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ABSTRACT

Solution-Acceleration Strategies for High-Order Unstructured Methods

Carlos A. Pereira, Ph.D.
Concordia University, 2023

The design of next-generation aircraft relies on computational fluid dynamics (CFD) to
minimize testing requirements at reduced cost and risk. However, current industry reliance
on Reynolds-averaged Navier-Stokes (RANS)-based CFD is limited in predicting transitional
and turbulent flows. Large-eddy simulation (LES) offers accuracy where RANS methods fail,
but can have prohibitive computational cost. To address this, we propose a high-order CFD
framework to advance flux reconstruction (FR) methods toward industrial-scale simulations.
FR is a family of high-order, unstructured schemes that provide accuracy at reduced cost per
degree-of-freedom (DOF) compared to low-order methods, with proven potential for LES. We
develop practical strategies to reduce the computational cost of FR methods for explicit and
implicit formulations. Due to the low cost per time step, explicit time stepping is typically
used in FR methods. However, stability constraints prohibitively limit time-step sizes in
numerically stiff problems. Hence, implicit time stepping is preferred in these cases, but it
requires solving large, nonlinear systems and can be computationally expensive.

This thesis introduces optimal Runge-Kutta methods to alleviate stability limits and reduce
wall-clock times by approximately half in moderately low stiffness problems. For increased
stiffness, we hybridize implicit FR methods using a trace variable, which allows a reduction of
the implicit system via static condensation, decreasing implicit time stepping costs, especially
at higher orders. Hybridization with both discontinuous (HFR) and continuous function
spaces (EFR) is suitable for advection and advection-diffusion type problems within the FR
method and enables significant speedup gains over standard FR. We incorporate polynomial
adaptation to the hybridized framework, varying the solution polynomial’s degree locally
within each element, which results in an overall reduction in DOF and significant speedup
gains in a two-dimensional problem against standard polynomial-adaptive formulations.
Finally, we combine implicit-explicit (IMEX) time stepping with hybridization to tackle
geometry-induced numerical stiffness. The resulting method reduces computational cost at
least fifteen times over explicit methods in a multi-element airfoil problem at Reynolds 1.7

million. Our proposed framework enables substantial reductions in both moderate and high
stiffness problems, thus advancing high-order methods toward large industrial-scale problems.
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Chapter 1

Introduction

1.1 Motivation

Over four billion passengers use air transportation annually, producing over 800 million
tonnes of CO2 and other greenhouse gas emissions [1]. These emissions are known to be
two to four times more potent than those at sea level and are a significant driver of climate
change [2]. By 2030, there will be a considerable increase in the number of new commercial
aircraft, which requires a 20-25% reduction in fuel consumption to comply with current
and forthcoming emission regulations [3]. Since 2012, programs such as Canada’s Aviation
Climate Action Plan [4] have initiated a fight against greenhouse emissions from aviation
and expect net-zero emissions within the next few decades. In order to remain globally
competitive, aerospace firms acknowledge the significance of investing in various sustainable
technology domains, such as alternative propulsion systems and innovative aircraft design.
Consequently, further actions must be taken to improve aerodynamic efficiency, reduce noise
pollution, and develop new technologies for sustainable aviation fuels. Hence, the design of
next-generation aircraft relies on our ability to understand and analyze the intricate flow
dynamics throughout the full flight envelope.

The vast majority of flows in engineering applications within the aerospace industry do
not show the organized and predictable motion of laminar flows, but instead are turbulent and
have a time-dependent chaotic behaviour. The flow regime, whether laminar or turbulent, is
characterized by the ratio of inertial or convective forces to viscous forces in the flow, known
as the Reynolds number, Re. Since most flows in nature are turbulent, engineers and scientists
need to understand their effects on the bodies they surround. While important, turbulent
flows are challenging to predict, given the nonlinearity and complexities of the flow behaviour.
This complexity is attributed to the presence of a vast range of turbulent structures within
the flow, known as eddies. The size of these eddies may range from a macroscale, defined by
a characteristic length ` such as the chord of an airfoil, to the Kolmogorov microscale [5],
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which can be a small fraction of it. This microscale size η is well approximated [6] by

η ≈ Re−3/4 `. (1.1)

As these structures interact, the large eddies arising from the characteristic length transfer
energy to smaller eddies, which in turn transfer energy to even smaller ones. At the level of
the smallest scales, the viscosity of the fluid dissipates the remaining energy. The distribution
of these scales can be seen in the turbulent energy cascade in Figure 1.1, showing the majority
of energy contained in the largest structures. The higher the Reynolds number, the larger
the separation between the largest and smallest eddies. This ratio can be estimated to be
proportional to Re3/4 [6]. To give some perspective, the Reynolds number in a typical cruising
aircraft is in the order of 10 to 20 million for small aircraft such as turbofan airliners, and 45
to 80 million for large aircraft such as a Boeing 747 [7].

Figure 1.1. Turbulent kinetic energy (Ek) cascade

1.2 Numerical Approaches for Turbulent Flows

In general, the mechanical behaviour of fluids in engineering applications can be described
by the Navier-Stokes equations. These equations are nonlinear and can describe phenomena
from laminar flow to turbulence. Because no general analytical solution is available for
the full range of phenomena involved in the Navier-Stokes equations, computational fluid
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dynamics (CFD) focuses on devising numerical methods to efficiently approximate what
would otherwise be analytically intensive or impossible to solve. CFD enables reductions
in in-flight and ground-based testing requirements and provides valuable physical insight,
allowing for better designs at reduced cost and risk. The potential of CFD in the aerospace
industry is currently limited by its ability to predict transitional and turbulent flows [8].

To numerically solve the governing equations, we must discretize the equations using
suitable numerical schemes. Common approaches include the finite volume (FV) methods,
finite difference (FD) methods, and finite element (FE) methods. Due to its geometrical
flexibility, the FV method has been the workhorse of industrial applications of flow problems
over past decades. Unlike the FD method, the FV method can be easily applied to complex
geometries and offers more flexibility and stability than continuous FE methods for convection-
dominated problems [9]. However, standard second-order FV schemes generally introduce
significant numerical error in the form of dissipation and dispersion. This presents challenges
to many practical engineering applications containing high-frequency information that needs
to be captured. For instance, highly separated flows, which are dominated by unsteady
vortices over an extensive range of length and time scales; and aeroacoustics problems,
which contain pressure fluctuations usually orders of magnitude smaller than mean flow
quantities [10]. Furthermore, coupled with numerical discretizations, additional considerations
need to be made to capture the effects of turbulent flows.

In addition to low-order FV methods, CFD implementations typically rely on the Reynolds-
Averaged Navier-Stokes (RANS) equations to model turbulent flows. While commonly used
in industrial-scale computations, the limitations of RANS methods in flows where the
unsteadiness of the solution plays a major role in the physics confines them to the cruise flight
portion of the aircraft operating design space [8]. RANS methods provide time-averaged
solutions of the governing equations from an initial time t0 to a final time T , i.e.

ū = lim
T→∞

1

T

∫ t0+T

t0

udt, (1.2)

and heavily rely on empirical parameters to model the effects of turbulence. Consequently, the
spatiotemporal complexity of turbulent flows poses significant challenges to RANS equations.
These challenges include flows at moderate Reynolds numbers and high angles of attack and
many other complex applications where the inherent unsteadiness of the solution has an
important effect on the results, such as transition to turbulence and vortex transport.

Scale-resolving approaches, such as direct numerical simulation (DNS) [11] and large-eddy
simulation (LES), are known to be more accurate in regimes where RANS methods fail. These
approaches directly model all or some length and temporal scales in the largely disparate
range sizes that characterize turbulent flows. As shown in Figure 1.1, DNS aims to resolve
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the full turbulence spectrum and requires domains large enough to cover the flow physics
as well as fine grids to capture all scales. The cost of this high resolution is dictated by
the Kolmogorov microscale. Most of the computational effort in DNS simulations goes to
resolving these smallest sizes, which generally do not significantly contribute to the overall
flow dynamics of engineering problems. The number of grid points required to perform DNS
simulations can be approximated to scale with [6]

N ∝ Re9/4 . (1.3)

For typical applications in the aerospace industry, where Re can be in the range of tens of
millions, the computational resources required by DNS outweigh the accuracy gains compared
to LES. DNS is therefore confined primarily to academic studies due to this high cost, and is
not expected to be feasible for many years [12].

Figure 1.2. Sketch of boundary layer and streamlines around an airfoil

On the other hand, LES methods resolve only the largest energy-containing eddies, which
dominate the transfer of momentum and heat. As shown in Figure 1.1, this is done up to a
cutoff scale, typically dictated by the grid size. The rest of the medium to smallest scales can
be modelled explicitly via a subgrid-scale (SGS) model such as the dynamic Smagorinsky
model [13]. In some spatial discretizations, the numerical error behaves similarly to an SGS
model and is often used as an implicit LES (ILES) approach [14], which has shown significant
potential [15, 16]. The ILES approach does not require additional model implementations
beyond the governing equations and has been shown in some cases to provide more accurate
results than explicit SGS models, which can introduce more dissipation than necessary [17].
Therefore, we make use of ILES throughout this thesis.

Despite the significant reduction in the number of resolved scales and a considerable cut in
the computational cost over DNS, LES simulations are still computationally expensive. This
cost is mainly attributed to the strict requirements on the grid cell sizing when resolving a
boundary layer. Inside the boundary layer, the influence of viscosity is confined to a thin layer
in contact with the walls. A velocity profile u(η) is shown for an airfoil problem in Figure 1.2,
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showing that the velocity goes to zero at the wall and rapidly increases to the freestream
value U∞ at the interface. This layer significantly decreases in thickness with increasing
Reynolds number. Thus, in industrial-scale problems, it is typically very thin. Despite their
small thickness, boundary layers are the source of vorticity and complex flow dynamics, and
thus they are responsible for the primary flow dynamics. Hence, at large values of Re, the
majority of the cost in LES is attributed to the small grid sizes to capture the large gradients
within the boundary layer. This is due to two main reasons. First, the number of overall cells
within this region grows toward the requirements of a DNS simulation [18], thereby expanding
the size of the problem. Second, smaller time steps are necessary to maintain stability in
typical explicit implementations, increasing computational time. These two aspects reduce
the feasibility of using LES in industrial-scale design processes.

In order to design next-generation, quieter, and more sustainable aviation, further efforts
still need to be made to enable scale-resolving LES simulations of industrial-scale problems
at a reasonable computational cost. Hence, there is a requirement to develop novel efficient
numerical methods that minimize numerical errors and are optimized for computational
resource utilization.

1.3 High-Order Methods

The order of a numerical scheme influences the required grid resolution to attain a given
error level. For smooth enough solutions, the numerical error of a spatial discretization of
order p decreases proportionally to [19]

e ∝ hp, (1.4)

where h is the cell size. High-order methods are able to provide improved accuracy with
reduced computational cost per degree of freedom compared to conventional low-order
methods [19]. Finite difference methods have existed for decades and provide high-order
solutions. However, they are formulated on structured or curvilinear grids, confining their
applications to simple geometries. Applications of engineering interest involve complex
geometries such as landing gears and high-lift devices, which make the mesh generation
process more cumbersome. These types of problems benefit from the flexibility of unstructured
methods. High-resolution FV methods [20, 21] can provide high-order and are suitable for
unstructured grids. However, they achieve this by increasing the number of neighbouring
elements, which adds significant complexity and deteriorates the performance of modern
parallel hardware implementations.

High-order compact unstructured methods rely on basis functions and locally represent
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solutions inside each element using polynomials. Similar to the FV method, the solution is
allowed to be discontinuous at the interfaces, and they incorporate Riemann solvers to control
the stabilization mechanism properties. Compared to continuous FE methods, this added
flexibility makes them ideal candidates for unstructured high-fidelity simulations. Among such
high-order schemes are the discontinuous Galerkin (DG) [22, 23], spectral volume (SV) [24],
and spectral difference (SD) [25] methods.

In 2007, Huynh introduced flux reconstruction (FR) as a unifying high-order method for
advection problems on tensor-product elements [26]. Later, it was extended to the diffusion
regime [27] and unstructured grids [28]. This framework is referred to as unifying because it
can recover existing formulations of the abovementioned high-order methods via correction
functions. Similarly, additional high-order methods have been identified, such as the range
of energy-stable flux reconstruction (ESFR) schemes of Vincent et al. [29, 30]. In fact,
the choice of the correction parameter introduces additional flexibility and influences the
behaviour of the discretization. For instance, correction parameters have been identified to
increase the maximum allowable time-step size when used with explicit time-stepping [31].
For implicit time-stepping, this parameter can influence the performance of linear solvers [32].
FR methods offer high-order accuracy on compact stencils, making their explicit formulations
exceptionally well-suited for massively parallel computer architectures [33].

These characteristics make the FR approach appealing to model complex phenomena,
including convection-dominated flows, where wave propagation dominates the dynamics of
flow physics. In this sense, multiple spectral analyses of these methods [31, 34, 35, 36] have
been carried out, demonstrating the potential of this approach in simulating turbulence. In
fact, research has shown that the FR method provides appropriate numerical error to act as
a simple subgrid-scale model in ILES computations [37, 38, 39].

Despite recent progress in computational power and algorithm development, scale-resolving
simulations of high Reynolds number flow around complex aircraft configurations are still
prohibitive and require very long computational times. Due to the repeated runs needed
in the design and optimization processes, high-order methods must yield simulations with
small turnaround times. Hence, the feasibility of applying high-order FR methods to complex
problems of engineering interest relies on developing new efficient algorithms that maintain
accuracy in space and time.
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1.4 Solution Acceleration in High-Order Computational
Fluid Dynamics

The following section provides a comprehensive literature review of current state of high-
order CFD methods. Specifically, we discuss challenges in computing problems of industrial
scale and how current solution-acceleration approaches still require further advancement to
enable simulations at reduced turnover times. This work primarily concentrates on developing
approaches that offer broad applicability. The following subsections encompass three main
areas in high-order computational fluid dynamics, which will be the basis of the proposed
framework developed in this thesis.

1.4.1 Time-Marching Methods

The behaviour of flow at industrial scales is inherently unsteady and complex, so we need
appropriate temporal methods to advance the solution in time. These methods are generally
classified as explicit, implicit, and implicit-explicit (IMEX).

Explicit methods, such as explicit Runge-Kutta (ERK) schemes, calculate the state of the
system at a later time or stage from a known value at the current time or stage. They are
generally easy to implement, do not require significant memory, and have a short computation
time per time step. However, the maximum allowable time-step size is determined by the
relationship between the spatial discretization and a constrained stability region that dictates
the maximum stable Courants-Fredrichs-Lewys (CFL) number. Hence, they are generally
suitable for nonstiff problems. On the other hand, implicit methods calculate the future state
of the system via the solution of a coupled system of equations. Unlike explicit methods,
implicit schemes can be unconditionally linearly stable, and the value of the time-step size is
typically chosen based on accuracy rather than stability. In general industrial applications,
the solution in an implicit method must be obtained via nonlinear solvers.

With advances in high-order methods, computations of more complex problems are
becoming more feasible. Typical industrial applications of flow over aircraft wings are in
the range of seven/eight-figure Reynolds numbers. The higher the value of this parameter,
the denser the computational grid must be to capture the resulting thin boundary layer and
smallest turbulent length scales. This poses an important challenge for the use of explicit
methods due to their stability constraints, as the largest allowable time-step size becomes
prohibitively small for these problems. In implicit methods, however, we are required to
perform linearization, storage, preconditioning, and solution of large nonlinear systems, which
scale very rapidly with the order of accuracy at O(pd), where p is the polynomial degree
representing the solution, and d is the dimension of the problem. For typical problems of
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engineering interest, wall-resolved LES simulations using purely implicit methods necessitate
unattainable amounts of computational resources, especially memory.

IMEX methods combine the use of explicit and implicit methods to balance efficiency,
stability, and accuracy, using the best features of each approach [40, 41, 42]. Generally,
they are designed such that an implicit method is used to solve the stiff components of the
underlying equations and an explicit method is used on the nonstiff portion. Then, the two
are paired to enable time integration that maintains conservation and a desired order of
accuracy. With IMEX methods, the maximum CFL condition can be relaxed in the explicit
part, and the simulation can be run more efficiently. IMEX methods were initially devised to
time-split the convection-diffusion-reaction operator into stiff and nonstiff components [40].
More recently, they have been applied to tackle so-called geometry-induced stiffness [43, 44].
This occurs when there exist largely disparate cell sizes in a single computational domain, as
in, for instance, the cells within the boundary layer of an airfoil at high-Reynolds numbers
compared to those in the far-field [43]. IMEX schemes have been shown to provide speedups
over explicit methods by one to two orders of magnitude, thereby reducing the computational
cost of LES simulations [44].

More recently, novel explicit and implicit-explicit methods have been introduced. These
are obtained by reshaping stability polynomials of typical explicit Runge-Kutta (RK) methods
to increase their maximum allowable time-step size for specific spatial discretization methods
and conservation laws [45, 46, 47]. Optimal explicit RK schemes for the FR methods have
been devised and analyzed in this thesis, and optimal IMEX RK schemes have been formulated
in [48]. These methods have also been developed for specific applications such as in pseudo-
time stepping for incompressible flows [49] and combined with p-multigrid methods [50, 51]
for convergence acceleration.

The coupling of the temporal component with a semidiscretization yields a scheme with
distinct spectral properties. A fully-discrete analysis of these properties was investigated by
Yang et al. [52] for DG schemes coupled with classical RK schemes of second and third-order
and contrasted with Lax-Wendroff schemes of the same orders. Their study was confined to
the behaviour of well-resolved wavenumbers. Vermeire et al. [53] extended this analysis to
the region of under-resolved wavenumbers to explore the dispersive and dissipative properties
of the fully-discrete energy-stable FR schemes [30]. They considered conventional implicit
and explicit RK schemes and found that RK schemes may change the semidiscrete spectral
properties and provided recommendations for ILES, such as utilizing a time-step close to but
not on the stability limit. Combining optimal explicit RK methods with implicit schemes
leads to the accelerated IMEX (AIMEX) [48] methods, which in turn have been shown to
yield speedup factors in excess of two over standard IMEX methods. While both IMEX and
AIMEX methods have shown significant speedups over conventional explicit time-stepping,
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it is known that these schemes spend the majority of their computation time solving the
nonlinear systems that result from the governing equations.

1.4.2 Hybridization

Hybridization can reduce the cost of the implicit solver, which typically takes most of the
computation time in implicit and IMEX formulations. It was introduced in the context of
DG methods by Cockburn et al. [54], associated with the static condensation of finite-element
methods of de Veubeke [55]. Hybridized methods define a new unknown on the faces of the
elements, known as the trace variable, which effectively decouples interelement information
generally observed in the Jacobian matrix. Then, with transmission conditions, the problem
is globally defined in terms of the trace variable and later reduced via static condensation [56].
This leads to a Jacobian matrix, the size of which grows proportionally to O(pd−1) instead of
the typical O(pd) of standard implicit schemes. However, note that this is only the scaling,
and at low values of p, this can result in a higher number of degrees of freedom. Hence, these
methods are most suitable for higher orders.

Hybridized DG (HDG) methods are locally conservative and can exhibit superconvergence
after postprocessing in diffusion-dominated problems [57, 58, 59]. This postprocessing recovers
a globally continuous solution which converges at p+ 2, as opposed to the conventional p+ 1.
However, this behaviour is only exhibited in a limited number of problems and is not a
generalization of the method for typical industrial LES computations. In the standard HDG
methods, the trace unknown can be chosen to be discontinuous. Subsets of these methods
have been introduced by modifying the functional space of the trace variable. For example,
by enforcing continuity on the skeleton of the domain, the number of globally coupled degrees
of freedom decreases. This is known as the embedded discontinuous Galerkin (EDG) method,
initially introduced in the context of linear shell problems [60]. An analysis of this method was
performed in [61], where it was shown that although EDG results in smaller linear systems,
local conservation and superconvergent properties are lost. Instead, Kamenetskiy [62] showed
they are conservative on dual volumes. A combination of EDG and HDG methods gives rise
to the interior-embedded discontinuous Galerkin (IEDG) methods, which Nguyen et al. [63]
showed to be superior to EDG methods. These methods use continuous trace polynomials on
interior faces and discontinuous on the domain boundary. This has been shown to provide
flexibility and better accuracy when implementing boundary conditions. Hence, the IEDG
implicit systems are smaller than for EDG.

HDG methods have been successfully implemented in the context of computational fluid
dynamics for a range of problems, including convection [64], convection-diffusion [65, 59, 66],
incompressible [67, 68, 69] and compressible [70, 71, 72] flows, as well as turbulent flows
via ILES [38, 70, 73]. However, the use of hybridization has been confined to discontinuous
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Galerkin methods.

1.4.3 Polynomial Adaptation

In practical engineering applications of CFD, the complexity of the flow physics may
not be known a priori. This poses a challenge in generating grids to capture important
unsteady phenomena that may evolve in space and time. Furthermore, even when a priori
information is known, high-order methods may result in a large number of unnecessary degrees
of freedom. In typical aerospace LES simulations of complex geometries, the domain size is
chosen sufficiently large to capture the flow and reduce the effects of boundary conditions.
In these cases, the most complex physics associated with the boundary layer and vortical
structures are concentrated in relatively small fractions of the full domain. In practice, only
these areas require high resolution.

Problems within the FR framework are locally high-order. This allows a natural application
of local p-adaptation algorithms, which enable the use of variable degrees of the solution
polynomial from one element to another. With this approach, it is possible to reduce the
computational cost of high-order simulations while maintaining accuracy, which is suitable for
problems with confined regions of large gradients. Applications of p-adaptive methods in the
FR family of schemes have been done by implementing interface elements [74], using mortar
elements [75] and have been shown to outperform h-adaptation techniques for relatively
smooth problems [76]. Adaptive strategies require the use of error estimation indicators that
identify regions where higher numerical resolution is desired. These can be truncation-error
based [77], adjoint-based [78, 79, 80, 81] and feature-based [82, 83]. A review of these
estimators can be found in [84, 85, 86]. Application of p-adaptation can also be performed
within hybridized schemes.

Previous work on p-adaptive hybridizable methods [87, 88, 89] has focused on the HDG
method where the trace variable is allowed to be globally discontinuous. As we will observe
in Chapter 5, the embedded method is, in fact, competitive in terms of efficiency [63, 90] and
can be a promising approach where p-adaptation can be incorporated.

1.5 Thesis Objectives and Contributions

The main objective of this thesis is to develop solution-accelerating strategies within
the family of flux reconstruction methods toward industrial-scale scale-resolving simulations.
We seek to answer: How can we perform LES simulations of industrial-scale at reduced
computational cost?. To achieve this objective, efficient explicit and implicit forms of the FR
method will be developed.
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For problems of moderate stiffness, such as moderately low Reynolds numbers, optimal
explicit Runge-Kutta methods will be developed and analyzed in one, two, and three di-
mensions. These schemes will then be validated via benchmark cases involving turbulent
flow.

Then, hybridization will be introduced for the family of flux reconstruction methods. This
includes development, implementation and spectral analysis against standard formulations. A
series of numerical examples will verify this implementation and demonstrate the performance
and accuracy benefits of this approach in implicit formulations. This implementation will be
available within the in-house High-ORder Unstructured Solver (HORUS) software.

In combination with hybridization, polynomial adaptation will be introduced to FR
methods to further reduce overall number of degrees of freedoms in implicit formulations.
Performance and accuracy measurements will be showcased via a series of numerical examples.

Finally, hybridized and standard FR methods will be combined to obtain partially
hybridized IMEX schemes suitable for moderately high Reynolds numbers. A comparison
with standard IMEX schemes and explicit methods will be made in terms of performance. The
new algorithm will be validated with laminar and turbulent numerical examples, including a
multi-element airfoil at Re = 1.7× 106.

The primary contributions of this work are

• The development and analysis of optimal RK methods for FR schemes in one and
multiple dimensions with speedups of 2× over standard explicit formulations.

• The development, verification, and validation of a multi-core hybridization framework
for the FR approach into the HORUS solver exhibiting speedup factors of an order of
magnitude against standard implicit FR.

• The development of a polynomial-adaptive hybridized FR framework capable of reducing
the overall computational cost exceeding 6× over conventional polynomial-adaptive
standard FR.

• The development, verification, and application of partially hybridized IMEX schemes
to solve industrial-scale Reynolds number multi-element airfoil problem. Demonstrated
speedup factors of 4× over standard IMEX formulations and at least 15× over explicit
methods.
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1.6 Thesis Outline

This thesis is organized as follows

• Chapter 2 presents the sets of governing equations considered throughout this work,
from the compressible Navier-Stokes equations to simplified systems used in the analysis
of the developed methods.

• Chapter 3 presents the flux reconstruction framework, its formulation, hybridization,
and implementation details. For the hybridized portion, we discuss the block formulation
and static condensation approach and its form for implicit time-marching methods.

• Chapter 4 contains the first solution-accelerating strategy considered in this work, i.e.,
optimal explicit Runge-Kutta methods. We discuss the computation of optimal stability
polynomials in one and multiple dimensions. We also present a fully-discrete analysis
characterizing the numerical error for a range of CFL numbers. Results are validated
with a series of numerical examples.

• Chapter 5 analyzes hybridized flux reconstruction methods in the advection and
advection-diffusion regimes. Here, we discuss the performance, stability, and accuracy
of these methods for a range of correction functions.

• Chapter 6 presents polynomial adaptation of hybridized FR methods using a feature-
based vorticity indicator. Via a projection and a new algorithm, we perform dynamically
adaptive simulations of vortex-dominated flows and present the performance gains from
this approach.

• In Chapter 7, implicit-explicit formulations of combined hybridized and standard flux
reconstruction methods are developed to tackle geometry-induced stiffness. Specifi-
cally, a conservative formulation is presented. Performance and validation results are
showcased via LES simulations at moderately high Reynolds numbers.

• Finally, Chapter 8 presents conclusions and immediate future directions of the present
work.
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Chapter 2

Governing Equations

The numerical experiments considered in this thesis are governed by systems of conservation
laws applied on a domain Ω. We can describe a general form of these equations in the form
of a convection-diffusion equation

∂u

∂t
+

d∑

i=1

∂

∂xi

[
F

(c)
i (u)− F (v)

i (u,∇u)
]

= s in Ω, (2.1)

where F (c) is the convective flux, associated with the transport effects, F (v) is the viscous
flux, associated with the diffusive phenomena and d is the problem dimension. In some cases,
we will make use of a source term vector s to introduce additional forcing contribution into
the physics. We will describe each of the systems that we have used throughout this thesis,
starting with the scalar equations such as linear advection-diffusion and the Burgers equation,
followed by the nonlinear compressible Euler and Navier-Stokes equations. Finally, we will
present an incompressible approach for Navier-Stokes, which allows for explicit formulations.

2.1 Linear Advection-Diffusion

The linear advection-diffusion equation is used several times throughout this work. It
describes the transport and diffusion of a scalar u in a medium. The quantity moves at a
velocity denoted α, and the diffusion process occurs at a rate β. Hence, the convective and
viscous fluxes are defined as

F
(c)
i = αiu, F

(v)
i = β

∂u

∂xi
, i = 1, . . . , d. (2.2)

When β = 0, we obtain linear advection associated with wave propagation phenomena, which
is commonly used for verification of codes since its exact solution is readily available and
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given by
u(x, t) = u0(x−αt), (2.3)

where u0 is the initial condition, u0 = u(x, t = 0). In addition, we make use of this equation
to analyze the spectral properties of semi and fully-discrete systems. In some cases, we also
use the method of manufactured solution for verification of both convective and viscous
implementations.

2.2 Burgers Equation

Burgers equation is the nonlinear analogue of the previous equation. We define its fluxes

F
(c)
i =

u2

2
, F

(v)
i = β

∂u

∂xi
, i = 1, . . . , d. (2.4)

This equation describes the transport of u with local advective speed equal to itself. Hence,
portions with larger values of u will move faster than portions with lower values. With this
equation, we generally observe the formation of shocks, especially when the diffusion coefficient
β is zero. When β 6= 0, this equation can mimic turbulent behaviour in a one-dimensional
setting by including an appropriate source term s.

2.3 Euler Equations

The Euler equations describe nonlinear behaviour of fluid flow without the effects of
viscosity. They consist of equations for conservation of mass, momentum, and energy. These
equations can be used to study various phenomena, including shock waves, rarefaction waves,
and other compressibility effects in fluids. The conserved variables in three dimensions are

u =




ρ

ρvx

ρvy

ρvz

ρE




, (2.5)

where ρ is density, ρvi is the momentum component in the i-th direction, and E is the specific
total energy, which we will define shortly. Since Euler equations do not include any dissipative
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effects, the viscous flux term is set to zero F (v)
i = 0, while the convective flux is defined

F
(c)
i =




ρvi

ρvivx + Pδix

ρvivy + Pδiy

ρvivz + Pδiz

vi(ρE + P )




, (2.6)

where P is the static pressure and δij is the Kronecker delta. For an ideal gas, the pressure
and temperature T are related via the equation of state

P = ρRT , (2.7)

where R is the specific gas constant, which can be shown to be related to the specific heat
capacities at constant volume cV and constant pressure cP as well as the specific heat capacity
ratio γ̄ = cP/cV by

cV =
R

γ̄ − 1
, cP =

γ̄R

γ̄ − 1
. (2.8)

In addition, the specific internal energy e can be defined

e = cV T , (2.9)

which allows us to compute the specific total energy via

E = e+
|v|2
2

, (2.10)

where |v| is the magnitude of the velocity vector. With these equations, the system is closed
with five equations and five unknowns. By solving the Euler equations, we can study various
phenomena such as shock waves, rarefaction waves, and other nonlinear wave interactions
in compressible fluids. Compressibility is governed by the nondimensional Mach number M,
defined as

M =
|v|
c

, (2.11)

where c is the speed of sound given by

c =

√
γ̄P

ρ
. (2.12)
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For M < 0.3, compressibility effects can be considered negligible. The Euler equations do not
capture the effects of viscosity, and other dissipative processes, which are significant in many
real-world situations. In these cases, we need to resort to the Navier-Stokes equations.

2.4 Navier-Stokes

Industrial applications of computational fluid dynamics involve flows where the effects of
viscosity cannot be neglected. These include problems where the influence of boundary layers,
shear forces, and thermal gradients are important such as high Reynolds numbers flows. These
equations inherit the vector of conservative quantities, convective fluxes, thermodynamic
properties, and the Mach number from the Euler equations. Hence, we define F (c) as in the
Euler equations and define viscous flux vectors of the form

F
(v)
i =




0

τ̄xi

τ̄yi

τ̄zi

τ̄i · v + k ∂T
∂xi




, (2.13)

where k is the thermal conductivity coefficient and τ̄ij is a component of the viscous stress
tensor τ̄ , which can be written

τ̄ij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− λµ∇ · vδij, (2.14)

where µ is the dynamic viscosity coefficient and λµ is the bulk viscosity coefficient, typically
set to −2µ

3
.

2.5 Entropically-Damped Artificial Compressibility

As the Mach number decreases, the disparity between the entropy and the acoustic wave
speeds in the flow becomes significant. Hence, for these problems, solutions via compressible
Navier-Stokes become quite challenging. Artificial compressibility methods (ACM) [91]
provide mechanisms toward the divergence-free condition of the velocity field via pseudo-
time [92], which reduces the stiffness of the pressure and velocity field toward a divergence-free
result. These methods enable explicit time stepping, contrary to the typical solutions of the
incompressible Navier-Stokes equations [93], which requires solving a Poisson problem to
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obtain the pressure field.
The entropically-damped artificial compressibility (EDAC) method of Clausen [94] achieves

closure by minimizing density variations rather than setting a constant entropy constraint,
such as in the ACM method. The resulting equation has a pressure diffusion operator. The
pressure evolution is hence dictated by

∂P

∂t
+ v · ∇P +

1

M2∇ · v −
1

Re
∇2P = 0. (2.15)

This leads to a vector u of the form

u =




P

vx

vy

vz




, (2.16)

as well as convective and viscous flux vectors defined by

F
(c)
i =




vi(P + Θ)

vivx + Pδix

vivy + Pδiy

vivz + Pδiz




, F
(v)
i = ν

∂

∂xi




P

vx

vz

vy




, (2.17)

where Θ = 1/M2 with M an artificial Mach number, and ν = 1
Re
. These equations have been

successfully applied in the context of FR methods [95], showing that they are an effective
alternative to the ACM method, providing faster results and simpler implementation. Higher
values of Θ introduce stiffness in the problem, but provide a more accurate approximation of
the divergence-free condition. The maximum stable time step size is also influenced by this
parameter in explicit numerical schemes. We make use of the EDAC equations in Chapter
7, where we take advantage of their explicit form and reduced size to solve a multi-element
airfoil problem at a relatively high Reynolds number.
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Chapter 3

The Flux Reconstruction Framework

3.1 Preliminaries

Consider the following conservation law

∂u

∂t
+∇ · F (u,∇u) = 0 in Ω, (3.1)

where Ω is a bounded subset of Rd with boundary ∂Ω ∈ Rd−1 and d dimensions, u is the
conserved quantity, F = F (u,∇u) is the flux and t is time. To discretize this problem, we
rewrite it as a system of first-order ordinary differential equations

∂u

∂t
+∇ · F (u, q) = 0, (3.2a)

q −∇u = 0, (3.2b)

where q is an auxiliary variable referring to the gradient of the conserved variable.
We define T h to be the partition of Ω into N nonoverlapping, conforming elements Ωk,

each with boundary ∂Ωk = {f}, where f is an element face. Define also ∂T h to be the
collection of all element borders such that ∂T h = {∂Ωk : Ωk ∈ T h}. Here, every face is
counted from the point of view of every element. Furthermore, consider εh = εh∂ ∪ εh0 = f̄ to
be the union of all boundary and interior faces in the computational domain. Two interior
faces from ∂T h have a single corresponding face or vice-versa f̄ ∈ εh, f̄ = (f ∈ ∂Ωk) ∩ εh.
Furthermore, we define the jump operator of a vector F and a scalar u to be defined at face f

JFK = F+ · n+ + F− · n−, (3.3)

JuK = u+n+ + u−n−, (3.4)
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respectively, and similarly, the averaging operators by

{{u}} =
u− + u+

2
, (3.5)

{{F}} =
F− + F+

2
. (3.6)

The first step in the implementation is to map each Ωk to a reference element Ω̃ and each
f̄ to a reference face. Then, we can make use of invertible one-to-one mapping functions
Mk(x̃) to convert quantities between physical and reference space within each element.
These are obtained via

x = Mk(x̃) =

Ng∑

i=1

Mi(x̃)xgi , (3.7)

where x is the physical coordinate of a given point in Ωk, andMi is a shape function associated
with one of the Ng mapping points {xgi }. Define the Jacobian matrix of these transformations
by Jk(x̃) and its determinant by Jk(x̃). These geometric parameters allow us to rewrite
the conservation law considering the approximated physical solution uh = ∪Nk=1u

h
k and flux

F h = ∪Nk=1F
h
k in reference space such that

ũhk = ũhk(x̃, t) = Jku
h
k(Mk(x̃), t), (3.8)

F̃ h
k = F̃ h

k (x̃, t) = JkJ
−1
k F

h
k (Mk(x̃), t), (3.9)

q̃hk = q̃hk (x̃, t) = JTk q
h
k (Mk(x̃), t), (3.10)

so that the evolution of the physical solution within each element satisfies

∂uhk
∂t

+
1

Jk
∇̃ · F̃ h

k = 0, (3.11)

q̃hk − ∇̃uhk = 0, (3.12)

where ∇̃ is the divergence operator in reference space.

3.2 Implementation

To obtain a discretization of order p + 1, we place Ns solution points {x̃si}Nsi=1 inside
each element and Nr,f flux points {x̃rf ,i}

Nr,f
i=1 on each of the Nf element faces. A diagram is

provided in Figure 3.1 for two neighbouring quadrilateral elements showcasing these points.
At each face, we define functions such that outward unit normal vectors can be obtained via
ñmf = ñf (x̃

r
f ,m) and nmk,f = nk,f (x̃

r
f ,m) in reference and physical space, respectively.

The conserved variable can be represented within a given element Ω̃k via interpolation of
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Ω− Ω+

xs

xr

Figure 3.1. Solution and flux point locations for two neighbouring quadrilateral elements for
a p = 2 FR method

node values {Uk,i}Nsi=1 with nodal basis functions {ϕi(x̃)}Nsi=1

uhk =
Ns∑

i=1

Uk,i(t)ϕi(x̃), (3.13)

resulting in degree-p discontinuous polynomials. Note that a discontinuous flux F̃ hD
k in the

reference element can also be represented using the same basis functions

F̃ hD
k =

Ns∑

i=1

F̃k,i(t)ϕi(x̃). (3.14)

For second-order partial differential equations, we first compute an approximation to the
gradient, which we denote qh. This is obtained by taking the gradient of a globally continuous
scalar variable. In the FR method, this is carried out by performing a reconstruction
procedure, which penalizes the interface jumps via correction functions. In other words, we
add the following correction term to the discontinuous solution from Equation (3.13)

uhCk =

Nf∑

f=1

Nr,f∑

m=1

ñmf · gmf (x̃)
[
Uk,f − uhk,f

]
x̃=x̃rf ,m

, (3.15)

with correction functions gmf (x̃) satisfying

ñmf · gnl (x̃mf ) = δflδmn. (3.16)

Here, subscripts indicate the face number, superscripts the node number within the face, and δ
is the Kronecker delta. The correction functions we consider in this work define energy-stable
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FR methods. They can be defined as follows in one dimension

gL =
(−1)p

2

[
Ψp −

ηpΨp−1 + Ψp+1

1 + ηp

]
, gR =

1

2

[
Ψp +

ηpΨp−1 + Ψp+1

1 + ηp

]
, (3.17)

where Ψp is a Legendre polynomial of degree p and

ηp =
c(2p+ 1)(app!)

2

2
, (3.18)

with ap the leading coefficient in Ψp

ap =
(2p)!

2p(p!)2
, (3.19)

and c a free parameter which can recover existing methods. For instance, c = cDG = 0

recovers the discontinuous Galerkin method, and cSD recovers the spectral difference method.
For completeness, we also consider the cHU method, as defined in [26]. These functions are
shown in Figure 3.2. They can be directly extended to tensor product elements [96] and have
been identified for simplices in [30, 97]. The specific values of cSD and cHU can be written as
a function of the polynomial degree [29]

cSD =
2p

(2p+ 1)(p+ 1)(app!)2
, (3.20)

cHU =
2(p+ 1)

(2p+ 1)p(app!)2
. (3.21)
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(a) gL
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(b) gR

Figure 3.2. Left and right correction functions for cDG, cSD and cHU FR p = 2 schemes
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Equation (3.15) requires a common value of the solution Uk,f , which we will discuss in
the next subsections. The auxiliary variable q is a vector polynomial of degree p that results
from taking the gradient of the solution and its correction. For each element, we can write it
as

q̃hk =
Ns∑

i=1

Uk,i(t)∇̃ϕi(x̃) +

Nf∑

f=1

Nr,f∑

m=1

ñmf · ∇̃ · gmf (x̃)
[
Uk,f − uhk,f

]
x̃=x̃rf ,m

, (3.22)

and then map it to physical space via Equation (3.10). Following a similar procedure to
computing the corrected gradient, we formulate a continuous flux

F̃ h
k = F̃ hD

k + F̃ hC
k , (3.23)

where the term F̃ hC
k uses the same correction function and can be written

F̃ hC
k =

Nf∑

f=1

Nr,f∑

m=1

gmf (x̃)
[
H̃(x̃)k,f

]
x̃=x̃rf ,m

, (3.24)

and the normal jump of the flux at the face is defined as follows

H̃k,f (x̃) =
˜̂
Fk,f · ñf − F̃ hD

k,f · ñf . (3.25)

F̃ hD
k,f is the transformed discontinuous flux polynomial interpolated to face f , and the

relationship between physical and reference space for the common flux is [96]

˜̂
Fk,f · ñf = Jk,f F̂k,f · nk,f , (3.26)

where Jk,f is the Jacobian determinant of the face. Note that there is no constraint on
applying different correction functions for the gradient and the flux in Equations (3.15)
and (3.24), but we choose to make use of the same in this work. There remains to define
both the corrected solution and flux interface variables, which lead to different types of
discretization. Depending on the choice of the common solution and fluxes, the numerical
method will have different stability properties, and the stencil will also vary. These choices
are well-documented and lead to the well-known interior penalty (IP) [98], Bassi and Rebay I
(BR1) [99] and II (BR2) [100] and the so-called local DG (LDG) [101]. We will refer to these
as standard formulations. Other approaches rely on adding a new unknown into the system,
which we will refer to as the hybridized formulations. Up to this point, both methods share
the same methodology. We now branch out into the formulation of each of these approaches.
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3.2.1 Standard Formulations

In standard formulations, the numerical flux at the interface typically takes the following
form for the inviscid or convective component

F̂
(c)

(u−,u+) · n− =
1

2

[
F (c)(u−) + F (c)(u+)

]
· n− +

sFR

2
(u− − u+), (3.27)

where sFR is a stabilization parameter in the standard formulation. This parameter is
chosen depending on the physics of the problem. Typical values (or matrices in systems of
equations) lead to the Rusanov or local Lax-Friedrichs (LLF) [102, 103], Roe [104], and HLL
methods [105]. Throughout this work, we employ the Rusanov/LLF fluxes with sFR = λ̄FR,
with λ̄FR the maximum wave speed in the system. The viscous flux is typically computed by
evaluating F (v) using a common gradient q̂ and a common solution U, i.e.

F̂
(v)

(U, q̂) · n− = F (v)(U, q̂) · n−. (3.28)

Note that the computation of the total interface flux is the sum of the viscous and inviscid
fluxes. At the interface, conservation is strongly enforced in the standard formulation by
setting

F̂ · n− = −F̂ · n+. (3.29)

In this work, we consider the LDG and BR2 formulations, which provide explicit definitions
for the values of the common solution and the common gradient at the interface. For the
LDG method, these can be computed via

U = {{u}} − ζJuK, (3.30)

q̂ = {{q}}+ ζJqK− θJuK, (3.31)

where ζ is a scalar value in one dimension, and θ is a penalty term. In the case of the BR2
method

U = {{u}}, (3.32)

q̂ = {{∇u}}+ sBR2{{rf (JuK)}}, (3.33)

with sBR2 a stabilization parameter generally set to unity for flow problems, and rf is a lifting
operator satisfying ∫

Ω

rf (JuK) ·ψdΩ =

∫

f

JuK · {{ψ}}ds. (3.34)
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Hence, a modified gradient that considers only the effect of the discontinuities at the interface
is considered in the BR2 method. In BR2, the common gradient involves a lifting term,
which results in a more compact stencil than the LDG method. It is the form of these fluxes
that may lead to a certain degree of coupling between elements, decreasing or increasing the
sparsity of the implicit systems and resulting in more or less expensive computations [106].

After choosing a suitable interface formulation, we apply the divergence on the corrected
flux in Equation (3.23) and sum over all elements, which yields the following system for the
standard flux reconstruction method

∑

Ωk∈T h
q̃hk −

Ns∑

i=1

Uk,i∇̃ϕi(x̃)−
Nf∑

f=1

Nr,f∑

m=1

ñmf · ∇̃ · gmf (x̃)
[
Uk,f − uhk,f

]
x̃=x̃rf ,m

= 0, (3.35a)

∑

Ωk∈T h

∂ũhk
∂t

+
Ns∑

i=1

F̃k,i · ∇̃ϕi(x̃) +

Nf∑

f=1

Nr,f∑

m=1

∇̃ · gmf (x̃)
[
H̃(x̃)k,f

]
x̃=x̃rf ,m

= 0. (3.35b)

Since the definitions of the interface variables are explicitly defined, this system can directly
be solved both implicitly and explicitly. Similar to this methodology, we now demonstrate
the steps for the hybridized method. In our implicit implementation, the nonlinear system is
formed for Equation (3.35b). Equation (3.35a) is added via the chain rule.

3.2.2 Hybridized Formulations

In addition to the conserved variable, we introduce an approximation to uh on the skeleton
of the computational grid such that at any face f̄ ∈ εh, a degree-p polynomial can be obtained
via

ûhf̄ (x̃, t) =

Nr,f∑

i=1

Ûf̄ ,i(t)φi(x̃), (3.36)

which is the so-called trace variable. Here, Nr,f is the number of flux points in face f , which
we consider equal to the number of trace points at a given face, and φ is a d− 1-dimensional
trace basis function. Furthermore, the common flux can be computed by adding contributions
from the convective and diffusive components. Then, we can write

F̂k,f = F̂
(c)

k,f + F̂
(v)

k,f . (3.37)

Hybridization is then achieved by considering the following form of the common fluxes

F̂
(c)

k,f = F (c)(ûhf̄ ) + s(c)(uhk,f − ûhf̄ )nk,f , (3.38)

F̂
(v)

k,f = F (v)(ûhf̄ , q
h
k,f ) + s(v)(uhk,f − ûhf̄ )nk,f , (3.39)
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where s(c) and s(v) are convective and viscous stabilization parameters or matrices. Note that
with this form of fluxes, the definition of the common flux is given for each element. These
fluxes depend on information from a single element and the corresponding trace. Contrary to
the standard FR implementation, we do not strongly enforce conservation at the interface
since F̂− need not be equal to F̂+ in the general case. Hence, we seek to enforce an additional
statement satisfying global conservation, i.e.,

JF̂Kεh = 0, (3.40)

which can be discretely written

∑

f̄∈εh0

∫

f̄

JF̂Kf̄φds+
∑

f̄∈εh∂

∫

f̄

FBC
f̄ φds = 0, (3.41)

and provides closure to the system. In these equations, we have separated the interior and
normal boundary fluxes, the latter of which we denote FBC

f̄
, and the jump operator is defined

as in (3.4). After summing over all elements, we can state the hybridized form of the flux
reconstruction approach for convection-diffusion type problems as follows

∑

Ωk∈T h
q̃hk −

Ns∑

i=1

Uk,i∇̃ϕi(x̃)−
Nf∑

f=1

Nr,f∑

m=1

ñmf · ∇̃ · gmf (x̃)
[
Uk,f − uhk,f

]
x̃=x̃rf ,m

= 0, (3.42a)

∑

Ωk∈T h

∂ũhk
∂t

+
Ns∑

i=1

F̃k,i · ∇̃ϕi(x̃) +

Nf∑

f=1

Nr,f∑

m=1

∇̃ · gmf (x̃)
[
H̃(x̃)k,f

]
x̃=x̃rf ,m

= 0, (3.42b)

∑

f̄∈εh0

∫

f̄

JF̂Kf̄φds+
∑

f̄∈εh∂

∫

f̄

FBC
f̄ φds = 0, (3.42c)

where we have readily taken the divergence of the flux and its correction to arrive at (3.42b).
Typically, hybridized methods make use of discontinuous or globally continuous function
spaces for the trace variable, which can be respectively defined by

Mh
p = {φ ∈ L2(εh) : φ|f̄∈ Pp(f̄), ∀f̄ ∈ εh}, (3.43a)

M̄h
p = Mh

p ∩ C0(εh). (3.43b)

The choice of nodal basis functions for the trace variable leads to different types of hybridiza-
tions. In this work, we consider two types of hybridization. First, we consider discontinuous
trace nodal basis functions. This leads to the hybridized flux reconstruction (HFR) method.
We also define globally continuous nodal basis functions on interior faces εh0 and discontinuous
on boundary faces εh∂ . This leads to the interior-embedded flux reconstruction (IEFR) scheme,
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which we will denote EFR for simplicity. A diagram of the resulting solution and trace points
is shown for two neighbouring elements Ω− and Ω+ in Figure 3.3 for a p = 2 scheme, i.e., a
scheme representing the solution using a polynomial of degree 2. An important feature of
HFR methods over EFR is that HFR methods are pointwise conservative, as opposed to EFR
methods, which are only conservative on the dual volumes [62]. This is a direct consequence
of the function space choice and will be further discussed later in this thesis. Note that the
EFR method is an HFR scheme with reduced function space for the trace. Hence, on some
occasions, we use the term HFR as a universal term to refer to all hybridized FR methods.
Furthermore, throughout this thesis, we typically choose the solution points inside the element
to be those of the Gauss-Legendre quadrature. In the case of EFR, Gauss-Lobatto-Legendre
(GLL) points are used at the faces. When different sets of points are used in the EFR method
for the volume and faces, the correction functions are still generated using a tensor-product
formulation, and the lifting operation includes an additional interpolation operator. See [32].

Ω− Ω+

(a) HFR

Ω− Ω+

(b) EFR

Figure 3.3. Trace variable location for two neighbouring quadrilateral elements in an HFR
(left) and EFR (right) discretization considering a p = 2 scheme

3.2.2.1 The Global System

Hybridized unsteady problems can be written

∂u

∂t
+ f(u, û) = 0, (3.44a)

g(u, û) = 0, (3.44b)

where u ∈ RN×Ns , f is the hybridized spatial discretization function associated with Equa-
tion (3.42b), and g is the residual associated with the flux conservation statement in Equa-
tion (3.42c) [107]. Note that Equation (3.42a) is added via the chain rule in the flux terms, as
will be discussed in the implementation in the following section. Here, we have dropped the
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superscript h for simplicity in the notation. In conjunction with high-order spatial methods,
we can use s-stage singly-diagonal implicit Runge Kutta (SDIRK) schemes [108], for which
the solution at every stage can be written as a linear combination of the off-diagonal and
diagonal coefficients of the associated Butcher tableau, which has for general form for all RK
methods

c A

b
=

c1 a1,1 · · · a1,s

...
... . . . ...

cs as,1 · · · as,s

b1 · · · bs

. (3.45)

SDIRK time integration methods can be efficiently implemented as they only need to be
preconditioned once per iteration since they have a constant diagonal in their Butcher tableaus
and are lower diagonal, i.e., ai,j = 0, j > i. In the majority of this thesis, unless otherwise
indicated, we employ the two-stage SDIRK method for implicit time stepping, which can be
written

c A

b
=

γ γ

1 1− γ γ

1− γ γ

, (3.46)

with γ = 1 −
√

2
2
. We seek to advance the current solution ut by a time step ∆t to obtain

ut+1. This requires computing a number of intermediate stages. For SDIRK methods, the
solution of the hybridized problem at the i-th stage is given by the system

ui − ut −
i−1∑

j=1

aij∆tf(uj, ûj)− aii∆tf(ui, ûi) = 0, (3.47a)

g(ui, ûi) = 0. (3.47b)

Here, information associated with the diagonal coefficients is unknown, and with the off-
diagonal coefficients is known. We can rewrite the system in a simplified manner by introducing

ut∗,i = ut +
i−1∑

j=1

aij∆tf(uj, ûj), (3.48)

which yields

ui − ut∗,i − aii∆tf(ui, ûi) = 0, (3.49a)

g(ui, ûi) = 0. (3.49b)
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Finally, the solution at the next time step is found from the computed values of the solution
and trace at the intermediate stages

ut+1 = ut + ∆t
s∑

j=1

bjf(uj, ûj). (3.50)

Now, the system resulting from Equation (3.49) is larger than a typical FR method, which
can be formulated similarly by omitting Equation (3.47b) from the Newton method. However,
after hybridization, we can solve instead a reduced problem via static condensation, which
we discuss next.

3.2.2.2 Static Condensation

Static condensation is a dimensionality reduction approach typically used in finite-element
problems [109, 110]. After hybridization, FR methods become amenable to this approach, as
we can express the interior solution as a function of the trace variable. The system (3.49)
can be written for a general nonlinear problem

h(u, û) = 0, (3.51a)

g(u, û) = 0, (3.51b)

which we linearize about the interior and trace solutions ut, ût to obtain a linear system for
the n−th Newton iteration


A

n Bn

Cn Dn




δu

n

δûn


 =


r

n

sn


 , (3.52)

where δun, δûn refer to the update vectors for the solution and trace variable at the n-th
Newton iteration. Due to the discontinuous nature of the interior solution and the direct
interelement decoupling resulting from the hybridized numerical fluxes, A is block-diagonal,
with each block associated with an element in T h. Consequently, it is possible to compute its
inverse locally at each element and rewrite the system via static condensation. To do this,
we eliminate the interior solution u from Equation (3.52) by substituting its definition in
the first row of the system into the second row. Finally, we obtain a reduced system that
depends only on the trace variable, i.e.

Lnδûn = tn, (3.53)
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where Ln = Dn − Cn(An)−1Bn and tn = sn − Cn(An)−1rn. Then, the solution can be
obtained from

δun = (An)−1(rn −Bnδûn). (3.54)

These matrices can be built efficiently on a per-element basis and then globally assembled,
allowing the solution to be recovered instead for each element Ωk via

δunk = (An
k)−1(rnk −Bn

k δu
n
k), (3.55)

which contains operators of smaller sizes and are local to each element. These local solves
scale linearly in parallel implementations since they are local operations to every element.
Dropping the subscript n for simplicity, the global operators can be formulated by

Lij = Lij +Lk,̄ij̄, (3.56)

ti = ti + tk,̄i, (3.57)

where the elemental matrices Lk and tk are defined by

Lk := Dk −CkA
−1
k Bk, (3.58)

tk := sk −CkA
−1
k rk, (3.59)

and the indices ī, j̄ are associated with a many-to-one mapping of the element’s flux points
to the global trace points. The elemental blocks Ak, Bk can be specifically defined as follows

Ak,ij = δij −∆taii
1

Jk,i




Ns∑

g=1

∇̃ϕg(x̃) · ∂F̃k,g

∂uk,j

+

Nf∑

f=1

Nr,f∑

m=1

∇̃ · gmf (x̃)
∂H̃k,f

∂uk,j

(x̃rf ,m)



x̃=x̃si

,

(3.60a)

Bk,il =
∆taii
Jk,i



Nf∑

f=1

Nr,f∑

m=1

∇̃ · gmf (x̃)
∂H̃k,f

∂ûk,l

(x̃rf ,m)



x̃=x̃si

, (3.60b)

and the remaining blocks can be further structured face-by-face within each element and then
assembled into a single elemental block. This way, we can easily accommodate faces with
different numbers of trace points, which will arise in the p-adaptive formulation of Chapter 6.
Note that p-adaptation is only considered in two dimensions in this thesis. Further challenges
appear for EFR methods in three-dimensions but are not adressed in this work. That is, Ck
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and Dk can be trivially assembled from

C̄f
k,qj =

∂
˜̂
Fk,f

∂uk,j

(x̃rf ,q) · ñqf , (3.61a)

D̄f
k,qt =

∂
˜̂
Fk,f

∂ûk,f ,t

(x̃rf ,q) · ñqf , (3.61b)

such that elementwise matrices

Ck = (M 0
k C̄

0
k , . . . ,M

Nf
k C̄

Nf
k )T , (3.62a)

Dk = diag(M 0
k D̄

0
k, . . . ,M

Nf
k D̄

Nf
k ), (3.62b)

are obtained. The indices in Equations (3.60) and (3.61) are defined by i, j = 1, . . . ,Ns,
l = 1, . . . ,Nr and q, t = 1, . . . ,Nr,f , Nr =

∑Nf
f Nr,f . Note that ûk,l refers to the trace living

on the l-th point of element Ωk, and ûk,f ,t is the trace at the t-th point of the f -th face in
element Ωk. In addition, M f

k is the face mass matrix M f
k,qt =

∫
f̄
φqφtdf̄ . The contributions

from the viscous gradients are merged into the flux Jacobians via the chain rule

∂F

∂u
=
∂F

∂q

∂q

∂u
, (3.63)

∂F

∂û
=
∂F

∂q

∂q

∂û
. (3.64)

Similarly, the vectors rk, sk evaluate the right-hand side functions in the Newton algorithm

rk = −h(uk, ûk), (3.65a)

sk = −g(uk, ûk). (3.65b)

In order to solve Equation (3.53), we employ the generalized minimum residual (GMRES)
iterative solver with restricted additive Schwarz (RAS) preconditioning [111] in PETSc [112]
following [113]. Assembling the Jacobian matrix can be expensive for large problems, especially
at high orders. We consider instead a quasi-Newton method where the Jacobian matrix is
frozen for a given number of iterations to balance the time spent on the linear solver and
the assembly of the Jacobian blocks. Appendix C discusses some implementation details for
parallel computations.

To see the benefits of using hybridized methods, assume an infinitely large structured
mesh of quadrilateral elements in two dimensions and hexahedra in three dimensions. Nguyen
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et al. [63] estimated the number of degrees of freedom associated with the global system by

NDOF = NvlαDOF, (3.66)

where Nv is the number of mesh nodes, l is the number of conserved variables or unknowns,
and αDOF can be found in Tables 3.1-3.2. In addition, due to the sparse nature of the Jacobian
matrices, the number of nonzeros NNZ is associated with the memory storage requirements
and general performance of the linear solver and can be estimated by

NNZ = Nvl
2αNNZ, (3.67)

where αNNZ can be obtained from Tables 3.1-3.2 for the aforementioned elements [114]. These
values have been used to describe the performance improvement potential of these methods
and can be found for simplex elements in [63]. In the presence of boundary conditions, the
values in Tables 3.1-3.2 should be preceded by a < operator for EFR since boundary trace
points do not take part in the size of the L matrix. From these tables, we can see the
advantages of using hybridized methods, especially at high orders. For a low-order method
such as p = 1, HFR and FR have the same NDOF in the linear solve, which can make HFR
more expensive due to the overhead computations of the local Equations (3.54). In three
dimensions, the EFR method shows benefits for all polynomial degrees, but HFR only for
p ≥ 3.

Table 3.1. Coefficients αDOF and αNNZ for quadrilateral elements

αDOF αNNZ

p 1 2 3 4 5 6 1 2 3 4 5 6
FR 4 9 16 25 36 49 48 189 512 1125 2160 3773

HFR 4 6 8 10 12 14 56 126 224 350 504 686
EFR 1 3 5 7 9 11 9 47 113 207 329 479

Table 3.2. Coefficients αDOF and αNNZ for hexahedral elements

αDOF αNNZ

p 1 2 3 4 5 6 1 2 3 4 5 6
FR 8 27 64 125 216 343 256 2187 10240 34375 93312 218491

HFR 12 27 48 75 108 147 528 2673 8448 20625 42768 79233
EFR 1 7 19 37 61 91 27 459 2415 7803 19323 40467
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Chapter 4

Optimal Explicit Runge-Kutta
Formulations

4.1 Overview

Conventional explicit Runge-Kutta methods have been the go-to schemes in high-order
implementations of the FR method. Typical RK methods are only suitable for nonstiff
problems [115, 116]. For solutions of ordinary differential equations, the time step must
be chosen in accordance with their maximum stable CFL condition, which is dictated by
a stability function associated with the time-stepping scheme. This is so that the scaled
eigenspectrum of the spatial discretization lies inside this stability region [45].

This chapter demonstrates the computational benefits and numerical analysis of optimal
Runge-Kutta methods for explicit formulations of the standard FR discretization. The work
described here is partially the result of a collaboration with Siavash Hedayati. The semi and
fully-discrete analysis, as well as optimal RK polynomials for one dimension, were undertaken
by Pereira. The computation and validation of optimal RK polynomials for multidimensions
were undertaken by Hedayati. A summarized version is presented in this chapter. Further
details can be found in [117, 118].

4.2 Stability Polynomials

Explicit RK schemes take the value of the solution at the current time t and predict its
value after a given time-step size ∆t using intermediate stages. This can be expressed for
equations of the form

u′ = λu, (4.1)
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as
u(t+ ∆t) = Ps,q(z)u(t), (4.2)

where Ps,q(z) is the characteristic degree s polynomial of the RK scheme, which is of order
q. The stability of RK temporal schemes depends on the eigenvalues λh of the system of
equations to solve scaled by the time-step size ∆t, i.e., z = ∆tλh. More specifically, these
eigenvalues must lie within the region of absolute stability S

∆tλh ⊆ S, (4.3)

where S is defined as
S = {z ∈ C : |Ps,q| ≤ 1} , (4.4)

and |·| is the complex modulus operator. Generally, a stability polynomial is given by the
monomial expansion

Ps,q(z) =
s∑

j=0

γjz
j, (4.5)

where {γ0, . . . , γs} are the aforementioned polynomial coefficients. These coefficients are
required to be [119, 45]

γj =
1

j!
, j = 0, . . . , q, (4.6)

to guarantee a temporal scheme of, at least, order q. The remaining s− q coefficients are free
parameters, which can be optimized to more accurately fit the eigenvalues of the system of
ODEs. Hence, we can significantly increase the time-step size by adding new coefficients to
Ps,q(z). The result is an optimal explicit Runge-Kutta (OERK) method.

Generating an optimal ERK stability polynomial is generally cast as an optimization
problem. We seek the set of coefficients {γq+1, . . . , γs} that yields the maximum stable
time-step size for a given semidiscretization. In other words

maximize
γq+1,...,γs

∆t

subject to |Ps,q(∆tλh)|−1 ≤ 0, ∀λh.
(4.7)

Finding these optimal free parameters can be challenging due to the nonconvex characteristic
of the problem for s > 2, which may lead to finding sub-optimal local minima [45, 119].
Ketcheson et al. [45] proposed recasting the problem in Equation (4.7) into a generalization
of the classical least absolute problem, in which we look for how small the maximum modulus
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of Ps,q(z) can be for the set of λh at a given time-step size ∆t

minimize
γq+1,...,γs

max
λh ∈λλλ

h

(
|Ps,q(∆tλh)|−1

)
. (4.8)

Denote the solution of this problem as rs,q(∆tλh). We can evaluate the minimization problem
using the bisection method to find the maximum stable time-step size, which we will refer to
as ∆topt, such that

maximize
γq+1,γq+2,...,γs

∆t

subject to rs,q(∆t,λλλ
h) ≤ 0.

(4.9)

Using Algorithm 1 [46], we are able to solve Equation (4.9) to find ∆topt. We solve the

Algorithm 1: Finding ∆topt [119]
Select ∆tmax
∆tmin = 0
while ∆tmax −∆tmin > ε do

∆t = ∆tmin+∆tmax
2

Solve Equation (4.8)
if rs,q(∆t,λλλh) ≤ 0 then

∆tmin = ∆t
else

∆tmax = ∆t

return ∆topt = ∆tmin

optimization problem in Equation (4.8) using the package for modelling convex optimization
problems CVXPY 1.0.24 by Diamond and Boyd [120, 121]. We have converged our results
using a tolerance ε of 10−12. Our results agree well with those provided by Vermeire [119] for
the second-order RK polynomials. Butcher tableaus of a consistent number of stages can be
generated via the stability polynomial of the RK scheme.

4.2.1 Semidiscrete Analysis

The spectral properties of high-order semidiscretizations have been thoroughly studied
in the context of linear advection via von Neumann analysis in one [122, 31] and higher
dimensions [123]. Fully-discrete analyses have shown the effects of the temporal schemes on
spatial discretizations. Yang et al. [52] analyzed different first and second-order RK methods
on DG discretizations. Vermeire et al. [53] investigated the properties of conventional explicit
and implicit RK methods in the context of ILES for FRDG schemes and ESFR schemes [124].

In order to generate the aforementioned optimal stability polynomials of d-dimensional
spatial FR schemes, we perform von Neumann analysis to obtain the eigenvalues λh of the
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semidiscretization. The analysis consists of evaluating a scheme’s wave propagation properties
by considering the d-dimensional linear advection equation

∂u

∂t
+ ∇ · (αu) = 0, (4.10)

where u = u(x, t) is the scalar solution variable, αu is the linear advection flux with α
the advection velocity, t is time and x is the spatial coordinate. The advection direction is
defined by the angles θ1, θ2, with θ2 = 0 in the case of d = 2 (see Figure 4.1). We divide a

x3

x1

x2

θ2

θ1

Figure 4.1. Vector decomposition reference

computational domain Ω into N elements. We consider triangular and quadrilateral element
types for d = 2 and hexahedral, prismatic, and tetrahedral elements for d = 3. This division
must be performed to ensure that Ω is periodic in all directions. In this sense, Nec nonperiodic
elements are agglomerated into a referential periodical element with edge length h, as shown
in Figure 4.2. We consider h to be unity for all edges.

Quadrilaterals Triangles

h h

Hexahedra

h

Prisms

h

Tetrahedra

h

Figure 4.2. Subdivision of element types for d = 2 and d = 3

Next, we seek plane wave solutions of the form

u(x, t) = eI(κ·x−ωt), (4.11)

where κ = |κ| (β1, β2) defines the wavenumber, ω is the frequency of the wave and I =
√
−1

is the imaginary number. We consider |α|= 1 and the exact dispersion relation is simply
ω = |κ|. After a simple projection, we may write for any given element

uhi (x, t) = eI(κ·xi−ω
ht)ū, (4.12)
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where ū is an unknown vector that contains the amplitudes of the wave in numerical space,
and xi is the center coordinate of the element. Note that the solution within any given
element is the same, and the choice of the subscript i ∈ [1,N ] is arbitrary. After discretizing
the linear advection equation using FR with an upwind Riemann flux and the cDG correction
parameter, we can rewrite the conservation law at the discrete level

duh

dt
= Luh, (4.13)

where L is the sparse semidiscrete matrix of dimension NecNs ×NecNs, which depends on
the wavevector κ, advection direction, c parameters, Riemann flux choice, and element type.
The matrix L contains the contributions from the neighbouring elements and can be written
in general for any d number of dimensions

L =

[
C0 +

d∑

i=1

(
Ci
ue
−Iκ·x̄i

+Ci
de

+Iκ·x̄i
)]

, (4.14)

where x̄i, i = 1, . . . , d is a unit vector, C0 is a matrix associated with the element in study, and
Ci
u, Ci

d are respectively the upstream element and the downstream element Jacobian matrices
along the i-th direction. Note that the second term inside the summation in Equation (4.14)
vanishes when an upwind Riemann flux is implemented. After substituting Equation (4.12)
into (4.13), we obtain

− Iωhū = Lū, (4.15)

which is clearly a classical eigenvalue problem with Nec×Ns eigenvalues λh ∈ C. Then, these
eigenvalues are related to numerical frequencies by

ωh = Iλh. (4.16)

The spectrum of the eigenvalues considering all wavenumbers and wavevector orientations
define the stability properties of the spatial discretization and are scaled by the time-step size
to fit within the stability regions of the explicit temporal schemes. In addition, the imaginary
part of the numerical frequencies must be nonpositive to ensure boundedness [123, 125, 31].
Element types with larger eigenspectra typically require smaller time-step sizes, similar to the
effects of increasing the polynomial degree [119]. However, this condition is also influenced by
the number of solution points NecNs within the referential element. Figure 4.3 displays the
collection of eigenvalues for all considered element types using a solution polynomial degree
p = 4 spatial discretization for resolvable wavenumbers and orientations. We note that using
even double precision in the computation of eigenvalues may yield numerical frequencies with
positive spurious real components on the order of machine precision. As a consequence, these
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values were removed from the results in the computation of the optimal stability polynomials,
discussed in the following sections.

4.2.2 Optimal Stability Polynomials

4.2.2.1 One-Dimensional Elements

By solving the optimization problem described in Section 4.2, it is possible to generate
optimal RK polynomials for schemes of arbitrary order. In this work, we present results
for spatial schemes of order p = 1 to p = 8. Two sets of parameters are obtained using the
optimization algorithm, namely the optimal time-step ∆topt and the coefficients γq+1, . . . , γs

for each Ps,q scheme. Figure 4.4 shows the maximum stable step sizes that can be used for
schemes of degrees 1, 2, 4, and 8. Results are shown for polynomials with s = q to s = 16.
It is clear that ∆topt increases considerably with the first added coefficient, after which the
growth becomes relatively monotonic. It can be argued that this linear increase is balanced
with a larger number of residual evaluations. In Figure 4.5, we show the time step size divided
by the number of residual evaluations, which we assume equal to s. It is clear that the
low-order temporal schemes Ps,1, Ps,2 only show improvement until s = 4. After this point,
the benefit of optimizing the RK polynomial may be lost due to the large number of required
residual evaluations. However, higher-order schemes Ps,4, Ps,8 generally show improvement
in computational cost, at least until the maximum degree considered, s = 16. The use of
OERK schemes with a large number of optimized coefficients can bring additional advantages.
For instance, Vermeire proposed the use of Paired-Explicit RK schemes (P-ERK) to reduce
computational cost by pairing different ERK schemes based on the distribution of numerical
stiffness across the computational domain [119].

The second set of parameters regards the coefficients of the optimal RK polynomials.
Classical ERK stability regions can be seen in Figure 4.6 for temporal schemes of order 1, 2, 4,
and 8. The eigenvalues of a p = 4 FR spatial discretization are scaled by ∆topt and shown as
black dots on top of the stability contours. We note that the circular shape of the P1,1 scheme
cannot fit the eigenvalues of any FR discretization of p ≥ 1 [126]. Hence, this low-order
scheme is unstable for higher-order advection problems. We observe a closer representation
of the semidiscretization for the classical high-order temporal schemes. As a consequence,
they allow larger ∆topt. In contrast, Figure 4.7 shows the OERK schemes with s = 16.
These optimal RK polynomials contain s− q additional coefficients relative to their classical
analogues. Hence, the eigenspectra of the semidiscrete system are more closely represented
by P (z). It is important to note that due to the stiff, flat region of eigenvalues near the
imaginary axis, the optimization for both the first and second-order temporal schemes moves
in the same direction. As a result, their coefficients are very close. Due to the less stiff shape
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40



−2 −1 0
Re(z)

−1

0

1

Im
(z

)

0.00

-0.33

-0.66

-0.98

-1.31

-1.64

-1.97

|lo
g

1
0

(P
s,
p
(z

))
|

(a) q = 1

−2 −1 0
Re(z)

−1

0

1

Im
(z

)

0.00

-0.34

-0.68

-1.02

-1.37

-1.71

-2.05

|lo
g

1
0

(P
s,
p
(z

))
|

(b) q = 2

−3 −2 −1 0
Re(z)

−2

0

2

Im
(z

)

0.00

-0.46

-0.93

-1.39

-1.85

-2.31

-2.78

|lo
g

1
0

(P
s,
p
(z

))
|

(c) q = 4

−4 −3 −2 −1 0
Re(z)

−4

−2

0

2

4

Im
(z

)

0.00

-0.51

-1.02

-1.53

-2.05

-2.56

-3.07

|lo
g

1
0

(P
s,
p
(z

))
|

(d) q = 8

Figure 4.6. Stability polynomial of classical RK schemes of degree 1, 2, 4 and 8 shown in a
dashed line alongside eigenvalues of a degree p = 4 FR spatial discretization. Lower-order
temporal schemes require smaller time-step sizes to fit the eigenvalues. The q = 1 temporal
scheme is unstable for spatial schemes p ≥ 1
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Figure 4.7. Stability polynomial of OERK schemes of degree 1, 2, 4 and 8 shown in a dashed
line alongside eigenvalues (black circles) of the semidiscretization of degree p = 4. Oscillatory
behaviour can be observed for higher-order temporal schemes, such as p = 4 and p = 8,
around the eigenvalues of the FR scheme
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of the low-order schemes, they do not require as large s as high-order ones to represent the
region of eigenvalues. At s = 16, both P16,4(z) and P16,8(z) present some oscillatory behaviour
around the eigenspectra of the FR scheme.

4.2.2.2 Multidimensional Elements

We repeat the optimization procedure for multidimensional elements. Figure 4.8 shows
the obtained optimal ∆topt. We compute a number of metrics to compare against optimized
polynomials for line elements as well as to standard RK methods. Tables 4.1 and 4.2 show the
ratio of ∆topt using the optimal stability polynomial of each multidimensional element type,
relative to using the optimal one-dimensional stability polynomial with the multidimensional
element. This is shown for all considered orders of accuracy in time and for all stage counts.

Table 4.1. Ratio of the maximum time step for p = 4 two-dimensional elements using their
optimal stability polynomial and s stages, relative to the maximum time step obtained using
a stability polynomial optimized for a one-dimensional element

Quadrilaterals Triangles
s q 1 2 3 4 1 2 3 4

2 1.00 - - - 1.00 - - -
3 1.00 1.00 - - 1.01 1.00 - -
4 1.00 1.00 1.00 1.00 1.10 1.06 1.01 -
5 1.00 1.00 1.00 1.00 1.10 1.10 1.10 1.02
6 1.00 1.00 1.00 1.00 1.11 1.10 1.05 1.11
7 1.00 1.00 1.00 1.00 1.11 1.12 1.11 1.08
8 1.00 1.00 1.00 1.00 1.12 1.10 1.08 1.12
9 1.00 1.00 1.00 1.00 1.12 1.12 1.12 1.08
10 1.00 1.00 1.00 1.00 1.12 1.12 1.09 1.12
11 1.00 1.00 1.00 1.00 1.12 1.12 1.12 1.08
12 1.00 1.00 1.00 1.00 1.12 1.12 1.10 1.12
13 1.00 1.00 1.00 1.00 1.12 1.12 1.12 1.09
14 1.00 1.00 1.00 1.00 1.12 1.12 1.11 1.12
15 1.00 1.00 1.00 1.00 1.12 1.12 1.12 1.09
16 1.00 1.00 1.00 1.00 1.12 1.12 1.11 1.12

From these results, it is clear that optimizing the stability polynomial for the quadrilateral
and hexahedral elements provides no additional benefits relative to using the optimal one-
dimensional stability polynomial. However, minor performance improvements can be obtained
for triangular, tetrahedral, and prismatic elements with additional speedup factors of up to
1.12 observed.
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Figure 4.8. Plots of the scaled optimal time-step size as a function of the number of stages
for different (p = 4) element types
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Table 4.2. Ratio of the maximum time step for p = 4 three-dimensional elements using their
optimal stability polynomial and s stages, relative to the maximum time step obtained using
a stability polynomial optimized for a one-dimensional element

Hexahedra Prisms Tetrahedra
s q 1 2 3 4 1 2 3 4 1 2 3 4

2 1.00 - - - 1.00 - - - 1.09 - - -
3 1.00 1.00 - - 1.00 1.00 - - 1.06 1.00 - -
4 1.00 1.00 1.00 - 1.08 1.04 1.00 - 1.04 1.02 1.02 -
5 1.00 1.00 1.00 1.00 1.07 1.08 1.08 1.04 1.04 1.03 1.02 1.00
6 1.00 1.00 1.00 1.00 1.09 1.06 1.04 1.08 1.05 1.03 1.03 1.02
7 1.00 1.00 1.00 1.00 1.09 1.09 1.09 1.05 1.05 1.05 1.05 1.03
8 1.00 1.00 1.00 1.00 1.09 1.08 1.05 1.09 1.05 1.06 1.06 1.05
9 1.00 1.00 1.00 1.00 1.09 1.09 1.09 1.05 1.06 1.06 1.06 1.06
10 1.00 1.00 1.00 1.00 1.09 1.08 1.06 1.09 1.06 1.06 1.07 1.06
11 1.00 1.00 1.00 1.00 1.09 1.09 1.09 1.05 1.06 1.06 1.07 1.07
12 1.00 1.00 1.00 1.00 1.09 1.09 1.07 1.09 1.06 1.06 1.07 1.07
13 1.00 1.00 1.00 1.00 1.09 1.09 1.09 1.06 1.07 1.07 1.07 1.07
14 1.00 1.00 1.00 1.00 1.09 1.09 1.08 1.09 1.06 1.07 1.07 1.07
15 1.00 1.00 1.00 1.00 1.09 1.09 1.09 1.07 1.06 1.06 1.06 1.07
16 1.00 1.00 1.00 1.00 1.09 1.09 1.08 1.09 1.06 1.06 1.06 1.07
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4.2.2.3 Comparison with Classical Runge-Kutta Schemes

To investigate the utility of the stability polynomials optimized for each multidimensional
element type, we can compare them to the classical RK3,3 and RK4,4 methods. Table 4.3
shows the ratio of ∆topt relative to the maximum stable time step size using RK3,3. This
shows that a larger time step relative to RK3,3 can be taken for all elements as the number
of stages increases, which is to be expected. More importantly, Table 4.4 shows that the
speedup factor relative to RK3,3 also increases with the number of stages, which is measured
by the ratio of optimal schemes ∆topt

s
relative to that of RK3,3. By 16 stages, speedup factors

of 1.46 to 1.74 are observed, depending on the element type. Similar to Table 4.3, Table 4.5

Table 4.3. Time step ratio of q = 3 optimal RK schemes for different element types with
p = 4 relative to RK3,3,

∆topt
∆tRK3,3

s Hexahedra Prisms Tetrahedra Quadrilaterals Triangles Lines
3 1.00 1.00 1.00 1.00 1.00 1.00
4 1.53 1.69 1.48 1.53 1.73 1.53
5 2.11 2.27 2.02 2.11 2.32 2.11
6 2.70 2.97 2.57 2.70 3.05 2.70
7 3.29 3.57 3.11 3.29 3.65 3.29
8 3.87 4.24 3.65 3.87 4.36 3.87
9 4.44 4.84 4.17 4.44 4.96 4.44
10 5.01 5.46 4.71 5.01 5.63 5.01
11 5.57 6.08 5.22 5.57 6.23 5.57
12 6.13 6.67 5.73 6.13 6.86 6.13
13 6.68 7.29 6.25 6.68 7.48 6.68
14 7.23 7.87 6.76 7.23 8.08 7.23
15 7.77 8.47 7.26 7.77 8.70 7.77
16 8.31 9.07 7.77 8.31 9.29 8.32

shows the ratio of ∆topt relative to the maximum stable time step size using RK4,4. Again,
this shows that a larger time step relative to RK4,4 can be taken for all elements as the
number of stages increases. In addition, similar to Table 4.4, Table 4.6 demonstrates that the
speedup factor relative to classical RK4,4 also increases with the number of stages, which is
again measured by the ratio of the optimal schemes ∆tmax

s
relative to that of RK4,4. By 16

stages, speedup factors of 1.63 to 1.97 are observed, depending on the element type.
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Table 4.4. Speedup factor of q = 3 optimal RK schemes for different element types with
p = 4 relative to RK3,3, (∆topt

s
/

∆tRK3,3

3
)

s Hexahedra Prisms Tetrahedra Quadrilaterals Triangles Lines
3 1.00 1.00 1.00 1.00 1.00 1.00
4 1.15 1.26 1.11 1.15 1.30 1.15
5 1.27 1.36 1.21 1.27 1.39 1.27
6 1.35 1.48 1.28 1.35 1.52 1.35
7 1.41 1.53 1.33 1.41 1.57 1.41
8 1.45 1.59 1.37 1.45 1.63 1.45
9 1.48 1.61 1.39 1.48 1.65 1.48
10 1.50 1.64 1.41 1.50 1.69 1.50
11 1.52 1.66 1.42 1.52 1.70 1.52
12 1.53 1.67 1.43 1.53 1.71 1.53
13 1.54 1.68 1.44 1.54 1.73 1.54
14 1.55 1.69 1.45 1.55 1.73 1.55
15 1.55 1.69 1.45 1.55 1.74 1.55
16 1.56 1.70 1.46 1.56 1.74 1.56

Table 4.5. Time step ratio of q = 4 optimal RK schemes for different element types with
p = 4 relative to RK4,4,

∆topt
∆tRK4,4

s Hexahedra Prisms Tetrahedra Quadrilaterals Triangles Lines
4 1.00 1.00 1.00 1.00 1.00 1.00
5 1.52 1.68 1.47 1.52 1.72 1.52
6 1.99 2.17 1.88 1.99 2.21 1.99
7 2.46 2.72 2.32 2.46 2.79 2.46
8 2.94 3.22 2.77 2.94 3.30 2.94
9 3.43 3.78 3.23 3.44 3.89 3.44
10 3.93 4.32 3.69 3.94 4.42 3.94
11 4.44 4.87 4.17 4.45 5.02 4.45
12 4.95 5.44 4.63 4.96 5.58 4.95
13 5.47 5.99 5.11 5.47 6.15 5.47
14 5.97 6.56 5.58 5.98 6.73 5.98
15 6.48 7.11 6.05 6.49 7.29 6.49
16 6.99 7.67 6.52 7.00 7.88 7.00
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Table 4.6. Speedup factor of q = 4 optimal RK schemes for different element types with
p = 4 relative to RK4,4, (∆topt

s
/

∆tRK4,4

4
)

s Hexahedra Prisms Tetrahedra Quadrilaterals Triangles Lines
4 1.00 1.00 1.00 1.00 1.00 1.00
5 1.22 1.34 1.18 1.22 1.37 1.22
6 1.33 1.45 1.25 1.33 1.48 1.33
7 1.41 1.56 1.32 1.41 1.60 1.41
8 1.47 1.61 1.38 1.47 1.65 1.47
9 1.53 1.68 1.44 1.53 1.73 1.53
10 1.57 1.73 1.48 1.58 1.77 1.58
11 1.61 1.77 1.52 1.62 1.82 1.62
12 1.65 1.81 1.54 1.65 1.86 1.65
13 1.68 1.84 1.57 1.68 1.89 1.68
14 1.71 1.87 1.60 1.71 1.92 1.71
15 1.73 1.90 1.61 1.73 1.95 1.73
16 1.75 1.92 1.63 1.75 1.97 1.75

4.2.3 Numerical Results

4.2.3.1 Verification

For verification, a Butcher tableau was generated for each stability polynomial using the
least truncation method [45] (available in [117]), and was used to solve a linear advection
test case. To amplify the temporal error beyond machine precision, a prescribed source term
was added using the method of manufactured solutions. The linear advection equation with
this added source term is

∂u

∂t
+∇ · (αu) = S(t), (4.17)

where u(x, t) is a scalar, α is the advection velocity, and S(t) is the source term. Assuming
periodic boundaries and an initial condition u(x, 0) = e−κ|x|

2 , where κ = 0.4, the exact
solution is

u = eκ|x−αt|
2

+

∫
S(t)dt. (4.18)

Taking the exact solution to be

u(x, t) = eκ|x−αt|
2

+ 100sin(10πt), (4.19)

the resulting source term is
S(t) = 1000π × cos(10πt). (4.20)
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We used a 20 × 20 two-dimensional and 20 × 20 × 20 three-dimensional domain Ω, with
periodic boundary conditions in all directions. Two sets of two-dimensional simulations, one
with 80× 80 quadrilateral elements, and another with 160× 160 triangular elements, and
three sets of three-dimensional simulations, one with 80× 80× 80 hexahedral elements, and
two sets with 160× 160× 160 tetrahedral and prismatic elements were run to evaluate the
order of accuracy of optimal schemes. The solution was represented using p = 6 degree
polynomial on each element to minimize spatial error. A set of simulations was run using
different optimal stability polynomials with s = 16 and q = 1, 2, 3, 4. Each simulation was run
with unit advection velocity in all directions to a final simulation time of t = 20 to allow the
flow to complete a full cycle through the periodic domain. The accuracy of each simulation
is evaluated using the L2 norm of the error at the end of each simulation, defined as

EL2(Ωh) =

√∫

Ωh
(uh(x)− u(x))2dΩh. (4.21)

A summary of the error for each temporal scheme and time-step size, including observed
orders of accuracy, are plotted in Figure 4.9 for all element types. Importantly, we observe
that all schemes achieve their designed order of accuracy.

4.2.3.2 Navier-Stokes Equations

To explore the utility of the optimized stability polynomials for multidimensional nonlinear
problems, we consider DNS of the Taylor-Green vortex. The initial flow field for this test
case is specified as [19]

vx = +U0 sin
(x
`

)
cos
(y
`

)
cos
(z
`

)
, (4.22)

vy = −U0 cos
(x
`

)
sin
(y
`

)
cos
(z
`

)
, (4.23)

vz = 0, (4.24)

P = P0 +
ρoU

2
0

16

(
cos

(
2x

`

)
+ cos

(
2y

`

))(
cos

(
2z

`

)
+ 2

)
, (4.25)

ρ =
P

RT0

, (4.26)

where vx, vy, and vz are the velocity components, P is the pressure, P0 is the background
pressure, ρ is the density, and T0 and U0 are constants specified such that the flow Mach
number based on U0 is M = 0.1, effectively incompressible. The domain is a periodic cube
with the dimensions −π` ≤ x, y, z ≤ +π`. For the current study, we consider a Reynolds
number Re = 1600 based on the length scale ` and velocity scale U0. The test case is run to
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Figure 4.9. Convergence plots for linear advection using the method of manufactured solutions
using optimal RK schemes
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a final nondimensional time of t = 20tc where tc = `/U0, and reference spectral DNS data
is available from van Rees et al. [127]. Of primary interest is the temporal evolution of the
total kinetic energy, which can be found via

Ek =
1

ρ0Ω

∫

Ω

ρ
v · v

2
dΩ, (4.27)

and, more specifically, its dissipation rate −dEk/dt. Furthermore, the temporal evolution of
enstrophy can be computed via

ε =
1

ρ0Ω

∫

Ω

ρ
Z ·Z

2
dΩ, (4.28)

where Z is the vorticity. For incompressible flows, the dissipation rate can be related to the
enstrophy by −dEk/dt = 2 µ

ρo
ε [127, 19]. Consequently, enstrophy is a direct measure of the

expected physical dissipation, and the dissipation rate computed from the kinetic energy
is typically higher due to the additional numerical dissipation of the scheme. A total of
six simulations were run using p = 5 and a nominal 2563 solution points using hexahedral,
prismatic, and tetrahedral elements with the classical RK4,4 scheme and each element types
corresponding optimal fourth-order temporal scheme with q = 4 and s = 16. The maximum
stable time step sizes for each element type and temporal scheme were determined via
bisection, and each simulation was run to completion using a time step 80% of this maximum
size. This resulted in speedup factors of 1.68, 1.64, and 1.57 for hexahedral, prismatic, and
tetrahedral elements, respectively, when using the optimal stability polynomials. Importantly,
these speedup factors were obtained with negligible code modification, simply the substitution
of the coefficients in the Butcher tableau. Qualitative results in terms of isosurfaces of
Q-criterion coloured by velocity magnitude are shown in Figure 4.10 for all element types and
both sets of temporal schemes at a nondimensional simulation time of tc = 15, which is beyond
the turbulent transition time. From these images, it is apparent that the flow is qualitatively
indistinguishable between the two temporal schemes for all element types. Furthermore,
quantitative results in terms of the total kinetic energy dissipation rate and enstrophy are
shown in Figure 4.11 and Figure 4.12, respectively. These results demonstrate a negligible
difference in accuracy for both quantitative measures throughout each simulation, where the
plots for the classical and optimized Runge-Kutta methods are visually indistinguishable. We
observe that the optimized stability polynomials are able to yield significant reductions in
simulation time with negligible influence on both qualitative and quantitative results.
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(a) Hexahedra, RK4,4 (b) Hexahedra, OERK16,4

(c) Prisms, RK4,4 (d) Prisms, OERK16,4

(e) Tetrahedra, RK4,4 (f) Tetrahedra, OERK16,4

Figure 4.10. Isosurfaces of Q-criterion coloured by velocity magnitude for the Taylor-Green
vortex
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Figure 4.11. Energy decay rate versus dimensionless time for the Taylor-Green vortex case
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Figure 4.12. Enstrophy versus dimensionless time for the Taylor-Green vortex case
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4.3 Fully-Discrete Analysis

We now analyze the properties of the fully-discrete discretization using optimal RK
schemes. We focus only on one-dimensional formulations, as they typically provide general
insights into the overall numerical errors of a scheme. To analyze the methods, we consider
again the linear advection equation

∂u

∂t
+
∂u

∂x
= 0, (4.29)

which is nondissipative and admits solutions of the form

u(x, t) = eI(κx−ωt), (4.30)

where κ is the wavenumber, ω is the frequency, and I =
√
−1. Substituting the plane wave

into the advection equation yields the exact dispersion relation ω = κ. Divide a computational
domain into a series of N nonoverlapping elements of equal length h using periodic boundary
conditions. We can discretize Equation (4.29) using the standard FR approach described in
Chapter 3 and write it in the form

duh

dt
= Suh, (4.31)

where uh is a column vector containing the nodal expansion coefficients of each element, i.e.

uh =
[
uh1 , uh2 , · · · , uhN

]T
,

and S is the semidiscrete operator of size N(p + 1) × N(p + 1). Equation (4.31) can be
expanded for the upwind scheme considered here as




duh1
dt

duh2
dt

...
duhN
dt




=




C0 0 . . . C−1

C−1 C0

. . . . . .

C−1 C0







uh1

uh2
...

uhN




,

where C0 and C−1 are the (p + 1) × (p + 1) square linear transformation matrices of the
spatial discretization

C0 = −2

h

[
D − gL,x̃l

T
]

, C−1 = −2

h
gL,x̃r

T , (4.32)
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where gL,x̃ is a column vector containing the derivative of the left DG correction function at
each node

gL,x̃j =
dgL
dx̃

∣∣∣∣∣
x̃j

, (4.33)

D is the differentiation matrix and l, r are the left and right interpolation vectors. These
operators are respectively given by

Djl =
dϕl
dx̃

∣∣∣∣∣
x̃j

, (4.34)

lj = ϕj

∣∣∣
x̃=−1

, (4.35)

rj = ϕj

∣∣∣
x̃=1

. (4.36)

A fully-discrete operator Q can be obtained after application of a temporal method such that

Q =
s∑

j=0

γj (∆tS)j , (4.37)

where γj are the coefficients of the stability polynomial of the time-stepping scheme. This
yields a matrix of size N(p+ 1)×N(p+ 1), which has the following form

Q =




Q1,1 Q1,2 . . . Q1,N

Q2,1 Q2,2 . . . Q1,N

... . . . ...

QN ,1 QN ,2 . . . QN ,N




. (4.38)

The solution at the next time step can be obtained for any given element by

uhn(t+ ∆t) =
N∑

j=1

Qn,ju
h
j . (4.39)

In this analysis, we seek solutions of the form

uhn(t) = eI(κxn−ω
ht)α, (4.40)

where κ = κh is a prescribed nondimensional wavenumber κ ∈ [0, 2π], ωh is the numerical
frequency of the fully-discrete scheme, xn is the center of the element and α is a nonzero
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vector of unknowns. Substituting Equation (4.40) into (4.39) yields

e−iω
h∆tα =

N∑

j=1

Qn,je
iκ(j−n)α, (4.41)

which we rewrite as a classical eigenvalue problem

λα = M (κ)α, (4.42)

where λ = e−Iω
h∆t and

M ≡Mn =
N∑

j=1

Qn,je
Iκ(j−n). (4.43)

Note that due to the equally-spaced grid, the (p+ 1)× (p+ 1) matrix Mn is equivalent in
every element. Hence the choice of d ∈ [1,N ] is arbitrary. The p+ 1 eigenvalues of M are
complex and are related to numerical frequencies by

ωh = − ln (λ)

I∆t
. (4.44)

The imaginary part of ωh is associated with dissipation error, whereas the real part is
associated with the numerical dispersion of the scheme. A single mode dominates the spectral
properties of the numerical scheme at each given wavenumber. The other k eigenvalues
contain large numerical dissipation and will be rapidly damped. Given the periodicity of
Equation (4.42) with period 2π, each eigenvalue can be interpreted as corresponding to a true
wavenumber κ+ 2πl, where l is an integer [123]. To sort ωh, we implemented the algorithm
proposed by Vincent et al. [31].

Based on the fact that M is continuous in κ, and via the theory of perturbations [128],
they are subsequently permuted to form a continuous function λ : [0, 2(p+ 1)π]→ C. We
validate the accuracy of the fully-discrete scheme by computing the frequency error

E(κ) = |κ− ωhκ|, (4.45)

where ωhκ is associated with the dominant eigenvalue at the prescribed κ. Then, the local
order of the frequency error can be found by [53]

Aκ =
ln [E(κ)/E(κ/2)]

ln(2)
, (4.46)

and the global order is [26]
Ag = Aκ − 1. (4.47)
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For the DG scheme considered here, the expected global order of accuracy is 2p+ 1, which
is superconvergent [129]. In addition, we explore the group velocity, at which features at a
given wavenumber propagate in space, given by

vg =
d

dκ

[
Re
(
ωh
)]

. (4.48)

This analysis will give insights into the spectral properties of the fully-discrete scheme. In
this study, we focus on FRDG schemes coupled with their corresponding OERK schemes. The
introduction of optimized stability polynomials modifies the type of error that the resulting
numerical scheme introduces to the solution. In the following section, we analyze the spectral
properties of fully-discrete FR-OERK schemes. Due to the unconditional unstable properties
of the P1,1 scheme and the poor properties of P2,2 [126], results for these two temporal methods
will be omitted in further discussions.

4.3.1 Fully-Discrete Properties of FR schemes using Optimal RK
schemes

The properties of fully-discrete schemes do not rely only on their spatial order of accuracy
but also the time-stepping method. We now explore the spectral properties of fully-discrete
FR-OERK schemes according to the analysis presented in Section 4.3. In particular, we
look at the dissipation, dispersion, group velocity, error, and the local order of fifth-order
spatial discretizations (p = 4) coupled with high and low-order temporal schemes. Results
are shown for different ratios of ∆t relative to ∆topt, defined by τ until the CFL condition
reaches its stability limit at τ = 1.0. We use the spectral properties of the semidiscretization
as a reference, shown by a dashed line in all plots.

Figures 4.13 and 4.14 show the spectral properties for the P16,1 and P16,2 schemes,
respectively. As we have previously mentioned, the stability polynomials of these two schemes
contain very similar coefficients due to the shape of the spatial eigenspectra. As a consequence,
their spectral properties are similar. We first look at the dispersion and dispersion error plots.
Dispersion error is generally observed to increase with the time-step size for all wavenumbers
and can be significant even at low wavenumbers. Dissipation error increases for larger τ
for wavenumbers 0 < κ . π but decreases after this point. Good agreement of vg can be
seen until at least κ = 2π. After this, large values of group velocity appear for unresolved
features, even for τ = 0.5. The error plots include the slope of E(κ), which represents the
local order. This is shown for both the fully-discrete scheme on the left and also for the
semidiscretization on the right. As previously observed by Yang et al. [52] and Vermeire et
al. [53], the superconvergence property of the FRDG scheme with local order Aκ = 2p+ 2 is
generally downgraded to the order of the temporal scheme in the region of small wavenumbers,
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Figure 4.13. Spectral properties of P16,1 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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Figure 4.14. Spectral properties of P16,2 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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decreasing it to Aκ = p + 1. Hence, we observe Aκ = 10 for the semidiscretization, and a
reduction to Aκ = 3 in the region of well-resolved wavenumbers. Note that the value of Aκ
is the same for both P16,1 and P16,2 as a consequence of both the order conditions and the
optimization.

We now compare the spectral properties of the classical and optimal RK schemes of
third and fourth order. The behaviour of the P4,4 and P3,3 schemes was already presented
in [53]. We show these results for completeness, which, in addition, serves as validation of
the study. Figure 4.15 shows a P3,3 scheme. Dispersion curves agree well with the reference
until at least 3π, with additional dispersion error introduced for the smallest wavenumbers
proportional to the times-step size. After this, we observe considerable increases in dispersion
for higher τ , similar to the properties of the semidiscretization. Dissipation plots show higher
damping at small wavenumbers when τ is increased, and the dissipation reduces for larger τ
in the high-wavenumber region. Group velocity is underpredicted right before 3π and may
be substantially larger for the highest wavenumbers. The local order is reduced from Aκ =10
to Aκ =4 in the well-resolved range.

In contrast, Figure 4.16 shows the optimized P16,3 scheme. Increased dispersive behaviour
can be seen starting at wavenumbers ≈ π, in particular for large τ . Dissipation increases for
small τ for the mid-range of wavenumbers and decreases after 4π relative to the semidiscrete
properties. When τ = 1.0, dissipation is drastically reduced for all wavenumbers with small
amounts added at given wavenumbers after ≈ 3π. Group velocity is overpredicted after 2π.
Large magnitudes of vg can be seen for certain high values of τ in the high-wavenumber
region. Compared to the conventional scheme, the maximum (absolute) group velocity is
generally smaller. The convergence of the error for all τ considered decreases to Aκ = p+ 1

due to the large time-step size. Compared to the classical scheme, the optimal third-order
RK scheme generally introduces more error, particularly at high wavenumbers. However,
they are also capable of achieving a significantly larger time-step size.

Properties of the P4,4 scheme can be seen in Figure 4.17. Compared to the third-order
conventional RK scheme, we observe considerable agreement with the spectral properties
of the semidiscretization for a higher range of wavenumbers until ≈ 3π. The dispersion
error behaves similarly to the semidiscretization at τ < 0.6 with increased error after 4π.
However, it is clear that even the semidiscrete spectral behaviour in this region includes
large amounts of error. The dissipation properties show that increasing the time-step means
additional dissipation for the mid-range of wavenumbers, but behaves in the opposite manner
as it approaches κ = 5π. High-wavenumber features travel at large, incorrect speeds for all
considered τ at high wavenumbers. The error convergence behaves similarly to the previously
discussed schemes, in which the temporal order dominates for the well-resolved range of
wavenumbers, where the slope decreases by a factor of 2, specifically from Aκ = 10 to Aκ = 5.
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Figure 4.15. Spectral properties of P3,3 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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Figure 4.16. Spectral properties of P16,3 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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Figure 4.17. Spectral properties of P4,4 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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Figure 4.18. Spectral properties of P16,4 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line

65



By optimizing the shape of the fourth-order polynomial to P16,4, its spectral properties
are presented in Figure 4.18. We observe that the dispersion properties are similar to those of
the classical scheme but introduce significant additional error after ≈ 2π. This point becomes
closer to π as the time-step size increases. The shape of the P16,4 method does not fully
represent the shape of the eigenspectra, as previously shown in Figure 4.7. Hence, similar to
the third-order optimized scheme, different amounts of dissipation are introduced for τ = 1.0

in the high-wavenumber range. In general, the dissipation becomes significant after π for
τ = 1.0 and later for smaller ∆topt, which have the opposite effect for wavenumbers κ > 4π.
We observe that small changes in the time-step size may cause large oscillatory behaviour in
the group velocity of high-wavenumber features after κ = 2π, but with smaller magnitude
than the conventional scheme. The local order of the fully-discrete scheme is reduced to the
temporal order in most of the wavenumber range from 10 to 5. Generally, the behaviour of
the P4,16 scheme can be compared with the classical fourth-order RK scheme in the range of
low wavenumbers, especially as we move away from the maximum stable τ .

Figure 4.19 shows an eighth-order P8,8 temporal scheme coupled with a fifth-order spatial
discretization. The dispersion behaviour better follows the semidiscrete properties for a larger
range of wavenumbers in comparison with the semidiscrete properties. This behaviour is
maintained for all values of τ until at least 4π. Dissipation increases until about 4π and then
gradually vanishes for τ = 1.0 close to the Nyquist criterion. Group velocity features travel
at the reference speed until close to κ = 4π, after which large velocities can be expected at
certain ranges of high wavenumbers. Contrary to the previously discussed temporal methods,
the superconvergence property of the semidiscretization appears to be maintained. This may
be due to temporal convergence beyond machine precision.

The spectral properties of P16,8 schemes continue the trend, as shown in Figure 4.20.
Dispersive behaviour occurs faster for higher values of τ , and the behaviour follows that of
the semidiscretization up until about 2π for τ = 1.0. Similar to the fourth-order OERK
scheme, dissipative error is reduced in the high wavenumber regions for large τ , and the
previously observed oscillatory behaviour at high wavenumbers is also present in this case.
The group velocity follows the reference values for about 3π, after which large values may be
predicted at given high wavenumbers.

We have observed that OERK schemes have a significant impact on the spectral properties
of spatial discretizations. As P (z) is optimized, the dissipative behaviour can be drastically
reduced, with substantial introductions of dispersive behaviour. However, this is the case for
time steps close to τ = 1.0. As τ is reduced slightly below τ = 1.0, the spectral properties
approach those of the semidiscretization and contain similar characteristics to classical RK
methods. Furthermore, we have shown that increasing the order of the temporal method
improves the spectral properties of the fully-discrete scheme.
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Figure 4.19. Spectral properties of P8,8 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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Figure 4.20. Spectral properties of P16,8 schemes at different CFL numbers τ . Properties of
the semidiscretization are shown in a dotted line
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4.3.2 Numerical Experiments

Following the recommended numerical experiments in [53], we present advection of
a Gaussian bump, advection of a sine wave, as well as one-dimensional viscous Burgers
turbulence. We generated Butcher tableaus of orders 1, 2, 3, and 4, available in [118].
Generating Butcher tableaus for high-order temporal schemes can be particularly challenging
due to the involved large number of order conditions and were omitted for the nonlinear
Burgers test case.

4.3.2.1 Advection of a Gaussian Bump

We first evaluate the influence of the time-step size and number of optimized coefficients in
advection problems. We simulate advection of a Gaussian bump on a computational domain
of x ∈ [−20, 20] divided into N = 40 elements. An initial condition of a superposition of
wavenumbers is prescribed as u(x, 0) = e−10x2 . Periodic boundary conditions, an upwind flux
and Gauss points are used with a fifth-order spatial FR discretization (p = 4). Hence, we are
able to see the behaviour of different OERK schemes for low and high wavenumber features.
Since h = 1, we evaluate the spectral properties using ratios of the maximum time-step
size τCFL, defined by τ = ∆t/τCFL. We compare our results against the behaviour of the
semidiscretization, using a very small time step size. Initially, results are shown at t ≈ 1, and
then for t = 4000. We take advantage of the linearity of the advection equation to advance
the solution using the temporal matrix described in Equation (4.43). Hence, no Butcher
tableau was required for this case.

It is known that spurious high-wavenumber features may quickly dissipate due to numerical
dissipation. First, we look at the results for the advected solution after t ≈ 1 for the low-order
schemes P16,1 and P16,2 in Figure 4.21. Fast-travelling nonphysical features can be observed
after the bump, which correspond to high-frequency information. We now increase the order
of the temporal scheme to 3, 4, and 8. Figure 4.22 shows the solution for both classical and
optimal RK schemes on the left and right sides, respectively. In general, the amount of
dissipation added to the low-wavenumber features appears to be higher, more so for large
values of τ , as shown in our fully-discrete results. Compared to the conventional methods,
optimal RK schemes show fewer dissipated nonphysical features with slower-travelling group
velocity. This agrees well with the findings in the spectral analysis, where the maximum
value of vg for large wavenumbers is generally smaller for the optimized schemes.

After t = 4000, we plot the results again. This time, we observe that the error from the
semidiscretization alone, represented by the dashed black line, is significant. The results are
shown in Figure 4.23 for the first and second-order schemes. High-frequency nonphysical
modes can still be observed for τ = 1.0. As shown in our spectral results, the amount of
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Figure 4.21. Solution for advection of a Gaussian bump using first and second-degree OERK
schemes at t = 1 at different time-step sizes. Reference solution is plotted using a dashed
line. Results between these two schemes are very close due to the optimization problem

dissipation for these schemes at large τ is almost negligible. On the other hand, increased low-
wavenumber dissipation has been added for the smaller time-step sizes. Higher-order schemes
are shown at t = 4000 in Figure 4.24. First, we note that spurious high-frequency information
has been dissipated. In addition, low-wavenumber features appear to be more damped for
optimal and lower-order schemes in relation to the reference solution. This dissipation is
dependent on the time-step size and is reduced with τ . For the optimal fourth-order scheme,
nonphysical oscillations corresponding to the middle range of wavenumbers appear on the left
side of the bump, different from the classical P4,4 scheme, which shows these features both in
front and after, similar to the reference solution. This is due to the underpredicted group
velocity at lower wavenumbers with the optimal scheme, as shown in the spectral analysis.

4.3.2.2 Sine Wave

We perform a convergence study to compare the accuracy properties presented in the
fully-discrete analysis. This test case has been used previously [130, 53, 31] to analyze the
properties of the numerical scheme, independent of the initial error projection. To achieve
this, we consider the simple advection of a sine wave on a computational domain x ∈ [0, 20].
We implement a time-dependent boundary condition at x = 0 of uh(0, t) = sin (πt/2). No
boundary condition is required at x = 20 since the scheme is fully upwinded. The initial
conditions on the domain are set to zero. After four units of time, a single cycle has formed in
the domain with wavelength λs = 4. Due to the cyclical nature of the boundary condition, it
is expected that every four units in space contain a repeated complete sinusoid. The element
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Figure 4.22. Advection of a Gaussian bump using OERK schemes at t = 1 using high-order
temporal schemes. Results are shown at three different time-step sizes and contrasted with
the semidiscrete solution in a dashed line. Differences in group velocities at high wavenumbers
can be observed between classical and optimal schemes
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Figure 4.23. Advection of a Gaussian bump using first and second-degree OERK schemes at
t = 4000. Results are shown for different values of τ in continuous lines and the semidiscrete
solution in a dashed line. Solution is significantly dissipated relative to the semidiscrete
solution

length h is determined from the exact dispersion relation κ = ωh, where ω = π/2. We present
results for wavenumbers κ = 2π/n2, n = 1, . . . , 5. After t = 100, we compute the L2 norm
between the first and third sinusoids by

L2 =

√√√√h

2

λs/h∑

i=1

∫ 1

−1

[
uhi (x̃, t)− uhi+λs/h(x̃, t)

]2

dx̃. (4.49)

Table 4.7 shows the global convergence of the error for the FR p = 4 scheme coupled with
temporal OERK schemes of order q = 1, 2, 3, and 4. Similar to the spectral results, we note
that the order of accuracy of the fully-discrete scheme is reduced from Ag ≈ 2p+1 to q for the
range of well-resolved wavenumbers. Superconvergence is observed for all considered schemes
with global orders of ≈ 7 or higher. Results for the P16,1 and P16,2 show similar behaviour for
the reasons mentioned in the previous sections. Our results for the third and fourth-order
classical schemes agree well with those provided in [53]. We show that optimal polynomials
also converge to the expected orders of accuracy and can still achieve superconvergence when
a sufficiently small time-step size is used.

4.3.2.3 Burgers Turbulence

Forced viscous Burgers turbulence is generally used as a simple one-dimensional test
for numerical schemes for ILES [53, 131]. It is known that the FR scheme inherently adds
the necessary dissipation for the high-frequency scales present in turbulent flows [53, 39,
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Figure 4.24. Advection of a Gaussian bump using OERK schemes at t = 4000. Results are
shown for different values of τ in continuous lines and the semidiscrete solution in a dashed
line. Optimizing ERK schemes can modify the spectral properties of the semidiscretization.
Higher-order schemes show better agreement with semidiscrete solution
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Table 4.7. Convergence of the L2 norm for the sine advection case

P16,1 P16,2

κ Error Ag Error Ag

2π 2.60× 10−1 - 2.60× 10−1 -
π 2.10× 10−3 6.95 2.10× 10−3 6.95

π/2 3.11× 10−4 2.75 3.11× 10−4 2.76
π/4 7.76× 10−5 2.00 7.76× 10−5 2.00
π/8 1.94× 10−5 2.00 1.94× 10−5 2.00
π/16 4.85× 10−6 2.00 4.85× 10−6 2.00

P3,3 P16,3

κ Error Ag Error Ag

2π 2.58× 10−1 - 2.58× 10−1 -
π 1.34× 10−3 7.58 1.34× 10−3 7.58
π/2 3.72× 10−6 8.50 3.20× 10−6 8.71

π/4 7.38× 10−8 5.65 8.02× 10−9 8.64
π/8 8.42× 10−9 3.13 2.01× 10−10 5.32
π/16 1.05× 10−9 3.00 3.37× 10−11 2.60

P4,4 P16,4

κ Error Ag Error Ag

2π 2.57× 10−1 - 2.58× 10−1 -
π 1.32× 10−3 7.60 1.34× 10−3 7.59
π/2 9.67× 10−6 7.09 3.15× 10−6 8.72

π/4 6.27× 10−7 3.95 1.46× 10−8 7.80
π/8 4.37× 10−8 3.84 9.38× 10−10 3.93
π/16 3.20× 10−9 3.77 5.99× 10−11 3.97
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132]. We evaluate the effects of the numerical scheme on the characteristic behaviour of the
semidiscretization with this simple model. The viscous Burgers equation is given by

∂u

∂t
+

1

2

∂u2

∂x
= β

∂2u

∂x2
+ s(x, t), (4.50)

where β is a viscosity coefficient and is set to 10−4. A forcing function s(x, t) appears on the
right-hand side and is specified as in [53, 17]. It is defined in wavenumber space

s(κ) = A
eIι√
κ
√

∆t
, (4.51)

where κ is the wavenumber, A is an amplification factor, ι is a randomly chosen number,
ι ∈ [−π, π], computed at every time step for every wavenumber. In this work, we use
A = 0.01.

The computational domain is set on x ∈ [−π, π] using 20 elements and periodic boundary
conditions. Initially, the solution is prescribed as u(x, 0) = 0, and the source term is allowed
to introduce random behaviour into the results. We use the LDG approach for the viscous
fluxes and a Roe scheme for the Burgers flux. Anti-aliasing is introduced to the Burgers flux
to eliminate aliasing errors at high wavenumbers (see Hesthaven [9]). We compute the energy
spectra according to

E(κ) =
1

2
|u(κ)|2 , (4.52)

where u(κ) can be obtained by computing the FFT of the solution. We generated third
and fourth-order Butcher tableaus for Ps,q schemes of degrees s = p+ i, i = 0, . . . , 4 and s
number of stages. Table 4.8 shows the time-step size τmax that was used for each scheme.
This number represents the time-step size that maintained at least 50% of stable simulations.
We note that there is not a unique tableau for a given Ps,q scheme, and then τmax and results
hereafter correspond to our generated Butcher tableaus, which can be found in the electronic
supplementary material of [118]. For all schemes, we compare the results for simulations
performed at τ = 0.9, 0.92, 0.94, 0.96, 0.98 and 1.0τmax against a reference result computed
with a small time-step size, which is shown in a dashed line.

Table 4.8. Maximum time-step sizes for viscous Burgers turbulence using Ps,4 schemes

s 4 5 6 7 8
τmax 1.88 2.70 3.81 4.62 5.56

Figure 4.25 shows the energy spectrum for a fourth-order optimal RK scheme. We
include an example solution, where the turbulent behaviour, including discontinuities, can
be observed. Here, we explore the effects of the time-step size and the degree of the RK
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polynomials. It is known that FR provides the necessary dissipation to resolve turbulent
flows using ILES [37]. It is clear from the spectral plots in previous sections that the P4,4

scheme is almost nondissipative for the highest wavenumber features. This is observed in the
concentration of energy at these scales. By increasing the number of optimized coefficients,
the spectral behaviour changes. In particular, it was observed that, on average, the dissipation
decreases for the high-wavenumber region and increases for the low to mid-range. However, the
amount of dissipation in the wavenumber space varies. This is consistent with the oscillatory
behaviour observed in the fully-discrete analysis section. Furthermore, we observe that using
a time-step size of at least 90% of the stable maximum introduces clear improvements in the
dissipation properties. By moving away from the stability limit by a small percentage, it is
expected that the optimal RK schemes will provide appropriate spectral characteristics to be
implemented as FR-OERK schemes for ILES. For completeness, we include the results for
Ps,3 schemes in Figure 4.26.

With these numerical examples, we have demonstrated the suitability of optimal RK
methods for FR schemes in the context of turbulent simulations. With speedup factors
close to two, optimal RK methods enable faster simulations of problems with moderately
low stiffness while maintaining the characteristic spectral properties of FR methods. This
is true so long as the time step size is chosen close to but not at the limit of stability. In
the next chapters, we will focus on developing solution acceleration strategies for implicit
discretizations.
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Figure 4.25. Energy spectrum for viscous Burger turbulence using classical and optimized
fourth-order RK schemes. Results using a very small time-step size are included as reference
data (dashed line). A dependence on s can be observed in terms of energy dissipation at high
wavenumbers
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Figure 4.26. Energy spectrum for viscous Burger turbulence using classical and optimized
third-order RK schemes. Results using a very small time-step size are included as reference
data (dashed line). The behaviour of classical and OERK schemes is generally similar away
from the stability limit
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Chapter 5

Implicit Hybridized Formulations

5.1 Overview

In the previous chapter, we developed optimal explicit Runge-Kutta methods, where
computations of nonstiff problems were accelerated to yield accurate and stable simulations
with a speedup factor of two at most. While a factor of two is significant, we need to enable
faster computations, especially for problems that may contain disparate scales that introduce
stiffness, such as wall-resolved turbulence, for which explicit methods are not suitable. We
continue the work in this thesis by investigating performance and accuracy of hybridization
in the context of implicit formulations of FR methods. The description and implementation
details of the schemes considered here can be found in Chapter 5.

5.2 Advection-Type Problems

5.2.1 Spectral Analysis

In this section, we consider the spectral behaviour of hybridized methods. These properties
have been obtained for conventional FR methods [31, 36] and have provided important insights
into the dispersion and dissipation properties of numerical schemes. This analysis will establish
the behaviour of HFR and EFR methods for a range of c-parameters. We will show that HFR
methods recover the conventional FR schemes for linear advection, and that EFR methods
are identical to HFR methods in one-dimensional flow orientations. To properly characterize
the behaviour of EFR methods, we perform a two-dimensional von Neumann analysis. The
procedure is similar to that described in the previous chapter for the fully-discrete analysis,
but additional steps are required to see the effects of hybridization. In the case of EFR, we
consider a collocation of Gauss-Lobatto points for integration. A discussion on the influence
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of this integration choice is included in Appendix B. We consider the linear advection equation

∂u

∂t
+α · ∇u = 0, (5.1)

which is nondispersive and nondissipative, where α is the advection velocity with a prescribed
modulus |α|= 1 and direction θ. The above equation admits solutions of the form

u(x, t) = eI(κ1θ·x−ωt), (5.2)

where κ is a wavenumber with orientation vector 1θ = [cos θ, sin θ], ω is a temporal frequency
and I =

√
−1. Here, we have chosen to align the advection and wave orientations for the sake

of simplicity. For this analysis, a computational domain is subdivided into N quadrilateral
elements of equal side length h = 1, and periodic conditions have been applied in all directions.
Within each element, we seek numerical solutions of the form

uhk(x, t) = eI(κ̄1θ·xck−ω̄
ht)ū, (5.3)

where κ̄ ∈ [0, π] is a prescribed nondimensional wavenumber, xck is the center coordinate of
Ωk and ū is a vector of unknowns. Considering a Lax-Friedrichs [103, 102] type Riemann
solver of the form

F̂k,f (u
h
k,f , û

h
f̄ ) = αûhf̄ + |α · nmf |(uhk,f − ûhf̄ )nmf , (5.4)

the problem can be written after discretization as the following linear system

du

dt
+ Āu+ B̄û = 0, (5.5)

C̄u+ D̄û = 0, (5.6)

where Ā, B̄ and C̄, D̄ are the Jacobian matrices resulting from the hybridized discretization
of Equation (5.1). We are interested in the effects of the semidiscretization on the interior
solution. Finally, we can eliminate the trace variable û and obtain a condensed system in
terms of u only

du

dt
= Mu, (5.7)

where M = Ā− B̄D̄−1C̄. The block-circulant structure of M allows us to consider a single
element to analyze the scheme’s properties. Inspection of this global semidiscrete operator
demonstrates that the coupling between elements is stronger for the EFR method. From
Figure 5.1, an element Ωk is coupled with its neighbours via the faces in HFR methods,
whereas an element in EFR is coupled with all elements sharing a vertex. In addition, HFR
methods exactly recover the FR semidiscrete operator in (5.7), and hence it is equivalent in
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Figure 5.1. Element coupling involved in HFR and collocation-type EFR semidiscrete
operators

the context of linear advection [133]. Inserting (5.3) in (5.7) yields an eigenvalue problem for
any element Ωk

− Iωhū = M̄ū, (5.8)

where

M̄ =

Nb∑

i=1

Cie
I(κ̄∆xci−k·1θ). (5.9)

In (5.9), Ci is a Jacobian block associated with the i-th element involved in the coupling, and
∆xci−k is a vector holding the distance from xci to xck. Nb = 5 for HFR and Nb = 9 for EFR.
The (p+ 1)2 eigenvalues of M̄ , λj ∈ Z, are a function of κ, θ, α, c-parameter, and {φi(x̃)}.
These eigenvalues are associated with numerical frequencies −Iωh = λ, which allow us to
determine the dispersion (Re(ωh) 6= κ) and dissipation (Im(ωh) < 0) properties of the scheme.
We follow [31, 36] for the sorting of these eigenvalues and to identify the dominant mode,
which we use to make our analysis. We nondimensionalize figures in this section considering
κ̄ = κ

(p+1)
cos θ.

Of interest in this work is the comparison between the accuracy of HFR and EFR methods.
Figures 5.2 and 5.3 show the dissipation and dispersion relations from p = 1 to p = 4 for
different values of c ∈ [ c−

2
, cHU ] considering a wave incidence angle of θ = π

6
. Plots for other

values of θ are relatively similar and are omitted for the sake of brevity. Increasing the value
of c introduces more numerical dissipation for low to moderate wavenumbers for all methods.
In the range of high wavenumbers, increasing values of c have less dissipation instead. Results
for cDG are shown in a continuous line, cSD in a dashed line, and cHU in a dash-dotted line.
EFR methods introduce significantly more numerical error at p = 1 compared to HFR. As
the polynomial degree is increased, it can be observed that these dissipation and dispersion
mechanisms begin to behave similarly.
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Figure 5.2. Dissipation curves for different c-parameters at θ = π/6 for different polynomial
degrees. Results are highlighted for cDG ( ), cSD ( ) and cHU ( )

Whether one hybridization introduces more or less dissipation at given wavenumbers is
also a function of the incidence angle. When θ = 0, the numerical traces located at the top
and bottom faces of the quadrilaterals do not play a role in the EFR formulation anymore,
and the scheme becomes equivalent to HFR [134, 107]. To visualize the behaviour of these
methods at multiple values of θ, let us consider the maximum resolved wavenumber κ̄1%, at
which a wave decay of 1% is expected. This parameter is a reliable indicator of the resolution
capabilities of a scheme [122]. Figure 5.4 shows the maximum resolved wavenumber against
the wave orientation for multiple values of c increasing in the direction of the arrows displayed
in the plots. For p = 1, the resolution power of EFR is greatly affected for θ > 0. For example,
EFR with cDG shows significantly more dissipation than its HFR counterpart. As we increase
p, results show that the behaviour of EFR, which is less computationally expensive, starts
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Figure 5.3. Dispersion curves for different c-parameters at θ = π/6 for different polynomial
degrees. Results are highlighted for cDG ( ), cSD ( ) and cHU ( )

to behave similarly to conventional FR or HFR schemes, especially at higher orders. Note
that the maximum resolved wavenumber varies by less than 1% between the hybridization
methods at p = 4. Despite having more or less dissipation at given values of θ than HFR,
EFR is generally more dissipative.

5.2.2 Numerical Results

In this section, we explore the performance and accuracy of hybridized flux reconstruction
methods and compare them against conventional implicit FR formulations. All numerical
experiments were carried out serially on a 3.2GHz Intel Core i5-5600 processor with 16Gb of
RAM. We present results for linear and nonlinear cases.
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Figure 5.4. Maximum resolved wavenumber κ̄1% against the wave incidence angle θ for
different parameters c ∈ [c−/2, cHU ]. Arrows point toward increasing values of c. Specific
values of c are highlighted for cDG ( ), cSD ( ) and cHU ( )
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5.2.2.1 Linear Advection

First, we analyze the behaviour of hybridized FR methods in the context of linear advection.
As stated in the spectral analysis section, HFR schemes exactly recover the solution from the
conventional FR methods for linear flux functions. For this problem, we consider a periodic
(FBC = 0) domain Ω ∈ [0, 2]2 with four levels of refinement of 5× 5, 10× 10, 20× 20, 40× 40

quadrilateral elements. An initial Gaussian function is used to initialize the simulation, given
by

u(x, t) = e−20(x−1)2−20(y−1)2

. (5.10)

Considering α = [1, 1] and the Riemann solver in Equation (5.4), the L2 norm of the solution
error is computed for verification after the Gaussian bump has completed one advective cycle.
Results are shown in Table A.1 for HFR and EFR with different c-parameters, cDG, cSD and
cHU . Both HFR and EFR methods display the expected p+ 1 order of accuracy. As expected,
all simulations using cDG were able to obtain the smallest errors compared to higher values
of c, which, when increasing, introduce additional numerical error. This behaviour occurs
for both HFR and EFR simulations. When comparing both hybridization methods, HFR
obtained the smaller L2 norm except for a few configurations. As the polynomial degree
increases, the errors become closer to each other, and both approaches behave in a more
similar manner, with EFR generally having larger error.

We can measure the profile decay caused by numerical dissipation by measuring the L2

norm of the solution. In order to do this, we carry out an additional set of simulations on a
9× 9 grid considering the same initial condition. On quadrilateral elements, the numerical
error propagates symmetrically [36]. Looking at a slice of the solution will be enough to
analyze this Gaussian profile. Figure 5.5 shows a plot over y = 1 of the solution at t = 20 for
the cDG, cSD and cHU values. A slice of the exact solution is included in a dashed line for
reference. When c = cDG, the numerical solution is the closest to the reference data. For
the other two methods cSD and cHU , higher numerical dissipation and dispersion are present,
similar to the observations for the one-dimensional problem in [29]. Both the solutions for
HFR and EFR present the same error characteristics, with the latter resulting in a slightly
more damped Gaussian profile. However, EFR with cDG is more accurate than HFR with cSD
and with cSD. A measure of the solution energy ‖uh‖2 at the final time is shown in Table 5.1
confirming the previous observations.

Table 5.1. Energy ‖uh‖2 at t = 20 for the Gaussian profile case with p = 3

cDG cSD cHU

HFR 0.077939 0.0770379 0.0762666
EFR 0.077793 0.0768750 0.0761222
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Figure 5.5. Linear advection solution for initial Gaussian profile at time t = 20 and p = 3.
Results are shown for HFR, and EFR methods with cDG ( ), cSD ( ) and cHU ( )

Furthermore, we investigate the influence of c on the implicit solver performance. Ta-
ble 5.2 shows the average number of GMRES iterations for convergence with and without
preconditioning. These results belong to a mesh of 20×20 elements and a solution polynomial
of degree 3. While the cDG parameter is able to obtain a smaller numerical error, it can be
seen that a larger number of GMRES iterations per linear solve are needed in comparison
with cSD and cHU . The latter introduces the most numerical error from the three considered
methods but improves the GMRES convergence. Interestingly, EFR methods require 1.5 to
2.5 times more GMRES iterations compared to FR when no preconditioner is used. However,
when using RAS, FR requires ∼ 1.4 times additional iterations per linear solve. Furthermore,
all methods significantly improve the convergence rate when RAS preconditioning is used.
Results for other polynomial degrees and refinement levels are generally consistent and are
omitted for brevity.

Table 5.2. Average number of GMRES iterations for p = 3 schemes to solve the global system
for the linear advection case. Results are shown for a 20× 20 grid

RAS Preconditioner No Preconditioning
cDG cSD cHU cDG cSD cHU

FR 5.00 4.00 4.00 6.15 6.09 6.07
HFR 5.00 4.00 3.19 9.00 7.00 6.00
EFR 3.34 3.00 3.00 15.00 12.00 9.00
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5.2.2.2 Euler Equations

The discretization considered in Section 3.2.2 can be extended to a system of conservation
laws by applying the approach to every component of the vector of conserved variables u
in (2.5). Note here, u and û refer to the vector of solution and trace variables, respectively.
For these problems, the Riemann flux can be written such that

F̂k,f (u
h
k,f , û

h
f̄ ) = F (ûhf̄ ) + S(uhk,f − ûhf̄ )nk,f , (5.11)

where S = S(û) is the stabilization matrix. In this work, we make use of a local Lax-Friedrichs
type solver with S = sĪ [135], where s = ĉ+ |v̂ · n|, Ī is the identity matrix, and v̂ is the
trace velocity. The speed of sound ĉ can be computed at the interface in terms of the trace
variable via

ĉ =

√
γ̄P̂

ρ̂
. (5.12)

The normal boundary flux FBC term can be obtained by first computing the values of ûBC at
the boundary. Then, it can be calculated using Equation (5.11) by setting ûh = ûBC. For
the airfoil-vortex interaction problem, we make use of the weak-Riemann inflow, outflow and
slip-wall boundary conditions to obtain the values of ûBC as described in [136].

5.2.2.2.1 Isentropic Vortex For our second numerical example, consider the advection
of an isentropic vortex, which is an exact solution to the Euler equations. This is a commonly
used numerical simulation for the verification of high-order CFD codes [19]. The computational
domain consists of a square of side length L = 20, initialized with

ρ =

[
1− β2 M2(γ̄ − 1)e2f

8π2

] 1
γ̄−1

, (5.13)

vx =
βyef

2πR
, (5.14)

vy = 1− βxef

2πR
, (5.15)

P =
ργ̄

γ̄M2 , (5.16)

where ρ is the density, β is the vortex strength, M is the Mach number, vx and vy are the
x and y components of the velocity field, respectively, f = (1− x2 − y2) /2R2 and R is the
radius of the vortex. We set R = 1.5 and β = 13.5 for this problem [33] and apply periodic
boundary conditions in all directions. The initial profile is advanced through one cycle
using the second-order two-stage SDIRK2,2 method. We verify the problem on quadrilateral
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elements with second to sixth-order spatial discretizations. Four levels of refinement are
considered with 5× 5, 10× 10, 20× 20 and 40× 40 quadrilateral elements.

Table A.8 shows the L2 norm of the density error for all considered levels of refinement
using cDG, cSD and cHU . Results with the cDG parameter are consistently more accurate than
all other considered values for FR, HFR, and EFR schemes. HFR methods achieve errors
that are very close to that of the FR schemes. On the other hand, EFR methods have a larger
error than their FR and HFR counterparts, but when used with cDG, they achieve similar
or smaller errors than the former methods with cSD and cHU . For the finer simulations, the
error difference between EFR and FR methods is, however, in the order of 10−8. All schemes
achieved the expected p+ 1 order of accuracy.

Figure 5.6 shows the sparsity of the LHS matrix for FR, HFR, and EFR methods for a
problem involving the Euler equations on a grid with 25× 25 elements and a polynomial of
degree 3, which results in 124912, 89590 and 44740 nonzero entries, respectively. Due to the
structured character of the grid, FR has 40% fewer nonzero elements than expected, as per
Table 3.1.
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Figure 5.6. LHS matrix views for p = 3 FR, HFR and EFR methods for a 25× 25-element
grid for the isentropic vortex case

We investigate the effects of the c-parameter on the implicit solver. We consider p = 3

schemes with ∆t = 0.025. The Jacobian matrix was considered constant for 10 iterations
to reduce assembly time. Figure 5.7 contains several features of the implicit solver. In
Figure 5.7a, we observe the average number of iterations required for the linear solver to
arrive at a tolerance of 10−12 for values of c ranging from c−/2 to 3cHU/2. Specific values of
c have been identified with a triangle marker for cDG, a square marker for cSD, and a circle
marker for cHU . We observe that, similar to the linear advection case, increasing c can reduce
the number of GMRES iterations. For all schemes, cSD and cHU required fewer GMRES
iterations than cDG. This is also the case for the total number of Newton iterations or linear
solves, as shown in Figure 5.7b, where cDG requires ∼ 2.5% more linear solves than cHU for
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Figure 5.7. Effects of the c-parameter on the performance of FR schemes. Results are shown
for p = 3 for the isentropic vortex case. Values of c begin at c−/2 and increase in the direction
of the arrows. Markers for cDG ( ), cSD ( ), cHU ( ) have been added
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EFR and HFR and ∼ 5% in the case of FR. However, we see from Figure 5.7c, that the L2

norm of the density error is the smallest for cDG. The additional GMRES iterations and
linear solves were balanced with an error of between one-third to one-half of that obtained
with cHU for all schemes. In addition, cDG methods only took 13% more time for FR and
less than 10% more time for HFR and EFR compared to cHU , suggesting that cDG is more
cost-effective than the other two parameters.

When comparing hybridized methods, HFR was able to obtain L2 error values that agreed
with FR up to three significant digits with speedups between 1.22 to 1.3 depending on c.
EFR obtained 25% more numerical error for cDG, 12% more for cSD and 8% more for cHU
than the respective FR counterparts. We note that EFR has similar and smaller values of
error for specific configurations, such as the coarsest levels for p = 3 using cDG, as shown in
the verification results.
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Figure 5.8. Wall-clock time against number of elements for FR, HFR, and EFR for the
isentropic vortex case considering cDG ( ), cSD ( ) and cHU ( ) parameters. Results
correspond to p = 3 schemes

We also consider the performance of HFR and EFR methods for different numbers of
elements. Figure 5.8 shows the wall-clock time against the number of elements for all
considered refinement levels in this section, considering ∆t = 0.025 and p = 3. This value
of ∆t corresponds to CFL numbers CFL ≈ 0.002

√
N . Note that this conservative CFL

number was used to isolate the spatial discretization errors. Results are shown for cDG with
a continuous line, cSD with a dashed line, and cHU with a dash-dotted line. FR simulation
times increment more quickly than hybridized schemes. Considering the cDG results, the
wall-clock time curve grows as 1.65N compared to 0.893N for HFR and 0.67N for EFR.
With this value of c and considering the 40× 40 grid, HFR and EFR were faster than FR by
a factor of 1.77 and 2.3, respectively. Accordingly, hybridized methods are a more efficient
approach to conventional FR implicit schemes, even for a large number of elements. In this
plot, we also observe that changing c to cHU reduces the computational cost of FR by a factor
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of 1.3, but this is less significant for the hybridized methods, where the speedup obtained
was only 1.12, and 1.05 for HFR and EFR, respectively.

5.2.2.2.2 Airfoil-Vortex Interaction The final numerical example is the interaction
between a vortex and a NACA0012 airfoil at zero angle of attack. This case allows us
to demonstrate an application of hybridized FR methods in a more complex flow setting.
Starting from an initial steady subsonic flow, a vortex is released five chords upstream of the
airfoil’s leading edge. Over time, the vortex convects toward the airfoil with a freestream
velocity u∞. The disturbance added to the steady flow field as a consequence of the vortex
depends on the tangential velocity given by [74, 137]

ūt =
Γ

2πr

(
r2

r2 + r2
v

)
, (5.17)

where ūt is nondimensionalized by the freestream velocity, r is the distance from the vortex
center to any point in the domain, and rv is the vortex radius, which we take to be rv = 0.018,
and we set Γ = −0.283. For this example, we considered the compressible Euler equations

Figure 5.9. Unstructured mesh of 6830 quadrilateral elements for the airfoil-vortex interaction
case

with a Mach number M = 0.25 and a convective time tc = 1/u∞. A mesh containing 6830
quadrilateral elements is used in this simulation, with refined elements along the vortex-free
convection path as well as in areas of expected complex flow in proximity to the airfoil
as shown in Figure 5.9. We use coarse elements downstream of the airfoil as we will only
consider the effects before and during the direct interaction. FR, HFR, and EFR methods
with cDG, cSD and cHU parameters are considered in this case for schemes ranging from orders
p = 1 to p = 4 using a second-order singly-diagonal implicit Runge-Kutta method and a
nondimensional time step size ∆tc = 0.001, which corresponds to a CFL number of about 1.8.
For reference, the maximum stable CFL number with explicit RK4,4 is approximately 0.48,
0.23, 0.12, and 0.08 for p = 1, 2, 3, and 4, respectively. The density residual was converged to
a tolerance of 10−10. To create a balance between the assembly and the global solve time, the
Jacobian matrix was updated every 10 time steps. Ideally, the vortex core pressure remains

91



unaltered, but generally, dissipative numerical schemes will cause the vortex to decay [137].
As a reference, we use a sixth-order FR discretization with cDG on a mesh refined by splitting
every element into four.
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Figure 5.10. Pressure readings at y = 0 before the interaction in the airfoil-vortex interaction
case with cDG

Figure 5.10 shows the evolution of the pressure along y = 0 at four different snapshots
during the free convective phase of the vortex, starting with the initial unaltered condition at
tc = 0. Clearly, the p = 1 simulation is overly dissipative, causing significant vortex decay.
Here, EFR introduces significantly more dissipation than HFR and FR, which is consistent
with the wave propagation properties defined earlier in this chapter. As the polynomial
degree increases, the vortex strength is better preserved throughout the simulation, and
the pressure readings become closer to the reference data. At p = 4, we notice the EFR
results are very close to HFR, with some slight additional dissipation. Table 5.3 shows the
vortex core pressure readings at tc = 4. For p ≥ 3 for all considered values of c, the pressure
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Table 5.3. Vortex pressure core readings at tc = 4 for the airfoil-vortex interaction case

p 1 2 3 4
cDG cSD cHU cDG cSD cHU cDG cSD cHU cDG cSD cHU

FR 0.9700 0.9778 0.9920 0.8835 0.8987 0.9083 0.8299 0.8468 0.8532 0.7898 0.8012 0.8026
HFR 0.9700 0.9778 0.9919 0.8836 0.8987 0.9083 0.8299 0.8468 0.8532 0.7898 0.8012 0.8026
EFR 0.9800 0.9844 0.9931 0.8807 0.8985 0.9099 0.8323 0.8473 0.8533 0.7905 0.8006 0.8017

readings were almost identical between FR and HFR, with higher values of c introducing
more dissipation. For the higher-order simulations, EFR shows slightly more damped vortex
cores, with a relative error in the orders of 10−3 with respect to FR.

Figures 5.11 and 5.12 show the evolution of the lift and moment coefficients, respectively.
Due to the vortex decay, both the lift and moment curves show a significant difference from
the reference data for p = 1. This behaviour improves for higher polynomial degrees, where
at p = 4, results are close to the reference data at least until t ≈ 6. Based on these figures
and consistent with the pressure readings, more dissipation for the EFR vortex occurs in
comparison with HFR and FR, resulting in more damped moment coefficient curves, especially
at low orders.

While results show less error for HFR at high orders, performance measures indicate that
EFR methods may be more efficient at high orders. Figure 5.13 displays the density residual
against the wall-clock time. It can be seen that HFR methods are slower than conventional
FR for p = 1. This occurs since the DOF at this polynomial degree are equivalent for
both methods, but the static condensation procedure introduces computation overhead.
Moving toward higher orders shows that HFR methods were able to achieve 4.7 times faster
simulations and EFR 6.7 times faster for p = 4 compared to FR with cDG.

Table 5.4. Average time (in seconds) per linear solve for the airfoil-vortex interaction case

p 1 2 3 4
cDG cSD cHU cDG cSD cHU cDG cSD cHU cDG cSD cHU

FR 0.082 0.081 0.075 0.385 0.348 0.285 1.266 1.053 0.995 4.862 3.118 2.454
HFR 0.078 0.078 0.067 0.212 0.194 0.186 0.442 0.406 0.399 0.796 0.739 0.726
EFR 0.009 0.008 0.008 0.051 0.051 0.053 0.140 0.141 0.144 0.317 0.324 0.327

Figure 5.14 shows the resulting wall-clock times for all considered methods. FR with cDG
has a larger wall-clock time in comparison to the other two correction functions by up to 2
times for p = 4, when compared to cHU . This is associated with slower convergence of the
GMRES solver. As shown in Table 5.4, the average time per linear solve was between 1.1
and 1.98 times longer for cDG than for cHU with FR, consistently 1.1 times longer in the

93



4.5 5.0 5.5 6.0 6.5
tc

−0.6

−0.4

−0.2

0.0

0.2

L
if

t
co

effi
ci

en
t

REF
FR
HFR
EFR

(a) p = 1

4.5 5.0 5.5 6.0 6.5
tc

−0.6

−0.4

−0.2

0.0

0.2

L
if

t
co

effi
ci

en
t

REF
FR
HFR
EFR

(b) p = 2

4.5 5.0 5.5 6.0 6.5
tc

−0.8

−0.6

−0.4

−0.2

0.0

0.2

L
if

t
co

effi
ci

en
t

REF
FR
HFR
EFR

(c) p = 3

4.5 5.0 5.5 6.0 6.5
tc

−0.6

−0.4

−0.2

0.0

0.2

L
if

t
co

effi
ci

en
t

REF
FR
HFR
EFR

(d) p = 4

Figure 5.11. Evolution of the lift coefficient for the airfoil-vortex interaction case with cDG
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Figure 5.12. Evolution of the moment coefficient for the airfoil-vortex interaction case with
cDG
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Figure 5.13. Density residual against wall-clock time for the airfoil-vortex interaction case
with cDG

case of HFR, and generally the same or even smaller for EFR. Hence, we observe that the
effect of the c parameter in the wall-clock time is more prominent for the conventional FR
method than for HFR and EFR. We also note that FR methods spend most of their time
on linear solves when ignoring the Jacobian assembly time. Hybridized schemes, however,
require computation of the local solves. It was observed that they can spend between 40
to 50% on these computations, depending on the polynomial degree. Despite this, they are
still more efficient than conventional FR methods. From Table 5.5, we see that the values
of αDOF for this unstructured grid are close to those in Table 3.1. In addition, while the
ratios of αNNZ can provide insights into the general benefits of using hybridized schemes, the
computational time is more sensitive to the performance of the GMRES solver.

We have analyzed the accuracy and performance of hybridized FR methods in advection
problems. We now extend the approach to the full advection-diffusion regime in the next
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Figure 5.14. Wall-clock times for the airfoil-vortex interaction case for polynomial degrees 1
to 4 using all considered parameters c

section.

Table 5.5. Coefficients αDOF and αNNZ resulting from the airfoil-vortex interaction problems
at different polynomial degrees

αDOF αNNZ

p 1 2 3 4 1 2 3 4
FR 3.904 8.784 15.616 24.400 41.496 144.399 346.055 680.973
HFR 3.856 5.784 7.712 9.640 53.412 120.177 213.649 333.826
EFR 0.999 2.928 4.855 6.784 8.852 45.339 108.531 198.430

5.3 Advection-Diffusion-Type Problems

5.3.1 Stability Analysis

The HFR methods considered in the previous section were shown to recover conventional
FR formulations for linear advection problems, and EFR methods introduced additional
dissipation via spectral analysis. In this section, we analyze the behaviour of hybridized FR
methods for linear-diffusion problems that make use of the Vincent-Castonguay-Jameson-
Huynh (VCJH) correction functions [29] and discuss connections to HDG methods for
which linear stability proofs have been obtained. For this purpose, we consider the linear
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advection-diffusion equation
∂u

∂t
+α · ∇u− β∇2u = 0, (5.18)

where α is the advection speed, and β is the diffusion coefficient. We can rewrite this
second-order problem as a system of first-order equations to be consistent with (3.2)

∂u

∂t
+∇ · (αu− βq) = 0, (5.19)

q −∇u = 0, (5.20)

subjected to periodic boundary conditions.

5.3.1.1 Explicit Forms of the Numerical Trace

As previously stated in the implementation section, we consider hybridized forms of FR
methods where the trace variable may belong to one of the finite-element spaces in (3.43),
which lead to the so-called hybridized and embedded flux reconstruction schemes. At a given
flux point, the Riemann flux for advection-diffusion is given by

F̂k,f = αûhf̄ − βqhk,f + sk,f (u
h
k,f − ûhf̄ )nk,f , (5.21)

where sk,f = s
(c)
k,f + s

(v)
k,f . Because of the discontinuous nature of the trace polynomials in

HFR with space Mh (Equation (3.43a)), the conservation condition is applicable pointwise.
In the case of the embedded schemes, it can be shown that they are conservative at the
trace points [62], containing contributions from all elements in its vicinity. Application of the
transmission conditions on an interior trace point to solve for û yields the following explicit
expressions for the trace variable for the HFR method

ûM
h
p =
{{su}}
{{s}} −

β

2

JqK
{{s}} . (5.22)

In the case of the EFR method, a simple explicit expression cannot be obtained solely in
terms of u due to the global coupling resulting from the reduced space of the trace. If, for
instance, we choose to under-integrate the transmission conditions by employing a quadrature
such as GLL, the interior solution coupling is reduced, and a simplified expression can be
written as

ûM̄
h,GLL
p =

∑
F̄{{swu}}F̄∑
F̄{{s}}F̄

− β

2

∑
F̄ JwqKF̄∑
F̄{{s}}F̄

, (5.23)

where F̄ refers to the faces intersecting the trace point. This form was applied in the spectral
analysis of Section 5.2.1. Here w is a quadrature weight arising from the diagonal local
mass matrix of the GLL quadrature. However, in the rest of the work, we employ exact
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integration to mitigate possible aliasing issues of the GLL quadrature choice. From these
expressions, assuming a homogeneous definition of the stabilization on the (−) and (+) sides
of the interface for all faces, we note that the problem is undefined for {{s}} = 0, and then the
following statement is a constraint for hybridized advection and advection-diffusion problems

{{s}} 6= 0. (5.24)

5.3.1.2 Proof of Stability

We now devise a methodology to show energy stability of hybridized flux reconstruction
methods. This will provide insights into the stabilization mechanisms of HFR methods
alongside ESFR correction functions described in Chapter 3. Specifically, we consider the
analysis of HFR methods on quadrilateral Cartesian grids, which have transformation Jacobian
matrices of the form

Jk =


Jx 0

0 Jy


 , (5.25)

which, for these problems, Ĵf̄ = Jx and Ĵf̄ = Jy at a horizontal and vertical face, respectively,
since the cross-terms are zero. This analysis has been widely studied for conventional FR
schemes with several advective and diffusive Riemann solvers for one [138, 29, 139] and
higher-dimensional [140, 141] problems. We seek to study the time evolution of the solution
using a suitable Sobolev norm. We perform different algebraic manipulations to determine
the constraints that will yield well-defined and linearly stable schemes. We make direct use
of the proofs in the work of Sheshadri et al. [141, 142, 143] for conventional FR and augment
them with algebraic manipulated forms of the transmission conditions.

First, we introduce two important equations that will enable the study via the following
lemmas.

Lemma 5.3.1. For hybridizable FR methods on Cartesian grids, the following holds

N∑

k=1

∫

∂Ωk

F̂k · nkûhds = 0. (5.26)

Proof. On multiplying the strong form of the transmission conditions

JF̂Kεh0 = 0, J·Kεh0 =
∑

f̄∈εh0

J·Kf̄ , (5.27)
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by an arbitrary test function φ from a space in (3.43) and integrating over each f̄ , we have

∑

f̄∈εh

∫

f̄

(
JF̂Kf̄

)
φdf̄ = 0, (5.28)

which can be rewritten using the identity

∑

f̄∈εh

∫

f̄

(
JF̂Kf̄

)
φds =

N∑

k=1

∫

∂Ωk

F̂k · nkφds = 0. (5.29)

Recall that the problem has been defined to be periodic and that ûh also belongs to one of
the spaces in (3.43). Since

∫
f
φdf =

∫
f
φ|fdf and both φ, ûh belong to the same space, we

substitute φ by the trace variable ûh, and the proof is complete.

Lemma 5.3.2. For all hybridizable FR methods, the conservativity condition holds, and
therefore, the following holds as well

N∑

k=1

Nf∑

f=1

[
∂p(F̂k · nk)

∂ψp
∂pûh

∂ψp

]

f

= 0. (5.30)

Proof. The procedure is similar to the previous lemma but uses differentiation. On differenti-
ating the transmission conditions p times along the ψ-direction corresponding to each face,
multiplying by ∂pφ

∂ψp
and integrating over εh0

∑

f̄∈εh

∫

f̄

∂p(JF̂Kf̄ )
∂ψp

∂pφ

∂ψp
df̄ = 0, (5.31)

since both F̂ · n and φ|f̄∈ Pp, the integrand is a constant and hence

∑

f̄∈εh

[
∂p(JF̂Kf̄ )
∂ψp

∂pφ

∂ψp
df̄

]

f̄

= 0, (5.32)

where we have omitted the integration limits since we are considering a Cartesian grid
with constant nonzero face Jacobians. Substituting φ by the trace variable and applying
identity (5.29) completes the above lemma.

Lemma 5.3.3. For the tensor-product FR formulation with VCJH correction functions, the
following holds

1

2

d

dt
‖uh‖2

p,2= −β‖q‖2+ΘFR + ΘHFR, (5.33)
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where

ΘFR = −
N∑

k=1

∫

∂Ωk

uhk(F̂k · nk)ds

+
N∑

k=1

1

2

∫

∂Ωk

uhk(F
h,(c)
k · nk)ds

−
N∑

k=1

∫

∂Ωk

(ûhk − uhk)(F h,(v)
k · nk)ds

− c
N∑

k=1

Nf∑

f=1

[
J2p+1
ψk

∂puhk
∂ψp

∂p

∂ψp
(F̂k · nk)

]

f

+ c
N∑

k=1

Nf∑

f=1

[
J2p+1
ψk

1

2

∂puhk
∂ψp

∂p

∂ψp
(F

h,(c)
k · nk)

]

f

− c
N∑

k=1

Nf∑

f=1

[
J2p+1
ψk

∂p(ûhk − uhk)
∂ψp

∂p

∂ψp
(F

h,(v)
k · nk)

]

f

,

(5.34)

and

ΘHFR =
N∑

k=1

∫

∂Ωk

ûhk(F̂k · nk)ds+ c
N∑

k=1

Nf∑

f=1

[
J2p+1
ψk

∂pûhk
∂ψp

∂p(F̂k · nk)
∂ψp

]

f

. (5.35)

Proof. Here we have directly introduced the expressions obtained from the proof of stability
of the FR method by Sheshadri et al. [141, 142]. The reader can refer to it for the proof of
this expression. After algebraic manipulations and changes in the notation for the sake of
consistency, a general expression for the stability of the FR method on Cartesian quadrilateral
elements is given by

1

2

d

dt
‖uh‖2= −β‖q‖2+ΘFR, (5.36)

where ΘFR reads as in Equation (5.34). Here, ψ is a dummy coordinate variable such that
ψ = x for horizontal faces and ψ = y for vertical faces. In addition, F (c) and F (v) refer to
the advective and diffusive fluxes, and F̂k · n is the total normal Riemann flux involving
both advection and diffusion. Typically, explicit forms of the numerical trace ûh are used to
derive these stability proofs. However, since HFR methods implicitly define it, we leave it
as a variable for this analysis. This also allows different function spaces for the trace to be
considered. In this sense, we augment the above expression with Lemmas 5.3.1 and 5.3.2.
Multiplying Equation (5.30) by c and adding it to (5.26) completes the proof.

With these tools, we are ready to state our theorem on the stability of HFR methods.
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Theorem 5.3.4. Using a tensor-product formulation of the hybridized FR methods with
VCJH correction functions, it can be shown that if

• The stabilization parameters s± = s
(c)
± + s

(v)
± are chosen such that s± > α·n±

2
and

• The correction parameter satisfies c ≥ 0,

then the following expression holds for the two-dimensional linear advection-diffusion equation
with periodic boundary conditions on Cartesian quadrilateral elements

1

2

d

dt
‖uh‖2

p,2≤ 0, (5.37)

for a broken Sobolev norm of the solution given by

‖uh‖2
p,2=

N∑

k=1

∫

Ωk

[
(uhk)

2 +
c

2

((
∂puhk
∂x̃p

)2

+

(
∂puhk
∂ỹp

)2
)

+
c2

4

(
∂2puhk
∂x̃p∂ỹp

)2
]
dΩk. (5.38)

Proof. To state this proof, we can rewrite the equations in Lemma 5.3.3 as a summation
over all faces in the computational domain. Note that this is valid since all integrations
and derivatives in the previous equations are performed over the borders of the elements.
Hence, we consider one of these faces with either horizontal or vertical direction with left and
right elements Ω− and Ω+ and with outward unit normal vectors n− and n+, respectively.
Let us now expand each of the terms in these equations at a given face. The first term in
Equation (5.34) can be written as follows

−
∫

f̄

(
uh−

[
F (ûhf̄ ,u

h
−, qh−) · n− + s−(uh− − ûhf̄ )

]
+ uh+

[
F (ûhf̄ ,u

h
+, qh+) · n+ + s+(uh+ − ûhf̄ )

])
df̄

=−
∫

f̄

(
uh−[α · n−ûhf̄ − βqh− · n− + s−(uh− − ûhf̄ )]

+ uh+[α · n+û
h
f̄ − βqh+ · n+ + s+(uh+ − ûhf̄ )]

)
df̄ ,

(5.39)

where we have expanded the definitions of the Riemann solver according to Equation (5.21)
and considered a total stabilization parameter s = s(c) + s(v). Similarly, the second term
involving the convective flux can be expanded for this face

1

2

∫

f̄

(
uh−F

(c)(uh−) · n− + uh+F
(c)(uh+) · n+

)
df̄

=
1

2

∫

f̄

(
α · n−(uh−)2 +α · n+(uh+)2

)
df̄ , (5.40)
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and the third term involving the diffusion component of the flux can be written

−
∫

f̄

(
(ûhf̄ − uh−)F (v)(qh−) · n− + (ûhf̄ − uh+)F (v)(qh+) · n+

)
df̄

= −
∫

f̄

(
(ûhf̄ − uh−)(−βqh− · n−) + (ûhf̄ − uh+)(−βqh+ · n+)

)
df̄ . (5.41)

Finally, we consider the first term of Equation (5.35)
∫

f̄

(
ûhf̄ [α · n−ûhf̄ − βqh− · n− + s−(uh− − ûhf̄ )] + ûhf̄ [α · n+û

h
f̄ − βqh+ · n+ + s+(uh+ − ûhf̄ )]

)
df̄

=

∫

f̄

(
ûhf̄ [−βqh− · n− + s−(uh− − ûhf̄ )] + ûhf̄ [−βqh+ · n+ + s+(uh+ − ûhf̄ )]

)
df̄ , (5.42)

where we have used n− = −n+ to cancel out the advective flux on the trace variable. After
adding all of the above contributions, we write

ΘA
f̄ =

∫

f̄

[
s̄−(uh− − ûhf̄ )2 + s̄+(uh+ − ûhf̄ )2

]
df̄ , (5.43)

where we have introduced s̄± = s± − α·n±
2

. Note the exchange of energy between the two
adjacent elements is implicitly done via the trace variable. In a similar manner, we can obtain
the contributions from the derivative terms and write

ΘB
f̄ = J2p+1

ψk


s̄−

(
∂uh−
∂ψp

−
∂ûh

f̄

∂ψp

)2

+ s̄+

(
∂uh+
∂ψp

−
∂ûh

f̄

∂ψp

)2

 , (5.44)

for which we omit the derivation since it follows a similar procedure. Considering a periodic
domain, the sum over all faces f̄ ∈ εh results in the following stability statement for HFR
schemes on quadrilateral elements

1

2

d

dt
‖uh‖2=− β‖q‖2−

∑

f̄∈εh

(
ΘA
f̄ + cΘB

f̄

)
. (5.45)

From the above statements, we observe that for c ≥ 0 and

s̄± ≥ 0 ⇒ s± ≥
α · n±

2
, (5.46)

the hybridized form of FR for advection-diffusion satisfies

d

dt
‖uh‖2≤ 0. (5.47)
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However, from the explicit forms of the numerical trace defined in Equations (5.22) and (5.23),
we see that the method is undefined for s− = −s+ and hence the inequality becomes strict

s± >
α · n±

2
, (5.48)

or equally
sk,f >

α · nk
2

, (5.49)

where the strict inequality has to be satisfied on at least one face side [54]. Note that this
proof of stability recovers that of the HDG method [59] for c = 0, and hence we show via
this analysis that the stability proof of linear advection-diffusion HDG can be recovered from
HFR methods with this particular value of c.

5.3.1.3 Connection to Standard FR Schemes

In this section, we show the connection of hybridized methods with conventional FR
formulations for a typical choice of the stabilization parameter. It is important to note
that only discontinuous trace polynomials may recover existing FR formulations for purely
convective problems. To establish a connection with standard FR formulations, we consider
pure advection and pure diffusion scenarios. A typical choice of stabilization for problems
involving advection and diffusion is

sk,f = s
(c)
k,f + s

(v)
k,f = λ̄|α · n|+τv, (5.50)

where λ̄ is an upwinding constant and τv is the so-called diffusion stabilization parameter.
Generally, one can take it to be

τv =
β

`
, (5.51)

with ` a diffusive-length scale.

5.3.1.4 Advection Regime

First, we consider the case of pure advection (β = 0). For the above choice of stabilization
with τv = 0, the energy statement reads

1

2

d

dt
‖uh‖2= −

∑

f̄∈εh



∫

f̄

|α · n|
2

[
ζ̄−(uh− − ûhf̄ )2 + ζ̄+(uh+ − ûhf̄ )2

]
df̄

+ J2p+1
ψk

|α · n|
2

c


ζ̄−

(
∂uh−
∂ψp

−
∂ûh

f̄

∂ψp

)2

+ ζ̄+

(
∂uh+
∂ψp

−
∂ûh

f̄

∂ψp

)2


f̄


 ,

(5.52)
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which implies that for the general case where the neighbouring interface solutions can take
any arbitrary value, nonpositivity can be guaranteed for λ̄ ≥ 1

2
. Here we have defined

ζ̄± = 2λ̄± sign(α · n−). (5.53)

While this suggests that central-like approaches (λ̄ → 0) are not suitable choices for hy-
bridization of pure advection problems, this can be mitigated by choice of discontinuous
trace polynomials. As previously discussed in [32, 59], this finite-dimensional function space
leads to the exact formulation of standard FR schemes, where the relationship with the trace
variable and the interface solution value is equal in magnitude when the same stabilization
parameter is used on both sides, i.e.,

(uh− − ûhf̄ ) = (ûhf̄ − uh+), for s− = s+, (5.54)

which is a consequence of the local conservation for HFR, JF̂Kf̄ = 0. This results in a less
strict range of stable λ̄ parameters, as the stability statement becomes

1

2

d

dt
‖uh‖2=

∑

f̄∈εh


− λ̄

2

∫

f̄

|α · n|(u− − u+)2df̄ − cλ̄
2

[
J2p+1
ψk
|α · n|

(
∂uh−
∂ψp

− ∂uh+
∂ψp

)2
]

f̄


 ,

(5.55)
consistent with the analysis of the FR methods in [143, 141]. However, the implicit character-
istic of û still requires λ̄ > 0 for the problem to be well-defined. This means that the exact
central FR scheme for advection cannot be recovered with this type of stabilization. Note
that we can find an explicit form of the linear-advection common flux with discontinuous
trace polynomials and show that it takes the following form [59]

F̂ · n− =
α · n−s− + s+s−

s+ + s−
u− +

α · n−s+ − s+s−
s+ + s−

u+. (5.56)

A possible way to define a central HFR method can be shown if the stabilization parameters
are taken to be different on each side of the interface and are defined as follows

s− = γ|α · n|+α · n−, (5.57)

s+ = f(γ,α)|α · n|−α · n−, f(γ,α) =
γ sign(α · n−)

2γ + sign(α · n−)
, (5.58)
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for γ > 0. This recovers the exact central FR scheme for pure advection and no dissipative
mechanism. The trace is thereby defined by

û =

(
sign(α · n−)

2γ
+ 1

)
u− −

sign(α · n−)

2γ
u+. (5.59)

The proof of (5.57)-(5.59) can be shown by seeking the forms of the stabilization parameters
in (5.56) that yield equal terms multiplying u− and u+. However, it is well-known that
fully-central methods are inconvenient for applications of physical interest due to their lack
of dissipation.

5.3.1.5 Diffusive Regime

In the case of pure diffusion (α = 0), we set λ̄ = 0 in Equation (5.50) and obtain that
the evolution of the L2 energy is governed by

1

2

d

dt
‖uh‖2=− β‖q‖2

− τv
∑

f̄∈εh



∫

f̄

((uh− − ûhf̄ )2 + (uh+ − ûhf̄ )2)df̄

+ J2p+1
ψk

c



(
∂uh−
∂ψp

−
∂ûh

f̄

∂ψp

)2

+

(
∂uh+
∂ψp

−
∂ûh

f̄

∂ψp

)2




 ,

(5.60)

which shows that for this type of problem with an arbitrary positive diffusion coefficient β,
stability is observed for any value of the viscous stabilization τv > 0. Contrary to the pure
advection regime, hybridized methods for diffusion have a particular form of the numerical
trace that cannot recover existing FR-LDG schemes for any finite value of τv. LDG approaches
make use of interface solution values that take the form

ûFR = {{u}} − ζJuK, (5.61)

where ζ is a directional parameter. However, hybridized LDG (LDG-H) methods result in
numerical traces defined by

ûHFR = {{u}} − ζJuK− θJqK. (5.62)
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Comparing the explicit definitions in Section 5.3.1.1, we see that

θ =
1

2{{s}} , (5.63)

and θ 6= 0 for any finite value of the stabilization. We also note that (5.60) is consistent with
the HDG method in [59] if we set c = 0.

5.3.2 Local Post-Processing

Post-processing techniques have been widely used to improve the accuracy of numerical
solutions. This is possible due to the optimal convergence rates of the solution and flux in
locally-conservative methods involving diffusion operators [54, 144, 57]. Thus, this approach
will only be applied to our problems with discontinuous trace variables and not the EFR
method, whose DG equivalent has been shown to display suboptimal flux convergence in [61]
since the flux is not single-valued at the flux points. This approach has been applied to
numerous types of problems involving steady-state and time-dependent problems. The
procedure generally consists of using a Raviart-Thomas projection of the flux to obtain a
better approximation in H(div; Ω) and solving a local problem for the solution. Recall that in
the FR approach, we use correction functions to create a C0-continuous flux function. With
these correction functions, the discontinuous flux can be reconstructed to take the values of
the Riemann fluxes, upgrading it to Pp+1. In this section, we present a modified version of
the post-processing method presented in [59], which leverages the operators already defined
in the FR framework without the need to create additional RT formulations.

The first step in obtaining an elementwise superconvergent solution uh∗k is to post-process
the flux. While this first step can be done on the total advective and diffusive fluxes for
linear problems [59], we choose to work with the viscous flux only for simplicity. On each
element, we reconstruct the diffusive flux by computing

F̃
∗(v)
k = F̃

hD(v)
k (x̃)|x̃∗

s
+

Nf∑

f=1

N∗
r,f∑

m=1

gmf (x̃)[H̃(x̃)]x̃=x̃∗m
f

, (5.64)

where x̃∗mf are N∗s post-processing points that define polynomials of degree p∗ = p+ 1 and g
is the correction vector function of the same degree. From this post-processed flux, we can
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now obtain a more accurate solution by solving

− β



N∗
s∑

i=1

∇̃ϕ∗i · ∇u∗k,i −
Nf∑

f=1

N∗
r,f∑

m=1

∇̃ · g∗mf (∇u∗k · ñmf )
∣∣∣
xrf ,m




=

N∗
s∑

i=1

F̃
∗(v)
k,i · ∇̃ϕ∗i −

Nf∑

f=1

N∗
r,f∑

m=1

∇̃ · g∗mf (F̃
∗(v)
k,f · ñmf )

∣∣∣
xrf ,m

,

(5.65a)

∫

Ωk

(uhk − uh∗k )dx = 0. (5.65b)

where

∇u∗ = J−T ∇̃u∗(x̃) = J−T
N∗
s∑

j=1

U∗k,j∇̃ϕ∗j , (5.66)

which can be shown to be the FR discretization of the following problem at the element level

∇ · (−β∇u) = ∇ · F ∗(v)
k , (5.67a)

−β∇u · n = F
∗(v)
k · n, (5.67b)∫

Ωk

(u− u∗)dx = 0. (5.67c)

The last statement ensures elementwise conservation of the solution. This post-processing
leverages the existing FR correction functions to enable superior convergence of the methods
and extends the post-processing schemes to the full family of FR schemes. This post-
processing can be applied to schemes involving any of the VCJH correction functions and
recovers a scaled form of the conventional HDG post-processing when g is constructed with
cDG. Otherwise, the post-processing schemes seem to be new. Later in this work, we perform
numerical examples to showcase the superconvergent characteristics of hybridized FR methods.
In all cases, we use the same correction function for both the solution and the post-processing
steps for the sake of consistency.

5.3.3 Numerical Examples

In this section, we perform numerical experiments to discuss the stability, performance,
and accuracy of hybridized FR methods in advection-diffusion problems. We mainly consider
three values of the c parameter that recover existing high-order formulations. These include
cDG, cSD and cHU for p = 1 to p = 4 schemes. For the linear problems, the post-processing
scheme is applied with the same values of these correction parameters. The L2-norm of the
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solution error is measured via

EL2(Ωh) =

√√√√ 1

|Ω|
N∑

k=1

∫

Ωk

(uhk − ue)2dΩk, (5.68)

where ue is the analytical solution. Furthermore, we first consider a linear steady-state
problem and two unsteady cases. Then, we present a nonlinear problem involving the
compressible Navier-Stokes equations. All simulations are carried out serially on a 3.2 GHz
Intel Core i5-5600 processor with 16Gb of RAM. The implicit system uses an exact Jacobian
and is solved via the RAS preconditioner in the PETSc framework [112] with. The order
convergence tables obtained in this section have been placed in Appendix A for the sake of
brevity.

5.3.3.1 Steady-State Linear Advection-Diffusion

Consider the linear advection-diffusion equation with a source term chosen such that the
exact solution is given by

u(x) = xy
(1− e(x−1)αx)(1− e(y−1)αy)

(1− e(1−αx))(1− e(1−αy))
, (5.69)

defined on Ω = [0, 1]2. Dirichlet boundary conditions are obtained directly from the exact
solution. This case has been used to analyze the accuracy and post-processing of steady-state
HDG methods for the weakly convection-dominated regime in [59]. The advection velocity
is set to α = [αx,αy] = [25, 25] and the diffusion coefficient to β = 1. Due to the relatively
large advection velocity, a boundary layer is expected to form toward the right and top ends
of the domain. We consider the L2-norm of the error in a reduced space ΩL2 = [0.1, 0.9]2 to
exclude the resolution of the boundary layer. The grid was generated using the following
stretching function

x =
1

a
tanh

(
[i, j]√
N

arctanh a

)
, 0 ≤ i, j ≤

√
N − 1, (5.70)

where N is the total number of elements, and we set a = 0.995.
We make use of four levels of refinement with 5 × 5, 10 × 10, 20 × 20, and 40 × 40

quadrilateral elements. Table A.2 shows the L2-norm of the error for p = 1 to p = 4 standard
and hybridized FR schemes with correction parameters cDG, cSD and cHU . From the stability
section, we observed that c acts as an added dissipation mechanism to the cDG schemes, for
which c = 0. In this table, it can be observed that all schemes achieved the expected p+ 1

order of accuracy in logarithmic scale and that cDG has the smallest L2 error for each of the
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(a) Error without post-processing (b) Error after post-processing

Figure 5.15. Contours of the solution and post-processed solution for the steady-state linear
advection-diffusion problem for a p = 2 solution on a 10× 10 grid and c = cSD. Linear colour
scaling adjusted to [0, 6× 10−3] from white to black

considered types of discretization. Among these, the considered hybridized formulations in
this work are more accurate than the standard FR-LDG formulation at the coarsest to finest
levels. Specifically, the EFR method displayed the smallest error levels compared to HFR
and FR for the finer levels of refinement. For instance, p = 3 schemes with cDG displayed
errors of 6.16× 10−8, 5.99× 10−8 and 5.01× 10−8 for FR, HFR and EFR, respectively. For
HFR, where discontinuous traces are used, and for conventional FR methods, we applied
the post-processing scheme in Section 5.3.2 and show the results obtained in Table A.3. As
established in the literature, LDG methods are defined as in Equation (5.61), and they do
not possess the superconvergence property in the general case [144], but can be shown to
superconverge for Cartesian grids with special choices of the common fluxes [145]. For the
sake of completeness, we show the results for this specific configuration in Table A.4 of this
work but do not consider it anymore as it is not a feature of the arbitrary case. Interestingly,
all cDG methods for HFR were able to achieve the expected p + 2-order of accuracy after
post-processing. However, when c 6= cDG, only methods with p > 1 were able to achieve the
superconvergent behaviour. An example contour with the error in the computational domain
is displayed in Figure 5.15, where the error levels can be seen to decrease by an order of
magnitude.

To further visualize the impact of the c-parameter on this superconvergent behaviour,
we perform an additional set of simulations and compute the order of accuracy for values
of c ∈ [0, 2cHU ] and display the results in Figure 5.16. It is known that the expected p+ 1

convergence of FR methods is lost at large values of c [31]. For the considered relatively small
range of c-parameters, the order of accuracy of the solution before post-processing slowly
reduces as c increases, but consistent with the results in the convergence study, rapid decay of
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(b) Post-processed solution

Figure 5.16. Effects of the correction function on the grid convergence rate of hybridized FR
methods with discontinuous traces for the steady-state linear advection-diffusion problem.
Markers for cDG ( ), cSD ( ), cHU ( ) highlight these corrections at polynomial degrees p = 1
to p = 4

the superconvergent order is seen at p = 1 from third order to second in the vicinity of c→ 0.
Furthermore, we analyze the performance of using hybridized methods as opposed to implicit
FR schemes in terms of the number of nonzeros, time spent per time step size, and the number
of GMRES iterations. We denote them NNZ, tw and NGMRES, respectively. A bar is also
placed on top of these quantities when we have considered their average per linear solve. For
hybridized methods, tw accounts for both the solution of the system and the recovery of the
internal solution via the local problems in Equation (3.54). Results are shown in Figure 5.17
for each of the considered schemes and polynomial degrees on the finest 40 × 40 grid to
reduce timing errors. It can be seen in Figure 5.17a that, for the highest polynomial degree
considered (p = 4), the number of nonzeros in the system for HFR is reduced by half and
by about four times for EFR in comparison with FR schemes. Despite these metrics, it can
be seen that the time spent on solving these systems before final convergence was achieved,
with a small fraction of that used in FR. Specifically, considering the p = 4 simulations, we
observe a reduction of 20-22 times for the HFR method and 40-48 times for the EFR method,
depending on the value of c. This large difference can be attributed to the number of GMRES
iterations shown in Figure 5.17c. Unlike the hybridized schemes, FR schemes required a
significantly larger number of implicit iterations to reach convergence for the Krylov solver.
Hence, hybridized FR methods have a significant benefit over standard implicit FR for all
values of c in terms of performance and accuracy for this steady-state problem.
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Figure 5.17. Performance metrics for the steady-state linear advection-diffusion problem.
Markers for cDG ( ), cSD ( ), cHU ( ) have been added at polynomial degrees p = 1 to p = 4.
For reference NNZmax = 1336250, t̄w,max = 2.00s, N̄GMRES,max = 420

5.3.3.2 Advection-Diffusion of a Sine Wave

Next, verification of unsteady linear advection-diffusion is performed in this section.
Consider the unsteady linear diffusion equation with initial condition

u(x) = sin

(
2π

L
x

)
sin

(
2π

L
y

)
, (5.71)

in a square domain of side length L with periodic boundary conditions. The viscous
stabilization was chosen to be τv = β = 0.1, and the simulation was run for one cycle
on grids of 5× 5, 10× 10, 20× 20 and 40× 40. Then, the L2 norm of the error was computed
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considering the analytical solution

ue(x, t) = exp(−2βπ2t) sin [π(x− αxt)] sin [π(y − αyt)], (5.72)

after one cycle. The time discretization is done with a third-order single-diagonally implicit
Runge Kutta method SDIRK3 using a consistent time step size ∆t = 1× 10−4 in all grids
to reduce the temporal error. This corresponds to a CFL number of 0.1 on the finest grids.
Table A.5 shows the orders of accuracy for the considered correction functions and polynomial
degrees 1 to 4, where p+ 1 convergence was observed for all considered schemes. Similar to
the previous problem, hybridized methods displayed smaller error levels than the standard
FR discretization for all considered values of c, with EFR being the most accurate at the finer
grid levels. Specifically, p = 3 schemes show errors in the L2 norm of 2.07× 10−8, 1.25× 10−8

and 1.21× 10−8 for the FR, HFR and FR methods with cDG, respectively. A reduction of
about half of the error was obtained with the hybridized schemes. Note that, as before, cDG
showed the best accuracy out of the three correction functions.

The solution was post-processed using correction functions of the same c-parameter.
Results and convergence orders are shown in Table A.6 for the post-processed solution.
FR-LDG did not show super accuracy for the case in which the switch was taken to be in an
arbitrary fashion, but HFR achieved the expected order p+ 2 for the post-processed solution.
Similar to the previous case, methods with c 6= cDG do not exhibit the p+ 2 order of accuracy
at p = 1.

In terms of performance, Figure 5.18 shows the error in the L2 norm resulting from
the 40× 40 grids with all polynomial degrees against the wall-clock time. We observe the
wall-clock time required to obtain a certain level of the L2 error. Two values of the time step
size were chosen to perform the comparison, namely ∆t = 5× 10−4 and ∆t = 1× 10−4, for
which results appear in Figures 5.18a and 5.18b, respectively. These represent CFL numbers
of 0.5 and 0.1, respectively. Clearly, the use of a large time step size is detrimental to the
accuracy of the solution for the finest simulations in all runs. However, hybridized methods
were able to achieve smaller levels of the L2 norm in both cases at a fraction of the cost.
Specifically, at p = 4, simulations were between 14.06 and 17.52 times faster for HFR and
between 22.5 to 30.1 times faster for EFR, compared to standard implicit FR schemes for
the considered values of c. The speedups for all other runs on the finest grids are shown
in Table 5.6. Reducing the time step size from ∆t = 5× 10−4 to ∆t = 1× 10−4 improved
the performance of the standard FR formulation by ∼ 1.6 times per linear solve, but the
improvements for the hybridized methods were not significant. To further investigate the
influence of the time step size on the performance results, we carry out an additional set of
simulations on the 40× 40 grid for a larger range of time step sizes at p = 3. We show the
results in Figure 5.19. Consistently, reducing the time step size improves the performance of
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Figure 5.18. Performance metrics for the unsteady linear advection-diffusion problem. Markers
for cDG ( ), cSD ( ), cHU ( ) have been added at polynomial degrees p = 1 to p = 4. For
reference, t̄w,max(∆t = 1× 10−4) = 0.1522 and t̄w,max(∆t = 5× 10−4) = 0.2409

the standard FR formulation per linear solve, where a reduction by a factor of ten showed an
effect of 2.5 times better performance per step. However, the impact of the time step size
was less significant for the hybridized methods, whose performance per linear solve remains
almost constant with the considered ∆t increase, especially for the EFR schemes.

10−4 10−3

∆t

10−5

t w
/t
w
,m

a
x

FR HFR EFR

Figure 5.19. Normalized time to solve the linear system as a function of the time step size.
The performance of FR methods has a larger dependence on the size of the time step size as
opposed to hybridized methods. Markers for cDG ( ), cSD ( ), cHU ( ) have been added at
polynomial degrees p = 1 to p = 4
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Table 5.6. Speedup factors for the unsteady linear advection-diffusion problem with 1600
elements. Values are shown for two time step sizes and compared against the corresponding
FR formulation with the same c-parameter

HFR EFR
∆t p cDG cSD cHU cDG cSD cHU

1× 10−4

1 0.76 0.89 0.84 2.00 2.07 1.81
2 2.71 2.75 2.59 4.46 4.35 4.73
3 7.72 7.49 6.49 10.84 11.53 9.92
4 15.22 14.37 12.81 22.60 20.42 17.29

5× 10−4

1 1.08 1.08 1.03 2.95 2.58 2.24
2 4.41 4.25 3.52 7.78 6.78 6.00
3 10.43 9.59 9.62 17.42 16.18 16.26
4 17.52 16.51 14.06 30.12 26.35 22.56

5.3.3.3 Advection-Diffusion of a Gaussian Profile

We now consider unsteady advection-diffusion of a Gaussian profile to analyze the
stabilization mechanism of hybrid FR methods. To this end, we make use of a [−5, 5]2

domain with periodic boundary conditions and an initial condition

u(x, 0) = e−(x2+y2). (5.73)

We consider a pure advection problem with β = 0, α = [1, 1], and an advection-diffusion
problem with β = 0.01 and the same advection velocity. We run a set of simulations using
a third-order SDIRK method with a small time step size ∆t = 0.005 on a 20 × 20 grid,
representing a CFL number of 0.01. This small value helps mitigate temporal errors. All
runs are performed with p = 3 spatial discretizations for five convective times tc = 5 for the
advection problem and for one convective time tc = 1 for the advection-diffusion case.

First, we discuss the purely advective case. Recall that λ̄ = 0 results in undefined
hybridized methods. For HFR methods, we have previously shown their equivalence in the
stability analysis section when the conservation law includes only the advection operator. For
the HFR method, we consider schemes ranging from the central approach of Equations (5.57)-
(5.58), to increasing values of the upwinding parameter λ̄ ∈ {0.3, 0.5, 0.7, 1.0}, where λ̄ = 1

represents the upwind scheme. For the EFR method, we consider λ̄ ∈ {0.001, 0.3, 0.5, 0.7, 1.0}.
For all methods, we compute the evolution of the solution energy for correction parameters
cDG, cSD, and cHU . Results are shown in Figure 5.20 with a zoomed-in version in Figure 5.21.
The behaviour in these figures is consistent with that previously observed in [29, 143], where
larger values of c introduce additional dissipation and λ̄→ 0 approaches a central FR method,
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for which the expected oscillatory behaviour of c 6= 0 is observed. As opposed to HFR, EFR
methods require a larger value of λ̄ for stability. As we previously discussed in the analysis
of the stability section, we cannot easily guarantee stable EFR methods for λ̄ < 1

2
, and

our experiments reveal that the minimum value is problem-dependent. Clearly, results for
λ̄ = 0.3 are unstable for c = 0, blowing up after about 35 convective times, but the added
dissipation of cSD and cHU kept the simulations stable for this λ̄ parameter for the duration
of these simulations. This is consistent with the analysis, where larger values of c result in
more negative d‖u‖2

dt
. While EFR methods may appear to be stable for values λ̄ < 1

2
for some

problems, they may be only mildly stable and may blow up later in long-time integration
simulations.
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Figure 5.20. Time-evolution of the solution energy for hybridized FR methods for the
Gaussian Pulse case with β = 0 for different values of λ̄. FR and HFR methods exhibit
exactly the same curves, so only one is shown on the left. The value λ̃ refers to the central
FR method recovered via HFR with stabilization in Equations (5.57)-(5.58) and λ̄→ 0 for
EFR. Line strokes define methods with cDG ( ), cSD ( ), cHU ( )

Next, we consider the advection-diffusion case on the same computational grid. Similarly,
we plot the energy of the solution against the convective time in Figure 5.22. In this case, we
show results for FR, HFR, and EFR, none of which are equivalent. In the case of FR, larger
λ̄ means larger numerical dissipation, consistent with the purely advective case. Due to the
physical diffusion, the energy of the solution is seen to decay for the linear advection-diffusion
problem with β = 0.01. A larger range of λ̄ parameters is stable for the EFR method
compared to the purely advective case due to physical dissipation. However, it can be seen
that for the smallest considered value, an increase in energy is seen close to the end of the
simulation for all considered values of c, with larger c introducing additional dissipation.
Results look very similar among FR, HFR, and EFR from this view, and we show a zoomed-in
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Figure 5.21. Zoom of the time-evolution of the solution energy for hybridized FR methods for
the Gaussian Pulse case with β = 0 for different values of λ̄. The value λ̃ refers to the central
FR method recovered via HFR with stabilization in Equations (5.57)-(5.58) and λ̄→ 0 for
EFR. Line strokes define methods with cDG ( ), cSD ( ), cHU ( )

version for a time range 0.4 < tc < 0.45 in Figure 5.23, moments before the peak of the
Gaussian pulse reaches the periodic boundary. Smaller values of λ̄→ 0 for HFR and EFR
make the gradient jump term grow in the trace equation. See Equations (5.22), and (5.23).
Then, setting λ̄ → 0 does not recover the behaviour of a central scheme when diffusion
operators appear. Hence, for advection-diffusion problems, the HFR central scheme cannot
be recovered with the formulation in (5.57), (5.58) for the advection-diffusion case. With this
example, we observe that results are consistent with the analytical findings of the stability
section and demonstrate a range of stable HFR and EFR methods for advection-diffusion.

5.3.3.4 Planar Couette flow

Finally, we present a problem involving the compressible Navier-Stokes equations. Planar
Couette flow is a well-known two-dimensional case to perform verification of the viscous
fluxes given its simplification of the Navier-Stokes equations. This problem consists of viscous
flow between two plates separated by a distance `. A moving wall is located at y = ` with
temperature Te and constant velocity ve, which drives the flow in the positive x-direction. At
y = 0, a fixed wall (vw = 0) with temperature Tw is placed. Due to the no-slip condition, the
flow variables are equal to those of the walls at y = 0 and y = `, respectively. Consequently,
the flow experiences a temperature gradient due to viscous dissipation. The exact temperature
profile can be computed from

T = Tw +

[
Te − Tw +

Pr

2cp
v2
e

]
y

`
− Pr

2cP
v2
e

(y
`

)2

, (5.74)
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Figure 5.22. Time-evolution of the solution energy for hybridized FR methods for the
Gaussian Pulse case with β = 0.01 for different values of λ̄. Line strokes define methods with
cDG ( ), cSD ( ), cHU ( )

where Pr = 0.71. The Mach number is set to 0.1 and Re = 5. We consider four levels of
refinement using grids composed of 4× 2, 8× 4, 16× 8 and 32× 16 quadrilateral elements
with p = 1− 4 schemes and the same c-parameters considered in the previous section. For
stabilization, we consider a Lax-Friedrichs type matrix for the inviscid fluxes such as that
in [32] for the Euler equations, and constant viscous stabilization of the form

s
(v)
f ,k =

1

Re
, (5.75)

for the hybridized formulations. For standard FR, we also make use of a Lax-Friedrichs
Riemann solver for the inviscid fluxes and the LDG method with an arbitrary directional
switch for the viscous component. The simulations were initialized with a stationary problem
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(c) EFR

Figure 5.23. Zoom of the time-evolution of the solution energy for hybridized FR methods for
the Gaussian Pulse case with β = 0.01 for different values of λ̄. Line strokes define methods
with cDG ( ), cSD ( ), cHU ( )

(v = 0) and allowed to run until the density residual converged to a tolerance of 10−10 in the
L∞ norm, which proved to be sufficient for the temperature error in the L2 norm to converge.
For convergence acceleration, a relaxation factor was used with an implicit Euler scheme to
converge the nonlinear residuals via a time-step ramp function. Specifically, the following
function at the i-th iteration was used to update the time step size

∆ti =





∆t0 i < 20,

21/16∆ti−1 mod (i,n) = 0 and ∆ti−1 < 104∆t0,

∆ti−1 otherwise,

(5.76)

which was chosen empirically to accelerate the convergence of the FR simulation consistent
with the number of Jacobian updates every n iterations. This was used for all grids and
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Figure 5.24. Performance metrics for the planar Couette problem

Table 5.7. Speedup factors for the Couette problem with 32 × 16 elements for the HFR
and EFR methods. These factors take into account the time to solve the global and local
problems but exclude the assembly time of the Jacobian matrices

HFR EFR
p cDG cSD cHU cDG cSD cHU

1 2.31 1.72 1.53 14.84 11.11 9.33
2 6.91 5.46 3.57 21.95 16.66 10.74
3 18.10 11.73 10.77 49.45 30.31 27.26
4 40.38 25.12 19.86 90.7 54.24 41.73

polynomial degrees. The value of the base time step size was set to ∆t0 = 1 × 10−5. The
Jacobian matrix was computed exactly and updated every five time steps to reduce the
computational cost associated with its assembly. Verification is presented in Table A.7, where
the L2 norm of the error is computed for the aforementioned levels of refinement. It is
interesting to see that for this nonlinear problem, HFR displayed the lowest L2-norm, followed
by EFR and then FR. Specifically, L2 errors of 6.17× 10−10, 4.75× 10−10 and 4.86× 10−10

were obtained for FR, HFR, and EFR, respectively. The expected orders of accuracy were
obtained in all cases and considered values of c. Consistent with our previous experiments, we
analyze the performance based on the time spent on the solution of the linear system, and for
the hybridized method, this accounts for the solution of the local problems. The number of
nonzeros in the implicit system reduces between 4 to 7 times for the HFR and EFR methods
compared to FR for the finest problems, as shown in Figure 5.24. Interestingly, the effect of
the c-parameter on the FR simulations can be significant. For c = cDG, simulations are twice
as expensive as those using cHU . This can be attributed to fewer nonzero entries for this

120



value of c as well as a stiffer problem resulting from setting c = 0. This is consistent with our
observations in [32] for the advection regime. We observed significant speedup values, which
are shown in Table 5.7. For example, between 19.86 and 40.38 times faster simulations were
observed for the HFR discretizations and between 41.73 to 90.7 times faster solutions for the
EFR discretizations. Plots of the residual and temperature error against the wall-clock time
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Figure 5.25. Temperature and density residual against wall-clock time in seconds for a p = 4
scheme with different correction functions on the 16× 8 grid. Line strokes represent methods
with cDG ( ), cSD ( ), cHU ( )

are shown in Figure 5.25 for the finest grids, and p = 4 runs as an example of the evolution
of the convergence. The speedups obtained with this problem are significantly larger than
the ratios of nonzeros. In Figure 5.26, we show the time spent to solve the linear system
at every iteration. Here, we observe that the increasing time step size was detrimental to
the FR time spent on solving these systems much more so than for the hybridized methods.
Hence, we can significantly reduce the cost of implicit FR simulations for nonlinear viscous
problems via hybridization.
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Figure 5.26. Average time to solve the linear system per iteration (p = 4 finest grids). Markers
represent methods with cDG ( ), cSD ( ), cHU ( )
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Chapter 6

Implicit Polynomial-Adaptive Hybridized
Formulations

6.1 Overview

Practical applications of engineering interest require large computational domains. When
using high-order methods, increasing the polynomial degree impacts the computation time
significantly due to a large increase in degrees of freedom. Polynomial adaptation algorithms
allow us to modify the degree of the polynomial representing the solution within each element,
such that high resolution is maintained only in regions of interest. In this chapter, we develop
a formulation that generalizes polynomial adaptation to both discontinuous and continuous
hybridized FR methods, which can be applied at intervals during a simulation. Specifically, we
present p-adaptive hybridizable flux reconstruction schemes to solve vortex-dominated flows
involving the compressible Euler and Navier-Stokes equations. We make use of a feature-based
vorticity indicator to assign solution polynomial degrees and a global projection to determine
the new values of the trace after the adaptation procedure. Finally, we demonstrate the
application of these methods with a series of numerical examples.

6.2 Implementation

In practice, only regions of flow complexity, such as unsteady vortex shedding, require high
resolution. The local nature of flux reconstruction schemes allows a natural implementation
of adaptivity algorithms. In order/p-adaptation, we increase or decrease the degree of
solution polynomials within elements depending on a form of error estimation. Feature-based
indicators have been shown to be useful for unsteady flows. In particular, the nondimensional
vorticity indicator of [83] has shown potential for vortex-dominated flows. The indicator
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determines the maximum nondimensional vorticity magnitude within each element Ωk, i.e.

Φk =
Zklk
v∞

, (6.1)

where Zk is the maximum vorticity magnitude

Zk = max
1<i<Ns

|Zk,i|, Zk,i = ∇× vk,i, (6.2)

lk is the maximum length between two mapping points in the element, and v∞ is the
freestream velocity. Then, we follow Algorithm 2, where the new polynomial degree is decided
inside each element based on a maximum polynomial degree bound pmax, a threshold vector
c = [c1, . . . , cpmax ] [83], and a tolerance factor ε. This threshold vector determines the ranges
of the indicator for which a given polynomial degree will be chosen. Depending on whether
the new polynomial is higher or lower, an element-wise interpolation or L2 projection of the
interior solution is respectively applied to the interior elements. For hybridized methods, the
updated trace can be found in line with the transmission conditions by enforcing

∑

f̄∈εh

∫

f̄

JF̂(P̄uh, ûh)Kf̄φ
p

f̄
df̄ = 0, (6.3)

where P̄uh is the locally projected interior solution, readily available from Algorithm 2, and
φp
f̄
is the new trace basis function at face f̄ . The degree of the trace nodal basis function

after element adaptation is determined as the maximum polynomial degree between the two
neighbouring elements at a given interface. The procedure is briefly explained in Algorithm 3.
We note that for the hybridized method with discontinuous traces, Equation (6.3) yields a
problem local to each face, which can be solved efficiently. Hence, for general problems, a
nonlinear system of equations must be solved at every adaptation call. However, this does
not need to be performed at every time step but instead at a reasonable fraction of the
characteristic time.

To visualize the underlying projection and its relation to a p-uniform formulation, con-
sider its application to linear advection with constant velocity α using the HFR method.
Equation (6.3) becomes at an interface f̄

∫

f̄

Jα · nûh + s(P̄uh − ûh)Kf̄φpf̄df̄ = 0, ∀f̄ ∈ εh0 , (6.4)
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Algorithm 2: Vorticity-based indication of element-wise polynomial degree
for Ωk ∈ T h do

Compute Φk using Equation (6.1)
if Φk < c1ε then

pk = 1
end
else

for i ∈ 2, . . . , pmax do
if Φk < ciε then

pk = i
end

end
end

end

Algorithm 3: Projection Algorithm
for Ωk ∈ T h do

Compute uP̄ = P̄uhk
end
for f̄ ∈ εh0 do

pf̄ = max(p+, p−)
end
Solve for û using Equation (6.3)

or equivalently for homogeneous face stabilization
∫

f̄

JP̄uh − ûhKf̄φpf̄df̄ = 0, ∀f̄ ∈ εh0 , (6.5)

noting that Jα ·nK = 0. Since F̂f̄ is a polynomial of the same degree as the new basis function
φp
f̄
, pf̄ = max(p−, p+), the problem can be shown to become

Nr,f̄p∑

j=1

[
uP̄,+
j + uP̄,−

j − 2ûhj

] ∫

f̄

φjφidf̄ = 0, (6.6)

where uP̄,+
j is the projected solution at the + side of the interface. Nr,f̄p is the number of

trace points on a face after the projection. Hence, it can be shown from here that the relation
in brackets is satisfied pointwise for Gauss-Legendre points, typically used in HFR. In this
case, after application of the adaptation projection, the form of the trace in linear advection
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becomes

ûhj =
uP̄,+
j + uP̄,−

j

2
, (6.7)

which is consistent with the standard flux reconstruction form of the fluxes in the adaptive
setting [74]. This consistency is also observed between p-uniform HFR and FR formulations
for linear advection as outlined in Chapter 5.

6.3 Numerical Examples

In this section, we present a series of numerical examples to showcase the benefits of
p-adaptation in hybridized FR schemes. We will discuss results for an isentropic vortex
problem, flow over a cylinder at Re = 150 and flow over a NACA0012 airfoil at Re = 10, 000.
All of the performance computations correspond to serial runs.

6.3.1 Isentropic Vortex

First, we consider the isentropic vortex problem governed by the compressible Euler
equations. This problem consists of a vortex advecting through a periodic square domain of
side length L = 40. We choose this length so that the vortex occupies a smaller portion of
the domain, similar to typical aerodynamics of external flows. With this problem, we will
showcase the benefits of the p-adaptative algorithm. The initial conditions are specified from
the following primitives

ρ =

[
1− β2 M2(γ̄ − 1)e2f

8π2

] 1
γ̄−1

, (6.8)

vx =
βyef

2πR
, (6.9)

vy = 1− βxef

2πR
, (6.10)

P =
ργ̄

γ̄M2 , (6.11)

where ρ is the density, β is the vortex strength, vi is the velocity in the i-th direction,
γ̄ = 1.4 is the ratio of specific heats, M is the Mach number, which we set to 0.4. The radius
of the vortex R is set to 1.5 and f = (1− x2 − y2) /2R2. We consider a vortex strength
β = 13.5 and make use of the second-order, two-stage SDIRK method with a small time step
size ∆t = 5× 10−3 to allow spatial error to dominate. The corresponding CFL number is
approximately 2× 10−3. The implicit residual was converged to a tolerance of 10−10.

We run this problem for one advective cycle and repeatedly decrease the value of ε while

126



maintaining the number of elements constant (10 × 10 quadrilaterals). This causes the
sensitivity of the indicator to increase gradually, thereby resulting in more elements with
higher polynomial degrees. For a given problem, lower ε signifies a simulation with more
degrees of freedom. Figure 6.1 compares the p-distribution for two values of ε. Smaller values
of ε yield a larger number of elements with higher polynomial degrees. Figure 6.2 shows
curves containing different metrics to demonstrate the benefits of polynomial adaptation in
both hybridized and standard FR formulations. Figure 6.2a shows the L2 norm of the density
error against the number of internal degrees of freedom. For the same grid, increasing the
polynomial degree can significantly increase the number of degrees of freedom. The decrease
in numerical error occurs at a slower rate than for the adaptive simulations. When adaptation
is used, only elements with a given value of vorticity are assigned a higher polynomial degree,
thereby decreasing the L2 norm of the error while maintaining the degrees of freedom at a
lower value than a p-uniform simulation at the same error level. These values are tabulated
in 6.1. Elements where the local velocity gradients vanish do not benefit from using high
order since vorticity is approximately zero. In addition, we see that for the same number
of internal degrees of freedom DOFv, both HFR and EFR methods result in solutions with
similar values of numerical error, with EFR having slightly higher error than HFR and FR in
most of the runs.

In Figure 6.2b, we show the total wall-clock time against error for the same runs. For the
lowest error attained by these simulations, adaptive FR is about twice as fast, HFR close to
three times, and EFR about four times faster than p-uniform FR schemes. When solving the
nonlinear system of equations involved in this problem, the number of internal degrees of
freedom only affects the size of the FR problem directly, but for hybridized methods, the
trace DOF (DOFt) dictates it. This translates into a decrease in the computational cost
for the same number of internal DOF. It is therefore observed that hybridized p-adaptive
simulations are twice as fast as their FR counterparts.

Table 6.1. Resulting average number of degrees of freedom for the p-adaptive runs for the
isentropic vortex problem

ε0/1 ε0/2 ε0/4 ε0/8 ε0/16

FR DOFv 7349.33 8169.62 9241.91 10139.50 10956.09
HFR DOFv 7349.32 8169.62 9241.91 10139.50 10956.09

DOFt 6761.73 6991.86 7265.55 7492.49 7701.76
EFR DOFv 7353.12 8169.24 9241.00 10136.63 10957.13

DOFt 1963.55 2191.70 2465.02 2691.13 2902.22

127



(a) Vorticity magnitude

(b) ε = 0.2 (c) ε = 0.01

Figure 6.1. Portion of the isentropic vortex domain showing contours of (a) vorticity, and
polynomial distribution for (b) ε = 0.2 and (c) ε = 0.01 after one time step. Smaller ε
yields more degrees of freedom. Contours correspond to an EFR simulation with 10 × 10
quadrilateral elements
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Figure 6.2. Performance metrics for the isentropic vortex problem in terms of internal degrees
of freedom DOFv and runtime in seconds. Results are shown for p-uniform runs ( ) and
p-adaptive runs ( )

6.3.2 Cylinder at Re = 150

Figure 6.3. Portion of the cylinder mesh composed of 3564 quadrilateral elements refined
toward the cylinder walls to resolve the boundary layer

In our second numerical example, we simulate flow over a cylinder at Re = 150. This case
has been previously used to demonstrate the suitability of p-adaptation in [74]. We consider
the flow with M = 0.1. We make use of a mesh of 3564 quadrangles refined at the wall and
growing away from it, as shown in Figure 6.3. A second-order two-stage SDIRK scheme
was used to advance the solution in time, with a ∆t/tc = 6.25 × 10−3, which corresponds
to about 100 times the maximum stable value of an explicit RK4,4 method using p = 5 for
this problem. This yields a CFL number ≈ 8. Here, tc = tu∞/D is the convective time.
The exact Jacobian matrices were computed every 100 iterations to match the interval for
the adaptation algorithm, which was also applied every 100 iterations. This interval was
chosen such that the Jacobian computation only takes roughly 10% of the total runtime. The
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vorticity indicator tolerance was set to ε = 0.1. The convergence tolerance was set to 10−5 for
all cases. After the transient effects of the simulation passed, the simulation was continued
for an additional 200 convective times, and averaged statistics were computed, which are
compared against the works of [74, 146]. For this problem, antialiasing [147, 148, 149] was
used for the EFR method to stabilize the simulation.

A comparison of vorticity contours for the same adaptive cases at the same instant is
observed in Figure 6.4. Close to the cylinder, the unsteady vortex interaction pattern shows
similar behaviour for the three cases, with good agreement up to 15 convective lengths D. At
this point, the physics is already heavily underresolved due to the large element sizes. Here,
the EFR method qualitatively shows less smooth vorticity contours.

Figure 6.5 shows the polynomial distribution at an instantaneous snapshot corresponding
to a moment of minimum lift for the adaptive FR, HFR, and EFR discretizations. It is
expected that regions with higher vorticity magnitude, such as the boundary layers, will
require higher resolution. The overall distribution of the adapted polynomials is similar
between FR, HFR, and EFR. p = 4 elements can be seen in the boundary layer and cores of
the unsteady vortices. The polynomial degree is gradually reduced to p = 3 in the vicinity of
p = 4 and so on until p = 1. The latter is used mostly in the far-field regions. Right from the
vicinity of the back of the cylinder to about 15 characteristic lengths downstream, the three
considered schemes agree well in the distribution of polynomial degrees for most elements.
For the downstream cells beyond this point and in some regions upstream of the cylinder,
EFR flagged higher vorticity values and hence introduced higher polynomial degrees. This
can be associated with higher solution jumps, resulting in spurious local vorticity values.
This results in EFR having slightly more degrees of freedom than HFR and FR, as shown in
Table 6.2.

We compare our numerical results against the reference data of [74] and the references
therein. Specifically, we compare the averaged drag coefficient c̄d, the amplitudes of the cl
and cd curves, ∆cl, ∆cd, respectively, and the Strouhal number St, the latter three have
been obtained via an FFT signal decomposition. From Table 6.2, it is clear that p = 1 is
significantly less accurate than any higher polynomial degree. Overall, for the p-uniform
simulations, results start to converge beyond p = 3 for FR, HFR, and EFR, showing little
change after this value. Similar values are obtained among the three schemes. The adaptive
simulations also agree well with the reference data with a relative error smaller than 0.5% in
all quantities with respect to the p = 5 simulations. This was done at a fraction of the degrees
of freedom, which we show in the last two columns of this table. The resulting internal
degrees of freedom DOFv and the averaged trace degrees of freedom DOFv are presented.
HFR and EFR formulations required only about a 1/2 and 1/3 of the degrees of freedom of
the p-adaptive FR scheme in the implicit system, respectively.
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(a) FR

(b) FR

(c) HFR

(d) EFR

Figure 6.4. Instantaneous snapshots of the cylinder problem showing contours of vorticity for
FR, HFR, and EFR at moments of minimum lift. Similar contours are observed between the
p-adaptive and p-uniform simulations
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(a) FR

(b) HFR

(c) EFR

Figure 6.5. Instant snapshots of the cylinder problem showing the adaptation algorithm for
FR, HFR and EFR at moments of minimum lift. Contour lines of vorticity are superimposed
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Table 6.2. Averaged results for the cylinder problem for FR, HFR, and EFR schemes including
both p-uniform and p-adaptive runs

Degree c̄d ∆cd ∆cl St DOFv DOFt

FR

1 1.2907 0.0179 0.4659 0.1801 14256 -
2 1.3234 0.0256 0.5155 0.1842 32076 -
3 1.3246 0.0257 0.5163 0.1843 57024 -
4 1.3245 0.0256 0.5161 0.1843 89100 -
5 1.3245 0.0257 0.5163 0.1843 128304 -
adaptive 1.3253 0.0257 0.5163 0.1836 39845 -

HFR

1 1.3042 0.0213 0.4884 0.1818 14256 14026
2 1.3241 0.0256 0.5157 0.1843 32076 21039
3 1.3245 0.0257 0.5163 0.1843 57024 28052
4 1.3246 0.0257 0.5161 0.1843 89100 35065
5 1.3244 0.0257 0.5161 0.1843 128304 42078
adaptive 1.3274 0.0257 0.5183 0.1840 39713 22165

EFR

1 1.3190 0.0228 0.4997 0.1824 14256 3677
2 1.3285 0.0259 0.5182 0.1846 32076 10690
3 1.3258 0.0257 0.5169 0.1844 57024 17703
4 1.3249 0.0256 0.5162 0.1843 89100 24716
5 1.3243 0.0257 0.5158 0.1843 128304 31729
adaptive 1.3277 0.0256 0.5186 0.1841 40669 12089

Cagnone et al. [74] 1.3246 0.0258 0.5166 0.1836
Inoue et al. [146] 1.3200 0.0260 0.5200 0.1830
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A table with speedup factors is shown in Table 6.3, where we have computed tpFR/tpHFR

and tpFR/tpEFR , where pFR, pHFR and pEFR are the polynomial degrees of a given FR, HFR,
and EFR scheme. We first note that, consistent with previous observations [32], hybridized
methods show increased performance benefits at higher polynomial degrees. However, by
looking at the diagonals of these tables, where we compare equal polynomial degrees for
the hybridized and standard formulations, we see that at least 1.26 faster simulations were
achieved at p = 1. As the order is increased, speedups of up to 14.5 are observed for the
EFR method at p = 5 for p-uniform discretizations of the same degree. Hybridized adaptive
methods achieved speedups of 5.34 and 6.42 for the HFR and EFR methods with respect
to the adaptive standard FR scheme. Furthermore, we see the benefits of using p-adaptive
hybridization, which allows us to obtain results comparable to p = 4 to p = 5 simulations by
reducing the computational costs by between 15 to 45 times. Finally, we show the runtime in
seconds of 100 time steps with each of the considered schemes in Figure 6.6. These runtimes
were computed serially on a 3.2 GHz Intel Core i5-5600 processor with 16Gb of RAM. The
cost of increasing the polynomial degree by one for a fixed mesh in FR scales by a factor of 3
on average. For the hybridized methods, the computational cost only increases by a factor of
1.5 on average.

Table 6.3. Speedup factors for the cylinder problem. Results compare runtime ratios between
the FR method and the corresponding scheme for all considered p-adaptive and p-uniform
runs

pHFR
pFR 1 2 3 4 5 adaptive

1 1.26 5.93 20.42 51.88 129.42 18.84
2 0.54 2.55 8.79 22.33 55.70 8.11
3 0.28 1.34 4.62 11.73 29.27 4.26
4 0.16 0.76 2.63 6.67 16.64 2.42
5 0.11 0.50 1.72 4.37 10.89 1.59

adaptive 0.36 1.68 5.79 14.71 36.69 5.34

pEFR
pFR 1 2 3 4 5 adaptive

1 1.67 7.89 27.17 69.03 172.20 25.07
2 0.79 3.73 12.84 32.61 81.36 11.85
3 0.42 2.00 6.87 17.46 43.56 6.34
4 0.23 1.10 3.77 9.58 23.91 3.48
5 0.14 0.66 2.28 5.79 14.45 2.10

adaptive 0.43 2.02 6.95 17.66 44.06 6.42
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Figure 6.6. Runtime in seconds for the cylinder problem. Results show the time spent to
solve 100 iterations for p-uniform simulations ( ) and p-adaptive ( ) with ε = 0.1

6.3.3 NACA 0012 Airfoil at Re = 10, 000

Figure 6.7. NACA 0012 airfoil mesh consisting of 8658 quadrilateral elements refined at the
wall boundaries

Finally, we present flow over a NACA0012 airfoil at Re = 10, 000 with an angle of attack
α = 2 deg and a chord c. This simulation compares unsteady vortex shedding from the airfoil
between hybridized and standard FR formulations. We run this problem at a Mach number
M = 0.2. The computational grid is composed of 8658 quadrilateral elements, with refinement
toward the airfoil walls to capture the formation of the boundary layer. Downstream of the
airfoil, the element size uses a 1.13 growth rate to maintain relatively good resolution for
trailing vortex within two to three convective lengths. The downstream length of the domain
is 10c. A portion of the mesh is shown in Figure 6.7. We employ the second-order two-stage
SDIRK method for time stepping with a ∆t = 1× 10−3tc in this problem, which gives a CFL
number of approximately 2.5 based on the freestream conditions and the minimum element
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length. This numerical example is run with uniform solution polynomial degrees p = 1 to
p = 5 as well as with p-adaptation using FR, HFR, and EFR. For the adaptation algorithm,
we use a tolerance for the vorticity indicator of ε = 0.1. A convergence tolerance of 10−5 is
used for the implicit unsteady density residual.

Vorticity contours are shown in Figure 6.8 up to three chord lengths, where we compare
runs between a p = 5-uniform standard FR scheme against the p-adaptive runs. The overall
periodic Karman shedding pattern corresponds to that observed in similar runs of up to
α = 4 degrees [150], which is well captured by the p-adaptive simulations as well. From these
contours, we observe that both the hybridized and standard FR p-adaptive runs can capture
the unsteady vortex shedding similarly. A plot of the averaged Cp coefficient is shown in
Figure 6.10, where results are shown for the p-adaptive runs, using a uniform p = 5 standard
FR as reference. Note that results are overlapping at most locations, indicating comparable
averaged pressure distributions over the airfoil among the considered cases.

Figure 6.9 displays the distribution of polynomial degrees over the domain for each of
the considered schemes. Here we show instantaneous snapshots at moments of minimum
lift. The algorithm set p = 5 elements in proximity to the airfoil leading edge at around
x/c . 0.15 and gradually decreases the polynomial degree to p = 4 and then to p = 3 over the
rest of the airfoil. A small recirculation region due to flow separation is observed starting at
x/c ≈ 0.65 on the suction side of the airfoil, where p = 2 elements are used since the vorticity
magnitude in this region is small compared to the boundary layer. Vortices shedding off the
airfoil are tracked by the adaptation algorithm with p = 5 elements close to their core, which
also gradually decreases to p = 1 cells in the far field. The three considered schemes have
comparable polynomial distributions, which result in similar numbers of degrees of freedom,
as observed in Table 6.4.

Quantitative results are shown in Table 6.4. These include averaged values of lift, drag,
and moment coefficient at the quarter-chord, as well as the Strouhal number and the resulting
number of degrees of freedom. These quantities were obtained by performing a simple
time-averaging operation over a sufficiently long window of time. We compare our results
against the numerical experiments of Ikeda [150] and experimental data of Ohtake [151]
in cl. p-adaptive results showed close agreement with the p-uniform data with error below
0.5%. Results are in good agreement with the reference data, with a relative difference of
approximately 6% in all numerical results and less than 20% compared to digitized experiments
of [151].

Adaptive FR simulations required only about 1/4 the number of internal degrees of
freedom of a p = 5 simulation. Hybridized methods were able to obtain comparable results for
this problem by solving systems of equations that depend on DOFt. This number of degrees
of freedom is 2 to 3.5 times smaller than that used in a standard p-adaptive simulation.
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(a) FR p-uniform

(b) FR

(c) HFR

(d) EFR

Figure 6.8. Instant snapshots of the airfoil problem showing contours of vorticity for FR,
HFR, and EFR at moments of minimum lift
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(a) FR

(b) HFR

(c) EFR

Figure 6.9. Instant snapshots of the airfoil problem with superimposed contours of vorticity
for FR, HFR, and EFR at moments of minimum lift

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C̄
p

Ref
FR
HFR
EFR

Figure 6.10. Averaged Cp coefficient for the adaptive schemes on the upper ( ) and lower ( )
walls of the airfoil. Reference is a p = 5 FR result
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This results in significant speedup factors, which we summarize in Table 6.5. Similar to the
cylinder problem, the benefit of using hybridization becomes more important as we go to
higher orders. For instance, using HFR at p = 1 was not beneficial and, in fact, resulted in
increased computational cost. For p > 1, speedups higher than unity can be observed in the
diagonal of these tables, where each polynomial degree for FR is compared with its respective
hybridized formulation. Below this diagonal, it can also be seen that using hybridization
at higher polynomial degrees with FR can still result in speedups for implicit formulations.
We obtained 4 and 5.73 times faster simulations than a typical p-adaptive FR method using
p-adaptive HFR and EFR, respectively. Furthermore, speedups in excess of 22 and 32 times
were obtained with p-adaptive hybridized methods with respect to a p = 5 uniform standard
FR formulation. Finally, we show the time spent on the implicit global system (solid) and the
solution of the local equations (diagonal hatch). These results were computed serially on 2.40
GHz AMD Rome 7532 processors. As shown in Figure 6.11, hybridized methods take only a
fraction of the time required by FR, and increased benefits are observed for higher polynomial
degrees. However, they spend some additional time on the local solves in addition to the
global system. We note that the local solves scale linearly with the number of processors as
they are element-wise operations. Hence, their implementation in high-performance systems
is natural. With this example, we have shown that we can reduce the cost of p-adaptive FR
by hybridization, including the globally-coupled EFR method.

1 2 3 4 5 adaptive
Degree
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4000

5000

R
u

n
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m
e

(s
)

FR
HFR
EFR

Figure 6.11. Overview of the runtime spent on the global (solid) and local (diagonal hatch)
solves for the airfoil problem in 100 iterations
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Table 6.4. Results for the airfoil problem for FR, HFR, and EFR methods with p-uniform
and p-adaptive discretizations

Degree c̄l c̄d c̄m,c/4 St DOFv DOFt
FR 1 0.0402 0.0430 0.0179 2.4187 34632 -

2 0.0409 0.0431 0.0171 2.4691 77922 -
3 0.0409 0.0436 0.0170 2.4677 138528 -
4 0.0409 0.0439 0.0170 2.4691 216450 -
5 0.0409 0.0438 0.0170 2.4667 311688 -
adaptive 0.0409 0.0438 0.0170 2.4679 80368 -

HFR 1 0.0411 0.0387 0.0181 2.4084 34632 34226
2 0.0410 0.0430 0.0172 2.4735 77922 51339
3 0.0409 0.0431 0.0171 2.4660 138528 68452
4 0.0409 0.0441 0.0170 2.4691 216450 85565
5 0.0409 0.0436 0.0170 2.4691 311688 102678
adaptive 0.0409 0.0435 0.0170 2.4670 79946 47833

EFR 1 0.0444 0.0383 0.0184 2.4390 34632 8859
2 0.0410 0.0431 0.0172 2.4754 77922 25972
3 0.0409 0.0431 0.0171 2.4672 138528 43085
4 0.0409 0.0441 0.0170 2.4685 216450 60198
5 0.0409 0.0437 0.0170 2.4691 311688 77311
adaptive 0.0409 0.0435 0.0170 2.4680 80415 22517

Ikeda et al. [150] 0.0435 - - 2.4556
Ohtake et al. [151] 0.0500 0.0430 0.0160 -
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Table 6.5. Speedup factors for the airfoil problem. Results compare runtime ratios between
the FR method and the corresponding scheme for all considered p-adaptive and p-uniform
runs

pHFR
pFR 1 2 3 4 5 adaptive

1 0.88 4.05 11.74 30.92 71.71 12.68
2 0.33 1.53 4.43 11.66 27.03 4.78
3 0.19 0.86 2.51 6.60 15.32 2.71
4 0.11 0.50 1.45 3.82 8.85 1.56
5 0.07 0.35 1.00 2.64 6.12 1.08

adaptive 0.28 1.28 3.70 9.75 22.60 4.00

pEFR
pFR 1 2 3 4 5 adaptive

1 1.45 6.67 19.35 50.96 118.19 20.89
2 0.58 2.69 7.82 20.58 47.72 8.44
3 0.30 1.38 4.02 10.58 24.53 4.34
4 0.17 0.79 2.29 6.02 13.96 2.47
5 0.11 0.52 1.50 3.95 9.16 1.62

adaptive 0.40 1.83 5.31 13.98 32.42 5.73
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Chapter 7

Implicit-Explicit HFR-FR Formulations

7.1 Overview

A largely disparate range of element sizes typically appears in simulations at high Reynolds
numbers, with large elements in the far field and elements in orders of magnitude smaller in
proximity to walls. This introduces what is referred to as geometry-induced stiffness since the
maximum time-step size for explicit simulations is dictated by the smallest element size. For
high-order schemes, using explicit methods can be very restrictive in terms of the allowable
time-step size to maintain stability. On the other hand, fully implicit methods can become
prohibitively expensive for these types of problems regarding computation time per step and
memory requirements. As previously stated, the cost of implicit methods scales with O(pd)

for standard FR and O(pd−1) for hybridized FR, where p is the polynomial degree, and d is
the dimension of the problem. Hence, the feasibility of employing implicit time-stepping for
large-scale computations is limited at high orders.

A more efficient approach involves both explicit and implicit IMEX time-stepping methods.
These schemes are able to leverage the stability of implicit schemes for stiff terms while
mitigating their cost by using explicit methods for nonstiff terms. To demonstrate their
application, consider an ordinary differential equation of the form

u′ = f(u) + g(u), (7.1)

where f(u) is the nonstiff part of the problem and g(u) is the stiff portion. Consider
an implicit s-stage diagonally-implicit Runge-Kutta (DIRK) scheme for the stiff region
associated with a matrix and vector of coefficients of a Butcher tableau [152] given by
A ∈ Rs×s, b ∈ Rs, c ∈ Rs. For the nonstiff part, consider an explicit σ = s + 1-stage RK
method with respective coefficients given by Ā ∈ Rσ×σ, b̄ ∈ Rσ, c̄ ∈ Rσ. To compensate for
the difference in the size of the matrices of coefficients, a first row and a first column of zeros
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are padded into the implicit tableau. In order to be paired, the implicit and explicit schemes
must satisfy c̄ = [0 c]T . The resulting form of a general IMEX Butcher tableau can be seen
in Table 7.1.

0 0 0 0 . . . 0
c1 0 a11 0 . . . 0
c2 0 a21 a22 . . . 0
...

...
...

... . . . ...
cs 0 as1 as2 . . . ass

0 b1 b2 . . . bs

(a) Implicit part

c̄1 0 0 0 . . . 0
c̄2 ā21 0 0 . . . 0
c̄3 ā31 ā32 0 . . . 0
...

...
...

... . . . ...
c̄σ āσ1 āσ2 āσ3 . . . 0

b̄1 b̄2 b̄3 . . . b̄σ

(b) Explicit part

Table 7.1. General form of Butcher tableaus for IMEX schemes

To advance the solution from time level n to n+ 1 by a time-step ∆t, the first stage is
always explicit. Then implicit and explicit solves are alternated, as shown in Algorithm 4 [153,
44]. Using IMEX schemes can yield significantly smaller implicit systems to solve, as it
is dedicated to a portion of the problem when considering geometry-induced stiffness. In
addition, these schemes are linearly stable, maintain the expected orders of accuracy [44],
and can have superior performance compared to purely explicit and purely implicit methods
for LES simulations [153]. Furthermore, by employing a procedure similar to our work in
Chapter 4, optimized IMEX methods [48] can be obtained, resulting in additional speedups.
The IMEX approach can be further leveraged by introducing hybridization to solve the
implicit portion. Previous works on IMEX methods with hybridization have been developed
to tackle stiffness associated with shallow water systems [154]. This was done to separate the
faster gravity wave from that of the nonlinear advection operator. However, time-splitting
applications typically struggle to compete with purely explicit methods. Hence, this section
develops an efficient IMEX formulation for geometry-induced stiffness.
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Algorithm 4: Time integration using an IMEX scheme for one time-step
Set R̄1 = f(un).
for i← 1 to s do

Solve for Ri in Ri = g(ui), where

ui = un + ∆t
i∑

j=1

ai,jRj + ∆t
i∑

j=1

āi+1,jR̄j.

Evaluate
R̄i+1 = f(ui).

end
Compute the value at the next time step

un+1 = un + ∆t
s∑
j=1

bjRj + ∆t
σ∑
j=1

b̄jR̄j.

7.2 Formulation

This section proposes an IMEX formulation by pairing conventional FR and HFR methods
to tackle geometry-induced stiffness. While hybridized methods have also been developed
in explicit formulations, they require explicit trace definitions [155, 156] and nonlinear
solvers [157] and hence the benefits over a standard FR formulation in a general nonlinear
problem are still not clear. The explicit form of the FR method is suitable for nonstiff
problems. FR methods are locally conservative and have demonstrated potential for modern
parallel computer architectures. Hence, we employ it to solve the moderate to large elements
associated with lower stiffness in the domain. We introduce hybridization, which is expected
to reduce the size of the implicit solver by employing HFR or EFR formulations for the
smallest elements associated with the stiff portions of the domain. We refer to the proposed
approach as hybridized IMEX methods. These schemes are expected to reduce the cost of
a purely implicit method while increasing the allowable time-step size and improving the
constrained stability posed by the explicit formulation.

We are interested in integrating the equation

du

dt
= R(u(t)), (7.2)

subject to an appropriate initial condition, where R typically contains the divergence of the
flux after applying a spatial discretization such as the FR method. In order to integrate this
equation for geometry-induced stiffness, an s-stage IMEX method with order q to advance
a solution from time level n to n + 1 will be employed according to a modified version of
Algorithm 4.

To this end, consider a computational domain Ω subdivided into two regions, as shown
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Ωex ΩimΥ

Figure 7.1. Reference domain partitioning for IMEX schemes

in Figure 7.1. The implicit region is denoted Ωim and the explicit region Ωex. The interface
between these two regions is denoted Υ = Ωex ∩ Ωim. The solution and trace vectors can be
defined

u =


u

ex

uim


 , û = ûim, (7.3)

respectively, where uim ∈ RN imNs , uex ∈ RNexNs , and ûim ∈ RN̂Ns . N im, N ex, N̂ are the
number of implicit elements, explicit elements, and trace points. The interior solution is
found in both explicit and implicit subdomains, but the trace is only defined at εh,im \ Υ

since ûex = ∅. Hence, we will refer to the trace in the implicit side as û. After hybridization
of the implicit portion and applying the above definitions, the ODE in Equation (7.2) can be
generalized to a system of the form

du

dt
=


 Rex(u)

Rim(u, û)


 in T h, (7.4)

G(u, û) = 0 in εh,im, (7.5)

where εh,im = εh ∩ Ωim. The resulting distribution of trace and solution points, x̂ and xs,
respectively, can be seen in Figure 7.2 for HFR and EFR methods. Furthermore, Rex(u)

is associated with the standard FR equations in (3.35), Rim(u, û) with the hybridized
Equations in (3.42a)-(3.42b) and G(u, û) with the transmission conditions in (3.42c). Due
to the temporally non-overlapping nature of IMEX schemes, the explicit equations can be
solved separately from the implicit portion. Applying the IMEX-RK method, the solution at
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Ωex ΩimΥ

xs

x̂

(a) HFR

Ωex ΩimΥ

xs

x̂

(b) EFR

Figure 7.2. Distribution of trace and solution points in this configuration for HFR and EFR
IMEX methods for a p = 2 discretization
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each stage can be found by first computing the value of the explicit solution via

uex
i = uex

n + ∆t
i∑

j=1

āi+1,jR
ex
j , (7.6)

where Rex
j = R(uj−1) for j > 1 and Rex

j = R(un) for j = 1. The explicit residual only
depends on known values of the solution at stages i < s since āi,j = 0 for j ≥ i. Here,
the residual is a function of the solution in the explicit subdomain and in the elements in
direct contact with the IMEX interface of the implicit portion, which is always known for the
required indices. After computing (7.6), the implicit solution can be readily obtained via

uim
i = uim

n + ∆t
i∑

j=1

ai,jR
im
j (uj, ûj), (7.7a)

G(ui, ûi) = 0, (7.7b)

which employs hybridization and Equation (7.7b) represents discrete transmission conditions
with the form

∑

f̄∈εh,im
0 \Υ

∫

f̄

JF̂(ui, ûi)Kf̄φds+
∑

f̄∈Υ

∫

f̄

JF̂
FR

(uimi ,uexi )Kf̄φds+
∑

f̄∈εh,im
∂

∫

f̄

FBC
f̄ φds = 0, (7.8)

where the typical transmission equations of Equation (3.42c) have been augmented with
an interface condition to weakly enforce conservation along the IMEX interface and hence
globally in the domain. Then, the solution at the next step can be found by

un+1 = un + ∆t
s∑

j=1

bjR
im
j + ∆t

σ∑

j=1

b̄jR
ex
j . (7.9)

At the IMEX interface, we apply the standard FR fluxes and introduce them as boundary
conditions for the hybridized portion. Consequently, at the interface, there is no trace
definition. The local conservation property of the FR method [26] enables the use of this
approach to both HFR and EFR methods. Recall that our EFR implementation uses
discontinuous traces at the boundaries throughout this work. In the proposed hybridized
formulation, discontinuous traces are also used at the IMEX interface for both methods. This
allows for using paired HFR-FR and EFR-FR methods to tackle geometry-induced stiffness.
The nonstiff portion will retain its local conservation properties, and the stiff portion will
be globally conservative for the EFR method and locally conservative for the HFR method.
Specifically, for the HFR methods with discontinuous traces, the transmission conditions
reduce to a pointwise conservation statement, which can be shown to yield the same definition
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of the traces in linear advection throughout the domain and recovers a standard FR IMEX
method in these cases only. The proof is trivial and is omitted for brevity.

7.3 Numerical Examples

This section presents a series of numerical examples to showcase the benefits of using
our proposed hybridized IMEX formulations to tackle geometrical stiffness in two and three
dimensions. We will first present verification of our approach via linear advection and then
demonstrate capabilities via nonlinear numerical examples. To evaluate geometry-induced
stiffness, the following elementwise stiffness indicator is used

Es =
|Ωk|
|∂Ωk|

, (7.10)

where |Ωk| is the volume of the element and |∂Ωk| is the sum of the face areas. Hence,
the indicator has dimensions of length. For elements with high aspect ratios as well as for
very small elements, the sum of the face areas is significantly larger than its volume, which
means that elements with high numerical stiffness will have a high value of Es. The use of a
user-provided cutoff Es determines the implicit ratio, which we define to be the number of
implicit elements N im in relation to the total number of elements N in the domain

IF =
N im

N
, (7.11)

so that a higher cutoff value of Es yields more implicit elements. For simplicity, this chapter
will refer to FR, HFR, and EFR methods as IMEX discretizations with implicit portions
solved using the FR, HFR, and EFR methods, respectively. For all runs, the explicit portion
uses a standard FR discretization. In the following problems, IMEXs,q methods with s stages
and q order are considered.

7.3.1 Verification

We perform verification of linear advection by considering a periodic square domain.
The domain is split into quadrilateral elements. Along the center, a band of seven layers
of stretched elements is placed with a stretching ratio of 2, as shown in Figure 7.3. Within
this band, elements are flagged as implicit, whereas uniform elements away from this section
remain explicit. The implicit portion of the domain is solved using a hybridized form, and
the explicit portion uses a standard FR method. Both implicit and explicit regions use a
solution polynomial degree of seven to reduce contamination arising from spatial error. The
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initial condition is a Gaussian profile

u(x, t) = exp

(
− 1

20
[(x− xc)2 + (y − yc)2]

)
, (7.12)

where (xc, yc) = (10, 10) is the center coordinate of the domain of size 20× 20. After one
convective time tc = 20, the L2-norm of the error is computed. Results of the L2 norm of the
error against the exact solution are shown in Table 7.2 for the IMEX3,2 [40], IMEX5,3 [43]
and AIMEX10,2 method [48] with Butcher tableaus included in the appendix for the IMEX
methods and are available for AIMEX as supplementary material in [48]. Due to the temporal
error dominating the L2 norm, results for the EFR and HFR methods differ only beyond
single precision, and no difference can be observed in the tabulated values. In addition, results
for the approach with HFR are equivalent to those of the FR single scheme, as expected
for linear advection. Hence, only the HFR approach is shown. The second and third orders
of temporal accuracy are recovered for the three considered IMEX schemes. Of the three
considered IMEX methods, AIMEX10,2 provides relatively lower error than IMEX3,2 for a
given time-step size ∆t, allowing for a larger time step due to the optimized explicit stability
polynomial with only two implicit solves. While the IMEX5,3 method is more accurate than
the other two, it requires five implicit solves per time step. Thus, we use the optimized
AIMEX10,2 method for the rest of this chapter.

(a) Final solution (b) Implicit-explicit distribution

Figure 7.3. Distribution of explicit and implicit elements for the IMEX verification of linear
advection
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Table 7.2. Convergence table showing the L2-norm of the solution error and the order of
accuracy for linear advection using multiple IMEX schemes

Scheme ∆t HFR Order EFR Order

IMEX3,2

0.02 6.78×10−6 - 6.78×10−6 -
0.01 1.67×10−6 2.02 1.67×10−6 2.02
0.005 4.17×10−7 2.00 4.17×10−7 2.00
0.0025 1.04×10−7 2.00 1.04×10−7 2.00

IMEX5,3

0.02 2.19×10−6 - 2.19×10−6 -
0.01 2.73×10−7 3.00 2.73×10−7 3.00
0.005 3.41×10−8 3.00 3.41×10−8 3.00
0.0025 4.28×10−9 3.00 4.28×10−9 3.00

AIMEX10,2

0.02 4.28×10−6 - 1.83×10−6 -
0.01 4.60×10−7 1.99 4.60×10−7 1.99
0.005 1.15×10−7 2.00 1.15×10−7 2.00
0.0025 2.89×10−8 2.00 2.89×10−8 2.00

7.3.2 Laminar Flow over a Circular Cylinder

In this section, we study flow over a cylinder at Re = 150, based on the cylinder diameter
D, to simulate unsteady vortex shedding. This problem belongs to the laminar regime. Hence,
a two-dimensional approach is suitable for this simulation. Here, we want to validate our
implementation of hybridized IMEX discretizations. We make use of a computational domain
divided into 3090 quadrilateral elements refined toward the cylinder walls to capture the
gradients due to the boundary layer, as shown in Figure 7.4. We use this case as a baseline
problem to analyze the performance of IMEX HFR-FR schemes. We choose to run this
problem at Mach number M = 0.1, similar to our problem in Chapter 6, to compare against
the reference data of Cagnone [74]. In this case, the resolution within the boundary layer
is increased to test the benefit of these methods in stiff regions. In Figure 7.5, a histogram
containing the distribution of element sizes is provided. We observe disparate element sizes
with differences of up to three orders of magnitude between the largest and the smallest
elements.

By increasing the cutoff element size, the maximum allowable time-step size is expected
to increase. The maximum stable ∆t are computed for a range of implicit factors using a
simple bisection algorithm and shown in Figure 7.6. We capped the maximum time-step size
to tc/200 to maintain accuracy. This value is typically achieved at IF > 0.5, a relatively large
implicit factor that requires significant computational resources in industrial-scale problems,
as we will discuss in the last numerical example of this chapter. Our main interest is focused
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Figure 7.4. Mesh for the laminar cylinder case at Re = 150 consisting of 3090 quadrilateral
elements
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Figure 7.5. Distribution of element sizes for the laminar cylinder case
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on regions with moderately low implicit factors. Note from this plot that the value of ∆tmax

is similar for the FR, HFR, and EFR methods, with a few differences due to the shape
of the stability polynomial in AIMEX methods optimized for the FR method only. We
compute speedups against FR explicit formulations with IF = 0. Speedups near two orders
of magnitudes for p = 4 simulations are observed at higher IF values in Figure 7.7. These
speedups were computed using serial simulations. We observed hybridized methods to yield
up to 2.5 times faster results than an FR method at IF = 0.2. This translates to 10 times
faster results compared to an explicit approach while utilizing significantly less memory than
a fully implicit method. Furthermore, an implicit factor IF = 0.2 is chosen, which is expected
to provide optimal speedup factors without using significant memory.

0.0 0.2 0.4 0.6 0.8
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10−3∆
t/
t c
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EFR

(a) p = 1
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(b) p = 2
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(d) p = 4

Figure 7.6. Maximum stable time-step size for multiple implicit fractions for the AIMEX10,2

scheme

We perform a series of simulations with polynomial degrees p = 1 to p = 4 for 200
convective times tc = U∞/D. The evolution of the lift and drag coefficients for the p = 1 and
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Figure 7.7. Speedup factors for multiple implicit fractions for the AIMEX10,2 scheme
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p = 4 HFR and EFR schemes is shown in Figure 7.8. We observe a periodic sinusoidal wave
associated with the characteristic vortex shedding of this problem. By looking at this plot,
it is clear that the frequency of the low-order simulation is different from the p = 4 results.
However, no significant difference is observed between the hybridized and standard IMEX
results. More specifically, the Strouhal number for this problem converges to 0.1844 after
p = 3. p = 1 is heavily underresolved and underpredicts this result, as shown in Table 7.3.
The converged results represent less than 0.5% relative error compared to the numerical
results of Cagnone [74] and less than 1% compared to the experimental data. Results from
the hybridized methods agree with the FR results, with differences of less than 0.2% in all
quantities. Hence, the proposed hybridized IUMEX formulations behave similarly to FR,
especially at higher orders. The performance benefit of this approach is significant against
explicit FR methods. We now evaluate them in a three-dimensional cylinder case in the next
section.

Table 7.3. Summary of results for the cylinder at Re = 150 for dual and single scheme IMEX
methods

Implicit Scheme p c̄d ∆cd ∆cl St

FR

1 1.2962 0.0205 0.4879 0.1785
2 1.3271 0.0257 0.5178 0.1842
3 1.3289 0.0258 0.5189 0.1844
4 1.3295 0.0258 0.5192 0.1844

HFR

1 1.3020 0.0206 0.4901 0.1787
2 1.3277 0.0258 0.5187 0.1842
3 1.3267 0.0256 0.5161 0.1844
4 1.3312 0.0259 0.5211 0.1844

EFR

1 1.4207 0.0212 0.5099 0.1787
2 1.3280 0.0258 0.5188 0.1842
3 1.3285 0.0258 0.5178 0.1844
4 1.3309 0.0259 0.5207 0.1844

Cagnone [158], p = 4 1.3246 0.0258 0.5166 0.1836
Inoue [146] 1.3200 0.0260 0.5200 0.1830

7.3.3 Turbulent Flow over a Circular Cylinder

Three-dimensional flow over a cylinder at Re = 1000 is simulated in this section. The
computational grid is composed of 37080 hexahedral elements. Along the spanwise direction,
a length of Lz = 2π is used, a few units over the minimum length required to resolve the
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Figure 7.8. Evolution of drag and lift coefficients for the cylinder at Re = 150
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three-dimensionality, which is 4D [159]. This length is divided using a grid spacing of
∆z = π/6D in the streamwise direction, which results in 40 layers of elements. Beyond the
cylinder, the boundaries were placed at a distance of 40D downstream to minimize the effects
of boundary conditions. In the previous section, we observed that an implicit factor close to
0.2 performs well in the 2D case and will also be used in this problem. In reality, large-scale
problems demand an overwhelming amount of memory, so high implicit factors or fully
implicit methods require availability of a vast amount of resources at high orders. Similarly,
the AIMEX10,2 method is employed here for time integration with ∆t/tc = 2.6× 10−2, which
is decreased by half per unit increase in polynomial degree. We distribute implicit and explicit
elements as shown in Figure 7.9, and apply hybridized methods on the implicit portions of
the domain. We converge our implicit residuals to a tolerance of 10−6. The smaller elements
in the vicinity of the cylinder walls are flagged as implicit, and larger elements away from the
walls are flagged as explicit.

Figure 7.9. Distribution of implicit (red) and explicit (blue) elements in the computational
domain for the turbulent cylinder case

We ran this simulation for 200 convective times and averaged the statistics for the last
100tc to remove the initial transient effects. Results are shown in Table 7.4, where the drag
coefficient CD, lift coefficient fluctuations CL,rms, and the Strouhal number St are shown. We
compare our results against the data of [160], which provided reference values for a coarse
and a fine problem. Relative convergence of the CD can be observed as the order is increased,
which is within 1% of the coarse results and 15% of the DNS data. The mean lift fluctuations
are closer for the HFR method than for the EFR method, which is known to introduce
additional error. Overall, results converge to the reference data. The Strouhal number was
captured well for the EFR method at p = 4. In the case of p = 1, the EFR method did not
transition, which caused a significant discrepancy with the reference St as opposed to the
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other values. The spectra of the CL signal are shown in 7.10, where the convergence to 0.21
is seen as the order is increased.

Table 7.4. Summary of results for the turbulent cylinder case

Scheme p C̄D CL,rms St

HFR

1 2.152 1.046 0.210
2 1.156 0.640 0.204
3 1.009 0.361 0.207
4 0.998 0.333 0.209

EFR

1 2.907 0.052 0.225
2 1.151 0.656 0.205
3 1.012 0.379 0.209
4 1.000 0.340 0.210

Zhao et al. (coarse) [160] 1.092 0.310 0.210
Zhao et al. (fine) [160] 1.170 0.335 0.210
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Figure 7.10. Spectra of the unsteady lift coefficient fluctuations for the turbulent cylinder
problem

Performance results for this problem demonstrate that hybridized methods are also
suitable for three-dimensional problems. Results are shown for the time spent on the global
solves tG, local solves tL, block Jacobian computations and implicit matrix assembly tJ , and
right-hand-side residual computations in the implicit and explicit portions (tRim and tRex ,
respectively), which together add to the overall wall-clock time tw. We show speedups against
standard FR IMEX schemes tw/tFRw and against explicit runs at IF = 0, tw/texw with the
AIMEX tableaus. Results are tabulated in Table 7.5. The timing results are computed for
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100 time steps. The time to assemble the Jacobian matrix is associated with a single call,
as it was updated every 100 time steps to reduce overhead. These results are computed on
2.4GHz AMD Rome 7532 CPUs using 64 cores. The time spent on the global solutions takes
a significantly higher proportion of the total FR computations due to the large size of these
systems. For hybridized methods, the solution of the local problems adds overhead, which
has linear scalability and can be done efficiently. We observed speedup factors around 2.5
against IMEX and explicit FR using the EFR method, which consistently provided faster
runs than FR for p > 1. The HFR method, however, is only a benefit at p = 4. This is
consistent with the increased number of trace unknowns appearing in hexahedral elements.
Contours of Q-criterion are shown for simulations using p = 2 and p = 4 in Figure 7.11, where

Table 7.5. Summary of performance metrics for the turbulent cylinder case for 100 time steps

Scheme p tG tL tJ tRim tRex tw tw/t
FR
w tw/t

ex
w

FR 1 187.18 - 3.10 3.72 26.39 217.33 1.00 0.76
2 232.34 - 16.04 4.46 51.55 288.44 1.00 1.43
3 599.79 - 85.16 8.65 116.29 724.92 1.00 1.50
4 1522.91 - 363.96 16.38 248.18 1787.85 1.00 1.15

HFR 1 200.99 0.56 2.71 3.14 25.45 230.15 0.94 0.72
2 208.59 3.32 12.50 3.74 46.32 261.97 1.10 1.58
3 433.31 16.89 54.76 8.17 111.03 569.40 1.27 1.91
4 922.10 60.34 195.94 16.71 248.13 1247.28 1.43 1.65

EFR 1 201.28 0.59 2.61 3.19 25.86 230.93 0.94 0.72
2 153.48 2.79 12.32 4.50 53.55 214.32 1.35 1.93
3 225.92 16.51 52.08 8.67 114.95 366.05 1.98 2.97
4 452.98 56.68 189.40 16.52 247.93 774.11 2.31 2.66

the behaviour of these vortical structures can be observed. They result from instabilities
caused by the complex shedding phenomena associated with this value of Re. At higher
polynomial degrees, finer turbulent structures are observed, which is expected due to the
increased resolution of the p = 4 method against p = 2. Overall, contour results from both
methods are in good agreement with each other and with the reference [160]. Results from
this problem demonstrate the suitability of IMEX methods for problems of moderate stiffness.

7.3.4 Turbulent Flow over a Multi-Element Airfoil

Finally, this section presents a wall-resolved large-eddy simulation of a multi-element
30P30N airfoil at Re = 1.7 × 106 and an angle of attack 5.5 degrees. The reference chord
is denoted c and represents the stowed airfoil. This problem is commonly used in the
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(a) HFR, p = 2

(b) EFR, p = 2

(c) HFR, p = 4

(d) EFR, p = 4

Figure 7.11. Side view of Q-criterion contours for the turbulent cylinder problem
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aeroacoustics community, particularly within the AIAA Benchmark Problems in Airframe
Noise Computations workshops [161]. This airfoil makes use of a slat at the leading edge to
increase maximum lift, allowing the main wing to operate at higher angles of attack before
stalling. These components introduce complex flow behaviour and significantly contribute
to the acoustic field during the landing phase of an aircraft. Multiple researchers have
experimentally [162] and numerically [163, 164, 165] produced reference data, and an overview
of results from the aforementioned workshop is available in [161]. This problem has been
previously demonstrated in the context of wall-modeled LES and wall-resolved LES [165,
166], the latter with generally dense refinement within the slat cove region only and coarse
everywhere else. The relatively high Reynolds number makes this problem computationally
challenging. We generate a computational grid of 549280 hexahedral elements, shown in
Figure 7.12, with zoomed-in views for the slat and the flap. The spanwise length is c/9, with
40 elements uniformly refined, which is slightly above the coarse grid with 30 layers used
in [165].

The entropically-damped artificial compressibility method is used in this problem, which
resolved stability issues encountered with the compressible Navier-Stokes equations. This is
an appropriate choice since the baseline Mach number for this problem is 0.1, which is within
the incompressible range. The EDAC equations use an incompressibility factor, which we
set to Θ = 100. This value was chosen to maintain a sensible time-step size and reduce the
effects of artificial compressibility [95], as discussed in Chapter 2. This problem typically uses
a Rusanov-type Riemann solver, with stabilization computed from Davis estimates of the
maximum eigenvalues of the EDAC equations [95]. For the hybridized EDAC equations, we
employ the following convective stabilization parameter

s =
3

2
|v̂|+d̂, d̂2 =

v̂2

4
+ P̂ + Θ, (7.13)

which leads to an isotropic stabilization operator sI. This stabilization leads to a new
hybridized formulation of the EDAC equations, first used in this work. Simulations are run
for 20 convective times, and the statistics are averaged for the last 10tc. The time-step sizes
considered here are ∆t/tc = 8× 10−5 for p = 1 and ∆t/tc = 3.125× 10−5 for p = 2. For 10tc,
our computations made use of 0.0091 core years for p = 1, and 0.097 core years for p = 2.

Following the promising results of the EFR method in the turbulent cylinder problem,
we employ this method in the implicit portion of our IMEX domain but will also include
performance results against the HFR and FR methods. The implicit factor is chosen to solve
∼20% of elements with the EFR method at IF = 0.23, consistent with our previous analyses
in the cylinder problems. A histogram with the element size in the x-axis is provided in
Figure 7.13, showing element sizes with over four orders of magnitude in difference. The
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(a) Multi-element view

(b) Slat view (c) Flap view

Figure 7.12. Computational grid for the multi-element airfoil

final distribution of implicit (red) and explicit (blue) elements in the domain partition is
shown in Figure 7.14. Elements near the walls will be resolved implicitly, and medium to
large elements will be solved explicitly. A tolerance of 10−4 is used to converge the unsteady
implicit residuals.

Contours of averaged vorticity are shown in Figure 7.15 for p = 1 and p = 2 simulations.
Results from the p = 1 simulations are highly dissipative and display smeared-out regions of
vorticity. Simulations at p = 2 are already in good agreement with the PIV visualizations
from Pascioni et al. [167], where the expected detached shear layer emerging from the slat is
observed with increased definition. In the instantaneous plots, similar behaviour is observed
between the p = 1 and p = 2 simulations, resulting in the latter being a more accurate
representation of the complex vortex interaction within the slat cove.

A similar conclusion can be drawn from the contours of Q-criterion, which are shown
for a full view in Figure 7.16. The second-order (p = 1) simulations resolve a smaller range
of scales compared to third order (p = 2). At the shown value of Q-criterion, many more
structures are shown in the higher-order simulation emanating from the gap between the
cove and airfoil all the way to the upper side of the flap downstream. A zoomed-in portion
within the slat cove is shown in Figure 7.17, clearly showing the shear layer and reattachment
region in the slat. For p = 1, the detail in the turbulent structures is small, whereas much
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Figure 7.13. Distribution of element sizes for the multi-element airfoil grid

(a) Slat cove zoom-in (b) Flap zoom-in

Figure 7.14. Distribution of implicit and explicit elements after IMEX partitioning. Blue
elements are solved explicitly, and red elements are solved implicitly
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(a) Averaged, p = 1 (b) Averaged, p = 2

(c) Instantaneous, p = 1 (d) Instantaneous, p = 2

Figure 7.15. Vorticity contours for the multi-element airfoil problem
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more detail can be observed for the p = 2 results.

(a) p = 1

(b) p = 2

Figure 7.16. Q-criterion contours for the multi-element airfoil coloured by velocity magnitude

Time-averaged plots of the pressure coefficient are shown in Figure 7.18. Results are
compared against experimental data by Florida State University [162] and from Muyarama et
al. [168]. We note that these experimental values were originally performed in wind tunnel
facilities at different angles of attack. They were carried out in closed-wall wind tunnels
with significant end-wall effects, altering the effective attack angle. However, they were later
compared to numerical simulations and were deemed appropriate as reference data at an
angle of attack 5.5 degrees [162]. Increasing the order to p = 2 improves the agreement
between the current results and the reference data, particularly for the main airfoil and the
flap. The Cp plots are close to the reference data for p = 2. The slat in our problem is still
underresolved and may require a higher degree in the computations or refinement of the grid
in this area. We also compare velocity profiles along lines normal to the shear layer, shown
in Figure 7.19. Results for the two computations considered in this section are shown in
Figure 7.20, namely p = 1 and p = 2. Overall, an improved agreement can be observed for the
third-order results, especially in proximity to the shear layer. In this region, the higher-order
results follow the increases in velocity to the freestream conditions. The low-order method
shows more dissipated behaviour in these regions, which is expected and consistent with
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(a) HFR, p = 2

(b) EFR, p = 2

Figure 7.17. Q-criterion contours zoomed in the slat for the multi-element airfoil coloured by
streamwise vorticity
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the numerical error of these schemes. The p = 2 results show oscillatory behaviour for the
higher-order results at the crossing of the shear layer in L1. In general, there is still some
discrepancy in areas close to the mean quantities, especially for p = 1.

0.00 0.25 0.50 0.75 1.00
x/c
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JAXA-HW
JAXA-KW

Figure 7.18. Pressure coefficient Cp for the multi-element airfoil problem

Finally, we measure computational performance. Specifically, the time spent in 100 time
steps for FR, HFR, and EFR methods is computed. These timing metrics are shown and
compared with the standard FR IMEX approach and with their explicit counterparts when
the implicit factor is zero, which results in an optimal explicit-Runge Kutta method. Results
are shown in Table 7.6. These runtimes were computed on 2.4GHz AMD Rome 7532 CPUS
using 1024 cores. Similar to previous results in the cylinder, significant time is spent on the
computation of the global problems, especially at higher order, accounting for 80% of the
time in FR, over 70% in HFR, and over 50% in EFR, with most of the remaining time in
the explicit portion. Compared to the standard FR IMEX approach, EFR IMEX methods
achieved 1.5 to 4.1 times faster simulations, representing at least 15 times faster than an
explicit FR simulation of this problem. Hence, we have demonstrated that hybridized IMEX
methods can significantly speed up computations of moderately high Reynolds numbers.
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Figure 7.19. Line plot locations in the vicinity of the slat

Table 7.6. Summary of performance metrics for the multi-element airfoil problem for 100
time steps

Scheme p tG tL tJ tRim tRex tw tw/t
FR
w tw/t

ex
w

FR 1 14.66 - 4.72 0.65 7.79 27.81 1.00 35.83
2 101.41 - 19.48 2.04 28.04 150.97 1.00 24.56
3 983.59 - 134.93 6.28 55.52 1180.32 1.00 4.03

HFR 1 54.61 1.08 1.29 0.63 7.51 65.13 0.43 15.33
2 218.56 6.46 8.21 2.33 28.49 264.04 0.57 14.06
3 370.49 15.90 60.97 6.42 52.03 505.81 2.33 9.40

EFR 1 7.72 1.25 1.13 0.67 7.79 18.56 1.50 53.80
2 62.86 6.50 7.50 2.40 27.97 107.21 1.41 34.62
3 153.08 15.61 59.02 6.27 51.18 285.17 4.14 16.67
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Figure 7.20. Plots of sampled normalized velocity magnitude for the multi-element airfoil
across slat shear layer
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Chapter 8

Conclusions

This thesis investigated and developed solution-accelerating strategies for high-order flux
reconstruction methods. A framework was proposed to advance high-order methods toward
complex three-dimensional problems of industrial interest, considering explicit and implicit
implementations. To this end, optimal Runge-Kutta methods were developed for the explicit
portion of this thesis, and hybridization of the FR approach was introduced for the implicit
part of this work. These approaches were combined with polynomial adaptation and with
hybridized IMEX methods to further reduce computational cost. In the next paragraphs, we
provide detailed observations of the methods developed in this thesis.

In the context of explicit simulations, optimal stability polynomials were generated for the
flux reconstruction approach in one, two, and three dimensions. The element types considered
were lines, quadrilaterals, triangles, prisms, tetrahedra, and hexahedra. Larger optimized
time steps were achieved by increasing the number of Runge-Kutta stages and adding terms
to the stability polynomial. The relative efficiency increased with the number of stages for
all element types. While quadrilateral and hexahedral elements did not benefit significantly
compared to line elements, triangular, prismatic, and tetrahedral elements demonstrated
modest performance improvement. The optimal stability polynomials yielded speedup factors
up to 1.97 compared to classical Runge-Kutta methods. These schemes maintained their
designed order of accuracy in linear advection. They allowed substantial reductions in
computational cost with minimal impact on accuracy, making them a feasible solution for
accelerating high-order methods. In addition, the spectral properties of these methods were
analyzed for the fully-discrete schemes in a one-dimensional setting. It was shown that the
spectral properties of optimal RK methods vary by decreasing the dissipation of the highest
frequencies, an unwanted effect for ILES simulations. However, these properties improve as
we move slightly from the stability limit, providing the expected speedup factors close to 2.

To advance implicit FR discretizations, hybridized flux reconstruction methods with a
range of correction functions were introduced, namely the HFR and EFR schemes. The HFR
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method allows discontinuous traces, and the EFR method enforces continuity of the traces
on the internal faces. In this work, the trace in all methods was considered discontinuous at
the boundaries. Through numerical analysis, EFR methods were compared with HFR and
FR methods. It was found that an under-integrated form of the EFR method introduces
more numerical error at low orders but behaves similarly to FR at higher polynomial degrees.
Verification of the implementation used in this work via linear advection and advection of an
isentropic vortex confirmed the expected order of accuracy for all hybridized schemes. In
the isentropic vortex case, HFR achieved speedup factors of 1.4, while EFR achieved 2.3
compared to implicit FR. Dissipative correction functions slightly reduced the computational
burden of the linear solver. EFR with cDG proved to be a cost-effective choice over FR
with cSD and cHU . EFR outperformed HFR in a complex airfoil vortex interaction problem,
and both were significantly faster than FR with speedup factors of 4.3 for HFR and 6.7
for EFR, considering a fifth-order scheme. With these studies, it was determined that
hybridization can be effectively used for flux reconstruction methods. In the context of
advection-diffusion problems, we demonstrated linear stability constraints with the HFR
method and the relationship with standard FR schemes. Significant speedups of linear
diffusion and advection-diffusion problems were observed by almost two orders of magnitude
for a Couette problem. In addition, the superconvergence properties of HFR methods in the
diffusion-dominated regime for the range of energy-stable correction functions were evaluated,
empirically showing that it is only a property of the cDG method at p = 1 and within its
vicinity for p > 1.

Next, polynomial adaptation was introduced to the hybridized FR framework. We
presented a procedure for locally adapting the polynomial degrees in each cell by solving a
global projection problem, which determines the new value of the trace in the functionally
nonconforming setting. Due to the discontinuous nature of the HFR method, this problem
is, in fact, local but remains global for EFR. Since adaptation is not performed at every
iteration, the cost of this adaptation procedure for EFR is akin to that of a time step. Hence,
the interval for adaptation can be chosen considering this overhead. A series of numerical
examples demonstrated the applicability, performance, and benefits of this approach. Namely,
an isentropic vortex, flow over a cylinder at Re = 150 and flow over a NACA 0012 airfoil
at Re = 10, 000 were dynamically adapted using a vorticity indicator. Adaptive hybridized
methods achieved comparable errors to p-adaptive standard formulations at a fraction of the
cost in the vortex problem. In the cylinder case, speedup factors of 5.34 and 6.78 times using
p-adaptive HFR and EFR were respectively obtained against p-adaptive FR formulations.
The speedups between p-adaptive and standard FR formulations are significantly higher,
especially at higher polynomial degrees. In this sense, p-adaptive HFR and EFR formulations
were about 40 times faster than a p-uniform FR formulation at p = 5. Similarly, results
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for an airfoil problem demonstrated comparable results with p-adaptive hybridized methods
up to 5.7 times faster than p-adaptive FR runs and up to 33 times faster simulations than
p-uniform FR at p = 5.

Finally, novel implicit-explicit methods were developed for larger-scale simulations of
increased geometry-induced stiffness. Combining hybridized and standard FR formulations can
be done conservatively using the FR formulation’s fluxes at the interface. Via a performance
analysis in two and three dimensions, it was shown that for problems with moderately low
stiffness, the obtained speedups are significant in two dimensions. For a laminar cylinder
problem, speedups in excess of 6 were obtained at the highest polynomial degrees considering
EFR against FR IMEX methods. In the three-dimensional moderately stiff setting via a
turbulent cylinder at Re = 1, 000, these speedups are only observed at higher polynomial
degrees p > 3 for HFR and p ≥ 2 for EFR. However, results for a multi-element airfoil at
Re = 1.7×106 demonstrated that in problems where geometry-induced stiffness is a significant
contributor, such as in moderately-high Reynolds numbers, the speedups of IMEX methods
are significant. Performance speedups of EFR methods against FR-IMEX schemes were
in excess of four, resulting in simulations at least 15 times faster than explicit counterpart
formulations.

8.1 Practical Summary

Some general findings in the form of recommendations summarize based on the above
observations in a practical sense

• Optimal Runge-Kutta methods enable faster simulations where explicit methods are
the method of choice for time integration. Specifically, they are suitable for problems
with moderately low stiffness or when computational resources are not sufficient for
implicit time stepping.

• Hybridization is a suitable solution-acceleration strategy for implicit flux reconstruction
schemes. It enables reduced computational cost while maintaining accuracy. It showed
significant potential in two-dimensional formulations at low and high orders. In three
dimensions, however, the EFR method enables speedups even at low orders, unlike the
HFR method, which showed suitability in most cases for (p ≥ 3) only.

• Incorporating polynomial adaptation into the hybridized FR framework reduces the
overall computational cost of simulations and yields good agreement with p-adaptive
FR. This is true for both the HFR and EFR methods, which make use of a global
projection to obtain the value of the trace after each adaptation call. This call should
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be made in sensible intervals, which can be a fraction of the characteristic time of the
problem.

• While hybridization enables significant reductions in computational cost over standard
FR, industrial-scale problems require IMEX methods in order to alleviate restrictive
stability constraints of explicit methods. Combining hybridized and standard formula-
tions allows the computation of moderately high Re, wall-resolved LES problems using
the EFR method with faster computations than standard IMEX schemes in low and
high orders.

8.2 Future Work

Possible research avenues are listed below

• Polynomial adaptation was applied to problems in two dimensions in this thesis to
demonstrate solution-acceleration of vortex-dominated flows. The natural next step
is the extension to three dimensions alongside the development of dynamical load-
balancing algorithms that consider the distribution of the trace over parallel ranks.
In addition to this, exploring additional indicators can improve polynomial adaptive
results in general. A yet unexplored indicator can be the use of solution jumps and the
postprocessing of hybridized methods to flag elements that require additional resolution.

• IMEX with hybridization demonstrated significant potential in flow computations using
the FR approach. The properties of this method can be expanded to simulate additional
applications that benefit from domain subdivisions with localized stiffness. This can be,
for instance, fluid-solid interaction problems, where hybridization can be used in the
solid portion and FR in the fluid portion. This will allow a seamless extension of flow
solvers to more complex applications.

• While hybridization via IMEX methods accelerated a wall-resolved LES simulation
in this work, introducing additional regularization is necessary to maintain stability
of underresolved simulations. Hence, incorporating entropy-stable formulations and
tools is an important factor in advancing high-order methods toward industrial-scale
computations.

• Each of the methodologies considered in this work advanced high-order methods to more
complex applications. Combining polynomial adaptation, hybridization, and IMEX
methods is yet to be explored in practical underresolved applications in performance
and robustness. The main challenge for this idea will be stability, which is expected to
improve with the previous suggestion introducing nonlinearly stable formulations.
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Appendix A

HFR Grid Convergence Tables

Table A.1. L2 norm of the error for the linear advection problem. Results are presented for
HFR/FR and EFR methods

FR/HFR EFR
p Mesh size cDG Order cSD Order cHU Order cDG Order cSD Order cHU Order

1

5×5 9.71E− 2 - 1.05E− 1 - 1.25E− 1 - 1.09E− 1 - 1.18E− 1 - 1.33E− 1 -
10×10 5.14E− 2 0.916 7.31E− 2 0.517 1.10E− 1 0.105 7.88E− 2 0.467 9.94E− 2 0.247 1.23E− 1 0.120
20×20 1.58E− 2 1.705 3.71E− 2 0.979 7.87E− 2 0.082 4.02E− 2 0.971 6.19E− 2 0.683 9.03E− 2 0.440
40×40 2.85E− 3 2.468 1.29E− 2 1.528 3.92E− 2 0.980 1.35E− 2 1.577 2.47E− 2 1.326 4.39E− 2 1.042

2

5×5 4.24E− 2 - 5.68E− 2 - 7.18E− 2 - 4.05E− 2 - 6.00E− 2 - 7.22E− 2 -
10×10 7.51E− 3 2.498 1.57E− 2 1.856 2.53E− 2 1.287 6.31E− 3 2.682 1.59E− 2 1.921 2.41E− 2 1.586
20×20 5.11E− 4 3.876 1.83E− 3 3.097 3.71E− 3 2.318 4.48E− 4 3.817 1.78E− 3 3.157 3.34E− 3 2.848
40×40 4.40E− 5 3.539 1.39E− 4 3.718 2.92E− 4 3.910 4.96E− 5 3.174 1.43E− 4 3.638 2.83E− 4 3.562

3

5×5 1.38E− 2 - 2.04E− 2 - 2.57E− 2 - 1.29E− 2 - 1.96E− 2 - 2.46E− 2 -
10×10 5.61E− 4 4.619 1.62E− 3 3.653 2.55E− 3 2.935 6.18E− 4 4.386 1.66E− 3 3.562 2.56E− 3 3.263
20×20 2.47E− 5 4.505 5.24E− 5 4.954 8.11E− 5 4.181 2.74E− 5 4.496 5.61E− 5 4.887 8.49E− 5 4.914
40×40 1.52E− 6 4.023 2.52E− 6 4.377 3.52E− 6 3.444 1.67E− 6 4.039 2.59E− 6 4.440 3.51E− 6 4.597

4

5×5 2.97E− 3 - 5.45E− 3 - 6.90E− 3 - 3.12E− 3 - 5.60E− 3 - 7.04E− 3 -
10×10 6.85E− 5 5.440 1.33E− 4 5.353 1.78E− 4 4.927 6.96E− 5 5.486 1.36E− 4 5.365 1.80E− 4 5.289
20×20 1.60E− 6 5.424 2.66E− 6 5.649 3.41E− 6 4.217 1.75E− 6 5.316 2.82E− 6 5.592 3.55E− 6 5.665
40×40 5.03E− 8 4.986 8.27E− 8 5.006 1.05E− 7 4.585 5.84E− 8 4.901 9.33E− 8 4.917 1.17E− 7 4.924

5

5×5 6.17E− 4 - 1.11E− 3 - 1.37E− 3 - 6.17E− 4 - 1.14E− 3 - 1.39E− 3 -
10×10 2.10E− 6 8.198 5.86E− 6 7.572 8.13E− 6 6.218 2.80E− 6 7.782 6.46E− 6 7.459 8.68E− 6 7.318
20×20 9.75E− 8 4.429 1.62E− 7 5.180 1.96E− 7 5.455 1.22E− 7 4.526 1.79E− 7 5.173 2.12E− 7 5.353
40×40 1.55E− 9 5.976 2.56E− 9 5.979 3.11E− 9 5.166 2.27E− 9 5.746 3.07E− 9 5.864 3.65E− 9 5.860
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Table A.2. L2 norm of the error for the steady-state linear advection-diffusion problem

FR HFR EFR
p Mesh cDG Order cSD Order cHU Order cDG Order cSD Order cHU Order cDG Order cSD Order cHU Order

1

5×5 5.79E-03 - 6.39E-03 - 9.82E-03 - 4.02E-03 - 4.94E-03 - 7.92E-03 - 6.49E-03 - 7.15E-03 - 7.87E-03 -
10×10 1.31E-03 2.14 1.57E-03 2.03 2.62E-03 1.91 1.09E-03 1.88 1.23E-03 2.01 2.07E-03 1.93 1.45E-03 2.16 1.56E-03 2.20 1.64E-03 2.26
20×20 3.01E-04 2.12 3.83E-04 2.03 6.98E-04 1.91 2.25E-04 2.27 3.11E-04 1.98 6.58E-04 1.65 4.94E-04 1.55 4.99E-04 1.65 4.74E-04 1.79
40×40 7.78E-05 1.95 9.58E-05 2.00 1.75E-04 2.00 6.80E-05 1.73 9.48E-05 1.71 2.03E-04 1.69 1.67E-04 1.57 1.59E-04 1.65 1.34E-04 1.82

2

5×5 1.37E-03 - 1.29E-03 - 1.33E-03 - 6.94E-04 - 5.95E-04 - 8.84E-04 - 7.78E-04 - 5.54E-04 - 5.73E-04 -
10×10 1.54E-04 3.15 1.71E-04 2.92 2.06E-04 2.69 1.10E-04 2.66 1.29E-04 2.20 1.80E-04 2.30 1.09E-04 2.84 1.04E-04 2.41 1.20E-04 2.25
20×20 1.98E-05 2.96 2.32E-05 2.88 2.98E-05 2.79 1.66E-05 2.73 2.30E-05 2.49 3.44E-05 2.39 1.55E-05 2.81 1.78E-05 2.55 2.36E-05 2.35
40×40 2.42E-06 3.03 2.96E-06 2.97 4.03E-06 2.89 2.30E-06 2.85 3.42E-06 2.75 5.27E-06 2.70 2.09E-06 2.89 2.65E-06 2.75 3.70E-06 2.67

3

5×5 2.43E-04 - 2.48E-04 - 2.62E-04 - 1.69E-04 - 1.63E-04 - 1.90E-04 - 1.72E-04 - 1.50E-04 - 1.59E-04 -
10×10 1.60E-05 3.92 1.93E-05 3.68 2.27E-05 3.53 1.29E-05 3.71 1.73E-05 3.24 2.20E-05 3.11 1.24E-05 3.79 1.47E-05 3.35 1.78E-05 3.16
20×20 1.01E-06 3.99 1.28E-06 3.91 1.56E-06 3.86 9.09E-07 3.83 1.34E-06 3.69 1.77E-06 3.64 8.21E-07 3.92 1.06E-06 3.80 1.35E-06 3.72
40×40 6.16E-08 4.03 8.10E-08 3.98 1.02E-07 3.94 5.99E-08 3.92 9.37E-08 3.84 1.26E-07 3.81 5.01E-08 4.03 6.77E-08 3.97 8.95E-08 3.91

4

5×5 3.69E-05 - 4.11E-05 - 4.46E-05 - 2.62E-05 - 3.26E-05 - 3.87E-05 - 2.59E-05 - 2.89E-05 - 3.30E-05 -
10×10 1.37E-06 4.75 1.69E-06 4.61 1.92E-06 4.54 1.18E-06 4.48 1.68E-06 4.28 2.03E-06 4.25 1.14E-06 4.51 1.48E-06 4.28 1.73E-06 4.25
20×20 4.33E-08 4.98 5.73E-08 4.88 6.74E-08 4.83 4.10E-08 4.85 6.29E-08 4.74 7.81E-08 4.70 3.90E-08 4.87 5.48E-08 4.76 6.60E-08 4.72
40×40 1.34E-09 5.01 1.79E-09 5.00 2.14E-09 4.98 1.35E-09 4.93 2.12E-09 4.89 2.66E-09 4.88 1.27E-09 4.95 1.83E-09 4.90 2.24E-09 4.88

Table A.3. L2-norm of the post-processed solution error for the steady-state linear diffusion
problem

FR HFR
p Mesh size cDG Order cSD Order cHU Order cDG Order cSD Order cHU Order

1

10×10 5.39E-03 - 7.46E-03 - 1.70E-02 - 2.22E-03 - 2.99E-03 - 7.37E-03 -
20×20 9.84E-04 2.14 1.34E-03 2.03 3.06E-03 1.91 2.39E-04 3.22 5.50E-04 2.44 1.86E-03 1.98
40×40 2.04E-04 2.12 3.08E-04 2.03 6.96E-04 1.91 3.23E-05 2.89 1.22E-04 2.18 4.71E-04 1.98
80×80 5.22E-05 1.95 7.23E-05 2.00 1.60E-04 2.00 4.33E-06 2.90 3.47E-05 1.81 1.38E-04 1.77

2

10×10 1.84E-03 - 1.90E-03 - 1.99E-03 - 3.57E-04 - 3.73E-04 - 4.98E-04 -
20×20 1.21E-04 3.15 1.37E-04 2.92 1.56E-04 2.69 2.46E-05 3.86 3.13E-05 3.58 4.35E-05 3.52
40×40 1.19E-05 2.96 1.36E-05 2.88 1.57E-05 2.79 1.81E-06 3.77 2.61E-06 3.58 3.81E-06 3.52
80×80 1.36E-06 3.03 1.59E-06 2.97 1.87E-06 2.89 1.25E-07 3.86 1.90E-07 3.78 2.84E-07 3.75

3

10×10 2.72E-04 - 3.52E-04 - 3.99E-04 - 4.80E-05 - 5.02E-05 - 6.40E-05 -
20×20 1.04E-05 3.92 1.39E-05 3.68 1.60E-05 3.53 1.77E-06 4.76 1.86E-06 4.75 2.52E-06 4.67
40×40 5.02E-07 3.99 6.75E-07 3.91 7.83E-07 3.86 5.20E-08 5.09 6.08E-08 4.94 9.66E-08 4.70
80×80 2.83E-08 4.03 3.78E-08 3.98 4.41E-08 3.94 1.56E-09 5.06 2.07E-09 4.87 3.55E-09 4.77

4

10×10 3.53E-05 - 4.28E-05 - 4.61E-05 - 7.73E-06 - 9.81E-06 - 1.13E-05 -
20×20 8.25E-07 4.75 1.03E-06 4.61 1.13E-06 4.54 1.49E-07 5.70 2.13E-07 5.53 2.53E-07 5.48
40×40 2.05E-08 4.98 2.52E-08 4.88 2.76E-08 4.83 2.63E-09 5.82 3.99E-09 5.74 4.79E-09 5.72
80×80 6.27E-10 5.01 7.70E-10 5.00 8.44E-10 4.98 5.00E-11 5.72 7.01E-11 5.83 8.34E-11 5.85

Table A.4. L2-norm of the solution error for the steady-state linear diffusion problem with
consistent LDG switch

FR (no post-processing) FR (post-processed)
p Mesh size cDG Order cSD Order cHU Order cDG Order cSD Order cHU Order

1

5×5 8.56E-03 - 9.86E-03 - 1.33E-02 - 1.03E-01 - 1.24E-01 - 1.98E-01 -
10×10 1.24E-03 2.79 1.75E-03 2.49 3.46E-03 1.95 2.86E-02 3.26 3.28E-02 2.22 5.47E-02 2.11
20×20 3.13E-04 1.98 4.30E-04 2.03 8.45E-04 2.03 5.93E-03 2.91 8.07E-03 2.44 1.66E-02 2.29
40×40 8.03E-05 1.96 1.12E-04 1.94 2.31E-04 1.87 1.78E-03 2.90 2.45E-03 1.98 5.09E-03 1.92

2

5×5 1.89E-03 - 2.14E-03 - 2.44E-03 - 1.74E-02 - 1.69E-02 - 2.64E-02 -
10×10 1.64E-04 3.53 2.00E-04 3.42 2.55E-04 3.26 2.87E-03 4.14 3.47E-03 3.97 4.93E-03 3.83
20×20 2.06E-05 2.99 2.82E-05 2.83 4.02E-05 2.67 4.35E-04 4.10 6.10E-04 4.02 9.20E-04 3.90
40×40 2.57E-06 3.01 3.76E-06 2.91 5.65E-06 2.83 6.02E-05 4.07 9.00E-05 4.02 1.39E-04 3.94

3

5×5 3.04E-04 - 3.81E-04 - 4.41E-04 - 4.36E-03 - 4.38E-03 - 5.27E-03 -
10×10 1.70E-05 4.16 2.25E-05 4.08 2.74E-05 4.00 3.37E-04 4.96 4.61E-04 4.92 5.93E-04 4.96
20×20 1.04E-06 4.03 1.51E-06 3.89 1.96E-06 3.81 2.38E-05 5.11 3.54E-05 5.21 4.70E-05 5.30
40×40 6.47E-08 4.01 9.93E-08 3.93 1.32E-07 3.89 1.57E-06 5.05 2.46E-06 5.11 3.33E-06 5.17

4

5×5 4.82E-05 - 6.22E-05 - 7.02E-05 - 6.87E-04 - 8.92E-04 - 1.07E-03 -
10×10 1.43E-06 5.08 1.98E-06 4.98 2.33E-06 4.91 3.08E-05 5.97 4.47E-05 6.04 5.44E-05 6.09
20×20 4.49E-08 4.99 6.72E-08 4.88 8.23E-08 4.82 1.07E-06 6.04 1.66E-06 6.12 2.06E-06 6.18
40×40 1.45E-09 4.95 2.21E-09 4.93 2.74E-09 4.91 3.44E-08 5.35 5.53E-08 5.56 6.97E-08 5.79
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Appendix B

Gauss-Lobatto Collocation in EFR

In Chapter 5, we considered spectral analysis of the HFR and EFR methods, where the
latter uses a GLL collocation to reduce the element coupling in the semidiscrete operator.
This common integration approach in some finite element methods leads to the so-called
mass lumping. For example, the discontinuous Galerkin spectral-element method (DGSEM)
is generally formulated using collocation-type formulations, which leads to diagonal local
mass matrices of the form

Mij =

∫

Ω

φiφjdΩ = δijwi, (B.1)

where wi is an integration quadrature weight and δij is the Kronecker delta. When used with
GLL points, the schemes are shown to be less stiff, allowing for larger time step sizes than
when Gauss-Legendre points are used. Because the integrand is of degree 2p and Gauss-
Lobatto quadratures are accurate up to 2p− 1, this results in under-integration. Previous
analyses have shown that this approach leads to filtered forms of the nodal DG method with
exact integration [169] and has been used to introduce artificial dissipation in the presence of
shocks [170]. A similar connection to FR methods using the cHU or correction parameter
(also known as the g2 correction function) has also been investigated [171, 172], showing an
equivalence between this FR method and the DGSEM with GLL points. The dissipation and
dispersion error can be affected by this choice since the filter acts by damping the highest
frequency modes [169]. In our EFR method, choosing GLL points on the faces allows for
better integration properties than equidistant points while maintaining nodes at the face ends.
When collocated, this leads to under-integrated local mass matrices over the faces, which are
eventually assembled into a global operator. Note that the standard FR method does not
explicitly need quadratures for integration due to its divergence form, so this only affects
the integration of the transmission conditions in the hybridized formulation. Furthermore,
because the HFR method with discontinuous traces is used, conservation is pointwise. Hence,
this discussion is only applicable to the EFR method.
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Our spectral analysis can be directly extended to the EFR method with exact integration.
In this case, the coupling between interior elements in the semidiscrete interior-solution-based
operator is stronger, and additional blocks must be added to perform the analysis. In addition,
we must employ large domains to eliminate the effects of the periodic boundaries due to the
increased coupling. Note that the semidiscrete operator in the analysis in Chapter 5 is not
computed when solving the hybridized problems but is only used to analyze the properties of
the method. For completeness, we include additional dispersion and dissipation curves in
this section. After doing this, the resulting matrix will also be block-circulant and can be
obtained via Equation (5.9). However, the number of neighbouring blocks Nb is higher, but
the influence of elements reduces away from the element in study. Similarly, we show the
equivalent dispersion and dissipation properties of the EFR method with exact integration of
the transmission conditions in Figure B.1 and B.2. When compared against the figures in
Chapter 5, it can be seen that the EFR method with exact integration improves the numerical
error at low wavenumbers, especially the dissipation at p = 1. However, it is still more
dissipative than the HFR/FR method for the majority of considered correction parameters.
As we go to higher orders, results with and without exact integration start to converge, with
the former showing more agreement with the HFR methods.
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Figure B.1. Dissipation curves for different c-parameters at θ = π/6 for different polynomial
degrees with exact integration of the transmission conditions. Results are highlighted for cDG
( ), cSD ( ) and cHU ( )
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Figure B.2. Dispersion curves for different c-parameters at θ = π/6 for different polynomial
degrees with exact integration of the transmission conditions. Results are highlighted for cDG
( ), cSD ( ) and cHU ( )
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Appendix C

HFR Parallelization

High-order methods are suitable for modern many-core computer architectures due to
the locality of the approaches when using explicit time stepping. The FR approach has
demonstrated performance of over 50% in CPUs and GPUs in these configurations. Implicit
time-stepping does not typically achieve such high peak FLOPs due to increased communica-
tion costs involved in the linear solvers [173], which require significant memory bandwidth.
To parallelize high-order methods, graph partitioning algorithms such as METIS [174] are
typically employed to distribute the elements across ranks. Commonly, this partitioning
seeks to reduce the communication between elements in different regions in the domain
by minimizing the number of straddling edges and their associated weights. Partitioning
based on element connectivity is the standard approach employed in explicit and implicit
FR methods. In hybridization, the solution of the implicit system depends on the traces
rather than on the interior values. However, operations typical of the FR method, such as
right-hand-side evaluations, are still required, and communication between elements must be
minimized. The conventional elementwise FR partitioning is also suitable for hybridization
but requires additional steps to distribute the trace over the ranks as a preprocessing step
[113, 175]. Hence, a simple algorithm to perform the distribution can be implemented, which
is only required in the initial stage of the solver and when recomputations of the domain
connectivity are required due to adaptation calls. In the next paragraph, we describe our
algorithm.

As described in 5, we subdivide a domain Ω into multiple partitions Ωi. Then, we loop
over all trace variables and assign them based on a cost scalar value ci, which measures the
associated overhead with that rank. We seek to minimize this cost value by distributing the
traces such that both requirements of off-trace components and the number of trace variables
within each rank are balanced. Our algorithm assumes that the ranks are relatively balanced
from the initial partitioning and starts by assuming a high cost where all trace variables lie
on off-rank processors. The number of all unassigned trace variables is initially stored in
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Noffp and Nrem at every rank. These variables are, respectively, the number of off-rank traces
and a counter containing the local traces that have not been assigned yet. In addition, we
keep the number of MPI interface traces assigned to a given rank in NMPI.

After looping over every trace, the trace is distributed to reduce the need to send/receive
calls with the trace information while maintaining a balanced number of trace points across
the partitions. The algorithm’s success depends on the proper partitioning of the elements.
We then solve the implicit system and perform scatter trace operations between partitions
using the Portable, Extensible Toolkit for Scientific Computation (PETSc) [112]. Profiling
results from PETSc demonstrate balancing factors between partitions ranging from 1.0 and
1.05, which we deem acceptable to perform our parallel simulations. Note that this approach
is suitable for both HFR and EFR implementations.

Algorithm 5: Trace distribution after element-based partitioning
Partition Ω into n subdomains Ωi using a k-way edge-cut minimization algorithm
Set N̂ i to the total number of traces in Ωi

Store all N̂ i
int trace points corresponding to interior faces in Di = {ûi0, . . . , ûi

N̂ i
int
}

N i
offp ← Number of traces in Ωi not yet assigned

N i
rem ← Number of traces in Ωi not yet assigned

N i
MPI ← 0

ci ← N i
offp −N i

rem −N i
MPI −N i

int

for Every Trace uj in Ω do
Check which ranks Ω̂ have uj
Compare cost functions c in Ω̂

Assign uj to rank Ωm ∈ Ω̂, where m← argmax{c0, . . . , cn}
for Ωj ∈ Ω̂ do

if Ωj = Ωm then
N j

offp ← N j
offp − 1

N j
MPI ← N j

MPI − 1

end
N j

rem ← N j
rem − 1

end
Recompute ci for all ranks in Ω̂

end
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Appendix D

IMEX Butcher Tableaus

We present coefficients of the Butcher tableaus corresponding to the implicit and explicit
components of the IMEX3,2 and IMEX5,4 methods, as employed in Chapter 7. The AIMEX10,2

method is defined for each solution polynomial degree and omitted for brevity. The coeffi-
cients of the corresponding tableaus, however, can be found in their original publication as
supplementary material [48].

0 0 0 0
0.2928932188 0 0.2928932188134520 0

1 0 0.7071067811865480 0.2928932188134520
0 0.7071067811865480 0.2928932188134520

(a) Implicit part
0 0 0 0

0.2928932188 0.2928932188134520 0 0
1 -0.9428090415820630 1.9428090415820640 0

0 0.7071067811865480 0.2928932188134520

(b) Explicit part

Table D.1. IMEX3,2 Butcher tableau
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(a) Implicit part
0 0 0 0 0 0
1
2

1
2

0 0 0 0
2
3

11
18

1
18

0 0 0
1
2

5
6
−5

6
1
2

0 0
1 1

4
7
4

3
4
−7

4
0

1
4

7
4

4
3
−7

4
0

(b) Explicit part

Table D.2. IMEX5,3 Butcher tableau
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