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ABSTRACT 

Performance of machine learning methods in predicting trend in price 

and trading volume of cryptocurrencies  

 

Xuanjie Zhang  

 

This study is motivated by the growing interest in cryptocurrency trading and the need for 

accurate forecasting tools to guide investment decisions. The main aim is to forecast price 

and trading volume changes of cryptocurrencies by determining their movement directions. 

Naï ve Bayes, support vector machines, logistic regression, regression trees, and the K-nearest 

neighbors’ algorithm are selected to solve the problem and compared. Performance measures 

such as accuracy, sensitivity, and specificity are used to assess the models. The study shows 

that some models are better at predicting volume trends than price trends in 

cryptocurrencies. Naï ve Bayes is good at spotting positive trends, while Logistic Regression 

is accurate at identifying negative trends. Interestingly, the research reveals that shorter 

prediction times are more accurate for price forecasts, but intermediate times work better 

for specificity. These insights help us understand which models work well for different 

aspects of cryptocurrency forecasting. 
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Chapter 1 

Introduction 
 

 

A cryptocurrency is a type of virtual currency system that works similarly to traditional 

currencies, it allows users to make virtual payments for goods and services but without the 

involvement of a centrally controlled, dependable authority (Farell 2015). The greatest 

achievement of cryptocurrency, and its technological dependency, is a peer-to-peer digital 

trading system that produces and distributes currency units. This system relies on 

cryptographic evidence rather than authority (Nakamoto, 2008). 

One of the most notable examples of cryptocurrency is Bitcoin, which exemplifies the 

power and potential of this virtual currency system. Bitcoin is the first known cryptocurrency; 

it is published anonymously by Nakamoto in 2008. For the first two years, it attracted no 

attention and traded for less than a dollar. But to this day, it is the most popular and most 

traded cryptocurrency globally, with a peak trading price of $64,978 (November 2021), 

dominates around 38% of the overall market. 

As the popularity of cryptocurrency trading continues to soar, the number of newly 

exploited coins has witnessed a significant rise, the exploitation of new coins has been rising 

year by year (see Figure 1). There are 21,844 cryptocurrencies in existence as of November 

2022, yet not all of them are useful or active. There are about 9,314 active cryptocurrencies 

once numerous "dead" cryptocurrencies are excluded (coinmarketcap.com). 
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Figure 1 Number of Cryptocurrencies in existence as of November 2022 (CoinMarketCap, n.d.) 

 

Blockchain is Bitcoin's greatest novel invention. Bitcoin is essentially "a chain of digital 

signatures" as they can only be transferred by digitally signing transactions on the public 

ledger. Therefore, cryptocurrencies are seen as devoid of any inherent value due to their 

innate nature; instead, their price is solely determined by supply and demand (Andreessen, 

2014). Building upon Bitcoin's innovative blockchain technology, Cheah and Fry (2015) 

discovered that there is a significant massive bubble component in Bitcoin pricing, compared 

to the gold or foreign exchange markets, it is more volatile (Dwyer, 2015). 

The market structure of cryptocurrencies is fundamentally different, even though they 

share many characteristics with conventional financial markets like foreign currency 

(Dyhrberg et al., 2018). Bitcoin, in addition to being a means of electronic exchange, also 

serves as an investment for speculation asset, with trading available every day of the week 

without oversight. According to Yermack (2015), most Bitcoin transactions are between 

investors who are speculative. Because just a small proportion of Bitcoin transactions are 

used to purchase products and services, it appears that Bitcoin behaves more like an unstable 

investment than a currency.  

As the price of cryptocurrencies has risen year after year, enthusiasm for investing has 

continued to rise despite the volatility. In recent years, the realm of data analytics has 

transcended traditional industries and found its application in novel domains, including the 

dynamic landscape of supply chain management (Van Nguyen et al., 2018). The burgeoning 
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interest in cryptocurrency trading has mirrored the momentum of supply chain 

management's transformation through data analytics. In both areas, accurate predictions and 

informed decision-making play a pivotal role. Just as supply chain analytics leverages data-

driven forecasts to optimize inventory, streamline logistics, and enhance demand planning, 

the cryptocurrency market necessitates precise forecasting tools to guide investment 

decisions and navigate the volatile landscape (Gunasekaran et al., 2016).  

Recent research has shown the increasing relevance of cryptocurrency and blockchain 

technology and cryptocurrency in reshaping supply chain management across various 

industries. Blockchain technology possesses the capacity to revolutionize current supply 

chain arrangements. Its worth in supply chain management can be categorized into four key 

aspects: expanded transparency and traceability, the digitization and reduction of 

intermediaries within the supply chain, heightened data security, and the implementation of 

smart contracts (Wang et al., 2019). Koirala et al. (2019) proposed a blockchain-enabled 

model with traceability and ownership management, highlighting the transformative 

potential of smart contracts in supply chain operations. Choi (2020) delved into the impacts 

of agents' risk attitudes towards cryptocurrency on creating win-win scenarios in supply 

chains. In the construction and engineering sector, Hamledari and Fischer (2021) have 

demonstrated the application of blockchain-based crypto assets to seamlessly integrate 

physical and financial supply chains. Subramanian et al. (2021) introduced the concept of a 

"Crypto Pharmacy" utilizing a mobile application integrated with hybrid blockchain to 

address issues in pharmaceutical supply chains. 

Taken together, in this environment, forecasting the price and volume of cryptocurrencies 

trading will become quite challenging and fascinating. This study addresses the challenge of 

predicting price and trading volume changes in cryptocurrencies, analogous to the supply 

chain's requirement for anticipating demand patterns and optimizing resource allocation. 

One notable analogy lies in the prediction of trading volume, a critical factor in both 

cryptocurrency markets and supply chains. In the realm of cryptocurrencies, anticipating 

trading volume between buyers and sellers is essential for effective market participation and 

strategy formulation. Similarly, supply chain managers must forecast demand and supply 
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volumes to optimize inventory levels, minimize costs, and ensure seamless operations 

(Dubey et al., 2015). 

In essence, this study not only delves into the predictive prowess of machine learning 

techniques for cryptocurrency trading but also uncovers a fascinating parallel to the supply 

chain management domain. As both realms embrace data analytics to navigate complex 

patterns, the interplay between predicting cryptocurrency trends and optimizing supply 

chain flows underscores the transformative power of data-driven decision-making across 

diverse industries. 

The aim of our work is forecasting both price and trading volume changes of 

cryptocurrencies by determining the directions of movements. To the best of our knowledge, 

very limited recent publications have carefully examined the volume changes of 

cryptocurrencies. In addition, most of the price prediction studies concentrate on the most 

popular cryptocurrencies, but our work extends the scope to 20 cryptocurrencies, 

investigated the broader applicability of the models. In selecting the models of study, we have 

likewise taken a broad scope to contribute a comprehensive study of the role of machine 

learning on cryptocurrency prediction, they are naï ve Bayes (NB) (Russell & Norvig, 1995), 

support vector machines (SVM) (Vapnik, 1995), logistic regression (Allison, 2012), 

regression trees (RT) (Breiman, 1984), K-nearest neighbors (k-NN) algorithm (Cover and 

Hart, 1967). We measure the performance of each model by using accuracy (correct 

classification rate), sensitivity and specificity. We apply statistical tests to check differences 

of performance measures across models. 

 

The contributions of this thesis can be summarized as follows:  

1. Utilizing machine learning algorithms to make informed cryptocurrency investment 

decisions, highlighting the importance of volume forecasting.  

2. Investigating a broad range of 20 highly traded cryptocurrencies expands beyond 

popular cryptocurrencies. Examining the robustness of the results and to draw 

general conclusions. 
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3. Examining the effectiveness of number of days tracing back as predictors on 

performance of machine learning algorithms. 

 

The remainder of the thesis is organized as follows: chapter 2 presents a comprehensive 

Literature Review, delving into the evolving landscape of predicting cryptocurrency trends 

using machine learning methods. Chapter 3 technically describes selected machine learning 

models for forecasting and performance measures of accuracy, specificity, and sensitivity. 

Chapter 4 introduces our data and provides forecasting results, as well as comparisons of 

different models' performance and their strengths or weakness. Chapter 5 concludes our 

main findings and discusses future research directions. 
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Chapter 2 

Literature Review 
 

 

There has been a lot of research done on forecasting cryptocurrency prices, where academics 

look for patterns or simulations in uncertainty to support decision making. Review by Khedr 

et al. (2021) points out that predicting cryptocurrencies using traditional statistical methods, 

machine Learning and deep Learning are increasing every year with a total of 87 papers 

between 2010 and 2020. Among them, machine learning and deep learning algorithms are 

widely used techniques for prediction. Lahmiri and Bekiros (2019) are among the first to use 

a deep learning approach to predict cryptocurrency prices. Their test results revealed that, 

while the overall computational cost of the long short term memory (LSTM) model is higher 

in nonlinear pattern recognition than brute force, the predictability of LSTM is much higher. 

Lahmiri and Bekiros (2021) further implemented and use deep feed-forward neural network 

(DFFNN) for high-frequency Bitcoin price analysis and forecasting. They investigated how 

common numerical training procedures affect the accuracy obtained by DFFNN and found 

the Levenberg-Marquardt algorithm-trained DFFNN is a powerful and simple tool for 

forecasting high-frequency price data for Bitcoin. 

Wu et al. (2018) introduced a novel forecasting framework using LSTM networks for 

predicting daily Bitcoin prices. Their findings showed that the LSTM model with Auto 

Regressive (AR) integration outperformed the standard LSTM model, demonstrating 

superior forecasting accuracy. This was evident in the reduced prediction errors, including a 

decrease of 4574.12 in MSE (Mean Square Error), 9.08 in RMSE (Root Mean Square Error), 
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9.75 in MAPE (Mean Absolute Percentage Error), and 0.1 in MAE (Mean Absolute Error). 

Poongodi et al. (2020) compared linear regression (LR) and support vector machine (SVM) 

in predicting Ethereum price and concludes that SVP has a higher accuracy (96.06%). 

Similarly, Yiying and Yeze (2019) focused on analyzing and comparing the performance and 

efficiency of LSTM and ANN (Artificial neural network) on predicting price dynamics of 

Bitcoin, Etherum, and Ripple. They concluded that LSTM is more effective than ANN at using 

information that is hidden in historical memory, as LSTM utilizes shorter term dynamics (1, 

3, 5 days) more. Shintate and Pichl (2019) conducted a study that contrasts LSTMs and MLPs 

(Multilayer perceptron) using 1-minute interval time-series data from Bitcoin and Litecoin 

exchanges. Additionally, they introduce their algorithm, the Random Sampling Method (RSM), 

inspired by advancements in deep learning from image processing. Notably, RSM achieves the 

highest accuracy (0.5353) in comparison to LSTMs (0.4688) and MLPs (0.4766) in their 

investigation. 

Patel et al. (2020) proposed a hybrid prediction scheme of LSTM and GRU and tested its 

accuracy, which proved the hybrid scheme is better than LSTM. They focused on only two 

cryptocurrencies, namely Litecoin and Monero. The proposed hybrid model reduced the 

mean square error from 194.50 to 5.28 for Litecoin forecast, and from 230.93 to 10.10.7 for 

Monero price forecast. Jay et al. (2020) trained a stochastic neural network model which 

simulates market volatility by inducing layer-wise randomness into the observed feature 

activations of neural networks. They also compared the proposed model with LSTM and 

Multi-Layer Perceptron (MLP) for Bitcoin, Ethereum, and Litecoin and show its superiority. A 

stochastic neural network's average relative improvement over a normal neural network 

range from 1.56% to 1.76%. Monsalve et al. (2020) studied prediction of six well-known 

cryptocurrency’s exchange rate- whether their value will increase respect to USD in the next 

minute. In their four different network architectures, results showed Convolutional LSTM 

neural networks outperformed all the rest significantly. Adcock and Gradojevic (2019) 

employed feed-forward neural networks incorporating lagged returns and basic technical 

trading rules to predict returns for Bitcoin to USD. The study indicates the suitability of these 

architectures for Bitcoin return forecasting, noting that outcomes may fluctuate over time 

due to the influence of its rapid price fluctuations. Further, Chowdhury et al. (2020) expanded 
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the range of studied cryptocurrencies to nine, and considered four different models: neural 

net model, k-NN model, gradient boosted trees model and ensemble learning method, among 

which the ensemble learning method obtained 92.4% accuracy and considered to be the best. 

Jaquart et al. (2022) employed six machine learning algorithms to determine the binary 

relative daily performance of the top 100 cryptocurrencies by market capitalization, all 

models employed made statistically feasible predictions. The study presented evidence of 

statistical arbitrage opportunities in the bitcoin market. 

In addition to predicting cryptocurrency prices, there are a few studies that concentrate 

on volume forecasting as well. To anticipate final trading volume, Lahmiri et al. (2020) offered 

an artificial neural networks ensemble forecasting model that combines radial basis function 

neural networks (RBFNN) and generalized regression neural networks (GRNN) together with 

feedforward artificial neural network (FFNN) to generate final trading volume prediction. 

The results showed that the ensemble prediction model can achieve improvement in volume 

prediction by significantly reducing errors compared to a single model. Lahmiri et al. (2022) 

explored the impact of kernel selection on the support vector regression's (SVR) capacity to 

predict cryptocurrency trade volume, as well as when the SVR's critical parameters are tuned 

by the Bayesian optimization (BO) method, referred as SVR-BO. The results of 180 trials 

showed that the SVR-BO with RBF kernel (RMSE= 0.2111 ± 0.1504) outperforms all other 

models (RMSE ≥0.2177±0.1546) when used to forecast trading volume for the following day, 

while the SVR-BO using polynomial kernel (RMSE= 0.1045±0.1001) outperforms all other 

models (RMSE ≥0.1101±0.1320) when used to forecast trading volume for the following 

week. 

There are also studies that included other indicators in the predictions and examine the 

predictive power of these indicators. Nakano et al. (2018) applied an Artificial Neural 

Network (ANN) to forecast the price direction of Bitcoin at 15-minute intervals, utilizing both 

price data and technical indicators. Their intraday approach yields superior returns 

compared to buy-and-hold strategies and other basic technical trading methods, results of 

investment show under buy-and-hold strategy, final value equals to 2.28, while with ANN 

prediction, final value ranges from 12.14 to 64.46. Miura et al. (2019) used 3 hours returns 

for predicting aggregating realized volatility (RV) of continuously traded cryptocurrencies, 
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specifically Bitcoin. Machine learning techniques, including ANN (MLP, GRU, LSTM), SVM, and 

Ridge Regression, are employed to predict future RV values based on past samples. By 

measuring the MSE of each model, they found that Ridge Regression performs best, aligning 

with the auto-regressive dynamics of the Heterogeneous Auto-Regressive Realized Volatility 

(HARRV) model. Neural networks closely follow in performance, while SVM fares worst. 

Poongodi et al. (2021) made use of communication data in online bitcoin community 

bitcointalk.org to build a deep learning model and examined its connection with global 

bitcoin price trends, concluded that social media trends can be a strong indicator of 

cryptocurrency trends. In the study of Ortu et al. (2022) on the predictability of price 

movements, three indicators of technical, trading, and social are considered as inputs of the 

classification algorithm. Study showed that the unrestricted model that includes all three 

features produces a substantial improvement in the prediction and accuracy than the 

restricted model composed of technical feature only. Wang et al. (2022) selected 12 major 

cryptocurrencies and analyzed whether informed trading makes cryptocurrency returns 

more predictable. They suggested that informed trading helps anticipate some of 

cryptocurrencies returns, but it is unable to considerably increase prediction accuracy on a 

market-wide average. Dag et al. (2023) provided a data-driven Tree Augmented Naive (TAN) 

Bayes approach for determining the most crucial factors affecting Bitcoin price changes. 

Study showed making short-term investment decisions using the suggested methods is 

feasible without losing accuracy.  

The summary table below summarizes the literature on using machine learning and deep 

learning to predict trends related to cryptocurrencies. These studies mainly focused on the 

prediction of final price levels, with limited attention given to forecasting binary price trends, 

which play a pivotal role in shaping trading decisions within the dynamic market landscape. 

Recognizing the critical influence of price fluctuations on trading outcomes, it becomes 

imperative to delve into the intricate realm of price trend prediction. 

Furthermore, noted is the limited scope of earlier cryptocurrency prediction studies to 

specific currencies, restricting their broader market applicability. Additionally, studies 

analyzing alternative indicators often overlooked the importance of trading volume—a key 

metric reflecting market demand and liquidity. 



 

10 

 

Table 1 Summary of Literature Review of Cryptocurrencies Forecast Using Machine Learning Models 

Study Market Inputs Model Performance 

Lahmiri and Bekiros (2019)  Bitcoin, Digital 
Cash, Ripple 

Price LSTM, DLNN, GRNN RMSE 

Lahmiri and Bekiros (2021) Bitcoin Price DFFNN RMSE 

Wu et al. (2019) Bitcoin Price LSTM RMSE, MSE, 
MAE, MAPE 

Poongodi et al. (2020)  Ethereum Price Linear regression, 

SVM 

Accuracy 

Yiying and Yeze (2019)  Bitcoin, Ethereum, 
Ripple 

Price LSTM, ANN MSE 

Shintate and Pichl (2019) Bitcoin, Litecoin Price LSTM, MLP, REM Accuracy, 
Sensitivity, 
Precision, F1 
Score 

Patel et al. (2020) Litecoin, Monero Price LSTM and GRU hybrid MSE, RMSE, 
MAE, MAPE 

Jay et al. (2020)  Bitcoin, Ethereum, 
Litecoin  

Price Stochastic neural network, 
LSTM and MLP 

MAPE 

Adcock and Gradojevic 
(2019) 

Bitcoin Price Feedforward ANN Accuracy 

Chowdhury et al. (2020)  Bitcoin Cash, 
Bitcoin, Dash, 
DOGE, Ethereum, 
IOTA, Litecoin, 
NEM, NEO 

Price Neural networks, k-NN, GBT, 
ensemble learning 

Accuracy, 
RMSE 

Monsalve et al. (2020) Bitcoin, Dash, 
Ether, Litecoin, 
Monero, Ripple 

Price CNN, CLSTM, MLP, RBFNN Accuracy, 
Sensitivity 

Lahmiri et al. (2020)  Bitcoin Trading volume ANN Ensemble model of 
RBFNN, GRNNM FFNN 

RMSE 

Lahmiri et al. (2022)  30 
cryptocurrencies 

Trading volume SVR-BO with different kernels RMSE, MAE 

Nakano et al. (2018) Bitcoin Price and technical 
indicators 

ANN Risk-return 

Miura et al. (2019) Bitcoin Realized volatility 
(RV) 

ANN (MLP, GRU, LSTM), SVM, 
Ridge Regression, HARRV 

MSE 

Poongodi et al. (2021)  Bitcoin Social media trend LDA RMSE 

Ortu et al. (2022)  Bitcoin, Ethereum Technical, trading, 
social indicators 

MLP, CNN, LSTM, ALSTM Accuracy 

Wang et al. (2022)  12 
cryptocurrencies  

Informed trading RF, LR, SVM, LASTM, ANN Accuracy 

Dag et al. (2023)  Bitcoin 188 new variables TAN Accuracy, 
Sensitivity, 
Specificity, 
AUC  

Jaquart et al. (2022)  Top 100 cryptos Market 
capitalization 

LSTM, GRU, TCN, GBC, RF, LR Accuracy 
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This work 20 
cryptocurrencies 

Price, trading 
volume 

NB, LR, Regression Trees,  

k-NN, SVM 

Accuracy, 
Sensitivity, 
Specificity 

 

Addressing these gaps in the existing body of literature, the present study undertakes a 

comprehensive approach by not only forecasting price trends but also delving into the 

prediction of trading volume trends. There are previous studies that target 20, 30 and even 

100 cryptocurrencies, we also expanded the study's target market to encompass 20 highly 

traded cryptocurrencies safeguards against bias, ensuring the impartial evaluation of 

machine learning models across diverse cryptocurrency domains.  
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Chapter 3 

Methods 
 

 

Selected machine learning models are described in this chapter, including NB, logistic 

regression, RT, SVM and k-NN. We also use three performance measures: accuracy, sensitivity, 

and specificity, briefly described below. 

 

3.1. Machine Learning Classifiers 

3.1.1. Naïve Bayes (NB) 

Naive Bayes is a probabilistic algorithm that employs the conditional independence 

assumption to calculate the likelihood of a particular class membership based on observed 

features (Russell & Norvig, 1995). The algorithm models the classes in the training data using 

probability density functions and assigns objects to the class with the highest likelihood. 

Given a set of features  (𝑓 = 𝑓1, 𝑓2, … , 𝑓𝑛). It assumes that features are independent of each 

other, which is why it's called "naï ve".  Despite its seemingly "naive" assumption of feature 

independence, Naive Bayes has demonstrated remarkable success in various real-world 

applications, ranging from text classification and spam filtering to medical diagnosis and 

image recognition (Langarizadeh & Moghbeli, 2016; Duan et al., 2014).  

The NB classifier estimates the most probable target class (c) as the one with the highest 

posterior probability, which can be computed using Bayes' theorem. 
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Mathematically, the posterior probability can be expressed as: 

𝑐 = arg max(𝑃𝑟𝑜𝑏(𝑐|𝑓1, 𝑓2, ⋯ , 𝑓𝑛))                                                                                        (1) 

𝑐 = arg max (
𝑃𝑟𝑜𝑏(𝑓1,𝑓2,⋯𝑓|𝑐)∙𝑃𝑟𝑜𝑏(𝑐))

𝑃𝑟𝑜𝑏(𝑓1,𝑓2,⋯𝑓)
)                                                                            (2) 

Assuming that the features are uniformly distributed and using the chain rule, the most 

probable target class (c) can be computed as: 

𝑐 = arg max  (𝑃𝑟𝑜𝑏 (𝑐) ∏ 𝑃𝑟𝑜𝑏(𝑓𝑖|𝑐))𝑛
𝑖=1                                                                            (3) 

Here, Prob(c) is estimated by the frequency of c in the training data, and Prob(fi|c) is 

estimated by a Gaussian distribution function. The NB classifier is simple to use and requires 

only one iteration during the learning process to generate probabilities, making it efficient 

for large datasets.  

One key strength of NB is its ability to handle high-dimensional data gracefully. As the 

number of features increases, Naive Bayes retains its computational efficiency because it 

independently estimates the distribution of each feature given the class. This characteristic 

makes it particularly well-suited for tasks involving text data, where the vocabulary can grow 

significantly. Naive Bayes classifiers also lend themselves well to incremental learning 

scenarios. As new data becomes available, the algorithm can be easily updated with minimal 

computational overhead, making it adaptable to changing conditions and evolving datasets. 

In practice, there are different variants of NB classifiers, such as Gaussian Naive Bayes, 

Multinomial Naive Bayes, and Bernoulli Naive Bayes, each tailored to specific types of data 

and assumptions about feature distributions. Researchers and practitioners have also 

explored ways to relax the independence assumption through techniques like feature 

engineering or using more advanced variants like Tree-Augmented Naive Bayes. 

Chen et al. (2019) conducted research predicting price changes in Ethereum. They 

gathered data on Ethereum price fluctuations at around 1-hour intervals spanning from 

August 30, 2015, to December 2, 2017. They applied six distinct techniques to forecast 

Ethereum price changes, the NB classifier is one of them and performed 51.78% in accuracy.  
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3.1.2. Logistic Regression 

Logistic regression is a statistical approach that is typically used to model a dichotomous 

dependent variable, which takes on only two distinct values. The logistic regression model is 

a sort of generalized linear model that models the connection between the dependent 

variable and one or more independent variables using the logistic function, often known as 

the sigmoid function (Allison, 2012). The logistic function transforms the linear combination 

of independent variables into a probability that the dependent variable is equal to 1. If the 

probability is higher than or equal to 0.5, the observation is categorized as positive (y=1). 

Otherwise, it is identified as being of the negative kind (y=0). The logistic regression model 

can be used to classify observations into different categories based on the probabilities 

produced by the model. 

 

The logistic regression function can be represented by the following equation: 

𝑃𝑖 =
1

1+𝑒−(𝛼+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2+⋯+𝛽𝑚𝑥𝑚)
                                                                                      (4) 

Here, 𝑃𝑖  is the probability that the dependent variable 𝑦𝑖  takes on a value of 1, given each 

explanatory variable 𝑥𝑖𝑗(𝑗 = 1,1, ⋯ , 𝑚), 𝛼 is the intercept of the model, 𝛽𝑗is the coefficient of 

the model. 

Within the framework of logistic regression, a logit transformation is employed on the 

odds, which signifies the ratio between the likelihood of success and the likelihood of failure. 

This transformation is commonly referred to as the log odds, or alternatively, the natural 

logarithm of odds. The model's beta parameter, also denoted as the coefficient, is 

conventionally estimated utilizing the technique of maximum likelihood estimation (MLE). 

This approach engages in a systematic exploration of diverse beta values across multiple 

iterations, thereby attaining an optimal alignment with the log odds' optimal fit. 

The culmination of these iterations engenders the log likelihood function, which logistic 

regression endeavors to maximize for the attainment of the most suitable parameter 
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estimation. Once the pinnacle coefficient (or coefficients in scenarios involving multiple 

independent variables) is ascertained, the conditional probabilities for each individual 

observation can be meticulously computed, logged, and subsequently aggregated to yield a 

projected probability. Following the calculation of the model, ideally it is a good practice to 

assess how well the model predicts the dependent variable, which is known as the goodness 

of fit. The Hosmer-Lemeshow test is a common method of assessing the fit of a model. 

Logistic regression serves as a versatile tool for predictive and classification tasks with 

various applications. Notably, it aids in fraud detection by identifying behaviors linked to 

fraudulent activities, benefiting financial institutions and SaaS companies in data analysis and 

user account authentication (Şahin & Duman, 2011). In the medical domain, it enables 

disease prediction, facilitating proactive healthcare interventions (Bender & Grouven, 1998). 

Furthermore, logistic regression plays a crucial role in churn prediction, guiding actions to 

retain high-performing employees or clients, thereby enhancing organizational well-being 

and revenue retention (Nie et al., 2011). 

Bouri et al. (2019) analyzed a daily dataset encompassing seven cryptocurrencies 

(Bitcoin, Ripple, Ethereum, Litecoin, Nem, Dash, and Stellar) spanning from August 7, 2015, 

to December 31, 2017. Their study employed logistic regression to investigate the probability 

of price fluctuations in one cryptocurrency because of price changes in other 

cryptocurrencies. Their findings revealed an interconnectedness, demonstrating that 

alterations in the price of one cryptocurrency had effects on the prices of others. 
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3.1.3. Regression Trees 

A non-parametric approach to estimating a regression function is the use of regression trees 

(RTs), often referred to as Classification and Regression Trees (CART) (Breiman, 1984). They 

divide the learning dataset recursively into two subsets using binary splits until terminal 

nodes are reached, where homogeneity is attained, and then they determine a set of if-then 

rules. The main benefit of RTs is that they can handle highly skewed numerical data and 

categorical inputs by employing ordinal or non-ordinal tree building and do not require 

assumptions about the distribution of predictors. 

The graphical representation of the classification tree produced by RT consists of nodes 

and branches, where each node denotes a choice about one of the attributes and generates 

two branches. 

 

The Gini index is employed to reduce impurities in tree construction. The formula for the Gini 

index G(t) of an impurity in a node t is: 

𝐺(𝑡) = ∑ 𝑃(𝑗|𝑡)𝑃(𝑖|𝑡)
𝑗≠𝑖

                                                                                       (5) 

Where 𝑖 and 𝑗 are classes of the output, and 𝑃(𝑡) refers to the relative frequency of the first 

class.  

 

For instance, the goodness of the split of a data set 𝐷 into subset 𝐷1 and 𝐷2 is defined by: 

𝐺𝑠𝑝𝑙𝑖𝑡(𝐷) =
𝑛1

𝑛(𝐺(𝐷1))
+

𝑛2

𝑛(𝐺(𝐷2))
                                                                                     (6) 

Where 𝑛, 𝑛1 and 𝑛2 are the size of  𝐷, 𝐷1 and 𝐷2. 

 

Li et al., (2019) examined Twitter signals predictor in forecasting price changes in 

ZClassic. To build the predictive model, they employed an extreme gradient boosting (GB) 

regression tree model and assessed its performance against historical price data. 
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3.1.4. k-NN 

Cover and Hart (1967) developed the k-NN method as a nonparametric supervised classifier 

based on the idea of similarity. It organizes a collection of data points into groups and 

classifies new data based on a measure of similarity between the new data's attributes and 

those in the training set. Its key benefit is that it is fully data-driven and does not take the 

shape of a fitted model. 

The k-NN technique locates the k nearest neighbors of I in the sample set based on a 

distance metric such as Euclidean distance, given a number k and a feature vector to classify 

I. The new object's class is then determined using a voting procedure such as majority voting 

or weighted-sum voting based on the classes of its k-nearest neighbors (He & Wang, 2007). 

 

The typical k-NN algorithm is as follows: 

1. Determine the Euclidean distances between a new object 𝑜  and all of the items in the 

learning set. 

2. Based on the computed distances, select the 𝑘 objects from the learning set that are closest 

to 𝑜. 

3. Assign 𝑜 to the group that has the greatest number of the 𝑘 items. 

 

The formal k-NN classifier algorithm can be expressed as (Ergen et al., 2014): 

arg min(𝑑𝑒(𝑡, 𝑜, 𝑘)) →  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑃                                                                                          (7) 

where 𝑘 is the number of nearest neighbors to be taken into account, 𝑡 is the training data, 𝑜 

represents the object to be categorized, 𝑃 is the assigned class of the new object, and de is the 

Euclidean distance determined by: 

𝑑𝑒(𝑡, 𝑜, 𝑘) = √∑ (𝑡𝑖,𝑘− 𝑜𝑖,𝑘 )2𝐿
𝑖=1                                                                            (8) 

where 𝐿 represents length of each of data vector.  
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The k-NN algorithm is computationally efficient and can handle both numerical and 

categorical data. It can also be used for regression tasks by taking the average of the k-nearest 

neighbors' output values. However, the performance of k-NN heavily depends on the quality 

of the distance metric used and the choice of 𝑘. The curse of dimensionality can also be a 

challenge, as the algorithm becomes less effective in high-dimensional spaces. In our study, 

Euclidean distance metric was used as the distance metric and 5 nearest neighbors were 

considered (𝑘 = 5). 

Chowdhury et al. (2020) compared four models in predicting the closing prices for CCI30 

cryptocurrency components, aiming to contribute to risk mitigation within the 

cryptocurrency market. In their study, k-NN was used as a comparison model with the 

ensemble learning method. 

 

3.1.5. SVM 

In a high-dimensional space, SVMs build a hyperplane or a series of hyperplanes that can be 

utilized for classification (Vapnik, 1995). The structural risk minimization principle is used 

to determine the hyperplane, it aims to minimize the expected risk of the classifier on new 

and unseen data. By increasing the distance between classes and the hyper-plane, this is 

achieved. Most importantly, the SVM can avoid local minima and has a better ability to 

generalize results than other approaches. The linear SVM is a specific type of SVM that 

assumes the data can be separated by a hyperplane. The linear SVM constructs a hyperplane 

represented by: 

𝑦 = 𝑓(𝑥) = 𝑤𝑇𝑥 − 𝑏                                                                                                  (9) 

where b is the bias term and w is the weight vector. The goal of the linear SVM is to correctly 

categorize the training data while locating the weight vector and bias term that maximize the 

margin between the classes. Once the weight vector and bias term are determined, the linear 

SVM can be used to classify new data by evaluating the sign of the equation y=f(x). 

A kernel function K is used by the SVM classifier to separate nonlinear data. It is said in the 

following way: 
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𝑓(𝑥𝑖) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾〈𝑥, 𝑥𝑖〉
𝑛
𝑖=1 + 𝑏)                                                                             (10) 

where 𝑏 is a constant, 𝐾 is a kernel function, and 𝛼 is the Lagrange multiplier.  

In our study, RBF (radial basis function) kernel is used for SVM classifier, given by: 

𝐾(𝑥, 𝑥_𝑖 ) = exp (−𝛿‖𝑥 − 𝑥𝑖‖2)                                                                                      (11) 

Let 𝛿 represent the scale parameter, defined as 1/𝜎2, where 𝜎 denotes the width of the radial 

basis function. 

Support Vector Machines (SVM) have garnered notable prominence within the domain of 

supervised machine learning due to their pronounced efficacy in classification and regression 

tasks. These algorithms exhibit distinctive advantages, including adeptness in high-

dimensional spaces and a robust capacity for generalization, underpinned by their 

propensity to optimize margins. SVM's resilience to outliers and the facilitation of non-linear 

modeling via kernel functions are pivotal attributes. However, it is imperative to acknowledge 

certain disadvantages intrinsic to SVM, encompassing its computational intensity, memory 

consumption, intricate hyperparameter tuning, and potentially convoluted interpretability, 

thereby warranting judicious consideration in application selection (L. Wang, 2005). 

The purview of SVM's applicability spans diverse arenas, with classification serving as a 

prominent application context, especially in scenarios involving intricate categorization 

endeavors such as email filtering, text sentiment analysis, and medical diagnostic endeavors. 

In image recognition, SVM finds substantial utility in object classification and hand-written 

digit recognition (Kim et al., 2005). Furthermore, SVM plays a pivotal role in fields like 

bioinformatics, finance, medicine, remote sensing, natural language processing, and speech 

recognition, thus accentuating its pertinence across scientific, technological, and 

sociodemographic contexts (Feng et al., 2005). As SVM engenders an equilibrium between 

robust classification proficiency and the facilitation of complex data relations, cognizance of 

its computational intricacies and parameter tuning imperatives augments its judicious 

deployment within the manifold domains it encapsulates. 

To ascertain whether these characteristics had an impact on the values of bitcoin, ripple, 

or Ethereum, Kim et al. (2016) examined the social activities of cryptocurrency communities. 

To predict the price changes and the number of transactions, user comments and responses 
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from these forums were gathered and modelled using ML models such as SVM. The study's 

findings showed that the strategy accurately anticipated the price volatility of low-cost 

cryptocurrencies. According to Mallqui and Fernandes (2019), the accuracy rate of bitcoin 

price prediction can be increased by using a chosen collection of features in conjunction with 

the best data-mining model. Evaluations were conducted on ML models such ANN, SVM, and 

ensemble methods (based on RNN and k-means clustering). The suggested model was 

employed to forecast the highest, minimum, and closing bitcoin prices. In all time intervals, 

the SVM model with relief approach for attribute selection achieved the greatest and most 

reliable accuracy rate. Comparing the suggested model to models from earlier research works, 

it exhibited a 10% increase in prediction accuracy. 
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3.2. Performances Measures 

Three performance measures are used to evaluate the predicting power and effectiveness of 

the above machine learning classifiers in forecasting cryptocurrencies’ price and trading 

volume changing directions. They are described as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                         (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                    (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                      (14) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false 

negatives in confusion matrix respectively. In our case, positives refer to an upward trend in 

price or trading volume (output = 1) whilst negatives refer to a downward trend (output = 0). 

Accuracy serves as a fundamental performance metric, reflecting the model's ability to 

make correct predictions across all instances. The overall gap between estimated (or 

observed) values and the genuine value is what is meant by accuracy (Walther & Moore, 

2005). It quantifies the proportion of predictions that match the actual outcomes, offering a 

straightforward evaluation of overall correctness. While high accuracy is desirable, it may not 

provide a complete picture, especially in situations where class imbalances or specific goals 

exist. It is crucial to consider accuracy alongside other metrics to gain a comprehensive 

understanding of the model's effectiveness. 

Barnwal and colleagues (2019) solely employed accuracy as the performance metric to 

evaluate the Random Forests (RFs) model's effectiveness in predicting cryptocurrency prices, 

including Bitcoin. Hitam et al., (2019) similarly utilized accuracy as the performance criterion 

to assess the optimized SVM–PSO model's predictive performance for open and close prices 

across various cryptocurrencies, including Bitcoin, Litecoin, Ethereum, Ripple, Nem, and 

Stellar. 
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Sensitivity, also known as the true positive rate or recall, gauges the model's proficiency 

in correctly identifying positive instances. It quantifies the percentage of actual positive 

instances that the model accurately predicts as positive (Parikh et al., 2008). Sensitivity is 

particularly valuable in applications where missing positive instances could have serious 

implications. A high sensitivity indicates that the model is adept at capturing the occurrences 

of the positive trend, showcasing its sensitivity to detecting important events. Mcnally et al. 

(2018) used sensitivity together with RMSE, accuracy and precision as performance 

measures to test the performance of LSTM AND RNN in predicting daily price of Bitcoin. 

Complementing sensitivity, specificity focuses on the model's performance with negative 

instances. It measures the proportion of actual negative instances that the model correctly 

classifies as negative (Trevethan, 2017). Specificity reflects the model's ability to discern and 

classify instances that do not exhibit the trend or condition of interest. High specificity 

indicates the model's proficiency in accurately detecting cases where the negative trend is 

absent, underscoring its capability to avoid false alarms. Madan et al., (2015) assessed the 

performance of their predictive models using accuracy, sensitivity, and specificity as 

evaluation metrics. They applied binomial logistic regression, SVM, RF, and binomial GLM to 

predict Bitcoin price changes at different intervals—daily, every 10 minutes, and every 10 

seconds. Similarly, Ji et al., (2019) employed various performance metrics, including accuracy, 

sensitivity, specificity, and the F1 score, to evaluate their models. These models, which 

encompassed NN, LSTM, CNN, and a deep residual network, were utilized to predict daily 

Bitcoin prices. 

By considering accuracy, sensitivity, and specificity collectively, we gain a comprehensive 

insight into the model's strengths and weaknesses. While accuracy provides a general 

overview of correctness, sensitivity and specificity delve deeper into the model's ability to 

detect positive and negative instances, respectively. This multifaceted evaluation ensures a 

more thorough assessment of the model's performance, aiding in making well-informed 

decisions and optimizations to suit specific application requirements. 
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Chapter 4 

Dataset and Results 

 

 

4.1 Dataset 

 

The dataset used in this study consists of daily trading prices and volumes for 20 different 

cryptocurrencies including TRX, BCH, DOGE, ETC, ETH, LINK, USDT, XLM, XMR, XRP, XTZ, BAT, 

BTG, CVC, DASH, DCR, DGB, ENJ, ERG, and GLM. The data was collected from Yahoo Finance 

website and the sample period ranges from 09 November 2017 to 24 October 2022. As a 

result, the sample has 1808 observations. It is imperative to underscore that the selection of 

these cryptocurrencies for inclusion within the research emanated from a meticulous 

consideration of liquidity metrics, avoiding reliance upon market capitalization. Indeed, the 

chosen set constitutes the upper tier of crypto assets in terms of trading activity, proved their 

dominant position in the trading environment. The careful selection of cryptocurrencies 

based on liquidity criteria rather than pure market capitalization highlights the rigidity and 

empirical nature of the analytical approach. 

The past cryptocurrencies price data were used as input, the next-day price trends were 

generated as output (1 if price goes up, 0 if goes down). Same for volume forecasting, past 

trading volume data were used as input to generate the next day trading volume trend (1 if 

volume increase, o if decrease). The dataset was then split into a training set and a testing set, 
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with the training set consisting of the first 80% of the data and the testing set consisting of 

the remaining 20%.  

To investigate the impact of backdating length on prediction effectiveness, the known 

prices, and volumes for the past 7, 14, 21, and 30 days were utilized as inputs to generate 

predictions. 

We employed the Python software to perform all classification tasks. The prediction 

process was carried out for each of the 20 cryptocurrencies in the dataset. The use of multiple 

cryptocurrencies ensures that the performance of the machine learning models is not biased 

towards any cryptocurrency. Furthermore, the use of multiple prediction runs helps to 

account for any variability in the results and provides a more robust estimate of the 

performance of each model. Finally, the results of each cryptocurrency were averaged to 

obtain the final performance metrics reported in this study. 

 

 

4.2 Results and Analysis 

4.2.1 Average Forecasting Results 

 

Tables 2 and 3 show the predictive ability of different types of machine learning classifier 

when they are given different backdating lengths (7, 14, 21 and 30 days in the past 

respectively). For most prediction methods, the accuracy hovers around 0.5. In addition, the 

sensitivity and specificity obtained by the NB method exhibit a large difference for both price 

and volume trend prediction, sensitivity up to greater than 0.8 but specificity down to less 

than 0.2. When predicting volume trend, LR and SVM both obtained high specificity but low 

sensitivity.  

Among the classifiers tested for price trend prediction, the best performances of each 

classifier in terms of accuracy are as follows: NB achieved 0.5010±0.02 given 14 days price 

data. LR achieved the highest accuracy of 0.5161±0.02 using 7 days data. K-NN achieved its 
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highest of 0.5026±0.04 given 7 days data. RT achieved its highest 0.5010±0.04 accuracy also 

using 7 days data. And SVM achieved 0.5103±0.03 accuracy given 30 days price data.  

The best performance by sensitivity achieved by NB is 0.7566±0.09 when using 7 days 

data, 0.5276±0.34 by LR, 0.4934±0.05 by k-NN, also using 7 days data. RT achieved its highest 

sensitivity 0.4956±0.04 by using 30 days data. SVM achieved its highest 0.5471±0.30 in 

sensitivity given 7days price data.  

The best performances by specificity are as follows: NB achieved 0.4174±0.25 given 21 

days data. LR achieved the highest specificity of 0.5945±0.24 using 21 days data. K-NN 

achieved its highest of 0.5109±0.06 given 7 days data. RT achieved its highest 0.5148±0.06 

specificity also using 7 days data. And SVM achieved 0.5252±0.29 specificity given 21 days 

price data. 

For trading volume trend prediction, the following are the best performances in terms of 

accuracy: Naive Bayes (NB) achieved 0.5139±0.03 using 14 days price data. LR achieved the 

highest accuracy of 0.5761±0.03 with 30 days of data. K-Nearest Neighbors (K-NN) reached 

its peak accuracy of 0.5458±0.03 with a 7-day data window. RT achieved its highest accuracy 

of 0.5370±0.03 when using 21 days of data. SVM achieved an accuracy of 0.5474±0.03 when 

considering 7 days of price data for prediction. 

For trading volume trend prediction, the best performance by sensitivity achieved by NB 

is 0.8400±0.17 with 7 days data. Logistic Regression (LR) attained a sensitivity of 

0.4267±0.13, using 30 days of data. K-NN achieved a sensitivity of 0.5314±0.05 with a 7-day 

data window. RT obtained its highest sensitivity of 0.5149±0.04 when using 30 days of data. 

SVM achieved a sensitivity of 0.3390±0.31 when considering 7 days of price data for 

prediction. 

The best performances by specificity are as follows: Naive Bayes (NB) achieved 

0.2789±0.27 using 30 days price data. LR achieved the highest specificity of 0.8190±0.14 with 

7 days of data. K-NN reached its highest specificity of 0.5581±0.04 also with 7 days of data. 

RT obtained its highest specificity of 0.5619±0.03 when using 30 days of data. SVM obtained 

the highest specificity of 0.8153±0.22 given 21 days of volume data. 
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Table 2 Summary of average forecasting results for prices 

 
NB LR k-NN  
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

7 Days 0.4972±0.02 0.7566±0.09 0.2426±0.07 0.5161±0.02 0.5276±0.34 0.5055±0.33 0.5026±0.04 0.4934±0.05 0.5109±0.06 

14 Days 0.5010±0.02 0.7553±0.10 0.2534±0.08 0.5116±0.03 0.5049±0.30 0.5143±0.30 0.4936±0.03 0.4822±0.06 0.5031±0.05 

21 Days 0.4888±0.03 0.5575±0.27 0.4174±0.25 0.5041±0.03 0.4069±0.22 0.5945±0.24 0.4862±0.02 0.4645±0.05 0.5076±0.04 

30 Days 0.4983±0.02 0.6959±0.19 0.3161±0.18 0.4990±0.03 0.5085±0.25 0.4906±0.26 0.4913±0.02 0.4703±0.04 0.5100±0.05 

  
RT SVM  
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

7 Days 0.5010±0.04 0.4862±0.05 0.5148±0.06 0.5090±0.04 0.5471±0.30 0.4750±0.31 

14 Days 0.4942±0.02 0.4951±0.04 0.4929±0.04 0.5102±0.03 0.5356±0.32 0.4775±0.31 

21 Days 0.4941±0.03 0.4834±0.05 0.5046±0.03 0.5041±0.03 0.4713±0.30 0.5252±0.29 

30 Days 0.5008±0.03 0.4956±0.04 0.5043±0.05 0.5103±0.03 0.5315±0.27 0.4828±0.28 

 

Table 3 Summary of average forecasting results for volumes 

 
NB LR k-NN  
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

7 Days 0.5025±0.02 0.8211±0.24 0.2142±0.22 0.5687±0.03 0.2863±0.21 0.8190±0.14 0.5458±0.03 0.5314±0.05 0.5581±0.04 

14 Days 0.5139±0.03 0.8400±0.17 0.2095±0.18 0.5696±0.04 0.3556±0.17 0.7665±0.09 0.5237±0.03 0.5013±0.06 0.5455±0.05 

21 Days 0.5036±0.03 0.8291±0.16 0.2044±0.16 0.5751±0.04 0.3943±0.17 0.7396±0.11 0.5184±0.02 0.4896±0.04 0.5440±0.05 

30 Days 0.4978±0.03 0.7496±0.28 0.2789±0.27 0.5761±0.03 0.4267±0.13 0.7040±0.09 0.4899±0.03 0.4633±0.06 0.5127±0.04 

  
RT SVM  
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

7 Days 0.5184±0.03 0.5111±0.03 0.5254±0.05 0.5474±0.03 0.3390±0.31 0.7401±0.25 

14 Days 0.5311±0.03 0.5015±0.03 0.5585±0.04 0.5383±0.03 0.2694±0.29 0.7876±0.25 

21 Days 0.5370±0.03 0.5092±0.04 0.5619±0.03 0.5332±0.03 0.2182±0.23 0.8153±0.22 

30 Days 0.5369±0.03 0.5149±0.04 0.5553±0.04 0.5368±0.02 0.2104±0.24 0.8127±0.23 
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4.2.2 Performance by Time Horizons 

 

To investigate whether the number of days tracing back influences the overall forecasting 

performance, we averaged the performance of the five methods in four backdating lengths, 

as shown in Figures 2 and 3.  

When forecasting price trends as shown in Figure 2, it becomes evident that the model 

performs most effectively at the shortest backtracking time of 7 days. At this interval, the 

accuracy score reaches its highest value of 0.5052, while sensitivity achieves its peak value of 

0.5622. However, as the backtracking time increases to 14 days, both accuracy and sensitivity 

scores drop, reaching their lowest levels of 0.5021 and 0.5546, respectively, at 21 days. 

Notably, as the backtracking time extends further to 30 days, there is a partial recovery in 

both accuracy and sensitivity, although they do not reach the levels observed at 14 days. The 

accuracy score at 30 days is 0.4999, and sensitivity reaches 0.5404. In contrast, the behavior 

of specificity values exhibits a symmetrical pattern. At the shortest backtracking time of 7 

days, the model's specificity is the lowest, with a value of 0.4498. As the backtracking time 

increases to 14 days, specificity values improve, reaching their highest value of 0.5099 at 21 

days. However, with a further increase in backtracking time to 30 days, specificity values 

decline to 0.4607, although they do not reach the level observed at 14 days. 

Figure 3 displays the accuracy, sensitivity, and specificity of the volume forecasting model 

over different time intervals (7 days, 14 days, 21 days, and 30 days). According to the accuracy 

scores, it is evident that there is a slight decrease over time. The accuracy values range from 

0.5366 for the 7-day interval to 0.5275 for the 30-day interval. This indicates that the model's 

overall predictive accuracy slightly declines as the time horizon increases. Similarly, the 

sensitivity scores, which measure the model's ability to correctly identify positive cases, 

exhibit a decreasing trend as the time interval lengthens, ranging from 0.4700 to 0.5039. 

These results suggest that the model's ability to correctly identify positive cases experiences 

a slight reduction over longer prediction periods. In terms of specificity, the scores remain 

relatively stable across the different time intervals, with values ranging from 0.5714 to 0.5735. 
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This suggests that the model maintains a consistent level of accuracy in identifying negative 

cases, regardless of the length of the prediction period. 

 

 

 

Figure 2  Averaged performance of the five methods in price forecasting given 7, 14, 21 and 30 days data. 

 

 

 

Figure 3 Averaged performance of the five methods in volume forecasting given 7, 14, 21 and 30 days data. 
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4.2.3 Performance by Methods 

 

We seek to examine the predictive power and applicability of the five methods excluding 

the number of days of backdating. Tables 3 and 4 show the average performance values 

obtained for each machine learning classifier after averaging over four time periods. One can 

observe that the accuracy scores for volume forecasting (Table 4) tend to be higher compared 

to those for price forecasting (Table 3). This suggests that the models perform relatively 

better in changes in trading volume compared to price. The high accuracy of volume forecasts 

can be attributed to a variety of factors. Volume is a fundamental indicator of market activity 

and liquidity, and the factors it is subject to may exhibit more discernible patterns that can be 

captured by the model, leading to higher accuracy. Price forecasting, on the other hand, is 

often more challenging as it is influenced by numerous complex and interrelated factors that 

often introduce greater uncertainty and noise, making it more difficult for models to 

accurately predict price trends. 

 

Table 4 Average performances of price forecasting by different classification methods 
 

Performance Measures 

  Accuracy Sensitivity Specificity 
NB 0.4963 0.6913 0.3074 
LR 0.5077 0.4870 0.5262 
k-NN 0.4934 0.4776 0.5079 
RT 0.4975 0.4901 0.5042 
SVM 0.5084 0.5214 0.4901 

 

Table 5 Average performances of volume forecasting by different classification methods 

  Performance Measures 

  Accuracy Sensitivity Specificity 
NB 0.5045 0.8099 0.2267 
LR 0.5724 0.3658 0.7573 
k-NN 0.5195 0.4964 0.5401 
RT 0.5309 0.5092 0.5503 
SVM 0.5389 0.2593 0.7889 
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In addition to the focus on accuracy, we can draw some patterns and observations about 

each model. For Naï ve Bayes predicting changes in price, the recall score is 0.6913, indicating 

that it correctly identifies positive price trends (increases) 69.13% of the time, and the 

specificity is 0.3074, indicating that it correctly identifies negative price trends (decreases) 

only 30.74% of the time. This difference in predictive power is similarly enlarged when 

forecasting changes in trading volumes. The sensitivity score is 0.8099, indicating a superior 

ability to identify positive volume trends. However, the specificity is low at 0.2267, indicating 

a poor ability to identify negative volume trends. 

Logistic regression, RT and k-NN all show better ability in identifying negative trends 

rather than identifying positive trends. Again, this difference is magnified when forecasting 

changes in trading volumes. Especially, LR achieves an accuracy of 0.5724, the highest among 

the methods for volume forecasting. The recall is 0.3658, indicating a moderate ability to 

identify positive volume trends. The specificity is 0.7573, indicating a good ability to identify 

negative volume trends.  

SVM's performance patterns differ between price and volume forecasting. In price 

forecasting, SVM achieves the highest accuracy among the models, indicating its overall 

reliability. It shows relatively balanced recall and specificity scores, suggesting that it 

performs reasonably well in identifying both positive and negative price trends. However, in 

volume forecasting, SVM's recall score is notably lower compared to other models, indicating 

a reduced ability to detect positive volume trends. Nevertheless, its high specificity score 

suggests that SVM can still identify negative volume trends relatively well. 
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Figure 4 Overall counts of the five machine learning classifiers that received the highest values in accuracy, sensitivity, or 
specificity 

 

We divided all forecasts into four groups by backdating length, namely 7 days, 14 days, 21 

days, and 30 days, and since there are four groups each for price forecasts and volume 

forecasts, a total of eight rankings are known. Figure 4. provides an overview of the highest 

counts achieved by five machine learning classifiers (Logistic Regression, Naive Bayes, 

Support Vector Machine, k-Nearest Neighbors, and Regression Tree) in accuracy, sensitivity, 

specificity in eight instances. One can see that among these classifiers, Logistic Regression 

demonstrated the highest accuracy score, achieving the highest count of 7 out of 8 instances. 

Naive Bayes, on the other hand, exhibited the highest sensitivity count in all 8 instances, 

demonstrated its competence identifying positive directions. In terms of specificity, both 

Logistic Regression and Support Vector Machine achieved the highest counts, with 3 

instances each out of a total of 10. It is important to note that k-Nearest Neighbors and 

Regression Tree models achieved the lowest counts across all metrics, with only 1 instance 

of achieving the highest specificity count. 
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4.2.4 Performance by Cryptocurrencies 

 

While our initial approach involved the calculation of averaged predictions across all 

twenty cryptocurrencies, thereby providing an overarching assessment of the performance 

of each machine learning method, a more intricate analysis is warranted to unravel the 

diverse facets underlying these outcomes. Within this context, an exploration of the 

individual cryptocurrency’s prediction results assumes a paramount role, enabling us to 

meticulously discern the categories of cryptocurrencies that stand out as exemplars of 

prediction success across varying contextual dimensions. 

In pursuit of this endeavor, we embarked on a meticulous examination of the results, 

meticulously identifying the optimal single cryptocurrency for each model and time horizon, 

based on the dual performance measures of sensitivity and specificity. This selection allows 

us to take a more nuanced look at unique cryptocurrencies that show higher applicability 

within each machine learning method and time horizon. 

 

 

Table 6 Best Single Crypto in Price Trend Predictions 

 NB LR k-NN RT SVM 
 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

7 Days BTG XLM ERG DOGE BTG ERG ERG USDT LINK DOGE 

14 

Days 
DASH XLM GLM DOGE USDT ERG USDT DGB GLM DOGE 

21 

Days 
DASH BTG GLM DOGE USDT ERG USDT DOGE XMR GLM 

30 

Days 
BCH DGB TRX USDT LINK DOGE XLM ERG TRX DOGE 

 

Table 7 Best Single Crypto in Trading Volume Trend Predictions 

 NB LR k-NN RT SVM 
 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

7 Days DASH DCR ERG CVC ERG GLM ERG CVC GLM DOGE 

14 

Days 
DASH DCR DCR BTG DCR ETC GLM DOGE BAT DOGE 

21 

Days 
DOGE DCR USDT CVC XTZ BTG XRP LINK GLM DOGE 

30 

Days 
DOGE DCR GLM DOGE ENJ XTZ XLM XTZ GLM DOGE 
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The experiment indicates that the effectiveness of machine learning methods for 

cryptocurrency prediction tasks is nuanced and context-dependent, varying between price 

and trading volume prediction. Certain cryptocurrencies consistently demonstrate strong 

predictive potential across multiple models and time periods. For example, for prize trend 

prediction, in terms of specificity, Dogecoin (DOGE) achieved the best-performing 

cryptocurrency of SVM for 7, 21, 30 days’ time lags in terms of specificity, also in trading 

volume prediction, DOGE again achieved the best-performing cryptocurrency of SVM for all 

four time lags. 

While certain cryptocurrencies exhibit consistent predictive potential across both price 

and trading volume prediction tasks, there are notable differences in the optimal choices for 

each task. Dash (DASH) performs stable in terms of sensitivity when utilizing NB model. In 

price trend prediction, DASH achieved best-performing cryptocurrency in 14 days and 21 

days instances, it also achieved best-performing cryptocurrency in 7 days and 14 days 

instances for trading volume trend prediction. However, the sensitivity obtained from the 

predictions using other machine learning methods did not make the DASH perform more 

prominently, this superior performance was only present in the predictions of NB. 

These findings underscore the importance of adopting a tailored approach when 

selecting machine learning methods for different prediction tasks and cryptocurrencies. The 

results further emphasize the need for continuous refinement and adaptation of prediction 

models to capture the evolving dynamics of the cryptocurrency market. 
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To summarize our results, in terms of accuracy, the best performer for price prediction is 

SVM, the worst is k-NN, the best performer for volume prediction is logistic regression and 

the worst is NB. The time horizon effect shows that shorter backtracking times yield higher 

accuracy in predicting both cryptocurrency prices and volumes. 

From a managerial perspective, SVM should be adopted by traders to predict price trend 

and LR should be adopted to predict volume trend as they showed relatively stable higher 

accuracy in each experiment. To be more precise, NB can be used as an aid in predicting 

upward trend for both price and trading volume as it performs well in sensitivity. For trading 

volume prediction, both LR and SVM can be used to predict downward trends.  

Need to know that, while some cryptocurrencies maintain consistent applicability across 

different prediction tasks, others show variability in their predictive potential. It is important 

to tailor the predictive model to the task and the specific attributes of the cryptocurrency 

under consideration. 

The limitation of moderate accuracy in our study arises primarily from the inherent 

difficulty of predicting directions in a classification problem compared to predicting price or 

volume levels. Unlike predicting price or volume levels, where the model can generate 

continuous values, predicting directions involves determining whether the market will move 

up or down. This binary nature of the prediction task makes it more susceptible to noise and 

uncertainties. Another notable limitation of our study is that the parameters of the 

Regression Trees (RT) and Support Vector Machine (SVM) models were not fully optimized, 

different parameter configurations can significantly impact the model's accuracy and 

generalization capabilities. To address this limitation, future research should prioritize an in-

depth exploration of parameter optimization techniques to enhance the accuracy and 

reliability of predictive models. 
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Chapter 5 

Conclusion 
 

 

Motivated by growing interest in cryptocurrency trading and the need for accurate 

forecasting tools, the study expands the scope beyond popular cryptocurrencies and 

investigates 20 different cryptocurrencies, offering a comprehensive analysis of machine 

learning models' applicability in cryptocurrency prediction. The selected models for study 

include naï ve Bayes, support vector machines, logistic regression, regression trees, and the 

K-nearest neighbors’ algorithm. Performance measures such as accuracy, sensitivity, and 

specificity are used to assess the models.  

In terms of major findings, when examining the predictive characteristics of different 

models, the study reveals that the predictive power and applicability of different models are 

more pronounced in predicting volume trends than in price forecasting. In addition, Naï ve 

Bayes shows exclusive ability in identifying positive trends. Logistic regression achieves the 

highest accuracy and specificity the most times, demonstrating greater applicability. Both 

regression trees and k-NN performed stably and did not reflect exceptional predictive power. 

SVM achieves the highest accuracy among the models in price trends forecasting and shows 

good ability in predicting negative changes in trading volume. 

When investigating whether the number of days tracing back influences the overall 

forecasting performance, we find that shorter backtracking times yield higher accuracy and 

sensitivity in predicting cryptocurrency prices. However, specificity shows a different pattern, 

with improved performance at intermediate backtracking times.  
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The research also highlights the importance of considering volume changes in 

cryptocurrency forecasting. The accuracy and sensitivity of the volume forecasting model 

exhibited a slight decrease as the time interval lengthened. The specificity scores remained 

relatively stable across different time intervals, indicating consistent accuracy in identifying 

negative cases regardless of the prediction period.  

Due to their unique attributes, market behaviors and external influences, 

cryptocurrencies exhibit varying degrees of predictive potential across different forecasting 

tasks (price and trading volume). Certain cryptocurrencies like DOGE may consistently 

demonstrate predictive capabilities across various tasks. Conversely, cryptocurrencies like 

DASH may specialize or excel in specific aspects of prediction. This emphasizes the 

importance of carefully selecting appropriate machine learning methods and considering 

cryptocurrency characteristics when designing prediction models. 

In conclusion, this thesis contributes to the field of cryptocurrency prediction by 

investigating the price and trading volume changes of a broad range of cryptocurrencies. The 

study emphasizes the importance of machine learning techniques and the incorporation of 

relevant indicators in forecasting models. The findings shed light on the optimal backtracking 

time for accurate predictions and underscore the significance of volume analysis in 

understanding cryptocurrency market trends. The research findings have implications for 

investors and researchers interested in leveraging machine learning algorithms to forecast 

cryptocurrency movements and make informed investment decisions. In ever-changing 

supply chain operations, accuracy, efficiency, and adaptability are critical, and insights are 

provided by our study. By harnessing the predictive potential of machine learning to 

anticipate price fluctuations and volume dynamics in the cryptocurrency space, supply chain 

practitioners can leverage this powerful technology to forecast demand patterns, optimize 

inventory levels, and streamline distribution networks. Thus, the response to our experiment 

extends beyond the financial sector, bringing about a paradigm shift in the supply chain, 

propelling it into an era defined by data-driven foresight and operational excellence. 
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Appendix 
 

 

 

In the appendix, we provide additional detailed information that complements the main 

text. Firstly, we outline the steps involved in our prediction process with a multi-level 

hierarchical graph, giving readers a clear understanding of our methodology. Next, we 

present detailed examples of the data used during the data collection phase. We also show 

the specific data formats resulting from our manual data processing, using Crypto1 as an 

example. Additionally, we offer a practical view of our research by sharing a sample of 

machine learning model predictions. To provide context, the appendix lists the real virtual 

currency types corresponding to Crypto1 through Crypto20. This supplementary 

information is meant to enhance the overall clarity and completeness of our research. 
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Figure 5A Steps of Forecasting Experiment 
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The hierarchical graph outlines the structured path we've undertaken to develop a 

cryptocurrency forecasting model, harnessed through Python programming and the sklearn 

library. Beginning with data preparation, we embark on data collection, bringing together a 

range of relevant cryptocurrency data. Then data exportation, where we seamlessly merge 

files through importing and consolidation, ensuring clarity and coherence. The process is 

bolstered by meticulous handling of importing files and data consolidation, streamlining the 

organizational aspects. Moving into Data Cleaning, a vital phase, we address missing values 

with a choice between 'Drop' or 'Fill' strategies, emphasizing data integrity. Further, we 

handle Outliers to prevent distortions. Repeat Value Processing adds finesse to data 

refinement, strengthening the dataset. In the Modeling realm, our predictive structure takes 

form. This involves crafting Training and Test Datasets through 'train_test_split' for robust 

validation. The selection of machine learning methods—Gaussian Naive Bayes, Logistic 

Regression, K-Nearest Neighbors, Decision Tree, and Support Vector Classification—through 

sklearn library.  Training Models unfolds as we 'fit' algorithms, translating theoretical 

prowess into practical application. Evaluation gains prominence through Model Accuracy, 

gauged via 'accuracy_score', 'recall_score', and a confusion matrix that provides the specificity 

score. 

The model can be formally used for prediction after all the above steps have been 

completed, and we have used an automated form of reading data files so that the 20 

cryptocurrencies are predicted sequentially, which makes our manual work easier and 

automatically generates results that are easy to read. 
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Table 8A Cryptocurrency 1-20 Name Index 

 

Index Cryptocurrency 

Crypto1 TRX 

Crypto2 BCH 

Crypto3 DOGE 

Crypto4 ETC 

Crypto5 ETH 

Crypto6 LINK 

Crypto7 USDT 

Crypto8 XLM 

Crypto9 XMR 

Crypto10 XRP 

Crypto11 XTZ 

Crypto12 BAT 

Crypto13 BTG 

Crypto14 CVC 

Crypto15 DASH 

Crypto16 DCR 

Crypto17 DGB 

Crypto18 ENJ 

Crypto19 ERG 

Crypto20 GLM 
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Table 9A Sample Raw Data of Cryptocurrency Price 

Day Crypto1 Crypto2 Crypto3 Crypto4 Crypto5 … Crypto15 Crypto16 Crypto17 Crypto18 Crypto19 Crypto20 

1 0.002344 654.302979 0.001415 14.2095 320.884003  438.83362 38.94766 0.011462 0.025334 10.01528 0.251504 

2 0.002013 1007.41998 0.001163 14.6031 299.252991  680.38483 37.34174 0.00967 0.023154 9.632342 0.240394 

3 0.002003 1340.44995 0.001201 19.4209 314.681  544.34497 40.48812 0.010777 0.030556 12.19917 0.260737 

4 0.001783 1388.85999 0.001038 15.1837 307.90799  544.38794 43.69431 0.011643 0.036529 11.94643 0.269225 

5 0.002112 1353.98999 0.001211 16.1059 316.716003  541.84808 43.85643 0.011688 0.031517 10.28418 0.273176 

6 0.002485 1273.53003 0.001184 17.865999 337.631012  533.5166 41.64148 0.012079 0.026801 9.813058 0.26776 

7 0.002322 1212.40002 0.001339 17.548 333.356995  542.23584 40.87409 0.011692 0.024619 9.730766 0.26521 

8 0.002209 900.776001 0.00139 16.880699 330.924011  580.20532 44.43181 0.011548 0.026644 9.138749 0.268553 

9 0.001984 1185.47998 0.001313 17.244499 332.394012  565.84845 44.85264 0.011682 0.030163 12.77797 0.280568 

10 0.002028 1254.53003 0.001373 17.7185 347.612  623.34863 43.61602 0.011207 0.029328 9.751252 0.280939 

…             

1799 6.896555 1.000074 0.112451 140.50818 0.488966  57.88554 36.54181 0.01217 0.593647 3.030456 0.349202 

1800 6.886903 1.000087 0.111889 139.52072 0.481507  56.947067 37.25486 0.012419 0.598065 3.063868 0.362993 

1801 7.175411 1.000057 0.113487 143.16438 0.47701  55.901173 35.89361 0.012143 0.596547 3.008812 0.358017 

1802 7.333412 1.000069 0.114267 143.612 0.479918  54.711063 35.50415 0.011641 0.578156 2.894637 0.36096 

1803 7.117894 1.000106 0.112434 146.09383 0.465977  54.766109 35.19766 0.011555 0.571334 2.883029 0.351165 

1804 6.778678 1.00006 0.110749 145.04485 0.451227  55.425442 36.36702 0.011572 0.565699 2.704482 0.349128 

1805 6.666734 0.999994 0.110085 141.20764 0.448084  55.705006 35.73229 0.011591 0.565986 2.696064 0.347633 

1806 6.813489 1.000123 0.110925 140.72948 0.461098  56.89362 36.33366 0.011761 0.576964 2.675471 0.353498 

1807 6.870749 1.000085 0.111254 142.80187 0.46547  54.965897 35.97055 0.011563 0.569016 2.611335 0.355219 

1808 7.065635 1.000077 0.111954 144.48808 0.469033  55.269115 36.07995 0.011607 0.588018 2.597597 0.3529 
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Table 10A Sample Raw Data of Cryptocurrency Trading Volume 

 

Day Crypto1 Crypto2 Crypto3 Crypto4 Crypto5 … Crypto15 Crypto16 Crypto17 Crypto18 Crypto19 Crypto20 

1 2924350 710387008 6259550 129201000 893249984  112418333 1424076 4034612 334718 3673 2871866 

2 2193620 5195420160 4246520 299856992 885985984  604342902 1880400 5227778 517305 3927 5066971 

3 1748460 5139769856 2231080 958982016 842300992  395975519 1516493 2941164 1530045 8132 2562124 

4 2174370 8371319808 3288960 697452992 1613479936  157703298 761832 3573402 3770585 8034 2565559 

5 2889150 4850570240 2481270 350880000 1041889984  131700542 1778201 3953404 2281897 4296 2731359 

6 4040400 1697910016 2660340 449737984 1069680000  124162509 1186590 3369809 885655 656 3149351 

7 5008060 1321779968 2840180 149567008 722665984  121337192 988079 2967144 511911 148 2982238 

8 5008060 1321779968 2840180 149567008 722665984  185330865 1134821 3021765 438179 2 2751159 

9 5082450 2034690048 3423010 182720992 797254016  106123820 1681857 3264658 1160168 132 3067851 

10 5720510 3203429888 2787480 150956992 621732992  134142921 1285876 2150200 602698 252 2990705 

...             

1799 698236582 211846099 242691429 496015066 13113767755  78587685 5767434 6400681 20173273 1057547 3474197 

1800 476732078 167106067 182208164 282062942 6798512624  81548735 10967231 4764351 21055606 1244516 93754417 

1801 300535408 177467027 162246280 267766808 7491625206  81475508 3272557 11664076 31577027 1190814 50670458 

1802 350961967 185301371 174261450 318526984 9401189650  83190607 2377205 3628686 38211637 1464364 38769327 

1803 334605707 216478780 239236218 337779781 10416747806  67410854 1775207 2702514 25221214 1631984 10055898 

1804 384236864 161389501 287297160 282074315 8350692785  87398882 2780870 3282779 27474924 2116818 10555324 

1805 309499843 170432867 241388629 292496953 9009111996  82049558 7718806 1919384 21278076 1767858 6061279 

1806 335452050 204900553 224787600 297010750 10412565245  90198088 4101073 3205818 22536665 1778151 10540377 

1807 255324499 181042453 159431212 390333675 7175324564  97993122 2151334 2791486 23373309 1681436 6814043 

1808 275426762 185071846 182523575 352468259 9909510925  94755600 1654382 2837126 40578312 1564109 6580500 
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Table 9A and Table 10A 

In the above two tables, we show the data required for the experiment. They are past 

price and daily volume data for crypto1 through crypto20, respectively. The table has a total 

of 1808 rows, representing the prices and volumes for the past 1808 days from the start date. 
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Table 11A Instances of Price Forecasting of 7 days’ Time Horizon for Crypto1 

Instance Day1 Day2 Day3 Day4 Day5 Day6 Day7 Output 

1 0.002344 0.002013 0.002003 0.001783 0.002112 0.002485 0.002322 0 

2 0.002013 0.002003 0.001783 0.002112 0.002485 0.002322 0.002209 0 

3 0.002003 0.001783 0.002112 0.002485 0.002322 0.002209 0.001984 1 

4 0.001783 0.002112 0.002485 0.002322 0.002209 0.001984 0.002028 0 

5 0.002112 0.002485 0.002322 0.002209 0.001984 0.002028 0.002002 1 

6 0.002485 0.002322 0.002209 0.001984 0.002028 0.002002 0.002134 1 

7 0.002322 0.002209 0.001984 0.002028 0.002002 0.002134 0.002143 1 

8 0.002209 0.001984 0.002028 0.002002 0.002134 0.002143 0.002302 0 

9 0.001984 0.002028 0.002002 0.002134 0.002143 0.002302 0.002105 0 

…         

1793 0.062072 0.062427 0.062832 0.061627 0.061776 0.061009 0.063941 0 

1794 0.062427 0.062832 0.061627 0.061776 0.061009 0.063941 0.061823 0 

1795 0.062832 0.061627 0.061776 0.061009 0.063941 0.061823 0.061821 1 

1796 0.061627 0.061776 0.061009 0.063941 0.061823 0.061821 0.062665 0 

1797 0.061776 0.061009 0.063941 0.061823 0.061821 0.062665 0.06217 0 

1798 0.061009 0.063941 0.061823 0.061821 0.062665 0.06217 0.061783 1 

1799 0.063941 0.061823 0.061821 0.062665 0.06217 0.061783 0.062213 0 

1800 0.061823 0.061821 0.062665 0.06217 0.061783 0.062213 0.061662 0 

1801 0.061821 0.062665 0.06217 0.061783 0.062213 0.061662 0.06164 1 
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Table 12A Instances of Trading Volume Forecasting of 14 days’ Time Horizon for Crypto1 

Instance Day1 Day2 Day3 Day4 Day5 … Day10 Day11 Day12 Day13 Day14 Output 

1 2924350 2193620 1748460 2174370 2889150  5709820 4289470 3909200 3417520 4119730 1 

2 2193620 1748460 2174370 2889150 4040400  4289470 3909200 3417520 4119730 4402340 0 

3 1748460 2174370 2889150 4040400 5008060  3909200 3417520 4119730 4402340 4204470 1 

4 2174370 2889150 4040400 5008060 5082450  3417520 4119730 4402340 4204470 4704770 1 

5 2889150 4040400 5008060 5082450 5720510  4119730 4402340 4204470 4704770 6245890 1 

6 4040400 5008060 5082450 5720510 5709820  4402340 4204470 4704770 6245890 6405580 0 

7 5008060 5082450 5720510 5709820 4289470  4204470 4704770 6245890 6405580 6065010 1 

8 5082450 5720510 5709820 4289470 3909200  4704770 6245890 6405580 6065010 7852660 0 

9 5720510 5709820 4289470 3909200 3417520  6245890 6405580 6065010 7852660 4155450 1 

… 
     

 
      

1786 292352772 388404433 318156914 302584824 290676174  565904749 352174118 475164602 484368346 698236582 0 

1787 388404433 318156914 302584824 290676174 344121613  352174118 475164602 484368346 698236582 476732078 0 

1788 318156914 302584824 290676174 344121613 299943015  475164602 484368346 698236582 476732078 300535408 1 

1789 302584824 290676174 344121613 299943015 252050650  484368346 698236582 476732078 300535408 350961967 0 

1790 290676174 344121613 299943015 252050650 226469326  698236582 476732078 300535408 350961967 334605707 1 

1791 344121613 299943015 252050650 226469326 565904749  476732078 300535408 350961967 334605707 384236864 0 

1792 299943015 252050650 226469326 565904749 352174118  300535408 350961967 334605707 384236864 309499843 1 

1793 252050650 226469326 565904749 352174118 475164602  350961967 334605707 384236864 309499843 335452050 0 

1794 226469326 565904749 352174118 475164602 484368346  334605707 384236864 309499843 335452050 255324499 1 
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Table 13A Instances of Price Forecasting of 21 days’ Time Horizon for Crypto1 

Instance Day1 Day2 Day3 Day4 Day5 … Day17 Day18 Day19 Day20 Day21 Output 

1 0.002344 0.002013 0.002003 0.001783 0.002112 
 

0.002048 0.002138 0.002062 0.002308 0.002068 1 

2 0.002013 0.002003 0.001783 0.002112 0.002485 
 

0.002138 0.002062 0.002308 0.002068 0.002244 0 

3 0.002003 0.001783 0.002112 0.002485 0.002322 
 

0.002062 0.002308 0.002068 0.002244 0.002118 0 

4 0.001783 0.002112 0.002485 0.002322 0.002209 
 

0.002308 0.002068 0.002244 0.002118 0.002073 1 

5 0.002112 0.002485 0.002322 0.002209 0.001984 
 

0.002068 0.002244 0.002118 0.002073 0.002116 1 

6 0.002485 0.002322 0.002209 0.001984 0.002028 
 

0.002244 0.002118 0.002073 0.002116 0.002144 0 

7 0.002322 0.002209 0.001984 0.002028 0.002002 
 

0.002118 0.002073 0.002116 0.002144 0.002085 1 

8 0.002209 0.001984 0.002028 0.002002 0.002134 
 

0.002073 0.002116 0.002144 0.002085 0.003055 1 

9 0.001984 0.002028 0.002002 0.002134 0.002143 
 

0.002116 0.002144 0.002085 0.003055 0.004275 1 

… 
            

1779 0.059871 0.059727 0.059548 0.05941 0.059595 
 

0.062832 0.061627 0.061776 0.061009 0.063941 0 

1780 0.059727 0.059548 0.05941 0.059595 0.061032 
 

0.061627 0.061776 0.061009 0.063941 0.061823 0 

1781 0.059548 0.05941 0.059595 0.061032 0.061014 
 

0.061776 0.061009 0.063941 0.061823 0.061821 1 

1782 0.05941 0.059595 0.061032 0.061014 0.060475 
 

0.061009 0.063941 0.061823 0.061821 0.062665 0 

1783 0.059595 0.061032 0.061014 0.060475 0.060879 
 

0.063941 0.061823 0.061821 0.062665 0.06217 0 

1784 0.061032 0.061014 0.060475 0.060879 0.061394 
 

0.061823 0.061821 0.062665 0.06217 0.061783 1 

1785 0.061014 0.060475 0.060879 0.061394 0.06232 
 

0.061821 0.062665 0.06217 0.061783 0.062213 0 

1786 0.060475 0.060879 0.061394 0.06232 0.062426 
 

0.062665 0.06217 0.061783 0.062213 0.061662 0 

1787 0.060879 0.061394 0.06232 0.062426 0.062784 
 

0.06217 0.061783 0.062213 0.061662 0.06164 1 
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Table 14A Instances of Trading Volume Forecasting of 30 days’ Time Horizon for Crypto1 

Instance Day1 Day2 Day3 Day4 Day5 … Day26 Day27 Day28 Day29 Day30 Output 

1 2924350 2193620 1748460 2174370 2889150 
 

10447300 8749920 33314700 44215300 21605600 0 

2 2193620 1748460 2174370 2889150 4040400 
 

8749920 33314700 44215300 21605600 17520500 1 

3 1748460 2174370 2889150 4040400 5008060 
 

33314700 44215300 21605600 17520500 18145200 1 

4 2174370 2889150 4040400 5008060 5082450 
 

44215300 21605600 17520500 18145200 20137200 1 

5 2889150 4040400 5008060 5082450 5720510 
 

21605600 17520500 18145200 20137200 48699100 1 

6 4040400 5008060 5082450 5720510 5709820 
 

17520500 18145200 20137200 48699100 174319008 1 

7 5008060 5082450 5720510 5709820 4289470 
 

18145200 20137200 48699100 174319008 192816992 0 

8 5082450 5720510 5709820 4289470 3909200 
 

20137200 48699100 174319008 192816992 139710000 1 

9 5720510 5709820 4289470 3909200 3417520 
 

48699100 174319008 192816992 139710000 336496000 1 

… 
            

1770 397542060 351830909 262000923 313019265 403942833 
 

565904749 352174118 475164602 484368346 698236582 0 

1771 351830909 262000923 313019265 403942833 353093809 
 

352174118 475164602 484368346 698236582 476732078 0 

1772 262000923 313019265 403942833 353093809 431504689 
 

475164602 484368346 698236582 476732078 300535408 1 

1773 313019265 403942833 353093809 431504689 359264471 
 

484368346 698236582 476732078 300535408 350961967 0 

1774 403942833 353093809 431504689 359264471 376538249 
 

698236582 476732078 300535408 350961967 334605707 1 

1775 353093809 431504689 359264471 376538249 300528950 
 

476732078 300535408 350961967 334605707 384236864 0 

1776 431504689 359264471 376538249 300528950 267696551 
 

300535408 350961967 334605707 384236864 309499843 1 

1777 359264471 376538249 300528950 267696551 378865177 
 

350961967 334605707 384236864 309499843 335452050 0 

1778 376538249 300528950 267696551 378865177 347069034 
 

334605707 384236864 309499843 335452050 255324499 1 
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Table 11A, Table 12A, Table 13A and Table 14A 

In Tables 11A, 12A, 13A, and 14A, we provide four different sets of data samples for 

prediction using Crypto1 as an example. These tables contain examples used in the prediction 

process. Noted that, because the time horizon, that is the time tracing back are different, the 

times windows in each table are different. In addition, the number of instances generated 

varies accordingly due to the time window. For example, during the 7-day time window, 1801 

instances were created. In the 14-day time window, 1794 instances were created; in the 21-

day time horizon, 1787 instances were created; and in the 30-day time horizon, 1778 

instances were created. 
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Table 15A Sample Results of volume prediction of 7 days’ time horizon 

 NB LR k-NN RT SVM 

file accuracy recall specificity accuracy recall specificity accuracy recall specificity accuracy recall specificity accuracy recall specificity 

crypto1 0.4958 0.8555 0.1649 0.5623 0.2370 0.8617 0.4931 0.4624 0.5213 0.4765 0.4913 0.4628 0.5180 0.6012 0.4415 

crypto2 0.4820 0.7337 0.2604 0.5485 0.1893 0.8646 0.5180 0.4852 0.5469 0.4765 0.4438 0.5052 0.5706 0.3254 0.7865 

crypto3 0.4903 0.9535 0.0688 0.5429 0.1453 0.9048 0.5540 0.5698 0.5397 0.4958 0.4767 0.5132 0.5263 0.0058 1.0000 

crypto4 0.4848 0.9181 0.0947 0.5623 0.1345 0.9474 0.4931 0.4444 0.5368 0.5429 0.5614 0.5263 0.5346 0.0819 0.9421 

crypto5 0.5485 0.8814 0.2283 0.6260 0.6441 0.6087 0.5291 0.5085 0.5489 0.5319 0.5819 0.4837 0.6011 0.5424 0.6576 

crypto6 0.4986 0.2364 0.7194 0.5789 0.5333 0.6173 0.5956 0.5879 0.6020 0.5208 0.5697 0.4796 0.5346 0.0182 0.9694 

crypto7 0.5208 0.7771 0.2796 0.6066 0.5657 0.6452 0.5291 0.5714 0.4892 0.5180 0.6000 0.4409 0.5706 0.4514 0.6828 

crypto8 0.4958 0.9294 0.1099 0.5983 0.3235 0.8429 0.5485 0.5353 0.5602 0.5069 0.5353 0.4817 0.5429 0.1941 0.8534 

crypto9 0.4986 0.9213 0.0874 0.5457 0.4213 0.6667 0.5706 0.5225 0.6175 0.5679 0.5337 0.6011 0.5069 0.0506 0.9508 

crypto10 0.4626 0.9136 0.0955 0.6066 0.2778 0.8744 0.5568 0.5556 0.5578 0.4931 0.4753 0.5075 0.6039 0.4136 0.7588 

crypto11 0.5208 0.8824 0.1322 0.5374 0.2513 0.8448 0.5540 0.5615 0.5460 0.4792 0.4599 0.5000 0.5152 0.1872 0.8678 

crypto12 0.5319 0.8632 0.1637 0.4931 0.1000 0.9298 0.5817 0.5684 0.5965 0.5319 0.4632 0.6082 0.5152 0.1947 0.8713 

crypto13 0.4958 0.9231 0.1198 0.5374 0.0651 0.9531 0.5014 0.4734 0.5260 0.5429 0.4438 0.6302 0.5263 0.0237 0.9688 

crypto14 0.5042 0.9198 0.1658 0.5623 0.0370 0.9899 0.5429 0.4753 0.5980 0.5125 0.5000 0.5226 0.5596 0.0802 0.9497 

crypto15 0.4820 0.9586 0.0625 0.5291 0.0947 0.9115 0.5540 0.6095 0.5052 0.5014 0.5444 0.4635 0.5402 0.8521 0.2656 

crypto16 0.5042 0.0556 0.9503 0.6039 0.5944 0.6133 0.5568 0.5333 0.5801 0.5152 0.4611 0.5691 0.5125 0.1167 0.9061 

crypto17 0.4765 0.9363 0.1225 0.5623 0.0318 0.9706 0.5346 0.5350 0.5343 0.4931 0.4777 0.5049 0.5374 0.8089 0.3284 

crypto18 0.4958 0.8889 0.1421 0.5651 0.2865 0.8158 0.5319 0.4561 0.6000 0.5069 0.4678 0.5421 0.5346 0.1345 0.8947 

crypto19 0.5457 0.9301 0.1371 0.6233 0.6613 0.5829 0.5928 0.6452 0.5371 0.5900 0.6129 0.5657 0.5817 0.9247 0.2171 

crypto20 0.5152 0.9434 0.1782 0.5817 0.1321 0.9356 0.5789 0.5283 0.6188 0.5651 0.5220 0.5990 0.6150 0.7736 0.4901 
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Table 15A Sample Results of volume prediction of 7 days’ time horizon 

The table above shows a raw result sheet we generated after one single forecasting 

process. There are eight forecasting loops in total, and there are eight corresponding result 

sheets like this obtained. They are results of trading volume forecasting of 7 days, 14 days, 21 

days and 30 days; results of price forecasting of 7 days, 14 days, 21 days and 30 days, 

respectively. Table 8A below shows a sample of results of volume prediction of 7 days’ time 

horizon. For clarity and ease of comprehension, the results are presented in a tabular format 

with rows corresponding to individual cryptocurrencies (labeled as "crypto1" to "crypto20") 

and columns representing different performance measures. These measures include accuracy, 

recall, and specificity for each algorithm and prediction category. 
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List of Abbreviations 

 

 

 

 

Abbreviations Explanations 

ALSTM Attention-based Long Short Term Memory 

ANN Artificial Neural Network 

AR Auto regressive 

BO Bayesian Optimization 

CNN Convolutional Neural Network 

DFFNN Deep Feed-forward Neural Network 

FFNN Feed-forward Artificial Neural Network 

GBC Gradient Boosting Classifiers 

GBT Gradient Boosting Trees 

GLM Generalized Linear Mode 

GRNN Generalized Regression Neural Networks 

GRU Gated Recurrent Unit 

HARRV Heterogeneous Auto-Regressive Realized Volatility 

K-NN K-Nearest Neighbors 

LDA Attention-based LSTM 

LR Logistic Regression/Linear Regression 

LSTM Long Short Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MLP Multilayer Perceptron 

MSE Mean Square Error 

NB Naïve Bayes 

RBFNN Radial basis function neural networks 

RF Random Forest 

RMSE Root Mean Square Error 

RSM Random Sampling Method 

RT Regression Trees 

RV Realized volatility 

SVM Support Vector Machines 

SVR Support Vector Regression 

TAN Tree Augmented Naive 

TCN Temporal Convolutional Network 


