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Abstract for MSc

p-Adic L-functions attached to DirichletŠs character

Mohammadhossein Shahabi

This thesis aims to extend and elaborate on the initial sections of Neal KoblitzŠs article
titled "A New Proof of Certain Formulas for p-Adic L-Functions." KoblitzŠs article
focuses on the construction of p-adic L-functions associated with DirichletŠs character
and the computation of their values at s = 1. He employs measure-theoretic methods
to construct the p-adic L-functions and compute the Leopoldt formula Lp(1,χ).

To begin, we devote the Ąrst section (1.1) to providing comprehensive proof of DirichletŠs
theorem for prime numbers. This is done because the theorem serves as a noteworthy
example of how Dirichlet L-functions became relevant in the Ąeld of Number Theory.

In the second chapter, we introduce the complex version of Dirichlet L-functions and
Riemann Zeta functions. We explore their analytical properties, such as functional
equations and analytic continuation. Subsequently, we construct the Ąeld of p-adic
numbers and equip it with the p-adic norm to facilitate analysis. We introduce measures
and perform p-adic integrations.

Finally, we delve into the concept of p-adic interpolation for the Riemann Zeta function,
aiming to establish the p-adic Zeta function. To accomplish this, we employ MazurŠs
measure-theoretic approach, utilizing the tools introduced in the third chapter. The
thesis concludes by incorporating KoblitzŠs work on this subject.
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Chapter 1

Introduction

1.1 An overview on DirichletŠs theorem for prime

numbers

In this section, we present DirichletŠs theorem for prime numbers, which serves as an
illustration of how L-functions are used in number theory.

Theorem 1.1.1. If q and l are relatively prime positive integers, then there are inĄnitely
many primes of the form l + kq with k ∈ Z.

Dirichlet proved this theorem by showing that the series

∑

p ≡ l (mod q)

1

ps

diverges, where the sum is over all primes congruent to l modulo q. Once q is Ąxed
and no confusion is possible, we write p ≡ l (mod q) to denote a prime congruent to l

modulo q.
Let us introduce Dirichlet characters.
A Dirichlet character is a multiplicative homomorphism χ : (Z/nZ)× → S1 where S1 is
the multiplicative group of the unit circle in C i.e., ¶z ∈ C ♣ ♣z♣ = 1 ♢. We can extend
any character to a function χ : Z→ C by putting χ(a) = 0 for (a,n) ̸= 1. If n ♣ m, then
χ induces a homomorphism χ : (Z/mZ)× → S1 by composition with the natural map
(Z/mZ)× → (Z/nZ)× . Therefore, we could regard χ as being deĄned mod m or mod
n, since both are essentially the same map. It is convenient to choose n minimal and
call it the conductor of χ, denoted f or fχ (or d).
We also deĄne characters of any Ąnite abelian groups G with the multiplicative map
χ : G→ S1.

We denote by Ĝ the set of all characters of G, and we then notice that this set inherits
an abelian group structure.

1
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Lemma 1.1.2. The set Ĝ is an abelian group under multiplication deĄned by

(χ1.χ2)(a) = χ1(a).χ2(a)

with the trivial character as the unit.

Proof. The proof is straightforward.

We call the Ĝ the dual group of G.
Let Z(N) denote the set of all Nth roots of unity in C.

Z(N) =

{
1, e2πi/N , e2πi2/N ,..., e2πi(N−1)/N

}
.

Remark 1.1.3. All the characters over Z(N) are of the form:

χL(k) = e2πiLk/N , 0 ≤ L ≤ N − 1.

Remark 1.1.4. Let Ẑ(N) be the dual group of Z(N), then Ẑ(N) is isomorphic to Z(N)
with the map:

φ : L→ χL.

Proof. Let L1, L2 ∈ Z(N), then φ(L1+L2) = χL1+L2
= e2πiL1k/n.e2πiL2k/n = φ(L1).φ(L2).

For injectivity, let φ(L1) = φ(L2), then χL1
= χL2

which implies that L1 = L2. Finally,
if we take χL1

for some L1 ∈ Z(N), then L1 is the only candidate in the domain that is
mapped to χL1

.

An observation is that since Z/NZ is isomorphic to Z(N), therefore Ẑ(N) is also the
dual group of Z/NZ.
The proof of DirichletŠs theorem consists of several steps, one of which requires Fourier
analysis on the group (Z/qZ)×. Before delving into the theorem in its entirety, let us
Ąrst provide an overview of the solution to a speciĄc question: whether there exists an
inĄnite number of prime numbers in the form of 4k + 1. This example, which consists
of the special case q = 4 and l = 1 in the Theorem (1.1.1), illustrates all the important
steps in the proof of the theorem.
We begin with the character on (Z/4Z)× deĄned by χ(1) = 1 and χ(3) = −1. We
extend this character to all of Z as follows:

χ(n) =





0 if n is even

1 if n = 4k + 1

−1 if n = 4k + 3.

(1.1)
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Let L(s,χ) =
∑∞

n=1 χ(n)/ns, so that

L(s,χ) = 1− 1

3s
+

1

5s
− 1

7s
+ · · · .

Then L(1,χ) is the convergent series given by

L(1,χ) = 1− 1

3
+

1

5
− 1

7
+ · · · .

Since the terms in the series are alternating and their absolute values decrease to zero,
we have L(1,χ) ̸= 0. Because χ is multiplicative, the Euler product for zeta function
generalizes to give

∞∑

n=1

χ(n)

ns
=

∏

p primes

1

1− χ(p)p−s
,

(as we will prove later).
Taking the logarithm of both sides, we Ąnd that

log(L(s,χ)) =
∑

p

χ(p)

ps
+ O(1).

Letting s → 1+, it could be noticed that if L(1,χ) ̸= 0, which indeed is equal to π/4,
then

∑
p χ(p)/ps remains bounded. Hence,

∑

p≡1

1

ps
−
∑

p≡3

1

ps

is bounded as s → 1+. Also,
∑

p 1/p diverges. So putting these two facts together, we
Ąnd that

2
∑

p≡1

1

ps

is unbounded as s → 1+. Hence
∑

p≡1 1/p diverges and as a consequence, there are
inĄnitely many primes of the form 4k + 1. The rest of this chapter gives the full proof
of DirichletŠs theorem.
We begin with the Fourier analysis (which is actually the last step in the example given
above), and reduce the theorem to the non-vanishing of L-functions.
LetŠs have a brief discussion regarding Fourier analysis. In the subsequent discussion,
we consider the abelian group G to be represented by (Z/qZ)×. The formulas presented
below incorporate the order of G, which represents the number of integers within the
range of 0 ≤ n < q that are relatively prime to q. This number deĄnes the Euler
phi-function φ(q), ♣G♣ = φ(q).
Consider the function δl on G, which we think of as the characteristic function of l; if
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n ∈ (Z/qZ)×,

δl(n) =





1 if n ≡ l (mod q)

0 otherwise.
(1.2)

We can expand this function in a Fourier series as follows:

δl(n) =
∑

e∈Ĝ

δ̂l(e)e(n)

where

δ̂l(e) =
1

♣G♣
∑

m∈G

δl(m)e(m) =
1

♣G♣e(l).

We can extend the function δ to encompass all integers Z, by deĄning δ(m) = 0 when-
ever m and q are not relatively prime. Similarly, the characters e ∈ Ĝ can also be
extended to cover all integers Z by deĄning:

χ(m) :=





χL(m) if (m,q) = 1

0 otherwise.
(1.3)

With ♣G♣ = φ(q) and 0 ≤ L < q, we may restate the above results as follows:

Lemma 1.1.5.

δl(m) =
1

φ(q)

∑

χ

χ(l)χ(m)

where the sum is over all Dirichlet characters.

By using the above lemma, we have successfully initiated the Ąrst step in the process
of proving the theorem, since this lemma shows that

∑

p≡l

1

ps
=
∑

p

δl(p)

ps

=
1

φ(q)

∑

χ

χ(l)
∑

p

χ(p)

ps
.

Thus it suffices to understand the behavior of
∑

p χ(p)/ps as s→ 1+. Indeed, we divide
the aforementioned sum into two parts based on whether or not χ is trivial.

∑

p≡l

1

ps
=

1

φ(q)

∑

p

χ0(p)

ps
+

1

φ(q)

∑

χ̸=χ0

χ(l)
∑

p

χ(p)

ps

=
1

φ(q)

∑

p∤q

1

ps
+

1

φ(q)

∑

χ̸=χ0

χ(l)
∑

p

χ(p)

ps
.

Since there is a Ąnite numbers of prime numbers that divide q, the statement of EulerŠs
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theorem, which asserts that the sum of reciprocals
∑

p 1/p goes to inĄnity, suggests
that the initial sum on the right side also goes to inĄnity when s approaches 1. These
observations demonstrate that DirichletŠs theorem can be derived from the following
statement.

Theorem 1.1.6. If χ is a nontrivial Dirichlet character, then the sum

∑

p

χ(p)

ps

remains bounded as s→ 1+.

The proof of (1.1.6) necessitates the introduction of L-functions, which we will focus
on now. In the next section, we will provide proofs for all the properties of L-functions
that we are going to mention here.

Now let us deĄne L-functions.

DeĄnition 1.1.7. Let χ be a character modulo q. If s is a complex number Re(s) > 1,
then the sum,

L(s,χ) =
∞∑

n=1

χ(n)

ns

converges absolutely for Re(s) > 1. Moreover, the function L(s,χ) is a holomorphic
function in this half plane.

Note that in the case of the trivial character, up to some factors, we get the Riemann
zeta function:

ζ(s) =
∞∑

n=1

1

ns

which we will state and prove later.

Theorem 1.1.8 (Dirichlet). If Re(s)>1, then

∞∑

n=1

χ(n)

ns
=

∏

p primes

1

1− χ(p)p−s

Proof. See Theorem 2.2.1.

It is worth noting that Euler was the Ąrst to observe the product formula for the zeta
function.

∞∑

n=1

1

ns
=

∏

p primes

1

1− p−s

Assuming the validity of this theorem for the time being, we can formally follow EulerŠs
argument. By taking the logarithm of the product and using the fact that log(1 + x) =
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x + O(x2), when x is sufficiently small, we would obtain the following result:

log(L(s,χ)) = −
∑

p

log(1− χ(p)

ps
)

= −
∑

p


χ(p)

ps
+ O(

1

p2s
)

]

=
∑

p

χ(p)

ps
+ O(1).

If L(1, χ) is Ąnite and non-zero, then log(L(s, χ)) is bounded as s → 1+, and we can
conclude that the sum

∑

p

χ(p)

ps

is bounded as s → 1+. We now make several observations about the above formal
argument.

Since the Dirichlet characters χ take complex values, we will extend the logarithm to
complex numbers w of the form

w =
1

1− z
(1.4)

where ♣z♣ < 1. This extension will be accomplished using a power series.

The second aspect we need to address is the interpretation of taking the logarithm of
both sides of the product formula. However, the challenge arises when χ(p) is a complex
number since the complex logarithm is not uniquely deĄned. SpeciĄcally, the logarithm
of a product is not equal to the sum of logarithms.

Third, it remains to prove that whenever χ ̸= χ0, then log(L(s, χ)) is bounded as
s→ 1+. Since L(s,χ) is continuous at s = 1, it suffices to show that

L(1,χ) ̸= 1.

This is the non-vanishing we mentioned earlier, which corresponds to the alternating
series being non-zero in the previous example.

So we will focus on three main parts,

1) Complex logarithm and inĄnite product.

2) Study of L(s,χ).

3) Proof that L(1,χ) ̸= 0 if χ ̸= χ0.
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To address the Ąrst concern, we introduce two logarithmic functions. The Ąrst loga-
rithm, denoted as log1, is deĄned for complex numbers of the form w = 1/(1− z) with
♣z♣ < 1. The second logarithm, denoted as log2, is deĄned speciĄcally for the L-function
L(s, χ). For the Ąrst logarithm, we deĄne,

log1(
1

1− z
) =

∞∑

k=1

zk

k
for ♣z♣ < 1

Note that log1w is then deĄned if Re(w) > 1/2.

Proposition 1.1.9. The logarithm function log1 satisĄes the following properties:

i) If ♣z♣ < 1, then

elog1( 1

1−z
) =

1

1− z

ii) If ♣z♣ < 1, then

log1


1

1− z


= z + E1(z)

where the error E1 satisĄes ♣E1(z)♣ ≤ ♣z♣2 if ♣z♣ < 1/2

iii) if ♣z♣ < 1/2, then ∣∣∣∣∣log1


1

1− z

∣∣∣∣∣ ≤ 2♣z♣

Proof. See [5], ch 8, proposition 3.1, p 258.

By using these outcomes, we can establish a sufficient condition that ensures the conver-
gence of inĄnite products of complex numbers. The proof of this condition follows the
same approach as in the real case, with the distinction that we would need to employ
the logarithm log1.

Proposition 1.1.10. If
∑ ♣an♣ converges, and an ̸= 1 for all n, then

∏

n


1

1− an



converges. Moreover, this product is non-zero.

Proof. For n large enough, ♣an♣ < 1/2, so we may assume without loss of generality
that this inequality holds for all n ≥ 1. Then

N∏

n=1


1

1− an


=

N∏

n=1

elog1( 1

1−an
) = e

∑N

n=1
log1( 1

1−an
).
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But we know from the previous proposition that

∣∣∣∣∣log1


1

1− z

∣∣∣∣∣ ≤ 2♣z♣

so the fact that the series
∑ ♣an♣ converges, immediately implies that the limit

lim
N→∞

N∑

n=1

log1


1

1− an


= A

exists. Since the exponential function is continuous, we conclude that the product
converges to eA, which is clearly non-zero.

The subsequent step involves gaining a deeper comprehension of the L-functions. Their
behavior as functions of s, particularly near s = 1, relies on whether χ is trivial or not.
In the case where χ is trivial as we said, L(s, χ0) is essentially equal, up to some factors,
to the zeta function.

Proposition 1.1.11. Suppose χ0 is the trivial Dirichlet character modulo q, and q =
pa1

1 ...paN
n is the prime factorization of q. Then,

L(s,χ0) = (1− p−s
1 )(1− p−s

2 )...(1− p−s
N )ζ(s).

Therefore, L(s,χ0)→∞ as s→ 1+

Proof. See proposition (2.2.2).

The behavior of the remaining L-functions, where χ ̸= χ0, is more subtle. A notable
characteristic is that these functions are now deĄned and continuous for s > 0. In fact,
even more can be asserted.

Proposition 1.1.12. i) The function L(s,χ) is continuously differentiable for 0 < s <
∞.

ii) There exist constants c and c′ > 0 so that

L(s,χ) = 1 + O(e−cs) as s→∞, and

L′(s,χ) = O(e−c′s) as s→∞.

Proof. See proposition (2.2.3).

Based on the information we have gathered thus far about L-functions, we can now
proceed to deĄne the logarithm of L-functions. This is accomplished by integrating
their logarithmic derivatives. In other words, if χ is a non-trivial Dirichlet character
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and s > 1, we deĄne:

log2(L(s,χ)) = −
∫ ∞

s

L′(t,χ)

L(t,χ)
dt.

We know that L(t, χ) ̸= 0 for every t > 1 since it is given by a product, and the integral
is convergent because

L(t,χ)

L′(t,χ)
= O(e−ct)

which follows from the behavior at inĄnity of L(t, χ) and L′(t, χ) recorded earlier.

The following links the two logarithms.

Proposition 1.1.13. If s > 1, then

elog2(L(s,χ)) = L(s,χ).

Moreover,

log2(L(s,χ)) =
∑

p

log1


1

1− χ(p)p−s


.

Proof. See [5] ch 8, proposition 3.6, p 264.

By combining the progress we have made thus far, we can provide a rigorous inter-
pretation of the earlier formal argument. In fact, the properties of log1 demonstrate
that:

∑

p

log1


1

1− χ(p)p−s


=
∑

p

χ(p)

ps
+ O(

∑

p

1

p2s
)

=
∑

p

χ(p)

ps
+ O(1).

If L(1, χ) ̸= 0 for a non-trivial Dirichlet character, then according to its integral rep-
resentation, log2(L(s, χ)) remains bounded as s approaches 1 from the right. Conse-
quently, the equality between the logarithms implies that the sum

∑
p(χ(p)/ps) remains

bounded as s approaches 1 from the right, which is the desired result. Therefore, to
complete the proof of DirichletŠs theorem, we need to establish that L(1, χ) ̸= 0 when
χ is non-trivial. We now turn to a proof of the following deep result:

Theorem 1.1.14. If χ ̸= χ0, then L(1,χ) ̸= 0.

The proof is by contradiction, and we use two lemmas.

Lemma 1.1.15. If s > 1, then ∏

χ

L(s,χ) ≥ 1

where the product is taken over all Dirichlet characters. In particular the product is
real-valued.
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Proof. See lemma (2.2.4).

Lemma 1.1.16. The following three properties hold:

i) If L(1,χ) = 0, then L(1,χ) = 0.

ii) If χ is non-trivial and L(1,χ) = 0, then

♣L(s,χ)♣ ≤ C♣s− 1♣ when 1 ≤ s ≤ 2.

iii) For the trivial Dirichlet character χ0, we have

♣L(s,χ0)♣ ≤
C

♣s− 1♣ when 1 < s ≤ 2.

Proof. See lemma (2.2.5).

We can now conclude the proof that L(1, χ) ̸= 0 for χ a non-trivial complex Dirichlet
character. So by contradiction say L(1,χ) = 0. Then L(1,χ) = 0, and since χ ̸= χ0,
there are at least two terms in the product

∏

χ

L(s,χ),

that vanish like ♣s − 1♣ as s → 1+. Since only the trivial character contributes a term
that exhibits growth, and this growth is bounded by O(1/1− s), we can conclude that
the product tends to 0 as s → 1+, contradicting by (1.1.15) and indeed, the proof of
DirichletŠs theorem is now complete.



Chapter 2

The Riemann zeta and L-functions
of Dirichlet characters

2.1 Bernoulli numbers and polynomials

In this section, we provide an overview of various forms of Bernoulli numbers that will
be extensively used.
The Bernoulli numbers are deĄned by the following generating function of variable t,

t

et − 1
=

∞∑

k=0

Bk
tk

k!
.

So the Ąrst few BkŠs are:

B0 = 1 B1 = −1/2

B2 = 1/6 B3 = 0, B4 = −1/30, B5 = 0 B6 = 1/42.

Again we use a generating function to deĄne Bernoulli polynomials:

tetx

et − 1
= (

∞∑

k=0

Bk
tk

k!
)(

∞∑

k=0

xk tk

k!
)

=
∞∑

k=0

Bk(x)
tk

k!

where Bk(x) is the kth Bernoulli polynomial. The Ąrst few Bernoulli polynomials are:

B0(x) = 1, B1(x) = x− 1/2

B2(x) = x2 − x + 1/2 B3(x) = x3 − 3/2x2 + 1/2

11
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Given a Dirichlet character of conductor d, generalised Bernoulli numbers Bk,χ are
deĄned in a similar way,

∞∑

k=0

Bk,χ
tk

k!
=

t

etd − 1

d∑

a=1

χ(a)eat.

Since we have the expansion

teat

edt − 1
=

1

d
+


a

d
− 1

2


t

+


a2

d
− a +

d

6


t2

2
+


a3

d
− 3a2

2
+

ad

2


t3

6
+ · · · ,

and
d∑

a=0

χ(a) =





ϕ(d) if χ ̸= χ0

0 otherwise,
(2.1)

it follows that

B0,χ = 0

B1,χ =
1

d

d∑

a=1

χ(a)a

B2,χ =
1

d

d∑

a=1

χ(a)a2 −
d∑

a=1

χ(a)a

B3,χ =
1

d

d∑

a=1

χ(a)a3 − 3

2

d∑

a=1

χ(a)a2 +
1

d

d∑

a=1

χ(a)a.

For a natural number d, let ϕ(d) be the number of integers from 1 to d which are rela-
tively prime to d.
A similar formula for Bn,χ

Bn,χ = dn−1
d∑

a=1

χ(a)Bn(a/d)

where Bn(x) is the Bernoulli polynomial.

2.2 Properties of Riemann zeta and L-functions-

The Mellin transform

LetŠs proceed with proving the properties of L-functions that were used in the Ąrst
chapter to establish DirichletŠs theorem.
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Theorem 2.2.1 (Dirichlet). If Re(s)>1, then

∞∑

n=1

χ(n)

ns
=

∏

p primes

1

1− χ(p)p−s

and the similar argument by Euler for the zeta function:

∞∑

n=1

1

ns
=

∏

p primes

1

1− p−s

Proof. For simplicity of notation, let L denote the left-hand side of the above equation
and deĄne

SN =
∑

n≤N

χ(n)n−s

and

ΠN =
∏

p≤N

1

1− χ(p)p−s
.

The inĄnite product Π = limN→∞
∏

N =
∏

p 1/(1 − χ(p)p−s) converges by (1.1.10).
Indeed, if we set an = χ(pn)p−s

n , where pn is the nth prime, we note that if s > 1, then∑ ♣an♣ <∞.
Also, deĄne

ΠN,M =
∏

p≤N


1 +

χ(p)

ps
+ ... +

χ(pM)

pMs


.

Now, Ąx ε > 0 and choose N so large that

♣SN − L♣ < ε and ♣ΠN − Π♣ < ε.

We can next select M large enough so that

♣SN − ΠN,M ♣ < ε and ♣ΠN,M − ΠN ♣ < ε.

To see the Ąrst inequality, one uses the fundamental theorem of arithmetic and the fact
that the Dirichlet characters are multiplicative. The second inequality follows merely
because each series

∑∞
n=1 χ(pn)/pns converges.

Therefore,

♣L− Π♣ ≤ ♣L− SN ♣+ ♣SN − ΠN,M ♣+ ♣ΠN,M − ΠN ♣+ ♣ΠN − Π♣ < 4ε,

as was to be shown.

Proposition 2.2.2. Suppose χ0 is the trivial Dirichlet character modulo q, and q =
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pa1

1 ...paN
n is the prime factorization of q. Then,

L(s,χ0) = (1− p−s
1 )(1− p−s

2 )...(1− p−s
N )ζ(s).

Therefore, L(s,χ0)→∞ as s→ 1+

Proof. By the previous theorem,

L(s,χ0) =
∏

p primes

1

1− χ0(p)p−s

=
∏

p∤q

1

1− p−s

=
∏

p♣q

(1− p−s)
∏

p primes

(1− p−s)−1

=
∏

p♣q

(1− p−s)ζ(s) = (1− p−s
1 )(1− p−s

2 )...(1− p−s
N )ζ(s).

The second statement follows because ζ(s)→∞ as s→ 1+.

Proposition 2.2.3. If χ is a non-trivial Dirichlet character, then the associated L-
function converge for s > 0. Moreover,

i) The function L(s,χ) is continuously differentiable for 0 < s <∞.

ii)There exist constants c and c′ > 0 so that

L(s,χ) = 1 + O(e−cs) as s→∞, and

L′(s,χ) = O(e−c′s) as s→∞

Proof. For the Ąrst two statements see [5] proposition 3.3. For ii), by using triangular
inequality, observe that for all s large,

♣L(s,χ)− 1♣ ≤ 2−s
∞∑

n=2

1

ns

≤ 2−sO(1),

and by taking c = log2, we get that L(s,χ) = 1 + O(e−cs). A similar argument also
shows that L′(s,χ) = O(e−c′s) as s→∞ with in fact c = c′.

Lemma 2.2.4. If s > 1, then ∏

χ

L(s,χ) ≥ 1
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where the product is taken over all Dirichlet characters. In particular the product is
real-valued.

Proof. By employing the second point stated in (1.1.13):

L(s,χ) = exp


∑

p

log1


1

1− χ(p)p−s


.

Hence,
∏

χ

L(s,χ) = exp


∑

χ

∑

p

log1


1

1− χ(p)p−s



= exp


∑

χ

∑

p

∞∑

k=1

1

k

χ(pk)

p−sk



= exp


∑

p

∑

k=1

∑

χ

1

k

χ(pk)

p−sk


.

Because of (1.1.5) (with l = 1) we have
∑

χ χ(pk) = φ(q)δ1(p
k), and hence

∏

χ

L(s,χ) = exp


φ(q)

∑

p

∞∑

k=1

1

k

δ1(p
k)

p−sk


≥ 1,

since the term in exponent is non-negative.

Lemma 2.2.5. The following three properties hold:

i) If L(1,χ) = 0, then L(1,χ) = 0.

ii) If χ is non-trivial and L(1,χ) = 0, then

♣L(s,χ)♣ ≤ C♣s− 1♣ when 1 ≤ s ≤ 2.

iii) For the trivial Dirichlet character χ0, we have

♣L(s,χ0)♣ ≤
C

♣s− 1♣ when 1 < s ≤ 2.

Proof. The Ąrst statement is immediate because L(1,χ) = L(1,χ).

The second statement follows from the mean-value theorem. Since L(s, χ) is continu-
ously differentiable for s > 0 when χ is non-trivial. So we have:

♣L(s,χ)− L(1,χ)♣ < ♣s− 1♣C

for some constant C. Since L(1,χ) = 0 we get the desired bound. Finally, the last
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statement follows because by (2.2.2),

L(s,χ0) = (1− p−s
1 )(1− p−s

2 )...(1− p−s
N )ζ(s)

and ζ satisĄes the similar estimate as in iii) since

∞∑

n=1

1

ns
≤ 1 +

∞∑

n=2

∫ n

n−1

dx

xs

= 1 +
∫ ∞

1

dx

xs
,

and therefore,

ζ(s) ≤ 1 +
1

s− 1
for s > 1

LetŠs now start the topic of the Mellin transform. The Mellin transform is a mathe-
matical operation that extends the concept of the Fourier transform to a more general
setting. It involves transforming a function deĄned on the positive real numbers into a
new function deĄned on the complex plane.

DeĄnition 2.2.6. Let f : R≥0 → C be a continuous function of rapid decay (i.e.
♣f(t)♣ ≪ t−N ,∀N ≥ 0). Then the Mellin transform of f is the function:

F (s) = M [f(x)](s) =
∫ ∞

0
xs−1f(x)dx

where s is a complex variable and the integral is taken over the positive real line.

The Mellin transform provides a useful tool for studying the properties of functions,
especially those deĄned on the positive real line. It allows us to analyze the behavior
of a function in terms of its transform, and vice versa.
In relation to the Riemann zeta function and L-functions, the Mellin transform is used
to obtain their functional equations. These equations establish connections between
the function values at different complex points and often exhibit symmetries, which aid
in comprehending the characteristics and properties of these functions.
For example, the functional equation of the Riemann zeta function relates its values
at s and 1 − s, where s is a complex variable. It can be obtained by using the Mellin
transform techniques and plays a crucial role in understanding the behavior of the zeta
function and its connection to prime numbers.
As an example, let f = 1/(ex − 1) and let Re(s) > 1,

M [f ](s) =
∫ ∞

0

1

ex − 1
xs−1dx
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=
∫ ∞

0

∞∑

n=1

e−nxxs−1dx

=
∞∑

n=1

∫ ∞

0
e−nxxs−1dx

=
∞∑

n=1

∫ ∞

0
e−t(

t

n
)s−1 dt

n
,

by change of variable nx = t

=
∞∑

n=1

n−s
∫ ∞

0
e−tts−1dt = ζ(s)Γ(s).

So, we have:

ζ(s) =
1

Γ(s)

∫ ∞

0

1

ex − 1
xs−1dx

where
Γ(s) =

∫ ∞

0
e−tts−1dt

is the Mellin transform of the function e−t, called Gamma function.

2.3 Functional equations and Analytic continuation

First, we will present the functional equations for the Riemann zeta function and L-
functions. These equations establish relationships between the function values at dif-
ferent points in the complex plane and help us understand their properties.
Next, we can use these functional equations to extend the Zeta, respectively L-functions
to the entire complex plane. This is called analytic continuation. By applying analytic
continuation, we can deĄne the values of these functions beyond their original regions
of deĄnition and explore their behavior in the broader context of the complex plane.

Theorem 2.3.1. Let
Λ(s) = π−s/2Γ(

s

2
)ζ(s).

Then Λ(s) is invariant under replacing s by 1− s:

Λ(s) = Λ(1− s) ∀s with Re(s) > 1.

That is , ζ(s) satisĄes the functional equation

π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1− s

2
).

We will present RiemannŠs proof of (2.3.1), which can be extended to various other
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cases. The proof makes use of the theta function θ : R≥0 → C given by:

θ(t) =
∑

n∈Z

e−πn2t.

Our intention is to perceive this function in the form of a Mellin transform. In the
proof of the theorem, the fundamental idea is that Λ(s) essentially represents the Mellin
transform of θ. The transformation properties of θ are then reĆected in the functional
equation of Λ through the Mellin transform. An immediate problem with this idea is
that θ is not a function of rapid decay, since the constant term in the series is not of
rapid decay. We then replace θ by:

ω(t) =
∞∑

n=1

e−πn2t

which is related to θ by:

θ(t) = 1 + 2ω(t), ω(t) =
θ(t)− 1

2
.

The function ω(t) is of rapid decay, and therefore we can take its Mellin transform.

Theorem 2.3.2.
M [ω](s) = π−sΓ(s)ζ(2s) = Λ(2s)

Proof. By deĄnition we have:

M [ω](s) =
∫ ∞

0
ω(t)ts dt

t
=
∫ ∞

0


∞∑

n=1

e−πn2t


ts dt

t
.

Since all the terms in the inĄnite series have rapid decay, we can interchange the order
of integration, ∫ ∞

0


∞∑

n=1

e−πn2t


ts dt

t
=

∞∑

n=1

∫ ∞

0
e−πn2tts dt

t
.

By changing the variable u = πn2t we obtain,

∞∑

n=1

∫ ∞

0
e−πn2tts dt

t
=

∞∑

n=1

∫ ∞

0
e−uπ−sn−2sus du

u

= π−s

∫ ∞

0
e−uus du

u


∞∑

n=1

n−2s



= π−sΓ(s)ζ(2s).
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The reason for expressing Λ(s) as the Mellin transform of ω(t) is that ω possesses
favorable transformation properties derived from those of θ.

Theorem 2.3.3. (Functional equation for θ(t)) For all t > 0

θ(1/t) =
√

t.θ(t)

Proof. See [6], ch 4, theorem 2.4, p 118.

Theorem 2.3.4. (Functional equation for ω(t)) For all t > 0

ω(1/t) =
√

t.ω(t) +
√

t/2− 1/2

Proof.

ω(1/t) =
θ(1/t)− 1

2

=

√
t.θ(t)− 1

2

=

√
t.(1 + 2ω(t))− 1

2

=
√

t.ω(t) +
√

t/2− 1/2.

At this point, we are prepared to demonstrate the functional equation of ζ(s).

Proof. (Theorem (2.3.1)) By (2.3.2), we know that

Λ(s) = M [ω](s/2) =
∫ ∞

0
ω(t)ts/2 dt

t
.

The convergence of this integral for all s near ∞ is guaranteed due to the rapid decay
of ω. However, the convergence at 0 will be determined by the growth behavior of ω(t)
near 0. Now, letŠs proceed with the proof,

ω(t) ≈ C.t−1/2 as t→ 0.

Hence, the integral converges as long as the real part of s is greater than 1. It is
important to note that Λ has a pole at s = 1 originating from ζ, which implies that we
cannot extend the convergence beyond that point solely based on the deĄnition.
Next, we break down the integral into two pieces:

∫ ∞

0
ω(t)ts/2 dt

t
=
∫ 1

0
ω(t)ts/2 dt

t
+
∫ ∞

1
ω(t)ts/2 dt

t
. (2.2)

It is worth noting that the second integral converges for all s in the complex plane,



20

whereas the convergence of the Ąrst integral is limited to cases where the real part of
s is greater than 1. Therefore, our goal is to transform the Ąrst integral into a form
resembling the second integral, that is, with limits from 1 to∞ and with ω included in
the integrand.
Certainly, this can be achieved by making the substitution t → 1/t and using the
functional equation for ω:

∫ 1

0
ω(t)ts/2 dt

t
=
∫ ∞

1
ω(1/t)t−s/2 dt

t

=
∫ ∞

1

√
t.ω(t) +

√
t/2− 1/2


t−s/2 dt

t

and substituting in (2.2) we have,

Λ(s) =
∫ ∞

0
ω(t)ts/2 dt

t
=
∫ ∞

1
ω(t)t

1−s
2

dt

t
+
∫ ∞

1
ω(t)ts/2 dt

t
t+
∫ ∞

1
t

−1−s
2 dt− 1

2

∫ ∞

1
t−1−s/2dt

=
∫ ∞

1
ω(t)t

1−s
2

dt

t
+
∫ ∞

1
ω(t)ts/2 dt

t
− 1

1− s
− 1

s
.

From this expression, we can deduce that Λ(s) can be analytically extended to the
entire complex plane, C as a meromorphic function with simple poles at s = 0 and
s = 1. Additionally, we see that Λ is invariant under replacing s by 1− s:

Λ(s) = Λ(1− s).

Consequently, ζ(s) has a pole at s = 1 and it has the desired functional equation.

Next, we will proceed with deriving the functional equation for L-functions which we
follow IwasawaŠs work in [2].

Theorem 2.3.5. The functional equation of L(s,χ) is:

L(s,χ) =
τ(χ)

2iδ
(
2π

d
)s L(1− s,χ)

Γ(s)cos(π(s−δ)
2

)

Proof. Let χ be a character with conductor d and let

F (z) =
d∑

a=1

χ(a)zeaz

edz − 1

G(z) =
d∑

a=1

χ(a)e−az

1− e−dz
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And F (z) is the generating function that deĄnes the "generalized Bernoulli numbers"

F (z) =
∞∑

n=0

Bn,χ
tn

n!

Both F and G are meromorphic functions on the z-plane with possible poles at z =
2πik/d, k ∈ Z and

F (−z) = zG(z)

G(t) =
∞∑

n=1

χ(n)e−nt

for t > 0.
Fix a real number ε, 0 < ε < 2π/d and deĄne a path Cε on C by

Cε = (−∞,−ε) + Kε + (−ε,−∞)

Where Kε denotes the circle ¶z ∈ C ♣ ♣z♣ = ε♢. Let

H(s) =
∫

Cε

F (z)zs−1 dz

z

Where zs−1 = e(s−1)logz with the principal value of logz:

logz = logt− πi for z = −t ∈ (−∞,−ε)

logz = logt + πi for z = −t ∈ (−ε,∞).

The integral converges absolutely for every complex number s so that H(s) deĄnes an
entire function on the C; it is obvious that H(s) does not depend upon the choice of
0 < ε < 2π/d. By the change of variable from z to −z, we get

H(s) =
∫

−Cε

F (−z)(−z)s−1 dz

z

= −e−πis
∫

−Cε

G(z)zs−1 dz

with zs−1 = e(s−1)logz, 0 ≤ Im(logz) ≤ 2π. Clearly
∫

−Cε

G(z)zs−1 dz =
∫

Kε

G(z)zs−1 dz + (e2πis − 1)
∫ ∞

ε
G(t)ts−1 dt
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Let Re(s) > 1. Then
∫

Kε

G(z)zs−1 dz −→ 0

as ε −→ 0. Therefore, for Re(s) > 1,

H(s) = −(eπis − e−πis)
∫ ∞

0
G(t)ts−1 dt

where
∫∞

0 G(t)ts−1 dt is the Mellin transform of G(t) and,

M [G](s) =
∫ ∞

0
G(t)ts−1 dt =

∫ ∞

0

∞∑

n=1

χ(n)e−ntts−1 dt

=
∞∑

n=1

χ(n)
∫ ∞

0
e−ntts−1 dt

=
∞∑

n=1

χ(n)n−sΓ(s) = L(s,χ)Γ(s)

It follows that for s with Re(s) > 1,

H(s) = −2isin(πs)Γ(s)L(s,χ)

= − 2πi

Γ(1− s)
L(s,χ)

namely,

L(s,χ) = − 1

2πi
Γ(1− s)H(s). (2.3)

Just keep in mind that with n an integer, n ≥ 1, and let s = 1 − n in (2.3), we also
obtain that

−L(1− n,χ)

Γ(n)
=

1

2πi

∫

C
F (z)z−n dz

z
=

1

2πi

∫

Kε

F (z)z−n−1 dz = res0(F (z)z−n−1). (2.4)

In Section (2.4), we will use this equality when expressing the special values of L-
functions. Note that we are currently at a midway point in the computation of the
functional equation for L-functions and the process of achieving analytic continuation.
By employing the equation (2.3), it becomes evident that L(s, χ) can be analytically
continued to a holomorphic function across the entire complex plane for non-trivial
characters. Since L(s,χ) is holomorphic for Re(s) > 1 and Γ(1 − s) only has poles at
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s = 1, 2, 3, ..., the only possible location for a pole of L(s,χ) is at s = 1. However, it
can be easily observed that for trivial character,

H(1) =
∫

C
F (z)

dz

z
=
∫

Kε

F (z)
dz

z
= 2πi

otherwise it is zero.
Hence L(s, χ0) has a simple pole with residue 1 at s = 1, and L(s,χ) for χ ̸= χ0 is also
holomrphic at s = 1.

Now, for each integer k ≥ 1, let Dm denote the path on C described below:

Kε

(m + 1

2
) 2πi

d

2πin
d

−(m + 1

2
) 2π

d

−(m + 1

2
) 2πi

d

(m + 1

2
) 2π

d

By the residue theorem,

∫

Dk

F (z)zs−1 dz

z
= −2πi

k∑

n=−k,n̸=0

Rn

where Rn denotes the residue of the integrand at z = 2πin/d. However, ♣F (z)z−1♣ is
bounded on the outer square of the path Dk for all k ≥ 1. Hence, if Re(s) > 1, then
the integral over the outer square of Dk tends to zero as k −→∞. Therefore we obtain
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H(s) =
∫

C
F (z)zs−1 dz

z
= −2πi

∞∑

n=−∞,n̸=0

Rn,

for Re(s) > 1.
Let n ≥ 1. Then

Rn =
1

d

d∑

a=1

χ(a)e
2πian

d es−1(log(
2πn

d
+

πi

2
))

=
1

d
χ(n)τ(χ)(

2πn

d
)s−1e(s−1) πi

2

with the Gaussian sum τ(χ) deĄned as:

τ(χ) =
d∑

a=1

χ(a)e
2πia

d .

Similarly,

R−n =
1

d
χ(−1)χ(n)τ(χ)(

2πn

d
)s−1e−(s−1) πi

2 .

Hence it follows from the above that

H(s) = −2πi

d
τ(χ)(

2π

d
)s−1(e(s−1) πi

2 + χ(−1)e−(s−1) πi
2 )

∞∑

n=1

χ(n)ns−1

= −τ(χ)(
2π

d
)s(eπi s

2 − χ(−1)e−πi s
2 )L(1− s,χ) (2.5)

for Re(s) < 0. On the other hand,

L(s,χ) = − 1

2πi
Γ(1− s)H(s).

By putting together (2.5) and this equation, we obtain the functional equation for
L(s,χ).

L(s,χ) =
τ(χ)

2iδ
(
2π

d
)s L(1− s,χ)

Γ(s)cos(π(s−δ)
2

)
.

2.4 Special values

Initially we derive the formula :

ζ(2k) = (−1)kπ2k 22k−1

(2k − 1)!


− B2k

2k


for k = 1,2,3, .... (2.6)
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Recall the deĄnition of the "hyperbolic sine," abbreviated

sinh(x) =
ex − e−x

2
.

It is equal to its Taylor series

sinhx = x +
x3

3!
+

x5

5!
+ ... +

x2k+1

(2k+)!
+ ...,

obtained by averaging the series for ex and e−x. First, we prove the following proposi-
tion.

Proposition 2.4.1. For all numbers x, the inĄnite product

πx
∞∏

n=1


1 +

x2

n2



converges and equals sinh(πx).

Proof. By using logarithm test, we obtain

∞∑

n=1

♣log


1 +

x2

n2


♣ ≤

∞∑

n=1

x2

n2
<∞

For the equality we need the following lemma.

Lemma 2.4.2. Let n = 2k + 1 be a positive odd integer. Then we can write

sin(nx) = Pn(sinx)

cos(nx) = cosxQn−1(sinx)

where Pn (respectively Qn−1) is a polynomial of degree at most n (respectively n − 1)
with integer coefficients.

Proof. We use induction on k. The lemma is trivial for k = 0. Suppose it holds for
k − 1. Then

sin[(2k + 1)x] = sin[(2k − 1)x + 2x]

= sin[(2k − 1)x]cos(2x) + cos[(2k − 1)x]sin(2x)

= P2k−1(sinx)(1− 2sin2x)

+cosxQ2k−2(sinx)2sin(x)cos(x),

which is of the required form P2k+1(sinx). The proof of cos(2k + 1)x = cosxQ2k(sinx)
is completely similar.
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LetŠs go back to the proof of the proposition. ItŠs important to observe that when we
substitute x with 0 in the equation sin(nx) = Pn(sinx), we discover that the polynomial
Pn has a zero constant term. Following that, we differentiate both sides of the equation
sin(nx) = Pn(sinx) with respect to x.

ncos(nx) = P ′
n(sinx)cosx.

Setting x = 0 here gives: n = P ′
n(0), i.e., the Ąrst coefficient of Pn is n. Thus,

sin(nx)

nsin(x)
= P̃2k(sinx) = 1 + a1sinx + a2sin2x + ...

where the ai are rational numbers. Please observe that when x takes values such as
±(π/n), ...,±(kπ/n), the expression on the left side becomes zero. However, since the
2k values of namely y = ±sin(π/n),±sin(2π/n), ...,±sin(kπ/n), represent different
numbers where the polynomial P̃2k has a degree of 2k and a constant term of 1, it is
necessary to conclude that:

P̃2k(y) =


1− y

sin(π/n)


1− y

−sin(π/n)


1− y

sin(2π/n)




1− y

−sin(2π/n)


...


1− y

sin(kπ/n)


1− y

−sin(kπ/n)



=
k∏

r=1


1− y2

sin2rπ/n


.

Thus,
sin(nx)

nsin(x)
= P̃2k(sinx) =

k∏

r=1


1− sin2x

sin2rπ/n


.

Replacing x by πx/n gives:

sin(πx)

n.sin(πx/n)
=

k∏

r=1


1− sin2πx/n

sin2rπ/n


.

Now take the limit of both sides as n = 2k + 1 → ∞. The left-hand side approaches
(sinπx)/πx. For r small relative to n the rth term in the product approaches 1 −
((πx/n)/(πr/n))2 = 1−(x2/r2). It then follows that the product converges to

∏∞
r=1(1−

(x2/r2)). We conclude that:

∞∏

n=1


1− x2

n2


=

sin(πx)

πx
= 1− π2x2

3!
+

π4x4

5!
− π6x6

7!
+

π8xx

9!
− ...,
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using the Taylor series for the sine. But

sin(πx)

πx
= 1 +

π2x2

3!
+

π4x4

5!
+

π6x6

7!
+

π8xx

9!
+ ....

When we expand the inĄnite product for sin(πx)/(πx), we observe that a negative
sign appears exactly in those terms that contain an odd number of x2/n2 terms. In
other words, the terms in the Taylor series for sin(πx)/(πx) that have a negative sign
correspond to these terms. Consequently, by changing the sign in the inĄnite product,
we effectively transform all the minus signs on the right side of the equation into plus
signs, thus obtaining the intended product expansion as stated in the proposition.

Theorem 2.4.3.

ζ(2k) = (−1)kπ2k 22k−1

(2k − 1)!


− B2k

2k


.

Proof. First take the logarithm of both sides of

sinh(πx) = πx
∞∏

n=1

1 +
x2

n2
for x > 0.

On the left we get

log[sinh(πx)] = log[(eπx − e−πx)/2] = log[(eπx/2)(1− e−2πx)]

= log(1− e−2πx) + πx− log2.

On the right we get (for 0 < x < 1)

logπ + logx +
∞∑

n=1

log(1 + x2/n2) = logπ + logx +
∞∑

n=1

∞∑

k=1

(−1)k+1 x2k

kn2k

by the Taylor series for log(l + x). Since this double series is absolutely convergent for
0 < x < 1, we can interchange the order of summation and obtain the equality:

log(1− e−2πx) + πx− log2 = logπ + logx +
∞∑

k=1


(−1)k+1 x2k

k

∞∑

n=1

1

n2k

]

= logπ + logx +
∞∑

k=1


(−1)k+1 x2k

k
ζ(2k)

]
.

We now take the derivative of both sides with respect to x. On the right we may
differentiate term-by-term, since the resulting series is uniformly convergent in 0 < x <
1− ε for any ε > 0. Thus,

2πe−2πx

1− e−2πx
+ π =

1

x
+ 2

∞∑

k=1

(−1)k+1x2k−1ζ(2k).
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Multiplying through by x and then substituting x/2 for x gives:

πx

eπx − 1
+

πx

2
= 1 +

∞∑

k=1

(−1)k+1ζ(2k)

22k−1
x2k.

So we have

(πx)/2 +
∞∑

k=0

Bk(πx)k/k! = 1 +
∞∑

k=1

(−1)k+1ζ(2k)

22k−1
x2k.

and by comparing coefficients of even powers of x gives:

π2kB2k/2k! = ((−1)k+1/22k−1)ζ(2k)

which gives us the theorem.

Theorem 2.4.4.

ζ(1− k) = −Bk

k
, k ≥ 2

Proof. Through using the properties of the gamma function (Γ) namely,

Γ(s)Γ(1− s) =
π

sin(πs)

by restructuring the functional equation, we have

ζ(1− s) =
(2π)s

2Γ(s)cos(πs
2

)
ζ(s)

for s = 2k and integer k we observe that:

ζ(1− 2k) =
2(2k − 1)!cos(πk)

(2π)2k
ζ(2k)

=
2(2k − 1)!cos(πk)

(2π)2k
× (−1)2k22k−1(π)2k

(2k − 1)!
.


− B2k

2k


by (2.4.3)

= −B2k

2k
.

On the other hand, the right-hand side of the functional equation vanishes if s is an
odd integer higher than 1, because cos(πs/2) = 0. ζ(1 − s) therefore vanishes and so
ζ(1− k) = −Bk

k
.

The term −Bk/k is the term that we wish to interpolate when we are constructing the
p-adic zeta function in chapter 4.

Finally, in section (2.3), in the proof of the functional equation of the L-function, it



29

was shown that

−L(1− n,χ)

Γ(n)
=

1

2πi

∫

C
F (z)z−n dz

z
=

1

2πi

∫

Kε

F (z)z−n−1 dz = res0(F (z)z−n−1).

Moreover, res0(F (z)z−n−1) = Bn,χ/n!. Then we observe that

L(1− n,χ) = −Bn,χ

n
, (2.7)

for n ≥ 2.



Chapter 3

p-Adic Analysis

3.1 p-Adic numbers

To introduce p-adic numbers, it is necessary to deĄne a norm on the Ąeld of rational
numbers.
Let us Ąx a prime integer p. We can deĄne the function ordp : Z → Z, where ordp(a)
represents the highest power of the prime number p that divides the non-zero integer
a, called the p-adic valuation of a. This function counts the exponent of p in the prime
factorization of a.
To extend this function to the rational numbers Q, we deĄne ordp(n/m) = ordp(n) −
ordp(m) for any non-zero rational number n/m, where n and m are integers and m ̸=
0. This deĄnition takes into account the cancellation of common factors between the
numerator and denominator when expressing a rational number in lowest terms. The
ordp satisĄes the following properties for x,y ∈ Q:
1)ordp(xy) = ordp(x) + ordp(y) .
2)ordp(x + y) ≥ min¶ordp(x),ordp(y)♢.
3)Moreover, if ordp(x) ̸= ordp(y), then ordp(x + y) = min¶ordp(x),ordp(y)♢
By extending the function in this way, we can determine the p-adic valuation or p-adic
order of rational numbers, which provides a measure of divisibility by the prime number
p.
Then the following function makes a norm on Q.

♣x♣p =





p−ordp(x) if x ̸= 0

0 if x = 0.
(3.1)

Proposition 3.1.1. ♣.♣p is a norm on Q.

Proof. It follows directly from the properties of the norm namely,
1) ♣x + y♣p ≤ ♣x♣p + ♣y♣p for x, y ∈ Q.

30
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2) ♣x♣p = 0 iff x = 0.
3)♣x.y♣p = ♣x♣p♣y♣p

Observe that the absolute value ♣.♣p is a non-Archimedean norm deĄned on the Ąeld
of rational numbers Q. To put it differently, a non-Archimedean norm exhibits the
property known as the ultrametric property,

♣x− y♣p ≤Max¶♣xp♣,♣y♣p♢.

Note that if ♣x♣p ̸= ♣y♣p, then ♣x− y♣p = Max¶♣x♣p,♣y♣p♢.
In order to prove this assertion, assume that ♣x♣p > ♣y♣p, and we already know that
♣x− y♣p ≤Max¶♣x♣p,♣y♣p♢. Moreover, take x = (x− y) + y and,

♣x♣p ≤Max¶♣x− y♣p, ♣y♣p♢.

Since we know that ♣x♣p > ♣y♣p, this inequality can hold only if

Max¶♣x− y♣p, ♣y♣p♢ = ♣x− y♣p.

This gives the reverse inequality ♣x♣p ≤ ♣x− y♣p, and from it (using our Ąrst inequality)
we can conclude that ♣x− y♣p = ♣x♣p.
The entire purpose of an absolute value is to give us a sense of "size." In other words,
once we have an absolute value, we can use it to establish a metric for our Ąeld by
measuring the distances between numbers. We may deĄne open and closed sets and
generally explore what is referred to as the topology of our Ąeld thanks to the metric.

DeĄnition 3.1.2. DeĄne d(x,y) = ♣x− y♣p for x,y ∈ Q.

We can prove the usual properties of a metric.

Proposition 3.1.3. 1) d(x,y) > 0 for any x,y ∈ Q and d(x,y) = 0 iff x = y.

2) d(x,y) = d(y,x) for any x,y ∈ Q.

3) d(x,y) ≤ d(x,z) + d(z,y) for any x,y,z ∈ Q. In particular,

4) d(x, y) ≤ max¶d(x, z), d(z, y)♢ for any x,y,z ∈ Q.

Having a metric gives us a topology with a base for open sets given by the family:

B(a,r) = ¶x ∈ Q ♣ ♣a− x♣p < r♢

for r ∈ R+ and a ∈ Q and the closed balls are:

B(a,r) = ¶x ∈ Q ♣ ♣a− x♣p ≤ r♢
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Now let us introduce the Ąeld of p-adic numbers.
From this point forward, we Ąx a prime integer p. Let S be the set of all Cauchy
sequences of rational numbers ¶ai♢, meaning that for any given ε > 0, there exists an
N such that ♣ai − aj♣p < ε whenever both i and j are greater than N . We say that
two such Cauchy sequences ¶ai♢ and ¶bi♢ are equivalent, denoted as ¶ai♢ ∼ ¶bi♢, if the
p-adic norm ♣ai − bi♣p approaches zero as i tends to inĄnity.

It can be observed that this establishes an equivalence relation on the set S, and we
deĄne the set of p-adic numbers, Qp = S/ ∼ as the set of equivalence classes of Cauchy
sequences with respect to the p-adic norm ♣.♣p. In other words, Qp consists of all Cauchy
sequences in Q that converge to the same p-adic limit, considered as distinct elements
in the quotient set Qp.

We deĄne the norm ♣.♣p of an equivalence class ai to be limi→∞ ♣ai♣p where ¶ai♢ is any
representative of ai and it can be checked that this limit exists for all ai ∈ Q. In
another saying, p-adic absolute value extends to Qp. From the next lemma, this follows
naturally.

Lemma 3.1.4. Let ¶xn♢ ∈ S such that limn→∞ ♣xn♣p ̸= 0. Then, the sequence of real
numbers ♣xn♣p is eventually stationary.

Proof. Since ¶xn♢ is a Cauchy sequence which does not tend to zero, we can Ąnd c and
N1 such that

n > N1 =⇒ ♣xn♣p ≥ c > 0.

On the other hand, there exists N2 for which

m,n ≥ N2 =⇒ ♣xn − xm♣p < c.

So by taking N = Max¶N1,N2♢ we have,

m,n ≥ N =⇒ ♣xn − xm♣p < Max¶♣xn♣p,♣xm♣p♢,

which gives ♣xn♣p = ♣xm♣p.

Now we can have the following deĄnition.

DeĄnition 3.1.5. If λ ∈ Qp and (xn) be any Cauchy sequence representing λ, we deĄne

♣λ♣p = lim
n→∞

♣xn♣p

It can be checked that ♣λ♣p = p−n for some integer n.
Given any two equivalence classes a and b of Cauchy sequences in Qp, we can select
representatives (ai) ∈ a and (bi) ∈ b from each class. We deĄne the product of these
equivalence classes, denoted as a · b, to be the equivalence class represented by the
Cauchy sequence ¶ai · bi♢. In a similar manner, we deĄne the sum of two equivalence
classes by selecting a Cauchy sequence from each class, adding the corresponding terms
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together, and demonstrating that the resulting equivalence class of the sum is indepen-
dent of the choice of representatives. This allows us to deĄne the additive inverse of an
equivalence class in the expected way.
DeĄning the multiplicative inverse in Qp requires some care due to the potential pres-
ence of zero terms in a Cauchy sequence. However, it is possible to demonstrate that
every Cauchy sequence is equivalent to one that contains no zero terms. This allows us
to deĄne the multiplicative inverse in Qp.

With this in mind, we can show that the set Qp of equivalence classes of Cauchy se-
quences forms a Ąeld when equipped with the operations deĄned as above. The addition
and multiplication of equivalence classes are well-deĄned, as it can be shown by their
independence from the choice of representatives. The additive and multiplicative iden-
tity can be easily deĄned using the appropriate Cauchy sequences.
There exists an inclusion map from the rational numbers Q to the p-adic numbers
Qp. This inclusion map sends an element x ∈ Q to the equivalence class ¶x♢ ∈ Qp

represented by the constant Cauchy sequence x, x, x, · · ·.
In other words, each rational number x ∈ Q can be naturally identiĄed with its equiv-
alence class in Qp consisting of all constant Cauchy sequences that converge to x. This
inclusion map provides a way to view rational numbers as a subset of p-adic numbers.

Let us now prove that Q is dense in Qp or more precisely, the image of Q is dense in Qp.

Proposition 3.1.6. The image of Q under the inclusion Q→ Qp is a dense subset of
Qp.

Proof. We need to show that any open ball around an element λ ∈ Qp contains an
element of (the image of) Q, i.e., a constant sequence. So for a Ąxed radius ε, we will
show that there is a constant sequence belonging to the open ball B(λ,ε).
First of all, let ¶xn♢ be a Cauchy sequence representing λ, and let ε′ be a number
slightly smaller than ε. By the Cauchy property, there exists a number N such that
♣xn − xm♣p < ε′ whenever n, m ≥ N . Let y = xN and consider the constant sequence
¶y♢. We claim that ¶y♢ ∈ B(λ,ε) which means that ♣λ − ¶y♢♣p < ε. We know that
λ − ¶y♢ is represented by ¶xn − y♢ and we have ♣¶xn − y♢♣p = limn→∞♣xn − y♣p. But,
for any n ≥ N we have

♣xn − y♣p = ♣xn − xN ♣p < ε′.

Therefore,
lim

n→∞
♣xn − y♣p ≤ ε′ < ε.

So that ¶y♢ ∈ B(λ,ε).

It is important to verify that Qp, equipped with the properties mentioned above, is
unique up to isomorphism that preserves the absolute values. This means that any
other complete Ąeld with the same properties and absolute value is isomorphic to Qp.
The uniqueness up to isomorphism guarantees that the p-adic Ąeld Qp is essentially the
only Ąeld that satisĄes these properties, ensuring its special role among complete Ąelds
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with respect to the p-adic norm.

Now, by using the following theorem, our objective is to alter our perspective on Qp.
Then, it would be wise to shift towards using more concrete terminology and promptly
disregard the notion of "equivalence classes of Cauchy sequences."

Theorem 3.1.7. Every equivalence class a in Qp for which ♣a♣ ≤ 1 has exactly one
representative Cauchy sequence of the form ¶ai♢ for which:

1) 0 ≤ ai < pi, for i = 1,2,3,...

2) ai ≡ ai+1 (mod pi), for i = 1,2,3,....

We need the following lemma for the proof.

Lemma 3.1.8. Given any x ∈ Qp and n ≥ 1 with ♣x♣p ≤ 1, there exists α ∈ Z, 0 ≤ α ≤
pn − 1, such that ♣x− α♣p < p−n. The integer α with these properties is unique.

Proof. (Lemma (3.1.8))
suppose we have an element x = a/b ∈ Zp, where a and b are integers in lowest terms.
Since ♣x♣p ≤ 1, this implies that b is not divisible by p, and therefore not divisible
by any power of p, such as pn. Consequently, there exist integers m and k such that
mb + kpn = 1. Let α = ma be the element obtained by multiplying a by m. Then,

♣α− x♣p = ♣am− (a/b)♣p = ♣a/b♣p♣mb− 1♣p ≤ ♣mb− 1♣p = ♣kpn♣p =
♣k♣p
pn
≤ p−n.

Now we return to the proof of the theorem.

Proof. (Theorem (3.1.7)) LetŠs denote a simply as a. To establish uniqueness, we begin
by assuming the existence of another sequence, denoted as ¶a′

i♢, that satisĄes conditions
(1) and (2). If there exists an index i0 such that ai0

̸= a′
i0

, we observe that ai0
and a′

i0

both fall within the range of values from 0 to pi0 . Consequently, we can conclude that
ai0
̸≡ a′

i0
(mod pi0)).

However, this equivalence relationship implies that for all indices i ≥ i0, ai ≡ ai0
̸≡

a′
i0
≡ a′

i (mod pi0). Thus
♣ai − a′

i♣p > p−i0

for all i ≥ i0 and ¶ai♢ ̸∼ ¶a′
i♢.

So suppose ¶bi♢ be Cauchy sequence, a representative in a . We want to Ąnd an
equivalent sequence ¶ai♢ satisfying (1) and (2). For every positive integer j, we deĄne
N(j) as the natural number such that ♣bi − bi′♣p ≤ p−j whenever both i and i′ are
greater than or equal to N(j). It is important to note that if i is larger than N(1), then
♣bi♣p < 1. Since

♣bi♣p ≤Max¶♣bi′♣p, ♣bi − bi′♣p♢ ≤Max¶♣bi′♣p, 1/p♢
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and ♣bi′♣p → ♣a♣ ≤ 1 as i′ → ∞. Now, by the lemma, we Ąnd a sequence of integers
aj, where 0 ≤ aj < pj such that ♣aj − bN(j)♣p ≤ pj. We claim that ¶aj♢ is the desired
sequence. It remains to show that aj ≡ aj+1 (mod pj) and ¶aj♢ ∼ ¶bj♢. First follows
because:

♣aj+1 − aj♣p = ♣aj+1 − bN(j+1) + bN(j+1) − bN(j) − (aj − bN(j))♣p

≤Max¶♣aj+1 − bN(j+1)♣p, ♣bN(j+1) − bN(j)♣p, ♣(aj − bN(j))♣p♢
= Max¶1/pj+1,1/pj, 1/pj♢ = 1/pj.

The second follows because:

♣ai − bi♣p ≤ ♣ai − aj + aj − bN(j) − (bi − bN(j))♣p

≤Max¶♣ai − aj♣p,♣aj − bN(j)♣p,♣bi − bN(j)♣p♢
= Max¶1/pj,1/pj, 1/pj♢ = 1/pj.

Hence, ♣ai − bi♣p → 0 as i→∞ and the theorem is proved.

We proved the theorem for ♣a♣p ≤ 1. What if our p-adic number a is not satisĄed by
♣a♣p ≤ 1? Then, The p-adic number a′ = apm obtained by multiplying a by a power pm

of p (i.e., by the power of p equal to ♣a♣p), does fulĄl ♣a′♣p ≤ 1. Then, a′ is represented
by a sequence ¶a′

i♢ as in the theorem and, a = a′p−m is represented by the sequence
¶ai♢ in which ai = a′

ip
−m. It is now convenient to write all the a′

i in the sequence for a′

to the base p, i.e.,
a′

i = b0 + b1p + b2p
2 + · · ·+ bi−1p

i−1

where all biŠs are all "digits", i.e., integers in ¶0,1, · · · ,p − 1♢. Our condition a′
i ≡ a′

i+1

(mod pi) precisely means that,

a′
i+1 = b0 + b1p + b2p

2 + · · ·+ bi−1p
i−1 + bip

i

where the digits bo through bi−1 are all the same as for a′
i. Consequently, a′ can be

understood as a number represented in base p, where the digits extend inĄnitely to the
right, progressively adding a new digit each time we transition from a′

i to a′
i+1

Our initial value a can be viewed as a decimal number in base p with a Ąnite number of
digits "to the right of the decimal point" (representing negative powers of p, but written
from the left), while having an inĄnite number of digits for positive powers of p:

a′
i =

b0

pm
+

b1

pm−1
+ · · ·+ bm−1

p
+ bm + bm+1p + bm+2p

2 + · · · .

We will soon observe that this equality holds in a precise and meaningful manner.
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DeĄnition 3.1.9. The ring of p-adic integer is the valuation ring

Zp = ¶x ∈ Qp ♣ ♣x♣p ≤ 1♢

with the maximal ideal pZp = ¶x ∈ Qp ♣ ♣x♣p < 1♢ and Z×
p = ¶x ∈ Qp ♣ ♣x♣p = 1♢.

We have the similar inclusion Z → Zp and we can prove that the image of Z in Zp is
dense.

Let ¶bi♢∞
i=−m be any sequence of p-adic integers. Consider the sum,

SN =
b−m

pm
+

b−m+1

pm−1
+ · · ·+ b0 + b1p + b2p

2 + · · ·+ bNpN .

The sequence of partial sums is evidently a Cauchy sequence. For any indices M and
N where M > N , the p-adic absolute value of the difference between SM and SN is
less than 1/pN . Consequently, this sequence converges to an element within Qp. As
in the case of inĄnite series of real numbers, we deĄne

∑∞
i=−m bip

i to be this limit in
Qp. More generally, if ¶ci♢ is any sequence of p-adic numbers such that ♣ci♣p → 0
as i → ∞, the sequence of partial sums SN = c1 + c2 + ... + cN converge to a limit
which we denote

∑∞
i=1 ci. This is because ♣SM − SN ♣p = ♣cN+1 + cN+2 + ... + cM ♣p ≤

Max¶♣cN+1♣p,♣cN+2♣p,...,♣cM ♣p♢ which → 0 as N →∞.

Hence, determining the convergence of p-adic inĄnite series is simpler compared to
inĄnite series of real numbers. A series converges in Qp if and only if its terms approach
zero.
Now, focusing on p-adic expansions, we can observe that the inĄnite series on the
right-hand side of the p-adic expansion deĄnition,

b0

pm
+

b1

pm−1
+ · · ·+ bm−1

p
+ bm + bm+1p + bm+2p

2 + · · · ,

(where bi are elements from the set 0,1, · · · ,p− 1), converges to our a. Therefore, the
equality can be understood as the sum of an inĄnite series. This equality is commonly
referred to as the "p-adic expansion" of a.

One observation is that Zp serves as the completion of Z concerning the p-adic absolute
value. The sets of the form a + pnZp, where a ∈ Q and n ∈ Z, represent the closed balls
within Qp (with a as the center and p−n as the radius). Since Q is densely embedded in
Qp, these closed balls cover the entirety of Qp. As we have nearly demonstrated, Qp is a
completely disconnected space since it is a non-Archimedean division ring. Furthermore,
for any two points, it is always possible to Ąnd separate balls around them that have
no intersection.

Remark 3.1.10. Qp is a totally disconnected Hausdorff topological space.

Remark 3.1.11. Zp is compact, and Qp is locally compact.
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Proof. (3.1.11) The second conclusion follows from the fact that Zp is a neighborhood
of zero. Demonstrating the compactness of Zp is indeed sufficient to establish that Qp is
locally compact. More speciĄcally, the sets pnZp, where n ranges over all integers, form
a fundamental system of neighborhoods of 0 in Qp. This means that every neighborhood
of 0 in Qp contains one of these sets.

Now, we will establish the compactness of Zp. Consider the set A =
∏∞

n=1 Z/pnZ,
endowed with the product topology. According to the Tychonoff Theorem, A is compact
because each factor Z/pnZ is compact. Hence, to establish that Zp is compact, it suffices
to demonstrate its closedness in A. To do so, we can use the fact that Zp is the inverse
limit of the system lim←−(An,φn) for speciĄc An and φn. As an inverse limit, Zp can be
identiĄed as a closed subset of A.

So let An = Z/pnZ and φn : An → An−1 be the natural homomorphism and deĄne

Zp = lim←−(An,φn)

whose elements are (...,xn...,x1) with xn ∈ An and φn(xn) = xn−1 if n ≥ 2. Also
the projections, πn : A → Z/pnZ for n ≥ 1 which are continuous by the deĄnition of
product topology. Then:

Zp = ∩n∈N×¶x = (xn)n≥1 ∈ A ♣ φn(xn) = xn−1♢

= ∩n∈N×¶x = (xn)n≥1 ∈ A ♣ φn(πn(x)) = πn−1(x)♢.
Indeed, each subset of A deĄned by ¶x = (xn)n≥1 ∈ A ♣ φn(πn(x)) = πn−1(x)♢ is closed.
This can be shown by leveraging the continuity of both the projection maps and the
functions φn.

The continuity of the projection maps ensures that the pre-images of closed sets under
the projections are closed. Additionally, since each φn is continuous, the pre-images of
closed sets under these functions are also closed.

Therefore, Zp is now expressed as the intersection of closed subsets in the product A,
implying that Zp itself is closed.

To complete this section, we proceed to discuss brieĆy the construction of an algebraic
closure of Qp, denoted as Qp, and subsequently its completion.

Qp is a Ąeld that contains all the roots of every polynomial with coefficients in Qp. In

other words, Qp is obtained by adjoining all the algebraic elements to Qp in a systematic
manner, ensuring that it includes every root of every polynomial in Qp. To construct
Qp, we simply take the union of all Ąnite extensions of Qp. Once Qp is established, we
can then consider its completion, which involves adjoining the limit points of Cauchy
sequences within Qp.
For any given element x ∈ Qp, the extension Qp(x) is a Ąnite extension, meaning that
its degree is equal to the degree of the minimal polynomial of x over Qp. Since x resides
in the Ąnite extension Qp(x), we can deĄne ♣x♣p by extending the p-adic absolute value
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uniquely to Qp(x). Interestingly, it can be demonstrated that this absolute value does
not rely on the speciĄc Ąeld in which it is taken. In other words, it only depends on x
itself as a root of some polynomial over Qp. Consequently, it is meaningful to state that
♣x♣p is the absolute value of the element x ∈ Qp, and that Qp is inĄnte extension of Qp.

Theorem 3.1.12. The algebraic closure Qp is not complete with respect to the (ex-
tended) p-adic absolute value.

Proof. See [4], ch 5, theorem 5.7.4, p 165.

Since the algebraic closure of Qp, is not a complete Ąeld, it becomes necessary to create
its completion. The process of constructing the completion is similar to that of Qp and
involves manipulating the ring that consists of all Cauchy sequences within Qp.

To form the completion of Qp, we consider the entire set of Cauchy sequences within

Qp and treat it as a ring. An equivalence relation is established among these sequences,
whereby two sequences are considered equivalent if their difference approaches zero as
the index tends to inĄnity. By using this equivalence relation and dividing the ring of
Cauchy sequences accordingly, we obtain the completion Cp.

Proposition 3.1.13. There exists a Ąeld Cp and an absolute value ♣♣p on Cp such that:

i) Cp contains Qp and the restriction of ♣♣p to Qp coincides with the p-adic absolute value.

ii) Cp is complete with respect to the p-adic absolute value, and

iii) Qp is dense in Cp.

v) Cp is complete and is algebraically closed.

Proof. See [4], ch 5, proposition 5.7.6, p 167 for the Ąrst three, and proposition 5.7.8
for the last one.

3.2 Continuous and analytic functions

Our current aim is to present the notion of continuity and subsequently focus on using
power series to establish p-adic analytic functions that exhibit similarities to classical
functions.

DeĄnition 3.2.1. A function f : Zp → Qp is called continuous at a point α ∈ Zp, if
∀ε > 0, ∃δ > 0 such that ♣x− α♣p < δ implies that ♣f(x)− f(α)♣p < ε, ∀x ∈ Zp.

A function f : Zp → Qp is continuous if it is continuous at all points α ∈ Zp.
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DeĄnition 3.2.2. A function f : Zp → Qp is called locally constant if every point
x ∈ Zp has a neighborhood Ux such that f(Ux) is a single element in Qp.

Remark 3.2.3. Locally constant functions are continuous.

As an example, since the space Zp is totally disconnected, the characteristic function
of any open ball U ⊂ Zp is continuous.

δU(x) =





1 if x ∈ U

0 if x ∈ Zp − U.
(3.2)

Remember that in a metric space with a non-Archimedean norm, a sequence is called
Cauchy if and only if the difference between consecutive terms tends to zero. Moreover,
in a complete metric space, an inĄnite sum converges if and only if its general term
approaches zero. So if we consider expressions of the form

f(X) =
∞∑

n=0

anXn an ∈ Qp,

we can give a value
∑∞

n=0 anxn to f(x) whenever an x is substituted for X for which
♣anxn♣p → 0. Just as in the Archimedean case (power series over R or C), we deĄne the
"radius of convergence"

r =
1

lim sup n

√
♣an♣p

where the terminology "1/r = lim sup n

√
♣an♣p means that 1/r is the least real number

such that for any C > 1/r there are only Ąnitely many n

√
♣an♣p greater than C. Equiva-

lently, 1/r is the greatest "point of accumulation," i.e., the greatest real number which
can occur as the limit of a subsequence of ♣an♣1/n

p .

Lemma 3.2.4. Every f(X) ∈ Zp[[X]] converges in B(0,1) = ¶x ∈ Qp ♣ ♣x− 0♣p < 1♢

Proof. Let f(X) =
∑∞

n=0 anXn, an ∈ Zp and let x ∈ B(0,1). Thus ♣x♣p < 1 and also
♣an♣p ≤ 1 for all n. Hence ♣anxn♣p ≤ ♣xn♣p → 0 as n→∞.

Another easy lemma is,

Lemma 3.2.5. Every power series f(X) =
∑∞

n=0 anXn ∈ Zp[[X]] which converges in
an open or (closed disc) B(a,r) or (B(a,r)), is continuous on it.

Proof. Suppose ♣x − x′♣p < δ, where δ < ♣x♣p will be chosen later. Then, ♣x♣p = ♣x′♣p
(we are assuming x ̸= 0). We write

♣f(x)− f(x′)♣p = ♣
∞∑

n=0

(anxn − anx′n)♣p
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≤Maxn¶♣anxn−a′
nx′n♣p♢ = Maxn¶(♣an♣p♣(x−x′)(xn−1 +xn−2x′ +...+xx′n−2 +x′n−1♣p)♢.

But,
♣xn−1 + xn−2x′ + ... + xx′n−2 + x′n−1♣p ≤Maxi¶xn−ix′i−1♢

= ♣x♣n−1
p .

Hence,
♣f(x)− f(x′)♣p ≤Maxn¶♣x− x′♣p♣an♣p♣♣x♣n−1

p ♢

<
δ

♣x♣p
Maxn¶♣an♣p♣♣x♣np♢.

Since ♣an♣p♣♣x♣np is bounded as n→∞, ♣f(x)− f(x′)♣p ≤ ε for suitable δ.

Remark 3.2.6. The lemma can be generalised for f(x) ∈ Qp[[X]].

We now continue by introducing p-adic variations of the exponential and logarithm func-
tions. As one might expect, the p-adic theory demonstrates a signiĄcant resemblance
to the classical version, with the exception that certain challenging aspects become
signiĄcantly easier to manage.
We begin with the formal power series of logarithm:

f(X) =
∞∑

n=1

(−1)n+1 Xn

n
.

Considering that the coefficients of this power series consist of rational numbers, it is
logical to interpret the series as a power series in Qp (where p is any prime number).
The initial stage in comprehending the power series involves determining its radius of
convergence. Before delving into the calculation of the limit, it is important to observe
another contrast between the classical and p-adic contexts. In the classical scenario, the
presence of integers in the denominators contributes to the convergence as they tend
to reduce the size of the series terms. However, in the p-adic context, this situation is
completely reversed: integers in the denominator either have no effect on the absolute
value (when they are not divisible by p) or make it bigger (when they are divisible by
p).
Now, to compute the radius of f , we observe that:

♣an♣p = ♣ 1
n
♣p = pvp(n).

Therefore,
♣ n
√

an♣p = pvp(n)/n → 1,

as n → ∞. So the radius of convergence is 1. This distinction does not provide a
conclusive answer regarding whether the convergence occurs within the open or closed
ball of radius 1. To make this determination, we must examine the behavior when the
absolute value of ŤxŤ is equal to 1. However, it becomes evident that in such a scenario,
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♣anXn♣p = ♣1/n♣p does not tend to zero. So we have:

Lemma 3.2.7. The series

f(X) =
∞∑

n=1

(−1)n+1 Xn

n
= X − X2

2
+

X3

3
− X4

4
+ · · ·

converges for ♣x♣p < 1.

The conclusion is that f(X) deĄnes a function on the open ball B(0, 1) of radius 1 and
center 0.

DeĄnition 3.2.8. We deĄne the p-adic logarithm of x ∈ B(1,1) as

logp(x) = log(1 + (x− 1)) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
.

One of the most appealing aspects of deĄning the logarithm in this manner is that
it preserves the fundamental property of the logarithm which is an equality of formal
power series.

log(X + 1) + log(Y + 1) = log(1 + X + Y + XY ).

It follows that for any x and y ∈ 1 + pZp, we have

logp(x) + logp(y) = logp(xy).

Now that we have established a logarithm, the construction of exponentials is not far
behind. In the classical context, the exponential function is deĄned by the series:

exp(X) =
∞∑

n=0

Xn

n!

In the classical case, the series for the exponential function converges for all x ∈ R, be-
cause the coefficients 1/n! decrease rapidly as n increases, approaching zero with respect
to the real absolute value. However, in the p-adic context, this situation undergoes a
signiĄcant change. The factorial term n! tends to zero, causing the coefficients 1/n! to
become arbitrarily large as n increases. As a result, we cannot expect to have a large
radius of convergence. To determine the speciĄc radius, we need to analyze the growth
rate of the coefficients 1/n!, speciĄcally how divisible n! is by the prime number p.

Lemma 3.2.9. Let p be a prime. Then

vp(n!) =
∞∑

n=0

⌊ n

pi
⌋ ≤ n

p− 1

where ⌊.⌋ is the greatest integer function.

Proof. The equality is a well known number theoretic fact. The inequality follows
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because we have ⌊x⌋ ≤ x, so that,

vp(n!) =
∞∑

i=0

⌊ n

pi
⌋ ≤

∞∑

i=0

n

pi
=

n

p− 1

Now we use this estimate to work out the convergence of the exponential.

Lemma 3.2.10. Let

g(X) =
∞∑

n=0

Xn

n!
= 1 + X +

X2

2!
+

X3

3!
+ · · ·

Then g(x) converges if and only if ♣x♣p ≤ p− 1

p−1 .

Proof. Since
♣an♣p < p

n
p−1 ,

by the previous lemma, we get

r ≥ p− 1

p−1

where r represents the radius of convergence. Thus, the series certainly converges for
♣x♣p < p−1/p−1.
On the other hand, let ♣x♣p = p−1/(p−1), and let n = pm be a power of p. Then we Ąrst
have;

vp(n!) = vp(pm!) = 1 + p + · · ·+ pm−1 =
pm − 1

p− 1
,

and, then since vp(x) = 1/p− 1,

vp(
xn

n!
) = vp(

xpm

pm!
) =

pm

p− 1
− pm − 1

p− 1
=

1

p− 1
.

The fact that the convergence of xn/n! does not depend on the variable m, implies that
it cannot tend to zero. As we already know that the region of convergence is a disk,
this observation serves as proof for the lemma.

DeĄnition 3.2.11. The p-adic exponential is the function expp : B(0,p−1/p−1) → Qp

deĄned by,

expp(x) =
∞∑

n=0

xn

n!

Similar to the logarithm, the formal property of the exponential function is preserved
in this context. If x and y are in B(0,p−1/p−1), we have x + y ∈ B(0,p−1/p−1) and,

expp(x + y) = expp(x) + expp(y)
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Proposition 3.2.12. The functions logp and expp are inverse one to the other, acting
as isomorphisms, connecting the multiplicative group within the open disc centered at 1
with a radius of p−1/(p−1) and the additive group within the open disc centered at 0 with
the same radius.

Proof. See [3], proposition, p 81.

Remark 3.2.13. Almost everything extends to Cp. More precisely:

let
D = ¶x ∈ Cp ♣ ♣x♣p ≤ 1♢.

A power series
∑∞

n=1 anXn with coefficients an ∈ Cp deĄnes a continuous function on

an open ball of radius r = 1/(lim sup n

√
♣an♣p); the function extends to the closed ball

of radius r if ♣an♣prn → 0 as n→∞.
The usual power series deĄnes a p-adic logarithm function

logp : B → Cp

where
B = ¶x ∈ D ♣ ♣x− 1♣p < 1♢.

This function satisĄes the usual functional equation of logp.
The usual power series deĄnes an exponential function

expp : D → Cp

where
D = ¶x ∈ D ♣ ♣x♣p < p−1/(p−1)♢.

This function also satisĄes the functional equation of expp.

Now, we wish to introduce the concept of derivatives for p-adic functions in a natural
manner by deĄning them in the conventional way.

DeĄnition 3.2.14. Let U ⊂ Cp be an open set, and let f : U → Cp be a function. We
say f is differentiable at x ∈ U if the limit

f ′(x) = lim
h→0

f(x + h)− f(x)

h

exists. If f ′(x) exists for every x in U , we say f is differentiable in U , and we write
f ′ : U → Cp for the function x 7→ f ′(x).

To a certain degree, the derivative behaves as expected in p-adic analysis. For instance,
we can demonstrate that differentiable functions are continuous, just as we do in the
real numbers or complex numbers. However, there are some intriguing aspects that
warrant further explorations.
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Proposition 3.2.15. Let
∑

anXn be a power series and suppose f =
∑

an(x − α)n

converges for all x in the closed ball β = B(α,r) ⊂ Cp. Then we have:

i) For every x ∈ β, the derivative f ′(x) exists, and is given by

f ′(x) =
∑

nan(x− α)n−1.

ii) More generally, for every x ∈ β, the k-th derivative exists and is given by,

f (k)(x) =
∑


n

k


an(x− α)n−k,

in particular, we have

ak =
f (k)(α)

k!
.

iii) f(x) is inĄnitely differentiable.

iv) Let β ∈ B(α,r). Then there exists a series
∑

bnXn such that f(x) =
∑

bn(x − β)n

for any x ∈ B(α,r) = B(β,r). The series
∑

anXn and
∑

bnXn have exactly the same
region of convergence.

Proof. See [4], proposition 4.2.3, p 91.

DeĄnition 3.2.16. If a function can be expressed as a convergent power series within
a small vicinity of every point in its deĄned region, it is referred to as being locally
analytic.

3.3 p-Adic measures and examples

We start with the metric space Qp. As previously mentioned, the collection of sets in
this metric space consisting of all sets of the form a+pNZp = ¶x ∈ Qp ♣ ♣x−a♣p ≤ 1/pN♢,
where a belongs to Qp and N belongs to Z, forms an open basis for the topology. Con-
sequently, any open subset of Qp can be expressed as a union of open subsets of this
form.
Such sets of the form a + pNZp will be referred to as "intervals," and we may sometimes
abbreviate a + pNZp as a + (pN). It is important to note that all intervals are both
closed and open. This is due to the fact that the complement of a + (pN) is the union
of intervals a′ + (pN) for all a′ belonging to Qp such that a′ is not in a + (pN).
Let us review the properties of Zp: it is both compact and sequentially compact, mean-
ing that every sequence of p-adic integers has a convergent subsequence. From this, we
can deduce that an open subset of Qp is compact if and only if it can be expressed as
a Ąnite union of intervals. We refer to these speciĄc open sets as "compact-open" sets.
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LetŠs recall the deĄnition of locally constant functions.

DeĄnition 3.3.1. A function f : Zp → Qp is called locally constant if every point
x ∈ Zp has a neighborhood Ux such that f(Ux) is a single element in Qp.

It is worth noting that a locally constant function is continuous. In our context, we
consider X as a compact-open subset of Qp, typically either Zp or Z×

p .

When deĄning integrals using Riemann sums, locally constant functions in p-adic con-
text serve a similar purpose to step functions in the real numbers (X = R).

Now, letŠs consider X as a compact-open subset of Qp, such as Zp or Z×
p , and proceed

to deĄne distributions.

DeĄnition 3.3.2. A p-adic distribution µ on X is a Qp-linear map on the space of
locally constant functions on X to Qp. Equivalently,
a distribution on X is an additive map from the set of compact-opens in X to Qp. i.e,
if U ⊂ X is the disjoint union of compact-opens U1, U2,..., Un, then µ(U) =

∑n
i=1 µ(Ui).

Proposition 3.3.3. Every map µ from the set of intervals contained in X to Qp for
which

µ(a + (pN)) =
p−1∑

b=0

µ(a + bpN + (pN+1)),

whenever a + (pN) ⊂ X, extends uniquely to a p-adic distribution on X.

Proof. Every compact-open U ⊂ X can be written as a Ąnite disjoint union of intervals:
U =

⋃
i Ii. We then deĄne µ(U) =

∑
µ(Ii). To check that µ(U) does not depend on

the partitioning of U into intervals, we Ąrst note that any two partitions U =
⋃

i Ii and
U =

⋃
i I ′

i of U into a disjoint union of intervals have a common subpartition ("Ąner"
than both) which is of the form Ii =

⋃
j Iij where, if Ii = a + (pN), then the IijŠs run

through all intervals a′ + (pN) for some Ąxed N ′ > N and for variable a′ which are
≡ a (mod pN). Then, by repeated application of the equality in the statement of the
proposition, we have:

µ(Ii) = µ(a + (pN)) =
pN′

−N−1∑

j=0

µ(a + jpN + (pN ′

)) =
∑

j

µ(Iij).

Some examples of p-adic distributions are as follows:

1) The Haar distribution, denoted as µHaar, is deĄned as follows:

µhaar(a + (pN)) =
1

pN
.

2) The Dirac distribution µα, concentrated at α ∈ Zp, is deĄned as follows: µα(U) = 1
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if α ∈ U and µα(U) = 0 otherwise.

3) The Bernoulli distribution µB,k is related to the Bernoulli polynomials. LetŠs Ąrst
recall the deĄnition of the Bernoulli polynomials:

The k-th Bernoulli polynomial, denoted Bk(x), is deĄned by the generating function:

text

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
.

Based on this, we can deĄne the Bernoulli distribution µB,k as follows:

µB,k(a + (pN)) = pN(k−1)Bk(
a

pN
).

Proposition 3.3.4. µB,k extends to a distribution on Zp (called the "kth Bernoulli
distribution ").

Proof. By the previous proposition, we must show that

µB,k(a + (pN)) =
p−1∑

b=0

µB,k(a + bpN + (pN+1)).

The right-hand side equals

µB,k(a + (pN)) = p(N+1)(k−1)Bk(
a + bpN

pN+1
).

So, multiplying with p−N(k−1) and setting α = a/pN+1, we must show that

Bk(pα) = pk−1
p−1∑

b=0

Bk(α +
b

p
).

The right-hand side is, by the deĄnition of Bk(x), equal to k! times the coefficient of tk

in

pk−1
p−1∑

b=0

te(α+b/p)t)

et − 1
=

pk−1teαt

et − 1

p−1∑

b=0

ebt/p =
pk−1teαt

et − 1

et − 1

et/p − 1
.

By summing the geometric progression
∑p−1

b=0 ebt/p, this expression equals to

pk(t/p)epα(t/p)

et/p − 1
= pk

∞∑

j=0

Bj(pα)
(t/p)j

j!
,

again by the deĄnition of Bk(x). Hence, k times the coefficient of tk is simply

pkBk(pα)(1/p)k = Bk(pα)
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as desired.

Finally, we are ready to extend distributions to measures and do integrations.

DeĄnition 3.3.5. A p-adic distribution µ on X is a measure if its values on compact-
opens U ⊂ X are bounded by some constant B ∈ R, i. e.,

♣µ(U)♣p ≤ B

for all compact open U ⊂ X

The Dirac distribution µα for a Ąxed α ∈ Zp is indeed a measure. However, the
Bernoulli distributions, as initially deĄned, may not be measures. In order to convert
the Bernoulli distributions into measures, a common approach called "regularization"
can be used. LetŠs introduce some notation. Given α ∈ Zp, we deĄne ¶α♢N as the
rational integer that lies between 0 and pN −1 and is congruent to α modulo pN . If µ is
a distribution and α ∈ Qp, we deĄne αµ as the distribution whose value on any compact-
open set is equal to α times the value of µ. In other words, for any compact-open set
U , we have (αµ)(U) = α · (µ(U)).

Lastly, letŠs deĄne the multiplication of a compact-open set U ⊂ Qp by a non-zero scalar
α ∈ Qp. We denote this operation as αU , and it is deĄned as the set ¶x ∈ Qp ♣ x/α ∈
U♢. It can be easily veriĄed that the sum (scalar multiplication) of distributions (or
measures) results in another distribution (or measure). SpeciĄcally, given a distribution
(or measure) µ and a scalar α ∈ Qp, the distribution (or measure) αµ is obtained by
multiplying the values of µ by α.

Furthermore, if α ∈ Z×
p and µ is a distribution (or measure) deĄned on Zp, the function

µ′ deĄned as µ′(U) = µ(αU) is also a distribution (or measure) on Zp.
Let α be any rational integer that is not equal to 1 and is not divisible by p. We
introduce the notation µk,α to represent the regularized Bernoulli distribution on Zp.
The deĄnition of this distribution is as follows:

µk,α(U) = µB,k(U)− α−kµB,k(αU).

We will show that µk,α is a measure. However, regardless of the proof, it is evident from
the arguments presented in the previous paragraph that µk,α is indeed a distribution.
If k = 1, we have:

µ1,α(a + (pN)) = µB,1(a + (pN))− α−1µB,1(a + (pN)) = B1(
a

pN
)− α−1B1(

αa

pN
)

=
a

pN
− 1

2
− α−1


αa

pN
− 1

2

]

=
1/(α)− 1

2
+

a

pN
+

1

α
¶αa

pN
−


αa

pN

]
♢
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=
1

α


αa

pN

]
+

1/(α)− 1

2

where [ ] means the greatest integer function.

Proposition 3.3.6. ♣µ1,α(U)♣p ≤ 1 for all compact open U ⊂ Zp.

Proof. Note that 1/α ∈ Zp and 1/2 ∈ Zp. Therefore, for p ̸= 2, we have 1/α−1/2 ∈ Zp.

If p = 2, we have α−1 − 1 ≡ 0 (mod 2), which is also valid. Since
[
αa/pN

]
∈ Zp, we can

conclude that µ1,α(a + (pN)) ∈ Zp. Moreover, since every compact-open set U can be
expressed as a Ąnite disjoint union of intervals Ii, we can infer that

♣µ1,α(U)♣p ≤Max♣µ1,α(Ii)♣p ≤ 1

We will shortly prove that µk,α is a measure for all k = 1, 2, 3, ... and 1 ̸= α ∈ Z, and
α ̸∈ pZ.
Consequently, µ1,α qualiĄes as a measure and represents the initial notable example of a
p-adic measure that we have encountered. In fact, as we will soon observe, µk,α plays a
vital role in p-adic integration, akin to the signiĄcance of "dx" in actual integration. We
then demonstrate a crucial congruence connecting µ1,α to µk,α. The demonstration of
this congruence initially appears tediously computational, but it becomes clearer when
we consider an identical circumstance in real calculus.

Theorem 3.3.7. Let dk be the least common denominator of the coefficients in Bk(x).
Therefore, d1 = 2, d2 = 6, d3 = 2 and etc. Then,

dkµk,α(a + (pN)) ≡ dkkak−1µ1,α(a + (pN)) (mod pN)

where both sides of this congruence lie in Zp.

Proof. We know that

Bk(x) = B0x
k + kB1x

k−1 + ... = xk − k/2xk−1 + ...

We also have,

dkµk,α(a + (pN)) = dkpN(k−1)


BK(

a

pN
)− α−kBk(

¶αa♢N

pN
)


.

The polynomial dKBk(x) has integral coefficients and degree k. Consequently, we only
need to take into account the leading two terms, dkxk − dk(k/2)xk−1, of dkBk(x). This
is because our variable x has a denominator of pN , which ensures that the denominators
in the lower terms of dkBk(x) will be canceled out by pN(k−1), leaving us with at least
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pN remaining. We also note that,

αa ≡ ¶αa♢N (mod pN)

and
¶αa♢N

pN
=

αa

pN
−


αa

pN

]
.

Therefore,

dkµk,α(a + (pN)) ≡ dkpN(k−1)


ak

pNk
− α−k


¶αa♢
pN

k

−k

2


ak−1

pN(k − 1)
− α−k


¶αa♢
pN

k−1
(mod pN)

= dk


ak

pN
− α−kpN(k−1)


αa

pN
−


αa

pN

]k

− k

2


ak−1 − α−kpN(k−1)


αa

pN
−


αa

pN

]k−1

≡ dk


ak

pN
− α−k


αkak

pN
− kαk−1ak−1


αa

pN

]
−

k

2
(ak−1 − α−k(αk−1ak−1)


(mod pN)

= dkkak−1


1

α


αa

pN

]
+

1/(α)− 1

2



= dkkak−1µ1,α(a + (pN)).

Corollary 3.3.8. µk,α(a+(pN)) is a measure for all k = 1,2,3, · · · , and any α ∈ Z and
α ̸∈ pZ,α ̸= 1.

Proof. We must show that µk,α(a + (pN)) is bounded. By the previous theorem,

♣µk,α(a+(pN))♣p ≤Max

{
♣p

N

dk

♣p, ♣kak−1µ1,α(a+(pN))♣p
}
≤Max

{
♣ 1

dk

♣p,♣µ1,α(a+(pN))♣p
}

.

But, ♣µ1,α(a + (pN))♣p ≤ 1 and dk is Ąxed.

Why go to all this trouble to "regularise" Bernoulli distributions in order to obtain
measures? The answer is that if f is locally constant for an unbounded distribution
µ, then

∫
fdµ is deĄned by deĄnition as long as f is locally constant. However, some

problems arise when attempting to employ limits of Riemann sums to extend integration
to continuous functions f .
For example, let µ = µHaar and take the simple function f : Zp → Zp given by
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f(x) = x. LetŠs form the Riemann sums. Given f , for any N we divide up Zp into
⋃pN−1

a=0 (a + (pN)), and we let xa,N be an arbitrary point in the ath interval and deĄne
the Nth Riemann sum of f corresponding to ¶xa,N♢ as

SN,¶xa,N ♢ =
pN −1∑

a=0

f(xa,N)µ(a + (pN)).

In our example, this sum equals to

pN −1∑

a=0

xa,N
1

pN

For example, if we simply choose xa,N = a we obtain,

pN −1∑

a=0

a
1

pN
= p−N (pN − 1)pN

2
=

pN − 1

2
.

This sum has a limit in Qp as N → ∞, namely, −1/2. But if instead of xa,N = a ∈
a + (pN) we change one of the xa,N to a + a0p

N ∈ a + (pN) for each N , where a0 is a
Ąxed p-adic integer, then we obtain that

p−N

 pN −1∑

a=0

a + a0p
N


=

pN − 1

2
+ a0

whose limit is a0 + 1
2
. Consequently, the choice of points within the intervals does not

determine the limit of the Riemann sums. If it is not possible to integrate continuous
functions with respect to a "distribution," then it is of limited use and should not be
considered as a measure. We now demonstrate how bounded distributions merit the
word "measure" given to them.
Recall that X is a compact-open subset of Qp like Zp or Z×

p (for simplicity take X ⊂ Zp).
The following theorem allows us to integrate the continuous functions.

Theorem 3.3.9. Let µ be a p-adic measure on X, and let f : X → Qp be a continuous
function. Then the Riemann sums

SN,¶xa,N ♢ =
∑

0≤a<pN ,a+(pN )⊂X

f(xa,N)µ(a + (pN))

where xa,N ∈ a + (pN), converge to a limit in Qp as N →∞ which does not depend on
the choice of ¶xa,N♢.

Proof. Suppose that ♣µ(U)♣p ≤ B for all compact-open U ⊂ X. We Ąrst estimate for
M > N

♣SN,¶xa,N ♢ − SM,¶xa,M ♢♣p.
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By writing X as a Ąnite union of intervals, we can choose N large enough so that every
a + (pN) is either ⊂ X or is disjoint from X. We rewrite SN,¶xa,N ♢ as follows, by using
the additivity of µ,

SN,¶xa,N ♢ =
∑

0≤a<pM ,a+(pM )⊂X

f(xa,N)µ(a + (pM))

(where a denotes the least nonnegative residue of a (mod pN)). We further assume that
N is large enough so that ♣f(x) − f(y)♣p ≤ ε whenever x ≡ y (mod pN). (Remember
that since X is compact, continuity implies uniform continuity.). Then

♣SN,¶xa,N ♢ − SM,¶xa,M ♢♣p =

∣∣∣∣∣
∑

0≤a<pM ,a+(pM )⊂X


f(xa,N)− f(xa,M)


µ(a + (pM))

∣∣∣∣∣
p

≤Max¶♣f(xa,N)− f(xa,M)♣p.♣µ(a + (pM))♣p♢
≤ ε.B

DeĄnition 3.3.10. If f : X → Qp is a continuous function and µ is a measure on
X, we deĄne

∫
fµ to be the limit of the Riemann sums, the existence of which was just

proved. (Note that if f is locally constant, this deĄnition agrees with the earlier meaning
of
∫

fµ·)

The following simple but important facts follow immediately from this deĄnition.

Proposition 3.3.11. If f : X → Qp is a continuous function such that ♣f(x)♣p ≤ A for
all x ∈ X and if ♣µ(U)♣p ≤ B for all compact-open U ⊂ X, then

∣∣∣∣∣

∫
fµ

∣∣∣∣∣
p

≤ AB.

Proof. By writing the Riemann sum,

∣∣∣∣∣

∫

X
fµ

∣∣∣∣∣
p

=

∣∣∣∣∣ lim
N→∞

pN −1∑

a=0

f(x)µ(a + (pN))

∣∣∣∣∣
p

≤Max

{
♣f(x)♣p.♣µ(a + (pN))♣p

}
≤ AB.

Corollary 3.3.12. If f,g : X → Qp are two continuous functions such that ♣f(x) −
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g(x)♣p ≤ ε for all x ∈ X and if ♣µ(U)♣p ≤ B for all compact-open U ⊂ X, then

∣∣∣∣∣

∫
fµ−

∫
gµ

∣∣∣∣∣
p

≤ εB.

Proof. With similar calculation,

∣∣∣∣∣

∫

X
fµ−

∫
gµ

∣∣∣∣∣
p

=

∣∣∣∣∣ lim
N→∞

pN −1∑

a=0

(f(x)− g(x))µ(a + (pN))

∣∣∣∣∣
p

≤Max

{
♣f(x)− g(x)♣p.♣µ(a + (pN))♣p

}
≤ εB.



Chapter 4

p-Adic zeta and L-functions

4.1 p-Adic interpolation of f (s) = as

LetŠs consider a positive real number a. The function f(s) = as can be deĄned as a
continuous function of a real variable by initially deĄning it for rational numbers s and
then extending it by continuity to real numbers. This extension is accomplished by
considering each real number as the limit of a sequence of rational numbers.

Consider the scenario where we have a Ąxed positive integer, denoted n, which we treat
as an element belonging to the Ąeld of p-adic numbers. For any non-negative integer
s, the value of ns is an element of the p-adic integers. Furthermore, the non-negative
integers are dense within the set of p-adic integers, similar to how the rational numbers
are dense within the real numbers. In simpler terms, any p-adic integer can be expressed
as the limit of a sequence of non-negative integers. Based on this understanding, we
can try to extend the function f(s) = ns in a continuous manner from non-negative
integers s to all p-adic integers s.
In order to achieve this extension, it is necessary to investigate whether ns and ns′

are
close to each other when the non-negative integers s and s′ are close. For instance,
we can consider the case where s′ = s + pN for a sufficiently large positive integer N .
However, by examining a few examples, we can observe that this proximity does not
always hold true,
(1) n = p, s = 0: ♣ns − ns′♣p = ♣1− pN ♣p = 1.
(2)1 < n < p: by FermatŠs little theorem, we have np ≡ n and so n ≡ np ≡ np2 ≡
np3 ≡ ... ≡ npN

(mod p), hence ns − ns+pN

= ns(1 − npN

) ≡ ns(1 − n) (mod p), thus
♣ns − ns′♣p = 1, no matter what N is.
However, the situation is not as unfavorable as the previous examples might suggest.
letŠs choose n such that n ≡ 1 (mod p). For instance, we can choose n = 1 + mp, where
m is an integer. Now, letŠs consider the condition ♣s′ − s♣p ≤ 1/pN , which implies that

53
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s′ = s + s′′pN for some s′′ ∈ Z. Then we have (let s′ > s)

♣ns − ns′♣p = ♣ns♣p♣1− ns′−s♣p = ♣1− ns′−s♣p = ♣1− (1 + mp)s′′pN ♣p.

But by expanding (1+mp)s′′pN

, we notice that each term in 1−(1+mp)s′′pN

is divisible
by at least pN+1. Thus,

♣ns − ns′♣p ≤ ♣pN+1♣p =
1

pN+1
.

In other words, if s− s′ is divisible by pN , then ns − ns′

is divisible by pN+1.
Hence, when n satisĄes n ≡ 1 (mod p), it is justiĄed to deĄne the function f(s) = ns for
any p-adic integer s as the p-adic integer that corresponds to the limit of the sequence
nsi . Here, si represents a sequence of non-negative integers that converges to the p-adic
integer s. In this manner, we extend the original function f(s) = ns deĄned on non-
negative integers to encompass a broader domain of p-adic integers by considering the
convergence behavior of the sequence nsi . (For example the partial sums of the p-adic
expansion of (s)). Then, f(s) is a continuous function from Zp → Zp.

We can improve the situation by allowing any n that is not divisible by p, provided that
we also impose congruence conditions on s and s′ modulo (p−1), in addition to a large
power of p. SpeciĄcally, we choose a Ąxed s0 from the set 0,1,2, · · · ,p− 2, and instead
of considering ns for all non-negative integers s, we consider ns for all s = s0 +(p−1)s1,
where s1 is any non-negative integer. In this way, we examine ns0+(p−1)s1 for different
values of s1. We can do this because then

ns = ns0(np−1)s1 ,

and for any n not divisible by p we have np−1 ≡ 1 (mod p). Thus, we are in the situation
of the last paragraph with np−1 in place of n and s1 in place of s.

Remark 4.1.1. This p-adic interpolation applies word-by-word to the function f(s) =
n−s.

The direct method for interpolating the Riemann zeta function, ζ(s), in the p-adic set-
ting would involve interpolating each term of the series individually and then summing
up the interpolated results. Nonetheless, this approach is not successful since the terms
that are eligible for interpolation, which are those n such that p does not divide n,
constitute an inĄnite series that diverges within the ring of p-adic integers.

The initial step is to extract the terms from the Riemann zeta function in a manner
suitable for p-adic interpolation. As observed earlier, we need to exclude the terms
where n is divisible by p. We do this as follows:

ζ(s) =
∞∑

n=1, p∤n

1

ns
+

∞∑

n=1, p♣n

1

ns
=

∞∑

n=1, p∤n

1

ns
+

∞∑

n=1

1

psns
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=
∞∑

n=1, p∤n

1

ns
+

1

ps
ζ(s)

ζ(s) =
1

1− (1/ps)

∞∑

n=1, p∤n

1

ns
.

It is this last sum

ζ∗(s) =
∞∑

n=1, p∤n

1

ns
= (1− 1

ps
)ζ(s)

which we will be dealing with later. This process is known as "taking out the p-Euler
factor." The reason is that ζ(s) has the famous expansion

ζ(s) =
∏

primes q

1

1− (1/qs)
.

The factor 1/(1−1/qs) is called the "q-Euler factor." Thus, multiplying ζ(s) by (1−1/ps)
amounts to removing the p-Euler factor:

ζ∗(s) =
∏

primes q ̸=p

1

1− (1/qs)
.

4.2 DeĄnition of the p-Adic zeta function

Any measure µ on Zp can be restricted to X if X is a compact-open subset of Zp. This
means that we deĄne a measure µ∗ on X by setting µ∗(U) = µ(U) whenever U is a
compact open in X. In terms of integrating functions, we have

∫
fµ∗ =

∫
f.(characteristic function of X).µ

We shall use the notation
∫

X fµ for the restricted integral
∫

fµ∗.
We said that we want to interpolate −Bk/k. We have the following relation

∫

Zp

1.µB,k = µB,k(Zp) = Bk.

This equality is easy to be seen with having N = 0, a = 0 in µB,k(a+pNZp). Therefore,
we want to interpolate the numbers

(−1/k)
∫

Zp

1.µB,k. (4.1)

One question that might arise is if the distributions µB,k are connected in any obvious
ways for different k? Not quite, however (3.3.7) shows that the regularised measure
µk,α is connected to µ1,α. (3.3.7) and (3.3.9) have the following consequence, which is
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more precise:

Proposition 4.2.1. Let f : Zp → Zp be the function f(x) = xk−1(k a Ąxed positive
integer). Let X be a compact-open subset of Zp. Then

∫

X
1.µk,α = k

∫

X
fµ1,α

Proof. By (3.3.7), we have

dkµk,α(a + (pN)) ≡ dkkak−1µ1,α(a + (pN)) (mod pN−ordp(dk))

Now, assuming that N is large enough so that X is a union of intervals of the form
a + (pN), we have

∫

X
1.µk,α =

∑

0≤a<pN , a+(pN )⊂X

µk,α(a + (pN))

≡
∑

0≤a<pN , a+(pN )⊂X

kak−1µ1,α(a + (pN)) (mod pN−ordp(dk))

= k
∑

0≤a<pN , a+(pN )⊂X

f(a)µ1,α(a + (pN)).

Taking the limit as N →∞ gives us
∫

X 1.µk,α = k
∫

X fµ1,α.

If we replace f by xk−1 in our notation, treating x as a variable of integration, we may
write this proposition as ∫

X
1.µk,α = k

∫

X
xk−1µ1,α (4.2)

From the perspective of p-adic interpolation, the right-hand side appears considerably
better than the left-hand side because the k appearing doesnŠt occur strangely in the
subscript of µ but rather in the exponent. The story for interpolating the integrand
xk−1 for any Ąxed x is known from before. Namely, we are in business as long as x ̸≡ 0
(mod p). To ensure that this property exists for all of our xŠs in the integration domain,
we must take X = Z×

p .
Thus, we claim that the expression (−1/k)

∫
Z

×

p
1.µB,k can be interpolated. To accom-

plish this, we add the outcomes of interpolation discussion to (3.3.12).
That corollary tells us that if ♣f(x)− xk−1♣p ≤ ε for all x ∈ Z×

p , then

∣∣∣∣∣

∫

Z
×

p

f(x)µ1,α −
∫

Z
×

p

xk−1µ1,α

∣∣∣∣∣
p

≤ ε.

(Recall that ♣µ1,α(U)♣p ≤ 1 for all compact-open U ⊂ X).
Choose for f the function xk′−1 where k ≡ k′ (mod p−1) and k ≡ k′ (mod pN) or writing
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these two as k ≡ k′ (mod (p− 1)pN). By the interpolating discussion, we know that

♣xk′−1 − xk−1♣p ≤
1

pN+1
.

Thus ∣∣∣∣∣

∫

Z
×

p

xk′−1µ1,α −
∫

Z
×

p

xk−1µ1,α

∣∣∣∣∣
p

≤ 1

pN+1
.

We conclude that for any s0 ∈ ¶Positive integers congruent to s0 mod (p − 1)♢, we
can extend the function of k given by

∫
Z

×

p
xk−1µ1,α to a continuous function of p-adic

integers s, ∫

Z
×

p

xs0+s(p−1)−1µ1,α.

However, we have slightly deviated from the numbers we started with ,i.e, (−1/k)
∫
Z

×

p
1.µB,k.

We just saw that we can interpolate

∫

Z
×

p

xk−1µ1,α = 1/k
∫

Z
×

p

1.µk,α.

Let us relate the numbers (4.1) and (4.2)

1

k

∫

Z
×

p

1.µk,α =
1

k
µk,α(Z×

p )

=
1

k
(1− α−k)(1− pk−1)Bk

= (α−k − 1)(1− pk−1)


− 1

k

∫

Z
×

p

1.µB,k


.

The second equality holds because Ąrst note that Zp = Z×
p ⊔ pZp, therefore

µk,α(Z×
p ) = µk,α(Zp)− µk,α(pZp)

and

1

k
µk,α(Z×

p ) =
1

k


µB,k(Zp)− α−kµB,k(αZp)− µB,k(pZp) + α−kµB,k(pαZp)



=
1

k


µB,k(Zp)(1− α−k)− pk−1µB,k(Zp)(α−k − 1)



= −1

k
µB,k(Zp)(α−k − 1)(1− pk−1).

The term 1− pk−1 made its appearance because we had to restrict our integration from
Zp to Z×

p . As we have discussed, ns can not be interpolated when p ♣ n. We must
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remove the "p-Euler factor" from the ζ-function before it can be interpolated. So we
will interpolate the numbers 1− pk−1(−Bk/k),

(1− pk−1)(−Bk

k
) =

1

α−k − 1

∫

Z
×

p

xk−1µ1,α.

One slight deviation we would notice now is that the Euler term is 1 − pk−1 and not
1 − p−k as you might think it should be from the discussion of interpolation. It is as
though, instead of ζ(k), we were really interpolating ζ(1 − k) (which we have not yet
deĄned what this means for positive k). So we deĄne our p-adic ζ-function to have the
value (1− pk−1)(−Bk

k
) at the integer 1− k, not at k itself.

DeĄnition 4.2.2. If k is a positive integer, let

ζp(1− k) = (1− pk−1)(−Bk

k
)

so that by preceding paragraph,

ζp(1− k) =
1

α−k − 1

∫

Z
×

p

xk−1µ1,α.

Note that the expression on the right is independent of α, i.e., if β ∈ Z, p ∤ β ̸= 1, then
(β−k − 1)−1

∫
Z

×

p
xk−1µ1,α = (α−k − 1)−1

∫
Z

×

p
xk−1µ1,α since both equal (1− pk−1)(−Bk

k
).

This independence of α will be used later when we want to deĄne ζp(s) for p-adic s.
We now prove several fundamental properties of Bernoulli numbers derived by Kummer,
Clausen, and von staudt. Until their relationship with the Kubota-Leopoldt ζp and
MazurŠs measure theoretic was uncovered, these facts were regarded as sophisticated yet
enigmatic curiosities. However, it was eventually revealed that they emerge naturally
from basic "calculus-type" considerations.

Theorem 4.2.3. (Kummer for (1) and (2), Clausen and von staudt for (3))
(1) If p− 1 ∤ k, then ♣Bk/k♣p ≤ 1
(2)If p− 1 ∤ k and if k ≡ k′ (mod (p− 1)pN), then

(1− pk−1)
Bk

k
≡ (1− pk′−1)

B′
k

k′
(mod pN+1)

(3) If p− 1 ♣ k (or if p = 2 and k is even or k = 1), then

pBk ≡ −1 (mod p)

Proof. We assume p > 2, and leave the proof of (3) when p = 2.
Here we need the fact that the multiplicative group of nonzero residue classes of Z

modulo p is a cyclic of order p− 1, i.e,. there exists an α ∈ ¶2,3,4, · · · ,p− 1♢ such that
αp−1 is the lowest positive power of α which is congruent to 1 modulo p. In the proof
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of part (1) and (2), we choose our "measure regularizer" α to be such a generator in
¶2,3,4, · · · ,p− 1♢. This means that, since p− 1 ∤ (−k), we have α−k ̸≡ 1 modulo p, so
that (α−k − 1)−1 ∈ Z×

p

To prove (1), we are assuming k > 1 (since for k = 1 and p > 2 we have ♣B1/1♣p =
♣ − 1/2♣p = 1). We write

♣Bk/k♣p = ♣1/(α−k − 1)♣p♣1/(1− pk−1)♣p♣
∫

Z
×

p

xk−1µ1,α♣p

= ♣
∫

Z
×

p

xk−1dµ1,α♣p ≤ 1,

by (3.3.11).
To prove (2), we rewrite the desired congruence as

1

α−k − 1

∫

Z
×

p

xk−1µ1,α ≡
1

α−k′ − 1

∫

Z
×

p

xk′−1µ1,α (mod pN+1).

Notice that if for a, b , c, d ∈ Zp we have a ≡ c and b ≡ d (mod pn), then we also
have ab ≡ cb ≡ cd (mod pn). Therefore, since a = 1/(α−k − 1), b =

∫
Z

×

p
xk−1µ1,α,

c = 1/(α−k′ − 1) and d =
∫
Z

×

p
xk′−1µ1,α are in Zp, it only suffices to prove that (α−k −

1)−1 ≡ (α−k′ − 1)−1 (mod pN+1) and
∫
Z

×

p
xk−1µ1,α ≡

∫
Z

×

p
xk′−1µ1,α (mod pN+1). The Ąrst

reduces to αk ≡ αk′

(mod pN+1) (by the corollary 3.3.12), and the second reduces to
xk−1 ≡ xk′−1 (mod pN+1) for all x ∈ Z×

p . But this all follows from the discussion in
(4.1).
We conclude by demonstrating the Clausen-von Staudt congruence. Let a = 1 + p for
this, and remember that we are proving it when p > 2. We have

pBk = −kp(−Bk/k) =
−kp

α−k − 1
(1− pk−1)−1

∫

Z
×

p

xk−1µ1,α.

First take the Ąrst of the three factors on the right. If we let d = ordpk, then

α−k − 1 = (1 + p)−k − 1 ≡ −kp (mod pd+2)

so that

1 ≡ −kp

α−k − 1
(mod p).

Next, since k must be ≥ 2, we have (1− pk−1)−1 ≡ 1 (mod p). Thus,

pBk ≡
∫

Z
×

p

xk−1µ1,α (mod p).
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Again by using corollary (3.3.12), we obtain

pBk ≡
∫

Z
×

p

x−1µ1,α (mod p).

But this integral is congruent to -1 (mod p).

We now return to p-adic interpolation.

DeĄnition 4.2.4. Fix s0 ∈ ¶0,1,2, · · · ,p− 2♢. For s ∈ Zp (s ̸= 0 if s0 = 0), we deĄne

ζp,s0
(s) =

1

α−(s0+(p−1)s) − 1

∫

Z
×

p

xs0+(p−1)s−1µ1,α.

It should be now clear that this deĄnition makes sense, namely, α−(s0+(p−1)s) = α−s0(αp−1)−s

and x−(s0+(p−1)s−1) for any x ∈ Z×
p are deĄned for p-adic s by taking any sequence ¶ki♢

of positive integers which approach s p-adically. Another way to deĄne ζp,s0
(s) is as

follows: − limki→s(1− ps0+(p−1)ki−1)Bs0+(p−1)ki
/(s0 + (p− 1)ki).

We now see that if k is a positive integer congruent to s0 (mod p − 1), i.e., k =
s0 + (p − 1)k0, then we have : ζp(1 − k) = ζp,s0

(k0). We think of the ζp,s0
as p-adic

"branches" of ζp, one for each congruence class mod p − 1. (But note that the odd
congruence classes -s0 = 1,3,5,...,p − 2− give us the zero function, since for each s0

always Bs0+(p−1)ki
= 0, so we are only interested in even s0).

We excluded the scenario where s = 0 and s0 = 0 in the deĄnition of ζp,s0
. The reason

for this exclusion is that when s = 0 and s0 = 0, the term α−(s0+(p−1)s) becomes equal
to 1, causing the denominator to vanish. By expressing ζp(1 − k) as ζp,s0

(k0), where
k = s0 +(p−1)k0, we can associate this excluded case with ζp(1). Consequently, similar
to the Archimedean Riemann zeta-function, the p-adic zeta-function has a pole at l.

Theorem 4.2.5. For Ąxed p and Ąxed s0, ζp,s0
(s) is a continuous function of s which

does not depend on the choice of α ∈ Z, p ∤ α, and α ̸= 1, which appears in its deĄnition.

Proof. The implication that the integral is a continuous function of s follows from two
key points: section (4.1) and the corollary presented at the end of section (3.3). The
factor 1/(α−(s0+(p−1)s) − 1) can be considered a continuous function, given that we
exclude the case where s = 0 when s0 = 0. This exclusion is necessary because the
term α−(s0+(p−1)s) is a continuous function, as stated in section (4.1). So ζp,s0

(s) is also
continuous.
To demonstrate that ζp,s0

(s) does not depend on the choice of α, we can consider an
alternative choice for α, denoted as β. Here, we assume that β belongs to the set of
integers Z, satisĄes p ∤ β, and β ̸= 1. The two functions

1

α−(s0+(p−1)s) − 1

∫

Z
×

p

xs0+(p−1)s−1µ1,α
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and
1

β−(s0+(p−1)s) − 1

∫

Z
×

p

xs0+(p−1)s−1µ1,α

agree whenever (s0 + (p − 1)s) = k is an integer greater than 0, i.e., whenever s
is a non-negative integer (s > 0 if s0 = 0), since in that case both functions equal
(1 − pk−1)(−Bk/k). But the non-negative integers are dense in Zp, so that any two
continuous functions which agree there are equal. Therefore, taking β instead of α does
not affect the function.

(4.2.5) gives us our p-adic interpolation of the "interesting factor −B2k/2k in ζ(1− 2k)
and we are done.

4.3 DeĄnition of the p-Adic L-function

We will now begin building the p-adic L-function. We Ąx a primitive Dirichlet character
modulo d,

χ : (Z/dZ)× → Q
×

which can be considered as a function

χ : Z→ Q

by extending to n not prime to d.
Recall the equation (2.7) if L(s,χ) =

∑∞
n=1

χ(n)
ns is analytically continued to the complex

plane, we have:

L(1− n,χ) = −Bn,χ

n

for n ≥ 2.
Note that the Bn,χŠs are in the Ąeld Q(χ) obtained by adjoining the values of χ to Q.
The p-adic analogue of L(s,χ) for any prime is formed by these algebraic special values
of L(s,χ), which can be studied arithmetically.
Now, let Zp, Z×

p , Qp, Cp denote respectively the ring of p-adic integers, multiplicative
group of Zp, the Ąeld of fractions of Zp and the p-adic completion of an algebraic
closure Qp of Qp. The functions ordpp and ♣x♣p are normalised so that ordpp = 1.

We establish a Ąxed embedding of the Ąeld Q into Cp, also with embedding Q → C,
then any algebraic number will be regarded as being both p-adic and complex number.

The same letter χ will speciĄcally designate the character on (Z/dZ)× thought to take
values in C or Cp. For any a ∈ Z×

p , let ω(a) be the unique (p − 1)st root of 1 in Z×
p

which reduces to a modulo p. It also can be seen that ω(a) = limn→∞ apn

. Also note
that Z×

p can be decomposed directly as V ×D where V is the cyclic group of order p−1



62

consisting of (p−1)st roots of unity in Qp and D is the interval in Z×
p , 1+ pZp (1 + 4Zp,

if p = 2). Then, each a ∈ Z×
p can be written uniquely as a = ω(a) × ⟨a⟩ where ω and

⟨⟩ denote the projections of a on V and D respectively.
Now, if we let Q be the Ąeld of all algebraic numbers, i.e., the algebraic closure of Q

in C, with an imbedding Q → C and considering Q as a subĄeld of C, then V in C is
identiĄed with the group of roots of unity in Q with order p−1, namely with a subgroup
of C×. Hence, deĄning ω(a) = 0 for a ∈ Z that is not relatively prime to p, we obtain
a character

Z→ C

a 7→ ω(a)

with the conductor p and this induces an isomorphism

(Z/pZ)× ∼= V ⊂ C×

Note that for the case p = 2 we have V = ¶1,− 1♢.
Finally, let χn denote the primitive character induced by χωn(ω denote the complex
conjugate character ω = ω−1).
Now, we get to the proposition of Kubota- Leopoldt and Iwasawa.

Proposition 4.3.1. (Kubota-Leopoldt [10] and Iwasawa [2]) There exists a unique p-
adic meromorphic (analytic if χ ̸= χ0) function Lp(s,χ) , s ∈ Zp for which

Lp(1− n,χ) = (1− χn(p)pn−1)L(1− n,χn). (4.3)

The measure-theoretic approach used by Mazur is slightly modiĄed by us. one of the
numerous ways to prove the claim that are now possible. One of the most impor-
tant steps in the proof is the inclusion of the "twisted" L-function which is deĄned as
L(s,χ, ξ) =

∑ χ(n)
ns ξn where ξ is a rth root of unity such that (r,pd) = 1.

Such L-series (for r = d) are used classically to prove the formula for L(1,χ).
We now sketch a similar argument for the formula:

L(1− n,χ,ξ) = − 1

n
Bn,χ,ξ (4.4)

where Bn,χ,ξŠs are deĄned as follows:

Fξ(z) =
∑

0≤a<d

χ(a)ξazeaz

ξdedz − 1
=

∞∑

n=0

Bn,χ,ξ
zn

n!
(4.5)

where χ is the character modulo d. Let r > 1 be an integer prime to pd and let ξr = 1
and ξ ̸= 1.
Similarly, deĄne



63

Gξ(z) =
∑

0≤a<d

χ(a)ξae−az

1− ξ−de−dz

We obtain that

Fξ(−z) = zGξ(z)

and

Hξ(s) =
∫

Cε

Fξ(z)zs−1 dz

z

and the contour Cε is the same contour as in (2.3.5). With the similar calculations and
assuming t > 0,

Hξ(s) = −(eπis − e−πis)
∫ ∞

0
Gξ(t)t

s−1 dt

and ∫ ∞

0
Gξ(t)t

s−1 dt =
∫ ∞

0

∞∑

n=1

χ(n)e−ntts−1ξn dt

=
∞∑

n=1

χ(n)ξn
∫ ∞

0
e−ntts−1 dt

=
∞∑

n=1

χ(n)ξnn−sΓ(s) = L(s,χ,ξ)Γ(s)

we get that
Hξ(s) = L(s,χ,ξ)Γ(s).

If we put s = 1− n,

−L(1− n,χ,ξ)

Γ(n)
= res0(Fξ(z)z−n−1) = res0(z

−n−1
∞∑

n=0

Bn,χ,ξ
zn

n!
)

= − 1

n
Bn,χ,ξ.

Note that by replacing n by n + 1, we may write

L(−n,χ,ξ) = − 1

n + 1
Bn+1,χ,ξ = coefficient of

tn+1

n!
in

∑

0≤a<d

χ(a)ξaeat

1− ξdedt
.

Now, deĄne X = lim←−(Z/dpNZ). Let a + dpNZp, 0 ≤ a < dpN denote the set of x ∈ X

such that ♣x−a♣p ≤ 1
pN which also map to a under the natural map X → Z/dpNZ and let

X× =
⋃′

0≤a<dp a+dpZp be the unit group (where ′ will always denote omission of indices
divisible by p). The character χ can be pulled back to X via the map X → Z/dZ.
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We Ąx the following measure to begin working with the mazurŠs measure-theoretic
strategy.

DeĄnition 4.3.2. Let z ∈ Cp be such that zdpN ̸= 1 for all N, deĄne:

µz(a + dpNZp) =
za

1− zdpN . (4.6)

Proposition 4.3.3. µz is Ąnitely additive. Let D1 = ¶x ∈ Cp ♣ ♣x − 1♣p < 1♢ and let
D1 = Cp −D1 be the complement of the open unit disc around 1. Then,

µz, is, a, measure(i.e., is, bounded) ⇐⇒ z ∈ D1.

Proof. The veriĄcation of the additivity is as follows:

p−1∑

j=0

µz(a + jdpN + dpN+1Zp) =
p−1∑

j=0

za+jdpN

1− zdpN+1

=
za

1− zdpN+1

p−1∑

j=0

zjdpN

=
za

1− zdpN+1

1− z(dpN )p

1− zdpN

=
za

1− zdpN = µz(a + dpNZp).

Now, if z ∈ D1, then zdpN

goes to 1 p-adically and

♣µz(a + dpNZp)♣p =
1

♣1− zdpN ♣p

which is not bounded. For the opposite direction, if z ∈ D1 and ♣z♣p > 1, then ♣1 −
zdpN ♣p = ♣zdpN ♣p and ♣µz(a + dpNZp)♣p = ♣za−dpN ♣p < 1 since 0 ≤ a < dpN . Moreover, if

z ∈ D1 and ♣z♣p ≤ 1, then since ♣1− zdpN ♣p ≥ 1, we have

♣µz(a + dpNZp)♣p ≤
1

♣1− zdpN ♣p
≤ 1

The classical Haar measure, dx/x is virtually as signiĄcant a measure for R× as µ is for
X. There can be no translation invariant measure on X that is not zero. However, µ
makes as good an attempt at invariance as one can hope in the p-adic situation:

µz(pα) =
zpa

1− zdpN = µzp(α) (4.7)

where α is an interval of the form α = a + dpNZp.
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Recall that a measure µ can be extended to a continuous function:

∫

X
f dµ = lim

N→∞

∑

0≤a<dpN

f(a)µz(a + dpNZp) (4.8)

The most important µz are when z = ξ is an rth root of 1, ξ ̸= 1 and r relatively prime
to pd. We observe that ξ ∈ D1.
Now, Ąx any t ∈ Cp with ordpt > 1/(p− 1). Then the sum

∑
(tx)n/n! converges to etx

and we can show that:

∫

X
etxχ(x) dµξ =

∑

0≤a<d

χ(a)ξaeat

1− ξdedt
. (4.9)

We can see this with the following calculations:

∫

X
etxχ(x) dµξ = lim

N→∞

∑

0≤a<dpN

etaχ(a)
ξa

1− ξdpN =

lim
N→∞

(
∑

0≤a<dp

etaχ(a)
ξa

1− ξdpN + ... +
∑

(pN −1)d≤a<dpN

etaχ(a)
ξa

1− ξdpN )

= lim
N→∞

(
∑

0≤a<d

etaχ(a)
ξa

1− ξdpN + ... +
∑

0≤a<d

et(a+d(pN −1))χ(a + d(pN − 1))
ξa+d(pN −1)

1− ξdpN )

= lim
N→∞

∑

0≤a<d

etaχ(a)
ξa

1− ξdpN + ... +
∑

0≤a<d

etaetd(pn−1)χ(a)
ξaξd(pN −1)

1− ξdpN

= lim
N→∞

(
∑

0≤a<d

χ(a)etaξa

1− ξdpN (
pN −1∑

j=0

etdjξdj)) = lim
N→∞

(
∑

0≤a<d

χ(a)etaξa

1− ξdpN .
1− etdpN

ξdpN

1− ξdetd
)

= (
∑

0≤a<d

χ(a)etaξa

1− ξdetd
). lim

N→∞

1− etdpN

ξdpN

1− ξdpN

We note that limN→∞
1−etdpN

ξdpN

1−ξdpN = 1 because:

1− etdpN

ξdpN

1− ξdpN =
1− etdpN

ξdpN

+ etdpN − etdpN

1− ξdpN

= etdpN

+
1− etdpN

1− ξdpN .

Then when we are taking the limit, the Ąrst term goes to 1 and the second term is zero
because 1

1−ξdpN is bounded.

Now since ordpt > 1/(p− 1), then etx has the desired power series and we plug it into
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the integral,
∞∑

n=0

∫

X

(tx)n

n!
χ(x) dµξ =

∞∑

n=0

tn

n!

∫

X
xnχ(x) dµξ (4.10)

and by equating coefficients of tn/n! and comparing with (4.5) we have

L(−n,χ,ξ) =
∫

X
xnχ(x) dµξ. (4.11)

In another saying, a p-adic integral has been used to express the algebraic number
L(−n,χ,ξ). We would like to interpolate these special values into the p-adic interpolat-
ing function Lp(s,χ,ξ). Just as the classical L(s,χ,ξ) interpolates these special values at
negative integers, i.e., we would like to let −n approach p-adic numbers s ∈ Zp. But, in
order for (4.11) to approach a p-adic limit as −n→ s, we must modify the integral by
replacing

∫
X by

∫
X× and then x by ⟨x⟩ = x/ω(x) which is 1 modulo p. More precisely,

by (4,6) and the fact that X = X× ⋃̇ pX, then:
∫

X
xnχ(x) dµξ = lim

N→∞

∑

0≤a<dpN

anχ(a)µξ(a + dpNZp)

= lim
N→∞

′∑

0≤a<dpN

anχ(a)µξ(a + dpNZp) + lim
N→∞

∑

0≤a<dpN−1

(pa)nχ(pa)µξ(pa + dpNZp)

= lim
N→∞

′∑

0≤a<dpN

anχ(a)µξ(a + dpNZp) + pnχ(p) lim
N→∞

∑

0≤a<dpN−1

anχ(a)µξp(a + dpNZp)

Then taking the limit over N,

∫

X×

xnχ(x) dµξ =
∫

X
xnχ(x) dµξ − pnχ(p)

∫

X
xnχ(x) dµξp

= L(−n,χ,ξ)− pnχ(p)L(−n,χ,ξp) (4.12)

Replacing n by n− 1 and then χ by χn, we obtain:

∫

X×

⟨x⟩n−1χ1(x) dµξ(x) = L(1− n,χn,ξ)− pn−1χn(p)L(1− n,χn,ξp) (4.13)

To deĄne Lp(s,χ,ξ), we let 1 − n → s ∈ Zp on the left of (4.13), (this makes sense
because ⟨x⟩ is 1 modulo p so it can be raised to a p-adic power), and we set

Lp(s,χ,ξ) =
∫

X×

⟨x⟩−sχ1(x) dµξ(x). (4.14)

In order to recover the untwisted L-function and demonstrate the proposition 1, Ąrst
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we observe the following relation which follows naturally from the deĄnitions:

∑

ξ,ξr=1

L(s,χ,ξ) = (r1−sχ(r)− 1)L(s,χ) for s ∈ C, (4.15)

since on the left we have,

∑

ξ,ξr=1

L(s,χ,ξ) =
∑

ξ,ξr=1

∞∑

n=1

χ(n)

ns
ξn =

∞∑

n=1

χ(n)

ns

r−1∑

k=1

e2πikn/r

=
∑

r♣n

χ(n)

ns

r−1∑

k=1

e2πikn/r +
∑

r∤n

χ(n)

ns

r−1∑

k=1

e2πikn/r

=
∑

r♣n

χ(n)

ns

r−1∑

k=1

e2πikn/r +
∑

r∤n

χ(n)

ns
e2πin/r e2πikn(r−1)/r − 1

e2πin/r − 1

=
χ(r)(r − 1)

rs
L(s,χ)−

∑

r∤n

χ(n)

ns

=
χ(r)(r − 1)

rs
L(s,χ)− (

∞∑

n=1

χ(n)

ns
−
∑

r♣n

χ(n)

ns
)

=
χ(r)(r − 1)

rs
L(s,χ)− L(s,χ)(1− χ(r)

rs
)

= (r1−sχ(r)− 1)L(s,χ).

So, By using this for s = 1− n and summing (4.15) over non-trivial rth roots of unity
ξ, we have

∑

ξ,ξr=1

Lp(1− n,χ,ξ) =
∑

ξ,ξr=1

(L(1− n,χ,ξ)− χn(p)pn−1L(1− n,χn,ξp))

= (rnχn(r)− 1)L(1− n,χn)− χn(p)pn−1(rnχn(r)− 1)L(1− n,χn)

= (⟨r⟩nχn(r)− 1)(1− χn(p)pn−1)L(1− n,χn).

By the fact that ⟨x⟩ = x/ω(x) and χn = χωn,
So we have:

∑

ξ,ξr=1

Lp(1− n,χ,ξ) = (⟨r⟩nχn(r)− 1)(1− χn(p)pn−1)L(1− n,χn) (4.16)

rnχn(r) = ⟨r⟩nω(r)χ(r)ω(r) = ⟨r⟩nχ(r).

Therefore, by putting

µ =
∑

ξ,ξr=1

µξ,
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we deĄne

Lp(s,χ) =
1

⟨r⟩1−sχ(r)− 1

∑

ξ ,ξr=1

Lp(s,χ,ξ) (4.17)

=
1

⟨r⟩1−sχ(r)− 1

∫

X×

⟨x⟩−sχ1(x) dµ(x)

We will prove the formula (4.13) in the Proposition (4.3.1) which is called interpolation
property, in the Ąnal section.
Note that µ =

∑
ξ,ξr=1 µξ is MazurŠs measure with "regularisation" 1/r. By (4.16) , also

for n ≥ 2, we have:
f(n) =

1

⟨r⟩nχ(r)− 1

∑

ξ,ξr=1

Lp(1− n,χ,ξ)− 1

⟨r⟩nχ(r)− 1

∑

ξ,ξr=1

Lp(1− n,χ,ξ′) = 0,

where ξ′ is an r′th root of unity. It follows that f is an analytic function on Zp which
has inĄnite zeros, therefore it is the zero function. We conclude that Lp(s,χ) is inde-
pendent of r, even though the use of rth root of unity was essential in its construction.
The factor (1− χn(p)pn−1) can be interpolated as removing "the Euler factor", i.e., the
type of function which can be interpolated p-adically is

(1− χ(p)pn−1)L(s,χ) =
∏

q ̸=p,prime

((1− χ(q)q−s))−1

The only thing left in the proof is to show that Lp(s,χ) is analytic (meromorphic if
χ = χtriv). So, we need to write it as a power series in the following way. Note that
⟨x⟩s is an analytic function of s ∈ Zp and can be written as a power series:

< x >s= expp(s logp < x >) =
∞∑

n=0

sn (logp⟨x⟩)n

n!

Then,

Lp(s,χ) =
1

⟨r⟩1−sχ(r)− 1

∫

X×

∞∑

n=0

sn (logp⟨x⟩)n

n!
χ(x) dµ

=
1

⟨r⟩1−sχ(r)− 1

∞∑

n=0

sn
∫

X×

(logp⟨r⟩)n

n!
χ(x) dµ

and by taking an =
∫

X×

(logp⟨x⟩)n

n!
χ(x) dµ, we get the following power series,

Lp(s,χ) =
1

⟨r⟩1−sχ(r)− 1

∞∑

n=0

ansn

which means that Lp(s,χ) is analytic. And when χ = χ0 we get a meromorphic function
with pole at s = 1.
Now we can derive the Leopoldt formula for Lp(1,χ). The classical formula for L(1,χ)
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can be derived by fourier inversion on the group G = Z/dZ (see [7]). Let ζ be a Ąxed
primitive dth root of 1, and deĄne

f̂(a) =
∑

b∈G

f(b)ζ−ab

for a function f on G. Then

f(b) =
1

d

∑

a∈G

f̂(a)ζab. (4.18)

Applying fourier inversion to fs(b) =
∑

n≡b n−s (suppose Re(s) > 1) and using the
deĄnition of L(s,χ) and L(s,χtriv,ξ), we have

L(s,χ) =
∑

0≤b<d

χ(b)fs(b) =
1

d

∑

a,b

χ(b)f̂s(a)ξab

=
1

d

∑

j

χ(j)ξj
∑

a

χ(a)f̂s(a)

=
gχ

d

∑

a

χ(a)L(s,χtriv,ζ−a),

where j = ab and gχ =
∑

j χ(j)ζj is the Gauss sum. Letting s → 1 and noting that
L(1,χ0) = −log(1− ξ), we obtain

L(1,χ) = −gχ

d

∑

0≤a<d

χ(a)log(1− ζ−a) (4.19)

Now letŠs move on to the p-adic situation.

Theorem 4.3.4. (Leopoldt [11])

Lp(1,χ) = −


1− χ(p)

p


gχ

d

∑

0≤a<d

χ(a)logp(1− ζ−a))

Here logp : C×
p → Cp is the Iwasawa p-adic logarithm, the unique function which

(1) is given by the usual series
∑

(−1)n+1(x− 1)n/n when ♣x− 1♣p < 1
(2) satisĄes

logp(xy) = logp(x) + logp(y) (4.20)

and (3) is normalised by the condition

logpp = 0 (4.21)

Remark that logpx is locally analytic on C×
p in the (Kranser) sense that it can be

represented by a convergent power series in a neighborhood of any point in its region
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of deĄnition with the derivative 1/x.
The two ways that theorem (4.3.4) varies from (4.19) are as follows: the anticipated
"removal of the Euler factor," which results in the expression (1 − χ(p)/p); and the
substitution of log by logp,
Since log(1− ξ−a) is replaced with logp(1− ξ−a), the formal series for the former does
not converge p-adically, so that (4.20)and (4.21) are needed to evaluate logp(1 − ξ−a),
the validity of the p-adic formula in theorem (4.3.4) may initially seem odd. Contrary
to initial perceptions, however, the proof of Lemma (4.3.5) below demonstrates that
LeopoldtŠs formula is actually supported by the same formal series along with a unique
analytic continuation.

Lemma 4.3.5. If z ∈ D1 and µz on Zp is the measure given by (4.6) with d = 1, then

∫

Z
×

p

1

x
dµz(x) = −1

p
logp

(1− z)p

1− zp

Proof. If ♣z♣p < 1, Ąrst note that 1

1−zpN = 1+zpN

+z2pN

+ ... which goes to 1 as N →∞.

Then the left side is

lim
N→∞

′∑

0<j<P N

zj

j

1

1− zpN = lim
N→∞

(
∑

0<j<P N

zj

j
−

∑

0<j<P N−1

zpj

pj
)

= −1

p
(logp(1− z)p − logp(1− zp))

We now use analytic continuation to extend the equality from ♣z♣p < 1 to all z ∈ D1.
Note from [8] that a function is Kranser analytic on D1 if it is a uniform limit of ra-
tional functions with poles in D1. The fact we need about such functions is that if two
Kranser analytic functions on D1 are equal on a disc in D1, then they are equal on all
of D1.
Consider that by newton binomial expansion and assuming that ♣z♣p ≤ 1,

(1− z)p

1− zp
= 1 +

1

1− zp

∑

0<j<p


p

j


(−z)j.

It can be seen that if z ∈ D1 then (1− z)p/(1− zp) ∈ D1 because:

♣(1− z)p

1− zp
− 1♣p = ♣ 1

1− zp

∑

0<j<p


p

j


(−z)j♣p ≤Maxj¶♣


p
j


(−z)j

1− zp
♣p♢ ≤ 1,

since for each j,


p
j


(−z)j ∈ Zp and ♣ 1

1−zp ♣ = ♣1 + zp + z2p + ...♣p ≤Maxi¶♣zi♣p♢ = 1.
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Moreover, if ♣z♣p > 1, then

(1− z)p

1− zp
= 1 +

1

1− z−p

∑

0<j<p


p

j


(−z)−j.

Similarly, ♣ (1−z)p

1−zp − 1♣p ≤ 1 and we conclude that if z ∈ D1 then (1− z)p/(1− zp) ∈ D1.
Hence, both sides of the equality in the lemma are Kranser analytic functions of z on
D1. The left side is the uniform limit of the rational functions(with poles in D1)

′∑

0<j<P N

zj

j

1

1− zpN

and the right side is the uniform limit of the rational functions (with poles in D1)

1

p

N∑

j=1

(−1)j

j


(1− z)p

1− zp
− 1

j

.

Since they agree on ¶z ♣ ♣z♣p < 1♢, they agree on all of D1

Lemma (4.3.5) will be applied when z is a root (but not a pNth root) of unity.

Remark 4.3.6. 1. If z is a (p− 1)st root of 1, the right side of lemma (4.3.5) becomes
−(1 − 1/p)logp(1 − z) = −logp(1 − z) − logp(1 − z)1/p. For example, setting z = −1
gives the following p-adic limit for logp2

logp2 = − p

2(p− 1)
lim

N→∞

′∑

0<j<P N

(−1)j

j

2. Lemma (4.3.5) is the key step in our proof of LeopoldtŠs formula for Lp(1,χ). As
mentioned before, the subtly in LeopoldtŠs formula is that logp(1− ξ) is not given by the
same formal series as log(1−ξ), since ξ is outside the disc of convergence of logp(1−z).
However, Lemma (4.3.5) shows that if we "correct by the frobenius" in the Dwork style
(see, e.g., [9]), i.e., replace (1-z) by (1 − z)p/(1 − zp), the resulting series is globally
analytic out to ξ. The effect of this step on the formula for Lp(1,χ) is to bring out the
Euler factor 1− χ(p)/p, as we shall see soon in (4.22).

The other ingredient in the proof of Theorem (4.3.4) is the analog of the Fourier inver-
sion(4.18) used in the classical case.

Lemma 4.3.7. For χ a primitive character mod d, ζ a Ąxed primitive dth root of
1, gχ =

∑
j χ(j)ξj, ξ ̸= 1 an rth root of 1, (r,pd) = 1, we have for any continuous

f : X → Cp ∫

X
χf dµξ =

gχ

d

∑

0≤a<d

χ(a)
∫

X
f dµζ−aξ.
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Proof. To proof Lemma (4.3.7), by linearity and continuity it suffices to prove it for
f = characteristic function of j + dpNZp. Therefore, on the right side we have:

=
gχ

d

∑

0≤a<d

χ(a)
∑

0<j<dpN

ζ−ajξj

1− ζ−adpN ξdpN

=
gχ

d

∑

0≤a<d

χ(a)(
∑

0<j<d

ζ−ajξj

1− ζ−adpN ξdpN

pN −1∑

k=0

ζ−adkξdk)

=
gχ

d

∑

0≤a<d

χ(a)
∑

0<j<d

ζ−ajξj

1− ζ−adξd
=

gχ

d

∑

0≤a<d

χ(a)
ζ−ajξj

1− ζ−adξd
χ(j)χ(j)

=
gχ

d

∑

j,a

χ(aj)
ζ−ajξj

1− ζ−adξd
χ(j) =

gχ

d

∑

T

χ(T )ζ−T
∑

j

ξjχ(j)
1

1− ξd
,

where T = aj and

=
gχgχ

d

gχ

1− ξd
=

gχ

1− ξd
.

However, on the left side,

= lim
N→∞

∑

0<j<dpN

χ(j)
ξj

1− ξdpN = lim
N→∞

∑

0<j<d

χ(j)
ξj

1− ξdpN

pN −1∑

k=0

ξdk

=
∑

0<j<d

χ(j)ξj 1

ξd − 1
=

gχ

1− ξd
.

Now we can prove Theorem ((4.3.4) for the twisted case.
Note that if f : X → Cp comes from pulling back an f : Zp → Cp via the projection
X → Zp, we can replace X by Zp in

∫
X f dµξ, where µξ on Zp is given by (4.5) with

d = 1.
Applying lemma (4.3.7) and the preceding remark to f = (1/x). char fn of X×, we have

Lp(1,χ,ξ) =
∫

X×

χ(x)

x
dµξ =

gχ

d

∑

0≤a<d

χ(a)
∫

Z
×

p

1

x
dµζ−aξ

= −gχ

d

∑

0≤a<d

χ(a)
1

p
logp

(1− ζ−aξ)p

1− (ζ−aξ)p

= −gχ

d
(1− χ(p)

p
)
∑

0≤a<d

χ(a)logp(1− ζ−aξ) (4.22)

Since r > 1 is any integer prime to pd, we may choose r so that χ(r) ̸= 1 and then use
(4.18) with s = 1 to express Lp(1,χ) in terms of the Lp(1,χ,ξ) for ξ ̸= 1. We obtain,
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Lp(1,χ) =
1

χ(r)− 1

∑

ξr=1

Lp(1,χ,ξ)

= −gχ

d
(1− χ(p)

p
)


1

χ(r)− 1

∑

0<a<d

χ(a)
∑

ξr=1

logp(1− ζ−aξ)

]
.

The inner summation is equal to logp(1− ζ−ar)− logp(1− ζ−a) because Ąrst note that

∑

ξr=1

logp(1− ζ−aξ) = logp(
∏

ξr=1

1− ζ−aξ),

and if we factorize the equation Zr = (ζ−aξ)r = ζ−ar into its root we have,

Zr − ζ−ar =
∏

ξr=1

Z − ζ−ar

Z − ζ−a

which gives us the equality for Z = 1. Therefore, the term in the square bracket is seen
to equal

∑
0<a<d χ(a)logp(1− ζ−a) as desired.

4.4 The interpolation properties

The interpolation formula is the formula which would relate Lp to our classical L-
function over negative integers, and is in the Proposition (4.3.1),

Proposition 4.4.1.

Lp(1− n,χ) = (1− χn(p)pn−1)L(1− n,χn) ∀n positive, (4.23)

and χn = χωn with same χ and ω stated in the beginning of the section (4.3).

Proof. The proof of this equality is easy. Recall that we deĄne

Lp(s,χ) =
1

⟨r⟩1−sχ(r)− 1

∑

ξ, ξr=1

Lp(s,χ,ξ),

and we showed that, ∑

ξ,ξr=1

Lp(1− n,χ,ξ)

= (⟨r⟩nχn(r)− 1)(1− χn(p)pn−1)L(1− n,χn).

Then,

Lp(1− n,χ) =
1

⟨r⟩nχ(r)− 1

∑

ξ,ξr=1

Lp(1− n,χ,ξ) = (1− χn(p)pn−1)L(1− n,χn)
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which is what we wanted to prove.
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