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Abstract for MSc

Backtesting Expectiles with Moment Conditions

Jesús Armando de Ita Solis

Concordia University, 2023

Under the current regulations, banks and insurance companies have the option to use

their own internal models to monitor their risk. To this end, Value-at-Risk (VaR) and

the Expected Shortfall (ES) are typically used as the risk measures to compute their

capital requirements. Nevertheless, both present Ćaws, such as the lack of coherence for

VaR and lack of elicitability for ES. Recently, expectile has attracted much attention as

a potential alternative to VaR and ES. However, the literature on expectile is mainly

focused on its statistical inference, and just few traditional backtesting procedures have

been proposed. This thesis proposes a traditional backtesting procedure for the expectile

and considers its application on Ąnancial data.
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Chapter 1

Introduction

Financial institutions are required to compute risk measures for their portfolios, in

order to determine their capital reserves. The Basel II Accord1 and the Solvency II

Directive2 state that Ąnancial institutions have the option to use their own internal

models for this purpose. The historical standard risk measure is the Value-at-Risk (VaR),

but it was later replaced by the Expected Shortfall (ES) for banks and Swiss insurers,

among other institutions. However, VaR and ES both suffer from several theoretical

downsides. For instance, the VaR does not satisfy the subadditivity property, which

is essential in the context of risk management since it provides incentives to diversify

risk exposure (Artzner et al., 1999). On the other hand, while ES is subadditive, it

has the disadvantage of not being elicitable on its own (Gneiting, 2011). Elicitability

allows to rank different candidate internal models based on the accuracy of their risk

measure estimates. However, the ES is only jointly elicitable along with the VaR (Fissler

et al., 2015). This means that many of the tasks involving ES, such as backtesting,

should be conducted jointly with VaR. For example, suppose that we have two models,

1Basel Committee on Banking Supervision (2004)
2Directive 2009/138/EC of the European Parliament and of the Council (2009)
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CHAPTER 1. INTRODUCTION

with A dominating B and where the scores of both models are in terms of the joint

score function of the couple (VaR, ES). In this case, we cannot conclude that model

A provides more accurate ES forecasts than model B just in terms of the ES. In other

words, it is difficult to Ąnd the best model for the current ES-based regulatory purpose.

Expectile, on the other hand, is both subadditive and elicitable. First introduced in

a regression context by Newey and Powell (1987), it has gained much interest in Ąnance

(Bellini and Di Bernardino, 2017; Girard et al., 2021). It is considered easier to estimate

than the VaR (Daouia et al., 2018), and its statistical inference has been considered

extensively, in either a parametric (Nolde and Ziegel, 2017), semi-parametric (Daouia

et al., 2018), or non-parametric framework (Holzmann and Klar, 2016).

Despite its theoretical advantages and the well documented literature on their esti-

mation, to date, expectile has yet to be applied by banks and insurers as a risk measure.

One explanation for this lack of success is that currently there are very few (traditional)

backtesting methods. The objective of a backtesting procedure is to test whether a

given model provides acceptable risk measure estimates (at a given level) by comparing

them with the realized sequence of ProĄt and Losses (P&L). While the backtesting

literature for VaR and ES is extensive3, the literature on backtesting for expectile is

still in its infancy. To our knowledge, only Bellini et al. (2019) propose a (traditional)

backtesting procedure focused on expectile. Their approach is based on the Probability

Integral Transformation (PIT), inspired from the VaR and ES backtesting literature

(Costanzino and Curran, 2015; Du and Escanciano, 2017; Löser et al., 2018; Gordy and

McNeil, 2020).

Indeed, the deĄnition of VaR, and to a lesser extent the deĄnition of ES, are cumulative

distribution function (CDF) based, in the sense that a quantile is involved in their

3For backtesting literature on VaR and ES see: Emmer et al. (2013); Acerbi and Szekely (2014);
Nolde and Ziegel (2017).
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CHAPTER 1. INTRODUCTION

deĄnition. This explains why many of the existing backtesting procedures for VaR and

ES involve the Probability Integral Transformation (PIT). Expectile, on the other hand,

is deĄned through the second moment4 which depends on the associated CDF in an

indirect way. This suggests that expectile backtesting procedures based on the PIT

might not be the most suitable approach because the expectile of the PIT of the P&L

and the expectile of the P&L are not equal. Hence, it is not guaranteed that a model

that passes a backtest based on the PIT will pass a backtest based on the P&L sequence.

The purpose of this thesis is to propose a traditional backtesting procedure for expec-

tiles. The proposed backtest is simple to implement, since it only requires institutions

to report the daily P&L as well as the associated expectile. In particular, it does not

require quantities such as the PIT.

The subsequent chapters of the thesis are organized as follows: Chapter 2 reviews the

expectileŠs deĄnition, compares its properties with those of the VaR and ES, and shows

some methods to estimate expectile. Chapter 3 surveys the literature on backtesting

VaR, ES, and expectile. Chapter 4 develops the backtesting procedure for expectile,

reports results of some Monte Carlo simulations, an empirical application with S&P 500

data, and concludes.

4Indeed, expectiles are deĄned through the optimization of the second order moment of a function.
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Chapter 2

Risk Measure Properties: Expectile

vs. ES and VaR

Both VaR and ES are popular risk measures that have been used in the past

to calculate capital requirements as dictated by the Basel Committee on Banking

Supervision (BCBS). Initially, VaR was used as the industry standard, but it was later

replaced by the ES in the aftermath of the 2007 GFC. Nonetheless, ES still presents

Ćaws when used for risk management purposes as we will see in this chapter. In the

following sections, we review the deĄnition of expectile as an alternative to VaR and ES.

Additionally, the sections cover the notion of coherence, elicitability and review some

methods to estimate expectiles.

2.1 DeĄnition of the Expectile

The expectile (alternatively L2-quantile) is introduced by Newey and Powell (1987)

for regression purposes, but it has since gained popularity in the quantitative risk

management literature (Bellini and Di Bernardino, 2017; Daouia et al., 2018).
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CHAPTER 2. RISK MEASURE PROPERTIES: EXPECTILE VS. ES AND VAR

The expectile of a random variable Y with Ąnite variance at a given level α ∈ [0,1] is

deĄned as the minimizer of the following optimization problem:

eα(Y ) = arg min
x∈R

E[S(e)(x,Y )], (2.1)

where the scoring function S(e)(x,y) is deĄned as:

S(e)(x,y) = α(y − x)2
+ + (1 − α)(y − x)2

−
. (2.2)

This function is asymmetric for all α ∈ (0,1), except when α = 0.5.

Alternatively, the expectile can be characterized by the Ąrst order condition1 (Bellini

and Di Bernardino, 2017):

E



(Y − e(α))+



E



(Y − e(α))−

 =
1 − α

α
(2.3)

This provides a Ąnancial interpretation of the expectile, as the amount of capital to

be added to the position in order to have a sufficiently high (expected) gain-loss ratio

(Bellini and Di Bernardino, 2017).

This alternative deĄnition is valid as long as Y has a Ąnite mean (without necessarily

having a Ąnite variance).

Expectile is a particular case of the M-quantiles proposed by Breckling and Chambers

(1988). Additionally, they can also be interpreted2 as Lp-quantiles, which are a parametric

subset of the m-quantiles. Lp-quantiles are introduced by Chen (1996) following Breckling

and Chambers (1988). Let a random variable Y , then the Lp-quantile is deĄned as:

1In this case, e0.5(Y ) = E[Y ]
2See Philipps (2022) for more interpretations of expectiles.
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CHAPTER 2. RISK MEASURE PROPERTIES: EXPECTILE VS. ES AND VAR

Lp,α(Y ) = arg min
x∈R

E[♣α − 1¶Y < x♢♣ · ♣Y − x♣p], (2.4)

where α ∈ (0,1) and p ≥ 0.

In particular, the VaR and expectile are obtained when p = 1 and p = 2, respectively.

Both risk measures can be expressed through an optimization problem, unlike ES. While

VaR at level α = 0.5 represents the median of a distribution, the expectile at that same

level accounts for the mean of the distribution.

2.2 Coherence

Artzner et al. (1999) introduced the concept of coherence for risk measures in a

Ąnancial context.

DeĄnition 2.2.1. Consider Ω to be the Ąnite set of outcomes of an experiment. Let G

be the set of all risks, which is the set of all real-valued functions on Ω. Since Ω is Ąnite,

G can be alternatively denoted by R
n, where n = card(Ω). Let ρ(·) be a risk measure

which is a mapping from G into R. Then ρ(·) is coherent if it satisĄes the following four

following axioms:

i) Translation invariance. We say that ρ(·) is translation invariant if, for all random

variables X ∈ G and all real numbers α, we have ρ(X + α) = ρ(X) − α.

In particular, if α = ρ(X) then ρ(X + α) = 0

The intuition behind the translation invariance property is that if we add an extra

Ąxed amount of cash to a portfolio (increase in equity of a certain position), then the

level of risk of that portfolio will be reduced by the amount added in cash.

Note that some research works, such as in McNeil et al. (2015), give a different
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interpretation by increasing the risk with positive sign, and some decrease the risk with

negative sign. Originally, negative sign is used by Artzner et al. (1999).

ii) Subadditivity. We say that ρ(·) is subadditive if, for all random variables X1 and

X2 ∈ G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

This property provides incentives for Ąnancial institutions to diversify their portfolios,

which will reduce the overall risk of the position.

iii) Positive Homogeneity. We say that ρ(·) is positive homogeneous if, for all λ ≥ 0

and all X ∈ G, ρ(λX) = λρ(X).

In other words, if we increase the size of the position linearly, then its risk will

increase proportionally.

iv) Monotonicity. We say that ρ(·) is monotone if, for all random variables X and

Y ∈ G with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

In other words, the risk measure should preserve the ordering between risks.

Artzner et al. (1999) show that VaR is not coherent since it is not subadditive, while

the ES is coherent. Bellini et al. (2014) show that expectile is coherent.

2.3 Elicitability

DeĄnition 2.3.1 (see Nolde and Ziegel (2017)). Let ρ(·) be a risk measure and Φ =

(ρ1, ρ2, ..., ρn) a vector of n risk measures where n ≥ 1, and let a scoring function S: R
n

× R → R be strictly consistent for Φ if:

E(S(ρ1(X), ρ2(X), ..., ρn(X)),X) < E(S(r,X)), (2.5)

7



CHAPTER 2. RISK MEASURE PROPERTIES: EXPECTILE VS. ES AND VAR

for all predictions r = (r1,...,rk) ̸= Φ = (ρ1,...,ρn) and all risk variables X.

Then, the vector Φ of risk measures is elicitable if it has a strictly consistent scoring

function.

In the above deĄnition, if n = 1, then we say that ρ1 is elicitable on its own. Indeed, if

a risk measure is deĄned through an optimization program, it is automatically elicitable.

This is the case of the VaR and expectile with scoring functions:

S(V aR)(x,y) = α(y − x)+ + (1 − α)(y − x)−, (2.6)

S(Expectile)(x,y) = α(y − x)2
+ + (1 − α)(y − x)2

−
, (2.7)

respectively.

If we can only Ąnd a vector of size n ≥ 2 containing ρ1, then ρ1 is only jointly

elicitable with ρ2, ρ3, ..., ρn.

For instance, this is the case of ES, which is only jointly elicitable along with VaR

Fissler et al. (2015). In fact, the potential of expectile in risk management is partially

explained by their status as the only elicitable and coherent risk measure (Nolde and

Ziegel, 2017).

The importance of elicitability depends on the type of backtesting procedure that

is used. There exist two types of backtests: traditional backtests and comparative

backtests.

Comparative backtests allow us to compare different models in terms of their resulting

scores (Nolde and Ziegel, 2017). However, to run those comparative tests, the risk

measure selected to perform backtesting must be elicitable, which is the case of the

8
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expectile. Comparative backtesting is useful when Ąnancial institutions want to select

the best candidate model as their internal model. Nevertheless, as pointed out by Bellini

et al. (2019), "comparative backtesting does not give any information about the validity

of the considered forecasting models: one can compare extremely poor models without

noticing" (p. 3).

The main objective of the traditional approach is to verify that the risk measure

forecasts are correct at a given conĄdence level. In other words, it is used to determine

whether a given model provides acceptable risk measure forecasts. Traditional backtests

need to be implemented if an internal model is used. In case both the standard model

and the internal model fail the traditional test, we should run a comparative test to see

which model is best.

The focus of this thesis is to propose a traditional backtesting procedure for expectile.

2.4 Computing and estimating expectiles

The statistical properties of the expectile have been studied extensively in the

literature. Bellini and Di Bernardino (2017) compare the properties of the expectiles

with the ones of the VaR and the ES, and analyze the expectileŠs asymptotic behavior.

Daouia et al. (2018) argue that "inference on expectiles is much easier than inference

on quantiles, and their estimation makes more efficient use of the available data since

weighted least squares rely on the distance to data points, whereas empirical quantiles

utilize only the information on whether an observation is below or above the predictor"

(p. 264). Besides, Daouia et al. (2018) also mention that it is easier to compute the

expectile than the VaR, since the expectile provides a series of smooth curves which

makes its loss function continuously differentiable, hence, it can lead to higher predictive

accuracy.

9
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There are three methods to compute expectiles:

Non-parametric: The Ąrst is the non-parametric method, also known as the Ąltered

Historical Simulation (FHS).

FSH is based on the Historical Simulation method (HS), which makes use of historical

returns in order to estimate a risk measure such as VaR or ES. Pérignon and Smith

(2010) report that as of 2009, three out of four banks were using HS in order to compute

their VaR. According to Christoffersen (2011), HS is widely used in practice since it

is easy to implement as we do not have to estimate any parameters using MLE or

any other method. However, HS considers the same weight to all assets in the trading

period, which might present a problem since old information might have less impact on

future returns than what past immediate prices would contribute. For that reason, the

Weighted Historical Simulation method (WHS) works as an improved version of HS,

because it assigns heavier weights to most recent returns. Finally, while WHS is a good

alternative to account for the effect of past immediate information, it might not address

outliers effectively. The best approach to control the presence of extreme events is the

FHS, since the method applies smoothing techniques to account for the behaviour of

Ąnancial markets (Barone-Adesi et al., 2002).

The FHS method will be used to compute the expectile in the Monte Carlo section.

In order to obtain the empirical expectile we use the iterative minimization of the

least asymmetric weighted squares (LAWS) expression (Sobotka and Kneib, 2012):

N
∑

i=1

ωi(κ)(xi − eκ)2, (2.8)

where eκ is the expectile at level κ, xi is a sample element, and

10
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ωi(κ) = κ1¶xi > eκ♢ + (1 − κ)1¶xi < eκ♢. (2.9)

Parametric: The second is the fully parametric estimation method where we assume

the distribution of the residuals typically as Normal, t-Student or skewed-t distributed.

This method is used to compute the theoretical expectile involved in the backtest

proposed in Section 4.2 and Section 4.3.

The LAWS formula in equation (2.8) is used to compute the empirical expectile.

Alternatively, if the CDF is known in closed form, the theoretical expectile of a distribu-

tion at level κ is computed by solving the following equation [refer to the supplementary

material document for Nolde and Ziegel (2017)]:

κ =
zF (z) − G(z)

2(zF (z) − G(z)) + m − z
, (2.10)

where z = e(κ) is the theoretical expectile, m is the mean, F the CDF and G the

partial moment function of z deĄned as:

G(z) =
∫ z

−∞

uf(u)du. (2.11)

For instance, if X ∼ N(µ,σ2), then we obtain:

κ =
σφ( z−µ

σ
) + (z − µ)Φ( z−µ

σ
)

2σϕ( z−µ

σ
) + (z − µ)(2Φ( z−µ

σ
) − 1)

, (2.12)

where φ and Φ are the density and distribution functions of the standard normal

distribution.

If, instead, X is t-Student distributed with v > 1 degrees of freedom, then:

11
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κ =
v+z2

v−1
tv(z) + zTv(z)

2v+z2

v−1
tv(z) + z(2Tv(z) − 1)

, (2.13)

where tv and Tv are the density and distribution functions, respectively, of the

t-Student distribution.

Semi-parametric: Finally, the Extreme Value Theory estimation (EVT) is a semi-

parametric estimation method (Daouia et al., 2018). One of the functions of extreme

value distributions is to estimate the tails of conditional distributions. For instance,

McNeil and Frey (2000) show that conditional EVT outperforms the unconditional

EVT procedure, and also improves the results of the GARCH-modelling with normally

distributed error terms (GARCH type models are used to estimate volatility). Particu-

larly, for the ES, they verify with some datasets that the generalized pareto distribution

(GPD) based method gives better estimates of the ES than other methods.

Girard et al. (2021) propose a theory to estimate extreme conditional expectiles in

heteroscedastic regression models with heavy-tailed noise. The method suggested is also

applicable in the presence of high-dimensional covariates.

In general, all methods naturally have some disadvantages. The drawback of the

parametric estimation is misspeciĄcation error, whilst the non-parametric estimation

methods suffers from a slower convergence rate. Finally, the semi-parametric EVT

method only uses "extreme" observations, and as a consequence, they also have a slower

convergence rate.

12



Chapter 3

The Backtesting Literature

Let us now review the literature of backtesting VaR, ES and expectile.

3.1 Backtesting VaR

This section covers two major types of backtesting VaR: tests based on the sequence

of violations and duration-based tests.

3.1.1 Tests based on the sequence of violations

The Ąrst backtesting on VaR is proposed by Christoffersen (1998), where the concept

of violation process is introduced as:

It =



















1, if Rt < −V aRt(α)

0, otherwise

(3.1)

In traditional backtesting, violations or exceptions for VaR and ES occur when the

return in a portfolio is below the risk measure. In another context, it could be seen

13



CHAPTER 3. THE BACKTESTING LITERATURE

when losses exceed risk measure forecasts.

Christoffersen (1998) proposes interval model free forecasts applied to VaR, since

model misspeciĄcation is the main reason of computing poor interval forecasts. The

tests of interval forecasts, which do not rely on a distribution assumption, are created

by using the combination of an indicator variable and a general conditioning set. They

count the sequence of intervals that are efficient, and then the proportion is compared

against the true coverage p. A sequence of VaRα(t) is efficient with respect to Ft−1 if:

Et



1¶Xt > Rt♢♣Ft−1



= 1 − α (3.2)

almost surely, where Rt = VaRt(α).

The methodology proposed by Christoffersen (1998) works when higher-order moment1

dynamics exist. According to De Clerk and SavelŠev (2022), higher order moments

are used to "study the applicability of certain Generalised AutoRegressive Conditional

Heteroskedasticity (GARCH) models for mimicking price dynamics" (p. 1). In other

words "we can get an insight to the distribution of price change and how it varies over

time" (p. 1). In the presence of higher-order dynamics, only testing for Unconditional

Coverage (UC)2 is insufficient since it does not take into account dependence, which is a

possible scenario. For this reason, it is stressed the importance of detecting clustering3

in violations when analyzing a portfolio of returns. Therefore, Christoffersen (1998)

proposes two tests: the Ąrst veriĄes the independence assumption, to check if violations

1Higher-order moment dynamics is related to the statistical concept of High Order Statistics (HOS),
which accounts for functions of third power degree or more. HOS statistics are used to estimate shape
parameters such as the skewness (3rd moment) or kurtosis (4th moment) (Kendall et al., 1946).

2UC means that the unconditional probability of the VaR should not be signiĄcantly higher than
the α level, otherwise we will have an overly conservative VaR. The probability should also not be too
small because that will increase the risk of loss (Christoffersen, 1998).

3According to Mandelbrot (1963), volatility clustering in asset prices occur when "large changes tend
to be followed by large changes, of either sign, and small changes tend to be followed by small changes."
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are distributed independently (no clustering in violations), and the second is a joint test,

commonly known as test of conditional coverage (CC), checks for both independence

and correct unconditional coverage (UC).

The test proposed in this thesis could be both UC or CC, depending on which

conditions we are considering when building the statistical test. In particular, depending

on which instrumental function we choose to run the backtest, it can be either UC

or CC based. If the moment condition considered are based on lagged values of the

identiĄcation function (refer to section 4.1) then we would be building a Conditional

CC test, otherwise it would be an UC test.

3.1.2 Duration-based tests

Another stand of literature tests VaR using durations, which are the time elapsed

between successive violations (or hits). According to Christoffersen and Pelletier (2004),

Christoffersen (1998) has "relatively small power in realistic small sample settings" (p.

84). Also, while Christoffersen (1998) tests the independence hypothesis through a

Markov Chain alternative, which is not the most efficient way to test for independence

since it has small power when time dependence in violations is present, Christoffersen

and Pelletier (2004) test based on the duration of days between the violations of

VaR, can be splitted into the UC test and the independence test but under different

assumptions. For instance, we can consider different distributions for the time elapsed

between violations/hits, such as the exponential or the Weibull distribution. In other

words, we can assume that durations follow a speciĄc distribution.

Not only continuous distributions can be considered for the durations: as an example,

Berkowitz et al. (2011) propose the "geometric test" assuming that the durations follow a

geometric distribution, and where the null hypothesis states that such durations have the
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memory-less property. The procedure is based on a discrete duration test with the basis

of the Likelihood Ratio test. Finally, they provide evidence of volatility dynamics and

non-normality in the data used to test the method. Additionally, they also found that

volatility dynamics are not captured by the Historical Simulation method, consequently,

clustering in violations might go undetected.

Candelon et al. (2011) extend previous methods by including orthogonal moment

conditions (GMM) into duration-based tests. While Bontemps and Meddahi (2012) used

the J-statistic, which relies on the moments deĄned by the orthonormal polynomials

based on the geometric distribution, the GMM Duration-based approach uses discrete

lifetime distributions compared to the continuous approach used by Christoffersen and

Pelletier (2004). The advantages are that the UC hypothesis, as well as the independence

assumption and the CC hyphotesis can be analyzed separately (three components).

Moreover, the optimal weight matrix of the test is known beforehand, and the approach

does not require to make speciĄc assumptions on the distribution of the alternative

hypothesis as compared to previous duration-based methods. It is found that under

Monte Carlo simulations, the GMM test proposed by Candelon et al. (2011) outperforms

other backtests; particularly, methods based on the Likelihood Ratio (LR) test.

This duration based test is further extended by Pelletier and Wei (2016), where

a geometric-VaR test is introduced. The test relies on a hazard function, which is a

product of the combination of the hazard rate deĄned in the geometric test and the

VaR forecast provided by the VaR test. The geometric-VaR can also be splitted into

three components, which are the test for UC, the test for the dependence structure

in durations, and Ąnally, the last test "examines whether the probability of getting a

violation depends on the VaR forecasts" (p. 727). They conclude that the Geometric

approach has more power than previously proposed Duration-based tests.
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3.2 Backtesting ES

This section reviews the literature on backtesting ES, which is divided into two types

of tests: the Ąrst is based on multiple VaR tests, and the second is based on cumulative

violations.

3.2.1 Tests based on multiple VaR tests

The literature on ES backtesting is more recent than the one of the VaR. One

difficulty of backtesting ES is that it is not elicitable as a risk measure. Therefore, we

cannot express it as an optimization problem (Weber, 2006; Gneiting, 2011). Rather, it

should be deĄned through VaR, as the conditional expectation of the loss, if the loss

is higher than the VaR. This explains why most backtests of ES involve, to a certain

extent, backtests of VaR.

Colletaz et al. (2013) deĄne the notions of exception and super exception, where the

latter happens at the extreme tail of the distribution of returns (or P&L distribution).

They deĄne a VaR exception as rt < V aRt(α), and the VaR super exception as rt <

V aRt(α
′), where α′ < α, and rt is the return at time t. The null hypothesis of their

backtest is a joint hypothesis that checks whether the probability of both an exception

and a super exception is α and α′, respectively. Colletaz et al. (2013) test the hypothesis

through a likelihood ratio test or using a hit regression test.

Another research where the use of VaR is present is introduced by Kratz et al. (2018),

where they propose a backtesting procedure for the ES based on tests of VaR violations

at various signiĄcance levels. Thus, it is an implicit way to backtest the ES. This is

motivated by the following approximation Ąrst proposed by Emmer et al. (2013):

ESα ≈
1

4
[q(α) + q(0.75α + 0.25) + q(0.5α + 0.5) + q(0.25α + 0.75)] (3.3)
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where q(α) = V aRα.

The downside of this approach is the approximation error in (3.3) since we are

approximating ES using quantiles.

3.2.2 Backtests based on cumulative violations

Du and Escanciano (2017) propose an unconditional and a conditional backtest. In

order to build the tests, they introduce the concept of cumulative violations as the

integral of the violations over the coverage level in the left tail:

Ht(α) =
1

α

∫ α

0
ht(u) du, (3.4)

where ht(α) = 1( Xt ≤ −V aRt(α) ) is the hit at time t and Xt is the bankŠs

revenue at time t. Then, they deduce by FubiniŠs theorem that the mean of Ht(α) is

α/2. Hence, their unconditional backtest uses a t-test to evaluate the null hypothesis

stated as E[Ht(α,θ0)] = α/2, where the parameter θ0 used in the generalized error

distribution (GED) ut(θ0), can be estimated through a conditional maximum likelikhood

estimator (CMLE), for instance. On the other hand, their conditional backtest is a

Portmanteau Box-test which, according to them, is an analogue backtest for ES based

on VaR-backtests proposed by (Christoffersen, 1998; Berkowitz et al., 2011).

In conclusion, the backtest by Du and Escanciano (2017) indirectly involves the VaR.

3.3 Backtesting Expectiles

One fundamental difference between backtesting expectile and VaR is that there is no

concept of "violation" or "exception" for expectiles since the former is a moment based

risk measure rather than a quantile based one. At the same time, even though expectile
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does not have the concept of violation since they are moment-based risk measures,

this would be another point that explains why it has not been adopted by regulators

and Ąnancial institutions. VaR and ES concept of violation simpliĄes and explains an

undesired scenario which is the exceedance of a loss over the risk measure. Explaining an

undesirable scenario through expectile is less intuitive since now the focus is not whether

returns (losses) have fallen (surpassed) the quantile, but on the distance between the

sample point and the expectile.

Moreover, despite there is some literature on traditional and comparative backtesting

procedures for expectiles (Nolde and Ziegel, 2017), to our present knowledge, the only

research mainly focused on traditional backtests for expectiles was proposed by Bellini

et al. (2019), where the asymptotic distributions of empirical scores (realized scores)

and realized identiĄcation functions are studied for normal and uniform i.i.d. samples.

First, following Newey and Powell (1987), they state that expectile is the minimizer of

the expected value of the quadratic scoring function in (2.7) and identiĄcation function:

I(e)(x,y) = α(y − x)+ − (1 − α)(y − x)−. (3.5)

In the case of the identiĄcation function, the expectile is the only solution to equality

E[I(e)(x,Y )] = 0, Y ∈ L1, as showed by Newey and Powell (1987).

Next, they deĄne the realized score and the realized identiĄcation functions, which are

the empirical versions of the expected values of the quadratic scoring function [equation

2.7)] and the identiĄcation function [equation (3.5)], respectively:

Let Yk be an i.i.d. sample, for k ∈ ¶1, 2, ..., n♢, then their deĄnition of the realized

score and realized identiĄcation functions, which are the empirical versions of the

expected scores and identiĄcation functions are:
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Ŝ(e)
n (x) =

1

n

n
∑

k=1

S(e)(x,Yk), (3.6)

where S(e)(x,Yk) is the scoring function of the expectile [see equation (2.7)], which is

evaluated at x: the argument that minimizes the expected score [see equation (2.1)].

Since expectile minimizes the expected score and Ŝ(e)
n (x) is close to the expected score

by law of large numbers, we expect the realized score to be minimized in the expectile

as well.

Secondly, the realized identiĄcation function is deĄned as:

Î(e)
n (x) =

1

n

n
∑

k=1

I(e)(x,Yk), (3.7)

where I(e)(x,Yk) is the identiĄcation function also evaluated at x, which is the

expectile: the value that solves the expression E[I(e)(x,Y )] = 0.

After deĄning the realized functions, they describe two methods: one based on the

simulation of realized scores and the second based on the PIT. In both methods, the

null hypothesis is stated as: the forecasting model is correct.

The Ąrst backtest is based on the simulation of the realized score deĄned in (3.6).

In this test, the comparison of the realized score is made against a simulated score. If

Ŝ(e)
n (x) is way higher than its mean under the H0, then the null hypothesis is rejected.

In case it is not rejected, they conclude that the forecasting model is adequate. The

downside of this approach is that the critical value of the backtest does not have a closed

form and must be computed by simulation.

The second backtest procedure involves the PIT, which transforms a continuously

random variable to a standard uniform random variable by applying the (conditional)

CDF (i.e. the daily return). First, they compute the PIT of the estimated models, and
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then the realized score Ŝ(e)
n (x) and the realized identiĄcation function Î(e)

n (x) as if the

model were uniform i.i.d.

Further, when using the realized score Ŝ(e)
n (x) in their backtest, as stated in the Ąrst

method, the null hypothesis should be rejected if it is sufficiently far from the asymptotical

mean of Ŝ(e)
n (x) under H0. On the other hand, when using the realized identiĄcation

function Î(e)
n (x), the null hypothesis should be rejected if Î(e)

n (x) is sufficiently far from

zero. In other words, they analyze if there is a change (increase or decrease) in the

realized identiĄcation function, since it should stay sufficiently close to zero because the

expectile is the solution to equality E[I(e)(x,Y )] = 0.

Finally, through some simulated examples, they also conclude their backtests that

use scoring functions such as (2.7), have more power detecting conditional mean mis-

speciĄcations than their backtests that use identiĄcation functions [see equation (3.5)].

The downsides of the PIT approach are: First, if the regulator needs to compute

the PIT, then the Ąnancial institution would have to disclose its internal model, which

can raise conĄdentiality concerns. Second, and more importantly, the procedure is

focused on the expectile of the PIT; nevertheless, the expectile of the PIT of the P&L

is not the same as the expectile of the P&L. In other words, there is no simple one-to-

one correspondence between the expectiles of the PIT and the expectiles of the P&L.

Thus, a model that passes a PIT-based backtest does not necessarily pass a P&L-based

backtest. Namely, it is not possible to check whether the capital reserve for that Ąnancial

institution is adequate by using their procedure4.

4A similar issue exists also for many ES backtesting procedures, such as Du and Escanciano (2017),
which also backtest the ES of the PIT instead of backtesting the ES of P&L directly.
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Chapter 4

Methodology

In this chapter, we propose a traditional backtest for expectile, run some Monte

Carlo simulations to compute its power and size, and show an empirical application

with real data.

4.1 The test

In order to test the performance of a model in terms of the accuracy of its expectile

estimate1, we run a backtesting procedure that consists of comparing the daily observed

return denoted as Xt for each date t, with the conditional expectile et(κ) computed at

time t.

For such a test, following Nolde and Ziegel (2017) we Ąrst state the next deĄnitions:

Let Ψ = (ρ1, ..., ρn). The sequence of forecasts ¶et(κ)♢t∈N is calibrated for Ψ on

average if

1We test the expectile in terms of the expectile estimate. We do not test whether expectile is an
adequate risk measure since, as shown in Chapter 2, it is acceptable as it is elicitable and coherent.
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E[Ψ(et,Xt)] = 0, ∀ t ∈ N. (4.1)

Furthermore, if we condition on past information, then we say that the sequence of

predictions of forecasts ¶et(κ)♢t∈N is conditionally calibrated for Ψ if

E[Ψ(et,Xt)♣Ft−1] = 0, almost surely, ∀ t ∈ N, (4.2)

where Ψ(et,Xt) is the identiĄcation function deĄned as:

Ψ(et,Xt) = κ(Xt − et(κ))+ − (1 − κ)(Xt − et(κ))−. (4.3)

Finally, we can state the null hypothesis of the backtest as:

H0 : The sequence of forecasts ¶et(κ)♢t∈N is conditionally calibrated for Ψ.

Just for explanatory purposes, the null hypothesis could be interpreted as: the bankŠs

internal model produces sufficiently accurate expectile forecasts.

If we do not reject the null hyphotesis, we conclude that the model passes the test.

If H0 is rejected, then we conclude that the model fails the test (i.e. is not acceptable).

Starting off with the context, suppose that a bank has an internal model, which is

used to compute the daily predictive distribution of next dayŠs return, as well as the

associated conditional expectile et(κ) at level κ ∈ (0,1) and time t characterized by:

κEt[(Xt − et(κ))+] = (1 − κ)Et[(Xt − et(κ))−] (4.4)

where the symbol Et means conditional expectation with respect to all the available
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information up to the start of the trading date t.

We compute the conditional expectile at time t as

et(κ) = σt · e(κ), (4.5)

where σt should be estimated, and e(κ) is the theoretical expectile of the residuals

ϵt, which is computed using one of the methods explained in Section 2.4. This method

of estimating the conditional expectile is similar to the one used by McNeil and Frey

(2000).

The objective is to test whether equation (4.4) is satisĄed by the data, that is to say,

if the internal calculation of et(κ) over the period t ∈ ¶1, ..., n♢ is acceptable, at some

conĄdence level 1 - α, for instance, 95%.

The thesis is based on the use of moment conditions suggested by Nolde and Ziegel

(2017). Indeed, (4.4) implies that

E



Ft[κ(Xt − et(κ))+ − (1 − κ)(Xt − et(κ))−]


= 0, (4.6)

where Ft is called instrumental function and can be any deterministic function of

previous market variables such as Xt−1, Xt−2, ... and et(κ), et−1(κ), ... .

Thus, we have at our disposal an inĄnity of moment conditions that the sequences of

expectiles et(κ) should satisfy, which allow us to freely choose the instrumental function.

See some natural candidates highlighted below:

Example 1: Ft = 1
et(κ)

. This is motivated by the fact that the term α(Xt − et(κ))+ −

(1 − α)(Xt − et(κ))− likely features heteroscedasticity when t varies. Hence, dividing it

by the expectile, which acts as a volatility measure at time t, could help removing such
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heteroscedasticity.

Example 2: Ft = 1, to test whether α(Xt − et(κ))+ − (1 − α)(Xt − et(κ))− is correctly

centered. In the backtesting literature, this test is often called as simple conditional

calibration test (Nolde and Ziegel, 2017).

Example 3: Ft = Xt−1

et(κ)3 , in which the numerator is chosen to test whether the impact

of the leverage is correctly taken into account by the bankŠs internal model. The

denominator, in turn, is chosen to control for heteroscedasticity.

Example 4: We can also use some exponential moving average Ąlter to construct

a volatility measure from the observed daily return only. For instance, we could use,

alternatively:

Ft =
1

σ2
t

,

where σ2
t = ασ2

t−1 + (1 − α)X2
t , and α is some pre-determined constant, say α = 0.95.

Example 5: We can construct some empirical skewness measures, such as Ft =
X3

t−1

et(κ)5 .

All the above-mentioned examples share one common property: they only depend on

past observations of (Xt) and et(κ). Consequently, the bank does not need to disclose

completely its own internal model. It is only required to report its daily risk measure

et(κ).

The condition that the empirical mean of the identiĄcation function is equal to zero

is not sufficient when dealing with time series to characterize a Conditional Coverage

test, since that would only characterize an Unconditional Converge Test. Therefore,

when working with time series, extra conditions should be considered in order to deal

with the dependence of past returns because the identiĄcation function would no longer
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be i.i.d. For this reason, we condition on past information and use the conditionally

calibrated sequence of forecasts.

Moreover, depending on how we build the instrumental functions, the test can be UC-

based or CC-based. If we consider instrumental functions based on lagged identiĄcation

functions such as Ft = (1, Ψ(et−1,Xt−1))T , as suggested by Giacomini and White (2006),

then we would be building a Conditional Coverage test. In general, we can consider

Ft = (1, Ψ(et−1,Xt−1), ..., Ψ(et−k,Xt−k))T where k ≥ 1 (see, Engle and Manganelli, 2004;

Kuester et al., 2006).

The moment conditions in equation (4.6) can now be explicitly tested using obser-

vations of return data Xt and the sequence of expectiles et(κ) provided by the bank.

LetŠs assume that we use m moment conditions, where m ≥ 1. We denote the vector of

instrumental functions Ft = (F1,t, F2,t, ..., Fm,t). Then, under appropriate stationarity

assumptions2 detailed in Theorem 4 named Unconditional Predictive Ability Test by

Giacomini and White (2006), we get approximately:

1

n

n
∑

t=1

FtΨ(et,Xt) ∼ N (0, Ω), (4.7)

where Ω is the covariance matrix of the vector FtΨ(et,Xt), and where Ψ(et,Xt) is the

identiĄcation function.

Thus, we can conduct a Wald-test (Nolde and Ziegel, 2017) which is deĄned as:

Ŵ = n (
1

n
Σn

t=1Ft Ψ(et,Xt) )T Ω̂−1
n (

1

n
Σn

t=1Ft Ψ(et,Xt) ), (4.8)

2One minor difficulty is that because we have time series data, the distribution of 1

n

∑

n

t=1
FtΨ(et,Xt)

is asymptotically Gaussian only under some conditions [see e.g. McLeish (1975); Hannan (1979);
Wooldridge and White (1988)]. The conditions about the Gaussian asymptotics are frequently assumed
in the economics/Ąnance literature since Hansen (1982).
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where the empirical variance-covariance matrix can be obtained using general result

on weakly stationary time series (Giacomini and White, 2006, Theorem 1):

Ω̂n =
1

n
Σn

t=1(Ft Ψ(et,Xt)) (Ft Ψ(et,Xt))
T . (4.9)

In particular, when m = 1 (we only use one instrumental function), the test statistic

Ŵ is simpliĄed as in the following inequality:

Ŵ =
n( 1

n
Σn

t=1Ft Ψ(et,Xt) )2

Σ
> z, (4.10)

where Σ is simply the variance of FtΨ(et,Xt), and where z is the critical value of the

chi-squared distribution with v = 1 degrees of freedom. In fact, v = m for all m.

If the inequality (4.10) is true, then we reject the null hypothesis, and reject the

bankŠs internal model. Conversely, if we do not reject the null hypothesis, then there is

not enough evidence to conclude that the expectile forecasts estimated by the internal

model are poor.
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4.2 Monte Carlo Simulation of size and power of

the test

In this section, we compute the size and the power of the test, and analyze how

those metrics behave when the sample size n varies, when we set a different level for the

expectile κ, or when we change the distributional assumption of the innovations ϵt.

To initialize the simulation study, we Ąrst simulate daily returns Xt using a GARCH(1,1)

time series model which we will refer to as the correct model, or as the true data generator.

We start by specifying the parameters of the model as:

σ2
t = α0 + α1σ

2
t−1 + β1X

2
t−1 (4.11)

Xt = σtϵt, t ∈ ¶1, 2, ..., n♢, (4.12)

where α0 = 1 × 10−6, α1 = 0.1, β1 = 0.888, and et are the innovations standard

Normal, or t-Student3 distributed with v degrees of freedom. Moreover, in order to

make the GARCH(1,1) simulation stable, we verify the stationarity conditions: α1 > 0,

β1 > 0, and α1 + β1 < 1. In the Ąrst set of tables, we will run a GARCH model with

Normal innovations.

We set the variance at time t = 1 to be the unconditional variance of the model:

σ2
1 =

α0

1 − α1 − β1

. (4.13)

Once we have the volatility vector σt, we use equation (4.5) to compute the vector of

daily conditional expectiles et(κ) associated with the returns Xt.

3The variance of the residual in the t-Student case needs to be standardized, in order to make it
unitary.
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Before running the Wald-test, we deĄne six instrumental functions that we will use

in the computation of the Wald-statistic:

Instrumental Function 1: Ft = 1
et(α)

Instrumental Function 2: Ft = 1

Instrumental Function 3: Ft = Xt−1

et(α)3

Instrumental Function 4: Ft = 1
σ2

t

Instrumental Function 5: Ft =
X3

t−1

et(α)5

Instrumental Function 6: Ft = 1
et−1(α)

Next, using Xt, et(κ) and Ft, we run a Wald-test as previously described in Section

4.1. This procedure is replicated NSim times (number of simulations), in order to

calculate the proportion of times the test is rejected. These proportions are two major

metrics commonly known as the size and power of the test, and are used to measure the

performance of a statistical test. Depending on which metric we are calculating, we will

make a different assumption on the model to estimate σt, which is needed to calculate

the conditional expectile as in equation (4.5).

4.2.1 Computing the Size of the test

The size of the test, alternatively called Error Type I, is deĄned as:

• Error Type I = P(Reject H0 ♣ H0 is True)

Error Type I (Size) is interpreted as the probability of falsely rejecting the correct

model.

In order to calculate Error Type I, we compute σt under the hypothesis that the
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returns Xt come from the previously stated GARCH(1,1), which is the true data

generator. Then, we use equation (4.5) to compute the conditional expectile.

When we compute the theoretical expectile e(κ) of the residuals ϵt, used to estimate

the conditional expectile, we utilize the R functions "enorm" and "et" within the "expec-

treg" library, depending on the assumption of the residuals being Normal or t-Student

distributed, and then we multiply e(κ) by the daily volatility of the model σt as in

equation (4.5).

Then we use equation (4.8) to compute the Wald-statistic Ŵ . Finally, we verify

inequality (4.10), where z is a chi-square quantile χ̃2
α,v with arbitrary α = 95% and v

degrees of freedom, which depend on the number of instrumental functions that we

are using. If inequality (4.10) is satisĄed, then we reject the null hypothesis H0 and

conclude that the model fails the test. This whole procedure counts as the Ąrst iteration

of a simulation. We run this procedure NSim times (number of simulations) in total,

and calculate the proportion of successful tests.

Since α = 95% is the arbitrary level chosen for the critical value, we expect Error

Type I results to be close to 1 - α if n is sufficiently large, given that we expect the null

hypothesis to be rejected (1 − α)% of the times.

4.2.2 Computing the Power of the test

The second metric is called the power of the test, and it can be expressed as 1 - Error

Type II:

• Error Type II = P(Accept H0 ♣ H0 is False) = 1 - P(Reject H0 ♣ H0 is False)

Error Type II (1 - Power) is the probability of incorrectly accepting the wrong model.

Alternatively, the power represents the probability that the test correctly rejects the

null hypothesis when a speciĄc alternative hypothesis is true. A higher power value
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indicates a better performance of the test.

Let us now explain how to compute Error Type II, the complement of the power. As

in the computation of Error Type I, we also need to compute the conditional expectile

using (4.5). In this case, instead of assuming that the daily volatility σt comes from

the previously stated GARCH(1,1) which is the true data generator, we calculate σt

"incorrectly" by a wrong model. For instance, we can compute σt using the HS method

[see Section 2.4]. Under this method, σt is simply estimated as the sample variance:

σ̂2 = Σn
t=1

(Xt − E[Xt])
2

n − 1
, ∀ t (4.14)

Another way to incorrectly compute the expectile is by assuming that the returns

follow a different model than the GARCH(1,1) used to generate the true data. For

example, we can assume a GARCH(1,2) instead.

A priori, we expect that Error Type II will decrease as n increases if the periods of

observations overlap. Two periods of time overlap if the observations of the Ąrst period

are contained inside another one larger in number of observations. For instance, if days 1

to 250 of the Ąrst period are chronologically contained in the second period of time that

has 500 observations, then we can say that the former overlaps with the latter. Hence,

the larger is the length of the period, the more information the backtest has available to

run the procedure. Consequently, the test will detect the wrong model more efficiently.

It is important to highlight that in the following tables, we show results where the

size-adjusted-power has not been applied. We show raw results of the size and the power

of the test. On a second note, we have excluded instrumental functions 3 and 5 in the

results of the following sections, since we ran some preliminary simulations using the HS

method, and both Error Type I and II results were not conclusive. Error Type I did not
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always approached to 1 − α, and Error Type II was quite large for both instrumental

functions, and did not converged to zero as we increased the sample size n.

4.2.3 Impact of the sample size on Error Type I and Error

Type II

Table 4.1 shows what happens to Error Type I and II when we use an extremely

large number of observations n. We expect the Error Type I to converge to 1 - α, and

Error Type II to plunge to zero. Note that Error Type II is not exactly zero for n =

20,000. In this speciĄc case, running these procedures takes quite a long time because n

is large, and the number of simulations also affect the computational time when we run

the process for more than 2,000 simulations.

It was previously mentioned that instrumental functions 3 and 5 alone show bad

performance since Error Type I and II are very large. For instrumental function 6, we

did not see any improvement compared to instrumental function 1 which is expected

since they are of the same nature. As for Error Type I, we see that it is close to 1

- α across all instrumental functions (except 3 and 5). For this reason, we discard

instrumental functions 3, 5, and 6, and keep 1, 2 and 4 for the rest of the simulations.

Another Ąnding to highlight is to observe the results of Error Type I and Error Type

II when we add more instrumental functions. One must question whether Error Type

II decreases by adding more instrumental functions. From the Ąnal results we observe

that in some cases Error Type I slightly increases to 8.5% for κ = 90%. Here we are

computing all results with 5,000 simulations. In some cases, the size will get closer to 1

- α if the number of observations n and number of simulations (NSim) are large enough,

and if κ is not close to 100%. The choice of instrumental functions will affect the results

as well.
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(a) Error Type I

IF/n 250 750 5,000 20,000
1 0.0608 0.054 0.0524 0.0556
2 0.0626 0.0522 0.0494 0.051
4 0.0572 0.0562 0.0536 0.0534
1-2 0.0918 0.0712 0.0514 0.0526
1-4 0.088 0.0596 0.0486 0.0542
2-4 0.0888 0.0644 0.052 0.0546
1-2-4 0.1294 0.0892 0.0586 0.0538

(b) Error Type II

IF/n 250 750 5,000 20,000
1 0.8764 0.8066 0.2792 0.0016
2 0.863 0.8042 0.3522 0.01
4 0.8844 0.817 0.304 0.0016
1-2 0.8394 0.8126 0.373 0.0036
1-4 0.848 0.8218 0.369 0.0034
2-4 0.8422 0.812 0.367 0.0034
1-2-4 0.7992 0.8002 0.4192 0.0058

Table 4.1: Impact of the sample size on Error Type I and II. Results obtained from a
backtesting procedure utilizing instrumental functions 1, 2, 4 and their respective combinations.
The true data comes from a GARCH(1,1) model with α0 = 1e − 6, α1 = 0.1, and β1 = 0.888.
The returns of the wrong model come from a GARCH(1,2) model with α0 = 1e − 6, α1 = 0.1,
β1 = 0.888, and β2 = 0.01. The number of simulations is 5,000, κ = 90%, and α = 95%.
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To conclude, we observe that, in terms of convergence to (1 - α), the best instrumental

function is number 2, followed by 4 and Ąnally 1 for Error Type I when n is very large.

For Error Type II, we see that instrumental function 1 showed better results when n =

5,000. The worst case for n = 20,000 is when using instrumental function 2, since Error

Type II is the highest in that column.

When using two or more instrumental function in the construction of the Wald-

statistic, we see a decrease in Error Type II when n = 250. However, when analyzing

Error Type I, it is slightly higher for n = 250, being the combination of instrumental

functions 1-2-4 the worst of all scenarios. Taking into account the aforementioned, we

observe that for n = 250, and when adding more instrumental functions, there is a

trade-off between both errors since Error Type II decreases as Error Type I increases.

As we analyze the extreme case where n = 20,000, we conclude that there is not

signiĄcant difference in Error Type I since all combinations of instrumental functions

roughly converge to 1 - α = 5%.

4.2.4 Impact of the choice of wrong model on Error Type II

In this section, we compute the conditional expectile assuming that volatility σt used

to compute the conditional expectile et(κ) comes from a different model, which we will

call the "wrong model". This wrong model is different than the original GARCH(1,1)

used to simulate the true data. This way, we will be able to compute Error Type II.

There are various choices of wrong models that we can use to compute the volatility

used to compute the conditional expectile. One option is to compute the volatility using

the Historical Simulation method, where in this case, we simply use the sample variance

as in equation 4.14, instead of computing the volatility using the recursive formula of the

GARCH(1,1) model. A second option is to compute the volatility using the recursive
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formula of a GARCH(1,2) model which is different from the true model:

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 + β2σ

2
t−2, (4.15)

Xt = σtϵt, t ∈ ¶1, 2, ..., n♢, (4.16)

with parameters:

α0 = 1 × 10−6, α1 = 0.1, β1 = 0.888, β2 = 0.01.

We must check that the stationarity condition 0 < α1 + Σβi < 1 is satisĄed for this

GARCH(1,2) model.

Now, since we already have the daily returns Xt previously simulated by the

GARCH(1,1) model (the true data generator), we insert them into equation (4.15)

to obtain the volatility of the GARCH(1,2) model (the wrong model). Note that the

GARCH(1,2) model is almost the same as the GARCH(1,1) computed previously, be-

cause they have the same parameter values α0, α1, and β1. The only difference is that

the GARCH(1,2) has an extra parameter β2, which is quite small in this speciĄc case.

Since β2 is small, we do not expect to have a signiĄcant difference in the daily volatility

values of the GARCH(1,2) and the volatility values of the GARCH(1,1).

As stated before, the GARCH(1,2) model used to compute the "wrong" expectile is

very similar to the GARCH(1,1). On the contrary, if we choose β2 to be larger value,

for example 0.15, the results for Error Type II will change drastically since the daily

volatilities of both models will be far from each other. We would expect Error Type II

to be much lower as the wrong model will be easier to detect. In the following tables,

we present the results from different backtesting procedures using a GARCH(1,1) model
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as the true data generator, against a GARCH(1,2) as the wrong model whose volatility

is computed with the recursive formula stated before.

In summary, we will set the GARCH(1,2) as the wrong model. As mentioned before,

if its parameters are close to the true data generator GARCH(1,1), we will expect a

large Error Type II. Conversely, if both modelŠs parameters are not similar (the models

are quite different from each other), then Error Type II should be very small since it

will be easier to detect that the wrong model is not close to the true model.

Table 4.2 shows the comparison between the results of a GARCH(1,2) whose param-

eters are quite far from the true model (Panel A), and a GARCH(1,2) with parameters

close to the true model (Panel B). For the model that we consider is "far" from the true

model, we set α0 = 1e − 6, α1 = 0.1, β1 = 0.6 and β2 = 0.01. The only differences with

the original GARCH(1,1) deĄned before are the extra parameter β2, and that while β1

of the GARCH(1,1) is set as β1 = 0.888, the β1 parameter of the GARCH(1,2) model is

set to 0.6. As expected, the backtest shows that Error Type II results in Panel A are

close to zero since it is easy detect that one model is quite different from the other.

Moving on to the results in Panel B, we Ąnd the backtest results obtained by using

a GARCH(1,2) as the wrong model, with parameters very similar to the ones of the

true model. Recall that the parameters of the GARCH(1,1), which is the true data

generator are: α0 = 1e − 6, α1 = 0.1, β1 = 0.888. In this case, the GARCH(1,2) has the

same values for all its parameters. The extra parameter is set as β2 = 0.01. Because β2

is small, we see a larger Error Type II in comparison to the results in Panel A, since

the parameters of both models are quite close. As expected, this makes the backtest to

have less power in order to detect the wrong model.

Furthermore, in Panel C, we present the results obtained using the HS method. Since

the computation of the daily volatility σt with the HS method is constant for all values
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(a) GARCH with parameters far from the true model

IF/n 750 5000
1 0 0
2 0 0
4 0 0
1-2 0 0
1-4 0 0
2-4 0 0
1-2-4 0 0

(b) GARCH with parameters close to the true model

IF/n 750 5000
1 0.8066 0.2792
2 0.8042 0.3522
4 0.8170 0.3040
1-2 0.8126 0.3730
1-4 0.8218 0.3690
2-4 0.8120 0.3670
1-2-4 0.8002 0.4192

(c) Historical Simulation method

IF/n 750 5000
2 0.3572 0.2980

Table 4.2: Impact of the choice of the wrong model on Error Type II. Results obtained from a
backtesting procedure utilizing instrumental functions 1, 2, 4 and their respective combinations.
The true data comes from a GARCH(1,1) model with α0 = 1e − 6, α1 = 0.1, and β1 = 0.888.
In Panel A we observe the results of the wrong model that come from a GARCH(1,2) model
with α0 = 1e − 6, α1 = 0.1, β1 = 0.6, and β2 = 0.01. In Panel B we observe the results of the
wrong model that come from a GARCH(1,2) model with α0 = 1e − 6, α1 = 0.1, β1 = 0.888,
and β2 = 0.01. The number of simulations is 5,000, κ = 90%, and α = 95%.

37



CHAPTER 4. METHODOLOGY

of time t, the results are the same for instrumental functions 1, 2, 4 and 6. Thus, we

only use instrumental function 2. Given that the conditional expectile depends on σt it

will be constant too. Indeed, all instrumental functions that involve σt or et(κ) will be

constant over t. For this reason, we only use instrumental function 2 for the results in

Panel C in Table 4.2.

Next, in Table 4.3 we show the results of a backtesting procedure with a different

true data generator GARCH(1,1) model with different parameters as the previous

one. In other words, we use a different "true model" to generate the returns. We set

α1 = 0.1, β1 = 0.8 (before β1 was 0.888). After we run the simulations, we conclude that

there is no improvement in Error I when setting different parameters for the GARCH(1,1)

model (the correct model). However, Error Type II is lower in Table 4.1 since the sum

of the parameters of the model used to compute the results of that table is closer to 1.

In general, Error Type II tends to decrease as the sum of the parameters of the GARCH

model α1 + β1 approach to 1. If the sum of the parameters of the model is close to one,

its volatility will be highly persistent, and as a consequence, the past volatility values

have bigger inĆuence over future volatility values.

Finally, Table A.1 in the Appendix is useful to run a simulation check. The objective

of the table is simply to check that if the wrong model is in fact the correct model, then

the results for Error Type I should be the complement of results for Error Type II.

4.2.5 Impact of the number of simulations on both errors

In Table 4.4, in the Ąrst column we show the results using 5,000 simulations. Then we

reproduce the same procedure using 10,000 simulations to analyze if there are important

variations in the results.

We conclude that we can keep the number of simulations to 5,000, because the results
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(a) Error Type I

IF/n 250 750 1500
1 0.0578 0.0536 0.0534
2 0.0564 0.0536 0.0544
4 0.057 0.0536 0.0532
1-2 0.0868 0.0636 0.0576
1-4 0.0788 0.0624 0.0568
2-4 0.0824 0.0618 0.058
1-2-4 0.1356 0.0874 0.0752

(b) Error Type II

IF/n 250 750 1500
1 0.9148 0.8966 0.8612
2 0.9136 0.8938 0.8584
4 0.9156 0.896 0.8628
1-2 0.8864 0.8946 0.8754
1-4 0.8904 0.8986 0.8752
2-4 0.8884 0.8972 0.8766
1-2-4 0.8356 0.869 0.8592

Table 4.3: Impact of the choice of the wrong model on Error Type I and II. Results obtained
from a backtesting procedure utilizing instrumental functions 1, 2, 4 and their respective
combinations. The true data comes from a GARCH(1,1) model with α0 = 1e−6, α1 = 0.1, and
β1 = 0.80. The returns of the wrong model come from a GARCH(1,2) model with α0 = 1e − 6,
α1 = 0.1, β1 = 0.80, and β2 = 0.01. The number of simulations is 5,000, κ = 90%, and α =
95%.
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(a) Error Type I

IF/NSim 5,000 10,000
1 0.0498 0.0507
2 0.0554 0.0550
4 0.0502 0.0505
1-2 0.0654 0.0663
1-4 0.0616 0.0615
2-4 0.0644 0.0634
1-2-4 0.0912 0.0883

(b) Error Type II

IF/NSim 5,000 10,000
1 0.8044 0.8046
2 0.7958 0.7979
4 0.8168 0.8142
1-2 0.8102 0.8054
1-4 0.8126 0.8114
2-4 0.8098 0.8057
1-2-4 0.7942 0.7941

Table 4.4: Impact of the number of simulations on Error Type I and II. Results obtained
from a backtesting procedure utilizing instrumental functions 1, 2, 4 and their respective
combinations. The true data comes from a GARCH(1,1) model with α0 = 1e − 6, α1 = 0.1,
and β1 = 0.888. The returns of the wrong model come from a GARCH(1,2) model with
α0 = 1e − 6, α1 = 0.1, β1 = 0.888, and β2 = 0.01. The number of simulations is 5,000 and
10,000, n = 750, κ = 90%, and α = 95%.
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do not change substantially. This saves time and computational costs when running the

backtesting procedures.

4.2.6 Impact of the level of the conditional expectile

Table 4.5 shows how the results for Error Type I and II change when we set a

different κ level used to compute the theoretical expectile e(κ) of the residual ϵt which

consequently affects the computation of the conditional expectile et(κ). We replicate the

same procedure for different instrumental functions, and across various combinations.

As displayed in Panel A, Error Type I results are intuitive since they stay closer to

1 - α for κ = 0.90 and 0.95. The worst scenario occurs when we set κ at 99% and use

three instrumental functions because Error Type I is above 10%, which is too far from 1

- α. In Panel B, we clearly see that Error Type II is higher when κ = 0.90. Although

the results for κ = 0.95 are slightly better than the ones when κ = 0.99 when using one

instrumental function, the improvement is negligible. When adding more instrumental

functions, Error Type II clearly increases in most cases.

4.2.7 Impact of the distribution of the residual

As stated before, the computation of the conditional expectile at time t is as follows:

et(κ) = σt · e(κ), (4.17)

where e(κ) is the theoretical expectile of standard Normal or t-Student residuals ϵt.

In the previous simulations, we have computed the conditional expectile assuming that

the residuals follow a Normal distribution. In this section, we now assume that the

distribution of the residuals is t-Student with v degrees of freedom.
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(a) Error Type I

IF/κ 0.9 0.95 0.99
1 0.0524 0.0494 0.0546
2 0.0494 0.0518 0.0516
4 0.0536 0.0518 0.0562
1-2 0.0514 0.0538 0.075
1-4 0.0486 0.0492 0.06
2-4 0.052 0.0508 0.0664
1-2-4 0.0586 0.07 0.1126

(b) Error Type II

IF/κ 0.9 0.95 0.99
1 0.2792 0.179 0.1918
2 0.3522 0.245 0.2494
4 0.304 0.1982 0.2128
1-2 0.373 0.2534 0.2488
1-4 0.369 0.2464 0.2442
2-4 0.367 0.2468 0.2428
1-2-4 0.4192 0.288 0.2564

Table 4.5: Impact of the level of the conditional expectile on Error Type I and II. Results
obtained from a backtesting procedure utilizing instrumental functions 1, 2, 4 and their
respective combinations. The true data comes from a GARCH(1,1) model with α0 = 1e − 6,
α1 = 0.1, and β1 = 0.888. The returns of the wrong model come from a GARCH(1,2) model
with α0 = 1e − 6, α1 = 0.1, β1 = 0.888, and β2 = 0.01. The number of simulations is 5,000, n

= 5,000, and α = 95%.
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The objective of Table 4.6, is to analyze how Error Type I and II develop as we

increase the number of degrees of freedom used to compute the theoretical expectiles,

and also to compare these t-Student results with the ones of the Normal distribution.

As we know, a t-Student distribution converges to a Normal distribution as the

degrees of freedom go to inĄnity. Empirically, we would expect that 30 degrees of

freedom are sufficient for the t-Student values to be very close to the ones of a Normal

distribution. However, the convergence of the expectiles of a t-Student distribution

might be slower, and require more degrees of freedom to converge to the expectiles of

a standard Normal distribution. In other words, given the same number of degrees of

freedom, the quantiles of a t-Student distribution will be closer to the quantiles of the

Normal distribution, than what the expectiles of a t-Student will be from the expectiles

of a standard Normal distribution.

Refer to Table 4.6 to see the Error results where the distribution of the theoretical

expectile is t-Student across various degrees of freedom. We show that for 5,000

simulations and a sample size n of 5,000, Error Type I increases when adding more

instrumental functions to the computation of the Wald-statistic. Moreover, note that

for instrumental function 2, Error Type I seems to slightly go away from 1 − α as the

number of degrees of freedom increase. Conversely, it approaches approaches to 1 − α

when using the combination of instrumental functions 1 and 2 at the same time.

Furthermore, when analyzing Error Type II, we note that it increases as we add more

instrumental functions to compute the Wald test statistic, however it decreases when

increasing the number of degrees of freedom used to compute the conditional expectile.

We conclude that for this case, the Normal distribution shows better Error Type

II results than the ones of the t-Student distribution. This could be explained by the

fact that a GARCH model with t-Student innovations and a small value of degrees of
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freedom has higher volatility, and as a consequence, it is more difficult to backtest. In

the case of Error Type I, the Normal model seems to perform better t-Student when we

use more instrumental function to compute the Wald-statistic, however, there is not

substantial difference in the results when using one or two instrumental functions.

(a) Error Type I

IF/v 4 6 8 30 N(0,1)
1 0.0524 0.0518 0.0484 0.0528 0.0472
2 0.0506 0.0526 0.0522 0.0530 0.0490
4 0.0530 0.0512 0.0494 0.0532 0.0462
1-2 0.0638 0.0626 0.0568 0.0588 0.0528
1-4 0.0584 0.0590 0.0510 0.0582 0.0478
2-4 0.0554 0.0576 0.0530 0.0566 0.0508
1-2-4 0.0830 0.0820 0.0694 0.0674 0.0610

(b) Error Type II

IF/v 4 6 8 30 N(0,1)
1 0.5616 0.4560 0.3852 0.2984 0.2856
2 0.5956 0.5206 0.4596 0.3760 0.3542
4 0.5854 0.4840 0.4194 0.3314 0.3102
1-2 0.6180 0.5324 0.4726 0.3940 0.3766
1-4 0.6152 0.5294 0.4670 0.3876 0.3714
2-4 0.6056 0.5240 0.4646 0.3884 0.3708
1-2-4 0.6172 0.5586 0.5110 0.4314 0.4162

Table 4.6: Impact of the distribution of the residual on Error Type I and II. Results obtained
from a backtesting procedure utilizing instrumental functions 1, 2, 4 and their respective
combinations. The true data comes from a GARCH(1,1) model with α0 = 1e − 6, α1 = 0.1,
and β1 = 0.888. The returns of the wrong model come from a GARCH(1,2) model with
α0 = 1e − 6, α1 = 0.1, β1 = 0.888, and β2 = 0.01. The number of simulations is 5,000, n =
5,000, κ = 0.9, and α = 95%.
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4.3 Empirical application

Summary of the methodology In this last section, we apply the backtesting method

proposed to log-returns deĄned as Xt = ln(Pt) − ln(Pt−1) where Pt is the closing price

of the S&P 500 at time t. The data recovered contains 2,541 elements and goes from

May 28th, 2013 to May 26th of 2023. The datasource is the Ąnancial platform Investing:

https://ca.investing.com/indices/us-spx-500.

After converting 2,541 closing prices to 2,540 log-returns, we arbitrarily split the data

into in-sample data and out-of-sample data. The Ąrst half has 2,040 log-returns and will

be used to estimate the parameters of a GARCH(1,1) model. The second half with 500

elements will be used to run the backtesting procedure suggested in the thesis. Note

that both the in and out-of-sample data sum up to 2,540; one element less than the

original data given that we computed the log difference of the closing prices. Once we

have the log-returns, we estimate and substract the mean to the vector of log-returns,

since a zero-mean vector is necessary to estimate the GARCH model parameters.

First, we use the R package ŠrugarchŠ to estimate the parameters ω, α1 and β1 of the

GARCH(1,1) model, and then we verify the condition of stationarity: 0 < ω+α1+β1 < 1.

Next, we compute the daily volatility for all times t up to 2,540, using the Ąrst real

return and the unconditional variance σ2
1 = ω

1−α1−β1

as the Ąrst volatility. With the

volatility, we compute the last 500 daily conditional expectiles. Finally, we run the

Wald-test to either accept or reject the null hypothesis for a GARCH(1,1) with Normal

or t-Student innovations.

We recall the Null Hypothesis as:

H0 : The expectile forecasts are correct.

If we reject H0, we say that the procedure "Fails" the test, otherwise, if the Null
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Hypothesis is not rejected, we say that the procedure "Passes" the test.

4.3.1 Impact of the level of the conditional expectile

In this section we indicate whether or not a model passes the backtest. We Ąt the

data to GARCH(1,1) models with either Normal or t-Student innovations. We also

compare the normal-GARCH(1,1) vs. normal-GARCH(1,2).

In Table 4.7, in Panel A we observe that for the normal-GARCH(1,1) model, the

procedure passes the test in all cases of instrumental functions when κ = 99%, and also

in two cases when κ = 95% for the Ąrst and second instrumental functions. The model

only passes the test at κ = 90% when using the second instrumental function. On the

other hand, in Panel B where the model has t-Student innovations, the model passes

the test in the exact same cases that where the normal-GARCH(1,1) model passed the

test. However, to make a distinction to conclude which model might be better, we can

observe to the Wald-statistic of each model. We can conclude that the normal-GARCH

model is a better Ąt to the data since the t-Student model has smaller Wald-statistics

when κ = 90%, but the Normal GARCH model shows smaller Wald-statistics when κ

= 95 or 99%. This might be expected because we also found that the GARCH model

with Normal innovations had more power than the t-Student model [refer to Section

4.2.7]. Although Monte Carlo simulations are a good indicator to determine how well

a model might perform in practice, the performance of the backtest also depends on

the dataset used. In this speciĄc scenario, the normal-GARCH seem to perform better

than the t-Student model, nonetheless, there will be cases where a model with t-Student

innovations will better Ąt the data.

In Table 4.7 we observe the same Pass/Fail results for Panel A and C, which means

that both models might be similar. When taking a closer look to both the critical values
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(a) normal GARCH(1,1)

IF CV95 W90 W95 W99 H0,90 H0,95 H0,99

1 3.84 5.18 2.18 0.1 Fail Pass Pass
2 3.84 2.05 1.02 0.05 Pass Pass Pass
4 3.84 9.95 4.24 0.27 Fail Fail Pass
1-2 5.99 15.52 5.99 0.28 Fail Fail Pass

(b) t-Student GARCH(1,1)

IF CV95 W90 W95 W99 H0,90 H0,95 H0,99

1 3.84 4.45 2.97 2.25 Fail Pass Pass
2 3.84 1.58 1.56 2.22 Pass Pass Pass
4 3.84 9.03 5.32 2.6 Fail Fail Pass
1-2 5.99 14.88 6.62 2.26 Fail Fail Pass

(c) normal GARCH(1,2)

IF CV95 W90 W95 W99 H0,90 H0,95 H0,99

1 3.84 5.72 2.57 0.19 Fail Pass Pass
2 3.84 2.38 1.27 0.11 Pass Pass Pass
4 3.84 10.72 4.8 0.4 Fail Fail Pass
1-2 5.99 15.86 6.31 0.35 Fail Fail Pass

Table 4.7: Impact of the level of the conditional expectile in real data. Results obtained
from a backtesting procedure utilizing instrumental functions 1 and 2. From left to right, we
have the Chi-square critical value at 95%, then the Wald-statistic at κ levels 90, 95 and 99%.
The last three columns indicate "Fail" when we reject the Null Hypothesis at α% = 95%. We
estimate the parameters using 2,540 daily log-returns from the S&P500 where the in-sample
data size is 2,040 and the out-of-sample size is 500.
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and the test statistics of the two GARCH models, we observe that the statistical tests

for the GARCH(1,1) model are slightly closer to the critical value than the ones of the

GARCH(1,2). This might suggest that the GARCH(1,1) is closer to not reject the null

hypothesis, and as a consequence, indicates that the model better Ąts the data compared

to the GARCH(1,2).
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4.3.2 Impact of the split of the data

In Table 4.8, we Ąnd that for κ = 90%, the 70-30 split passes the test in 2 occasions

whereas the 80-20 split in only one. In the last column, we observe better results with

the 80-20 split when κ = 99% since the backtesting procedure passes the test in all

cases. This could be explained by the fact that we are using more data to estimate the

parameters of the GARCH model compared to the 70-30 split, and we run a backtest

with less number of log-returns forecasts into the future (20% as in-sample data compared

to 30%).

(a) t-Student GARCH(1,1) with 80-20 split

IF CV95 W90 W95 W99 H0,90 H0,95 H0,99

1 3.84 4.45 2.97 2.25 Fail Pass Pass
2 3.84 1.58 1.56 2.22 Pass Pass Pass
4 3.84 9.03 5.32 2.6 Fail Fail Pass
1-2 5.99 14.88 6.62 2.26 Fail Fail Pass

(b) t-Student GARCH(1,1) with 70-30 split

IF CV95 W90 W95 W99 H0,90 H0,95 H0,99

1 3.84 3.29 2.6 4.23 Pass Pass Fail
2 3.84 0.39 0.83 5.8 Pass Pass Fail
4 3.84 8.87 5.49 3.77 Fail Fail Pass
1-2 5.99 13.69 6.26 7.27 Fail Fail Fail

Table 4.8: Impact of the split of the data (empirical application). Results obtained from a
backtesting procedure utilizing instrumental functions 1 and 2. From left to right, we have the
Chi-square critical value at 95%, then the Wald-statistics at κ levels 90, 95 and 99%. The last
three columns indicate "Fail" when we reject the Null Hypothesis at α% = 95%. In the Ąrst
case, we use 2,540 daily log-returns from the S&P500 where the in-sample data size is 2,040
and the out-of-sample size is 500. In panel B we use 1,790 log-returns for the in-sample data
and 750 for the out-of-sample data.
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4.4 Extensions

4.4.1 Realized volatility approach and Bayesian Paradigm

In the Monte Carlo Simulations section, we used GARCH models to simulate daily

returns based on the assumption that the residuals follow a parametric distribution.

Using time series model qualiĄes as a robustness analysis. However, it would also be

interesting to analyze what happens if we abandon the approach of time series models,

and use a model-free approach instead, say, the realized volatility approach which is

quite prevalent in the Ąnancial literature nowadays (Barndorff-Nielsen and Shephard,

2002).

For that purpose, we can Ąx a time window. See an instance of the realized variance

formula based on the daily centered log-returns below:

σ2
realized =

√

√

√

√

1

n

n
∑

t=1

X2
t , (4.18)

where Xt are the centered log-returns at day t, and n the total number of trading

days in a period of interest..

In contrast to the HS method, we replicate this for a set of sub-samples (rolling

window-based estimation) to Ąnally combine them together to Ąnd an estimate of the

realized volatility for each day. So, the realized volatility at time t is not constant over

time compared to the HS method.

In this case, the question of interest is: Would the results still hold if we use a

model-free approach, for instance, the realized volatility approach?

Finally, another alternative approach is to do it through a Bayesian Paradigm. In

this case, a prior distribution (arbitrary) should be used, in order to backtest the data
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from a Bayesian focus. As an example, Zelvyte and Arnsdorf (2023) discuss the easy

implementation of the procedure, and explain how the posterior distribution allows an

easy showcase of the results. In addition, they criticize the frequentist approach with

arguments such as the small power that backtests with a frequentist method have, for

instance, by discussing how one can arrive to the wrong conclusion when interpreting

the p-value.
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4.5 Conclusion

This thesis proposes a traditional backtesting procedure for expectiles that is easy to

implement, since we only require to reveal public information such as the daily returns

and the daily conditional expectile. The simplicity of this backtest preserves companiesŠ

conĄdentiality because it does not require to reveal the companyŠs internal model.

Instead, it only requires to compute the daily volatility of the model of choice, which can

be estimated from, for instance, GARCH models as shown in Section 4.3. Furthermore,

the implementation of the test is straightforward as observed in Section 4.1 where the

construction of the Wald test statistic is easily performed using daily log-returns, daily

conditional expectiles, and instrumental functions. Further, the comparison of the Wald

test statistic is simply done against a chi-square critical value in order to conclude if the

model passes or fails the test.

Moreover, Error Type I and Error Type II were analyzed based on the effect of

the sample size, model selection, level of the expectile, distribution of the modelŠs

innovations. Indeed, the versatility of the backtest allows us to the procedure not only

with simple time series models, but with more complex models with autoregressive

components. In addition, new instrumental functions were proposed and tested both

individually and in combinations of two or three at the same time.

For further research, we suggest proposing more instrumental functions to run the

test as they will provide different metrics to compute the size and power of the test.

Particularly, in the case of instrumental function 6, we suggest to Ąnd a method to Ąnd

which is optimal lagged value to be used in such instrumental function depending on

the data used.
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Simulations

(a) Error Type I

IF/n 250 750 1500
1 0.0616 0.0498 0.0544
2 0.0676 0.0554 0.0538
4 0.0608 0.0494 0.053
1-2 0.0986 0.0656 0.0646
1-4 0.0914 0.0612 0.0574
2-4 0.0962 0.0668 0.0616
1-2-4 0.1334 0.0908 0.0774

(b) Error Type II

IF/n 250 750 1500
1 0.9384 0.9502 0.9456
2 0.9324 0.9446 0.9462
4 0.9392 0.9506 0.947
1-2 0.9014 0.9344 0.9354
1-4 0.9086 0.9388 0.9426
2-4 0.9038 0.9332 0.9384
1-2-4 0.8666 0.9092 0.9226

Table A.1: Simulation check. Error Type I and II results obtained from a backtesting
proceedure utilizing instrumental functions 1, 2, 4, and running 5,000 simulations. The true
data comes from a GARCH(1,1) model with α0 = 1e − 6, α1 = 0.1, and β1 = 0.888. The level
is κ = 90%. The returns of the wrong model are computed assuming that the wrong model is
in fact the correct model; hence, Error Type I = 1 - Error Type II.
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