DHP dataset to test its generalization ability across different datasets. The results demon-

strate that our approach consistently outperforms the baseline methods in both indoor and outdoor

scenes, achieving the highest PCK and AUC scores. In comparison to the best performing base-

line, our model exhibits relative improvements of 4.26% and 7.75% in terms of the PCK and AUC

metrics, respectively. Despite being trained solely on indoor scenes from the Human3.6M dataset,

our model delivers satisfactory results when applied to outdoor settings. This demonstrates the
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robust generalization capability of our approach, extending its performance to unseen scenarios

and datasets. In addition, the improvements in both PCK and AUC metrics demonstrate that our

proposed model excels in both joint localization accuracy and overall pose estimation quality.

Table 3.2: Performance comparison of our model without pose refinement and baseline methods
on the MPI-INF-3DHP dataset using PCK and AUC as evaluation metrics.

Method PCK (↑) AUC (↑)

Chen et al. [78] 67.9 -
Yang et al. [19] 69.0 32.0
Pavlakos et al. [69] 71.9 35.3
Habibie et al. [91] 70.4 36.0
HOIF-Net [33] 72.8 36.5
SRNet [6] 77.6 43.8
GraphSH [67] 80.1 45.8
GroupGCN [37] 81.1 49.9
MM-GCN [88] 81.6 50.3
Skeletal-GNN [70] 82.1 46.2

Ours 85.6 54.2

Qualitative Results. In Figure 3.5, we present qualitative results obtained by our proposed MGT-

Net on the Human3.6M dataset. The visual comparison showcases the performance of our model

in 2D-to-3D human pose estimation, particularly in challenging scenarios. It is evident from the

results that our MGT-Net outperforms the baseline method MGCN [34] and achieves closer align-

ment with the ground truth poses. Our model demonstrates effectiveness in accurately estimating

3D human poses, even in challenging cases where occlusions are present. Notably, MGCN [34]

struggles to accurately predict poses in difficult instances such as “Photo”, “Sitting”, “SitDown”,

and “WalkDog” due to the presence of occlusions. In contrast, our MGT-Net consistently delivers

reliable pose predictions in these challenging scenarios.

Comparison with Spatio-Temporal Methods using Ground Truth. Testing with 2D ground

truth as input, instead of 2D detected poses, allows for a more controlled evaluation of the perfor-

mance of the model. By using the ground truth 2D poses, we can eliminate any errors or inaccu-

racies that may be present in the 2D pose detector. This provides an indication of how well the

model can utilize the available 2D pose information to estimate accurate 3D poses, without being

affected by any errors introduced during the 2D pose detection process. In Table 3.3, we report

the comparison results between MGT-Net and various spatio-temporal baselines using 2D ground

truth keypoints as input. The findings demonstrate that our model surpasses SRNet [6] in 13 out
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Figure 3.5: Visual comparison between MGT-Net, MGCN and ground truth on the Human3.6M
test set. Compared to MGCN, our model is able to produce better predictions.

of 15 actions, resulting in an average reduction in error of approximately 4.38% under Protocol

#1. Furthermore, our model exhibits superior performance compared to Anatomy3D [8], Atten-

tion3D [7], GAST-Net [54], and PoseFormer [3], on average, while also having fewer learnable

parameters. The consistent outperformance of MGT-Net across multiple actions and its ability to

surpass several state-of-the-art approaches demonstrate its effectiveness in 3D human pose estima-

tion tasks.

Improvements on Hard Poses. Hard poses are characterized by high prediction errors and often

exhibit certain inherent characteristics, such as depth ambiguity and self-occlusion [6, 30, 70]. For

example, accurately estimating the 3D pose of a person sitting in a crossed-leg position can pose
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Table 3.3: Performance comparison of our model without pose refinement and spatio-temporal
baseline methods on Human3.6M under Protocol #1 using the ground truth 2D pose as input. T
denotes the number of input frames used in each spatio-temporal method.

Action

Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Hossain et al. [53] (T = 5) 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Ray3D [92] (T = 9) 31.2 35.7 31.4 33.6 35.0 37.5 37.2 30.9 42.5 41.3 34.6 36.5 32.0 27.7 28.9 34.4
ST-GCN [5] (T = 7) 32.9 38.7 32.9 37.0 37.3 44.8 38.7 36.1 41.0 45.6 36.8 37.7 37.7 29.5 31.6 37.2
Lin et al. [89] (T = 50) - - - - - - - - - - - - - - - 32.8
PoseFormer [3] (T = 81) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 21.1 31.3
Attention3D [7] (T = 243) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 40.7 41.4 33.0 33.8 26.6 26.9 34.7
SRNet [6] (T = 243) 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0
GAST-Net [54] (T = 243) 30.5 33.1 27.6 31.0 31.8 37.0 33.2 30.0 35.7 37.7 31.4 29.8 31.7 24.0 25.7 31.4
VideoPose3D [4] (T = 243) 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Anatomy3D [8] (T = 243) - - - - - - - - - - - - - - - 32.3

Ours (T = 243) 29.2 32.9 27.5 30.5 30.8 37.1 33.5 27.8 34.7 39.5 30.1 30.3 29.8 21.9 23.1 30.6

difficulties due to the intricate interactions among various body parts. Our method aims to address

this challenge by learning to capture the complex relationships between the joints via the graph

attention block and the multi-hop graph convolutional block with disentangled neighborhoods.

As reported in Table 3.3, MGT-Net outperforms SRNet [6] by reducing prediction errors in the

actions “Directions”, “Eating”, “Purchases”, “Sitting”, and “Sitting Down” by 5.6mm, 1.0mm,

2.7mm, 4.2mm, and 1.0mm, respectively, which correspond to relative improvements of 16.10%,

3.51%, 8.85%, 10.80%, and 2.47% under Protocol #1. The average improvement on these hard

poses is 8.35%. Also, the visualization results shown in Figure 3.5 offer a comparative analysis

with MGCN [34] on hard poses, demonstrating superior performance of our model. Hence, these

quantitative and qualitative results demonstrate the effectiveness of our model in dealing with hard

poses.

Comparison with Spatial Methods using Ground Truth. Table 3.4 presents a performance

comparison between our method and various spatial baselines on the Human3.6M dataset under

Protocol #1 using the ground truth 2D pose as input. The results demonstrate that our method

consistently outperforms the baseline methods across various actions. In terms of the average

MPJPE error, our model achieves a relative improvement of 0.57% over GraFormer [40], reducing

the error from 35.2mm to 35.0mm. Moreover, our model outperforms MM-GCN [88] by 0.6mm on

average, resulting in a relative improvement of 1.69%. Furthermore, our model consistently yields

better performance than GroupGCN [37], MöbiusGCN [85], MGCN [34], and GraphMDN [93]

in terms of the average MPJPE error. These findings further demonstrate the effectiveness of

our method in accurately estimating 3D human poses, surpassing strong spatial baselines while

achieving better overall performance.
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Table 3.4: Performance comparison of our model without pose refinement and spatial baseline
methods on Human3.6M under Protocol #1 using the ground truth 2D pose as input.

Action

Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez [22] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
SemGCN [30] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
GraphSH [67] 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
High-order GCN [31] - - - - - - - - - - - - - - - 39.5
HOIF-Net [33] - - - - - - - - - - - - - - - 39.2
Liu [32] 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
MGCN [34] - - - - - - - - - - - - - - - 38.3
GraphMDN [93] 33.9 39.9 33.0 35.4 36.8 44.4 38.9 33.0 41.0 50.0 36.4 38.3 37.8 28.2 31.5 37.2
MöbiusGCN [85] 31.2 46.9 32.5 31.7 41.4 44.9 33.9 30.9 49.2 55.7 35.9 36.1 37.5 29.1 33.1 36.2
MM-GCN [88] 34.6 39.6 31.3 34.7 33.9 40.3 39.5 32.2 35.4 43.5 34.0 35.0 36.9 29.7 31.4 35.6
GroupGCN [37] 32.5 36.4 30.7 33.2 34.9 40.0 37.8 33.1 38.3 47.8 34.4 36.2 35.1 28.4 29.2 35.2
GraFormer [40] 32.0 38.0 30.0 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2

Ours 31.9 38.6 31.2 33.8 35.0 40.9 37.6 32.3 38.5 42.6 34.8 35.4 34.8 28.2 29.6 35.0

3.3.3 Ablation Studies

We conduct ablation studies on the Human3.6M dataset with the aim of analyzing the impact of

different design choices in our network architecture. We use MPJPE and PA-MPJPE as evaluation

metrics. Evaluation of our ablation experiments is performed without pose refinement, as we aim

to assess the performance of our base model without additional refinement steps. To ensure a fair

comparison, we train and test our model using 2D ground truth poses, eliminating any potential

uncertainties introduced by 2D pose detectors. In our ablation experiments, we systematically

vary specific parameters and/or components of our model and assess their influence on the overall

performance. By conducting these controlled experiments, we can gain deeper insights into the

importance of the key components of our model. Unless indicated otherwise, we set the number of

input frames T = 243. This choice allows us to evaluate the model’s performance with a significant

temporal context.

Hyperparameter Sensitivity Analysis. Our findings regarding the impact of various hyperpa-

rameters on model performance are summarized in Table 3.5. From the results, it can be observed

that a batch size of B = 128 yields the best performance. The value of the hidden dimension F

has an impact on the model’s performance in terms of of capturing patterns. Increasing F from 96

to 128 leads to a decrease in both MPJPE and PA-MPJPE from 32.9mm and 26.0mm to 30.6mm

and 24.7mm, respectively, along with a reasonable increase in the number of model parameters.

However, further increasing F to 256 results in a significant increase in the number of learnable

parameters (from 1.65M to 5.78M) with a noticeable degradation in performance under both pro-

tocols. Among different values of the number of attention heads, h = 4 produces the best results
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in terms of MPJPE (30.6mm) and PA-MPJPE (24.7mm) compared to h = 2 and h = 8. As for the

number of layers, starting with L = 3 and increasing it to L = 5 yields the best results. There-

fore, the best performance on Human3.6M with ground truth 2D pose as input is achieved using

hyperparameter values of L = 3, F = 128, B = 128, and h = 4.

Table 3.5: Ablation study on various configurations of our model: L is the number of MGT-Net
layers, F is the hidden dimension of skeleton embedding, B is the batch size, and h is the number
of attention heads.

L F B h Params (M) MPJPE (↓) PA-MPJPE (↓)

5 96 128 4 1.02 32.9 26.0
5 128 128 4 1.65 30.6 24.7
5 256 128 4 5.78 31.2 25.3
3 128 128 4 1.12 31.8 26.0
4 128 128 4 1.38 31.2 25.3
6 128 128 4 1.91 32.0 25.4
7 128 128 4 2.18 31.9 25.0
5 128 128 2 1.65 32.5 25.7
5 128 128 8 1.65 31.3 25.3
5 128 64 4 1.65 30.6 25.2
5 128 256 4 1.65 31.6 25.2
5 128 512 4 1.65 30.9 25.4

Impact of Input Sequence Length. In Table 3.6, we report the MPJPE and PA-MPJPE results of

our method using different input sequence lengths. We can observe that increasing the number of

frames leads to better results. This is expected since temporal correlations help address challenges

like depth ambiguity and self-occlusions, which are typically not easy to handle by single frame

3D pose estimation methods. It is also worth noting that the MPJPE and PA-MPJPE errors for

T = 1 are 35.0mm and 27.5mm, respectively. As T increases, the errors decrease and the best

results are obtained when T = 243 for both protocols. We also report the number of model

parameters for different input sequence lengths, and we can see that as T increases, there is only

a moderate increase in the number of learnable parameters. Specifically, when T is set to 1 (i.e.,

single input frame), the total number of model parameters is 1.46M. However, as we progressively

increase T to 243, which represents a substantial number of input frames, the model parameters

is only slightly increased to 1.65M, while achieving 12.57% and 10.18% relative error reductions

in MPJPE and PA-MPJPE, respectively. This slight increase in model size is largely attributed to

the fact that the number of frames mostly impacts the first Multi-hopGConv layer, which does not

require a large number of learnable parameters. Hence, increasing the input sequence length yields
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improved results without significantly increasing the number of parameters.

Table 3.6: Ablation study on the number of input frames (T ).

T 1 3 27 81 121 243

MPJPE (↓) 35.0 34.3 33.2 33.2 31.7 30.6
PA-MPJPE (↓) 27.5 27.7 26.9 26.8 25.2 24.7
Params (M) 1.46 1.46 1.48 1.52 1.55 1.65

Impact of Number of Hops. Table 3.7 provides an analysis of the performance of our model

with varying numbers of hops (k) in the multi-hop graph convolutional layer with disentangled

neighborhoods. We observe that as the number of hops increases, the model’s performance im-

proves. Specifically, the 1-hop model outperforms the 0-hop model, resulting in a reduction of

0.2mm in both MPJPE and PA-MPJPE errors. Furthermore, the 2-hop model achieves even better

performance than the 1-hop model, with a relative error reduction of 3.17% in terms of MPJPE.

This demonstrates the effectiveness of the multi-hop graph convolutional layer in capturing long-

range interdependencies among body joints, enabling the model to better understand the spatial

relationships and dependencies within the human pose. The results highlight the importance of

incorporating multi-hop connections to enhance the model’s ability to capture complex structural

dependencies, leading to improved pose estimation accuracy.

Table 3.7: Ablation study on the number of hops. The embedding dimension is set to F = 128.

# hops (k) Params (M) MPJPE (↓) PA-MPJPE (↓)

0-hop 1.19 31.8 25.1
1-hop 1.42 31.6 24.9
2-hop 1.65 30.6 24.7

Impact of Dilated Convolutional Layer. We conducted an ablation experiment to analyze the

impact of incorporating dilated convolutional layers (DCLs) after each Multi-hop GConv layer in

the multi-hop graph convolutional block. The results, as shown in Table 3.8, demonstrate that the

inclusion of DCLs significantly improves the performance of the model while maintaining compu-

tational efficiency. Notably, we observe a reduction of 1.5mm in MPJPE and 0.6mm in PA-MPJPE

errors without a substantial increase in the number of learnable parameters. This improvement

can be attributed, in part, to the ability of dilated convolutions to effectively increase the receptive

field without adding more parameters or computational cost. By adjusting the dilation rate, the

convolutional kernel can capture information from a wider region of the input, allowing the model
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to capture larger contextual information. This capability is particularly important in 3D pose es-

timation, where understanding the relationship between body joints across different scales and

distances is crucial. By effectively capturing long-range dependencies and global context, dilated

convolutions contribute to a more accurate estimation of 3D human poses, especially in scenarios

involving complex poses.

Table 3.8: Ablation study on dilated convolutional layer (DCL). The embedding dimension is set
to F = 128.

Method Params (M) MPJPE (↓) PA-MPJPE (↓)

w/o DCL 1.48 32.1 25.3
Ours 1.65 30.6 24.7

Impact of Pose Refinement. We performed an analysis of the pose refinement network (PRN)

and present the results in Table 3.9. The findings show that, on average, incorporating PRN leads

to a reduction of 2.5mm in MPJPE and 0.8mm in PA-MPJPE errors when T = 1. Similarly, when

T = 243, the inclusion of PRN results in an average reduction of 2.1mm in MPJPE and 0.9mm

in PA-MPJPE errors. These results demonstrate that incorporating pose refinement improves the

overall performance of our model under both protocols.

Table 3.9: Impact of the pose refinement network (PRN) on the performance of our model.

Our model Params (M) MPJPE (↓) PA-MPJPE (↓)

w/o PRN (T = 1) 1.46 35.0 27.5
w PRN (T = 1) 1.46 32.5 26.7

w/o PRN (T = 243) 1.65 30.6 24.7
w PRN (T = 243) 1.65 28.5 23.8

Figure 3.6 showcases the performance of our model with and without pose refinement using

T = 243 under Protocol #1 (top) and Protocol #2 (bottom), specifically for challenging actions

such as “Directions”, “Eating”, ‘Photo”, “Posing”, and “Sitting”. Notably, we observe a 12.77%

reduction in relative error for the "Photo" action in terms of MPJPE, and a 5.56% reduction in

relative error in terms of PA-MPJPE. These results highlight the effectiveness of pose refinement

in improving the accuracy of pose estimation, particularly for challenging poses and actions.

Impact of Graph Convolutional Layers. The multi-hopGConv layer is a key component of

our model, allowing for the capture of long-range dependencies among body joints. We evaluate

the performance of our model by replacing this layer with different types of graph convolutional
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Figure 3.6: Performance of our model with and without pose refinement using MPJPE (top) and
PA-MPJPE (bottom). When coupled with a pose refinement network, MGT-Net performs consis-
tently better on challenging actions.
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layers. Specifically, we investigate and compare the results of our model with three variants: Se-

mantic Graph Convolutional (SemGConv) layer [30], Modulated Graph Convolutional (MGConv)

layer [34], and Chebyshev Graph Convolutional (ChebGConv) layer [40]. The SemGConv layer

incorporates semantic information into the graph convolutional operation, while the MGConv layer

introduces modulation to the graph convolution operation, allowing the model to adaptively adjust

the importance of different nodes in the graph. The ChebGConv layer, on the other hand, uti-

lizes Chebyshev polynomials to capture localized spectral information of the graph structure. We

follow the original implementation for all these variants and consider 1-hop neighbors for both

SemGConv and MGConv, and 2-hop neighbors for ChebGConv. We also set the embedding di-

mension to F = 128. The results are reported in Table 3.10, which shows that the multi-hopGConv

layer with 2-hop neighbors achieves the best results under both Protocol #1 (30.6mm) and Protocol

#2 (24.7mm), indicating the importance of capturing long-range dependencies and considering a

wider context in the pose estimation task. In addition, our model maintains a relatively low number

of learnable parameters, demonstrating the efficiency of the proposed approach.

Table 3.10: Ablation study on various types of graph convolutional layers. The embedding dimen-
sion is set to F = 128.

Method k Params (M) MPJPE (↓) PA-MPJPE (↓)

MGConv [34] 1 1.45 35.5 27.4
SemGConv [30] 1 1.42 33.5 26.1
ChebGConv [40] 2 1.65 31.8 25.0

Ours 2 1.65 30.6 24.7

3.3.4 Model Efficiency

In Table 3.11, we present a comprehensive analysis of the computational efficiency and perfor-

mance of our model compared to state-of-the-art baselines. We assess the trade-off between the

model’s computational cost and its performance in terms of the number of input frames (T ), total

number of parameters, estimated number of floating-point operations (FLOPs), and MPJPE. The

evaluation is conducted on the Human3.6M dataset using both detected 2D poses and ground truth

as inputs. Notably, our model achieves a balance between computational efficiency and accuracy,

outperforming strong baselines while maintaining a relatively low computational cost. For the

detected 2D poses, our model achieves an MPJPE of 44.1, demonstrating superior performance

compared to the baselines. Furthermore, when provided with ground truth 2D poses as input,
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our model achieves a significantly reduced MPJPE of 30.6, showcasing the effectiveness of our

approach.

Table 3.11: Efficiency of our model in comparison with baselines in terms of the number of input
frames (T ), total number of parameters, FLOPs, and MPJPE. Evaluation is performed on Hu-
man3.6M using both the detected 2D poses and ground-truth as inputs.

Method T Params (M) FLOPs (M) MPJPE (↓)

ST-GCN [5] 7 5.18 469.81 48.8
PoseFormer [3] 81 9.60 1358 44.3
CrossFormer [94] 27 9.93 515 46.5
Anatomy3D [8] 81 45.53 88.9 44.6

Ours 243 5.78 84.41 44.1
Ours (GT) 243 1.65 21.23 30.6
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4
Conclusions and Future Work

In this thesis, we presented novel deep neural network architectures for 3D human pose estimation.

In pursuit of this objective, we propose a graph neural network whose layer-wise propagation rule

derives inspiration from iteratively solving graph filtering with Laplacian regularization via the

Gauss-Seidel iterative method. The proposed approach adopts a two-stage paradigm, combining

an off-the-shelf 2D pose detector with a graph convolutional network. By doing so, the network

achieves the objective of accurately estimating the 3D poses of individuals based on their 2D pose

representations. The proposed network architecture incorporates weight and adjacency modula-

tion, skip connection, and a variant of the ConvNeXt residual block. We also proposed a novel

network architecture for 3D human pose estimation that leverages multi-head self-attention, multi-

hop graph convolutions with disentangled neighborhoods, and dilated convolutions. Disentangling

the neighborhoods helps remove redundant dependencies between further and closer neighbor-

hoods, allowing the model to effectively capture long-range dependencies between graph nodes.

The combination of multi-head self-attention and multi-hop graph convolutional layers enables the

model to capture both local and global dependencies, while the integration of dilated convolutional

layers enhances the model’s ability to handle spatial details required for accurate localization of

the human body joints. We performed quantitative and qualitative evaluations on two large-scale

datasets to assess the efficacy of both proposed approaches for 3D human pose estimation. Finally,

in Section 4.1, we discuss the concluding outcomes of the associated research work in each of

the previous chapters, along with the contributions made. Furthermore, we address the limitations

of the proposed approach in Section 4.2, and present suggestions for potential research directions

related to this thesis in Section 4.3.
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4.1 Contributions of the Thesis

4.1.1 Iterative Graph Filtering Network for 3D Human Pose Estimation

In Chapter 2, we presented a simple yet effective Gauss-Seidel graph neural network together with

weight and adjacency modulation. The layer-wise propagation rule of our proposed framework is

inspired by the iterative solution of graph filtering with Laplacian regularization using the Gauss-

Seidel method. Our network architecture leverages the ConvNeXt residual block, which makes the

network more computationally efficient and reduces the risk of overfitting, where the model learns

to fit the training data too closely. Empirical experiments show that our model achieves state-of-

the-art performance on two benchmark datasets, and can serve as a strong baseline for 3D human

pose estimation. We also conducted extensive ablation studies to analyze the impact of different

design choices on the model performance.

4.1.2 Multi-hop Graph Transformer Network for 3D Human Pose Estimation

In Chapter 3, we proposed MGT-Net, a spatio-temporal model for 3D human pose estimation.

Our approach combines multi-head self-attention and multi-hop graph convolutions with disen-

tangled neighborhoods, enabling the model to effectively capture both long-range dependencies

and local-global contextual information. By leveraging multi-head self-attention, our model is

able to focus on different aspects of the input data simultaneously, allowing it to capture intricate

spatial relationships between body joints. On the other hand, the integration of multi-hop graph

convolutions with disentangled neighborhoods enables our model to aggregate information from

neighboring nodes at different hops, capturing both local and global contextual cues in the graph

structure. To further enhance the model’s understanding of spatial relationships and dependencies,

we incorporated dilated graph convolutions into our network architecture. This integration extends

the model’s receptive field, allowing it to capture larger contextual information and better compre-

hend the relationships between body joints at varying scales and distances. By leveraging dilated

convolutions, we avoided the need for additional learnable parameters, ensuring model efficiency

while still achieving improved performance. Through extensive experiments and ablation studies,

we demonstrated the effectiveness of our proposed model and its superiority over existing methods

in terms of performance and computational efficiency. We also showed that MGT-Net not only im-

proves the accuracy of 3D human pose estimation, but also addresses challenges with hard poses

such as occlusion and depth ambiguity.
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4.2 Limitations

While 3D human pose estimation tasks witness advancements in robustness and accuracy with the

proposed methods, they also reveal specific constraints. Despite our model’s capability to achieve

state-of-the-art performance, GS-Net fails to capture long-range dependencies between body joints

as well as different relations between neighboring joints and distant ones, as it only takes the

immediate neighbors into consideration. We also thoroughly investigate several instances where

our GS-Net model did not perform as expected. We scrutinize these failure cases to gain a deeper

understanding of the limitations of our model. Figure 4.1 illustrates failure cases of our model

predictions for the “Greeting” and “Sitting Down” actions from Human3.6M. As can be seen, our

predictions do not align perfectly with the ground truth poses in situations where self-occlusions

occur. It is important to point out that these failure cases are not specific to GS-Net alone but

rather a common challenge encountered in previous works as well [30, 34]. This is attributed in

part to the diverse actions performed in different ways within the Human3.6M training dataset. In

addition, since our model does not incorporate temporal information, the uncertainty inherent in

human motion further adds complexity to the prediction process.

Input Our Prediction Ground Truth

1

Figure 4.1: Example of the failure cases of our model on the “Greeting” and “Sitting Down”
actions from Human3.6M.

Moreover, the efficacy of our Graph Attention block in the MGT-Net model heavily depends

on multi-head self-attention for capturing global information. However, this approach can lead to

computational overhead, especially when dealing with extensive datasets or deep networks. Conse-

61



quently, this limitation poses a significant challenge in scaling the model for real-time applications,

where low latency plays a vital role. Furthermore, these methods do not provide end-to-end solu-

tions for regressing 3D keypoints from images or videos since they comprise two separate stages

that are usually decoupled. To overcome this limitation, a promising approach is to utilize exten-

sively trained, deep models. By doing so, we can address the issue and potentially achieve more

accurate and integrated results when regressing 3D keypoints from visual data.

4.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

4.3.1 GS-Net with Multi-hop Neighbors

In order to further improve the accuracy of 3D pose estimation, we aim to devise a method that

takes into account the high-order connectivity between joints. To achieve this, we plan to incorpo-

rate multi-hop graph convolutions with the aim of explicitly taking advantage of the graph structure

information, allowing our model to better capture the relationships between body joints at various

hop distances. We also plan to explore the applicability of our model to other computer vision

and graph representation learning tasks, as well as to improve its computational efficiency and

interpretability.

4.3.2 MGT-Net Exploiting Frequency Domain

We aim to further enhance our approach through architectural improvements by effectively fusing

features both in the time domain and frequency domain. By exploiting the compact representation

of input skeleton sequences in the frequency domain, we hope to improve the model’s robustness

to 2D noisy detection. Besides, we plan to design a dedicated temporal transformer module and

incorporate it into MGT-Net for better learning the global dependencies of the entire sequence.

In addition, we plan to explore its application in other human motion analysis tasks, such as 3D

human motion prediction, multi-person 3D human pose estimation, and human mesh recovery.
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