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Abstract

Machine Learning Techniques in Usage-based Insurance:

Use of Telematic Data in Auto Insurance

by Helia Alipanah

The development of big data technologies and in-vehicle devices has contributed to the growth

of Usage-Based Insurance (UBI) in recent years. These in-vehicle devices, such as GPS and

sensors, collect certain variables that can represent the driving behaviour of policyholders.

This collected data, called telematic data, consist of several variables that have strong rela-

tionship with the likelihood of having an accident. Consequently, one can use telematic data

to improve risk assessments and personalize car insurance premiums.

In this thesis, a synthetic car insurance dataset emulated from a Canadian-based insurance

company is used to investigate the use of telematic data in predicting the likelihood of having

an accident. More precisely four machine learning techniques—logistic regression, random

forests, gradient boosting trees, and feed-forward neural networks—are employed to predict

the risk of having an accident. Actuaries often use white box machine learning methods like

logistic regression for risk assessment due to their interpretability. However, these method

are unable to detect non-linear relationships between variables accurately. Therefore, more

complex machine learning techniques such as random forests, gradient boosting trees, and

feed-forward neural networks are used to achieve more accurate risk assessment for accidents.

In addition, two variable importance assessment methods—Shapley decomposition and

marginal performance loss upon feature removal—are employed to provide insights into the

feature contributions in the overall predictive performance of the models.
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1. Introduction

Automobile insurance companies traditionally determine the policyholders’ premium by as-

sessing their personal profile, aiming to establish fair rates that align with the individual’s

risk of accidents. These companies typically employ traditional factors to evaluate accident

risk. These factors include personal-specific attributes, such as the driver’s age, gender,

driving experience, claims history, and city of residence. Additionally, car-specific factors,

including the vehicle’s model, age, and estimated annual mileage, also play a role in this

assessment process. However, with advancements in technology and the collection of telem-

atic data, the automobile insurance industry has undergone a transformative shift. Telem-

atic data refers to the information collected by the devices installed in vehicles or sensors

and GPS technology. Telematic data includes crucial details such as the vehicle’s location,

speed, acceleration, braking, engine performance, and other relevant metrics. Telematic data

provide valuable insights into the driver behavior and driving patterns. Therefore, it has

facilitated the introduction of Usage-Based Insurance (UBI), also known as pay-as-you-drive

or pay-how-you-drive. By monitoring driving behavior and usage patterns, insurance com-

panies can now assess the risk of accidents associated with individual policyholders more

accurately. Safe drivers may be eligible for discounted premiums, while those with riskier

driving habits may face higher rates. This shift from traditional risk assessment models to

individualized pricing has brought greater fairness and accuracy to insurance pricing.
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1.1 Research objectives

This research aims to address several key questions regarding the impact of telematic data

on the assessment of the risk of accident in the automobile insurance industry. The pri-

mary objective of this research is to examine the impact of telematic data on the assessment

of accident risk in the automobile insurance industry. By analyzing information collected

through telematic devices, such as acceleration, braking, distance driven, cornering patterns,

and other relevant metrics, insurers can gain a more comprehensive understanding of indi-

vidual driving behaviors. Consequently, the risk of accident associated with policyholders

can be assessed more accurately. Through a comparative analysis, this study will ascertain

whether the use of telematic data improves the accuracy of risk assessment compared to

traditional data alone. Moreover, this study explores the possibility of predicting accident

risk more accurately by combining traditional data with telematic data. By using both data

sources, insurers can potentially develop more robust predictive models.

Furthermore, this study will evaluate alternative machine learning methods, such as

logistic regression, random forests, gradient boosting trees, and feed-forward neural networks,

to predict accident risk. Actuaries traditionally use machine learning methods, such as

generalized additive models (GAM) and logistic regression, to predict the risk of accident.

These methods are easy to interpret and provide insight regarding factors affecting the risk

of accident. However, advanced techniques like random forests, gradient boosting trees, and

neural networks present the opportunity to capture complex relationships and non-linearities

present in the data. This study analyzes whether these machine learning methods yield more

accurate results.

1.2 Limitations

It is crucial to acknowledge certain limitations that may impact the generalizability of the

findings. Firstly, the availability of data sources, particularly telematic data sources, poses
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a significant challenge. Insurance companies typically do not readily share their datasets

due to privacy and proprietary concerns. Therefore, obtaining a comprehensive and suitable

dataset for analysis can be challenging. The limited accessibility to telematic data may

restrict the scope and sample size of the study, potentially influencing the generalizability of

the results. In this study, a synthetic dataset emulated from a real dataset to address this

limitation.

Secondly, the high-dimensional nature of telematic datasets demands careful preprocess-

ing of the data. Feature selection and dimensionality reduction techniques may be required to

handle the complexity of calculations, especially when applying machine learning methods.

The preprocessing of data may introduce biases or impact the performance of the models.

Lastly, the imbalanced nature of the automobile insurance dataset presents another chal-

lenge. Insurance claims data often exhibit a significant class imbalance, with a few observa-

tions having claims compared to a majority of non-claim instances. This imbalance can affect

the performance of predictive models and may require the use of specialized techniques, such

as oversampling or undersampling, to mitigate the bias towards the majority class.

Despite these limitations, this study aims to provide valuable insights into the potential

benefits of using telematic data for risk assessment and predictive modeling in the automobile

insurance industry. The findings will contribute to the understanding of the effectiveness

of using telematic data into risk assessment. Therefore, it assists insurance companies in

making informed decisions regarding pricing strategies and encouraging safer driving be-

haviors among policyholders. Additionally, the identified limitations will highlight areas for

further research. Moreover it highlights the need for collaborative efforts to overcome data

availability and processing challenges in future studies.

1.3 Literature review

Telematic data, collected through GPS, smartphones, sensors, and embedded equipment,

provides information such as distance traveled, speed, acceleration, hard brakings, and loca-

3



tion. These features offer insights into the driving habits of the insured. The introduction

of telematic data has significantly improved premium calculations in the insurance industry.

Insurers are now able to determine the risk of accidents more accurately based on the driving

behavior of policyholders (Qi et al., 2018).

The introduction of telematic data and the development of usage-based insurance (UBI)

have allowed for a more accurate assessment of risk, based on driving patterns. UBI started

with a simple pay-as-you-drive (PAYD) model, which calculates premiums solely based on

distance driven without distinguishing between safe drivers and risky drivers. Then UBI

developed to more sophisticating approaches like pay-how-you-drive (PHYD) and manage-

how-you-drive (MHYD) (Arumugam and Bhargavi (2019)). PHYD calculate the premiums

based on driving behaviours such as excess speed, hard acceleration, and hard braking, while

MHYD goes a step further by providing real-time alerts to help drivers reduce the risk of

accident.

PHYD and MHYD provide a linkage between the insurance premiums and driving be-

haviour, which can serve as a potential mechanism for reducing risky driving behaviours and

improving road safety. The findings in Bolderdijk et al. (2011) show that policyholders who

participated in PAYD insurance exhibit lower levels of speeding comparing to policyhold-

ers with fixed premiums. This suggests that the implementation of PAYD insurance had a

positive effect on reducing speeding behavior among young drivers.

Numerous studies have shown that predictive models incorporating telematic data out-

perform those based solely on traditional covariates when assessing the risk of accident (Fan

and Wang (2017); Gao et al. (2019a); Barry and Charpentier (2020)). However, the most

significant improvements are observed when both telematic and traditional data sources are

included in the model, as they capture different aspects of risk and complement each other

effectively (Baecke and Bocca, 2017).

Dealing with telematics datasets can be challenging due to their high dimensionality,

specially when using machine learning methods. Using high dimensional dataset in machine

learning requires complex calculations which are usually time consuming. Moreover, as
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the dimension of a dataset increases, the feature space grows exponentially, which lead to

sparsity, and make it difficult for machine learning techniques to find meaningful patterns

and relationships. To address this problem, researchers have employed techniques such

as heatmaps to extract covariate information from telematic data (Gao et al. (2019b); Gao

et al. (2021); Wüthrich (2017)). Speed and acceleration are parameters that affect the risk of

accident significantly. Therefore, one can present these two features by a speed-acceleration

(v-a) heatmap, which shows the time spent in a specific speed and acceleration state for a

given driver. Then, one can extract covariates from the v-a heatmap by using the K-medoid

algorithm and principal component analysis. The K-medoid method is similar to k-means,

but any function can be used for measuring distance. Therefore, it is more robust.

Various machine learning techniques have been explored for telematic data analysis.

Boucher et al. (2017) investigate the effect of the distance traveled and the exposure time on

the risk of accident. The visualization of data reflects a non-linear relationship between the

number of claims and the distance traveled. They explain the non-linearity by the fact that

drivers with more experience exhibit less risk of accident. A Poisson generalized additive

model (GAM) based on independent cubic splines is employed to capture this non-linear

relationship. In another study, Boucher and Turcotte (2020) argued that additional kilome-

ters of driving might not significantly reduce accident risk due to the saturation of driving

experience, meaning that most of policyholders have enough driving experience and a few

additional kilometers of driving do not add sufficient experience to reduce the risk of accident

further. The surprising pattern in risk of accident can be caused by the residual individual

heterogeneity that the basic Poisson GAM is not able to capture because of the indepen-

dence of the observations (the observations are not independent as the same policyholder

can be observed over many contracts). To address this, they extended the basic Poisson

GAM model, relaxing the assumption of observation independence. Boucher et al. (2013)

also investigate the impact of the distance driven on the risk of accident. The authors explain

the nonlinear relationship with a generalization of the offset Poisson regression, such that

for every observation xi, we have λi = exp(xiβ+ c× log(km)). This model perfectly matches
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the observed data.

In terms of data mining techniques, researcher have explored various machine learning

algorithms to analyze telematic data and improve risk assessment. Baecke and Bocca (2017)

compared the performance of logistic regression, random forests, and one-dimensional feed-

forward neural networks in assessing risk using telematic data. The results showed that

logistic regression and fee-forward neural networks outperformed random forest, with feed-

forward neural networks demonstrating the best predictive performance. The ability of

feed-forward neural networks to capture complex patterns and relationships in the data

contributed to their superior performance in risk assessment.

Gao and Wüthrich (2019) used high-frequency GPS-collected telematic data and focused

on study individual trips by analyzing their time series of speed, acceleration, braking and

change in angles. They trained a deep convolutional neural network (CNN) to identify the

driver of each trip based on their time-series patterns. The CNN’s ability to extract and

analyze sequential data enabled accurate identification of individual drivers, demonstrating

the potential of deep learning techniques in telematic data analysis.

Huang and Meng (2019) investigated the extraction of significant variables and the predic-

tion of claim frequency using various machine learning models, including logistic regression,

support vector machines, random forests, XGBoost, and artificial neural networks. Their

study demonstrated that advanced machine learning techniques achieved good performance

in predicting claim frequency, with the XGBoost model exhibiting the highest accuracy. The

ability of XGBoost to handle complex interactions and nonlinear relationships in the data

contributed to its superior predictive power.

Gao et al. (2021) analyzed the telematic data by presenting data in a speed-acceleration

(v-a) heatmap. They established a densely connected feed-forward neural network and a

convolutional neural network (CNN) to process the telematic data and extract relevant

covariates. Both methods yielded similar results in risk assessment, but the CNN, with its

ability to capture spatial patterns, proved to be more interpretable and used fewer parameters

than the feed-forward neural network.
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Meng et al. (2021) converted the telematic data into time series and applied a one-

dimensional convolutional neural network (CNN) to classify each trip into safe or dangerous

categories. Their study showed significant improvements in prediction performance com-

pared to the Poisson generalized linear model (GLM), highlighting the effectiveness of CNNs

in capturing temporal patterns and identifying risky driving behaviour.

Yu et al. (2021) applied a three-layer backpropagation (BP) neural network to estimate

the total claim amount. The author uses a genetic algorithm to optimize the network’s

parameters, aiming to improve convergence speed and find the global optimum. The research

shows that this method can predict claims more accurately comparing to the common-used

methods such as GAM.

These studies collectively demonstrate the potential of various machine learning tech-

niques, such as feed-forward neural networks, convolutional neural networks, and advanced

models like XGBoost, in analyzing telematic data and improving risk assessment in automo-

bile insurance. By leveraging these techniques, insurers can gain deeper insights into driver

behavior, identify risk factors more accurately, and make more informed decisions regarding

policy premiums and coverage.

Car insurance datasets contain usually a large number of zero claims. Applying a ma-

chine learning method on a unbalanced dataset is challenging, and it affects the prediction

accuracy. To eliminate the effect of large number of zeros and to assess the risk of accident,

one can use a zero-inflated regression which assumes that with a certain probability, the

only possible observation is zero, and with the remaining probability, a random variable

from a specific distribution is observed. In the context of telematics data, Sun et al. (2021)

use Poisson zero-inflated regression and negative binomial zero-inflated regression models

to assess the risk of accidents. These models take into account the counts of excess speed,

high-speed braking, hard acceleration, and deceleration as predictors for estimating the risk

of accidents. The study compares the performance of the Poisson and negative binomial

regression models, with the latter demonstrating better predictive capabilities.

Guillen et al. (2021) employed a zero-inflated Poisson regression model to assess the
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risk of accidents. This approach assumes that with a certain probability, the only possible

observation is zero, while with the remaining probability, a random variable with a specific

distribution is observed. By incorporating this mixture model, insurers can account for the

excess zeros in the dataset and improve the accuracy of risk assessment.

Another approach to mitigating the impact of zero claims is the consideration of near-

miss events, which refer to incidents or situations where a potential collision or accident

was narrowly avoided. For example, if a driver abruptly brakes or swerves to avoid hitting

another vehicle, pedestrian, or obstacle, the telematics system can recognize this as a near-

miss event. Stipancic et al. (2018) compared hard braking and accelerating events with

historical crash data using Spearman’s correlation and pairwise Kolmogorov-Smirnov (K-

S) tests, finding a positive correlation between these factors and crash frequency. Guillen

et al. (2020) used negative binomial regression models to predict near-miss events, including

dangerous turning, hard braking, and hard acceleration. By incorporating near-miss events

into risk assessment models, insurers can gain a deeper understanding of driver behavior

and better evaluate accident risk. Furthermore, Guillen et al. (2021) proposed a model that

incorporates both a basic premium and a penalization factor based on the occurrence of

near misses such as hard-braking, hard-acceleration and use of smartphone. This approach

incentivizes policyholders to adopt safer driving practices by directly linking their driving

behavior to the cost of insurance coverage.

In summary, the incorporation of telematic data and the use of advanced machine learning

techniques have significantly improved risk assessment and premium calculation in automo-

bile insurance. The combination of traditional covariates with telematic data, along with

the exploration of innovative approaches like zero-inflated regression models and near-miss

event analysis, has provided insurers with more accurate tools for assessing risk and setting

premiums based on individual driving behaviour.

The main aim of this thesis is to serve as a survey of models and methods for the use of

telematic data in auto insurance rating. The models are illustrated through a comparative

analysis of their performance on a synthetic publicly available dataset that was generated
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from the experience of a Canadian-based insurance company. Hopefully this survey and

analysis can be useful to actuaries and actuarial students as an introduction to telematic

data in ratemaking.

1.4 Structure

This study is structured as follows. Section 2 describes the dataset and explains the pre-

processing of data to prepare the dataset for machine learning methods. Moreover, the

variance inflation factors is evaluated to assess the multicollinearity the dataset used in this

study. Section 3.1 establishes risk assessment models using both traditional and telematic

risk factors, and it compares the prediction performances of four machine learning methods,

namely logistic regression, random forests, gradient boosting trees, and feed-forward neural

network. Moreover, two feature importance evaluation techniques are applied on machine

learning techniques to assess the impact of each predictor. Section 3.4 concludes the research

by presenting the findings.
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2. Data

In motor insurance, actuaries traditionally determine premiums based on customer profiles

and claims history. However, the advent of telematic data has revolutionized the industry

by providing insurers with access to valuable driving behavior information. Telematic data

encompasses factors such as speed, acceleration, time of driving, engine RPM, and distance

driven, which are collected by a device installed in the vehicle while the driver is behind

the wheel. These features serve as indicators of the insured individual’s driving style. The

development of telematic data led to usage-based insurance (UBI), enabling insurers to make

more accurate risk assessments and determine premiums based on individualized measure-

ments, as discussed in Arumugam and Bhargavi (2019). Therefore, a policyholder with a

risky driving behavior is charged a higher premium.

There are several approaches to collect telematic data such as black boxes, dongles,

embedded equipment, and smart-phones, as outlined in Arumugam and Bhargavi (2019). A

black box refers to an electronic device installed in the vehicle that records accident-related

information. It allows for one-way interaction, and the data is typically accessible only after

an accident has occurred. Similarly, a dongle is an electronic device installed in the vehicle,

enabling a server to access the vehicle network. It also functions as a one-way interaction

device. Car manufacturers sometimes provide embedded equipment in the vehicles to record

telematic data. Some examples of embedded equipment are the remote diagnosis device

infotainment services and navigation sensors. Another method for collecting telematic data

is through smart phones. Smart-phones can connect to a device or operate as stand-alone

devices for data collection. The built-in sensors in smart-phones facilitate the acquisition of

10



driving variables such as speed, hard braking, hard acceleration and hard cornering. This

method is cost-efficient and entails less computational complexity. Additionally, the use of

Global Positioning System (GPS) technology enables the collection of telematic data. GPS

signals provide information such as speed, acceleration and braking that can be derived from

the signals of GPS. This method provides accurate data. However, the cost of implementation

and complexity of the calculations are high. The in-vehicle data recording devices can also

provide additional services such as automatic emergency calls, stolen vehicle monitoring and

economically and more convenient driving suggestions as highlighted in Baecke and Bocca

(2017).

2.1 Data description

This section describes the dataset used in this study and some illustrations of the data are

presented. The data used in this survey is a synthetic data available in So et al. (2021). The

synthetic data is emulated from a real dataset acquired from a Canadian-based insurer, that

offers a UBI program to its automobile insurance policyholders. The emulation of the data

consist of a three-stage process. First, using an extended Synthetic Minority Oversampling

Technique (SMOTE) algorithm, a synthetic portfolio of the space of feature variables is

produced. The SMOTE algorithm produces new synthetic data points using the original

data point using K nearest neighbors. In the second stage, the values of the number of

claims are simulated using a feed-forward neural network. In the last step, the aggregated

amount of claims are simulated using a feed-forward neural network with the number of

claims included in the predictors. According to statistics and illustrations available in So

et al. (2021), the synthetic data shows remarkably similar statistics to the real dataset. The

synthetic dataset consist of 100,000 policies. Table 2.1 provides an overview of all variables

in the dataset and included in the models.
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Type Variable Name Type of

Variable

Description

Duration Integer Duration of the insurance coverage of a given policy and year, in days ranging

between [27,366]

Insured.age Integer Age of insured driver, in years ranging between [16,103]

Traditional Car.age Integer Age of vehicle, in years ranging between [-2,20], negative values are possible as

buying a newer model can be up to two years in advance

Credit.score Double Credit score of insured driver ranging between [422,900]

Annual.miles.drive Double Annual miles expected to be driven declared by driver ranging between [0,

56731.17]

Years.noclaims Integer Number of years without any claims ranging between [0,79]

Annual.pct.driven Double The number of days a policyholder uses vehicle divided by 365

Total.miles.driven Double Average distance driven in miles per day during the observation [0,0.67274]

Pct.drive.xxx Double Percent of driving day xxx of the week: mon/tue/. . . /sun. Note that these

variables are compositional meaning that the sum of seven variables is 1.

Pct.drive.xhrs Double Percent vehicle driven within x hrs: 2hrs/3hrs/4hrs

Pct.drive.xxx Double Percent vehicle driven during xxx: wkday/wkend. Note that these variables

are compositional

Telematic Pct.drive.rushxx Double Percent of driving during xx rush hours: am/pm

Avgdays.week Double Mean number of days used per week, ranging between [0,7]

Accel.xxmiles Double Number of sudden acceleration 6/8/9/. . . /14 mph/s per 1000 miles, ranging

between [0,621]

Brake.xxmiles Double Number of sudden brakes 6/8/9/. . . /14 mph/s per 1000 miles, ranging

between [0,621]

Left.turn.intensityxx Double Number of left turns per 1000 miles with intensity 08/09/10/11/12, ranging

between [0, 794740]

Right.turn.intensityxx Double Number of right turns per 1000 miles with intensity 08/09/10/11/12, ranging

between [0, 841210]

Response

NB Claim Integer Number of claims during observation, ranging between [0,3]

AMT Claim Double Aggregated amount of claims during observation, ranging between [0, 550.66]

Table 2.1: Description of synthetic dataset variables.

The synthetic dataset contains 47 variables, which can be categorized into three groups:

(1) 6 traditional variables such as age of driver, number of years without claim and age of

car, (2) 39 telematic variables such as total miles driven, number of brakes, and number of

hard accelerations, and (3) two response variables describing the number of claims and the

amount of claims. Note that 95.72% of observations have zero claims, 4.06% have one claim,
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Figure 2.1: The relationship between the average number of the drivers with claims and drivers without

any claims during the last 0 − 2 years, 2 − 10 years, 10 − 20 years, 20 − 30 years, 30 − 40 years and more

than 40 years.

0.20% have two claims, and 0.007% have three claims.

The traditional and telematic variables can be used as predictors in the machine learning

methods to predict the response variable. Visualization of the data set can help detecting

possible relationships between the variables. For example, Figure 2.1 illustrates the rela-

tionship between the number of the years without any claims and the average number of

high-risk drivers(drivers with at least one claim during the observation). The figure shows

that the drivers with more years without claims are safer drivers. Figure 2.2 demonstrate

the statistics for rush hours driving. According to this figure the risk of accident is higher

for drivers that use their car during rush hours specially at nighttime. Figure 2.3 shows the

average count of left and right turns for high-risk drivers and low-risk drivers. According

to this figure, the risk of having accident is high when drivers are turning, specially for left

turns. There are more data illustrations available in Appendix 3.4.
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Figure 2.2: The average percentage of driving during am rush hours and pm rush hours for drivers with

at least one claim and drivers without any claim.

Figure 2.3: The average count of left turns and right turns for drivers with at least one claim and drivers

without any claim. The left figure is for the turns with intensity equal to 8 and the right figure is for the

turns with intensity equal to 12.
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2.2 Multicollinearity

The data used in this study exhibits multicollinearity. When the correlation between the

variables is high, it undermines the statistical significance of an explanatory variable. More-

over, the coefficient becomes very sensitive to small changes in the model.

Using the variance inflation factor (VIF) one can identify the multicollinearity in regres-

sion analysis. Multicollinearity happens when there exists correlation between independent

variables in a model. VIFs are usually calculated numerically as part of a regression analysis.

In particular, the variance inflation factor for the jth predictor is given by:

V IFj =
1

1−R2
j

,

where R2
j is the R

2-value obtained by regressing the jth predictor on the remaining predictors.

VIF values vary between 1 to positive infinity, and a VIF equal to 1 shows there is no

correlation between the variables. If a VIF is greater than 10 then the multicollinearity is

high. One can eliminate the effect of the multicollinearity by removing the highly correlated

variables from the model.

The dataset used in this study exhibits multicollinearity, which causes inaccurate predic-

tions and over-fitting in machine learning methods. The severity of the multicollinearity is

measured here using the Variance Inflation Factor (VIF). Table 2.2 illustrates VIF values of

the variables in the dataset. The predictors with VIF value higher than 10 are considered

highly correlated. To eliminate the effect of multicollinearity, a subset of predictors are con-

sidered in the models, which are mentioned in Table 2.3 together with their VIF values. Note

that in the new subset of variables, all variables with VIF more than 10 were eliminated, so

the VIF values are less than 10, except for “Accel.14miles” and “Brake.14miles”. These two

variables are included in the model since hard acceleration and brake have high impact on

the risk of accident. Therefore, the variables used in this study to assess the risk of accident

are all listed in Table 2.3

15



Variable VIF value

Duration 0.6008138

Insured.age 2.94749

Car.age 3.071365

Credit.score 1.280033

Annual.miles.drive 0.6033964

Years.noclaims 2.812487

Annual.pct.driven 1.011482

Total.miles.driven 0.2054459

Pct.drive.2hrs 1.228046

Pct.drive.3hrs 0.4165208

Pct.drive.4hrs 0.3808286

Pct.drive.wkend 1.523781× 1015

Pct.drive.wkday 4.091993× 1015

Pct.drive.rush.am 0.3133676

Pct.drive.rush.pm 0.7547143

Avgdays.week 0.1732634

Pct.drive.mon 1.302230× 1015

Pct.drive.tue 7.350217× 1015

Pct.drive.wed 6.695851× 1014

Pct.drive.thr 9.314201× 1014

Pct.drive.fri 2.49742× 1014

Pct.drive.sat 9.359063× 1014

Pct.drive.sun 9.438624× 1014

Variable VIF value

Accel.06miles 2.293262

Accel.08miles 14.28145

Accel.09miles 41.27826

Accel.11miles 114.4122

Accel.12miles 149.9056

Accel.14miles 138.1172

Brake.06miles 9.167488

Brake.08miles 24.75065

Brake.09miles 60.06385

Brake.11miles 87.29104

Brake.12miles 114.9023

Brake.14miles 54.91514

Left.turn.intensity08 116.5550

Left.turn.intensity09 631.2543

Left.turn.intensity10 1294.965

Left.turn.intensity11 6018.608

Left.turn.intensity12 1658.123

Right.turn.intensity08 97.18742

Right.turn.intensity09 597.4358

Right.turn.intensity10 2908.332

Right.turn.intensity11 6552.246

Right.turn.intensity12 904.1544

Table 2.2: Variance Inflation Factor (VIF) values of traditional and telematic predictors in logistic regres-

sion. The predictors with VIF values higher than 10 are considered highly correlated.
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Variable VIF value

Duration 1.586643

Insured.age 3.176990

Car.age 1.072250

Credit.score 1.218741

Annual.miles.drive 1.205720

Years.noclaims 3.069423

Annual.pct.driven 2.141902

Total.miles.driven 2.389323

Pct.drive.2hrs 2.411448

Pct.drive.3hrs 3.800461

Pct.drive.4hrs 2.324903

Variable VIF value

Pct.drive.wkend 1.087751

Pct.drive.rush.am 1.279645

Pct.drive.rush.pm 1.274341

Avgdays.week 1.359456

Accel.06miles 1.793109

Accel.14miles 25.571923

Brake.06miles 1.798006

Brake.14miles 25.318923

Left.turn.intensity08 3.873734

Left.turn.intensity12 3.878388

Right.turn.intensity08 4.311204

Right.turn.intensity12 4.317575

Table 2.3: Variance Inflation Factor (VIF) values of traditional and telematic predictors in logistic regres-

sion. The predictors with VIF values higher than 10 are considered highly correlated.

2.3 Imbalanced data

The response variable in the models included in this study is a binary variable, which takes a

value of 1 if the policyholder makes at least one claim during the observation, and zero if the

policyholder makes zero claims during the observation. As a result, this response variable

is equal to 0 for 95.728% of the policyholders in this study and 1 for only 4.272% of the

observations. Therefore, the dataset is imbalanced. Imbalanced data can pose challenges in

machine learning classification techniques because algorithms tend to be biased towards the

majority class; they can achieve high accuracy by simply predicting the majority class for

most or all instances. However, this approach fails to capture the patterns and characteristics

of the minority class.

When dealing with imbalanced datasets, accuracy is not a reliable performance metric

since it can be misleading. Instead metrics such as the area under the receiver operating

characteristic (ROC) curve (AUC) are more appropriate for evaluating model performance.
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Dealing with imbalanced data requires careful consideration and appropriate techniques to

ensure that machine learning models can effectively learn from all classes and make accurate

predictions for both the majority and minority classes. Resampling techniques can be applied

to rebalance the data (Fernández et al., 2018). Resampling techniques can be classified into

three broad groups: (1) oversampling methods, (2) undersampling methods, and (3) hybrid

methods. Oversampling involves creating a superset of the original dataset by replicating

some instances or creating new instances from existing ones, while undersampling methods

create a subset from the original dataset by eliminating instances (usually majority class

instances). Hybrid methods aim to balance the distribution of the dataset by combining

both sampling methods.

In a simple test we now assess the relevance of resampling methods for our data; three

resampling techniques, including random oversampling, random undersampling, and hybrid

methods, are applied to rebalance the dataset. Random oversampling involves randomly

selecting observations from the minority class, with replacement, to create the training set.

Random undersampling technique randomly selects examples from the majority class, and

omits them from training set. Note that resampling techniques are only applied to the

training dataset, and are not applied to the test set, which is for evaluation of the model

performance. Oversampling may increase the likelihood of overfitting the minority class, and

undersampling results in a loss of data, which might make the decision boundary between

the two classes harder to learn. Interesting results are usually achieved by combining both

random oversampling and undersampling. A modest amount of oversampling of the minority

class can improve the bias towards this class, and a modest amount of undersampling of the

majority class reduces the bias on the majority class. Table 2.4 presents the AUC values for

the logistic regression, using both traditional and telematic variables. Four different training

datasets are used in the models, and according to the results of Table 2.4, resampling methods

are not improving the model performance. Therefore, in this study, the original data, without

resampling, is used with machine learning techniques.
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raw data undersampling oversampling combination

AUC-training set 0.7836497 0.7891712 0.7838904 0.7856054

AUC-test set 0.7844003 0.7854597 0.7856575 0.785725

Table 2.4: Four training datasets are analyzed using logistic regression. The AUC-ROC test is used for

model evaluation, and the results are similar for all training sets.
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3. Methodology

3.1 Predictive models

The impact of telematic data on assessing the likelihood of an accident can be effectively

explored through the application of machine learning techniques. Regulators in insurance

companies often insist on using “white box” learning methods which are easy to interpret.

Examples of such methods include GLMs (Generalized Linear Models) and logistic regression.

Unfortunately, these methods are limited in their ability to identify complex non-linear

relationships. On the contrary, “black box” learning methods like random forests and neural

networks can detect non-linear relationships with greater accuracy. In this section, the

probability of having a claim for a policyholder according to the traditional and telematic

information is investigated using different machine learning methods. Four machine learning

methods are used for the analysis, and their performances are compared using statistical

metrics.

The four machine learning methods considered in this study are logistic regression, ran-

dom forests, gradient boosting trees, and feed-forward neural networks. The logistic regres-

sion is one of the common methods in insurance industry for binary classification because

it is easy to interpret. However, it is limited in its ability to capture complex non-linear re-

lationships. To address this limitation, more sophisticated methods such as random forests,

gradient boosting trees, and neural networks were also included in the study to uncover the

underlying complex relationships within the data. Random forests, an ensemble classifier

composed of multiple decision trees, improve upon the limitations of individual decision trees
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by aggregating the outcomes of multiple trees. By mitigating over-fitting, random forests

generally outperform decision trees alone. The gradient boosting trees, another ensemble

classifier, produce a prediction model in the form of an ensemble of weak decision trees.

This method usually outperforms random forests. Artificial neural networks are a powerful

method known for their capacity to learn and model non-linear and complex relationships.

They have demonstrated strong performance across a wide range of applications, making

them an important consideration for this study.

The rest of this section offers a detailed and comprehensive explanation of each of the

aforementioned methods, delving into their underlying principles and intricacies. Addition-

ally, a brief description of the implementation of these methods is presented to provide a

practical understanding of how they are applied in the context of this study.

3.1.1 Logistic regression

Logistic regression is a supervised learning method which is used for classification. This

method is a generalized linear method with a specific link function to model the relationship

between the predictors and the response variable. In the following the logistic regression for

binary classification is explained. Assume all observations are independent, and given the

predictor Xi, the response value Yi for i = 1, . . . , n has a Bernoulli distribution. The logistic

function denotes as ζ is used as the inverse link function:

P[Yi = 1|Xi] = E[Yi|Xi] = ζ(X̃
T

i β) :=
exp(β0 +

∑︁p
j=1 βjXi,j)

1 + exp(β0 +
∑︁p

j=1 βjXi,j)

where X̃
T

i =
[︂
1 Xi,1 . . . Xi,p

]︂
, and the logistic function, also known as the sigmoid func-

tion, maps the linear combination of predictors to a probability value between 0 and 1. By

estimating the model parameters using maximum likelihood estimation, logistic regression

determines the optimal decision boundary that separates the two classes based on the given

predictor variables. The likelihood functions is given by

L(y; θ, ϕ) =
n∑︂

i=1

log f(yi; θ, ϕ)
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according to the assumptions of the logistic regression, given Xi, the Yi are all distributed

from the same class of exponential family of distributions. Indeed, given Xi the pdf of Yi is

assumed to be

f(yi; θ, ϕ) = exp
(︂yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

)︂
for some functions b, c, ai and θi for i = 1 . . . , n. Therefore, the log-likelihood function is

equal to

L(y; θ, ϕ) =
n∑︂

i=1

log f(yi; θ, ϕ)

=
n∑︂

i=1

yiθi − b(θi)
ai(ϕ)

+ c(yi, ϕ).

The likelihood is usually impossible to optimize in closed-form, and it needs to be maximized

numerically. Then, a new observation with predictors X0 is classified according to

Y0 = 1 if P̂[Y0 = 1|X0] ≥ c,

Y0 = 0 otherwise

where P̂[Y0 = 1|X0] = ζ
(︂
β̂0 +

∑︁p
j=1 β̂jX0,j

)︂
and c is the cut-point, see James et al. (2013)

for more details. This method is implemented to the dataset by using ‘glm()’ function in R.

3.1.1.1 Lasso regularization

One approach to reduce the variance of prediction and enhance the prediction accuracy and

interpretability is using regularization methods. Regularization methods shrink the parame-

ters toward zero by applying specific constraints on them. The lasso regression is a regression

analysis method which performs regularization and variable selection. By considering nega-

tive log-likelihood as the loss function, L(yi, pi) = −{yi log pî+(1− yi) log(1− pî)}, the lasso

coefficients β̂
lasso

λ minimize the following quantity

β̂
lasso

λ = argmin
β

n∑︂
i=1

L(yi, pi) + λ

p∑︂
j=1

|βj|.
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Note that pi depends on β. Moreover, λ > 0, which can be selected using cross-validation

by optimizing out-of-sample performance. Note that in lasso regression, the penalty term

is λ
∑︁p

j=1 |βj|, which prevents the parameters from moving freely. The lasso regression is

usually impossible to solve in closed-form. However, by using numerical algorithms, one can

estimate the lasso coefficients. In the R software, one can use glmnet() function to do the

lasso regression.

3.1.2 Decision trees

Tree-based methods are simple and interpretable machine learning techniques that can be

applied to both regression and classification problems. This methods involve segmenting

the predictor space into a number of simple regions, and predicting the outcome of a new

observation based on the mode (for classification problems) or the mean (for regression

problems) of the training observations within the corresponding region. The decision tree

method consists of two fundamental steps. First it partitions the predictor space into J

distinct and non-overlapping regions denoted as R1, . . . , RJ . Then, for every observation

falling into region Rj, the method assigns the same prediction, typically the mean or the

mode of the observations within that specific region, see James et al. (2013) for more details.

Finding an appropriate partition for the predictor space is an important step in decision

trees. It is computationally impossible to consider every possible partition of the predictor

space. One approach to find a proper partition is by using a technique called “recursive

binary splitting”. This technique follows a top-down and greedy strategy. It starts at the

top of the tree and iteratively splits the predictor space based on the best split at each step.

The splitting process is continues until a predefined stopping criterion is met, such as when

all regions contain fewer than five observations. It is worth noting that, in classification

problems, the classification error is not a sensitive metric for training the model. Instead,

metrics like the Gini index are typically used as a more suitable loss function. The Gini

index associated with a subregion r quantifies the total variance across all classes within the
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subregion r and can be defined as follows:

Gr =
∑︂
g∈G

p̂rg(1− p̂rg),

where p̂rg is the proportion of observations with response g among all observations whose

predictors fall within region r, see James et al. (2013). It is worth noting that the Gini-

index, denoted as Gr, takes small values if all p̂rg are close to either zero or one. Thus,

the Gini index serves as a measure of node purity, with small values indicating that a node

mostly consists of observations from a single class. Node purity provides a higher certainty

in a predictions. Therefore, the recursive binary splitting performs as following for binary

classification decision trees:

For any given j and s, define:

R1(j, s) =
{︁
X|Xj < s

}︁
and R2(j, s) =

{︁
X|Xj ≥ s

}︁
,

where the value of j and s can be determined by minimizing the weighted average of the

Gini index of the two subregions:

π1GR1 + π2GR2 = (
nr1

nr1 + nr2

)
∑︂
g∈G

[︁
p̂R1g(1− p̂R1g)

]︁
+ (

nr2

nr1 + nr2

)
∑︂
g∈G

[︁
p̂R2g(1− p̂R2g)

]︁
,

where p̂Rig
, for i = 1, 2, represents the proportion of observations with response g among all

observations whose predictors fall within region Ri, and nrj , for j = 1, 2 is the number of

observations in ri (James et al., 2013).

Although decision trees are equipped with a stopping criterion, overfitting remains a

potential issue. To address this, constructing smaller trees with fewer splits can effectively

mitigate variance and improve interpretability. Moreover, the simplicity of single decision

trees enables them to closely resemble human decision-making patterns, facilitating easy in-

terpretability. However, it is worth noting that their predictive accuracy tends to be lower

when compared to alternative learning methods. One approach to improve the predictive

performance of decision trees is aggregating multiple decision trees. Techniques such as bag-

ging, random forests, and boosting involve combining multiple trees to collectively produce

more accurate predictions.
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3.1.2.1 Random forests

Random forests is a powerful technique that combines decision trees to enhance the predictive

performance. The process of implementing random forests involves the following steps:

1. Creating B distinct training sets.

2. Building a decision model for each training set. The prediction function for the model

b is denoted as f̂ b. Note that during the process of growing the tree, the splitting is

performed only on m random predictors (often m is chosen as the square root of the

total number of predictors, i.e., m =
√
p) at each splitting stage.

3. The final prediction for an observation is obtained by averaging the predictions f̂avg(X) =

1
B

∑︁B
b=1 f̂ b(X).

Splitting the training set into B subsets, to create B different training sets, might generate

small subsets. Therefore, the technique of “bootstrapping” can be used to generate B dif-

ferent larger training sets. This approach creates each training set by sampling n times with

replacement from the original training set. In the context of this study, the random forests

method is applied using the randomForest() function in R, which implements Breiman’s

random forest algorithm (Breiman, 2001) for classification and regression. This algorithm

uses bootstrapping to generate B distinct training sets. This ensures that each training set

is sufficiently large and diverse, enhancing the effectiveness of the random forests algorithm.

If the splitting is performed on every predictor without any constraint, there is a risk of

all trees having splits on the same strong predictor early on, resulting in similar trees. This

high similarity in trees limits the potential improvement in prediction. In Breiman’s random

forests algorithm, a technique to intriduce dissimilarity among the trees is employed to avoid

the issue of generating highly correlated trees. In this technique, random forests introduce

randomness by selecting a subset of predictors at each splitting stage. Typically, a random

number m (often set as m =
√
p) predictors is chosen, and the split is performed only on

this subset of predictors. This procedure ensures that the random forests algorithm creates
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diverse decision trees, leading to predictions with reduced correlation.

In this study, the random forest method is implemented using the randomForest package

and the ISLR2 package. These packages provide the necessary functionalities for construct-

ing and analyzing random forests.

3.1.3 Gradient boosting trees

Boosting is versatile method that can be applied on regression and classification problems. It

involves constructing an ensemble of weak prediction models, such as decision trees, smooth-

ing splines, or neural networks. Among these weak learners, decision trees are widely ac-

cepted and commonly used in ensemble techniques. In gradient boosting trees, the algorithm

iteratively builds decision trees, where each subsequent tree corrects the prediction errors

made by the previous trees by minimizing the loss function using gradient descent.

Ensemble techniques have the following structural form:

g(E[Y |X = x]) = FM(x) =
M∑︂

m=1

βT (x;am),

where g is the link function (where in classification problems, g is logit function), β is a fixed

learning rate, which can be determined using the validation set (in this study the value is

set to 0.05), and T (x;am), for m = 1, . . . ,M are simple functions of the features x, and

characterized by parameters am, see Denuit and Trufin (2019) for more details. In boosting

trees, the function T (·;am) is a decision tree, where am represent the splitting variables

and their split values as well as the corresponding predictors in the terminal nodes. Note

that using decision trees as a weak learner requires a stopping criterion, such as determining

maximum interaction depth, to avoid overfitting. Now for observations {(xi, yi)}ni=1, one can

estimate the coefficients and parameters by minimizing the following equation:

min
am

n∑︂
i=1

L
(︂
yi, g

−1(FM(x))
)︂
= min

am

n∑︂
i=1

L
(︂
yi, g

−1
(︁ M∑︂
m=1

βT (xi;am)
)︁)︂
.

Let ẑi := Fm(xi) = Fm−1(xi) + βT (xi;am) for i = 1, . . . , n. A proper activation function in

binary classification problems is the sigmoid function. Therefore, p̂i = Pr[yi = 1|xi] = 1
1+e−ẑi

,
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see Denuit and Trufin (2019) for more details. Moreover, suitable loss function is the binary

cross-entropy loss, and the formula for binary cross-entropy loss is as follows (Denuit and

Trufin, 2019):

Li = −yi log p̂i − (1− yi) log(1− p̂i).

Now, one can estimate the parameters by minimizing the loss function as below

âm = argmin
am

n∑︂
i=1

Li(yi; g
−1Fm(xi)) = argmin

am

n∑︂
i=1

Li(yi; p̂i)

= argmin
am

n∑︂
i=1

[︂
− yi log p̂i − (1− yi) log(1− p̂i)

]︂
= argmin

am

n∑︂
i=1

[︂
− yi log

p̂i
1− p̂i

− log(1− p̂i)
]︂
.

Knowing that ŷi = log p̂i
1−p̂i

, one can get

âm = argmin
am

n∑︂
i=1

[︂
− yiŷi + log(1 + eẑi)

]︂
Finding the solution to the optimization problem described above involves complex and time-

consuming calculations. To address this, one can employ numerical optimization methods.

3.1.3.1 Steepest descent

The primary objective is to minimize the training sample of the loss function:

L(FM(x)) =
n∑︂

i=1

L(yi, g
−1(FM(xi)))

with respect to FM(x). Now, by ignoring the constraint that FM(x) is the sum of trees, one

can view the optimization problem as the following numerical optimization:

η̂ = argmin
η
L(η),

where η ∈ Rn are the values of this approximating function g−1(F (xi)) for the training

observation point xi:

η = {η1, . . . , ηn)′ = (g−1(FM(x1)), . . . , g
−1(FM(xn))}T .
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Interaction Depth training set AUC validation set AUC

1 0.8404 0.8007

2 0.8386 0.8325

3 0.9967 0.8537

4 0.9999 0.8644

Table 3.1: The AUC values of a gradient boosting trees with different interaction depths. All the parameters

in the model are fixed and only the maximum depth of each tree in the model changes.

Numerical optimization methods often express the solution as

η̂ =
T∑︂
t=0

bT , bt ∈ Rn,

where b0 is an initial guess and b1, . . . , bT are successive increments, each based on the

preceding steps. In steepest descent numerical optimization, step bt is defined as bt = ρtθt,

where ρt is a scalar, and

θt =

(︄[︂∂L(y1, g−1(η1))

∂η1

]︂
η1=η̂t−1,1

, . . . ,
[︂∂L(yn, g−1(ηn))

∂ηn

]︂
ηn=η̂t−1,n

)︄′

is the gradient of L(η) evaluated at η̂t−1 = (η̂t−1,1, . . . , η̂t−1,n)
′ given by

η̂t−1 = b0 + b1 + · · ·+ bt−1.

Note that the negative gradient θt gives the local direction along which L(η) decreases the

most rapidly at η = η̂t−1. Note that the step length ρt is then determined by

ρt = argmin
ρ>0

L(η̂t−1 − ρθt),

which provides the update η̂t = η̂t−1 − ρtθt.

In this study, the gradient boosting trees method is applied on the dataset using the

‘xgboost’ package.

Boosting trees involve two crucial tuning parameters: the size of the trees and the number

of trees, denoted asM . The size of the trees defines the complexity of the trees in the model.

There exists different approaches to determine the complexity of a tree, such as specifying
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Number of Trees training set AUC validation set AUC

1000 0.9526 0.8325

750 0.9383 0.8298

500 0.9177 0.8256

250 0.8824 0.8176

Table 3.2: The AUC values of gradient boosting trees with different number of trees (M). All the param-

eters in the model are fixed and only the number of trees in the model changes.

the maximum number of terminal nodes (leaves) or determining the maximum depth of each

tree (the interaction depth). In ‘xgboost()’ function, the complexity of a tree is determined

by the interaction depth. Table 3.1 illustrates the AUC results for different interaction depth

values on the validation set and the training set. As shown, increasing the interaction depth

leads to higher AUC values for both sets. However, it increases overifitting significantly.

Therefore, to prevent complexity and over-fitting, it is advisable to select smaller interaction

depth values.

Another important parameter in the gradient boosting trees is the number of trees (M).

Table 3.2 illustrates the AUC results for different number of trees. According to Table 3.2

when the number of trees increases, the AUC result also increases for both validation set

and training set.

3.1.4 Feed-Forward neural networks

An artificial neural network is a machine learning technique that draws inspiration from

the biological neural networks found in animals. A neural network relies on combining non-

linear transformations of predictors to make predictions. A specific type of artificial neural

network is called Feed-Forward Neural Networks, which can be applied on both quantitative

and classification problems.

Single-layer Neural Network:

The parametric form of a feed-forward neural network is briefly described below. Consider

the predictorsX = (X1, X2, . . . , Xp) and the response variable Y (which can be multivariate).
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Figure 3.1: The structure of a single layer feed-forward neural network. In this model there exist four

predictorsX1, X2, X3 andX4. The hidden layer computes the activations, which are denoted by Ak = hk(X),

for k = 1, . . . ,K. The activation functions, hk(.), are not observed and they need to be trained. The output

layer is a linear combination of the activation functions such that f(X) = β0 +
∑︁5

k=1 βkAk. Source: from

James et al. (2013).
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Neural networks construct a nonlinear function f(X) to predict the response variable. Figure

3.1 depicts the structure of a single-layer neural network. A single-layer neural network

consists of three layers: input layer, hidden layer and output layer. The input layer contains

p units, with X1, . . . , Xp representing the units. The hidden layer consist of an arbitrary

number of nodes, which can be determined using the validation set. The hidden layer

calculates the activation functions (nodes) Ak = hk(X), for k = 1, . . . , K. These activation

functions are obtained by applying nonlinear transformations to linear combinations of the

inputs X1, . . . , Xp. Hence, the activation functions in the hidden layer are computed as

follows:

Ak = hk(X) = hk(wk,0 +

p∑︂
j=1

wk,jXj),

where hk(.) is a nonlinear activation function, which is specified in advance. There exists

various options for activation functions including sigmoid and ReLU. The sigmoid activation

function is also used in logistic regression to transform the linear function to probabilities.

It can be represented as follows:

h(z) =
ez

1 + ez
.

Rectified Linear Unit (ReLU) is contemporary choice of activation function which is charac-

terized as follows:

h(z) =

⎧⎨⎩ 0 if z < 0

z otherwise.

ReLU activation widely adopted due to its computational efficiency and memory storage

benefits. Once these K activations are obtained, they are fed into the output layer. Now,

denote Zm = βm,0 +
∑︁K

k=1 βm,khk(X). Then for classification problems function g(.) is a

softmax function for classification problems with m classes, and the output is calculated as

bellow:

Sm(X) = P [Y = m|X] = g(βm,0 +
K∑︂
k=1

βm,khk(X))

= gm(Z) =
eZm∑︁M
k=1 e

Zk
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where the parameters β0, . . . , βK and w1,0, . . . , wK,p need to be estimated. Therefore, Sm(X)

is the predicted probability that the observation X belongs to class m, m = 1, . . . ,M , see

Bishop and Nasrabadi (2006) for more detail.

Fitting a Neural Network:

Training a neural network model and estimating the parameters involve minimizing the

loss function across all observations. For binary classification problems, a suitable loss func-

tion is cross-entropy, which can be defined as follows:

E = −(yi log pi + (1− yi) log(1− pi)),

where pi is the probability that an obsevation belongs to class i = 0, 1. Therefore,

min
β,w

n∑︂
i=1

E(yi, f(xi)) = min
β,w

n∑︂
i=1

E(yi, p̂i) = min
β,w

n∑︂
i=1

[︂
− (yi log p̂i + (1− yi) log(1− p̂i))

]︂
.

(3.1)

However, solving this problem becomes challenging due to its non-convex parameter

space, leading to the possibility of multiple solutions. Additionally, the complexity of this

problem often makes it difficult and time-consuming to find a suitable solution. One approach

to addressing this is through gradient descent. In this method, let θ denote the vector of

parameters to be estimated, and the objective function is defined as shown in Equation 3.1.

The gradient descent algorithm operates as follows:

1. Start with a random θ0 and set t = 0.

2. Find a vector δ such that θt+1 = θt+δ reduces the objective function, and set t← t+1.

3. go to Step 2 if E(θt+1) < E(θt), otherwise stop.

It should be noted that gradient descent can only guarantee the discovery of a local minimum,

and the choice of the initial random vector θ0 may lead to different local optima. To determine

the direction δ for updating θ, one can compute the partial derivatives of E(θ) and evaluate

them at the current value of θ = θm:

∇E(θm) = ∂E(θ)

∂θ

⃓⃓⃓
θ=θm

,
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nodes count (size) training set AUC validation set AUC

2 0.8004018 0.7874062

5 0.8128508 0.797435

8 0.8196857 0.79894

10 0.8244184 0.8010579

15 0.8344605 0.8011259

30 0.8601271 0.804913

Table 3.3: The AUC values of a single-layer feed-forward neural network with different number of nodes.

All the parameters in the model are fixed and only the number of nodes in the hidden layer changes. The

AUC results on the validation dataset shows that 10 nodes in the hidden layer results in best performance.

which gives the direction in which R(θ) increases the most. Therefore, one can define the

update direction as δ = −ρ∇E(θm), where ρ represents a small learning rate. When the

gradient vector becomes zero, it indicates that E(θ) has reached a minimum. Note that

calculating the derivatives is simple using the chain rules. This procedure is known as

“backpropagation” in the neural network literature. In fact, backpropagation efficiently

calculates the gradients by computing the gradients one layer at a time and it iterates

backward to prevent redundant calculations.

The gradient descent method often requires a considerable number of iterations to reach

a local minimum, which can be time-consuming. One approach to accelerate the process

is using stochastic gradient descent instead. Instead of computing derivatives for all n

observations to find a local minimum, SGD samples only a small fraction of the observations

known as a “minibatch”. The size of the minibatch can be determined using the validation

set.

The neural network method used in this study is a single-layer feed-forward neural net-

work, implemented using the nnet package in R. The hidden layer consists of 10 nodes which

are determined through validation set analysis. Table 3.3 presents the AUC values corre-

sponding to different numbers of nodes. In the process of determining the number of nodes,

all other model parameters remain fixed, and only the number of nodes varies. To ensure
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max iteration training set AUC validation set AUC

100 0.808669 0.7980243

200 0.8173433 0.8004857

400 0.8211446 0.8024053

600 0.8211735 0.8024967

1000 0.8211767 0.80249348

Table 3.4: The AUC values of a single-layer feed-forward neural network with different maximum iteration

values for stopping criteria in SGD. All the parameters in the model are fixed and only the stopping criteria

varies. The results shows that after 610 iterations, the algorithm converges and reach to a local optimum.

consistent results, the initial weights for stochastic gradient descent are set to 0. Note that

the validation AUC for the model with 10 and 15 nodes are approximately equal. However,

a neural network with fewer nodes in the hidden layer is considered a simpler model that

converges to a solution more quickly.

Another approach to accelerate the stochastic gradient descent is to establish stopping

criteria, such as a maximum number of iterations. Table 3.4 displays the AUC values for the

neural network model. All the parameters remain fixed except for the maximum iteration

count. As indicated in the table, the model’s performance improves with a higher number

of iterations. It is noteworthy that once stochastic gradient descent converges (in this case,

after 610 iterations), the AUC values do not exhibit further improvement. Employing early

stopping in the stochastic gradient descent algorithm can act as a form of regularization,

mitigating over-fitting. However, in this particular problem, the algorithm converges after

610 iterations and does not demonstrate signs of over-fitting the data.

Another approach for regularization of neural networks and preventing over-fitting is to

use a hyper-parameter called “decay” in the model. This approach draws inspiration from

ridge and lasso regularization methods used in random forests. Setting the decay parameter

to ϕ, a fraction ϕ of the units in a layer is randomly removed, while the remaining units scale

up to compensate for the missing units. This regularization method helps prevent nodes

from becoming overly specialized. Table 3.5 illustrates the results for different decaying
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decay training set AUC validation set AUC

0.001 0.6815262 0.6791579

0.01 0.8294086 0.7969051

0.1 0.8244184 0.8010579

0.2 0.8211767 0.8024934

0.5 0.8096603 0.7972103

Table 3.5: This table illustrates the AUC values of a single-layer feed-forward neural network with dif-

ferent decaying rates. All the parameters in the model are fixed and decay parameter changes. The best

performance is for 0.1 decay rate.

rates. Although the decay rate of 0.2 yields the best AUC on the validation set, the other

decay rates also demonstrate similar performance. This indicates that our neural network is

stable, as changes in hyper-parameters do not significantly affect the results.

3.2 Performance metrics

The model performance is assessed using three different statistical metrics: 1. misclassifica-

tion error rate using the confusion matrix, 2. the area under the receiver operating charac-

teristic curve (AUC), 3. the average log-likelihood.

It is important to note that when measuring the misclassification error rate, different

cut-points can be considered for predicting a new observation. Typically, when the data is

balanced, meaning that the number of observations in each class is equal, a cut-point of 0.5 is

commonly used. However, in the dataset used for this study, only 4.272% of the observations

belong to Class 1. As a result, a different cut-point is needed to address the class imbalance,

more specifically a cut-point of 0.05 is chosen.

Nevertheless, the miss-classification error rate is not a suitable metric for this dataset,

because it is highly imbalanced. Therefore, the AUC and log-likelihood test are more relevant

here.

The receiver operator characteristic curve is a probability curve that plots the true-
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positive rate against the false-positive rate, at different threshold values. The true-positive

rate is the proportion of the positive class that is correctly classified, and the false-positive

rate is the proportion of the negative class that is incorrectly classified. Therefore, the AUC

measures the discriminatory power of a classifier. The AUC ranges between 0 to 1 and the

higher the AUC value for a classifier is, the better the classifier can distinguish between the

positive and negative classes. The AUC=0.5 here shows that the classifier has no predictive

power.

The log-likelihood determines the precision of a regression model. The higher the value

of the log-likelihood is, the better a model fits a dataset and the more precise results it

gives. Note that the log-likelihood test can only be applied here on the logistic regression

method. The log-likelihood value for a single model is meaningless. However, it is useful for

comparing two or more models. Therefore, by determining the AUC and log-likelihood, the

discriminatory power and the precision of a classifier can be assessed.

3.3 Results

In this section, different risk assessment models are compared, and their predictive perfor-

mances are explained. The dataset consist of 100,000 observations, 60% of observations

randomly selected for the training set, 30% for the test set, and 10% for the validation set.

Table 3.6 presents the results of 13 models using four machine learning methods: logistic

regression, random forests, gradient boosting trees, and feed-forward neural networks. Each

method is applied with three sets of input variables: 1. traditional variables, 2. telematic

variables, and 3. both traditional and telematic variables.

In the rest of this section, each model is investigated individually, and them compared

to others. The comparisons are based on the area under the curve (AUC) metric obtained

from the test set. Additionally, the AUC result from the training set is also considered to

identify any signs of over-fitting in the models. Overfitting occurs when a model performs

well on the training set but poorly on the test set, indicating a lack of generality.
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Miss-classification error rate AUC Log-Likelihood

test set train set test set train set test set train set
L
og

is
ti
c

re
gr
es
si
on

Model 1: traditional predictors 0.3338 0.3348 0.6754 0.6728 -5234.49 -9957.65

Model 2: telematic predictors 0.2628 0.2618 0.7726 0.7644 -4841.66 -9299.45

Model 3: traditional+telematic predictors 0.2562 0.2546 0.7888 0.7821 -4733.11 -9105.33

Model 4: Lasso+traditional+telematic 0.262 0.2582 0.7841 0.7844 -4595.97 -9217.63

R
an

d
om

F
or
es
ts

Model 5: traditional predictors 0.0464 0.0433 0.5738 0.5468 -Inf -Inf

Model 6: telematic predictors 0.0479 0.0464 0.6525 0.6378 -Inf -Inf

Model 7: traditional+telematic predictors 0.0467 0.0365 0.6912 0.8467 -Inf -Inf

G
ra
d
ie
n
t

B
o
os
ti
n
g
T
re
es Model 8: traditional predictors 0.2938 0.2794 0.7188 0.8114 -4939.79 -8771.72

Model 9: telematic predictors 0.2277 0.2014 0.8108 0.9383 -4433.75 -6285.37

Model 10: traditional+telematic predictors 0.217 0.1901 0.8386 0.9526 -4204.51 -5799.34

F
ee
d
-F
or
w
ar
d

N
eu
ra
l
N
et
w
or
k

Model 11: traditional predictors 0.3173 0.3167 0.6798 0.6872 -5012.84 -10000.74

Model 12: telematic predictors 0.2699 0.2662 0.7839 0.7887 -4580.28 -9097.48

Model 13: traditional+telematic predictors 0.2554 0.2507 0.8043 0.8211 -4429.42 -8618.84

Table 3.6: Model performances

First, focusing solely on logistic regression, Model 2, which relies on the telematic vari-

ables, demonstrates better performance compared to Model 1, which relies on the traditional

variables. However, Model 3, incorporating both data sources, outperforms Models 1 and 2,

achieving an AUC of 0.7888. The log-likelihood test is also used to assess the performance of

logistic regression models. A higher log-likelihood value indicates better model performance.

The log-likelihood results for Models 1, 2, and 3 support the previous findings.

Given the large number of predictive input variables in the dataset, lasso regression is used

here to attempt enhancing the out-of-sample prediction accuracy and interpretability. The

results reveal that Model 4 exhibits similar performance to Model 3, and lasso regularization

does not improve the model. This outcome is due to previous investigation on the VIF of

variables, which eliminated correlation between the predictors. Figure 3.2a illustrates the test

set ROC curves of Models 1, 2, 3 and 4. Models 3 and 4 exhibit comparable performances.

However, the ROC curves of the other two models stand below those of Models 3 and 4.

The prediction performance of the random forests is not as strong as that of other methods

employed. Random forests exhibit poor performance on this dataset in comparison to the
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(a) Logistic regression (b) Random forests

(c) Gradient boosting trees
(d) Feed-forward neural network

Figure 3.2: The ROC curves of all 13 models investigated in this study. Each figure presents

the models for a specific method. The ROC curve shows false-positive rates on the x-axis

and the true-positive rates on the y-axis, and they are computed over the test set.
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other methods, likely due to its tendency to overfit. Despite attempts to prune the trees

and mitigate over-fitting, random forests do not achieve the desired level of accuracy on the

test set. Consequently, random forest is not appropriate for this dataset and it is producing

over-fitting. Figure 3.2b illustrates the ROC curves of Models 5, 6 and 7 on the test set.

In addition to logistic regression and random forests, the performances of gradient boost-

ing trees and feed-forward neural networks are also considered. The results of the AUC tests

in Table 3.6 indicate that both of these methods exhibit better performance. The neural net-

work method, with both traditional and telematic variables (Model 13), achieves an AUC of

0.8043, and the gradient boosting trees, with both traditional and telematic variables (Model

10), achieves an AUC of 0.8386. These results suggest that these two machine learning meth-

ods are capable of capturing non-linear relationships between predictors and the response

variables better than logistic regression. Figure 3.3 illustrates the ROC curves for all four

methods: logistic regression, random forests, gradient boosting trees and feed-forward neural

networks. In this figure, the ROC curves of gradient boosting trees and feed-forward neural

networks lies above that of logistic regression (although the lines are close to each other),

while the ROC curve of random forests lies lower than that of all other methods, confirming

the results presented in Table 3.6.

Furthermore, based on the AUC test results for all four predictive methods presented

in Table 3.6, models incorporating telematic data outperform models using only traditional

data. However, the best performance is observed when both data sources (traditional and

telematic) are included in the model. This finding suggests that including both traditional

and telematic data significantly improves the models, indicating that telematic data contains

valuable information regarding driving behaviour and accident risk that is not captured by

traditional data alone. The results of the log-likelihood test is also consistent with AUC test.

39



Figure 3.3: This figure illustrates the ROC curves for four methods with all input variables (traditional

and telematic). The ROC curves are computed over the test set.
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3.4 Variable importance assessment

The risk of having an accident is predicted by combining the informational content of several

features. This section aims to provide insights into how each feature contributes to the overall

model prediction performance. Thus, one can assess the feature importance in the models.

The assessment of feature importance is carried out using two approaches: (1) Shapley

decomposition and (2) marginal performance loss when removing a feature. The Shapley de-

composition has recently been introduced in the field of machine learning through algorithms

referred to as SHAP (Lundberg and Lee, 2017). These algorithms enable the breakdown of

individual predictions into contributions from different features, allowing for the assessment

of their respective importance. In this context, the Shapley decomposition quantifies the

adjustments made to predictions when subsets of features are augmented with a specific

predictor. This decomposition method possesses the valuable property of explaining the

contribution of each prediction as the sum of its individual contributions. Therefore, for

each observation, the Shapley decomposition provides a comprehensive understanding of

how each feature influences the risk probability prediction. In SHAP, the contribution of

feature i to the risk probability prediction for observation t is defined as

ϕi =
∑︂

S⊂F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xt,S∪{i})− fS(xt,S)]

where F is the set of all predictors, |.| denotes the cardinality of a set, xt,S is the policyholder t

features values for the features subset S, and fS(xt,S) is the risk probability generated by the

model trained exclusively with predictors in S. It quantifies adjustments to predictions when

the subsets of features are incremented with predictor i. The Shapley decomposition has the

favorable property of explaining each prediction contribution as the sum of its contributions.

Therefore for every observation t:

fF (xF ) = ϕ∅,t +
∑︂
i∈F

ϕi,t.

To measure the importance of each respective feature, the average absolute feature contri-
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butions are presented:

ψi =
1

n

n∑︂
t=1

|ϕi,t|,

with larger values of ψi relative to other features meaning that feature i is more impactful

when making predictions. SHAP values are computed using the R package shapr. Note that

This package is not able to calculate the SHAP values for neural networks.

Figure 3.4 reports the mean absolute Shapley values computed over the out-of-sample ob-

servations for every feature. Results indicate that in logistic regression, the “Annual.pct.driven”

and “Total.miles.driven” features, and in gradient boosting regression, the “Left.turn.intensity08”,

“Annual.pct.driven” and “Total.miles.driven” features contribute the most to the predic-

tions. Other features such as “Duration”, “Car.age”, “Credit.score”, “Years.noclaims”,

“Pct.drive.wkend”, “Accel.06miles”, and “Brake.06miles” make moderate contributions to

the predictions in both models.

To complement the information provided by SHAP, this study quantifies the marginal

performance loss through the decreases in out-of-sample average log-likelihood observed when

any of the features are omitted from the set during training for logistic regression, gradient

boosting trees, and feed-forward neural networks. More precisely, the model is re-trained

with a reduced feature set where only the targeted feature is removed, and the ratio of the

difference between the out-of-sample log-likelihood from both models (full model minus re-

duced model) over the log-likelihood of the full model. A drop in performance implies that

the feature does bring useful information, while small improvements up to degradation in

performance suggest that the feature conveys little to no information. According to Figure

3.5, “Annual.pct.driven” has the highest contribution in logistic regression and feed-forward

neural networks models. The “Total.miles.driven” and “Duration” have the highest con-

tribution in gradient boosting regression. Moreover, “Credit.score”, “Car.age”, “Duration”,

“Pct.drive.wkend”, and “Duration” show moderate contribution to the prediction in all three

methods. Such findings are mostly consistent with those provided by the SHAP algorithm.

The Shapley decomposition and marginal performance loss provide distinct insights into

the contribution of features. The Shapley decomposition measures the reliance of the model
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(a) Logistic regression model

(b) Gradient boosting trees model

Figure 3.4: The Shapley values over the out-of-sample set for the logistic regression and gradient boosting

trees models.
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(a) Logistic regression model

(b) Gradient boosting trees model

(c) Feed-forward neural networks model

Figure 3.5: The percentage decreases in the out-of-sample log-likelihood when a feature is excluded from

the feature set, for logistic regression, gradient boosting trees, and feed-forward neural networks.
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on individual features, whereas the marginal loss evaluates the incremental performance

change when a feature is included in the model. The Shapley decomposition reveals that

certain features, which yield minimal or negative marginal performance gains, significantly

influence the models. This occurrence arises from the strong interdependence among spe-

cific features. For instance, the feature “Left.turn.intensity08” is extensively used by the

models according to the Shapley values, despite its negligible associated marginal loss. This

outcome can be explained by the fact that other features such as“Left.turn.intensity12” ex-

hibit a strong dependence with“Left.turn.intensity08” and already encompass the relevant

information related to predicting accident likelihood.
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Conclusion

This research focuses on the analysis of a synthetic car insurance claim dataset that was

emulated from a real dataset obtained from a Canadian-based insurer. The dataset comprises

6 traditional variables, 39 telematic variables, and 2 response variables.

An initial examination using a VIF (Variance Inflation Factor) test reveals consider-

able multicollinearity, particularly among the telematic variables. To address this issue and

mitigate variance and overfitting concerns, a subset of variables is selected for the models.

The selected variables for the models consist of 6 traditional variables, 17 telematic vari-

ables, and one response variable. Additionally, it should be noted that the dataset used in

this study is imbalanced, leading to bias towards the majority class when training machine

learning models. Various resampling methods, including oversampling, undersampling, and

their combinations, are evaluated, but they do not demonstrate improved prediction perfor-

mance.

To assess the performance of the models, several metrics are employed, namely the mis-

classification error rate, AUROC, and log-likelihood. However, it is important to note that

the misclassification error rate is not an ideal metric for imbalanced data. Using these met-

rics, the prediction performance of four machine learning methods is analyzed based on three

different predictor sets: (1) traditional data, (2) telematic data, and (3) both traditional

and telematic data. The results indicate that gradient boosting trees and one-layer feed-

forward neural networks exhibit the best performance among all the methods tested. These

two machine learning techniques outperform logistic regression method since they capture

the underlying non-linear relationships between the predictors and the response variable.
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However, it should be noted that logistic regression offers the advantage of being easier to

interpret.

On the other hand, the performance of random forests indicates that this particular

machine learning method is unsuitable for this dataset, as it exhibits overfitting that is not

reduced by regularization and pruning methods.

Furthermore, across all four predictive methods, models that includes both traditional

and telematic data demonstrate the best performances compared to models that include only

one type of input variables. Additionally, models solely based on telematic data outperform

those solely based on traditional data.

Using two feature assessment techniques, namely Shapley decomposition and marginal

performance loss through feature removal, indicates that features such as “Annual.pct.driven”,

“Total.miles.driven”, ‘Brake.06miles”, “Accel.06miles”, “Pct.drive.wkend”, “Credit.score”,“Car.age”,

“Duration”, and “Years.noclaims” influence the likelihood of having an accident the most

comparing to other predictors in the dataset.
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S. Sun, J. Bi, M. Guillen, and A. M. Pérez-Maŕın. Driving risk assessment using near-miss

events based on panel Poisson regression and panel negative binomial regression. Entropy,

23(7):829, 2021.
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Appendix A.

In this appendix some visualizations of the dataset are presented. These illustrations can

provide insight about the dataset and the possible relationship between the variables. The

figures include both traditional and telematic variables visualizations. For example, accord-

ing to Figure 3.6 younger drivers have a higher chance of having accident, which is consistent

with the study of Bolderdijk et al. (2011). Figure 3.7 implies that the drivers with higher

credit score have a lower risk of accident, and Figure 3.9 shows the drivers that use their

car more frequently have higher risk of accident. Figure 3.7 shows that policyholders with

higher score credits have less risk of accident.

Figure 3.6: The average number of high-risk drivers (drivers with at least one claim during observation)

for different age ranges.
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Figure 3.7: The average number of high-risk drivers (drivers with at least one claim during observation)

for different credit score ranges.

Figure 3.8: The average number of high-risk drivers (drivers with at least one claim during observation) for

different declared expected annual distance driven ranging 0-5000 miles, 5000-7500 miles, 7500-10000 miles,

10000-15000 miles and more than 15000 miles .
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Figure 3.9: The average number of high-risk drivers (drivers with at least one claim during observation)

for different annual vehicle use percentage (the number of the day a policy holder uses vehicle divided by

356) ranges.

Figure 3.10: The average number of high-risk drivers (drivers with at least one claim during observation)

for a given range of total miles driven per day.
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Figure 3.11: The average count of the brakes and accelerations for high-risk drivers (drivers with at least

one claim during the observation) and low-risk drivers (drivers without any claim during the observation).

The Left panel shows the average count of accelaration (light blue) and brake (dark blue) with intensity

equal to 6 mph/s per 1000 miles, and the right panel shows the average count of acceleration and brake with

14 mph/s per 1000 miles.
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Figure 3.12: The average percentage that the vehicle is driven within 2hrs, 3hrs and 4hrs. The light blue

shows the percentages for drivers that have at least one claim during the observation and the dark blue

shows the percentages for drivers without any claims during the observation.
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