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Abstract

Classification of Anomalies in Telecommunication Network KPI Time Series

Korantin Bordeau–Aubert

The increasing complexity and scale of telecommunication networks have led to a growing

interest in automated anomaly detection systems. However, the classification of anomalies detected

on network Key Performance Indicators (KPI) has received less attention, resulting in a lack of in-

formation about anomaly characteristics and classification processes. To address this gap, this thesis

proposes a modular anomaly classification framework. The framework assumes separate entities for

the anomaly classifier and the detector, allowing for a distinct treatment of anomaly detection and

classification tasks on time series. The objectives of this study are (1) to develop a time series

simulator that generates synthetic time series resembling real-world network KPI behavior, (2) to

build a detection model to identify anomalies in the time series, (3) to build classification models

that accurately categorize detected anomalies into predefined classes (4) to evaluate the classifi-

cation framework performance on simulated and real-world network KPI time series. This study

has demonstrated the good performance of the anomaly classification models trained on simulated

anomalies when applied to real-world network time series data.
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Chapter 1

Introduction

Communication networks generates massive amounts of data capturing various network activ-

ities and behaviors. Network Key Performance Indicators (KPI) analysis allowed network opti-

mization, anomaly detection, and predictive maintenance to ensure seamless network operations.

Time series analysis is used in traffic analysis and performance monitoring. Anomaly classification

in network KPI is an important research area aimed at categorizing unusual events within network

data. Detection and classification of anomalies play a crucial role in evaluating and ensuring the sta-

bility, and reliability of network systems. As such, understanding anomalies on KPI allows network

operators to maintain optimal network performance and prevent faults.

Despite the importance of both anomaly classification and anomaly detection in time series, a

notable disparity of research focus between these two areas was observed in recent years. While

anomaly detection, aimed at identifying unusual patterns in network data, has gathered consider-

able attention and resulted in several algorithms and techniques, the field of anomaly classification,

which involves categorizing anomalies into specific classes, has not received the same attention in

time series. This discrepancy is disturbing because anomaly classification can significantly enhance

network efficiency, helping network administrators to distinguish between benign and impactful

anomalies. To bridge this gap, more research efforts are needed in anomaly classification to develop

robust and effective methods that complement existing anomaly detection approaches, fostering a

more comprehensive network analysis strategy.
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This study focuses on simulating anomalies on network KPI and evaluating anomaly classifica-

tion models using both simulated and real-world noisy time series datasets. The framework assumes

separate entities for the classifiers and the detector within the anomaly classification process. This

separation allows for a modular approach where the detection of anomalies and the classification of

those anomalies are treated as distinct tasks. The primary objectives of this thesis are to develop

a framework containing a network KPI time series simulator, detection and classification models,

and to evaluate their performance on both simulated and real datasets. By generating simulated

time series with anomalies, we aim to mimic real-world network KPI, providing a valuable tool for

anomalies detection and classification. The framework also aims to enhance network monitoring

through the detection of anomalies, while the classification models seek to accurately categorize

these anomalies. We evaluate these models on both simulated and actual network KPI datasets to

assess their performance and generalization capabilities.

The thesis follows the structure of a conference paper starting from Chapter 3, providing in-

depth analyses and research findings presented in that article. This article was submitted as an arXiv

pre-print and to the IEEE Access journal. Chapter 2 provides a comprehensive review of the litera-

ture concerning network KPI anomaly definition, models for anomaly detection and classification,

and evaluation methodologies. In Chapter 3, we detail our anomaly classification framework, cov-

ering simulation, detection, and classification models. Finally, Chapter 4 presents the experimental

setup, encompassing dataset utilization and model performance evaluation across both simulated

and real-world time series datasets, followed by concluding remarks in Chapter 5.
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Chapter 2

Background

Anomalies pose significant challenges to the stability and performance of network systems. In

recent years, extensive research has been conducted to detect these anomalies. This background

chapter aims to provide an overview of the key concepts, methodologies, and advancements in the

field of anomaly definition, simulation, detection, and classification.

2.1 Anomaly definition

Defining network KPI anomalies is the first step in the creation of a simulator and classifica-

tion model. Anomalies encompasses a wide range of definitions and interpretations, reflecting the

diverse nature of anomalies that can occur in network systems.

Choi et al. (2021) identified 3 major anomaly types in time series: point, contextual, and col-

lective anomalies as illustrated in Figure 2.1. Point anomalies refer to a data point or sequence that

exhibits a sudden and significant deviation from the normal range. These anomalies are typically

caused by sensor errors or abnormal system operations and are detected by comparing values against

predefined upper and lower control limits. Contextual anomalies present a challenge for detection

as they do not deviate from the normal range based on predefined limits. This type of anomaly is

characterized by a group of points that does not contains extreme values, this anomalies modify the

normal shape of the signal. Collective anomalies represent a set of data points that gradually display
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(a) Point anomaly (b) Contextual anomaly (c) Collective anomaly

Figure 2.1: Anomaly types extracted from Choi et al. (2021)

a different pattern from normal data over time. While individual values within this type may not ap-

pear anomalous, their collective behavior raises suspicion. Detecting collective anomalies requires

examining long-term contexts to identify deviations from the expected pattern.

Foorthuis (2018, 2021) proposed the following five fundamental data-oriented dimensions for

describing types and subtypes of anomalies: data type, cardinality of relationship, anomaly level,

data structure, and data distribution as illustrated in Figure 2.2. These dimensions contribute to

the classification and characterization of anomalies in network data. The data type dimension dif-

ferentiates between quantitative, qualitative, and mixed attributes. The cardinality of relationship

dimension distinguishes between univariate and multivariate relationships among attributes. The

anomaly level dimension classifies anomalies as either atomic (individual low-level cases) or ag-

gregate (groups or collective structures). The data structure dimension considers different structural

formats, such as graphs and time series, which host specific anomaly subtypes. Lastly, the data

distribution dimension focuses on the collection and pattern of attribute values in the data space,

providing additional descriptive and delineating capabilities for anomaly classification. We focused

our research on quantitative and univariate time series with atomic and aggregate anomalies. The

anomalies we focused our attention in this thesis are the local additive anomaly, the temporary

change anomaly, the level shift anomaly and the variation change anomaly.
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Figure 2.2: Table extracted from Foorthuis (2021)

2.2 Anomaly detection

Anomaly detection techniques aim to identify abnormal patterns or events within time series

data. Traditional approaches include statistical methods, rule-based systems, and expert systems,

which rely on predefined thresholds or rules to flag deviations. Forecasting is one of the most used

techniques for anomaly detection in network KPI time series, as it enables real-time analysis. A

popular forecasting approach is based on the Autoregressive Integrated Moving Average (Box &

Pierce, 1970) (ARIMA) model, which combines autoregressive (AR), integrative (I), and moving

average (MA) components to capture the underlying patterns and characteristics of a time series.

When evaluating and forecasting stationary time series data, ARIMA models are useful because

they produce predictions for the future by considering both historical data and prediction errors.

Deep learning techniques for time series forecasting, including Recurrent Neural Networks

(RNN) (Elman, 1990; Madan & Mangipudi, 2018) and Convolutional Neural Networks (CNN)

(Borovykh, Bohte, & Oosterlee, 2017; LeCun, Bottou, Bengio, & Haffner, 1998), have also shown

promise in capturing temporal dependencies and spatial patterns for improved anomaly detection,
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Figure 2.3: CNN structure extracted from Mei et al. (2019)

as explained by Choi et al. (2021).

RNN-based models are widely used in speech or voice recognition, natural language processing,

and time series prediction. This type of neural network is recurrent in nature as it uses the output of

a previous layer to feed the current input. They are robust to the noise and are able to learn long-term

dependencies and temporal patterns. However, RNN models are subject to the gradient vanishing

problem leading to slow training time and issue in learning long-term dependencies. To address

this issue, Long-Short Term Memory (LSTM) was proposed by Malhotra, Vig, Shroff, Agarwal, et

al. (2015). This study show that LSTM networks can effectively learn temporal patterns and detect

anomalies without prior knowledge of pattern duration. The LSTM approach demonstrates promis-

ing results on real-world datasets, outperforming or matching RNN and indicating the robustness

of LSTM-based models in capturing both short-term and long-term dependencies in normal time

series behavior.

CNN models are mainly used in image processing and recognition tasks. CNN architectures are

composed of three types of layers: the convolutional layers, the pooling layers and the fully con-

nected layer. The convolutional layers use filters to identify the pattern of the image or time series.

Each filter check the image for a single feature and the Rectified Linear Unit (ReLU) function is

used to transform the features after each convolution. The pooling layers limits the complexity of

the networks by reducing the dimensionality of the input. The fully connected layer is the classifi-

cation layer, it uses the features from previous filters and layers to classify the image or time series

with a softmax function. CNN are also robust to noise and minnimize the computation. However,

CNN needs large dataset and takes a long time to train. See illustration in Figure 2.3 by Mei et al.

(2019).

More recently, the need to combine CNN and RNN approaches in time series detection was
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seen as essential (Xue, Triguero, Figueredo, & Landa-Silva, 2019), as it allows for the simultaneous

extraction of spatial features and temporal dependencies. This combination enables more compre-

hensive and accurate analysis of time-varying patterns in the data. Lea, Vidal, Reiter, and Hager

(2016) proposed the Temporal Convolutional Network (TCN) as a unified approach between RNN

and CNN architectures. The TCN demonstrates comparable or better performance than other mod-

els on various datasets, and it offers the advantage of faster training. Bai et al. (2018) highlights

the superiority of TCNs over generic recurrent architectures, such as LSTM and Gated Recurrent

Units (GRU) (Cho et al., 2014), in various sequence modeling tasks. The TCN model, incorporating

dilations, residual connections, and causal convolutions, consistently outperforms recurrent archi-

tectures. A baseline TCN contains a single residual block. This block is defined by two layers of

dilated causal convolution. Each layer is composed of a weight normalization for the convolutional

filters, a ReLU, and a spacial dropout. The dilated causal convolution allows for larger receptive

fields and facilitates the ability to access more distant historical information within the time series

compared to a basic causal convolution. To ensure the same size between the input and the output,

the residual block also use an additional 1x1 convolution. See illustration in Figure 2.4a. Figure 2.4c

shows an example of a dilated causal convolution with a dilation factors d = 1, 2, 4 and a filter size

k = 3. Figure 2.4c illustrates a residual block with a filter size k = 3 and a dilation factor d = 1.

The study also challenges the notion that recurrent networks have an inherent advantage in preserv-

ing long-range dependencies, as TCN demonstrate comparable or even longer memory capabilities.

Overall, the results suggest that convolutional networks, with their simplicity and clarity, should be

considered a strong foundation and a powerful toolkit for sequence modeling. We used the TCN

model for anomaly detection and classification purpose in this thesis.
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(a) Residual block (b) Dilated causal convolution (c) Example of residual connection

Figure 2.4: Architectural elements in a TCN extracted from Bai et al. (2018)

2.3 Anomaly classification

Multiple preparation over the time series were proposed over the years, one preparation often

used is the decomposition of the time series into three or more components: the seasonality, the trend

and the residuals. The classical decomposition is the moving average method. This decomposition

can either be additive or multiplicative:

X = Ti + Ui +Ri X = Ti × Ui ×Ri,

where X is the time series, Ti is the trend component, Ui is the seasonal component, and Ri is the

residual (or remainder). To evaluate this components, the moving average decomposition has to (1)

evaluate the trend component of the time series using moving average, (2) detrend the initial time

series, (3) average the values of the detrended time series to find the seasonal component, (4) extract

the remainder or residual by subtracting the trend and seasonal component to the initial time series.

The Seasonal and Trend decomposition using Loess (Cleveland et al., 1990) is often used in

time series decomposition as it handle any types of seasonality (weekly, monthly, etc.). It offers

various benefits, including user-controlled trend smoothing, an adaptable seasonal component, and

resilience against outliers. This decomposition handles both additive and multiplicative decompo-

sition See illustration in Figure 2.5.
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(a) Time series data (b) Trend component

(c) Seasonal component (d) Remainder component

Figure 2.5: Illustration of STL decomposition extracted from Cleveland et al. (1990)

Anomaly classification on KPI focuses on categorizing detected anomalies into meaningful

classes. Classification models utilize features extracted from network KPI data to differentiate be-

tween different types of anomalies, such as intrusion attempts, Denial of Service (DoS) attacks, or

network performance issues. Faouzi (2022) reviewed the algorithm and implementation of Time

series classification (TSC). The study described various approaches such as the Nearest neighbors,

a widely adopted and well-established method in time series classification is the Nearest Neigh-

bor (NN) (Bagnall & Lines, 2014) classifier combined with the Dynamic Time Warping (DTW)

distance. Extensive comparisons conducted by Bagnall, Lines, Bostrom, Large, and Keogh (2017)

confirmed that DTW outperforms other distance measures. Another approach was with tree-based

algorithm, such as the Time series Forest (TSF) (Deng, Runger, Tuv, & Vladimir, 2013) as illus-

trated in Figure 2.6.

9



(a) Interval visualization

(b) Table with the features extracted from the interval

Figure 2.6: Illustration of TSF extracted from Faouzi (2022)

Cabello et al. (2020) introduced the Supervised Time series Forest (STSF) as an evolution of

the TSF, an efficient algorithm for interval-based time series classification on high-dimensional

datasets. STSF is a decision tree ensemble that utilizes class-balanced bagging to sample the train-

ing set. As shown in Figure 2.7, STSF generates intervals for three representations (time series, fre-

quency domain, and derivative representation of the time series) and extracts seven features (mean,

median, standard deviation, slope aggregation functions, inter-quartile range, minimum, and max-

imum) from these representations. The frequency domain time series is obtained after derivation

from the discrete Fourier transform. The advantage of this representation is that it improves in

the indirect detection of phase independent discriminating intervals. The Derivative representation

use a first order difference to achieve better performance during the classification process. STSF

leverages multiple time series representations, a supervised search strategy, and a feature ranking

metric to reduce computational overhead while identifying highly discriminatory interval features

10



for interpretable classification outcomes. The paper stated STSF achieved comparable accuracy to

state-of-the-art methods in time series classification but with significantly faster processing times,

enabling classification of large datasets with long series.

Figure 2.7: STSF overview extracted from Cabello et al. (2020)

Anomaly classification models also witnessed a transition from traditional rule-based and sta-

tistical approaches to more advanced techniques such as machine learning, deep learning, and en-

semble methods, enabling improved accuracy and generalization capabilities in detecting and cat-

egorizing anomalies. Zhao, Lu, Chen, Liu, and Wu (2017) suggested that a CNN-based method

for time series classification outperforms competing baseline methods in terms of classification ac-

curacy and noise tolerance. By automatically discovering and extracting the internal structure of

input time series, the CNN generates deep features that improve classification performance. The

study also discusses the significance of three CNN parameters: convolutional filter size, pooling

method, and the number of convolution filters. However, limitations are acknowledged, including

the time-consuming nature of CNN training due to parameter experimentation and the fixed length

requirement for time series during training and testing. Ongoing research aims to address these

limitations by designing optimal parameters and exploring a new network architecture that com-

bines CNN with RNN. Ismail Fawaz et al. (2020) introduced InceptionTime, a CNN-based clas-

sifier achieving state-of-the-art performance UCR Chen et al. (2015) archive datasets. This study

also discusses the importance of the parameters such as the depth (a deeper network gives better

performance) and the number of filters that should also be limited as it deteriorates the classifier

performance. Even though numerous studies on time series classification have been carried out,

more research and analysis are still needed in the specific area of network KPI anomaly classifi-

cation. Studies concentrating solely on network KPI anomaly classification in time series data are

11



noticeably scarce, with little study devoted to this particular field. Although anomaly detection is

extremely important, research into and development of classification models specifically suited for

network KPI time series data is still in its early stages.

12



Chapter 3

Anomaly Classification Framework

This section describes the simulation method to generate anomalies, as well as the detection

and classification models used in the framework. Our framework separates anomaly detection from

anomaly classification as shown in Figure 3.1.

Figure 3.1: Anomaly classification framework
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n number of anomalies to inject
X initial time series
X̃ time series with anomalies
X̄ simulated noise time series
X̂ final time series with anomalies and noise
X̌ predicted time series
A amplitude of the sine signals
T seasonality period of the sine signals in minutes
ts sampling period
µ mean of the sine signals
µ̄ mean of the normal distribution for the noise generation
σ̄ standard deviation of the normal distribution for the noise generation
σ noise level of the time series
Ad daily amplitude of the time series
λ length of the anomalies
α strength of the anomaly
iw first index of an anomaly window
δ confidence interval to determine a point as anomalous
m margin period of the analysis windows
Ti, Ui, Ri time series features (seasonal, trend and residual)

Table 3.1: Notations

3.1 Anomaly Simulation

Anomaly simulation aims to generate network Key Performance Indicators (KPI) time series.

Network KPIs are used by companies to track network performance from metrics such as packet

loss or latency. These indicators gives an overview of the network usage and health. In this paper,

we focus on latency, which is typically modeled with 3 seasonality components (daily, weekly, and

monthly seasonality), a trend, and a noise component (Fig. 3.2). The latency is commonly measured

as follows: (1) a packet is sent from point A to B in the network, (2) the packet is sent back from B

to A, (3) steps (1) and (2) are repeated for a given number of packets, (4) the latency is obtained by

averaging the packet round-trip time between A and B. We denote the data sets respectively as SIM

for the time series resulting from anomaly simulation and REAL for the real time series data sets.

3.1.1 Signal Generation

We define an anomaly window as a sub-sequence of the original time series containing exactly

one anomaly. We also define n the number of anomalies to inject in the SIM time series. We

14
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Figure 3.2: Example of REAL time series after processing

2000-01-01 2000-01-05 2000-01-09 2000-01-13 2000-01-17 2000-01-21
datetime

X base time series

Figure 3.3: X base time series.

generate n anomaly windows, as follows: (1) we randomly select the anomaly class to generate

based on anomaly proportions set as a parameters; (2) we set the anomaly window size to 2Y points

where Y is a random variable following the uniform distribution U(lmin, lmax). We empirically set

the limits lmin, lmax depending on the anomaly type. The size of the SIM time series corresponds

to the sum of each anomaly window size. We generate the SIM base time series using 3 seasonality

components modeled with 3 sine signals with daily, weekly and monthly periodicity:

X(t) =

2∏︂
s=0

(︃
As × sin

(︃
2π

Ts
t

)︃
+ µs

)︃
,

where As is the amplitude: A = (A0, A1, A2) = (0.5, 0.1, 0.05), A represent in reality the

average delay in µs; Ts is the seasonality period expressed in minutes: T = (T0, T1, T2) =

(1440, 10080, 40320); µs is the mean of the sine signal: µ = (µ0, µ1, µ2) = (0.5, 0.9, 0.95); and t

is expressed in minutes. The amplitudes and means add up to 1, to keep the base time series between

0 and 1µs which corresponds to typical latency values. The different amplitudes are set according to

observations on the REAL data sets. The shape of this base time series is consistent with common

observations of network traffic that usually include these pseudo-periods without noise. The time

series X is then uniformly sampled with the period ts (Fig. 3.3).
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3.1.2 Anomaly Injection

We define each anomaly type with 2 parameters:

(1) The anomaly length λ, defined as the number of points modified during injection in the time

series. To select the length of each anomaly, we randomly select a starting index ia in [iw, iw+

2Y − e] where iw is the index of the first point in the anomaly window and e corresponds to

the minimum margin e = 5 that ensures a minimal size for each class of anomalies. λ is then

randomly selected in [ia, iw + 2Y − e].

(2) The strength α, which depends on the daily amplitude Ad:

Ad = max
i∈d

X(i)−min
i∈d

X(i),

where d is the daily range such that ia ∈ d. d corresponds to a daily period of length 1440
ts

minutes. α is then defined as:

α = Ad × Z,

where Z is a random variable following the uniform distribution U(0.5, 0.7).

We denote by X̃ the time series containing a simulated anomaly. The 4 simulated types of

anomalies are the following:

Single point (peak or dip) This anomaly type has a length λ equal to 1 point and Y follows the

uniform distribution U(120, 480). The anomaly window is defined for i in [iw, iw + 2Y ] as:

X̃(i) = X(i)±

⎧⎪⎪⎨⎪⎪⎩
α if i = ia

0 otherwise,

In this formula, peaks are generated by the addition and dips by the subtraction. See illustration in

Figure 3.4a.

Temporary change (growth or decrease) The length of this anomaly type varies in [3, iw + 2Y ]

and Y follows the uniform distribution U(240, 960). The anomaly is described as a growth or
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decrease that progressively reverts to the original signal:

X̃(i) = X(i)±

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i− ia)
α1

ib − ia
if i ∈ [ia, ib]

(i− ib)
α2 − α1

ic − ib
+ α1 if i ∈ [ib, ic]

(i− ia − λ)
α2

ic − ia − λ
if i ∈ [ic, ia + λ]

0 otherwise,

where ib is randomly selected in [ia, ia + λ/2], ic is randomly selected in [ib, ia + λ], and α1, α2

are either set to α and between [0.4, α] or vice versa. See illustration in Figure 3.4b.

Level shift (growth or decrease) The length of this anomaly type varies in [3, iw + 2Y ] and Y

follows the uniform distribution U(1440, 2160). This type of anomaly is a variant of the previous

one where α1 = α2. It is defined by a change of the time series trend:

X̃(i) = X(i)±

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i− ia)
α

ib − ia
if i ∈ [ia, ib]

α if i ∈ [ib, ic]

(i− ia − λ)
α

ic − ia − λ
if i ∈ [ic, ia + λ]

0 otherwise,

where ib is randomly selected in [ia, ia + λ/2], and ic is randomly selected in [ib, ia + λ]. See

illustration in Figure 3.4c.

Variation change (growth or decrease) The length of this anomaly type varies in [3, iw + 2Y ]

and Y follows the uniform distribution U(1440, 2160). This type of anomaly amplifies or reduces

the amplitude of a time series while preserving its period:

X̃(i) = X(i)±

⎧⎪⎪⎨⎪⎪⎩
X(i)α if i ∈ [ia, ia + λ]

0 otherwise,

17



See illustration in Figure 3.4d, where the signals only include daily seasonality (weekly and monthly

seasonalities are omitted) to simplify presentation. The simulator supports 4 anomaly types where

each type can be separated into 2 sub-classes (growth or decrease).

3.1.3 Data Preparation and Noise Injection

Scaling We apply the MinMaxScaler1 function from the scikit-learn library to scale the time series

to [0.02, 1]. The minimum is fixed to 0.02, which is the range observed in the real dataset. Indeed,

real latency values can never reach exactly 0. This scaler assure the time series are between the

same range for both the detection and classification for the SIM and REAL data sets.

Noise Injection We create a noise time series X̄ with equal length to X̃ . This noise is defined by

a Gaussian multiplicative white noise:

X̄(i) = X(i)×

⎧⎪⎪⎨⎪⎪⎩
min(W, 4σ̄) if W ≥ 0

max(W,−4σ̄) otherwise,

where W is a random variable following the normal distribution N (µ̄, σ̄), and σ̄ is the standard

deviation of the simulated Gaussian white noise time series, see illustration in Figure 3.5. We re-

move the extreme values to evaluate the anomalies injected by the simulator and not those resulting

from the noise. We separate the noise level σ of the time series from the standard deviation σ̄ of the

noised time series. Indeed, as we multiplied the Gaussian white noise time series by X(i), the noise

level σ extracted from the final time series isn’t equal to the noise level σ̄ we used during the noise

generation. Indeed, due to the seasonal shape of the initial time series, we obtained σ̄ = c× σ with

the constant c = 2.31.

The Single point and Temporary change anomalies aren’t affected by the noise as they are part

of the same frequencies. Indeed, the noise is already contained in these types of anomalies.
1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing

.MinMaxScaler.html
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Figure 3.4: Types of anomalies.
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+
Noised time series X

Figure 3.5: Noised time series X̄
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tmp_decrease
variation_change_growth
variation_change_decrease

Figure 3.6: Final simulated time series (SIM X̂)

We denote X̂ the time series resulting from the scaling and noise injection:

X̂(i) = X̃(i) +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if X̃(i) ∈ Single point

0 if X̃(i) ∈ Temporary change

X̄(i) otherwise,

The resulting time series X̂ is used in the SIM data sets, as illustrated in Figure 3.6. X̂ also

corresponds to the processed REAL data sets. The parameters used to generate the anomalies are

the noise level, the proportion of each type of anomalies, and the sampling period ts. The sampling

period is an important parameter of the simulation. For instance, a Single point anomaly simulated

for a given sampling period may be interpreted as a Temporary change for another sampling period.
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Parameter Values tested
Kernel size 2, 3, 4, 5, 6, 7
Number of filters 4, 5, 6, 7, 8
Dilation base 3, 4, 5
Input chunk length (1440/ts)× 8

Output chunk length (1440/ts)× 7

Table 3.2: Parameter combinations tested for the TCN time series parameter.

3.2 Anomaly Detection

To evaluate the anomaly classification model, we build an anomaly detection model using a

Temporal Convolutional Network (TCN Bai et al. (2018)), a common approach to time series pre-

diction (Torres, Hadjout, Sebaa, Martı́nez-Álvarez, & Troncoso, 2021). We used the TCN imple-

mentation of the darts library2, varying the parameters according to Table 3.2.

Detection model The TCN detection model is trained for 10 epochs with the Adam optimizer.

We limit the number of residual block to 2 to reduce the training time. This model is composed

of ReLU activation functions with a β-Negative log likelihood loss (Seitzer, Tavakoli, Antic, &

Martius, 2022) from the Gaussian likelihood function3. The Gaussian likelihood function provides

boundaries for the predicted time series with a 95% confidence interval δ. The detection model

gives a weekly prediction from the previous 8 days.

To train and test the detection model, we split X̂ using the function TimeSeriesSplit from the

scikit-learn library4. This function creates multiple training and test sets time series as illustrated in

Figure 3.7. We split X̂ with ten folds and fix the training/test size to 70%− 30%.

For each fold of the TimeSeriesSplit function, we apply the fitted TCN model to the test set

resulting in the predicted time series X̌ and the confidence interval δ. We label a point of X̂ as

anomalous if and only if:
2https://unit8co.github.io/darts/generated api/darts.models.forecasting.tcn

model.html
3https://unit8co.github.io/darts/generated api/darts.utils.likelihood models

.html#darts.utils.likelihood models.GaussianLikelihood
4https://scikit-learn.org/stable/modules/generated/sklearn.model selection

.TimeSeriesSplit.html
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Figure 3.7: Data partitioning in training and test sets

⃓⃓⃓
X̂ − X̌

⃓⃓⃓
> δ,

See illustration in Figure 3.8.

Analysis windows We denote aSIM and aREAL the simulated and real analysis windows result-

ing from the anomaly detection model. An analysis window is a sub-sequence time series of X̂ of

fixed size 2m, where m is the margin period. The default sampling of the time series is set to 1

point/minute. The initial size of an analysis windows is set to 240 points (4 hours of data centered

on the anomaly) with m corresponding to 2 hours of data (120 points). Taking a sampling period

ts = 5 minutes (which creates a time series X with a point each 5 minutes), the margin size of the

analysis windows are set to m = 24 points. This margin size is used to center the anomaly in the

analysis window. We create the analysis windows from the test set during the cross-validation. We

denote S the list containing the point states with the states ”normal” or ”anomaly”. We create the

analysis windows as illustrated in Algorithm 1.

It should be noted that (1) a given analysis window may contain multiple anomalous points,

(2) the anomalous points found in a given analysis window may be related to different anomalies,
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(a) Prediction and Boundaries
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(b) Points status decision

Figure 3.8: TCN anomaly detection

Algorithm 1: Analysis windows creation

Input : X̂ the time series with anomalies
S the list containing the state of each point (”normal” or ”anomalous”)
m the analysis windows margin

Output: a the analysis windows list aSIM or aREAL

1 i← 0
2 a← empty list
3 while not at the end of S do
4 if S(i) is ”anomaly” then
5 nc ← number of consecutive points detected as ”anomaly”
6 newa ← sub-sequence time series X̂ [i−m,i+m]

7 a← a + newa

8 i← i+ nc

9 else
10 i← i+ 1
11 end
12 end

23



(3) analysis windows may overlap (meaning we could have the same anomaly present in different

analysis windows), (4) when simulated data is used, analysis windows are defined independently

from the anomaly windows produced by the simulator. We evaluate our anomaly detection system

by computing its F1 score from the following measures:

• True positives (TP): the number of true anomalies that are included in at least one analysis

window.

• False positives (FP): the number of analysis windows that do not contain any true anomaly.

• False negatives (FN): the number of true anomalies that are not included in any analysis

window.

This definition of the F1 score is sensitive to the size 2m of an analysis window. Indeed, increas-

ing 2m mechanically increases the F1 score by reducing the number of false positives and false

negatives, and increasing the number of true positives.

3.3 Anomaly Classification

Time series decomposition During the training of the detector (Section 3.2), we also apply the

additive Moving average time series decomposition5 from the statsmodel library:

X̂ = Ti + Ui +Ri,

where X̂ is the time series containing anomalies, Ti is the trend component, Ui is the seasonal

component, and Ri is the residual. As the seasonality amplitude could vary each week in real

uses, we decided to extract the seasonality from the last 2 weeks (as we need a minimum of 2

occurrences to extract the seasonality) of the train time series. We also extracted the trend from

the last week of the train time series. This decomposition is done to evaluate the analysis windows

labels based on the last observations of the train time series (as the detection model gives a week

prediction based on the last 8 days). The seasonality and the trend extracted are subtracted to
5https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal

decompose.html
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the test set. This decomposition is applied after the prediction and before the analysis windows

creation. The classifiers are then trained on Ri. We use the Moving average decomposition because

it gives a more stable seasonality compared to the STL (Seasonal and Trend decomposition using

Loess (Cleveland et al., 1990)) and more versatile than traditional decomposition methods such

as X11 and SEATS (Seasonal Extraction in ARIMA Time Series) (Dagum & Bianconcini, 2016;

Hyndman & Athanasopoulos, 2018).

Classification models We tested a total of three classification models, including two classical

machine-learning models, namely k-Nearest Neighbors (kNN) and Supervised Time Series For-

est (STSF Cabello et al. (2020)), as well as one Deep Learning model, a Temporal Convolutional

Network (TCN Bai et al. (2018)).

We used the kNN implementation of the sktime library6, varying the parameters according to

Table 3.3. We use the k-Nearest neighbor as it is one of the standard classification method used

for time series. One of the combination used in Table 3.3, 1-NN with the Dynamic Time Warping

distance (DTW) is often used in time series analysis (Susto, Cenedese, & Terzi, 2018). STSF is an

ensemble of decision trees that samples the training set with class-balanced bagging and creates in-

tervals for 3 representations (the time series, the frequency domain and the derivative representation

of the time series) and 7 features (mean, median, standard deviation, slope aggregation functions,

inter-quartile range, minimum and maximum). We used the STSF implementation of the sktime

library7 and we varied the number of estimators between 5 and 200. We use this interval-based

classifier for its efficiency and also because it is an enhanced method of Random Forest traditionally

used in time series classification. STSF is an ensemble of decision trees that samples the training

set with class-balanced bagging and creates intervals for 3 representations (the time series, the fre-

quency domain and the derivative representation of the time series) and 7 features (mean, median,

standard deviation, slope aggregation functions, inter-quartile range, minimum and maximum). We
6https://www.sktime.org/en/stable/api reference/auto generated/sktime

.classification.distance based.KNeighborsTimeSeriesClassifier.html
7https://www.sktime.org/en/stable/api reference/auto generated/sktime

.classification.interval based.SupervisedTimeSeriesForest.html
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Parameter Values tested
Number of neighbours 1, 3, 5, 10, 20, 50

Distance
dtw, ddtw, wdtw, lcss, erp, msm,
twe

Weight uniform, distance

Table 3.3: Parameter combinations tested for the kNN time series classifier. Dtw: dynamic time
warping, ddtw: derivative dtw, wdtm: weighted dtw, lcss: longest common sub-sequence, erp: edit
distance with real penalty, msm: move split merge, twe: time warping edit

Parameter Values tested
Kernel size 4
Activation function softsign, relu, tanh
Number of filters 64
Optimizer RMSprop, Adam, Adamax, Nadam

Table 3.4: Parameter combinations tested for the TCN time series parameter. RMSprop: root mean
square propagation

used the STSF implementation of the sktime library8 and we varied the number of estimators be-

tween 5 and 200. We use this interval-based classifier for its efficiency and also because it is an

enhanced method of Random Forest traditionally used in time series classification. For the Tempo-

ral Convolutional network, we used the Keras TCN implementation9 described in Bai et al. (2018),

varying the parameters according to Table 3.4. The TCN model used a softmax activation function

for its final layer and the sparse categorical cross-entropy loss function. We use the TCN method

as it achieves good performance compared to Recurrent Neural Network (RNN) and allows parallel

computation for the outputs. We wanted to evaluate the TCN performance for classification tasks in

time series as it is mainly used in anomaly detection problems.

To evaluate the classifiers, we split the analysis windows into a training and test sets with a

proportion of 70%− 30%. We applied the Grid search cross validation10 and the Stratified k-Fold11

iterator from the scikit-learn library to search for the optimal parameters on the training set. The

stratify strategy keeps the same class proportion between the folds and the data set. We evaluated
8https://www.sktime.org/en/stable/api reference/auto generated/sktime

.classification.interval based.SupervisedTimeSeriesForest.html
9https://github.com/philipperemy/keras-tcn

10https://scikit-learn.org/stable/modules/generated/sklearn.model selection
.GridSearchCV.html

11https://scikit-learn.org/stable/modules/generated/sklearn.model selection
.StratifiedKFold.html
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the models using the canonical micro F1 score definition and confusion matrix for each anomaly

class.
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Chapter 4

Experiments

We conducted experiments to evaluate our anomaly classification method using simulated and

real data sets. We also evaluated the performance of the detection method as a sanity check since

the performance of the classification model clearly depends on the type of detected anomalies.

4.1 REAL and aREAL data sets preparation

REAL time series Before using the REAL time series, we cleaned the missing parts of the time

series (where X̂(t) = 0) that usually result from interruption of the monitoring system and are

therefore excluded from the anomaly detection model. To clean these time series, we simply deleted

the missing parts from the time series. As the TCN needs a continuous time series to fit the model,

we rebuilt the missing parts by extracting the weekly seasonality component using STL from the

rest of the time series. The missing parts were filled with the mean of o points occurring at the

same weekly periodicity time (for example each Monday), where o is an integer between 1 and 3

depending on the size of the sane parts (the maximum of sane occurrence up to 3). We used the STL

decomposition for the seasonality extraction as the seasonal component evolve over time compared

to the moving average method. We discarded the time series with more than 10% missing parts. We

also applied the same sampling period ts to the REAL time series as well as the filtering and scaling

processing in subsection 3.1.3.

We also measured the noise level from each REAL set using a high-pass Butterworth filter with

28



Figure 4.1: Manual classification program

the following parameters:

N = 5 fs =
1

ts × 60
Wc =

fs
8
,

where N is the filter order, fs is the sampling frequency, and Wc the critical frequency and ts the

sampling period defined in Section 3.1. After extracting the high frequencies, we calculated the

noise level as the standard deviation of the time series with a degree of freedom equal to 1. The

noise level is needed during the experiments to compare results obtained from the same noise level.

aREAL labeling The analysis windows extracted from the real dataset were manually labeled

using the classification program shown in Figure 4.1, where the user can assign one or multiple

labels for each anomaly detected. The last label “other” is used in case the anomaly cannot be

clearly classified into existing classes. The proportion of anomalies classified as “other” represented

0.8% of the total number of analysis windows.
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Dataset Range of noise level σ
aSIM1 [0.0, 0.01[

aSIM2 and aREAL1 [0.01, 0.03[

aSIM3 and aREAL2 [0.03, 0.05[

aSIM4 and aREAL3 [0.05, 0.07[

aSIM5 [0.07, 0.09[

Table 4.1: Parameter combinations used for the aSIM or aREAL separation

Anomaly class
Subclasses and class proportion
Peak or Dip or

Total
Growth Decrease

Single point 0.43 0.02 0.45
Temporary Change 0.38 0.02 0.4
Level Shift 0.005 0.005 0.01
Variation Change 0.1 0.04 0.14

Table 4.2: Proportion of assigned anomaly types in the aREAL dataset

4.2 Datasets

REAL The first data set is composed of the REAL time series with 65 different 1-month-long

time series. The 65 time series correspond to the average delay collected from 65 different networks

labeled REAL1 to REAL65. Each of these sources has a length of 1 month and may have a different

amplitude and seasonality.

aREAL The second data set consists of the aREAL analysis windows created by the Anomaly

detection model on the REAL time series. We named the analysis windows from aREAL1 to

aREAL3 depending on the range of their noise level (see Table 4.1) as explained previously. We

assigned class labels to the analysis windows manually, using the program described previously in

Section 4.1, resulting in the class proportions reported in Table 4.2. Most of the detected anomalies

were Single point or Temporary change anomalies with the peak or growth direction.

SIM The third data set is the SIM time series generated as detailed in Section 3.1. We extracted

the noise level from the REAL time series and the proportion of each class of anomalies from the

aREAL analysis windows, and injected them in the simulator. We generated a total of 54 data sets,

varying the parameters according to Table 4.3.
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Parameter Values
Number of anomalies n 250, 500, 1000
Noise level σ 0.0, 0.2, 0.4, 0.6, 0.8
Strength α [0.5, 0.7]

Anomaly proportion

Imbalanced: (0.43, 0.02,
0.38, 0.02,
0.005, 0.005,
0.1, 0.04),
Balanced: (0.125, 0.125,
0.125, 0.125,
0.125, 0.125,
0.125, 0.125)

Table 4.3: Parameter combinations used for the SIM dataset creation

aSIM The fourth data set is composed of the aSIM analysis windows produced by the anomaly

detection model on the SIM time series, named aSIM1 to aSIM5 depending on their noise level

(Table 4.1).

4.3 Training and evaluation

As explained previously, an anomaly can appear in multiple analysis windows and therefore the

anomaly proportion may not be the same between the SIM and aSIM sets. For our experiments,

we wanted to keep the same proportion between the detection and classification as the imbalanced

proportion case is extracted from the aREAL analysis windows. We used two methods to guarantee

the same proportion between the anomalies in the SIM and aSIM data sets. In case of a balanced

proportion, we downsampled the majority class using the RandomUnderSampler1 function from the

Imbalanced-learn library. In case of an imbalanced proportion, we randomly selected samples from

each class according to the anomaly proportion parameter used in the Anomaly Simulation.

SIM-SIM We named the first experiment SIM-SIM as it trained and evaluated the detection and

classifiers on the SIM and aSIM data sets, having prepared the aSIM analysis windows to respect

the class proportions as detailed before. The goal of this experiment was to evaluate the detection
1https://imbalanced-learn.org/stable/references/generated/imblearn.under

sampling.RandomUnderSampler.html
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Figure 4.2: Detection results, SIM-SIM datasets (ts = 5 minutes)

and classification parts on the simulated data sets. In the second experiment, we compared these

results to the ones obtained with the REAL data set.

SIM-REAL We named the second experiment SIM-REAL as it trained the classifier on the aSIM

dataset and evaluated it on the aREAL dataset. We trained different classifiers for each range of

noise level defined in Table 4.1. and we evaluated them independently. The data sets used are

aSIM2-4 and aREAL1-3.

4.4 SIM-SIM results

4.4.1 Detection results

Figure 4.2 shows the performance of the detection model for different noise levels. For the

imbalanced case, the F1 score decreased as the noise level increased in the SIM dataset ts̃. The

balanced case showed an increase until σ = 0.1µs and then a rapid decrease. The difference in

behavior between the imbalanced and balanced dataset reflects the detection of the level shift and
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[0.07, 0.09[
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Figure 4.3: SIM-SIM classification results (imbalanced data)

KNN STSF TCN0.0

0.5

1.0

f1
 sc

or
e

0.81
0.93 0.88

0.71

0.88
0.8

0.69 0.71 0.680.7 0.73
0.610.61

0.71
0.6

(a) All anomaly types
Single point Temporary Change Level Shift Variation Change0.0

0.5

1.0

f1
 sc

or
e

0.99 0.95
0.89 0.89

0.97 0.94

0.81 0.81
0.87

0.77

0.62
0.55

0.9

0.78

0.6 0.62

0.79
0.85

0.51

0.65

(b) STSF classifier

Single point Temporary Change Level Shift Variation Change0.0

0.5

1.0

f1
 sc

or
e

0.99
0.91

0.81 0.84

0.97 0.93

0.67
0.62

0.79 0.82

0.63

0.44

0.75
0.69

0.61

0.33

0.68 0.72

0.49 0.51

(c) TCN classifier
Single point Temporary Change Level Shift Variation Change0.0

0.5

1.0

f1
 sc

or
e

0.89 0.89

0.76
0.71

0.77 0.76
0.71

0.62

0.76 0.78

0.65
0.57

0.81

0.7 0.67 0.640.67
0.79

0.44
0.5

(d) kNN classifier

Figure 4.4: SIM-SIM classification results (balanced data)

variation change classes. These classes are more difficult to detect than the other ones, which

explains the reduced performance in the balanced dataset. In the imbalanced dataset, these classes

are too infrequent to have a measurable impact on the performance as we used the micro F1 score.

4.4.2 Classification results

Figures 4.3, 4.4 show an overview of the classifiers results for different noise levels and weights.

The STSF and TCN models perform the best in both the imbalanced and balanced case. The overall

F1 score of the classifiers across all anomaly classes is equal to 0.7 for the imbalanced case and

0.73 for the balanced case. As expected, the F1 score decreases as the noise level increases. We

evaluated a decrease of the F1 score around 29% for the TCN and around 23% for the STSF between

low (aSIM1) and high noise level (aSIM5). The Single point and Temporary change anomalies have

the best overall F1 score.
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Figure 4.5: SIM-REAL classification results (imbalanced data)
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Figure 4.6: SIM-REAL classification results (balanced data)

The detection and classification performs well for the simulated data sets. The detection shows

good results for both the imbalanced and balanced case with a F1 score higher than chance even for

high level of noise.

4.5 SIM-REAL results

As shown in Figure 4.5, 4.6, the STSF and TCN classifiers show good performances for Sin-

gle point and Temporary change anomalies, even though they were only trained on the simulated

dataset. The kNN classifier did not perform as well as the STSF and TCN classifiers. The overall

F1 score of the classifiers decreases to 0.39 for the imbalanced case and 0.55 for the balanced case

considering all the anomaly types. This relatively poor performance is explained by the difficulty to

classify level shifts and variation changes. The overall F1 decrease is due to the insufficient number

of anomalies for the Level shift and Variation change types. This type of anomalies are not frequent

in the REAL data sets observed. We evaluated a decrease of the F1 score around 24% for the TCN
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and around 35% for the STSF between the simulated and real-world datasets.
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Chapter 5

Conclusion

5.1 Summary of contributions

The classifiers trained on simulated data (aSIM dataset) achieve relatively good performance

(F1 in [0.6-0.93] depending on noise level) when tested on simulated data, which demonstrates the

relevance of the approach. When tested on the aREAL datasets, the classifiers achieve a relatively

good F1 score (F1 > 0.6) for the single point and temporary change anomalies and for low levels of

noise. Under these assumptions, trained models using a simulated approach appears to be transfer-

able to real data processing. This demonstration holds significance and represents the primary value

derived from this research endeavor.

The poor classification of level shift and variation change anomalies results from the difficulty

to separate these classes on 2-hour anomaly windows, which was observed in the simulated dataset

and confirmed in the real dataset. To address this issue, one could adopt larger or adaptive anomaly

window sizes. As expected, the noise level also directly impacts the classifiers performance. Pre-

filtering the signal might help reducing sensitivity to noise.

5.2 Future work

Multiple improvements could be envisaged in the future. First, the anomaly simulator could

support superimposed anomalies that occur frequently in real time series. The simulator could also
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modulate the signal amplitude and trend according to variation patterns observed in the real data,

such as variations between week days and weekends.

The detection and data preparation steps also have a large impact on the classification. A better

integration between data preparation, anomaly detection, and anomaly classification could help

improve the performance of the classifier. For instance, we could create a detector for each class

of anomalies and optimize their parameters according to it (for example weekly prediction for the

Level shift and a hourly prediction for the Single point anomalies). This modification would help

classify the anomalies depending on the detector. The decomposition could also be done with the

detector prediction as the TCN is able to learn the trend/seasonality of the time series.

Another way could be to create two layers of classification, the first layer could identify the

length, trend, amplitude and noise level, given the results from the first layer, we could separate the

Single point and Temporary change from the Level shift and Variation change, as they can already

be separated by the length. The second layer would be specialized in either classifying Single point

and Temporary change or Level shift and Variation change given the information extracted by the

first layer.

Another integration could be to give more information about the anomalies such as the approx-

imate length (for example the number of consecutive points detected as an anomaly or the length of

the time series which contains around 80-90% or anomalous points), the seasonality, and the trend.

This integration could help create variable analysis windows lengths.

Another improvement would be to give multiple outputs and the probability associated for the

classifiers. This modification would greatly improve the reliability of the framework by giving a

confidence value.

Finally, another improvement could be to directly train the classifiers on real data sets, which

would require larger sets of labeled anomalies. We suggested this improvement as the classification

shows good performance when trained and tested on the same dataset.

A natural progression of this work would be to allow for variable analysis windows lengths and

treating the cases of superposition of different anomaly types. Future studies could also evaluate the

anomaly strength detected or characterize even further the anomaly during the classification.
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