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Abstract

Terry D. Easlick, Ph.D.

Concordia University, 2023

This thesis is comprised of three parts which collectively serve as a study of stochastic epi-
demiological models, in particular, the susceptible, infected, recovered/removed (SIR) model.

I

We propose a unified stochastic SIR model driven by Lévy noise. The structural model allows for
time-dependency, nonlinearity, discontinuity, demography and environmental disturbances. We
present concise results on the existence and uniqueness of positive global solutions and investigate
the extinction and persistence of the novel model. Examples and simulations are provided to
illustrate the main results.

II

This part is twofold; we investigate the parameter estimation and forecasting of two forms of a
stochastic SIR model driven by small Lévy noises, and we provide theoretical results on param-
eter estimation of time-dependent drift for Lévy noise-driven stochastic differential equations. A
novel algorithm is introduced for approximating the least-squares estimators, which lack attain-
able closed-forms; moreover, the presented results ensure the consistency of these approximated
estimators.

III

We apply the previous results to study the COVID-19 pandemic using data from New York City,
New York. This application yields parameter estimation and predictive analysis, including the
unknown period for a periodic transmission function and importation/exportation of infection.
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Chapter 1

Motivation

Mathematical and scientific understanding of our world is an incremental endeavour to which we
wish to add contributions herein. In this endeavour, there are far too many questions arising to
be answered by our work or the work of others alone to be all-encompassing; thus, in the following
pages, the reader will find many contributions, and many cited works attempting to answer some
of these questions. Care and diligence were taken to ensure our contributions were novel and
relevant.

1 Introduction

Real-world phenomena have been extensively modelled using deterministic systems and increas-
ingly by stochastic systems. Uncertainties in the real-world necessitate the use of stochastic
systems for modelling problems in many branches of science. One such interdisciplinary field is
epidemiology, and there is no end in sight to the usefulness of modelling in this field. The recent
COVID-19 pandemic shines a light on the importance of mathematical epidemiology. More-
over, the pandemic exhibited many uncertainties, thus justifying the investigation of stochastic
modelling modes. To establish more realistic predictions of such phenomena, it is necessary to
go beyond the deterministic models by including random perturbations. Stochastic differential
equations (SDEs) have made such modelling possible.

In order to adequately investigate epidemiological phenomena, one must begin by establishing
a model. Assuming a suitable model has then been established, it is necessary to study the dy-
namics of the model; namely, in the case of epidemiology, one particular question arises, "What
information does the model provide about the extinction or persistence of disease?".

The epidemiological model we investigate is known as the susceptible, infected, recovered/re-
moved (SIR) model introduced by Kermack and McKendrick [38] in 1927. This model is comprised
of three compartments, the aforementioned susceptible, infected and recovered/removed. In its
simplest form, a population (nearly in its entirety) begins in the susceptible compartment, then
moves to the infected compartment according to some transmission rate �, and finally to the re-
covered/removed compartment via a recovery rate �–a visual representation is provided in Figure
1.

Figure 1: Diagram of compartments in the basic SIR model.
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Remark 1.1 For the recovered/removed compartment, the use of the words recovered or removed
may be done exclusively. The former conveys the scenario where recovery is the primary end
result, whereas the latter encapsulates the scenario when death and disease recovery is possible.
As a real-world example, consider the common cold versus COVID-19.

This thesis is the culmination of our work to establish a stochastic epidemiological model
framework, study the dynamics of the model, form a parameter estimation regime and apply the
work to the COVID-19 pandemic. The thesis is structured in the following manner:

Chapter 2: Necessary background

Given the interdisciplinary nature of this thesis, we include all the necessary preliminaries,
including a review of epidemiological models, stochastic processes and SDEs with jumps
such as

dXt = b(t,Xt)dt+ �(t,Xt)dBt

+

Z

{|u|1}
H(t,Xt�, u)Ñ(dt, du) +

Z

{|u|>1}
G(t,Xt�, u)N(dt, du), (1.1)

along with important definitions and theorems necessary for the topics in the subsequent
chapters.

Chapter 3: Establishing the unified stochastic SIR (USSIR) model
We define a generalized stochastic model of the SIR using coupled SDEs (dXt, dYt, dZt)
driven by Lévy noise
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

dXt = b1(t,Xt, Yt, Zt)dt+
rX

j=1

�1j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H1(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G1(t,Xt�, Yt�, Zt�, u)N(dt, du),

dYt = b2(t,Xt, Yt, Zt)dt+
rX

j=1

�2j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H2(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G2(t,Xt�, Yt�, Zt�, u)N(dt, du),

dZt = b3(t,Xt, Yt, Zt)dt+
rX

j=1

�3j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H3(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G3(t,Xt�, Yt�, Zt�, u)N(dt, du),

(1.2)

with the convention dXt corresponds to the suceptible compartment, dYt to the infected
compartment, and dZt to the removed/recovered compartment. Stochastic epidemiological
models, including the SIR, are an ongoing study (cf., e.g., [6, 13, 14, 16, 17, 18, 23, 24, 28,
29, 30, 35, 36, 43, 44, 51, 59, 64]). It is common in the literature to work with a specific,
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explicit form of a stochastic SIR model. Contrast this with the model (1.2); it provides a
foundation from which we obtain results concerning the dynamics of the model without the
limitations of an explicit form. More specifically, our presented results on extinction and
disease persistence are then readily applied to explicit stochastic SIR models. Simulation
studies of explicit stochastic SIR models accompany our theoretical results.

Chapter 4: Parameter estimation of a novel stochastic SIR model

With a specific application in mind, parameter estimation of stochastic SIR models with
periodic transmission (this work falls under the domain of the USSIR), we build upon the
work of Long et al. [45, 46] in estimating the drift parameters of discretely observed small
Lévy noise driven SDEs. Namely, given the SDE (1.1) parameterized by ✓ with the inclusion
of a small dispersion coefficient "

dX"
t = b(t,X"

t , ✓)dt+ "

✓
�(t,X"

t )dBt

+

Z

{|u|1}
H(t,X"

t�, u)Ñ(dt, du) +

Z

{|u|>1}
G(t,X"

t�, u)N(dt, du)

◆
,

and given finitely many, say n, observations, we perform estimation by the method of least
squares via a contrast function of the form

 n,"(✓) = n
nX

k=1

P ⇤
k (✓)Pk(✓),

where {tk = k
n , k = 1, 2, ..., n} and

Pk(✓) = X"
tk
�X"

tk�1
� 1

n
b(tk�1, X

"
tk�1

, ✓).

In the pursuit of estimating time-dependent drift parameters, it is required to have the
necessary theoretical underpinnings to support the validity of estimators. We provide an
extension of the drift parameter estimations results by Long et al. [45, 46] to the scenario
of time-dependent drift. Moreover, we take a more general approach to the driving noise;
in particular, it may be singular or have an unobtainable explicit form. We include a novel
approach to approximating the sought-after estimators for those without a readily available
closed-form. The study of small noise-driven SDEs is an active domain of research (cf., e.g.,
[27], [37], [39], [45], [46], [55], [56], [60], [62]).

Chapter 5: Application to the COVID-19 pandemic using real-world data

Indeed, events such as COVID-19 will spur further epidemiological research, and SDEs
serve as remarkable tools for such research. Some notable recent works are available in the
literature cf. [1, 2, 4, 10, 33, 48, 50, 57, 58, 63]. In fact, the various waves occurring during
the COVID-19 pandemic have also been studied (cf. [2, 48, 50]).
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Data availability has increased immensely in recent years, including data for the COVID-19
pandemic. Collecting COVID-19 data is far from a perfected task; that is, a lot of noise
arises, given the complexity and sheer scale. However, with valiant efforts made by many
to ensure adequate data collection, we applied our theoretical results to real data. John
Hopkins University was a leading institution in the collection and distribution of pandemic-
related data for a wide variety of geographic locations. More specifically, COVID-19 Data
Repository by the Centre for Systems Science and Engineering (CSSE) at John Hopkins
University is the primary source of data utilized in this chapter. For our application,
we honed in on New York City for reasons such as the density and population size, the
availability of quality data, and it is a commonly visited geographic location. We introduce
a stochastic SIR model with attributes such as the periodic transmission of infection and the
importation/exportation of infection. Moreover, both attributes are natural to consider as
COVID-19 occurred in waves, and there is no shortage of far-reaching travel in the modern
world. This model is given by

2

6664

dXt

dYt

dZt

3

7775
=

2

6664

��(t)Xt(Yt + %)

�(t)Xt(Yt + %)� �Yt

�Yt

3

7775
dt + "�(t,Xt�, Yt�, Zt�)

2

6664

dL(1)
t

dL(2)
t

dL(3)
t

3

7775
,

where Lt = [L(1)
t , L(2)

t , L(3)
t ] is Lévy noise.

Chapter 6: Discussion

The thesis closes with a discussion of the contributions of the work completed herein. In-
cluded is a mention of future directions for the work as new questions have arisen during
these studies.
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Chapter 2

Preliminaries

2.1 Epidemiological models

The earliest known mathematical model of epidemiology dates back to the 18th century with the
advent of a model for smallpox by Daniel Bernoulli. Many of the foundations for the modern
study of mathematical epidemiology were developed in the early to mid-20th century. These
foundations remain useful in recent times for the study of diseases, especially in the case of
epidemics and pandemics such as the SARS epidemic of 2002-03 and the recent COVID-19 pan-
demic. As mathematical epidemiology is invaluable to society for the formulation of new policies
and measures to curtail disease spread; moreover, mathematical models alleviate the absence
of validation by experiment–an absence given such experiments would have questionable ethi-
cal standings. Nonetheless, there has been no shortage of disease outbreaks; hence there is no
shortage of models and, subsequently, questions to consider. For a thorough introduction to
mathematical epidemiology, we refer the reader to the exploratory texts of Brauer et al. [11, 12].

Communicable diseases are a fact of reality and the method of transmission is generally done
via viral infection. These infections may occur horizontally (e.g., human-to-human interaction via
biotic/abiotic methods) or vertically (e.g., parent-progeny relationship). Our focus is on COVID-
19 which spreads primarily horizontally but may spread vertically during childbirth. Kermack
and McKendrick [38] laid much of the groundwork in 1927 for epidemiological compartmental
models, that is, a disease model in which the population is segmented into different compart-
ments depending on their health status in relation to the disease. The starting point of much
of this work on compartmental models was the introduction of the susceptible, infected, and
recovered/removed (SIR) by Kermack and McKendrick [38]; moreover, the study of this model
continues today. Commonly the SIR model given in the following version uses (deterministic)
differential equations

8
><

>:

dXt
dt = ��XtYt,
dYt
dt = (�Xt � �)Yt,
dZt
dt = �Yt,

(2.1)

where � is the transmission rate and � the recovery rate. Additionally, vital demographics may
be introduced to include birth rate ⇤ and mortality rate µ as:

8
><

>:

dXt
dt = ⇤� µXt � �XtYt,
dYt
dt = [�Xt � (µ+ �)]Yt,
dZt
dt = �Yt � µZt.

(2.2)

The basic SIR models (2.1) and (2.2) have many variations or related models (cf. e.g., [5],
[12]). The most notable related models which are also of interest to those active in the field are
the susceptible, infected, susceptible (SIS); susceptible, infected, recovered/removed, susceptible

5



(SIRS); susceptible, exposed, infected, removed/recovered (SEIR). This is a non-exhaustive list,
and the specific model considered will be disease dependent. Our focus has been the extension of
the (stochastic) SIR model, but our work can be extended further to include related models.

The introduction of stochastics to mathematical epidemiology gave way to a currently active
research area. Namely, the study of these models using SDEs as opposed to deterministic differ-
ential equations has a growing sector of active research (cf. e.g., [6, 13, 14, 16, 17, 18, 23, 24, 28,
29, 30, 35, 36, 43, 44, 51, 59, 64])–including for a stochastic SIR model commonly given in a basic
form

8
><

>:

dXt
dt = ��XtYt � �XtYtdBt,
dYt
dt = (�Xt � �)Yt + �XtYtdBt,
dZt
dt = �Yt,

(2.3)

and as before, the model (2.3) also yields many variations and related models (cf. e.g., [5], [12]).

The mathematical necessities are given in the following section prior to the presentation of our
results.

2.2 Stochastic differential equations driven by Lévy noises

We refer the reader to [3] for the notation and terminology used below. Let (⌦,F , {Ft}t�0, P )
be a complete probability space with filtration {Ft}t�0 satisfying the usual conditions (i.e., it is
increasing, right continuous and F0 contains all P -null sets).

Definition 2.2 An adapted continuous-time Rn-valued stochastic process X = (Xt)t�0 with X0 =
0 a.s. is a Lévy process if

1. X has increments independent of the past, i.e., Xt � Xs is independent of Fs for any
0  s < t.

2. X has stationary increments, i.e., Xt �Xs ⇠ Xt�s for any 0  s < t.

3. X is stochastically continuous, i.e., Xs ! Xt in probability s ! t for any t � 0.

Remark 2.3 It can be shown that any Lévy process has a unique modification which is càdlàg,
i.e., the paths t ! Xt are all right-continuous with left limits. In this thesis, we will only consider
càdlàg stochastic processes; hence, we will often omit the word càdlàg with the understanding it is
implied. The standard n-dimensional Brownian motion (Wiener process) (Bt)t�0 and the Poisson
process (Nt)t�0 with intensity � > 0 are two typical examples of Lévy processes.

Let X be a Lévy process. We define the jump process �X = (�Xt)t�0 of X by

�Xt = Xt �Xt�, t > 0.

6



Hereafter Xt� denotes the left limit at the point t. For t � 0 and A 2 B(Rn � {0}), define

N(t, A) =
X

0<st

1A(�Xs),

and
µ(A) = E[N(1, A)].

µ is called the Lévy measure (intensity measure) of X. We have
Z

Rn�{0}
(1 ^ |y|2)µ(dy) < 1.

Hereafter |y| :=
✓Pn

i=1 y
2
i

◆ 1
2

denotes the Euclidean norm. We define the compensated Poisson

random measure by
eN(t, A) = N(t, A)� tµ(A).

For A 2 B(Rn � {0}), (N(t, A))t�0 is a Poisson process with intensity µ(A).

Theorem 2.4 (Lévy-Itô decomposition) (cf. [3, Theorem 2.4.16]) Let (Xt)t�0 be a Lévy pro-
cess on Rn. Then, there exist b 2 Rn, a Brownian motion BA with covariance matrix A, and an
independent Poisson random measure N on R+ ⇥ (Rn � {0}) with compensated Poisson measure
eN and Lévy measure µ, such that for each t � 0,

Xt = bt+BA
t +

Z

{|x|1}
xÑ(t, dx) +

Z

{|x|>1}
xN(t, dx).

An adapted stochastic process (Xt)t�0 on (⌦,F , {Ft}t�0, P ) is called a semi-martingale if it
may be written as

Xt = X0 +Mt + At,

where (Mt)t�0 is a local martingale and (At)t�0 is an adapted process possessing finite variation.

Proposition 2.5 (cf. [3, Propostion 2.7.1]) Every Lévy process is a semi-martingale.

Let B be a k-dimensional standard Brownian motion and N an independent Poisson random
measure on R+⇥ (Rl�{0}) with intensity measure µ. The SDEs driven by Lévy noise considered
herein are of the form

dXt = b(t,Xt)dt+ �(t,Xt)dBt (2.4)

+

Z

{|u|1}
H(t,Xt�, u)Ñ(dt, du) +

Z

{|u|>1}
G(t,Xt�, u)N(dt, du),

with X0 2 F0. We assume that the coefficient functions b(t, x) : [0,1) ⇥ Rn ! Rn, �(t, x) :
[0,1)⇥ Rn ! Rn⇥k, H(t, x, u) : [0,1)⇥ Rn ⇥ Rl ! Rn and G(t, x, u) : [0,1)⇥ Rn ⇥ Rl ! Rn

are all Borel measurable.
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Let C1,2(R+ ⇥ Rn;R) be the space of all functions f(t, x) from R+ ⇥ Rn to R such that
they are continuously differentiable and twice continuously differentiable with respect to t and x,
respectively. Hereafter, we set ft =

@f
@t , fx = rxf and fxx = ( @2f

@xi@xj
)n⇥n. A vital theorem used in

virtually any discussion or application of these SDEs is the following

Theorem 2.6 (Itô’s formula for SDE driven by Lévy noises) (cf. [3, Theorem 4.4.7])
Let {Xt} be the solution to the SDE (2.4). Then, for f 2 C1,2(R+ ⇥ Rn;R), we have

df(t,Xt) = ft(t,Xt)dt+ hfx(t,Xt), b(t,Xt)idt+
1

2
trace

⇥
�T (t,Xt)fxx(t,Xt)�(t,Xt)

⇤
dt

+

Z

{|u|1}
[f(t,Xt� +H(t,Xt�, u))� f(t,Xt�)� hfx(t,Xt�), H(t,Xt�, u)i]µ(du)dt

+hfx(t,Xt), �(t,Xt)idBt +

Z

{|u|1}
[f(t,Xt� +H(t,Xt�, u))� f(t,Xt�)] Ñ(dt, du)

+

Z

{|u|>1}
[f(t,Xt� +G(t,Xt�, u))� f(t,Xt�)]N(dt, du).

Moreover, consider a function V 2 C1,2(R+ ⇥ Rn;R), define the operator L on V such that

LV (t, x) := Vt(t, x) + hVx(t, x), b(t, x)i+
1

2
trace(�T (t, x)Vxx(t, x)�(t, x))

+

Z

{|u|1}
[V (t, x+H(t, x, u))� V (t, x)� hVx(t, x), H(t, x, u)i]µ(du)

+

Z

{|u|>1}
[V (t, x+G(t, x, u))� V (t, x)]µ(du).

The following result gives an inequality which proves invaluable when dealing with SDEs–as
will be seen in later chapters.

Proposition 2.7 (Gronwall’s inequality) (cf. [3, Proposition 6.1.4]) Let [a, b] ⇢ R be a closed
interval and ↵, � : [a, b] ! R be non-negative such that ↵ is locally bounded and � is integrable.
If there exists C � 0 for which all t 2 [a, b],

↵(t)  C +

Z t

a

↵(s)�(s)ds

then we have
↵(t)  C exp

✓Z t

a

�(s)ds

◆
.

The following result provides a valuable inequality in the study of the long-time average limit;
namely, it is helpful in our study of the persistence of disease.
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Lemma 2.8 (cf. [36, Lemma 5.1]) Let f 2 C([0,1)⇥⌦; (0,1)). If there exist positive constants
�0,� such that

log(f(t)) � �t� �0

Z t

0

f(s)ds+ F (t), a.s.

for all t � 0, where F 2 C([0,1)⇥ ⌦;R) and limt!1
F (t)
t = 0 a.s., then

lim inf
t!1

1

t

Z t

0

f(s)ds � �

�0
a.s..

2.3 Parameter estimation of SDEs and optimization

The study and subsequent parameter estimation of discretely observed diffusion processes began
in earnest in the 1970s with the works of Dorogovtsev ([20]) and Le Breton ([41]). The former
focused on approximations of the maximum likelihood, and the latter turned their attention to
(conditional) least-squares estimators. Given some diffusion process (Xt)t�0 along with a sequence
{Xk}kn of observations, the (conditional) least-squares estimation regime set out to minimize a
function

Qn(✓) =
nX

k=1

(Xtk �Xtk�1
� µ(✓, tk�1, Xtk�1

)�tk)
2

�2(tk�1, Xtk�1
)�tk

,

where the timesteps are evenly-spaced such that �tk = T
n , T > 0. Dorogovtsev (1976) [20] proved

weak consistency of the obtained (conditional) LSE estimator ✓̂n,T for T ! 1, Tn ! 0. Later
in 1988, Kasonga [37] proved strong consistency of the same estimator. Later in the 1990s, the
work of Genon-Catalot [26] and Laredo [40] established results for drift parameter estimation for
discretely observed diffusions with a small dispersion coefficient " tending to 0. Moving forward
to the previous decade, the work of Long et al. [45, 46] extended the drift parameter estimation of
small diffusions to small jump-diffusions, namely, SDEs driven by Lévy noises. Their work directly
inspired our work; namely, we are still considering discrete observations, yet now our processes
are time-dependent jump-diffusions or time-dependent SDEs driven by Lévy noises with a small
dispersion rate " tending to 0. For a thorough treatise of the history and many of the available
methods in SDE parameter estimation, we refer the reader to [9, Bishwal].

The following two theorems are necessary for our results on parameter estimation given in
Chapter 4.

Given a random variable sequence {⇠n}n�0 which converges to 0 in probability we will then write

⇠n = oP (1).

Theorem 2.9 (cf. [61, Theorem 5.7]) Let Mn be random functions and M be a fixed function of
✓ such that for every " > 0,

sup
✓2⇥

|Mn(✓)�M(✓)| P�! 0,

sup
✓:d(✓,✓0)�"

M(✓) < M(✓0).

Then any sequence of estimators ✓̂n with Mn(✓̂n) � Mn(✓0)� oP (1) converges in probability to ✓0.
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Theorem 2.10 (cf. [61, Theorem 5.9]) Let  n be random vector-valued functions and  be a
fixed vector-valued function of ✓ such that for every " > 0,

sup
✓2⇥

k n(✓)� (✓)k
P�! 0,

inf
✓:d(✓,✓0)�"

k (✓)k > 0 = k (✓0)k.

Then any sequence of estimators ✓̂n with  n(✓̂n) = oP (1) converges in probability to ✓0.

In an attempt to estimate parameters, it is reasonable to view the estimation problem as an
optimization problem. Namely, given some function f(✓) of the parameters we wish to estimate,
we can approach this by asking "what value of ✓ optimizes the function f?". Moreover, as is
the case for our studies, finding a closed-form of our sought estimator ✓̂ is not possible; thus, an
approximation ✓̂⇤ is the next best option. A concept from optimization we make use of is the
method of gradient descent (cf. [7, Chapter 8]). Briefly, suppose we are given an R-valued, convex
objective function f(✓) and wish to minimize to find

argmin
✓2⇥

f(✓).

The method of gradient descent accomplishes this by using an update rule

✓(k+1) = ✓(k) � ⌘krf(✓(k))

for some initial estimate ✓(0) and learning rate (stepsize) ⌘ > 0, where k denotes the current
iterations. The number of iterations varies depending on the complexity and accuracy desired/-
possible. Gradient descent is widely used in unconstrained optimization; however, as will be seen
in our work, constraints are often present, and the use of gradient descent is still possible. In the
presence of constraints, a specialized version of gradient descent called projected gradient descent
(PGD) is utilized (cf. [7, Chapter 10]). Again, given an R-valued, convex function f along with
a constraint set C ⇢ Rn we can proceed via a modified update rule

⇠(k+1) = ✓(k) � ⌘krf(✓(k)); ✓(k+1) = argmin
✓2C

k⇠(k+1) � ✓k2. (2.5)

Namely, it is very similar to the (unconstrained) gradient step but the inclusion of one more step
where we obtain the updated parameter value ⇠(k+1) then project to obtain an updated ✓(k+1).

The method of determining ⌘k is known as a line search algorithm (cf. [7, Chapter 8]), the
most common method of this is called steepest descent and in this ⌘k is chosen according to the
rule

⌘k = argmin
⌘�0

f(✓(k) � ⌘rf(✓(k))).

The following lemma and theorem are known results regarding the convergence analysis of this
methodology.
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Lemma 2.11 (Descent lemma) (cf. [7, Lemma 5.7]) Let f : Rn ! R be a function satisfying

krf(✓1)�rf(✓2)k  Lk✓1 � ✓2k, L > 0.

Then for a convex set D and for any ✓1, ✓2 2 D we have

f(✓2)  f(✓1) + hrf(✓1), ✓2 � ✓1i+
L

2
k✓1 � ✓2k2.

Given a function f on Rn for which we wish to optimize over a constraint set C, we note

argmin
✓2C

f(✓) ⌘ arg min
✓2Rn

{f(✓) + �(✓)},

where �(✓) takes value 0 for ✓ 2 C; otherwise, takes value 1.

Theorem 2.12 (O(k�1
) rate of convergence of PGD) (cf. [7, Theorem 10.21]) Let f : Rn !

R be a convex function satisfying

krf(✓1)�rf(✓2)k  Lk✓1 � ✓2k, L > 0.

Assume the following

(i) the problem min✓2Rn{f(✓) + �(✓)} has a non-empty optimal set denoted ⇥⇤,

(ii) {✓(k)} is a sequence of values generated by the application of the PGD method (cf. (2.5)).

Then for fixed stepsize ⌘  1
L , any ✓⇤ 2 ⇥⇤, and k > 0,

f(✓(k))� fopt 
k✓(0) � ✓⇤k2

2⌘k
,

where fopt is the optimal value.

This has been a brief introduction which is sufficient for the understanding of the material
contained in Chapter 4. We refer the reader to [7, Beck] for a more in-depth exploration.

2.4 Scientific programming with Julia

With the increase in data, there is also an increased need for computational performance. For
those possessing (scientific) computational tasks, there are many options available, including
Fortran, Julia, MATLAB, Python, and R. For the work of this thesis, being able to perform
computational tasks such as simulation studies is of great importance–both for the theoretical and
applied. The Julia programming language was explicitly designed for mathematical and scientific
computing (cf. [8, Bezanson et al.]). The primary centre for the development of Julia is the Julia
Lab at MIT; however, active research and development are ongoing at numerous institutions
worldwide–it is open-source with 1000s of active contributors. A strong benefit of Julia is the
intentional development for use in the computational sciences; it comes with immense capability
from the start, and there is a growing ecosystem of packages (supplementary functionality) to
suit any conceivable computational need. Julia is
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• a high-level programming language; namely, it affords the user strong abstraction while
being easily readable by users;

• general purpose meaning that it applies to building software in a wide variety of domains;

• dynamically-typed allowing users to write more concise code which is versatile and flexible;

• fast; namely, when its code is optimized, it competes with some of the fastest languages
such as C++ and Fortran.

Beyond the "out-of-the-box ready-to-use" Julia, there exists the Julia SciML ecosystem which
is a robust collection of Julia packages for computational needs. For instance, needs such as ours
in the simulations of the USSIR model simulation or our parameter estimation efforts. Two vital
packages in this ecosystem are DifferentialEquations.jl and Optim.jl (cf. [47] and [53]).

2.4.1 DifferentialEquations.jl

In short, DifferentialEquations.jl is a package with the sole intent of solving differential equations;
moreover, it covers many varieties of DEs, from ordinary (ODE) to partial (PDE) to random
(RDE) to stochastic (SDE/SPDE) (cf. [53]). Our domain of use is for SDEs, and given the
robustness of this package, we were not constrained in our ability to model and simulate the
SDEs describing the USSIR. Namely, everything from defining an SDE problem, including the
customizability of the driving noise to the ability to plot simulations, is provided. As a brief
example of use, consider a basic stochastic SIR taking the form

8
><

>:

dXt = ��XtYt � �XtYtdBt,

dYt = �XtYt � �Yt + �XtYtdBt,

dZt = �Yt.

We can then use DifferentialEquations.jl to simulate this model using the following code:

⌥ ⌅
using DifferentialEquations

function drift(du,u,p,t)

du[1] = -�*u[1]*u[2]
du[2] = �*u[1]*u[2] -�*u[2]
du[3] = �*u[2]
end

function noise(du,u,p,t)

du[1] = -u[1]*u[2]

du[2] = u[1]*u[2]

end

u0 = [x_0,y_0,z_0]

dt = 0.001

tspan = (0.0, 1.0)

prob = SDEProblem(drift, noise, u0, (0.0, 1.0))

sol = solve(prob, EM(), dt = dt)⌃ ⇧
12
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2.4.2 Optim.jl

Optim.jl provided all the functionality necessary for our parameter estimation efforts, recall we
approached this problem from the perspective of optimization (cf. [47]). This alleviated any
need to write and test code for the execution of gradient-descent necessary in our methodology;
furthermore, also made writing the necessary code less cumbersome for executing the LS-GD
algorithm introduced in Chapter 4. Consider the example immediately above, and say we would
like to estimate the parameters � and � by use of our contrast function  n," (cf. Chapter 4); we
can then use gradient descent via Optim.jl. First, assume we have n-many observations of the
model, then take this collection of observations and save it as sol in the form of a readily-useable
data structure (commonly a CSV file), then define our problem in code as

⌥ ⌅
using Optim; Using Dataframes

function contrast(par)

sol = DataFrame(CSV.File("/pathname_to_sol"))

� = []

sampN = \# of observations

for i in 1:sampN-1

xk = sol[i+1,2];yk = sol[i+1,3];zk = sol[i+1,4]

xj = sol[i,2];yj = sol[i,3];zj = sol[i,4]

t = sol[i,1]

� = par[1]; � = par[2]

pk = [xk - xj - (-�*xj*yj/sampN)
yk - yj - (�*xj*yj-�*yj)/sampN)
zk - zj - �*yj)/sampN ]

� = transpose(pk)*pk

push!(�, �)
end
sampN*sum(�)

end

initial_x = [�_0, �_0]
results = Optim.optimize(contrast,initial_x,GradientDescent())⌃ ⇧

The returned results will be saveable for future uses (e.g., simulations using the found parameter
values).

Ultimately, the ease of use and performance of Julia with these two packages allowed for
less time writing and testing code and more time completing the necessary simulation studies
presented here.
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Chapter 3

A unified stochastic SIR model driven by Lévy noise with

time-dependency

Introduction

Epidemiological compartment models have garnered much attention from researchers in an at-
tempt to understand better and control the spread of infectious diseases. Mathematical analysis
of such models aids decision-making regarding public health policy changes – especially in the
event of a pandemic (e.g., COVID-19). Recall the aforementioned basic SIR by Kermack and
McKendrick [38]

8
><

>:

dXt
dt = ��XtYt,
dYt
dt = (�Xt � �)Yt,
dZt
dt = �Yt,

(3.1)

where � is the transmission rate and � the recovery rate. As mentioned prior, the basic SIR
model (3.1) has many variations, including the SIRD, SIRS, SIRV, SEIR, MSIR, etc. (cf., e.g.,
[5], [12] and [54]). The deterministic model has proven a useful tool, and to instill further realistic
behaviours, there are been varying stochastic framework extensions. (cf. e.g., [6, 13, 14, 16, 17,
18, 23, 24, 28, 29, 30, 35, 36, 43, 44, 51, 59, 64]). The existing models are often analyzed with
a focus on specific diseases or parameters. Such studies have been very successful in achieving
new results; however, often, it is the case that structural variability is lacking in these models.
To overcome the drawbacks inherent in traditional approaches, we propose and investigate in this
chapter the unified stochastic SIR (USSIR) model.

Hereafter, R+ denotes the set of all positive real numbers,
⇣
B(1)

t , . . . , B(r)
t

⌘

t�0
is a standard

r-dimensional Brownian motion, N is a Poisson random measure on R+ ⇥ (Rl � {0}) with in-
tensity measure µ satisfying

R
Rl�{0}(1 ^ |u|2)µ(du) < 1 and Ñ(dt, du) = N(dt, du) � µ(du)dt,⇣

B(1)
t , . . . , B(r)

t

⌘

t�0
and N are independent, bi, �ij : [0,1)⇥R3

+ 7! R, Hi, Gi : [0,1)⇥R3
+⇥ (Rl�

{0}) 7! R, i = 1, 2, 3, j = 1, 2, . . . , n, are measurable functions.
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The USSIR model is defined by
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

dXt = b1(t,Xt, Yt, Zt)dt+
rX

j=1

�1j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H1(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G1(t,Xt�, Yt�, Zt�, u)N(dt, du),

dYt = b2(t,Xt, Yt, Zt)dt+
rX

j=1

�2j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H2(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G2(t,Xt�, Yt�, Zt�, u)N(dt, du),

dZt = b3(t,Xt, Yt, Zt)dt+
rX

j=1

�3j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H3(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G3(t,Xt�, Yt�, Zt�, u)N(dt, du).

(3.2)

In this chapter, based on [21, E. and Sun], results are given of a model that allows for
time-dependency, nonlinearity (of drift, diffusion and jump) and demography. Environmen-
tal disturbances can profoundly affect transmission, recovery, mortality and population growth,
and the above model encapsulates such stochastic perturbations driven by Brownian motions
(B(j)

t ) with intensities �ij(t,Xt, Yt, Zt) and a Poisson random measure N(dt, du) with small jumps
Hi(t,Xt�, Yt�, Zt�, u) and large jumps Gi(t,Xt�, Yt�, Zt�, u). An important structural feature we
emphasize is time-dependency; this feature can capture the progression of a disease insofar as mu-
tations/transmissibility (e.g., Delta and Omicron variants of COVID-19, vaccination programs).

In the following sections, we establish results on the existence and uniqueness of positive
global solutions, extinction and persistence of diseases, and provide illustrative examples and
simulations. Section 3.1 is concerned with the USSIR model (3.2) for population proportions,
whereas Section 3.2 covers the USSIR model (3.2) for population numbers. Both approaches are
commonly found in studies of SIR models; hence, the importance of investigation for a unifying
model. In section 3.3, we present simulations which correspond to examples given in the previous
two sections. At the time of writing [21], there was no existing work on the USSIR model, and
the aim was to add a novel model as such to the existing literature.

3.1 Model for population proportions

In this section, we let Xt, Yt and Zt denote respectively the proportions of susceptible, infected
and recovered populations at time t. Define

� := {(x, y, z) 2 R3
+ : x+ y + z = 1}.
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For t 2 [0,1), (x, y, z) 2 � and u 2 (Rl � {0}), define

k(t, x, y, z, u) :=
H1(t, x, y, z, u)

x
+

H2(t, x, y, z, u)

y
+

H3(t, x, y, z, u)

z

� ln

⇢✓
1 +

H1(t, x, y, z, u)

x

◆✓
1 +

H2(t, x, y, z, u)

y

◆✓
1 +

H3(t, x, y, z, u)

z

◆�
. (3.3)

For any T > 0, let L1
+[0, T ] denote the set of positive, integrable functions on [0, T ]. We make

the following assumptions.

(A1) There exists (x0, y0, z0) 2 � such that for any T 2 (0,1) and i = 1, 2, 3,

bi(·, x0, y0, z0),
nX

j=1

|�ij(·, x0, y0, z0)| 2 L2[0, T ],

Z

{|u|1}
|Hi(·, x0, y0, z0, u)|2µ(du) 2 L1[0, T ].

(A2) For any T 2 (0,1) and N 2 N, there exists KN,T 2 L1
+[0, T ] such that

3X

i=1

|bi(t, x1, y1, z1)� bi(t, x2, y2, z2)|2 +
3X

i=1

rX

j=1

|�ij(t, x1, y1, z1)� �ij(t, x2, y2, z2)|2

+
3X

i=1

Z

{|u|1}
|Hi(t, x1, y1, z1, u)�Hi(t, x2, y2, z2, u)|2µ(du)

 KN,T (t)[(x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2],

8t 2 [0, T ], (x1, y1, z1), (x2, y2, z2) 2

1

N
, 1� 1

N

�3
.

(A3) For any t 2 (0,1), (x, y, z) 2 � and u 2 (Rl � {0}),

3X

i=1

bi(t, x, y, z) = 0,
3X

i=1

�ij(t, x, y, z) = 0 for j = 1, 2, . . . , n,

3X

i=1

Hi(t, x, y, z, u) = 0,
3X

i=1

Gi(t, x, y, z, u) = 0.

(A4) For any (x, y, z) 2 �, t 2 (0,1) and u 2 (Rl � {0}),
✓
1 +

H1(t, x, y, z, u)

x

◆
,

✓
1 +

H2(t, x, y, z, u)

y

◆
,

✓
1 +

H3(t, x, y, z, u)

z

◆
> 0,

and
✓
1 +

G1(t, x, y, z, u)

x

◆
,

✓
1 +

G2(t, x, y, z, u)

y

◆
,

✓
1 +

G3(t, x, y, z, u)

z

◆
> 0.
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(A5) For any T 2 (0,1),

inf
t2[0,T ], (x,y,z)2�

⇢
b1(t, x, y, z)

x
+

b2(t, x, y, z)

y
+

b3(t, x, y, z)

z

�
> �1,

rX

j=1

sup
t2[0,T ], (x,y,z)2�

⇢
|�1j(t, x, y, z)|

x
+

|�2j(t, x, y, z)|
y

+
|�3j(t, x, y, z)|

z

�
< 1,

and there exists ⌘T 2 B(Rl) such that

⌘T > 0,

Z

{|u|1}
⌘T (u)µ(du) < 1, (3.4)

and
sup

t2[0,T ], (x,y,z)2�,u2(Rl�{0})

k(t, x, y, z, u)

⌘T (u)
< 1.

First, we discuss the existence and uniqueness of solutions to the system (3.2).

Theorem 3.13 Suppose that Assumptions (A1)–(A5) hold. Then, for any given initial value
(X0, Y0, Z0) 2 �, the system (3.2) has a unique, strong solution taking values in �.

Proof. By (A3), (A4) and the interlacing technique (cf. [3]), to complete the proof, we need
only consider the case that Gi ⌘ 0, i = 1, 2, 3. Then, equation (3.2) becomes
8
>>>>>><

>>>>>>:

dXt = b1(t,Xt, Yt, Zt) +
rP

j=1
�1j(t,Xt, Yt, Zt)dB

(j)
t +

R
{|u|1} H1(t,Xt�, Yt�, Zt�, u)Ñ(dt, du),

dYt = b2(t,Xt, Yt, Zt) +
rP

j=1
�2j(t,Xt, Yt, Zt)dB

(j)
t +

R
{|u|1} H2(t,Xt�, Yt�, Zt�, u)Ñ(dt, du),

dZt = b3(t,Xt, Yt, Zt) +
rP

j=1
�3j(t,Xt, Yt, Zt)dB

(j)
t +

R
{|u|1} H3(t,Xt�, Yt�, Zt�, u)Ñ(dt, du).

(3.5)

By (A1) and (A2), similar to [31, Lemma 2.1], we can show that there exists a unique local
strong solution to equation (3.5) on [0, ⌧), where ⌧ is the explosion time. We will show below
that ⌧ = 1 a.s.. Define

⌧N = inf

(
t 2 [0, ⌧) : (Xt, Yt, Zt) 62


1

N
, 1� 1

N

�3)
, N 2 N,

and
⌧1 = lim

N!1
⌧N .

We have that ⌧1  ⌧ so it suffices to show ⌧1 = 1 a.s.. Hence assume the contrary that there
exist " > 0 and T > 0 such that

P (⌧1 < T ) > ",

17



which implies that

P (⌧N < T ) > ", 8N 2 N. (3.6)

Define
V (x, y, z) = � ln(xyz), (x, y, z) 2 (0, 1)3,

and
Wt = (Xt, Yt, Zt).

By Itô’s formula, we obtain that for t  ⌧N ,

V (Wt) = V (W0) +

Z t

0

LV (s,Ws)ds+

Z t

0

hVw(Ws), �(s,Ws)idBs

+

Z t

0

Z

{|u|1}
[V (Ws� +H(s,Ws�, u))� V (Ws�)] Ñ(ds, du),

Hereafter, for t � 0 and w = (w1, w2, w2) 2 R3,

LV (t, w) = hVw(w), b(t, w)i+
1

2
trace(�T (t, w)Vww(w)�(t, w))

+

Z

{|u|1}
[V (w +H(t, w, u))� V (w)� hVw(w), H(t, w, u)i]µ(du),

with Vw = rwV = ( @V
@w1

, @V
@w2

, @V
@w3

) and Vww = ( @2V
@wi@wj

)1i,j3. Then, by (A5), there exist CT > 0

and ⌘T 2 B(Rd) such that (3.4) holds and

(lnN)P (⌧N < T )� V (X0, Y0, Z0)

 E [V (XT^⌧N , YT^⌧N , ZT^⌧N )]� V (X0, Y0, Z0)

= E

Z T^⌧N

0

LV (s,Xs, Ys, Zs)ds

�

= �E

Z T^⌧N

0

⇢
b1(s,Xs, Ys, Zs)

Xs
+

b2(s,Xs, Ys, Zs)

Ys
+

b3(s,Xs, Ys, Zs)

Zs

�
ds

�

+
1

2

rX

j=1

E

Z T^⌧N

0

⇢
�2
1j(s,Xs, Ys, Zs)

X2
s

+
�2
2j(s,Xs, Ys, Zs)

Y 2
s

+
�2
3j(s,Xs, Ys, Zs)

Z2
s

�
ds

�

+E

Z T^⌧N

0

Z

{|u|1}
k(s,Xs, Ys, Zs, u)µ(du)ds

�

 CTT +
C2

TT

2
+ CTT

Z

{|u|1}
⌘T (u)µ(du),

which contradicts with (3.6). Therefore, ⌧ = 1 a.s. and the proof is complete.

Now we consider the extinction and persistence of diseases. Namely, we investigate whether
a disease will extinct at an exponential rate or will be persistent in mean. The system (3.2) is
called persistent in mean if

lim inf
t!1

1

t

Z t

0

Ysds > 0 a.s..
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Theorem 3.14 Suppose that Assumptions (A1)–(A5) hold. Let (Xt, Yt, Zt) be a solution to
equation (3.2) with (X0, Y0, Z0) 2 �. We assume that

Z 1

0

'(t)

(1 + t)2
dt < 1, (3.7)

where

'(t) := sup
(x,y,z)2�

(Pr
j=1 �

2
2j(t, x, y, z)

y2
+

Z

{|u|1}


ln

✓
1 +

H2(t, x, y, z, u)

y

◆�2
µ(du)

+

Z

{|u|>1}


ln

✓
1 +

G2(t, x, y, z, u)

y

◆�2
µ(du)

)
.

(i) If

↵ := lim sup
t!1

(
sup

(x,y,z)2�

"
b2(t, x, y, z)

y
�
Pr

j=1 �
2
2j(t, x, y, z)

2y2

#

+

Z

{|u|1}
sup

(x,y,z)2�


ln

✓
1 +

H2(t, x, y, z, u)

y

◆
� H2(t, x, y, z, u)

y

�
µ(du)

+

Z

{|u|>1}
sup

(x,y,z)2�


ln

✓
1 +

G2(t, x, y, z, u)

y

◆�
µ(du)

< 0, (3.8)

then

lim sup
t!1

lnYt

t
 ↵ a.s.. (3.9)

(ii) If there exist positive constants �0 and � such that

lim inf
t!1

1

t

Z t

0

⇢
�0Ys +

b2(s,Xs, Ys, Zs)

Ys
�
Pr

j=1 �
2
2j(s,Xs, Ys, Zs)

2Y 2
s

+

Z

{|u|1}


ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
� H2(s,Xs�, Ys�, Zs�, u)

Ys�

�
µ(du)

+

Z

{|u|>1}
ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
µ(du)

�
ds

� �, (3.10)

then

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s.. (3.11)

19



(iii) If there exist positive constants �0 and � such that

lim inf
t!1

inf
(x,y,z)2�

⇢
�0y +

b2(t, x, y, z)

y
�
Pr

j=1 �
2
2j(t, x, y, z)

2y2

+

Z

{|u|1}


ln

✓
1 +

H2(t, x, y, z, u)

y

◆
� H2(t, x, y, z, u)

y

�
µ(du)

+

Z

{|u|>1}
ln

✓
1 +

G2(t, x, y, z, u)

y

◆
µ(du)

�

� �, (3.12)

then

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s..

Proof. (i) By Itô’s formula, we get

lnYt = lnY0 +

Z t

0

"
b2(s,Xs, Ys, Zs)

Ys
�
Pr

j=1 �
2
2j(s,Xs, Ys, Zs)

2Y 2
s

#
ds

+

Z t

0

Z

{|u|1}


ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
� H2(s,Xs�, Ys�, Zs�, u)

Ys�

�
µ(du)ds

+

Z t

0

Z

{|u|>1}
ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
µ(du)ds

+

Z t

0

Pr
j=1 �2j(s,Xs, Ys, Zs)

Ys
dB(j)

s

+

Z t

0

Z

{|u|1}
ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
Ñ(ds, du)

+

Z t

0

Z

{|u|>1}
ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
Ñ(ds, du). (3.13)

Denote the martingale part of lnYt by Mt. Then, by (3.13), we get

hMit =

Z t

0

Pr
j=1 �

2
2j(s,Xs, Ys, Zs)

Y 2
s

ds

+

Z t

0

Z

{|u|1}


ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆�2
µ(du)ds

+

Z t

0

Z

{|u|>1}


ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆�2
µ(du)ds.

By (3.7) and the strong law of large numbers for martingales (see [42, Theorem 10, Chapter
2]), we get

lim
t!1

Mt

t
= 0 a.s.. (3.14)
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Then, (3.9) holds by (3.8), (3.13) and (3.14).

(ii) By (3.10) and (3.13), if we take ⌘ 2 (0,�) then there exists T⌘ > 0 such that for t � T⌘,

lnYt � lnY0 + (�� ⌘)t� �0

Z t

0

Ysds+

Z t

0

Pr
j=1 �2j(s,Xs, Ys, Zs)

Ys
dB(j)

t

+

Z t

0

Pr
j=1 �2j(s,Xs, Ys, Zs)

Ys
dB(j)

s

+

Z t

0

Z

{|u|1}
ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
Ñ(ds, du)

+

Z t

0

Z

{|u|>1}
ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
Ñ(ds, du).

Thus, by following the argument of the proof of [36, Lemma 5.1], we can show that (3.11) holds
by (3.14).

(iii) Obviously, condition (3.12) implies condition (3.10). Hence, the assertion is a direct
consequence of assertion (ii).

Remark 3.15 If we take the following assumption of our model:

b2(t, x, y, z) = b2,1(t, x, y, z)� b2,2(t, x, y, z),

where b2,i(t, x, y, z) � 0 for any (t, x, y, z) 2 [0,1) ⇥ �, i = 1, 2, then condition (3.8) can be
strengthened to

↵⇤ := lim sup
t!1

(
sup

(x,y,z)2�

"
b22,1(t, x, y, z)

2
Pr

j=1 �
2
2j(t, x, y, z)

� b2,2(t, x, y, z)

y

#

+

Z

{|u|1}
sup

(x,y,z)2�


ln

✓
1 +

H2(t, x, y, z, u)

y

◆
� H2(t, x, y, z, u)

y

�
µ(du)

+

Z

{|u|>1}
sup

(x,y,z)2�


ln

✓
1 +

G2(t, x, y, z, u)

y

◆�
µ(du)

< 0, (3.15)

In fact, we have ↵  ↵⇤ and hence condition (3.15) implies that

lim sup
t!1

lnYt

t
 ↵⇤ a.s..

Denote by L1
+ [0,1) the set of all bounded, non-negative, measurable functions on [0,1). For

f 2 L1
+ [0,1), define

f := sup
t2[0,1)

f(t), f := inf
t2[0,1)

f(t).
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Example 3.16 In the following examples, we let d = 1 and the intensity measure µ of the Poisson
random measure N be given by

dµ = 1[�2,2](x)dx,

where dx is the Lebesgue measure.

(a) Let �, �, ⇠, �1, �2,'1,'2,'3 2 L1
+ [0,1) and H1, H2, G1, G2 2 L1

+ (�1,1). Define

'(t, x, y) = '1(t)x+ '2(t)y + '3(t)xy, (t, x, y) 2 [0,1)⇥ R2
+.

We consider the system
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

dXt = � �(t)X
⇠(t)
t Yt

1+'(t,Xt,Yt)
dt� �1(t)XtYt

1+'(t,Xt,Yt)
dB(1)

t �
R
{|u|1} H1(u)Xt�Yt�Ñ(dt, du)

�
R
{|u|>1} G1(u)Xt�Yt�N(dt, du),

dYt =
h

�(t)X
⇠(t)
t Yt

1+'(t,Xt,Yt)
� �(t)Yt

i
dt+ �1(t)XtYt

1+'(t,Xt,Yt)
dB(1)

t + �2(t)YtZtdB
(2)
t

+
R
{|u|1}[H1(u)Xt�Yt� �H2(u)Yt�Zt�]Ñ(dt, du)

+
R
{|u|>1}[G1(u)Xt�Yt� �G2(u)Yt�Zt�]N(dt, du),

dZt = �(t)Ytdt� �2(t)YtZtdB
(2)
t +

R
{|u|1} H2(u)Yt�Zt�Ñ(dt, du)

+
R
{|u|>1} G2(u)Yt�Zt�N(dt, du).

(3.16)

Suppose that
⇠ � 1, H1, H2, G1, G2 < 1.

We have dXt
dt + dYt

dt + dZt
dt = 0. Hence, by Theorem 3.13, the system (3.16) has a unique, strong

solution taking values in �. If
� + 2G1 < �,

then by Theorem 3.14(i) and noting that ln(1+ x)� x  0 for x > �1, we obtain that the disease
will go extinct at an exponential rate:

�↵ � � � � � 2G1.

Additionally, a vital feature of the system (3.16) to note is that the transmission function is in
the form of a power function which differs from the often-seen bilinear form.
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(b) Let �, �1, �2, � 2 L1
+ [0,1) and H1, H2, G1, G2 2 L1

+ (�1,1). We consider the system
8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

dXt = ��(t)XtYtdt� �(t)XtYtZtdBt �
R
{|u|1} H1(u)Xt�Yt�Zt�Ñ(dt, du)

�
R
{|u|>1} G1(u)Xt�Yt�Zt�N(dt, du),

dYt = [�(t)Xt � �1(t) + �2(t)Zt]Ytdt+ 2�(t)XtYtZtdBt

+
R
{|u|1}[H1(u)�H2(u)]Xt�Yt�Zt�Ñ(dt, du)

+
R
{|u|>1}[G1(u)�G2(u)]Xt�Yt�Zt�N(dt, du),

dZt = [�1(t)� �2(t)Zt]Ytdt� �(t)XtYtZtdBt +
R
{|u|1} H2(u)Xt�Yt�Zt�Ñ(dt, du)

+
R
{|u|>1} G2(u)Xt�Yt�Zt�N(dt, du).

(3.17)

We have dXt
dt + dYt

dt + dZt
dt = 0. Hence, by Theorem 3.13, the system (3.17) has a unique, strong

solution taking values in �.

Suppose that
H1, H2, G1, G2 < 1, �1 < �  �2,

and
�2 +H1 � ln{(1�H2)(1�G2)} <

�2 � �1
2

.

Set
�0 = �2, � = �2 � �1 � 2[�2 +H1 � ln{(1�H2)(1�G2)}].

Then, condition (3.12) is satisfied. Therefore, by Theorem 3.14(iii), we obtain that the disease is
persistent and

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s..

3.2 Model for population numbers

In this section, we let Xt, Yt and Zt denote respectively the numbers of susceptible, infected and
recovered individuals at time t. We make the following assumptions.

(B1) There exists (x0, y0, z0) 2 R3
+ such that for any T 2 (0,1) and i = 1, 2, 3,

bi(·, x0, y0, z0),
nX

j=1

|�ij(·, x0, y0, z0)| 2 L2[0, T ],

Z

{|u|1}
|Hi(·, x0, y0, z0, u)|2µ(du) 2 L1[0, T ].
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(B2) For any T 2 (0,1) and N 2 N, there exists KN,T 2 L1
+[0, T ] such that

3X

i=1

|bi(t, x1, y1, z1)� bi(t, x2, y2, z2)|2 +
3X

i=1

rX

j=1

|�ij(t, x1, y1, z1)� �ij(t, x2, y2, z2)|2

+
3X

i=1

Z

{|u|1}
|Hi(t, x1, y1, z1, u)�Hi(t, x2, y2, z2, u)|2µ(du)

 KN,T (t)[(x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2],

8t 2 [0, T ], (x1, y1, z1), (x2, y2, z2) 2

1

N
,N

�3
.

(B3) For any (x, y, z) 2 R3
+, t 2 (0,1) and u 2 (Rl � {0}),

✓
1 +

H1(t, x, y, z, u)

x

◆
,

✓
1 +

H2(t, x, y, z, u)

y

◆
,

✓
1 +

H3(t, x, y, z, u)

z

◆
> 0,

and
✓
1 +

G1(t, x, y, z, u)

x

◆
,

✓
1 +

G2(t, x, y, z, u)

y

◆
,

✓
1 +

G3(t, x, y, z, u)

z

◆
> 0.

(B4) For any T 2 (0,1),

sup
t2[0,T ], (x,y,z)2R3

+

⇢
(x� 1)b1(t, x, y, z)

x
+

(y � 1)b2(t, x, y, z)

y
+

(z � 1)b3(t, x, y, z)

z

�
< 1,

rX

j=1

sup
t2[0,T ], (x,y,z)2R3

+

⇢
|�1j(t, x, y, z)|

x
+

|�2j(t, x, y, z)|
y

+
|�3j(t, x, y, z)|

z

�
< 1,

and there exists ⌘T 2 B(Rl) such that (3.4) holds and

sup
t2[0,T ], (x,y,z)2R3

+,u2(Rl�{0})

k(t, x, y, z, u)

⌘T (u)
< 1,

where k(t, x, y, z, u) is defined by (3.3).

Now we present the result on the existence and uniqueness of solutions to the system (3.2).

Theorem 3.17 Suppose that Assumptions (B1)–(B4) hold. Then, for any given initial value
(X0, Y0, Z0) 2 R3

+, the system (3.2) has a unique, strong solution taking values in R3
+.

Proof. By (B3) and the interlacing technique, to complete the proof, we need only consider
the case that Gi ⌘ 0, i = 1, 2, 3. Then, equation (3.2) becomes equation (3.5). By (B1) and
(B2), similar to [45, Lemma 2.1], we can show that there exists a unique local strong solution
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to equation (3.5) on [0, ⌧), where ⌧ is the explosion time. We will show below that ⌧ = 1 a.s..
Define

⌧N = inf

(
t 2 [0, ⌧) : (Xt, Yt, Zt) 62


1

N
,N

�3)
, N 2 N,

and
⌧1 = lim

N!1
⌧N .

We have that ⌧1  ⌧ so it suffices to show ⌧1 = 1 a.s.. Hence assume the contrary that there
exist " > 0 and T > 0 such that

P (⌧1 < T ) > ",

which implies that

P (⌧N < T ) > ", 8N 2 N. (3.18)

Define

V (x, y, z) = (x� 1� ln x) + (y � 1� ln y) + (z � 1� ln z), (x, y, z) 2 (0,1)3.

By Itô’s formula and (B4), there exist CT > 0 and ⌘T 2 B(Rd) such that (3.4) holds and for
t  ⌧N ,

E [V (XT^⌧N , YT^⌧N , ZT^⌧N )]� V (X0, Y0, Z0)

= E

Z T^⌧N

0

⇢
(Xs � 1)b1(s,Xs, Ys, Zs)

Xs
+

(Ys � 1)b2(s,Xs, Ys, Zs)

Ys
+

(Zs � 1)b3(s,Xs, Ys, Zs)

Zs

�
ds

�

+
1

2

rX

j=1

E

Z T^⌧N

0

⇢
�2
1j(s,Xs, Ys, Zs)

X2
s

+
�2
2j(s,Xs, Ys, Zs)

Y 2
s

+
�2
3j(s,Xs, Ys, Zs)

Z2
s

�
ds

�

+E

Z T^⌧N

0

Z

{|u|1}
k(s,Xs, Ys, Zs, u)µ(du)ds

�

 CTT +
C2

TT

2
+ CTT

Z

{|u|1}
⌘T (u)µ(du).

However, by (3.18), we get

E[V (XT^⌧N , YT^⌧N , ZT^⌧N )] > "

✓
1

N
� 1 + lnN

◆
^ (N � 1� lnN)

�
! 1 as N ! 1.

We have arrived at a contradiction. Therefore, ⌧ = 1 a.s. and the proof is complete.

Similar to Theorem 3.14, we can prove the following result on the extinction and persistence
of diseases.

Theorem 3.18 Suppose that Assumptions (B1)–(B4) hold. Let (Xt, Yt, Zt) be a solution to
equation (3.2) with (X0, Y0, Z0) 2 R3

+. We assume that
Z 1

0

'(t)

(1 + t)2
dt < 1,
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where

'(t) := sup
(x,y,z)2R3

+

(Pr
j=1 �

2
2j(t, x, y, z)

y2
+

Z

{|u|1}


ln

✓
1 +

H2(t, x, y, z, u)

y

◆�2
µ(du)

+

Z

{|u|>1}


ln

✓
1 +

G2(t, x, y, z, u)

y

◆�2
µ(du)

)
.

(i) If

↵ := lim sup
t!1

(
sup

(x,y,z)2R3
+

"
b2(t, x, y, z)

y
�
Pr

j=1 �
2
2j(t, x, y, z)

2y2

#

+

Z

{|u|1}
sup

(x,y,z)2R3
+


ln

✓
1 +

H2(t, x, y, z, u)

y

◆
� H2(t, x, y, z, u)

y

�
µ(du)

+

Z

{|u|>1}
sup

(x,y,z)2R3
+


ln

✓
1 +

G2(t, x, y, z, u)

y

◆�
µ(du)

< 0, (3.19)

then

lim sup
t!1

lnYt

t
 ↵ a.s..

(ii) If there exist positive constants �0 and � such that

lim inf
t!1

1

t

Z t

0

⇢
�0Ys +

b2(s,Xs, Ys, Zs)

Ys
�
Pr

j=1 �
2
2j(s,Xs, Ys, Zs)

2Y 2
s

+

Z

{|u|1}


ln

✓
1 +

H2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
� H2(s,Xs�, Ys�, Zs�, u)

Ys�

�
µ(du)

+

Z

{|u|>1}
ln

✓
1 +

G2(s,Xs�, Ys�, Zs�, u)

Ys�

◆
µ(du)

�
ds

� �,

then

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s..

(iii) If there exist positive constants �0 and � such that

lim inf
t!1

inf
(x,y,z)2R3

+

⇢
�0y +

b2(t, x, y, z)

y
�
Pr

j=1 �
2
2j(t, x, y, z)

2y2

+

Z

{|u|1}


ln

✓
1 +

H2(t, x, y, z, u)

y

◆
� H2(t, x, y, z, u)

y

�
µ(du)

+

Z

{|u|>1}
ln

✓
1 +

G2(t, x, y, z, u)

y

◆
µ(du)

�

� �,
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then

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s..

Example 3.19 Let ⇤, ⌫, �, �, ", � 2 L1
+ [0,1). We consider the system

8
><

>:

dXt = [⇤(t)� ⌫(t)Xt � �(t)XtYt]dt� �(t)XtYtdBt,

dYt = [�(t)XtYt � (⌫(t) + �(t) + "(t))Yt]dt+ �(t)XtYtdBt,

dZt = [�(t)Yt � ⌫(t)Zt]dt.

(3.20)

Suppose that
⌫ > 0.

By (3.20), we get
d(Xt + Yt + Zt)  [⇤� ⌫(Xt + Yt + Zt)]dt,

which implies that

� :=

⇢
(x, y, z) 2 R3

+ : x+ y + z  ⇤

⌫

�

is an invariant set of the system (3.20). Hence, the system (3.20) has a unique, strong solution
taking values in � by Theorem 3.17.

Define

↵⇤ := sup
x2

⇣
0,⇤⌫

⌘


�x� (⌫ + � + ")� �2x2

2

�
.

Then, we have that

condition (3.19)

, ↵ = lim sup
t!1

sup
x2

⇣
0,⇤⌫

⌘


�(t)x� (⌫(t) + �(t) + "(t))� �2(t)x2

2

�
< 0

( ↵  ↵⇤ < 0

, ↵⇤ = max

(
� ⇤

⌫
� (⌫ + � + ")� �2⇤

2

2⌫2
,

�
2

2�2
� (⌫ + � + ")

)
< 0

,

8
<

:
↵⇤ = � ⇤

⌫ � (⌫ + � + ")� �2⇤
2

2⌫2 < 0, if �2  ⌫�
⇤
,

↵⇤ = �
2

2�2 � (⌫ + � + ") < 0, if �2 > ⌫�
⇤
.

Thus, by Theorem 3.18(i), we obtain that if

�2  ⌫�

⇤
and R̃0 :=

� ⇤

⌫(⌫ + � + ")
� �2⇤

2

2⌫2(⌫ + � + ")
< 1,
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then the disease will go extinct at an exponential rate:

�↵ � (⌫ + � + ")
⇣
1� R̃0

⌘
;

if

�2 > max

(
⌫�

⇤
,

�
2

2(⌫ + � + ")

)
,

then the disease becomes extinct at an exponential rate:

�↵ � (⌫ + � + ")� �
2

2�2
.

This result generalizes the results in [36, Theorem 2.1].

By (3.20), we get

Xt + Yt = X0 + Y0 +

Z t

0

[⇤(s)� ⌫(s)Xs � (⌫(s) + �(s) + "(s))Ys]ds.

Since
Xt + Yt 

⇤

⌫
, 8t � 0, (3.21)

we get

lim
t!1

1

t

Z t

0

[⇤(s)� ⌫(s)Xs � (⌫(s) + �(s) + "(s))Ys]ds = 0,

which implies that

lim
t!1

1

t

Z t

0

Xsds �
⇤

⌫
� lim

t!1

⌫ + � + "

⌫t

Z t

0

Ysds. (3.22)

Suppose that

R̃0 :=
�⇤

⌫(⌫ + � + ")
� �2⇤

2

2⌫2(⌫ + � + ")
> 1.

Recall the quantity b2(s,Xs, Ys, Zs) = �(s)XsYs � (⌫(s) + �(s) + "(s))Ys. Then, by (3.20)–(3.22),
we get

lim inf
t!1

1

t

Z t

0


�(⌫ + � + ")

⌫
· Ys +

b2(s,Xs, Ys, Zs)

Ys
� �2(s)X2

s

2

�
ds

�
�⇤

⌫
� (⌫ + � + ")� �2⇤

2

2⌫2
.

Therefore, by Theorem 3.18(ii), we obtain that the disease is persistent and

lim inf
t!1

1

t

Z t

0

Ysds �
⌫(R̃0 � 1)

�
a.s..

This result generalizes those in [36, Theorem 3.1].
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Let M > 0 be a fixed constant. For x � 0, define

x? := x ^ 1, x† := x ^M.

Example 3.20 We revisit Example 3.16 with some changes for the population numbers model.
Let d = 1 and the intensity measure µ of the Poisson random measure N be given by

dµ = 1[�2,2](x)dx.

(a) Let ⇤, ⌫, �, �1, �2, �3, �4, ⇠, �1, �2,'1,'2,'3 2 L1
+ [0,1) and H1, H2, H3, G1, G2 2 L1

+ (�1,1).
Define

'(t, x, y) = '1(t)x+ '2(t)y + '3(t)xy, (t, x, y) 2 [0,1)⇥ R2
+.

We consider the system
8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

dXt =


⇤(t)� ⌫(t)X†

t �
�(t)X†

t Y
†
t

⇠(t)

1+'(t,Xt,Yt)
+ �1(t)Z

†
t

�
dt� �1(t)X

†
t Y

†
t

1+'(t,Xt,Yt)
dB(1)

t

�
R
{|u|1}[H1(u)X?

t�Y
?
t� �H3(u)X?

t�Z
?
t�]Ñ(dt, du)�

R
{|u|>1} G1(u)X?

t�Y
?
t�N(dt, du),

dYt =


�(t)X†

t Y
†
t

⇠(t)

1+'(t,Xt,Yt)
+ (�2(t)� ⌫(t)� �3(t)Y

†
t )Y

†
t

�
dt+ �1(t)X

†
t Y

†
t

1+'(t,Xt,Yt)
dB(1)

t + �2(t)Y
†
t Z

†
t dB

(2)
t

+
R
{|u|1}[H1(u)X?

t�Y
?
t� �H2(u)Y ?

t�Z
?
t�]Ñ(dt, du)

+
R
{|u|>1}[G1(u)X?

t�Y
?
t� �G2(u)Y ?

t�Z
?
t�]N(dt, du),

dZt =
h
�4(t)Y

†
t � (⌫(t) + �1(t))Z

†
t

i
dt� �2(t)Y

†
t Z

†
t dB

(2)
t

+
R
{|u|1}[H2(u)Y ?

t�Z
?
t� �H3(u)X?

t�Z
?
t�]Ñ(dt, du) +

R
{|u|>1} G2(u)Y ?

t�Z
?
t�N(dt, du).

(3.23)

Suppose that
⇠ � 1, Hi, Gj < 1, i = 1, 2, 3, j = 1, 2.

Then, Assumptions (B1)–(B4) hold. Thus, by Theorem (3.17), the system (3.23) has a unique,
strong solution in R3

+. Assume that

⌫ < �2, �1
2 + �2

2 + 2[H1 � ln{(1�H2)(1�G2)}] < 2min{M, �2 � ⌫}.

Set

�0 = �3 + 1, � = min{M, �2 � ⌫}�

�1

2 + �2
2

2
+H1 � ln{(1�H2)(1�G2)}

�
.

Then, by Theorem (3.18)(iii), we obtain that the disease is persistent and

lim inf
t!1

1

t

Z t

0

Ysds �
�

�0
a.s..
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(b) Let ⇤, ⌫, �, �1, �2, � 2 L1
+ [0,1) and H1, H2, H3, G1, G2 2 L1

+ (�1,1). We consider the
system

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dXt =
h
⇤(t)� ⌫(t)X†

t � �(t)X†
t Y

†
t + �1(t)Z

†
t

i
dt� �(t)X†

t Y
†
t Z

†
t dBt

�
R
{|u|1}[H1(u)�H3(u)]X?

t�Y
?
t�Z

?
t�Ñ(dt, du)

�
R
{|u|>1}[G1(u)�G3(u)]X?

t�Y
?
t�Z

?
t�N(dt, du),

dYt =
h
�(t)X†

t Y
†
t � (⌫(t) + �2(t))Y

†
t

i
dt+ 2�(t)X†

t Y
†
t Z

†
t dBt

+
R
{|u|1}[H1(u)�H2(u)]X?

t�Y
?
t�Z

?
t�Ñ(dt, du)

+
R
{|u|>1}[G1(u)�G2(u)]X?

t�Y
?
t�Z

?
t�N(dt, du),

dZt = [�2(t)Y
†
t � (⌫(t) + �1(t))Z

†
t ]dt� �(t)X†

t Y
†
t Z

†
t dBt

+
R
{|u|1}[H2(u)�H3(u)]X?

t�Y
?
t�Z

?
t�Ñ(dt, du)

+
R
{|u|>1}[G2(u)�G3(u)]X?

t�Y
?
t�Z

?
t�N(dt, du).

(3.24)

Suppose that
Hi, Gj < 1, i = 1, 2, 3, j = 1, 2.

Then, Assumptions (B1)–(B4) hold. Thus, by Theorem (3.17), the system (3.24) has a unique,
strong solution in R3

+. If
� + 2G1 < �2 + ⌫,

then the disease will extinct at an exponential rate:

�↵ > �2 + ⌫ � � � 2G1.

3.3 Simulations

We now present simulations corresponding to Examples 3.16, 3.19 and 3.20. Simulations are
completed using the Euler scheme with a time step �t = 0.001. We include stochastic and deter-
ministic results to demonstrate the effect of noise on such systems. The time t is epidemiological
time without a specific unit; however, we may imagine the time units represent days, weeks or
months.

(i) We assume that the system (3.16) in Example 3.16(a) has initial values (X0, Y0, Z0) =
(0.8, 0.19, 0.01) and set the parameters in Table 1:
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f(t) f f

�(t) = 0.3 + 0.1 sin(4t) 0.2 0.4

�(t) = 0.8 + 0.04 cos(7t) 0.76 0.84

⇠(t) = 1 + t
1+t 1 2

'i(t) = 0.01 + 0.005 cos(t), i = 1, 2 0.005 0.015

'3(t) = 1 + 0.5 sin(15t) 0.5 1.5

�1(t) = 0.5 + 0.01 cos(7t) 0.49 0.51

�2(t) = 0.4 + 0.01 sin(7t) 0.39 0.41

H1(u) = 0.01 — —

H2(u) = 0.025 — —

G1(u) = 0.1 — —

G2(u) = 0.12 — —

Table 1: Parameters for simulation of the system (3.16).

In Figure 2 below, it is illustrated that the extinction of the disease occurs at an exponential rate.
In accordance with Example 3.16(a), the disease will extinct with exponential rate

�↵ � � � � � 2G1 � 0.16.

Figure 2: Row 1 gives a simulation of the stochastic simulation using the discretization scheme of the system (3.16), row 2 is the
corresponding deterministic simulation, and rows 3 and 4 are the drift-free simulations of the diffusion and jump noise, respectively.

(ii) We assume that the system (3.17) in Example 3.16(b) has initial values (X0, Y0, Z0) =
(0.85, 0.1, 0.05) and set the parameters in Table 2:
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f(t) f f

�(t) = 0.17 + 0.01 cos(20t) 0.16 0.18

�1(t) = 0.12 + 0.01 cos(t) 0.11 0.13

�2(t) = 0.56 + 0.01 sin(t) 0.55 0.57

�(t) = 0.141 + 0.02(sin(t) + cos(t)) 0.141� 0.02
p
2 0.141 + 0.02

p
2

H1(u) = 0.019 — —

H2(u) = 0.018 — —

G1(u) = 0.11 — —

G2(u) = 0.1 — —

Table 2: Parameters for simulation of system (3.17).

We achieve results that illustrate the disease’s persistence, as is displayed in Figure 3 below.
Furthermore, we have �0 = 0.55, � = 0.0776367 and

lim inf
t!1

1

t

Z t

0

Ysds �
0.0776367

0.55
� 0.14115.

Figure 3: Row 1 gives a simulation of the stochastic simulation using the discretization scheme of the system (3.17), row 2 is the
corresponding deterministic simulation, and rows 3 and 4 are the drift-free simulations of the diffusion and jump noise, respectively.

(iii) The simulations are concerned with Example 3.19, system (3.20). The initial condition is
set to (X0, Y0, Z0) = (2.0, 0.8, 1), where the starting population is 3.8 million. In the following
simulations, the parameters will change to demonstrate their effects on a system with unchanging
initial conditions. The first two simulations illustrate the extinction of the disease, and the final
simulation will illustrate the persistence of the disease. We initially set the parameters in Table
3:
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f(t) f f

�(t) = 0.13 + 0.01 sin(t) 0.12 0.14

�(t) = 0.9 + 0.02 sin(t) 0.88 0.92

"(t) = 0.15 + 0.07 sin(t) 0.08 0.22

�(t) = 0.12 + 0.01(sin(t) + cos(t)) 0.12� 0.01
p
2 0.12 + 0.01

p
2

⇤(t) = 0.5 + 0.06 sin(t) 0.44 0.56

⌫(t) = 0.07 + 0.004 cos(t) 0.066 0.074

Table 3: Parameters for simulation 1 of the system (3.20).

Since the initial condition is unchanging, it is essential to note that it forces two parameters,
namely ⇤(t) and ⌫(t), to remain unchanged for these simulation purposes. Moreover, we have
that

� =

⇢
(x, y, z) 2 R3

+ : x+ y + z  ⇤

⌫
= 8.484848

�

as the invariant set for the system (3.20), that is, this system has a unique, strong solution taking
values in � per Theorem 3.17. Given these parameters and following Example 3.19, we have

R̃0 =
� ⇤

⌫(⌫ + � + ")
� �2⇤

2

2⌫2(⌫ + � + ")
 0.7646 < 1, �2 < 0.0121 < 0.0165 =

⌫�

⇤
.

As demonstrated below in Figure 4, the disease will go extinct at an exponential rate:

�↵ � (⌫ + � + ")
⇣
1� R̃0

⌘
� 0.241.

Figure 4: Row 1 is the discretization scheme simulation 1 of the system (3.20) illustrating disease extinction, and row 2 is the
corresponding deterministic system.

We now only alter a single parameter in the system (3.20). Assume that �(t) has the form
given in Table 4:

f(t) f f

�(t) = 0.55 + 0.003(sin(t) + cos(t)) 0.55� 0.003
p
2 0.55 + 0.003

p
2
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Table 4: Parameters for simulation 2 of the system (3.20).

This alteration yields

�2 � 0.29 > 0.0165 � max

(
⌫�

⇤
,

�
2

2(⌫ + � + ")

)
.

Thus, we have a scenario in which the disease goes extinct at an exponential rate:

�↵ � (⌫ + � + ")� �
2

2�2
� 0.993.

Moreover, if we compare Figure 5 to the above Figure 4, although initially, the disease dynamics
appear more volatile, we notice the disease appears to go extinct at a faster rate which is as
expected given the above results.

Figure 5: Row 1 is the discretization scheme simulation 2 of the system (3.20) illustrating disease extinction, and row 2 is the
corresponding deterministic system.

Now assume that the parameters for the system (3.20) are given in Table 5:

f(t) f f

�(t) = 0.56 + 0.01 sin(4t) 0.55 0.57

�(t) = 0.25 + 0.1 cos(5t) 0.15 0.35

�(t) = 0.24 + 0.01(sin(t) + cos(t)) 0.24� 0.01
p
2 0.24 + 0.01

p
2

Table 5: Parameters for simulation 3 of system (3.20).

This modification yields

R̃0 =
�⇤

⌫(⌫ + � + ")
� �2⇤

2

2⌫2(⌫ + � + ")
� 1.7 > 1.

34



In Figure 6 below, we see such a modification yields disease persistence as opposed to disease
extinction achieved in the previous two simulations for the system (3.20).

Figure 6: Row 1 is the discretization scheme simulation 3 of the system (3.20) illustrating disease persistence, and row 2 is the
corresponding deterministic system.

(iv) We assume the system (3.23) has initial conditions (3.75, 1.15, 1.1), where the values are
taken to be in millions. Set the parameters in Table 6:

f(t) f f

M = 2 — —

⇤(t) = 0.15 + 0.006 sin(t) 0.144 0.156

⌫(t) = 0.002 + 0.0001 cos(t) 0.0019 0.0021

�(t) = 0.18 + 0.01 sin(2t) 0.17 0.19

�1(t) = 0.15 + 0.004 cos(t) 0.146 0.154

�2(t) = 0.12 + 0.02 cos(t) 0.1 0.14

�3(t) = 0.12 + 0.04 cos(2t) 0.08 0.16

�4(t) = 0.1 + 0.04 sin(4t) 0.06 0.14

⇠(t) = 1 + ln(1 + | sin(t)|) 1 1 + ln 2

'i(t) = 0.01 + 0.005 cos(t), i = 1, 2 0.005 0.015

'3(t) = 1 + 0.25 sin(15t) 0.75 1.25

�1(t) = 0.15 + 0.01 cos(t) 0.14 0.16

�2(t) = 0.12 + 0.01 sin(t) 0.11 0.13

H1(u) = 0.0001 — —

H2(u) = 0.00025 — —

H3(u) = 0.0009 — —

G1(u) = 0.001 — —

G2(u) = 0.0012 — —

Table 6: Parameters for simulation of system (3.23).
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We have �0 = 1.16 and � � 0.075 and

lim inf
t!1

1

t

Z t

0

Ysds �
0.075

1.16
� 0.064.

The resulting persistence of the disease is illustrated below in Figure 7.

Figure 7: Row 1 gives discretization scheme simulation of the system (3.23) illustrating disease persistence, and subsequent rows give
corresponding deterministic, diffusion noise and jump noise simulations, respectively.

(v) We assume the system (3.24) has initial conditions (7.27, 1.5, 1.11), where the values are
taken to be in millions. Set the parameters in Table 7:

f(t) f f

M = 1.5 — —

⇤(t) = 0.09 + 0.01 cos(t) 0.08 0.1

⌫(t) = 0.003 + 0.001 sin(t) 0.002 0.004

�(t) = 0.14 + 0.005 cos(10t) 0.135 0.145

�1(t) = 0.002 + 0.002 cos(25t) 0 0.004

�2(t) = 0.35 + 0.04 cos(15t) 0.31 0.39

�(t) = 0.3125 + 0.002(sin(t) + cos(t)) 0.3125� 0.002
p
2 0.3125 + 0.002

p
2

H1(u) = 0.0001 — —

H2(u) = 0.0004 — —

H3(u) = 0.0009 — —

G1(u) = 0.001 — —

G2(u) = 0.007 — —

G3(u) = 0.005 — —

Table 7: Parameters for simulation of system (3.24).

The extinction of the disease is illustrated below in Figure 8. Moreover, as in Example (3.20)(b),
the disease will go extinct with rate �↵ � �2 + ⌫ � � � 2G1 � 0.165.
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Figure 8: Row 1 gives discretization scheme simulation of the system (3.24) illustrating disease extinction, and subsequent rows give
corresponding deterministic, diffusion noise and jump noise simulations, respectively.

3.4 Conclusion

In this chapter, we propose and investigate the USSIR model given by the system (3.2). We
have presented two forms of the novel model–one for population proportions and the other for
population numbers. We note that either form of the USSIR model could be studied in isolation
and it would be possible to derive the results regarding the absent form. However, from the
viewpoint of applications, it makes sense to consider both forms since differing scenarios may be
more suited to utilize one form over the other.

For both forms of the model, we have given results on the extinction and persistence of
diseases; moreover, we have shown that these results still hold with time-dependent, nonlinear
parameters and multiple Lévy noise sources. Notably, we give examples and simulations that
agree with the theoretical results and illustrate noise’s impact on a given SIR model system.
Moreover, the ability to allow time-dependency and multiple noises coincides with real-world
occurrences of infectious disease spread due to environmental noises or time-dependent events
such as temperature, climates, seasons, and so forth. The more general nature of the USSIR
model allows for many tailored use cases, some of which are explored in upcoming chapters.
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Chapter 4

Parameter estimation of stochastic SIR model driven by small

Lévy noises with time-dependent periodic transmission

Introduction

The advantage of small noise is that we can maintain the realistic behaviour of random per-
turbations in observations while circumventing the necessity of placing stringent conditions on
our SDEs to estimate drift parameters (e.g., no ergodicity or moment conditions are necessary).
This aligns well with real-world circumstances, as we are able to consider randomness without
assuming too many hypothetical properties of that randomness. Indeed, we go as far as to take
the assumption we need only know minimal information regarding the noise; in fact, all we re-
quire is the noise is of the Lévy type and that there is this small dispersion " tending towards
0. The former assumption is reasonable given the generality of Lévy processes. The latter arises
naturally; for instance, considering the scenario of obtaining more and more observations of a
phenomenon involving humans, from a macro point-of-view, one should not expect the intensity
of the noise to become increasingly erratic. That is, with an increasing number of observations
of a sizeable population, time and time again, we have found detectable patterns despite the
presence of random perturbations.

This chapter, based upon [22, E. and Sun], is concerned with the parameter estimation of
small noise Lévy-driven SDEs as applied to the USSIR model. Recall the USSIR model (3.2) is
defined as
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

dXt = b1(t,Xt, Yt, Zt)dt+
rX

j=1

�1j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H1(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G1(t,Xt�, Yt�, Zt�, u)N(dt, du),

dYt = b2(t,Xt, Yt, Zt)dt+
rX

j=1

�2j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H2(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G2(t,Xt�, Yt�, Zt�, u)N(dt, du),

dZt = b3(t,Xt, Yt, Zt)dt+
rX

j=1

�3j(t,Xt, Yt, Zt)dB
(j)
t

+

Z

{|u|1}
H3(t,Xt�, Yt�, Zt�, u)Ñ(dt, du) +

Z

{|u|>1}
G3(t,Xt�, Yt�, Zt�, u)N(dt, du).

(4.1)

It is a natural question to ask if disease transmission is periodic, and understanding this
periodicity dramatically aids in predicting possible outcomes. The specific application is the
study of periodicity in the COVID-19 pandemic, as well as future pandemics. However, similar
to the previous chapter, it is now subjected to a small dispersion coefficient ".
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In our study, we lay a solid theoretical foundation upon which we can estimate parameters and
forecast future disease dynamics. Additionally, given the complexity of the model, optimization
techniques are harnessed to solve for approximations to the estimators iteratively. The method-
ology presented herein is directly inspired by the results of Long et al. in [45] and [46]. We also
use the least-squares method to estimate the true value of parameter ✓0 of a discretely observed
stochastic process. We introduce a contrast function from which we are able to derive the least-
squares estimators (LSEs) when the drift is time-dependent and the explicit expression of the
noise is unknown–also given are proofs on the consistency and results on the rate of convergence
of the estimators.

Let (Bt)t�0 = (B(1)
t , . . . , B(r)

t )t�0 be a standard r-dimensional Brownian motion and N a
Poisson random measure on R+ ⇥ (Rl � {0}) with intensity measure µ satisfying

R
Rl�{0}(1 ^

|u|2)µ(du) < 1. We assume that (Bt)t�0 and N are independent. Define Ñ(dt, du) = N(dt, du)�
µ(du)dt. Consider a stochastic process (S"

t )t�0 which satisfies the SDE:

dS"
t = b(t, S"

t , ✓)dt

+"

⇢
�(t, S"

t )dBt +

Z

{|u|1}
H(t, S"

t�, u) eN(dt, du) +

Z

{|u|>1}
G(t, S"

t�, u)N(dt, du)

�
,

(4.2)

where 0 < " < 1, t 2 [0, 1], S"
0 = s 2 Rd, ✓ 2 ⇥, the closure of an open convex bounded

subset ⇥ of Rp, b(·, ·, ·) : [0,1)⇥ Rd ⇥ ⇥ ! Rd, �(·, ·) : [0,1)⇥ Rd ! Rd⇥r, H(·, ·, ·), G(·, ·, ·) :
[0,1) ⇥ Rd ⇥ (Rl � {0}) ! Rd are Borel measurable functions. Suppose (S"

t )t�0 is observed at
regularly spaced time points {tk = k

n , k = 1, 2, . . . , n}. For a matrix M , we denote its transpose
by M⇤. Define the contrast function

 n,"(✓) = n
nX

k=1

P ⇤
k (✓)Pk(✓),

where
Pk(✓) = S"

tk
� S"

tk�1
� 1

n
b(tk�1, S

"
tk�1

, ✓).

Let ✓̂n," be a minimum contrast estimator, i.e., a random variable satisfying

✓̂n," := argmin✓2⇥ n,"(✓).

As will be seen in the following pages, given the complexity of the USSIR model, finding a
closed form for the LSE ✓̂n," can be quite difficult; thus, we look for suitable approximations ✓̂⇤n,"
of ✓̂n,". In the vernacular for optimization, we may refer to our contrast function  n,"(✓) as an
objective function. Recall the discussion of estimation as optimization in Chapter 2; namely,
given an objective function that one wishes to minimize for parameter estimation purposes, a
commonly utilized method is gradient descent (GD) (cf. [7, Chapter 8]) and in our case projected
gradient descent (PGD) (cf. [7, Chapter 10]).
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4.1 Least-squares estimators for time-dependent SDEs driven by small
Lévy noises

4.1.1 General time-dependent SDEs driven by small Lévy noises

In this subsection, we investigate LSEs for discretely observed stochastic processes driven by
small Lévy noises. The results presented here generalize the results of Long et al. in [45] and
[46]. Our contributions are the generalization to a time-dependent jump-diffusion model, which is
more general to include different (singular and non-singular) coefficient functions for the Brownian
motion, small jump and large jump portions. Also noteworthy, although we use a contrast function
which is different from that in [46], we make mention of a result extending the asymptotics of
their contrast function in the presence of time-dependency and non-singular noise. These results
validate our use case, and the proofs are given at the end of this chapter.

4.1.2 Statement of main results

Consider an underlying deterministic (ordinary) differential equation denoted as

dS0
t = b(t, S0

t , ✓0), t 2 [0, 1], S0
0 = s,

where ✓0 is the true value of the drift parameter. Denote by C1,k,l
" ([0, 1] ⇥ Rd ⇥ ⇥;Rd) the class

of functions f 2 C1,k,l([0, 1]⇥ Rd ⇥⇥;Rd) which satisfy

sup
t2[0,1]

sup
✓2⇥

|@⌫3
✓ @⌫2

x @⌫1
t f(t, x, ✓)|  C(1 + |x|)�

for some constants C and � where ⌫1, ⌫2, and ⌫3 are non-negative integer-valued multi-indices
satisfying 0  ⌫1  1,

Pd
i=1 ⌫

(i)
2  k and

Pd
i=1 ⌫

(i)
3  l.

We take the following assumptions, which are modifications of those given in [46].

(A1) For any " 2 (0, 1), the SDE (4.2) admits a unique, strong solution S" (cf. [31, Theorem 2.2]
for concrete sufficient conditions).

(A2) There exist K > 0 and ⌘, ⇠ 2 B+(Rl) such that for any t 2 [0, 1], x, y 2 Rd, u 2 Rl � {0}
and ✓ 2 ⇥,

|b(t, x, ✓)� b(t, y, ✓)|  K|x� y|,
Z

{|v|1}
⌘2(v)µ(dv) < 1,

|b(t, x, ✓)|+ |�(t, x)|+
1{|u|1}|H(t, x, u)|

⌘(u)
+

1{|u|>1}|G(t, x, u)|
⇠(u)

 K(1 + |x|).

(A3) b(·, ·, ·) 2 C1,1,3
" ([0, 1]⇥ Rd ⇥⇥;Rd).

(A4) ✓ 6= ✓0 , 9t 2 [0, 1] such that b(t, S0
t , ✓) 6= b(t, S0

t , ✓0).

(A5) �(·, ·) is continuous on [0, 1] ⇥ Rd and H(·, ·, u), G(·, ·, u) are continuous on [0, 1] ⇥ Rd for
any u 2 Rl � {0}.
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(A6) " = "n ! 0 and n" ! 1 as n ! 1.

Due to the nature of the work herein obtaining a closed-form of an estimator ✓̂n," is not always
possible hence it makes sense to consider approximations of these estimators. We denote these
approximations by ✓̂⇤n,".

Recall the notation op(1), which is short for a sequence of random vectors that converges to

zero in probability, and the notation
P✓0��! which is short for convergence in probability under P✓0 .

By virtue of [61, Theorem 5.7], similar to [45, 46, Theorem 2.1], we can prove the following result
on the consistency of the LSEs.

Theorem 4.21 Let ✓̂⇤n," be any sequence of estimators with  n,"(✓̂⇤n,")   n,"(✓0) + op(1). Then,
under conditions (A1)-(A4), we have

✓̂⇤n,"
P✓0��! ✓0 as " ! 0 and n ! 1.

Define the matrix I(✓) = (I ij(✓))1i,jp by

I ij(✓) =

Z 1

0

(@✓ib)
⇤(r, S0

r , ✓)@✓jb(r, S
0
r , ✓)dr.

Similar to [45, 46, Theorem 2.2], we can prove the following result on the rate of convergence of
the LSEs.

Theorem 4.22 Assume that conditions (A1)-(A6) hold and I(✓0) is positive definite. Then,

"�1(✓̂n," � ✓0)
P✓0��! I�1(✓0)

 Z 1

0

(@✓ib)
⇤(r, S0

r , ✓)

(
�(r, S0

r )dBr

+

Z

{|u|1}
H(r, S0

r , u) eN(dr, du) +

Z

{|u|>1}
G(r, S0

r , u)N(dr, du)

)!⇤

1ip

as " ! 0 and n ! 1.

Remark 4.23 Consider the following SDE:

dS"
t = b(t, S"

t , ✓)dt+ "�(t, S"
t )

⇢
dBt +

Z

{|u|1}
u eN(dt, du) +

Z

{|u|>1}
uN(dt, du)

�
.

In the event the diffusion matrix ��⇤ is invertible, we may use the following contrast function
from Long et al. [46]:

 n,"(✓) = n

✓ nX

k=1

P ⇤
k (✓)⇤

�1
k�1Pk(✓)

◆
1{D>0}, (4.3)
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where

Pk(✓) = S"
tk
� S"

tk�1
� 1

n
b(tk�1, S

"
tk�1

, ✓), ⇤k�1 = [��⇤](tk�1, Stk�1
), D = inf

k=0,...,n�1
det⇤k.

Define the matrix I(✓) = (I ij(✓))1i,jp by

I ij(✓) =

Z 1

0

(@✓ib)
⇤(r, S0

r , ✓)[��
⇤]�1(r, S0

r )@✓jb(r, S
0
r , ✓)dr. (4.4)

We make the following additional assumption.

(A7) There exists an open convex subset U ⇢ Rd such that S0
t 2 U for all t 2 [0, 1], � is smooth

on [0, 1]⇥ U , and ��⇤ is invertible on [0, 1]⇥ U .

Following the arguments of [45, 46, Theorems 2.1 and 2.2], we can prove the following result.

Corollary 4.24 Assume that conditions (A1)-(A7) hold and I(✓0) defined by (4.4) is positive
definite. Then, the assertions of Theorems 4.21 and 4.22 hold for the LSE derived from the
contrast function (4.3).

4.1.3 Application to USSIR model with periodic transmission

Setting d = 3, we use equation (4.2) to write the USSIR model as

2

6664

dX"
t

dY "
t

dZ"
t

3

7775
=

2

6664

b1(t,X"
t , Y

"
t , Z

"
t , ✓)

b2(t,X"
t , Y

"
t , Z

"
t , ✓)

b3(t,X"
t , Y

"
t , Z

"
t , ✓)

3

7775
dt+ "

⇢
�(t,X"

t , Y
"
t , Z

"
t )dBt (4.5)

+

Z

{|u|1}
H(t,X"

t�, Y
"
t�, Z

"
t�, u) eN(dt, du)

+

Z

{|u|>1}
G(t,X"

t�, Y
"
t�, Z

"
t�, u)N(dt, du)

�
,

such that all previously stated assumptions hold. Above in equation (4.5), the drift function
b = (b1, b2, b3) is given in more general terms but in the subsequent sections, explicit instances
will be given. Moreover, at the centre of our focus in this chapter is the presence of a periodic
transmission function. Since any well-behaved periodic function may be approximated using a
Fourier series; we consider the drift function to contain a periodic transmission function of the
form

�(t) = ↵0 +
KX

k=1

↵1,k cos

✓
2⇡kt

✓

◆
+ ↵2,k sin

✓
2⇡kt

✓

◆
, (4.6)

where ✓,↵0,↵1,k,↵2,k > 0, 1  k  K. This leads to the contrast function being denoted by
 n,"(✓,↵0, (↵1,k,↵2,k)Kk=1) so that our parameters are represented by the vector (✓,↵0, (↵1,k,↵2,k)Kk=1)
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2 R2K+2
+ . Moreover, assume that ✓ 2 [0, 1], a natural assumption to make given the estimation

happens from time t = 0 to t = 1. The contrast function  n,"(✓,↵0, (↵1,k,↵2,k)Kk=1) is not glob-
ally convex; however, for a fixed ✓, it becomes convex in the remaining parameters. Hence, we
introduce the following algorithm:

Algorithm 1 Linear-Search Gradient-Descent (LS-GD)
For i in 1 to M ,

Fix a test value of ✓: ✓i 2
�
i�1
M , i

M

�
;

Set the initial value (↵(0)
0 , (↵(0)

1,k,↵
(0)
2,k)

K
k=1);

Run Gradient Descent on the function  n,"(✓i,↵0, (↵1,k,↵2,k)Kk=1) with update rule
(↵(l)

0 , (↵(l+1)
1,k ,↵(l+1)

2,k )Kk=1) = (↵(l)
0 , (↵(l)

1,k,↵
(l)
2,k)

K
k=1)�⌘r{↵0,(↵1,k,↵2,k)Kk=1}

 n,"(✓i,↵
(l)
0 , (↵(l)

1,k,↵
(l)
2,k)

K
k=1);

Store  ⇤
i := arg min

{↵0,(↵1,k,↵2,k)Kk=1}
 n,"(✓i,↵0, (↵1,k,↵2,k)Kk=1).

End

Return mini2{1,...,M} ⇤
i .

The returned value mini2{1,...,M} ⇤
i will be the approximation (✓⇤,↵⇤

0, (↵
⇤
1,k,↵

⇤
2,k)

K
k=1) of the LSE

(✓̂, ↵̂0, (↵̂1,k, ↵̂2,k)Kk=1) we seek.

Remark 4.25 The above algorithm can be modified for PGD, which we do indeed use, as will be
seen in the simulation studies.

For the remainder, we take K = 1, that is we consider the case when �(t) = ↵0+↵1 cos(2⇡t/✓)+
↵2 sin(2⇡t/✓). Choosing K > 1 does not contribute any more insights. Additionally, choosing
K > 1 would be more computationally expensive to evaluate in our simulation studies.

Recall that one of our primary goals is the estimation of the unknown period ✓ and the
coefficients (↵0,↵1,↵2) of the periodic transmission function �(t). Noise ensures this is a more
realistic model; moreover, we make no assumptions about the exact forms of the noise coefficient
functions �, H,G.

4.2 Simulation study of SIR model for population proportions

For this study, the unknown parameters are represented by the vector (✓,↵0,↵1,↵2) 2 R4
+ and our

objective function is denoted  n," (✓,↵0,↵1,↵2), where n is the number of observations we have
and " 2 (0, 1). For a fixed ✓, recall the convexity of  n," (✓,↵0,↵1,↵2) with respect to (↵0,↵1,↵2)
one only needs to check the Hessian matrix is positive semi-definite.

As mentioned before, we use the Julia programming language for our simulation and numerical
estimation results. Using Julia and utilizing the package DifferentialEquations.jl, we are able to
generate synthetic data for our testing purposes. Namely, a discretization of the USSIR model is
used, from which we take 100 observations to utilize in the estimation of the unknown parameters.
We next construct the contrast function and approximate the LSE by use of the LS-GD algorithm.
We accomplish the task of implementing the LS-GD algorithm with the aid of the Julia package
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Optim.jl. Optim.jl handles the projection to the constraint set for us; namely, as we are not
computing these estimates by hand, we are able to reasonably circumvent the difficulty presented
by projecting to the constraint set–all that is required of us is passing the constraint set C as
an argument to the suitable method from Optim.jl. The learning rate ⌘, present in the update
rule in (Algorithm 1), is chosen by a Hager-Zhang line-search algorithm. For a more in-depth
exploration, we refer the reader to the Optim.jl documentation in [47] and also to the paper by
Hager and Zhang [32].

Noteworthy is that the contrast function  n," is non-linear in the unknown parameters. This
is clear by the definition of �(t). Hence, there is an inter-play or sort of dependence of optimal
estimators between ↵i and ✓ for i = 1, 2. Moreover, this leads to the interesting result that we
are able to estimate two or more unknown parameters which are present in a dependent setting
of a multiplicative form.

Remark 4.26 Through some heuristics, we arrived at the initial value (↵(0)
0 ,↵(0)

1 ,↵(0)
2 )

= (0.5, 0.31, 0.21); which is used in all implementations of the LS-GD algorithm for this chapter.
There is nothing particularly significant about this value; hence we have no reason to believe it
had any impact on our findings.

For choosing the test values of ✓i, we chose them such that ✓i ⇠ Uniform( i�1
M , i

M ). As the value
M increases, it does not make a difference if we individually choose the value or allow it to be
randomly assigned within each subinterval.

4.2.1 Model for population proportions

Consider the following model for population proportions:
2

6664

dXt

dYt

dZt

3

7775
=

2

6664

��(t)XtYt

�(t)XtYt � �Yt

�Yt

3

7775
dt + "

2

6664

��Xt�Yt�Zt�

2�Xt�Yt�Zt�

��Xt�Yt�Zt�

3

7775
dLt, (4.7)

where
Lt = Bt +

Z t

0

Z

{|u|>0.1}
uN(ds, du),

and as before,

�(t) = ↵0 + ↵1 cos

✓
2⇡t

✓

◆
+ ↵2 sin

✓
2⇡t

✓

◆
, ✓ 2 [0, 1],↵0,↵1,↵2 > 0,

�, � > 0 are constants, and N = N1 + N2 such that N1, N2 are independent Poisson random
measures with respective intensity measures µ1 and µ2:

(
N1 ⇠ 2

3�dtµ1(du) with µ1 = �({�0.1, 0.1, 0.0}),
N2 ⇠ 1

3�dtµ2(du) with µ2 = �({0.0,�0.1, 0.1}),
(4.8)
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where � ⇠ Uniform({1, 2, 3, 4}).

By [21, Theorem 2.1], the SDE (4.7) has a unique, strong solution taking values in the set
� = {(x, y, z) 2 R3

+ : x + y + z = 1}. It is easy to verify that all assumptions of Theorems 2.1
and 2.2 hold. We use the following contrast function:

 ",n(✓,↵0,↵1,↵2) = 100

 
100X

k=1

P ⇤
k (✓,↵0,↵1,↵2)Pk(✓,↵0,↵1,↵2)

!
,

where

Pk(✓,↵0,↵1,↵2) =

2

6664

Xtk �Xtk�1
� 1

100

⇥
��(tk�1)Xtk�1

Ytk�1

⇤

Ytk � Ytk�1
� 1

100

⇥
�(tk�1)Xtk�1

Ytk�1
� �Ytk�1

⇤

Ztk � Ztk�1
� 1

100�Ytk�1

3

7775
.

.

4.2.2 Parameter estimation

We generate the synthetic data 10000 times and randomly choose 1000 such data sets to perform
estimation upon. Set � = 0.07142, � = 0.5 and (X0, Y0, Z0) = (0.84, 0.07, 0.11). For the unknown
parameters, the true values for use in generating the synthetic data are randomly decided upon
as follows

✓ ⇠ Uniform(0, 1), ↵0 ⇠ Uniform(0.1, 0.8), ↵1,↵2 ⇠ Uniform
✓
0,

↵0p
2

◆
. (4.9)

It is noteworthy that although the distributions of ↵1,↵2 are dependent on the distribution of ↵0,
their specific values are not. The reasoning for this dependency is we require �(t) � 0. Also note
that for each generation of synthetic data, the jump parameter � is randomly chosen as described
in (4.8).

The subsequent plots and table contain our findings, and the metric we use to test our method-
ology is

MAE =
1000X

i=1

|yi � ŷi|
1000

,

where yi is the true value and ŷi is the estimated value for ✓,↵0,↵1,↵2.
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" Parameter MAE

0.3

✓ 0.0980807

↵0 0.021481

↵1 0.055916

↵2 0.058691

0.1

✓ 0.0416584

↵0 0.009259

↵1 0.034566

↵2 0.0368507

0.01

✓ 0.021081

↵0 0.005788

↵1 0.033258

↵2 0.0333328

0.001

✓ 0.0205791

↵0 0.005601

↵1 0.03208

↵2 0.03183

Table 1: Metrics of estimated parameters for 1000 estimations of 100 observations using 200
values of ✓̂.
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Figure 9: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.3.

Figure 10: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.1.

Figure 11: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.01.

Figure 12: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.001.
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4.2.3 Forecasting

We now take the results from the previous section to complete a prediction simulation study of
the model (4.7). We make use of a similar methodology and carry out our study as follows.

1. We generate a true parameter vector (✓,↵0,↵1,↵2) and use this to create synthetic data for
training.

2. We train the model using 100 observations on the time interval [0, 1] by using the LS-GD
algorithm with 500 test values of the period ✓.

3. Once training is complete, we simulate model (4.7) on the time interval [0, 3] with both the
true and trained parameters vectors.

We generate the initial conditions as

(X0, Y0, Z0) ⇠
✓

Uniform(0.4, 1),
1�X0

n
,
(1�X0)(n� 1)

n

◆
,

where n ⇠ Uniform{2, 3, 4, 5, 6, 7}. The reason for this is the SIR model has the requirement that

Xt + Yt + Zt = 1, t � 0.

We use a component-wise form of mean-squared error as the metric of the trials. We run 1000
prediction trials, and for each trial, we have 100 observations/samples. Hence for each trial j,
j 2 {1, . . . , 1000}, we compute the following sum.

Tj =
1

100

100X

k=1

h
(Xtk � X̂tk)

2, (Ytk � Ŷtk)
2, (Ztk � Ẑtk)

2
i
.

Then, we compute 1
1000

P1000
j=1 Tj. This metric allows us to check each component error individually

while providing insight into the error of the trials of the whole model.

Remark 4.27 There is nothing particularly special about our choice to randomly generate X0

and then use its value to assign values to Y0 and Z0. Additionally, nothing special about the
assignment of the factors 1/n and (n� 1)/n – merely a convenience for computation.
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The following table includes the true values against the trained (estimated) values for the
proportional model.

(✓,↵0,↵1,↵2) (0.26836304, 0.15114833, 0.0621514, 0.096762)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.3 (0.27069755, 0.1707693, 0.11016354, 0.082015210)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.1 (0.261749799, 0.1717002782, 0.025364225, 0.1017260206)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.01 (0.2668796604, 0.146115022, 0.04899088, 0.0966312804)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.001 (0.26743667816, 0.151314344, 0.058359562, 0.0989769703)

Table 2: True parameter values versus trained parameter values for proportional model.

The subsequent figures give simulation results using the true values and the trained values for
the parameters. The true parameter observations are marked by a +, while the trained parameter
observations are marked by a dot.

Figure 13: Simulation of model (4.7) for " = 0.3.

Figure 14: Simulation of model (4.7) for " = 0.1.
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Figure 15: Simulation of model (4.7) for " = 0.01.

Figure 16: Simulation of model (4.7) for " = 0.001.

" Component-wise MSE: (X̂t, Ŷt, Ẑt)

0.3 (0.000024732 0.00006754 0.00001291)

0.1 (0.000009734 0.00001537 0.000002157)

0.01 (0.000002564 0.000003539 0.0000006851)

0.001 (0.0000001432 0.00000003593 0.00000007774)

Table 3: True parameter values versus trained parameter values for model (4.7).

4.3 Simulation study of SIR model for population numbers

4.3.1 Model for population numbers

In this subsection, we consider the following model for population numbers:
2

6664

dXt

dYt

dZt

3

7775
=

2

6664

⇤� ⌫Xt � �(t)XtYt

�(t)XtYt � (⌫ + �)Yt

�Yt � ⌫Zt

3

7775
dt + "

2

6664

�Xt�Yt�Zt� 0 0

0 �Xt�Yt�Zt� 0

0 0 �Xt�Yt�Zt�

3

7775

2

6664

dL(1)
t

dL(2)
t

dL(3)
t

3

7775
,

(4.10)
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where
2

6664

L(1)
t

L(2)
t

L(3)
t

3

7775
=

2

66666664

B(1)
t +

Z t

0

Z

{|u|>0.1}
uN (1)(ds, du)

B(2)
t +

Z t

0

Z

{|u|>0.1}
uN (2)(ds, du)

B(3)
t +

Z t

0

Z

{|u|>0.1}
uN (3)(ds, du)

3

77777775

,

�(t) = ↵0 + ↵1 cos

✓
2⇡t

✓

◆
+ ↵2 sin

✓
2⇡t

✓

◆
, ✓ 2 [0, 1],↵0,↵1,↵2 > 0,

⇤, ⌫, �, � > 0 are constants, and N (1), N (2), N (3) are i.i.d. copies of N = N1+N2 as given in (4.8).

By [21, Theorem 3.1], the SDE (4.10) has a unique, strong solution taking values in R3
+. We

utilize the contrast function (4.3), which is similar to that given in [46] and takes the explicit
form:

 ",n(✓,↵0,↵1,↵2) = 100

 
100X

k=1

P ⇤
tk
(✓,↵0,↵1,↵2)⇤

�1
k�1Ptk(✓,↵0,↵1,↵2)

!
,

where

Ptk(✓,↵0,↵1,↵2) =

2

6664

Xtk �Xtk�1
� 1

100

⇥
⇤� ⌫Xtk�1

� �(tk�1)Xtk�1
Ytk�1

⇤

Ytk � Ytk�1
� 1

100

⇥
�(tk�1)Xtk�1

Ytk�1
� (⌫ + �)Ytk�1

⇤

Ztk � Ztk�1
� 1

100

�
�Ytk�1

� ⌫Ztk�1

�

3

7775
,

and

⇤k�1 =

2

6664

[�Xtk�1
Ytk�1

Ztk�1
]2 0 0

0 [�Xtk�1
Ytk�1

Ztk�1
]2 0

0 0 [�Xtk�1
Ytk�1

Ztk�1
]2

3

7775
.

4.3.2 Parameter estimation

We generate the synthetic data 10000 times and randomly choose 1000 such data sets to per-
form estimation upon. Set ⇤ = 0.018, ⌫ = 0.00042, � = 0.07142, � = 0.5 and (X0, Y0, Z0) =
(2.3, 0.19, 0.25) (taken to be in millions). Again, for this study, we keep the jumps simple; namely,
there is no compensated jump portion. We also use the same metric MAE to test our results,
and the true values for the synthetic data are generated as given in (4.9).
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" Parameter MAE

0.3

✓ 0.0944492

↵0 0.023988

↵1 0.0563110

↵2 0.058243

0.1

✓ 0.03130246

↵0 0.00960035

↵1 0.0365961

↵2 0.0369104

0.01

✓ 0.01966768

↵0 0.0057932

↵1 0.0283396

↵2 0.0291711

0.001

✓ 0.01657112

↵0 0.0056

↵1 0.02781

↵2 0.0294392

Table 4: Metrics of estimated parameters where 1000 estimations are completed given 100 obser-
vations and we used 200 test values of ✓̂.
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Figure 17: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.3.

Figure 18: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.1.

Figure 19: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.01.

Figure 20: Estimates against true values for 1000 estimations of 100 observations using 200 values of ✓̂ while " = 0.001.
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4.3.3 Forecasting

In a similar fashion to the previous subsection, we perform a predictive simulation study. The
primary difference being the initial conditions are randomized such that

(X0, Y0, Z0) ⇠ (Uniform(1, 4), Uniform(0.1, 1), Uniform(0.1, 1)).

Otherwise, the methodology is the same as before, including using the component-wise MSE. The
following table includes the randomly-generated true parameter values against those we obtained
in the estimation. The subsequent figures below display the simulation of the model (4.10) using
the true parameters and the values of the trained parameters. The true parameter observations
are marked by a +, while the trained parameter observations are marked by a dot.

(✓,↵0,↵1,↵2) (0.26836304, 0.15114833, 0.0621514, 0.096762)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.3 (0.2759104, 0.15106501, 0.09268711, 0.0418802)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.1 (0.268413479, 0.14653753, 0.058398519, 0.116306536)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.01 (0.26945644, 0.1511415, 0.0667543397, 0.09347593)

(✓̂, ↵̂0, ↵̂1, ↵̂2), " = 0.001 (0.26857489, 0.151209307, 0.06245031, 0.0967899)

Table 5: True parameter values versus trained parameter values for model (4.10).

Figure 21: Simulation of model (4.10) for " = 0.3.

Figure 22: Simulation of model (4.10) for " = 0.1.
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Figure 23: Simulation of model (4.10) for " = 0.01.

Figure 24: Simulation of model (4.10) for " = 0.001.

" Component-wise MSE: (X̂t, Ŷt, Ẑt)

0.3 (0.119862755 0.4229034 0.1641841226)

0.1 (0.01354954 0.0286335 0.01803421)

0.01 (0.00032701 0.0003369 0.00015043)

0.001 (0.000221016 0.000165453 0.0000109)

Table 6: True parameter values versus trained parameter values for model (4.10).

Remark 4.28 Mean-squared error is scale-dependent; hence, comparing the metrics, we have for
the two model versions is of no practical use. The former model only takes values in the interval
[0, 1] whereas the latter model can take values larger than 1.

4.4 Proofs of main results

In this section, we only give the proofs of Theorem 4.21 and 4.22. Following the similar arguments
of [46] with suitable modifications presented in this section, we can prove Corollary 4.24. The
details are omitted here.

Set Y n,"
t = S"

[nt]/n. For convenience, we will use C to denote a generic constant whose value
may vary from place to place, and use E and P to denote E✓0 and P✓0 , respectively.

55



4.4.1 Proof of Theorem 4.21

Lemma 4.29 Suppose (A1) and (A2) hold. Then, {Y n,"
t } converges uniformly on compacts in

probability to the deterministic process {S0
t } as " ! 0 and n ! 1.

Proof. We follow the argument of [46, Lemma 4.1]. Let

Jt := N([0, t]⇥ {|u| > 1}),

which is a Poisson process with intensity � = µ({|u| > 1}). Denote by ⌧1 < ⌧2 < · · · < ⌧n < · · ·
the jump times of {Jt}. We have limn!1 ⌧n = 1 a.s.. We use the interlacing technique (cf. [3])
to construct the solution (S"

t )t�0 of (4.2). Set ⌧0 = 0. Let {Z"
t (i) : t � 0} be the unique, strong

solution to the SDE:

Z"
t (i) = Z"

0(i) +

Z t

0

b(s, Z"
s(i), ✓)ds+ "

Z t

0

⇢
�(s, Z"

s(i))dBs(i) +

Z

{|u|1}
H(s, Z"

s�(i), u) eNi(ds, du)

�
,

Z"
0(i) = S"

⌧i�1
,

where Bt(i) = B⌧i�1+t � B⌧i�1 and Ni([0, t] ⇥ A) = N([⌧i�1, ⌧i�1 + t] ⇥ A) for any A 2 B(Rl �
{0}). Furthermore, let Z0

t : t � 0 be the unique, strong solution to the underlying deterministic
differential equation:

Z0
t (i) = Z0

0(i) +

Z t

0

b(s, Z0
s (i), ✓)ds, Z0

0(i) = S0
⌧i�1

.

By (A1), we find that

Z"
t (i) =

8
<

:
S"
⌧i�1+t, 0  t < ⌧i � ⌧i�1,

S"
⌧i� , t = ⌧i � ⌧i�1,

and S"
⌧i = S"

⌧i� + "G(⌧i�, S"
⌧i� , ⇠i), where {⇠i : i 2 N} are i.i.d. Rl-valued random variables with

common probability distribution µ(·\{|u|>1})
� . First, we take i = 1. Then, Z"

0(1) = x 2 Rd. Let
" > 0 be fixed,

⌧ "M := inf{t : |Z"
t (1)| _ |Z"

t�(1)| > M},
and

f 2 C2
b (Rd) such that f(x) = |x|2 if |x|  M.

By Itô’s formula (cf. [52]), we find that

f(Z"
t^⌧"M

(1))� f(x)�
Z t^⌧"M

0

Asf(Z
"
s(1))ds

is a martingale, where

Asf(x) =
dX

k=1

bi(s, x, ✓)
@f

@xk
(x) +

1

2
"2

dX

k,j=1

rX

l=1

�k
l (s, x)�

j
l (s, x)

@2f

@xk@xj
(x)

+

Z

{|u|1}

"
f(x+ "H(s, x, u))� f(x)� "

dX

k=1

Hk(s, x, u)
@f

@xk
(x)

#
µ(du).
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Now we consider

Z"
t (1)� Z0

t (1) =

Z t

0

[b(s, Z"
s(1), ✓)� b(s, Z0

s (1), ✓)]ds+ "

Z t

0

�(s, Z"
s(1))dBs(1) (4.11)

+"

Z t

0

Z

{|u|1}
H(s, Z"

s�(1), u)Ñ1(ds, du).

By Doob’s inequality and (A2) given Equation (4.11), we get

E


sup
0st

|Z"
s(1)� Z0

s (1)|2
�

 4E[|Z"
t (1)� Z0

t (1)|2]

 12E

(����
Z t

0

b(s, Z"
s(1), ✓)� b(s, Z0

s (1), ✓)ds

����
2

+"2
����
Z t

0

�(s, Z"
s(1))dBs(1)

����
2

+ "2
����
Z t

0

Z

{|u|1}
H(s, Z"

s�(1), u)Ñ1(ds, du)

����
2
)

 12K2

(
tE

 Z t

0

|Z"
s(1)� Z0

s (1)|2ds
�
+ "2E

 Z t

0

(1 + |Z"
s(1)|)2ds

�

+"2E

 Z t

0

Z

{|u|1}
⌘2(u)(1 + |Z"

s�(1)|)2µ(du)ds
�)

 12K2

(✓
t+ 2"2 + 2"2

Z

{|u|1}
⌘2(u)µ(du)

◆
E

 Z t

0

|Z"
s(1)� Z0

s (1)|2ds
�

+2t"2(1 + |x|)2

1 +

Z

{|u|1}
⌘2(u)µ(du)

�)
.

Then, by Gronwall’s inequality, we obtain that

E


sup
0t1

|Z"
t (1)� Z0

t (1)|2
�
! 0 as " ! 0. (4.12)

For any small � > 0, there is a T sufficiently large enough such that P (⌧1 > T ) < �. Recall
that the processes (S"

t )t�0 and (S0
t )t�0 are càdlàg and continuous, respectively. Then, by (4.12),

we get

P

✓
sup

0t⌧1

|S"
t� � S0

t | > �

◆
 P

✓
sup

0t⌧1

|S"
t� � S0

t | > �; ⌧1  T

◆
+ P (⌧1 > T )

 P

✓
sup

0tT
|Z"

t (1)� Z0
t (1)| > �

◆
+ �

! 0 as ", � ! 0.

Additionally, note that S"
⌧1 = S"

⌧1� + "G(⌧1�, S"
⌧1� , ⇠1). Since S"

⌧1�
P�! S0

⌧1 , we get

|S"
⌧1 � S0

⌧1 |  |S"
⌧1� � S0

⌧1 |+ "K(1 + |S"
⌧1�|)|⇠1|

P�! 0.
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Thus,

P

✓
sup

0t⌧1

|S"
t � S0

t | > �

◆
! 0 as " ! 0.

Next, we consider {Z"
t (2) : t � 0}, where Z"

0(2) = S"
⌧1 . We have

Z"
t (2)� Z0

t (2) = S"
⌧1 � S0

⌧1 +

Z t

0

[b(s, Z"
s(2), ✓)� b(s, Z0

s (2), ✓)]ds

+"

Z t

0

�(s, Z"
s(2))dBs(2) + "

Z t

0

Z

{|u|1}
H(s, Z"

s�(2), u)Ñ2(ds, du).

Using the arguments above here will yield the result

lim
"!0

E


sup

0tT
|Z"

t (2)� Z0
t (2)|1{|S"

⌧1
|+|S0

⌧1
|M}

�
= 0.

For any small � > 0, there exists M > 0 such that P (|S0
⌧1 | >

M
4 ) < �. Then, we have that

lim sup
"!0

P

✓
sup

0tT^⌧2
|Z"

t (2)� Z0
t (2)| > �

◆

 lim sup
"!0

P

✓
sup

0tT
|Z"

t (2)� Z0
t (2)| > �; |S"

⌧1 |+ |S0
⌧1 |  M

◆

+ lim sup
"!0

P

✓
|S"

⌧1 � S0
⌧1 | >

M

2

◆
+ P

✓
|S0

⌧1 | >
M

4

◆

< �.

Recall S"
⌧2 = S"

⌧2� + "G(⌧2�, S"
⌧2� , ⇠2) and thus as before we have

P

✓
sup

⌧1t⌧2

|S"
t � S0

t | > �

◆
! 0 as " ! 0.

By induction on i � 1 we now have

P

✓
sup

⌧i�1t⌧i

|S"
t � S0

t | > �

◆
! 0 as " ! 0.

As i ! 1, it happens to be ⌧i ! 1 a.s., thus for any given T > 0, � > 0 there exists i0 2 N such
that when i � i0 implies P (⌧i < T ) < �

2 . Moreover, we have for every i > 0, � > 0 there exists "0
such that for all " < "0

P

✓
sup

⌧i�1t⌧i

|S"
t � S0

t | > �

◆
<

�

2i+1i0
.

Then, for " < "0,

P

✓
sup
0t1

|S"
t � S0

t | > �

◆


iX

k=1

P

✓
sup

⌧k�1t⌧k

|S"
t � S0

t | > �

◆
<

�

2i0
.
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Thus,

P

✓
sup
0t1

|S"
t � S0

t | > �

◆

= P

✓
sup
0t1

|S"
t � S0

t | > �; ⌧i0 < 1

◆
+ P

✓
sup
0t1

|S"
t � S0

t | > �; ⌧i0 � 1

◆

 P

✓
⌧i0 < 1

◆
+

i0X

k=1

P

✓
sup
0t1

|S"
t � S0

t |; ⌧k�1  t < ⌧k

◆

< �.

To wrap it up, since S"
t is a semimartingale, by [52, Theorem II.11], we find that for any fixed

" > 0,
sup
0t1

|Y n,"
t � S"

t |
P�! 0 as n ! 1.

Therefore, we can ascertain

P

✓
sup
0t1

|Y n,"
t � S0

t | > �

◆
! 0 as " ! 0, n ! 1. ⇤

Lemma 4.30 Suppose (A1) and (A2) hold. Let f 2 C1,1,1
"

�
[0, 1]⇥ Rd ⇥⇥

�
. Then,

1

n

nX

k=1

f(tk�1, S
"
tk�1

, ✓)
P✓0��!

Z 1

0

f(s, S0
s , ✓)ds.

as " ! 0 and n ! 1, uniformly in ✓ 2 ⇥.

Proof. We follow the argument of [45, Lemma 3.3]. Using the condition imposed on f and
Lemma 4.29, we get

sup
✓2⇥

����
1

n

nX

k=1

f(tk�1, S
"
tk�1

, ✓)�
Z 1

0

f(s, S0
s , ✓)ds

����

 sup
✓2⇥

nX

k=1

Z tk

tk�1

|f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)|ds+ sup

✓2⇥

Z 1

0

|f(s, Y n,"
s , ✓)� f(s, S0

s , ✓)|ds


nX

k=1

Z tk

tk�1

✓Z 1

0

sup
✓2⇥

|(rtf)(tk�1 + v(s� tk�1), Y
n,"
s , ✓)|dv

◆
|s� tk�1|ds

+

Z 1

0

✓Z 1

0

sup
✓2⇥

|(rxf)
�
s, S0

s + u
�
Y n,"
s � S0

s

�
, ✓
�
|du
◆
|Y n,"

s � S0
s |ds

 C

 
1 + sup

s2[0,1]
|S0

s |+ sup
s2[0,1]

|S"
s |
!� "

1

n
+ sup

s2[0,1]
|Y n,"

s � S0
s |
#

P✓0��! 0 as " ! 0, n ! 1. ⇤
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Define
⌧ "m = inf{t � 0 : |S"

t | _ |S"
t�| � m}, ⌧ 0m = inf{t � 0 : |S0

t | � m}.

Similar to [46, Lemma 4.3], we can prove the following lemma.

Lemma 4.31 Suppose (A1) and (A2) hold. Then, for any m > 0, ⌧ "m
P✓0��! ⌧ 0m as " ! 0.

Lemma 4.32 Suppose (A1)–(A3) hold. Let f 2 C1,1,1
"

�
[0, 1]⇥ Rd ⇥⇥

�
. Then, for 1  i  d,

nX

k=1

f(tk�1, S
"
tk�1

, ✓)
⇣
S",i
tk � S",i

tk�1
� bi(tk�1, S

"
tk�1

, ✓0)�tk�1

⌘
P✓0��! 0

as " ! 0 and n ! 1, uniformly in ✓ 2 ⇥, where S",i
t and bi are the ith components of S"

t and b,
respectively, and �tk�1

:= tk � tk�1 =
1
n .

Proof. Recall that

S",i
tk = S",i

tk�1
+

Z tk

tk�1

bi(s, S
"
s , ✓0)ds+ "

Z tk

tk�1

✓
�i(s, S

"
s)dBs

+

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du) +

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

◆
.
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Then, we have

nX

k=1

f(tk�1, S
"
tk�1

, ✓)
⇣
S",i
tk � S",i

tk�1
� bi(tk�1, S

"
tk�1

, ✓0)�tk�1

⌘

=
nX

k=1

Z tk

tk�1

f(tk�1, S
"
tk�1

, ✓)
⇣
bi(s, S

"
s , ✓0)� bi(tk�1, S

"
tk�1

, ✓0)
⌘
ds

+"
nX

k=1

Z tk

tk�1

f(tk�1, S
"
tk�1

, ✓)�i(s, S
"
s)dBs

+"
nX

k=1

Z tk

tk�1

f(tk�1, S
"
tk�1

, ✓)

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+"
nX

k=1

Z tk

tk�1

f(tk�1, S
"
tk�1

, ✓)

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

=

Z 1

0

f(s, Y n,"
s , ✓) (bi(s, S

"
s , ✓0)� bi(s, Y

n,"
s , ✓0)) ds

+"

Z 1

0

f(s, Y n,"
s , ✓)�i(s, S

"
s)dBs

+"

1Z

0

f(s, Y n,"
s , ✓)

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+"

1Z

0

f(s, Y n,"
s , ✓)

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

+
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)] (bi(s, S

"
s , ✓0)� bi(s, Y

n,"
s , ✓0)) ds

+
nX

k=1

Z tk

tk�1

f(tk�1, S
"
tk�1

, ✓) (bi(s, Y
n,"
s , ✓0)� bi(tk�1, Y

n,"
s , ✓0)) ds

+"
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]�i(s, S

"
s)dBs

+"
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+"
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du).

Using the condition imposed on f , (A2), (A3), Lemma 4.29, Lemma 4.31 and following the
argument as in the proof of [45, Lemma 3.5], we can show that all of the above terms converge
to zero in probability as " ! 0 and n ! 1, uniformly in ✓ 2 ⇥. ⇤

61



Proof of Theorem 4.21. Define

�n,"(✓) :=  n,"(✓)� n,"(✓0).

We have
✓̂n," = argmin✓2⇥�n,"(✓),

and

�n,"(✓) = �2
nX

k=1

(b(tk�1, S
"
tk�1

, ✓)� b(tk�1, S
"
tk�1

, ✓0))
⇤
✓
S"
tk
� S"

tk�1
� 1

n
b(tk�1, S

"
tk�1

, ✓0)

◆

+
1

n

nX

k=1

|b(tk�1, S
"
tk�1

, ✓)� b(tk�1, S
"
tk�1

, ✓0)|2

:= �(1)
n,"(✓) + �

(2)
n,"(✓).

By Lemma 4.32 and letting f(t, x, ✓) = bi(t, x, ✓)�bi(t, x, ✓0), 1  i  d, we get sup✓2⇥ |�(1)
n,"(✓)|

P✓0��!
0 as " ! 0 and n ! 1. By Lemma 4.30 and letting f(t, x, ✓) = |b(t, x, ✓) � b(t, x, ✓0)|2, we get
sup✓2⇥ |�(2)

n,"(✓)� F (✓)|
P✓0��! 0 as " ! 0 and n ! 1, where

F (✓) :=

Z 1

0

|b(t, S0
t , ✓)� b(t, S0

t , ✓0)|2dt.

Then, we have that
sup
✓2⇥

|�n,"(✓)� F (✓)|
P✓0��! 0 as " ! 0, n ! 1.

By (A4) and the continuity of S0, we get

sup
|✓�✓0|>�

�F (✓) < �F (✓0) = 0, 8� > 0.

Therefore, the proof is complete by [61, Theorem 5.7]. ⇤

4.4.2 Proof of Theorem 4.22

Note that

r✓�n," = �2
nX

k=1

(r✓b)
⇤(tk�1, S

"
tk�1

, ✓)(S"
tk
� S"

tk�1
� b(tk�1, S

"
tk�1

, ✓)�tk�1
).

Define Gn,"(✓) = (Gi
n,")

⇤
1ip, where

Gi
n,"(✓) :=

nX

k=1

(@✓ib)
⇤(tk�1, S

"
tk�1

, ✓)(S"
tk
� S"

tk�1
� b(tk�1, S

"
tk�1

, ✓)�tk�1
), 1  i  p,
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and define
Kn,"(✓) := r✓Gn,"(✓),

namely, a p⇥ p matrix comprised of (@✓jGi
n,")1i,jp. Lastly, define

Kij(✓) =

1Z

0

(@✓j@✓ib)
⇤(s, S0

s , ✓)(b(s, S
0
s , ✓0)� b(s, S0

s , ✓))ds� I ij(✓),

and
K(✓) = (Kij(✓))1i,jp.

Lemma 4.33 Suppose (A1), (A2) and (A5) hold. Let f 2 C1,1,1
"

�
[0, 1]⇥ Rd ⇥⇥

�
. Then, for

1  i  d and each ✓ 2 ⇥,
nX

k=1

f(tk�1, S
"
tk�1

, ✓)

✓Z tk

tk�1

�(s, S"
s)dBs +

Z tk

tk�1

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+

Z tk

tk�1

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

◆

P✓0��!
Z 1

0

f(s, S0
s , ✓)

✓
�i(s, S

0
s )dBs +

Z

{|u|1}
Hi(s, S

0
s , u) eN(ds, du)

+

Z

{|u|>1}
Gi(s, S

0
s , u)N(ds, du)

◆
,

as " ! 0 and n ! 1.

Proof. We follow the arguments of [45, Lemma 3.4] and [46, Lemma 4.6]. Define

An," :=
nX

k=1

f(tk�1, S
"
tk�1

, ✓)

✓Z tk

tk�1

�i(s, S
"
s)dBs +

Z tk

tk�1

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+

Z tk

tk�1

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

◆
,

Bn," :=

Z 1

0

f(s, Y n,"
s , ✓)

✓
�i(s, S

"
s)dBs +

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

+

Z

{|u|>1}
Gi(s, S

"
s�, u)N(ds, du)

◆
.

We can show that An," = Bn," + oP (1). In fact, we have

|An," � Bn,"|


nX

k=1

Z tk

tk�1

|f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)|

Z

{|u|>1}
|Gi(s, S

"
s�, u)|N(ds, du)

+

����
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

✓
�i(s, S

"
s)dBs +

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

◆����

:= In," + Jn,",
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In,"  sup
✓2⇥

nX

k=1

Z tk

tk�1

✓Z 1

0

|(rtf)(tk�1 + v(s� tk�1), Y
n,"
s , ✓)|dv

◆
|s� tk�1|

·
Z

{|u|>1}
|Gi(s, S

"
s�, u)|N(ds, du)

 CK

n

 
1 + sup

t2[0,1]
|S"

t |
!�+1 Z

{|u|>1}
⇠(u)N(ds, du)

P�! 0 as " ! 0, n ! 1.

For Jn," and ⌘ > 0, using the stopping time ⌧ "m, Lemma 4.29, Markov’s inequality, and dominated
convergence we have

P

✓����
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

✓
�i(s, S

"
s)1{s⌧"m}dBs

+

Z

{|u|1}
Hi(s, S

"
s�, u)1{s⌧"m} eN(ds, du)

◆���� > ⌘

◆

 1

⌘

✓
E

(
nX

k=1

Z tk

tk�1

|f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)|2�2

i (s, S
"
s)1{s⌧"m}ds

)◆1/2

+
1

⌘

✓
E

(
nX

k=1

Z tk

tk�1

|f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)|21{s⌧"m}ds

)◆1/2

·
✓
E

⇢Z 1

0

Z

{|u|1}
|Hi(s, S

"
s�, u)|2µ(du)1{s⌧"m}

�
ds

◆1/2

 1

⌘

✓
E

(
nX

k=1

Z tk

tk�1

✓Z 1

0

|(rtf)(tk�1 + v(s� tk�1), Y
n,"
s , ✓)|dv|s� tk�1|

◆2

�2
i (s, S

"
s)1{s⌧"m}ds

)◆1/2

+
1

⌘

✓
E

(
nX

k=1

Z tk

tk�1

✓Z 1

0

|(rtf)(tk�1 + v(s� tk�1), Y
n,"
s , ✓)|dv|s� tk�1|

◆2

1{s⌧"m}ds

)◆1/2

·
✓
E

⇢Z 1

0

Z

{|u|1}
|Hi(s, S

"
s�, u)|2µ(du)1{s⌧"m}ds

�◆1/2

 1

n⌘

✓
E

(
nX

k=1

Z tk

tk�1

✓
C(1 + |Y n,"

s |)�
◆2

�2
i (s, S

"
s)1{s⌧"m}ds

)◆1/2

+
K

n⌘

✓
E

(
nX

k=1

Z tk

tk�1

✓
C(1 + |Y n,"

s |)�
◆2

1{s⌧"m}ds

)◆1/2

·
✓
E

⇢Z 1

0

(1 + |Y n,"
s |)21{s⌧"m}ds

�◆1/2✓Z

{|u|1}
⌘2(u)µ(du)

◆1/2

! 0 as " ! 0, n ! 1,
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and

P

✓����
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

✓
�i(s, S

"
s)dBs

+

Z

{|u|1}
Hi(s, S

"
s�, u) eN(ds, du)

◆���� > ⌘

◆

 P

✓����
nX

k=1

Z tk

tk�1

[f(tk�1, S
"
tk�1

, ✓)� f(s, Y n,"
s , ✓)]

✓
�i(s, S

"
s)1{s⌧"m}dBs

+

Z

{|u|1}
Hi(s, S

"
s�, u)1{s⌧"m} eN(ds, du)

◆���� > ⌘

◆
+ P (⌧ "m < 1)

! 0 as " ! 0, n ! 1,

by Lemma 4.31.

Finally, using the condition imposed on f , (A5), [25, Problem 13, page 151], the continuous
mapping theorem, Lemma 4.29 and similar arguments as above, we can show that

Bn,"

P✓0��!
Z 1

0

f(s, S0
s , ✓)

✓
�i(s, S

0
s )dBs +

Z

{|u|1}
Hi(s, S

0
s , u) eN(ds, du)

+

Z

{|u|>1}
Gi(s, S

0
s , u)N(ds, du)

◆

as " ! 0 and n ! 1. ⇤

Lemma 4.34 Suppose (A1)–(A6) hold. Then, for 1  i  p,

"�1Gi
n,"(✓0)

P✓0��!
Z 1

0

(@✓ib)
⇤(s, S0

s , ✓0)

✓
�(s, S0

s )dBs +

Z

{|u|1}
H(s, S0

s , u) eN(ds, du)

+

Z

{|u|>1}
G(s, S0

s , u)N(ds, du)

◆

as " ! 0 and n ! 1.

Proof. We follow the arguments of [45, Lemma 3.6] and [46, Lemma 4.7]. For 1  i  p, we
have

"�1Gi
n,"(✓0)

= "�1
nX

k=1

(@✓ib)
⇤(tk�1, S

"
tk�1

, ✓0)(S
"
tk
� S"

tk�1
� b(tk�1, S

"
tk
, ✓0)�k�1)
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= "�1
nX

k=1

(@✓ib)
⇤(tk�1, S

"
tk�1

, ✓0)

Z tk

tk�1

(b(s, S"
s , ✓0)� b(tk�1, S

"
tk
, ✓0))ds

+
nX

k=1

(@✓ib)
⇤(tk�1, S

"
tk�1

, ✓0)

Z tk

tk�1

✓
�(s, S"

s)dBs +

Z

{|u|1}
H(s, S"

s�, u) eN(ds, du)

+

Z

{|u|>1}
G(s,X"

s�, u)N(ds, du)

◆

:= H(1)
n,"(✓0) +H(2)

n,"(✓0).

Using Lemma 4.33 with f(t, x, ✓) = (@✓ibj(t, x, ✓))
⇤(t, x, ✓) and ✓ = ✓0 for 1  i  p, 1  j  d,

we get

H(2)
n,"(✓0)

P✓0��!
Z 1

0

(@✓ib)
⇤(s, S0

s , ✓0)

✓
�(s, S0

s )dBs +

Z

{|u|1}
H(s, S0

s , u) eN(ds, du)

+

Z

{|u|>1}
G(s, S0

s , u)N(ds, du)

◆

as " ! 0 and n ! 1.

For H(1)
n,"(✓0), given s 2 [tk�1, tk], we have that

S"
s � S"

tk�1

=

Z s

tk�1

(b(r, S"
r , ✓0)� b(tk�1, S

"
tk�1

, ✓0))dr + b(tk�1, S
"
tk�1

, ✓0)(s� tk�1)

+"

Z s

tk�1

✓
�(s, S"

s)dBs +

Z

{|u|1}
H(s, S"

s�, u) eN(ds, du) +

Z

{|u|>1}
G(s, S"

s�, u)N(ds, du)

◆
.

Using the Lipschitz condition on b and the Cauchy-Schwarz, we get

|S"
s � S"

tk�1
|2  2

����
Z s

tk�1

(b(r, S"
r , ✓0)� b(tk�1, S

"
tk�1

, ✓0))dr

����
2

+2

⇢
|b(tk�1, S

"
tk�1

, ✓0)|(s� tk�1) + "

Z s

tk�1

✓
�(r, S"

r)dBr

+

Z

{|u|1}
H(r, S"

r�, u) eN(dr, du) +

Z

{|u|>1}
G(r, S"

r�, u)N(dr, du)

◆�2

 2K2n�1

✓Z s

tk�1

|S"
r � S"

tk�1
|dr
◆2

+ 2

⇢
n�1|b(tk�1, S

"
tk�1

, ✓0)|

+" sup
tk�1stk

����
Z s

tk�1

✓
�(r, S"

r)dBr +

Z

{|u|1}
H(r, S"

r�, u) eN(dr, du)

+

Z

{|u|>1}
G(r, S"

r�, u)N(dr, du)

◆����

�2

.
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Now applying Gronwall’s inequality, we get

sup
tk�1stk

|S"
s � S"

tk�1
|


p
2eK

2n�2

✓
n�1|b(tk�1, S

"
tk�1

, ✓0)|

+" sup
tk�1stk

����
Z s

tk�1

�(r, S"
r)dBr +

Z

{|u|1}
H(r, S"

r�, u) eN(dr, du) +

Z

{|u|>1}
G(r, S"

r�, u)N(dr, du)

����

◆
.

Further, by the Lipschitz condition on b and (A3), we obtain that

|H(1)
n,"(✓0)|1{1⌧"m}

 "�1
nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)| ·
Z tk

tk�1

|(b(s, S"
s , ✓0)� b(tk�1, S

"
tk
, ✓0))|1{s⌧"m}ds

 "�1
nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)| ·
"Z tk

tk�1

K|S"
s � S"

tk�1
|ds+ Cn�1(1 +m)�

#

 (n")�1
nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)|
"
K| sup

tk�1stk

|S"
s � S"

tk�1
|+ C(1 +m)�

#


p
2(n")�1KeK

2n�2
n�1

nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)| · |b(tk�1, S
"
tk�1

, ✓0)|

+
p
2n�1KeK

2n�2
nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)|

· sup
tk�1stk

����
Z s

tk�1

�(r, S"
r)dBr +

Z

{|u|1}
H(r, S"

r�, u) eN(dr, du) +

Z

{|u|>1}
G(r, S"

r�, u)N(dr, du)

����

+C(1 +m)�(n")�1
nX

k=1

|(@✓ib)⇤(tk�1, S
"
tk�1

, ✓0)|

:= H(1,1)
n," (✓0) +H(1,2)

n," (✓0) +H(1,3)
n," (✓0).

By (A2) and (A3), we can show that all of the above terms converge to zero in probability as
" ! 0 and n ! 1. Finally, the proof is completed by Lemma 4.31. ⇤

Lemma 4.35 Assume that conditions (A1)-(A6) hold and I(✓0) is positive definite. Then,

sup
✓2⇥

|Kn,"(✓)�K(✓)|
P✓0��! 0

as " ! 0 and n ! 1.
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Proof. We follow the argument of [45, Lemma 3.7]. For 1  i, j  p, we have

Kij
n,"(✓) = @✓jG

i
n,"(✓)

=
nX

k=1

(@✓j@✓ib)
⇤(tk�1, S

"
tk�1

, ✓)(S"
tk
� S"

tk�1
� b(tk�1, S

"
tk�1

, ✓0)�tk�1
)

+n�1
nX

k=1

✓
(@✓j@✓ib)

⇤(tk�1, S
"
tk�1

, ✓)(b(tk�1, S
"
tk�1

, ✓0)� b(tk�1, S
"
tk�1

, ✓))

�(@✓ib)
⇤(tk�1, S

"
tk�1

, ✓)@✓jb(tk�1, S
"
tk�1

, ✓)

◆

:= K(1)
n,"(✓) +K(2)

n,"(✓).

By application of Lemma 4.32 and setting f(t, x, ✓) = @✓j@✓ibl(t, x, ✓), 1  i, j  p, 1  l  d, we
get

sup
✓2⇥

|Kij,(1)
n," (✓)|

P✓0��! 0 as " ! 0, n ! 1.

By application of Lemma 4.30 and setting f(t, x, ✓) = (@✓j@✓ib)
⇤(t, x, ✓)(b(t, x, ✓0) � b(t, x, ✓)) �

(@✓ib)
⇤(t, x, ✓)@✓jb(t, x, ✓), we get

sup
✓2⇥

|Kij,(2)
n," (✓)�Kij(✓)|

P✓0��! 0 as " ! 0, n ! 1.

Therefore, the proof is complete. ⇤

Proof of Theorem 4.22. The proof is very similar to that given in [45]. For the sake of
completeness, we still include it here. We follow the arguments of [60] and [45]. Consider the
closed ball

B(✓0; ⇢) := {✓ : |✓ � ✓0|  ⇢}, ⇢ > 0.

Using the established consistency of estimator ✓̂n," from Theorem 4.21, we can find a sequence
⌘n," ! 0 as " ! 0 and n ! 1 such that

B(✓0; ⌘n,") ⇢ ⇥ and P✓0(✓̂n," 2 B(✓0; ⌘n,")) ! 1.

By application of Taylor’s theorem when ✓̂n," 2 B(✓0; ⌘n,"), we get

Dn,"Tn," = "�1(Gn,"(✓̂n,")�Gn,"(✓0)),

where Dn," :=
R 1

0 Kn,"(✓0 + u(✓̂n," � ✓0))du and Tn," := "�1(✓̂n," � ✓0) as B(✓0; ⌘n,") is a convex
subset of the parameter space ⇥. We have

|Dn," �Kn,"(✓0)|1{✓̂n,"2B(✓0;⌘n,")}

 sup
✓2B(✓0;⌘n,")

|Kn,"(✓)�Kn,"(✓0)|

 sup
✓2B(✓0;⌘n,")

|Kn,"(✓)�K(✓)|+ sup
✓2B(✓0;⌘n,")

|K(✓)�K(✓0)|+ |Kn,"(✓0)�K(✓0)|.
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Hence, by Lemma 4.35, we obtain that

Dn," ! Kn,"

P✓0��! 0 as " ! 0, n ! 1.

Noting that K(✓) is continuous with respect to ✓ and �K(✓0) = I(✓0) is positive definite;
hence, there exists � > 0 such that

inf
|w|=1

|K(✓0)w| > 2�. (4.13)

Choosing such a � > 0, there exist "(�) > 0 and N(�) > 0 such that for all " 2 (0, "(�)), n > N(�)
we have

B(✓0; ⌘n,") ⇢ ⇥ and |K(✓)�K(✓0)| <
�

2
for ✓ 2 B(✓0; ⌘n,").

Choose a � > 0 satisfying (4.13) and set

�n," =

⇢
sup

|✓�✓0|⌘n,"

|Kn,"(✓)�K(✓0)| <
�

2
; ✓̂n," 2 B(✓0; ⌘n,")

�
.

Now, for " 2 (0, "(�)) and n > N(�), on the set �n," we have

sup
|w|=1

|(Dn," �K(✓0))w|

 sup
|w|=1

����

✓
Dn," �

Z 1

0

Kn,"(✓0 + u(✓̂n," � ✓0))du

◆
w

����

+ sup
|w|=1

����

✓ Z 1

0

Kn,"(✓0 + u(✓̂n," � ✓0))du�K(✓0)

◆
w

����

 sup
|✓�✓0|⌘n,"

|Kn,"(✓)�K(✓)|+ �

2

< �.

Namely, on the set �n," and the result of (4.13), we have

inf
|w|=1

|Dn,"w| � inf
|w|=1

|K(✓0)w|� inf
|w|=1

|(Dn," �K(✓0))w| > � > 0.

Set Dn," = {Dn," is invertible, ✓̂n," 2 B(✓0; ⌘n,")}. Then, by Lemma 4.35, we get

P✓0(Dn,") � P✓0(�n,") ! 1 as " ! 0, n ! 1.

Set
Un," = Dn,"1Dn," + Ip⇥p1Dc

n,"
,

where Ip⇥p is the identity matrix. Now,

|Un," �K(✓0)|  |Dn," �K(✓0)|1Dn," + |Ip⇥p �K(✓0)|1Dc
n,"

P✓0��! 0
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since P✓0(Dn,") ! 1. Thus, by Lemma 4.34, we obtain that

Tn," = U�1
n,"Dn,"Tn,"1Dn," + Tn,"1Dc

n,"

= U�1
n,"(�"�1(Gn,"(✓0)))1Dn," + Tn,"1Dc

n,"

P✓0��! I�1(✓0)

 Z 1

0

(@✓ib)
⇤(r, S0

r , ✓)

(
�(r, S0

r )dBr

+

Z

{|u|1}
H(r, S0

r , u) eN(dr, du) +

Z

{|u|>1}
G(r, S0

r , u)N(dr, du)

)!⇤

1ip

as " ! 0 and n ! 1. The proof is complete. ⇤
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4.5 Conclusion

The novelty of this chapter is:

• Estimating the unknown period of a time-dependent periodic transmission function as well
as its unknown coefficients.

• The introduction and use of a Linear-Search Gradient-Descent algorithm to iteratively solve
for suitable approximations to the LSEs.

• Parameter estimation results for when the noise coefficient (diffusion matrix) is a non-square
or non-invertible matrix.

• Extending asymptotic results for consistency and rate of convergence given by Long et al.
in [46] to include SDEs driven by general Lévy noises with time-dependent coefficients.

We aimed to study the ability to estimate periodic transmission parameters for a stochastic
SIR model. The model comes in one of two forms, population proportions or population numbers,
both of which we have given simulation studies on which we are able to estimate the period of a
periodic transmission function effectively.

The theoretical results show that these estimations efforts hold in general. These results aid
in generalizing existing efforts in the literature on parameter estimation for SDEs driven by Lévy
noises with small coefficient ". Moreover, despite our use case, the given results on asymptotics
are not limited to the study of epidemiological models.
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Chapter 5

Parameter estimation of stochastic SIR model with COVID-

19 data from New York City

5.1 Introduction

The COVID-19 pandemic erupted in early 2020, with the disease spreading at an alarming rate
towards the end of 2019 and the beginning of the new year. Several factors contributed to this,
including widespread travel, insufficient testing in the early stages, and a lack of preventative
measures to control the spread of the infection. Indeed, events such as COVID-19 will spur
research using SDEs and parameter estimation to understand the event better. Some notable
recent works are available in the literature (cf. [1, 2, 4, 10, 48, 33, 50, 57, 58, 63]).

Over three years since the pandemic began, we have gained valuable insights into its behaviour.
With this knowledge, we are better equipped to face future pandemics caused by similarly infec-
tious diseases. One of the defining features of the pandemic was the recurring waves of positive
cases that surged and subsided as preventative measures were implemented or relaxed. Moreover,
the abundance of infectious waves raises the question of how we can study these seemingly peri-
odic occurrences and in fact, the study of the various waves occurring in the pandemic has been
studied as well (cf. [2, 48, 50]). We also observed different variants of the disease, each with vary-
ing transmissibility levels and specific symptoms. Another notable driving force of the pandemic
was that worldwide travel is commonplace; hence it is necessary to consider the importation and
exportation of disease as another defining feature of the pandemic.

The classical SIR model can provide a basic understanding of pandemics, but it falls short
when capturing the reality of COVID-19 as it does not contain the complexity possible in the
USSIR. Our studies not only confirmed the existence of unique, strong solutions for USSIR but
also delved into the long-term behaviours of the disease. However, as the COVID-19 pandemic
is a recent event, it will take time to study the dynamics of disease persistence and extinction
thoroughly. Hence, in this chapter, the work is an application of the theoretical results presented
in Chapter 4 (cf. [22, E. and Sun]).

Many epidemiological models include birth and natural mortality rate; however, we omit these
features here as this study was not concerned with a long period of time, and over a matter of a few
years, birth and death rates remain relatively stable. Moreover, the population we consider is in
the millions; hence, minor birth and natural death variations will not make a noticeable difference.
Also noteworthy is that the distribution of vaccinations in the United States commenced in the
latter part of 2020, approximately one year following the onset of the pandemic; moreover, it’s
important to remember that the vaccine’s widespread administration to prevent infections was
not an immediate process. Thus, in the studies herein, we do not yet consider the impact of the
vaccines.
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5.2 Model and methodology

As before, we make no assumptions about the explicit form of the noise, simply that it is a Lévy
noise with a small dispersion rate given by ". Consider the following small-noise proportional
stochastic SIR model, which generalizes equation (1) given in [57] by N. Stollenwerk et al.

2

6664

dXt

dYt

dZt

3

7775
=

2

6664

��(t)Xt(Yt + %)
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�Yt

3

7775
dt + "�(t,Xt�, Yt�, Zt�)

2

6664
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t

dL(2)
t

dL(3)
t

3

7775
, (5.1)

where in the drift portion �(t) is a non-negative periodic transmission function, % 2 R is the
import/export rate and � > 0 is the removal rate. As for the noise portion, " 2 (0, 1) is the
small dispersion rate and �(t,Xt�, Yt�, Zt�) is an unknown time-dependant noise coefficient of
the present Lévy noise Lt = [L(1)

t , L(2)
t , L(3)

t ].

We consider two versions of �(t):

(V1) �(t) = ↵0 + ↵1 cos
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✓
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◆
,

with ✓ 2 (0, 1),↵i > 0; i 2 {0, 1, 2, 3, 4}.

Stochastic SIR model (5.1) generalizes model (1) given in [57] by N. Stollenwerk et al. by the
inclusion of small Lévy noise and a periodic transmission. Moreover, model (5.1) is an explicit
form that falls under our work on the USSIR in [21]. Furthermore, we can ascertain the existence
of a unique, strong solution by [21, Theorem 2.1, E. and Sun].

In order to complete our parameter estimation, we recall the contrast function given in Chapter
4 as

 n,"(#) = n
nX

k=1

P ⇤
k (#)Pk(#),
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arising from the real-world data for k 2 {1, . . . , n}, where n is the number of observations. Let
#̂n," be a minimum contrast estimator, i.e., a random variable satisfying

#̂n," := argmin✓2⇥ n,"(#).
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As we pointed out in Chapter 4, finding a closed form of #̂n," is rather difficult; hence, in the
same fashion as our previous work, we find suitable approximations #̂⇤

n," of #̂n,". We do so by the
same methodology in that work, using the LS-GD algorithm. In order to make use of the LS-GD
algorithm, we need to set the test values of the unknown period ✓. As before, we perform our
estimation from the time t = 0 to t = 1 thus we chose 100 test values of ✓, denoted by ✓̂ such
that ✓̂ ⇠ Uniform( i�1

100 ,
i

100) (cf. [21, Algorithm 1, page 7, E. and Sun]).

The unknown period parameter ✓ and the import/export parameter % are central to our
interests here. Given our estimation from time t = 0 to 1 and the correspondence to the data
being daily, each test value ✓̂ taking some value s 2 (0, 1) then corresponds to a proportion
(percentage) of time for the unknown transmission period; hence the found value is translatable
to the number of days corresponding to the same proportion for the total observed days.

As the values for susceptible, infected and removed/recovered are represented proportionally,
we interpret the import/export rate % value to correspond to a proportional quantity of incoming
or outgoing infectives. Moreover, if the value obtained is negative, then we take this to signal
that the number of infected being exported is greater than the number imported and should that
value be positive, then we take it to mean the inverse.

Upon finishing the estimation, we continue following our previous study regime, where we
take the real-world data and compare it to the estimated outcomes using the returned parameter
values. The real-world data is used to specify the three compartments: susceptible, infected and
recovered/removed. This conversion gives us the data in a form where it is possible to compare
with the estimated results of each compartment quickly.

5.3 Data for NYC

For our data analyses, we use data available for New York City, which was made publicly available
at JHU CSSE COVID-19 Data (cf. [19]). More specifically, the data we utilize is the daily
confirmed cases from which we can obtain the cumulative confirmed cases and the daily deaths
which are COVID-19 related. Although this data is incomplete, as is often the case with real-world
data, it is sufficient to accomplish our estimation efforts. In Figure 25 below, the confirmed cases
for the first 650 days of the pandemic are displayed. The recommendation to stay-at-home began
on 14 March 2020 in New York, and on 20 March 2020, the governor of New York implemented
the PAUSE order mandating the first lockdown for the state–including New York City.
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Figure 25: NYC confirmed cases for the first 650 days beginning 1 March 2020.

In the work we completed in [21, 22], we consider a model in which each compartment has
a non-zero initial state, and this is true of our application here. The first cases of COVID-19
appeared in NYC at the start of March 2020, and by the lockdown mandate on 20 March 2020,
there had already been both infections and deaths, thus giving us suitable data to study the model
with non-zero initial values in each compartment: susceptible, infected and removed. This gives
us a sample size of 630 days to work with for our estimation regime. NYC is an ideal candidate for
our study as there is readily available data, and it is also a densely populated and well-travelled
geographical location (i.e., the importance of the inclusion of import/export in the model (5.1)).

Vaccination in NYC began at the start of 2021; however, according to NYC Health vaccination
data only 24.2% of the city had received at least the first dose of the vaccine by 20 March 2021
(cf. [49]). This is a full year (365) days after the day we utilized as the start of our studies;
namely, there remained millions of susceptible people in NYC. Moreover, as seen in Figure 25,
the second significant wave of confirmed cases peaked not much after 300 days since 1 March
2020. The importance of this information is that in our study, as mentioned, it took much time
to ensure enough of the population was vaccinated to impact the spread of COVID-19; hence we
are justified in the omission of vaccination in the work presented here. Moreover, it was not for
another 7-14 days after the second dose that protection from infection was in effect, where the
second dose would be administered four weeks after the first dose–this further elaborates the time
needed for widespread vaccination to become effective in infection prevention and future work
will include the consideration of vaccines.

5.4 Available data conversion to susceptible, infected and removed com-
partments

John Hopkins University (JHU) mortality analyses study of COVID-19 gave a case fatality be-
tween 0.1%�4.9% depending on country with the United States having a rate at 1.1%. We use an
average of 14 days for recovery from COVID-19 since many sources have estimated the recovery
period to be between 7 and 21 days.

Since we make use of available data on confirmed cases and deaths, it makes the most sense to
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begin to construct the infected compartment of the model. Along with the available data, we form
the infected compartment for a given day n by taking the total cumulative amount of confirmed
cases up to that day and removing 98.9% of the confirmed cases for the preceding 14 days prior to
day n when n > 14 and also subtracting the number of deaths which occurred that day–the 98.9%
originates from 1.1% case fatality rate given by JHU. The susceptible compartment is calculated
by starting with a population of 8 million and subtracting the infected amount. Finally, the
removed amount is calculated as the sum of the deaths and those removed from the infected
compartment after the 14-day recovery period has passed.

Lastly, each compartment is normalized by the total population. Per the obtained results in
Chapters 3 and 4, we find no detriment to our studies by choosing the proportional model form for
this data analysis. Moreover, the proportional model has an advantage in that it quickly provides
the percentage of the total population that each compartment contributes; moreover, percentages
are more easily understood than raw numbers, especially given the population of NYC is in the
multi-millions.

5.5 Results

Below we include plots, values of the estimated parameters and a metric of the estimation. The
metric we use is the same as given in [22, Section 3.3, E. and Sun], that is, the component-wise
MSE; the component-wise MSE allows us to measure our results for each component. To recall
its form, it is given as

MSE(Vi) =
1

630

630X

k=1

h
(Xdata

tk
�Xestimated

tk
)2, (Y data

tk
� Y estimated

tk
)2, (Zdata

tk
� Zestimated

tk
)2
i
, i = 1, 2.

The results for model (5.1) with (V1) and (V2) of �(t) will appear on the next two pages,
respectively.

Remark 5.36 Recall the number of days we use is 630; hence, the appearance of 630 in the above
sum.
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First, we begin with the results of the estimation for model (5.1) with (V1) of �(t) as follows

Figure 26: Data and estimation results compared using (V1) �(t).

✓ 0.4253264872306153

↵0 16.512145245907206

↵1 6.650423177688102

↵2 5.353434244651672

% 0.0027282688418273957

� 29.11209168217865

Table 7: Estimated parameters of model (5.1) for (V1) of �(t).

These parameters yield

MSE(V1) =

2

6664

0.0016169192753345636

4.4186570235619574 · 10�6

0.0016169192753345636

3

7775
.
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We present here the results when utilizing (V2) of �(t):

Figure 27: Data and estimation results compared using (V2) �(t).

✓ 0.4149391426488074

↵0 20.46707762062233

↵1 5.852151299221485

↵2 7.654681611402113

↵3 6.85271727216665

↵4 3.542677117346328 · 10�13

% 0.0016373669036948662

� 28.98752767851761

Table 8: Estimated parameters of model (5.1) for (V2) of �(t).

These parameters yield

MSE(V2) =

2

6664

6.190004147478986 · 10�5

4.837478808802567 · 10�6

6.190004147478986 · 10�5

3

7775
.

As we can see in the metrics for (V1) and (V2), the accuracy with respect to the infected
compartment of (V1) is marginally better than (V2); however, given how close they are this is
not of concern. Another finding of interest is that in the plots, we can see (V2) does yield more
similarity to the path of the data than that of (V1); regardless, at present, there seems little to
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no benefit in increasing the number of ↵i, i > 4 in �(t)–this would only increase the time cost of
computation.

Given the results above, periodicity is clearly a feature of the COVID-19 pandemic. Moreover,
our findings yield a period in real-world days to be in the vicinity of 260 days. There is still
much to learn about what forces impact this periodicity, but we are now better equipped to study
and understand this phenomenon. Additionally, the inclusion of import and export is a logical
topic of study, given the disease would not have grown to be a pandemic had it not been for
the importation and exportation of the disease occurring due to travelling infected people. Both
estimations presented here (i.e., the use of (V1) and (V2)) yielded a positive import/export rate %
which signals there was a net increase of infected coming into NYC-from a real-world perspective,
this is reasonable as NYC is a very popular travel destination.

With the estimation results in hand, predictive analysis is performed on 315 days beyond the
630 days utilized in the estimation regime. As (V1) yielded the smaller metric (with respect to the
infected compartment), we use the resultant parameters from (V1) to complete our prediction.
Recall that time t = 0 to 1 corresponds to 630 days beginning on 20 March 2020; thus, in the
following for time t > 1, the correspondence is with days 651 to 965. Namely, the following plot
contains the simulation using the found parameters against the data for time t = 0 until t = 1.5
corresponding to 945 days commencing from 20 March 2020.

Figure 28: Data and predictive analysis simulation using (V1) �(t).

Given this plot, there are two key characteristics to take away: the first is the significant spike
in the infected compartment shortly after time t = 1; the second is that despite the significant
spike in infected, the estimated infected Y estimated

t is reasonably close to the data infected Y data
t

after the significant spike, that is the section between approximately time t = 1.15 to 1.5. At
initial thought, the significant spike and seemingly inaccuracy of the prediction for the time
approximately t = 1 to 1.15 appear concerning, but if we revisit the data, we find an explanation.
Namely, if we consider the number of confirmed cases and the number of COVID-19 tests over
the first 965 days, we see a clear explanation–see the following plot.
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Figure 29: NYC daily tests and daily confirmed cases for first 965 days.

As can be seen in the plot, there is a sharp increase in both cases and COVID-19 tests
simultaneously. This is no accident; these spikes began with the start of the holiday season in
December 2021; namely, a time of year with an abundance of travel and at a time there was fear of
another potential lockdown; hence many more tests were being administered, which indeed would
correspond to an increase in confirmed cases. Recall that confirmed cases are the most crucial
data we have for the modelling and estimation completed herein, and this signals the importance
of data reporting at all times but especially during a pandemic. Moreover, it would be unwise
to think that the amount of data available captures the actual number of infected; that is, we
should expect the data to give an underestimation of the actual number of infected ultimately.

5.6 Closing remarks and data availability

These results are novel in the realm of studying epidemiological phenomena by use of SDEs. In
the study and parameter estimation of a (stochastic) SIR model, the number of parameters is
often limited to a transmission rate � and recovery rate �; however, we established results inter-
pretable in the real-world via a much more complex system than that of the classical formulation.
Furthermore, the presence of time-dependency and periodicity contributed to a much more real-
istic scenario. Additionally, these results validate the theoretical results given in Chapter 4 (cf.
[22]).

All data and sources used herein are cited and available for use by the public. The data
from John Hopkins University is licensed under the Creative Commons Attribution 4.0 Interna-
tional (CC BY 4.0) by John Hopkins University on behalf of its Centre for Systems Science in
Engineering. ©John Hopkins University 2020.
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Chapter 6

Discussion

This work stems from the novel results we accomplished across [21, 22, E. and Sun] and ultimately
adds to the available literature for future studies of computational epidemiology. Here we give a
discussion of these contributions and paths forward for those who wish to continue this work.

6.1 Contributions of thesis

The contributions of the thesis are:

• Novel framework (the USSIR) generalizing the study of stochastic SIR models

This work establishes a framework to more readily handle the complexity of disease out-
breaks as they happen in the real-world. For us, COVID-19 was the disease studied, but
the results are not isolated to this particular disease. Moreover, the robust model includes
two forms (proportional and population numbers), time-dependency, periodicity and driving
noise that can be made rather general and complex. Results were provided to understand
a disease’s critical extinction and persistence dynamics without relying on an explicit form
of coefficients determining these behaviours.

• Parameter estimation of a time-dependent stochastic SIR model with periodic

transmission

Periodic behaviour is a natural occurrence in the world; thus, questions about the existence
of periodicity in disease dynamics are a logical inquiry. As seen with COVID-19, there have
been waves, and where there are waves, there is periodicity.

• Contrast function  n,"(✓) for obtaining least-squares estimators for time-dependent

models without explicit knowledge of noise

Many models require time-dependency; for us, that necessity was the notion of periodic-
ity of transmission. The presence of unavoidable noise is a fact regarding data collection.
Fortunately, Lévy noises are general enough that it is reasonable to assume the noise may
be modelled by a Lévy process but beyond this, we cannot always ensure we can precisely
give the explicit form of the process. Our contrast function  n,"(✓) and the consistency and
rate of convergence results show that we can still obtain relevant results when estimating
parameters without abundant information on the noise–including time-dependent models.

• The linear-search gradient-descent algorithm

Given an estimation regime, obtaining estimators in closed-form is not always a convenient
task; furthermore, it simply may not be possible, as is often the case in theory and prac-
tice, it suffices to find suitable approximations, specifically for us, approximations to LSE
estimators. Estimation is no easy task; if there is interaction among parameters, the task
becomes even more difficult. Recall the definition of our periodic transmission function �(t),
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we have
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and so it is easy to see that given the multiplication of an unknown scalar parameter and
a trigonometric function with an unknown period parameter, inter-play occurs between
unknown parameters. Thus, the power of LS-GD was the ability to iteratively circumvent
this problem by fixing an unknown period and then carrying out the estimation of the scalar
factor by established methods.

• Application to real-world COVID-19 data

The work would have been incomplete without some validation of the theoretical work
herein. In a world where data collection is at an all-time high, applying the theoretical
results we have achieved to some real data was a reasonable task. Namely, the data for New
York City is plentiful; however, data collection is far from perfect. The use of a periodic
transmission function was validated and provided insight into the different waves of COVID-
19. The importation and exportation of COVID-19 is a reality, one which did not require
the work here to ascertain, but nonetheless, our work shows it is possible to quantify this
feature, thus expanding our ability to understand pandemics.

6.2 Future work

Work of this sort answers some questions but ultimately opens up new questions. Some potential
follow-ups we wish to explore are:

• Continuing studies of the USSIR

The USSIR model is very general, but this can be made more general. Namely, since our
work focused on strong solutions to the coupled SDEs it merits an investigation into weak
solutions under weaker conditions placed upon the coefficient functions.
Another direction worth pursuing is, if we consider the COVID-19 pandemic, some events
impacted disease spread, such as the widespread use of lockdowns or the development of
vaccinations. For such scenarios, it could be advantageous to have a model which considers
these (time-dependent) events. An investigation into a piece-wise USSIR model would
allow for the inclusion of time-dependent events, which can significantly impact the form
of the model. Namely, a model in which there are no features for lockdown or vaccination
prior to some time T but after this time, such features are present (e.g., the widespread
administration of vaccines is an event that can shape the dynamics of disease spread, thus
making sense to include two different transmission functions triggered by some time T ,
say �1(t), t < T and �2(t), T � T , which are pre-vaccine and post-vaccine, respectively).
This is especially important when considering estimation, as the parameter values can differ
between the absence of vaccinations and the abundance of vaccinated (immune) people).
Additionally, using real-world data, we acknowledge that the reported quantities are not
the true values of the quantities we wish to study. Hence, in the future, we will consider
a filtering approach to data analysis with real-world data to account for the disparities
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between the observed quantities and the true quantities. To further investigate the gaps
between observed and true states, we wish to include the introduction of hidden states
in subsequent studies and applications of the USSIR model–particularly when considering
real-world data.
Another area of interest is the inclusion of random coefficients in the SDEs defining the
USSIR. Higa et al. [34] have previously considered and obtained results on the existence
and uniqueness of solutions to Stratonovich SDEs with random coefficients. The use of Lévy
noise to drive our SDEs dramatically increases the realism of our model; that is, this captures
the environmental fluctuations. Now consider the scenario in which the transmission or
recovery from the infection is modelable by a random process; namely, they have their own
"noise" disjointed from the environmental noises explained by the driving Lévy processes.
Gourieroux and Lu [28] considered a remarkable deterministic SIR model with functional
transmission; they then extended it to a stochastic transmission; in other words, they
considered a random differential equation SIR model. Diseases and how they spread are
indeed very complex, and to understand them better, we should consider all the possible
ways in which noise (randomness) impacts the disease-spread dynamics.

• Optimization of LS-GD

The LS-GD was immensely useful in our work but was also computationally costly; hence,
optimizing the algorithm would significantly improve its applicability. The fastest way to
optimize it would be to reduce the time of the linear-search portion, that is, the part of the
algorithm utilized for fixing the unknown period parameter in our periodic transmission.

We wish to thank Professor Michael Kouritzin for invaluable discussion, insights and suggestions
regarding future work we aim to pursue.
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