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Abstract: 

Driving force computation for fatigue crack growth based on the integration 

of fracture mechanics with artificial neural networks 

S. Navid S. Mortazavi, PhD. 

Concordia University, 2023 

Fracture mechanics principles play a crucial role in characterizing fatigue crack growth (FCG) 

rates based on the concept of driving force. Two well-known and promising driving forces in 

fracture mechanics are the stress intensity factor range (∆K) and cyclic J-integral (∆J). While ∆K 

is a linear elastic fracture mechanics (LEFM) parameter, ∆J is an elasto-plastic fracture mechanics 

(EPFM) parameter. However, both driving forces have limitations when it comes to FCG 

characterization. ∆K fails to account for relatively large-scale plasticity, rendering it inadequate 

for describing the short crack (SC) regime. On the other hand, ∆J inherently has the potential to 

consider large-scale plasticity, but its application on real engineering problems is challenging. The 

difficulty arises from the need to perform complex and time-consuming elasto-plastic analyses to 

compute the actual elasto-plastic stress, strain, and displacement fields near the crack tip for the 

calculation of ∆J. This study explores the integration of artificial neural networks (ANNs) with 

fracture mechanics principles to overcome these challenges. The research is carried out in three 

phases: 

Phase 1 focuses on integrating ANN with ∆K as a LEFM parameter. Unlike ∆K-based models that 

solely formulate FCG rate based on the maximum stress intensity factor (Kmax) and ∆K, this 

approach incorporates other controlling parameters. FCG rate is considered as a function of ∆K 

and stress ratio (R) in the long crack (LC) regime, and as a function of stress level (σ) in addition 

to ∆K and R in the SC regime. ANNs are developed to reveal these non-linear and complex 

functions in both regimes, using experimental FCG data sets from Ti-6Al-4V titanium alloy, 2024-

T3, and 7075-T6 aluminum alloys for training and verification. Although this phase shows 

potential, the reliance on limited FCG data sets due to costly procedures remains a challenge. 

Moreover, ∆K as a LEFM parameter inherently cannot handle large-scale plasticity in the SC 

regime. 

To address these issues, a novel approach is suggested and investigated in Phases 2 and 3. Phases 

2 and 3 propose replacing ∆K with ∆J as a promising EPFM driving force and combining finite 

element (FE) analyses with ANN algorithms. Firstly, the implementation of FE models provides 

ample datasets for training the ANNs. Secondly, this integration allows for the determination of 

∆J through a linear elastic solution rather than complex elasto-plastic analyses. 

Phase 2 involves FE analyses to determine stress, strain, and displacement fields under elastic and 

elasto-plastic states near a crack tip for a notched specimen made of stainless steel (SS304) under 

monotonic loading. Hypothetical elastic stress, strain, and displacement fields around the crack tip 

are used as input data for the developed ANNs. The corresponding actual elasto-plastic stress, 

strain, and displacement fields are the output of the ANNs. Well-trained ANNs successfully 

establish relationships between the elastic and elasto-plastic fields, enabling predictions of elasto-

plastic stress, strain, and displacement based on hypothetical elastic data. An in-house model based 

on the equivalent domain integral (EDI) method is developed to determine J-integral as a function 



iv 
 

of stress, strain, and displacement fields around the crack tip. This model can be served as a post-

processing step after elasto-plastic FE analyses. In addition, it can be employed to determine J-

integral based on ANN predictions. The accuracy of the in-house model is verified by the J-integral 

data in the literature. ANN predicted elasto-plastic stress, strain, and displacement fields are 

compared and verified with those obtained from elasto-plastic FE analyses. The proposed method 

demonstrates significant accuracy in determining J-integral values. 

Phase 3 extends the approach to cyclic loading conditions. The developed ANNs are trained on 

cyclic stress, strain, and displacement fields. The in-house model is upgraded to determine ∆J 

under cyclic loading. The accuracy of cyclic ANN-predicted elasto-plastic stress, strain, and 

displacement fields is compared with those obtained from elasto-plastic FE models, resulting in 

significant agreement. The in-house model is verified by the ∆J data in the literature. Moreover, 

∆J values predicted by the proposed model are comparable to those directly determined by elasto-

plastic FE analyses. 

The integration of artificial neural networks with fracture mechanics principles provides valuable 

insights into overcoming traditional driving force limitations in FCG characterization. This 

research offers a promising avenue for future research and practical applications in the field of 

fatigue crack growth analysis. 
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In this chapter, fatigue crack growth (FCG), its definition and significance in the industry are 

briefly provided. Additionally, different fatigue crack regimes during the progress of crack 

propagation before the final fracture are discussed. Subsequently, the primary conventional 

approaches to determine the total life of a component subjected to fatigue are categorized. The 

significant studies in the literature for each category are reviewed to specify the limitations of 

current models in accurately and efficiently determining the fatigue life of engineering 

components. Furthermore, neural network algorithms as machine learning methods are introduced. 

Finally, the application of neural networks in the fields of fatigue crack growth and elasto-plastic 

mechanics is discussed.  

1.1. Fatigue crack growth and different crack regimes 

The fatigue damage process comprises multiple damage phases, including crack nucleation, crack 

growth, including early propagation of short cracks and long crack propagation, and the final 

fracture [1]. It is broadly accepted that fatigue failure is the most common failure mode in 

numerous industries [2]. Since the fatigue damage process occurs under cyclic loading, the primary 

purpose of almost all investigations on fatigue failure mode is to determine the fatigue life or the 

total number of loading cycles (𝑁𝑡) a component withstands before the final fracture. It is widely 

accepted that the total fatigue life includes the number of loading cycles that cause the initiation 

of incipient crack (𝑁𝑖), and subsequently, the number of loading cycles within crack propagation 

from its initial to its final length just before the final fracture, as shown in Eq. (1.1)  

𝑁𝑡 = 𝑁𝑖 + 𝑁𝑝 (1.1) 

The crack initiation is defined based on its detectability. A crack is considered to be initiated when 

it is ‘0.01 inch-long’, as a criterion firstly suggested by the US Navy. Consequently, crack initiation 

is defined as “the inception and growth of a short crack to the experimentally detectable limit” [1]. 

Fatigue crack propagation consists of different crack regimes based on the crack size and the 

controlling parameters that govern the FCG behavior. FCG involves the propagation of short 

cracks (SCs) and long cracks (LCs). SCs are classified as those cracks shorter than 0.5 to 1 mm. 

The microstructure significantly affects the FCG behavior in the SC regime. SCs are divided into 

microstructurally short cracks (MSCs) and physically short cracks (PSCs). The length of an MSC 

is comparable with the microstructural characteristics of the material, i.e., the grain size. As a 

result, the material cannot be considered a continuum at that length scale. However, the size of a 

PSC is adequately long to assume the material behavior as a continuum. The size of LCs is longer 

than 0.5 to 1 mm. It is widely acknowledged that microstructural characteristics have no influence 

on the LC regime [1]. The different crack regimes based on the crack size are schematically shown 

in Figure 1.1. 

There are mainly two distinguished approaches to determine the fatigue life of components: 1) the 

“crack initiation” approach and 2) the “fracture mechanics” approach discussed as follows: 

1.2. Crack initiation  

The crack nucleation-based models consider the number of loading cycles for crack initiation (𝑁𝑖) 
as the total life. In other words, such models assume that components initially have no cracks and 

the components should be replaced or repaired after the crack nucleation. The crack initiation 

methods are categorized based on stress-life (S-N approach) and strain-life (𝜀-N approach) 



3 
 

prediction methods. S-N approaches quantify fatigue damage and, subsequently, fatigue life based 

on the nominal stress. On the other hand, the 𝜀-N approach employs the local notch tip strains and 

stresses to determine the fatigue damage. Since crack initiation methods are noticeably applicable 

in many industries, the S-N approach [3-5] and 𝜀-N approach [6-12] have received great interest 

among the researchers. One of the most critical shortcomings of the crack initiations approach is 

the principal assumption that components have no pre-existing cracks. According to most of the 

fabrication processes, such an assumption contradicts reality.   

 

Figure 1.1 Schematic of different crack regimes [13] 

1.3. Fracture Mechanics 

To the contrary of the crack initiation approach, the fracture mechanics approach assumes that the 

cracks are pre-existing in structures. Such principal assumption is in more accordance in 

comparison with the one in crack initiation approach. The main aim of fracture mechanics is to 

determine the FCG rate based on a proper driving force, as shown in Eq. (1.2):  

𝑑𝑎

𝑑𝑁
= 𝑓(𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒) (1.2) 

N and a are the number of cycles and crack size, respectively. There is significant number of 

controlling parameters affecting the FCG rate, e.g. the geometry of structures, the loading type, 

alternative stress, mean stress, etc. The suggested driving force in Eq. (1.2) is required to be 

comprehensive to account for as many controlling parameters affecting the FCG rate in order to 

accurately calculate the fatigue life of structures. Almost all of the fracture mechanics-based 

models can be classified into the two main groups based on the elected driving force. The first 

group is linear elastic fracture mechanics (LEFM), and the second one is elasto-plastic fracture 

mechanics (EPFM) discussed in detail as follows:  

1.3.1. Linear elastic fracture mechanics 

On of the most prominent parameters in fracture mechanics is the stress intensity factor (𝐾). The 

stress intensity factor (SIF) is defined as “the magnitude of the stress singularity at the tip of a 
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mathematically sharp crack in a linear elastic material” [14] or a “direct measure of the elastic 

strain energy in a stressed material that contains a crack” [15]. The SIF is mainly used to specify 

the stress state around the crack tip of an elastic material in fracture mechanics. The SIF is 

quantified by Eq. (1.3): 

𝐾 = 𝑌𝑆√𝜋𝑎 (1.3) 

where Y represents the geometry factor, S stands for the nominal stress, and a denotes the crack 

length. Two well-known SIF-based models used to characterize the stress/strain field around the 

tip of cracks and deep notches are the Westergaard method [16] and the Creager-Paris solution 

[17]. The closed form Creager-Paris solution under mode I type of loading, which determines the 

stress distribution in the vicinity of a blunt crack tip, is shown in Eq. (1.4):  

 

𝜎𝑥 =
𝐾

√2𝜋𝑟
𝑐𝑜𝑠 (

𝜃

2
) [1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)] −

𝐾

√2𝜋𝑟

𝜌

2𝑟
𝑐𝑜𝑠 (

3𝜃

2
) 

(1.4) 𝜎𝑦 =
𝐾

√2𝜋𝑟
𝑐𝑜𝑠 (

𝜃

2
) [1 + 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)] +

𝐾

√2𝜋𝑟

𝜌

2𝑟
𝑐𝑜𝑠 (

3𝜃

2
) 

𝜏𝑥𝑦 =
𝐾

√2𝜋𝑟
𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

3𝜃

2
) −

𝐾

√2𝜋𝑟

𝜌

2𝑟
𝑠𝑖𝑛 (

3𝜃

2
) 

where 𝜌 is the radius of the crack tip, K stands for the SIF, r is the radial distance between an 

arbitrary point and the origin of coordinate system, and 𝜃 is the angle between the r and the 

horizontal coordinate axis. The origin of the coordinate system is located behind the crack tip at a 

distance of |
𝜌

2
| as schematically shown in Figure 1.2. 

It has been widely acknowledged that stress and strain fields around the crack tip govern the 

behavior of FCG. As a result, Paris and Erdogan [18] suggested the SIF range (∆𝐾 = 𝐾𝑚𝑎𝑥 −
𝐾𝑚𝑖𝑛) as the driving force in Eq. (1.2). 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛, correspond to the maximum and minimum 

stress levels under cyclic loading, as schematically shown in Figure 1.3 for constant amplitude 

loading. As depicted in Figure 1.3, the stress amplitude (𝜎𝑎), mean stress (𝜎𝑚), and stress range 

(∆𝜎) are determined by Eq. (1.5)-(1.7). 

𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 (1.5) 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 (1.6) 

∆𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 (1.7) 
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Figure 1.2 Schematic of coordinate system in Creager-Paris solution. 

 

Figure 1.3 Main characteristics of a constant amplitude loading [19]. 

The model suggested by Paris and Erdogan is one of the most well-known fracture mechanics 

models used to characterize FCG rate. This model is known as Paris’ law as expressed in Eq. (1.8): 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (1.8) 

where a and N represent crack size and the number of loading cycles, respectively, while C and m 

are the material constants. The Paris model is schematically shown in Figure 1.4. As depicted in 

Figure 1.4, Paris’ law depicts the second phase, which is between the ∆𝐾𝑡ℎ and ∆𝐾𝑐. The SIF range 

threshold (∆𝐾𝑡ℎ) specifies the minimum driving force required to cause the fatigue crack 

propagation in the LC regime and the critical SIF range (∆𝐾𝑐) is corresponded to the final crack 

size and the instantaneous fracture. Although Paris’ law is considered as one of the principals of 

LEFM, it has noticeable shortcomings. One of the most crucial deficiencies of the Paris model is 

its incapability to account for the mean stress or R-ratio. R-ratio, as an influential parameter in 

FCG behavior, is defined as Eq. (1.9). 
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𝑅 =
𝜎𝑚𝑖𝑛
𝜎𝑚𝑎𝑥

 (1.9) 

As schematically shown in Figure 1.5, the Paris model exhibits different curves under various R-

ratios in the LC regime for a particular material. Consequently, the FCG rate can be quantified by 

means of Eq. (1.10) as a function of ∆𝐾 and 𝑅. 

 

 

Figure 1.4 Schematic of Paris’ law. 

𝑑𝑎

𝑑𝑁
|
𝐿𝐶
= 𝑓(∆𝐾, 𝑅) (1.10) 

However, it has been demonstrated that such characterization, as illustrated in Eq. (1.10) is only 

feasible in the LC regime [1]. The inherent disparities between the LC and SC regimes, known as 

“similitude breakdown” are as follows [1]: 

i) FCG rates in the SC regime are higher than those in the LC regime (
𝑑𝑎

𝑑𝑁𝑆𝐶
>
𝑑𝑎

𝑑𝑁𝐿𝐶
). 

ii) The threshold in the SC regime is lower than that in the LC regime (∆𝐾𝑡ℎ,𝑆𝐶 < ∆𝐾𝑡ℎ,𝐿𝐶). 

iii) The threshold in the SC regime varies with crack length, in contrast to the LC regime, where 

the threshold remains constant.  

Experimental FCG data demonstrate that the FCG rate in the SC regime can be quantified based 

on stress level (𝜎) in addition to the ∆𝐾 and 𝑅 as shown in Eq. (1.11) 

𝑑𝑎

𝑑𝑁
|
𝑆𝐶
= 𝑓(∆𝐾, 𝑅, 𝜎) (1.11) 
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The FCG rate and the mentioned similitude breakdown schematically shown in Figure 1.6. 

The limitations of Paris’ law have prompted many researchers to advocate for various ∆𝐾-based 

models that account for the R-ratio effect.  

Elber [20] and Newman [21] were among the first to propose the concept of crack closure as a 

crucial parameter that significantly influences the FCG behavior. It was claimed that 

comprehending the concept of plasticity-induced crack closure is pivotal in quantifying the effect 

of R-ratio on the FCG rate. According to the concept of plasticity-induced crack closure, plastic 

deformation zone (PDZ) forms ahead of a relatively short crack, as depicted schematically in 

Figure 1.7 (a). As the crack propagates, it penetrates through this PDZ. As a result, the crack-wake 

plasticity is formed. Consequently, the surfaces of a relatively larger crack size become involved 

with the crack-wake plasticity and its closure effect. The influence of the crack-wake plasticity 

increases and finally stabilizes once the crack enters the LC regime. It has been widely 

acknowledged by many researchers that the change in slope observed in the load-displacement 

curve during fatigue crack propagation results from the plasticity-induced crack closure concept 

[22]. To determine the SIF at the point of crack closure corresponding to the change in slope in 

the load-displacement curve, it was suggested that both the opening SIF (𝐾𝑜𝑝 during loading) and 

closing SIF (𝐾𝑐𝑙 during unloading) must be specified [23]. Consequently, the effective SIF range 

(see Eq. (1.12)) was proposed as the driving force to calculate the FCG rate. 

 

 

 

Figure 1.5 The effect of R-ratio on FCG. 
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Figure 1.6 FCG rate in the SC and LC regime: a) 3D view for different R-ratios, b) 2D view for a constant R-ratio. 

 

Figure 1.7 Description of plasticity induced crack closure [1]. 

∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝(𝑜𝑟 𝐾𝑐𝑙) (1.12) 

The literature comprises numerous studies, ΔK-based models, and finite element (FE) analyses 

that focus on crack closure [24-36]. Among these models, the NASGRO model, known as the 

Forman/Mettu equation [37], shown in Eq. (1.13), stands out as one of the most renowned crack 

closure-based models.  

𝑑𝑎

𝑑𝑁
= 𝐶 (

1 − 𝑓

1 − 𝑅
∆𝐾)

𝑛 (1 −
∆𝐾𝑡ℎ
∆𝐾

)
𝑝

(1 − 
𝐾𝑚𝑎𝑥
𝐾𝑐𝑟𝑖𝑡

)
𝑞  (1.13) 

where R is the stress ratio, ∆𝐾𝑡ℎ is the SIF threshold, 𝐾𝑐𝑟𝑖𝑡 is the critical value of SIF, C, n, p, and 

q are calibration coefficients, and f is the Newman’s function describing the crack closure. The 

mentioned parameters are discussed in detail in the literature [38]. 
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Crack closure-based models have significantly advanced the characterization of FCG rates in terms 

of applicability. Therefore, these models have found practical applications even in the aerospace 

industry. Nevertheless, uncertainties and questions have emerged regarding whether crack closure 

truly serves as the primary lost-controlling parameter in ΔK-based models. Diverse perspectives 

have been proposed to reinforce these uncertainties [1]. One of the most critical points among 

these perspectives is the revelation that the change in slope observed in load-displacement curves 

may also be attributed to the presence of a PDZ ahead of the crack tip during the development of 

a monotonic plastic zone [39, 40]. Additionally, numerous constants need to be calibrated in the 

majority of crack closure-based models, which presents a considerable challenge in many cases. 

These uncertainties and the need for extensive calibrations have hindered the widespread success 

of crack closure-based models, especially in the SC regime. 

Besides the crack-closure concept, the “Unified approach” has garnered significant interest among 

researchers as a means to modify the ∆𝐾-based models in order to address the effect of R-ratio, 

which is not considered in Paris’ law. The Unified approach proposes the inclusion of 𝐾𝑚𝑎𝑥 in 

addition to ∆𝐾 as part of the driving force in Eq. (1.2). One of the initial models based on the two 

parameter driving force was proposed by Walker [41] as shown in Eq. (1.14). 

𝑑𝑎

𝑑𝑁
= 𝐶[(1 − 𝑅)𝑝𝐾𝑚𝑎𝑥]

𝛾 = 𝐶[∆𝐾(1−𝑝)𝐾𝑚𝑎𝑥
𝑃 ]

𝛾
 (1.14) 

where 𝑝 and 𝛾 are constants that need to be determined based on the procedure discussed in the 

literature [41]. The walker model was later modified by Donald and Paris [42]. While both models 

demonstrate significant agreement with FCG rate data in cases of relatively higher R-ratios, this 

agreement diminishes notably in situations with lower R-ratios. To enhance the accuracy of the 

two-parameter driving force-based model, Kujawski [43] proposed replacing ∆𝐾 with the tensile 

part of the stress intensity factor range (∆𝐾+), as shown in Eq. (1.15). 

𝑑𝑎

𝑑𝑁
= 𝐶[(∆𝐾+)(1−𝑝)𝐾𝑚𝑎𝑥

𝑝 ]
𝛾
 (1.15) 

Kujawski’s model indicates noteworthy correlation with experimental FCG data. However, the 

correlation for positive R-ratios is significantly higher than that within the range of negative R-

ratios. The two-parameter driving force-based model was also proposed by Sadananda and 

Vasudevan [44, 45]. Sadananda and Vasudevan [44] claimed that two distinct thresholds should 

be taken in to account in addition to the two-parameter driving force. It was suggested that both 

𝐾𝑚𝑎𝑥 and ∆𝐾 must exceed their threshold values, denoted as 𝐾𝑚𝑎𝑥,𝑡ℎ and ∆𝐾𝑡ℎ, respectively, in 

order to cause fatigue crack propagation. Noroozi et al. [46, 47] proposed employing the residual 

SIF (𝐾𝑟) in addition to the two-parameter driving force and two thresholds. That model is known 

as the UniGrow model shown in Eq. (1.16): 

𝑑𝑎

𝑑𝑁
= 𝐶[(𝐾𝑚𝑎𝑥,𝑡𝑜𝑡)

𝑝
(∆𝐾𝑡𝑜𝑡)

1−𝑝]
𝛾
 (1.16) 

where  𝑝 and 𝛾 are the constants that need to be determine based on the procedure discussed in the 

literature [46] and 𝐾𝑚𝑎𝑥,𝑡𝑜𝑡 and ∆𝐾𝑡𝑜𝑡 are defined as Eq. (1.17)-(1.18). 

𝐾𝑚𝑎𝑥,𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥 + 𝐾𝑟 (1.17) 
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∆𝐾𝑡𝑜𝑡 = ∆𝐾 + 𝐾𝑟 (1.18) 

where residual SIF (𝐾𝑟) is defined as: 

𝐾𝑟 = ∫ 𝜎𝑟(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥
𝑎

0

 (1.19) 

where a is the crack length, 𝑚(𝑥, 𝑎) is the weight function determined by the procedure discussed 

in the literature [48], and 𝜎𝑟 is the residual stress ahead of the crack tip, and x is the coordinate 

axis along the crack axis. It should be noted that the crack is considered a micro notch in the 

UniGrow model. 

UniGrow model is considered one of the most recent and significant improvement in LEFM. This 

model indicates that a proper driving force can account for different controlling parameters 

affecting FCG rate. The UniGrow model demonstrates that by employing a promising two-

parameter driving force to characterize FCG rate, different curves based on various R-ratios 

collapse into a single FCG curve predicted by the model for each material, as schematically shown 

in Figure 1.8. This highlights the importance of using a comprehensive and appropriate driving 

force in fracture mechanics. The UniGrow model has received significant attention in many studies 

[49-54].  Unfortunately, application of UniGrow model or unified approaches, in general, has not 

been reported successful so far in the case of the SC regime [55, 56]. It should be emphasized that 

the success of the UniGrow model in the LC regime is attributed to the employment of residual 

SIF (𝐾𝑟) accounting for the effects of residual stress field ahead of the crack tip in addition to using 

a two-parameter driving force.  

 

Figure 1.8 a) Representative of FCG data under different R-ratios; b) UniGrow FCG prediction and its correlation 

with experimental data [57]. 
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One may realize that the actual elasto-plastic stress around the crack tip is required to determine 

the residual stress 𝜎𝑟 and subsequently the residual SIF (𝐾𝑟). However, SIF, as a LEFM parameter, 

is only capable of converting nominal stress to the elastic stress field and does not account for the 

actual elasto-plastic stress field around the crack tip. As a result, the UniGrow model integrates 

the Creager-Paris solution introduced in Eq. (1.4) with Neuber rule to determine the actual elasto-

plastic stress/strain fields ahead of the crack tip.  

Neuber [58] developed one of the most famous notch correction methods known as Neuber’s rule. 

Neuber’s rule states that “the total strain energy density at the notch root equals to the pseudo 

strain energy density and complementary energy density as if a body was to hypothetically remain 

elastic” [59] as shown graphically in Figure 1.9 (a).The superscripts “e” in (𝜎22
𝑒 , 𝜀22

𝑒 ) and “a” in 

(𝜎22
𝑎 , 𝜀22

𝑎 ) stand for elastic and actual stress/strain fields, respectively. Neuber’s rule can be derived 

for uniaxial loading type as: 

𝜎𝑒𝜀𝑒 = 𝜎𝑎𝜀𝑎 (1.20) 

Topper et al. [60] extended the Neuber’s rule to account for a wide range of geometries under 

uniaxial cyclic loadings. Molski et al. [61] proposed the equivalent strain energy density (ESED) 

stating that “the actual elasto-plastic strain energy density at the notch root equals to the pseudo 

strain energy density as if a body hypothetically behaved elastic” [59] as shown in Figure 1.9 (b). 

Hoffman and Seeger [62] extended Neuber’s rule to an equivalent form as: 

𝜎𝑒𝑞
𝑎 𝜀𝑒𝑞

𝑎 = 𝜎𝑒𝑞
𝑒 𝜀𝑒𝑞

𝑒  (1.21) 

where 𝜎𝑒𝑞
𝑒  and 𝜀𝑒𝑞

𝑒  are the equivalent elastic stress and strain, respectively, if the material remained 

elastic, and 𝜎𝑒𝑞
𝑎  and 𝜀𝑒𝑞

𝑎  are the actual elasto-plastic equivalent stress and strain at the notch root, 

respectively. Neuber’s rule has received a grate interest among researchers, and it has been further 

extended under proportional and nonproportional loading, as well as for micro notches [59, 63-

68]. Unfortunately, Neuber’s rule is limited to the notches and micro notches and has not been 

extended to the cracks so far.   

As discussed in this section, ∆𝐾-based models have been significantly improved to address all 

controlling parameters in the LC regime, enabling them to characterize FCG rates in this regime. 

However, ∆𝐾-based models show significant limitations in the case of the SC regime so far. That 

is attributed to the fact that ∆𝐾 is inherently a LEFM parameter. Although it is possible to employ 

∆𝐾 to characterize FCG rates in the presence of relatively small and ignorable PDZs around the 

crack tip, ∆𝐾 is not able to account for the relatively large scale of plasticity around the crack tip. 

Large-scale plasticity occurs either under high stress levels, or in the case of the SC regime where 

the size of the crack is comparable with the PDZ size. Therefore, it is not possible to ignore the 

plastic deformation around the crack tip in the latter case.  
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Figure 1.9 Graphical interpretation of Neuber’s rule [59]. 

1.3.2. Elasto-plastic fracture mechanics 

Elasto-plastic fracture mechanics (EPFM) employs a driving force (see Eq. (1.2)) that is potentially 

able to account for relatively large-scale plasticity in the vicinity of the crack tip in order to 

accurately determine the FCG rate. According to the literature, such driving forces mainly include 

crack tip opening displacement (CTOD) and ∆𝐽-integral. 

CTOD (𝛿𝑡) can be defined as the distance between the opposite faces of a crack tip at the positions 

where the intercept of lines between these positions and the crack tip establishes the angle of 90 

degrees, as shown in Figure 1.10. CTOD-based models have garnered great interest among 

researchers [69-73]. One of the most notable models based on CTOD to characterize FCG rate in 

both the SC and LC regimes is the one proposed by Shyam et al. [74-76]. This model suggests 

considering two stages. The first stage involves the accumulation of irreversible damage as a result 

of plastic response of material in the vicinity of the crack tip. The second stage involves localized 

fracture ahead of the crack tip due to the accumulated plastic damages exceeding their critical 

value. The latter stage causes the crack to extend. Shyam et al. adopted CTOD to address the 

accumulation of damage from plasticity or the plastic strain around the crack tip. That model is 

given as Eq. (1.22): 

𝑑𝑎

𝑑𝑁
= 𝑘𝜑𝑚𝜑𝑐 (1.22) 

where k is a constant that required to be calibrated based on the material, temperature, and loading 

frequency.  𝜑𝑚 and 𝜑𝑐 are the monotonic and cyclic CTOD, respectively. According to that model, 

crack extension occurs if and only if 𝜑𝑚 exceeds its critical value (𝜑𝑐𝑟), which can be defined 

based on the procedure explained in the literature [74-76]. Although this model was further 

improved [77, 78], it is not successful in the full range of the SC regime.  
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Figure 1.10 Definition of CTOD based on the 90∘ intercept procedure [73]. 

J-integral is a line integral in a two-dimensional state. Rice [79] introduced J-integral to 

characterize stress and strain fields around the notch tip for the first time. Rice suggested that the 

integral path must start from one surface on the notch, continue through the notched body, embrace 

the notch tip, and reach the other surface of the notch. The schematic of an arbitrary path (Γ) to 

define the J-integral is depicted in Figure 1.11. The J-integral is quantified by the means of Eq. 

(1.23): 

𝐽 = ∫ (𝑊𝑑𝑦 − 𝑇𝑖.
𝜕𝑢𝑖
𝜕𝑥
𝑑𝑠)

𝛤

 (1.23) 

where W is the strain energy density, x and y are the coordinate axes (𝑥 = 𝑥1 & 𝑦 = 𝑥2), T is the 

traction vector defined with respect to the normal vector (n) along the path integral (Γ), u is the 

displacement vector, and s is the infinitesimal element of the integral path (Γ).  W and T can be 

defined as shown in Eq. (1.24) and (1.25), respectively. 

𝑊 = 𝑊(𝑥, 𝑦) = 𝑊(𝜀) = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀

0

 (1.24) 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗 (1.25) 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the stress and strain tensor, respectively. According to Green’s theorem, Eq. 

(1.23) as a line integral can be rewritten as a surface integral in a 2D analysis as follows: 

𝐽 = ∫(
𝜕𝑊

𝜕𝑥
−
𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥
))𝑑𝐴 (1.26) 

where dA is an infinitesimal area element (dA=dx.dy) surrounded by Γ in Figure 1.11. 

The J-integral can be defined as the potential energy density release rate with respect to the notch 

length extension, as shown in Eq. (1.27) and depicted schematically in Figure 1.12.  

𝐽 = −
𝑑𝑃

𝑑𝑙
 (1.27) 
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Figure 1.11 Schematic of a path-integral to calculate J-integral in a 2D state. 

 

Figure 1.12 Schematic of potential energy release rate with respect to the notch length extension. 

where P is defined as the potential energy per unit thickness in the (𝑧 = 𝑥3) direction (See Figure 

1.12). The J-integral should be regarded in two different states to be physically interpreted [79].  

In the elastic state, the potential energy density only consists of elastic strain energy density. As a 

result, the J-integral equals the strain energy release rate with respect to the notch length in the 

absence of any external traction force on the notch (𝐽 = 𝐺). In this case, two distinguished energy 

types can be considered during the notch extension. The first one is the surface energy density 

related to the new surfaces created as the result of the notch extension. That energy increases the 

potential energy density. The second energy type is the elastic strain energy density decreasing the 

potential energy density with the notch extension [80]. The conflict between the density of surface 

energy and the elastic strain energy is schematically depicted in Figure 1.13. As shown in Figure 

1.13, the extension of the notch beyond a critical value (𝑙∗) results in the decreasing of potential 

energy density. As a result, 𝑙∗ is the minimum notch length required to have notch extension in the 

elastic state.  
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Figure 1.13 Schematic of the different energy types with respect to the notch length. 

Since the J-integral equals G, the strain energy release rate in the elastic state, the J-integral has a 

closed-form relationship with the SIF in the case of elasticity, as shown in Eq. (1.28) and (1.29) 

under plane stress and plane strain condition, respectively [79]: 

𝐾 = √𝐸𝐽 (1.28) 

𝐾 = √
𝐸𝐽

1 − 𝜐2
 (1.29) 

where E and 𝜐 are the elastic modulus and Poisson’s ratio, respectively. One of the most important 

advantages of J-integral in the elastic state is its path-independency. It has been proved that the 

value of the J-integral is the same for any arbitrary path, such as the one schematically shown in 

Figure 1.11 if and only if [79, 81]: 

i) material response to the load is linear elastic, non-linear elastic, or deformation-type elasto-

plastic. In other words, the stress is one-to-one function of strain (Mashing behavior).  

ii) there is an absence of any force or stress on the notch faces and tip.  

On the other hand, the J-integral loses its physical interpretation as the strain energy density release 

rate in the elasto-plastic state. The reason is attributed to the fact that there is the plastic strain 

energy type in addition to the elastic strain energy and surface energy shown in Figure 1.13. That 

being said, a portion of energy is lost and cannot be quantified directly as the result of plastic 

deformation around the notch tip.  

It has been shown that the concept of J-integral can be extended to cracks and three-dimensional 

cracked/notched bodies [79]. The J-integral has been defined based on deformation theory of 

plasticity and not incremental theory of plasticity. In other words, unloading is forbidden when the 

J-integral is employed. With this in mind, the critical question that arose is: is it is possible to adopt 

the J-integral to characterize FCG rate? Dowling and Begeley [82] and Lamba [83] suggested that 

cyclic J-integral (∆𝐽) required to be defined only based on the loading half cycles to characterize 

fatigue cracks’ behavior. In that case, ∆𝐽 can be defined as shown in Eq. (1.30): 
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∆𝐽 = ∫ (∆𝑊𝑑𝑦 − ∆𝑇𝑖.
𝜕∆𝑢𝑖
𝜕𝑥

𝑑𝑠)
𝛤

 (1.30) 

Dowling and Begeley [84] employed both ∆𝐽 and ∆𝐾 as the driving forces to characterize FCG 

rates in both the LC and SC regimes. It was experimentally shown that the agreement between 

suggested ∆𝐽-based model (as EPFM model) and experimental FCG data is significantly better 

than the agreement between Paris’ law (as LEFM model) and experimental FCG data in the SC 

regime or large-scale plasticity. However, the accuracy of both models was reported to be the same 

in the case of LC regime or small-scale plasticity. El Hedad et al. [85] further investigated the 

application of the ∆𝐽-based model in the SC regime for different materials and geometries, and a 

noticeable agreement between the ∆𝐽-based model and experimental FCG rates was observed. As 

a result, ∆𝐽-based models have received great interest in determining FCG rate in the case of large-

scale plasticity [86-88]. One of the most crucial studies on ∆𝐽 was provided by Tanaka [80], in 

which the physical interpretation of ∆𝐽 under elasto-plastic state is suggested. Tanaka [80] defined 

∆𝐽 as a measure of energy dissipation spent on movement of dislocations in the PDZ around the 

crack tip during one cycle.  

Although ∆𝐽 has been suggested as a promising driving force in order to calculate FCG rates in 

the presence of large-scale plasticity, its application has been reported significantly difficult, either 

by the means of experimental procedures or numerical methods. Ngoula et al. [89] developed an 

in-house model to numerically determine ∆𝐽 to characterize FCG rates for the cracks initiated in 

various butt and welded joints. Unfortunately, calculation of stress and strain tensors during the 

crack deflection was reported dramatically difficult and time consuming. Metzger et al. [90] 

suggested to employ virtual crack extension (VCE) method as a built-in functionality of 

commercial FE package ABAQUS to determine ∆𝐽. However, since the built-in functionality of 

ABAQUS is not able to calculate cyclic J integral, Metzger et al. developed a restart analysis via 

post-processing and a user-material subroutine. Such an approach was reported to be significantly 

complicated. Therefore, this method is strictly limited to the lab specimens. There are different 

approaches to determine ∆𝐽, e.g. employing handbook solutions, analytical approximation 

equations, experimental procedures based on load deflection curves, and FE analyses [91-95]. 

Unfortunately almost all of the mentioned approach are either very time consuming or limited to 

particular geometry or loading conditions [81].  

One of the most appealing method to calculate J and ∆𝐽 is equivalent domain integral (EDI) 

method, first introduced by Miyakazi et al. [96] and further developed by Nikishkov et al. [97, 98]. 

The EDI method suggests calculating J and ∆𝐽 in an equivalent domain surrounded by an inner 

boundary (Γ1) and an outer boundary (Γ0), as schismatically shown in Figure 1.14. A proper q-

function (known as s-function as well) as schematically shown in Figure 1.14 is required to be 

adopted in order to achieve the same value of J or ∆𝐽 based on conventional and EDI methods. 

Such q-function was first introduced by Lorenzi [99] to define the virtual crack extension in a 3D 

cracked body. The procedure to choose the appropriate q-function is discussed in the literature 

[100]. According to the EDI method, Eq. (1.26) can be rewritten as Eq. (1.31) using the weight 

function (q). 

𝐽 =  ∫ (𝜎𝑖𝑗
𝜕𝑢𝑗

𝜕𝑥
−𝑊𝛿1𝑖)

𝜕𝑞

𝜕𝑥𝑖𝐴

𝑑𝐴 (1.31) 
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where 𝛿1𝑖 is Kronecker delta and q is a wight function of 𝑥1(𝑥) and 𝑥2(𝑦) as the coordinate axes. 

The q-function has its maximum value on Γ1, and it decreases linearly to zero on Γ0. The maximum 

value of q in a 2D problem is one. 

General formulation of the EDI method under mode I and II loading in cracked bodies has been 

discussed in the Appendix A.  

The EDI method has a significant advantage over the conventional method in calculating J and ∆𝐽 
values. That advantage lies in the fact that it is possible to exclude the crack tip and its vicinity in 

the EDI method calculation. One of the most crucial difficulties in analysing a cracked body 

problem is dealing with the singularity problem around the crack tip. There are different 

approaches to overcome this problem. One such approaches is considering the crack as a micro 

notch as a simplifier assumption. As a result, the radios of the crack tip would be a finite non-zero 

value. Another approach is employing Barsoum elements in FE analyses. These elements, first 

introduced by Barsoum [101], are high order elements that account for the singularity problem. 

The required characteristics of such high order elements are described in detail in literature [101]. 

However, almost all of the approaches to overcome the singularity problem are either not 

coincident with reality or difficult to employ. The other crucial difficulty of FE analyses in the 

presence of cracks is the necessity of using very fine mesh around the crack tip, which increases 

the computational time especially in the real-life problems. As a result, the EDI method, which 

avoids dealing with singularity problem and the vicinity of the crack tip, has a compelling 

advantage over conventional method in the J-integral calculation. Additionally, it has been proved 

that the EDI method is a mesh-independent approach [102], substantially easing the FE analyses 

to determine J-integral. Consequently, EDI method has received great interest among researchers.  

Raju and Shivakumar [103] compared the EDI method and conventional method to calculate J-

integral values under different modes of loading in a FE analysis. The accuracy of the EDI method 

was confirmed under various types of loading in that study. Shivikumar and Raju [100] employed 

the EDI method in a FE analysis for three-dimensional mixed-mode fracture problems, and the 

determined J-integral values were reported to be in good agreement with the ones in the literature. 

Okada and Ohata [104] used the EDI method in a FE analysis for cracks with different curvatures 

and kinks in a 3D space. A noticeable accuracy was observed in that study for cracks with kinks 

and various curvatures.  

 

Figure 1.14 Schematic of EDI method and q-function. 
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Wang et al. [81] developed a FE model to characterize FCG rate for 304 stainless steel by using 

EDI method. The results confirmed the accuracy of predicted FCG rates based on EDI method. 

Although the EDI method significantly simplifies the J and ∆J calculations in comparison with the 

conventional method, a complicated non-linear elasto-plastic analysis is required to characterise 

FCG rate using ∆J-based models. Unfortunately, such analyses are not time-efficient to be applied 

in many industries. That reason has led many researchers to apply higher level of analyses, such 

as machine learning algorithms, to estimate the lifetime of engineering specimens.  

1.4. Machine learning  

Artificial intelligence (AI) has received great interest in almost all engineering and scientific areas. 

AI is simply defined as the simulation of the whole processes and procedures of human intelligence 

by means of machines, specifically computer systems. AI embraces various techniques and 

approaches. However, the most developed and numerously applied branch of AI is machine 

learning as shown in Figure 1.15. Machine learning (ML) includes any developed algorithm that 

is able to extract specific pattern(s) from a given dataset and establish logical relationship(s) 

between its input(s) and output(s). ML was initially developed to be applied in limited areas such 

as image and voice recognition, traffic controls, marketing, and weather forecasting. However, its 

application has spread through almost any field. The first and the most crucial step of ML 

application is to provide a dataset. The term “dataset” in the application of ML refers to the 

sequence of inputs and their corresponding outputs. ML methods are mainly categorized into four 

different classes based on the learning program, as shown in Figure 1.16: Supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. Supervised learning 

is a type of ML technique that establishes a logical relationship between labeled datasets. In other 

words, the inputs and their corresponding output(s) are determined in advanced and then fed to the 

training process. Training process is referred to the process in which the machine learns from the 

datasets.  

 

 

Figure 1.15 AI as a broad term. 
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Figure 1.16 Different Types of ML 

Such types of ML are mainly applied for regression (e.g., distortion assessment of DMD parts) 

and classification (e.g., failure detection in none-destructive evaluation methods) types of 

problems. The most important algorithms implemented in regression type of problems are linear 

regression, neural network, support vector, decision trees, lasso regression, ridge regression, etc.  

The most well-known techniques in the case of classification type of problems are Naive Bayes 

classifier, decision trees, support vector machines, and random forest as shown in Figure 1.16. On 

the other hand, the algorithms implemented in unsupervised learning methods are trained based on 

unlabeled data. In such cases, the target variable is not available, or particular outputs cannot be 

assigned to the corresponding inputs. In these algorithms, the machine tries to determine the 

similarities and differences between the data. As a result, such methods are well-suited for 

clustering types of problems. The reinforcement learning algorithms, known as decision making 

algorithms, try to determine the best decision for so-called intelligent agents in a particular 

environment in order to maximize the cumulative reward.  

Many of mentioned algorithms have been received noticeable interest from researchers in solid 

mechanics, such as artificial neural networks (ANNs), decision trees (DTs), support vector 

machines (SVMs), etc. However, unlike the numerous and well-organized datasets that are 

available in many fields such as image recognition, the reliable datasets that are appropriate to be 

fed to the ML algorithms are limited in solid mechanics. The reason is attributed to the fact that 

such datasets in solid mechanics are provided by expensive experimental tests, which make them 

exclusive to the companies that performed the tests. Therefore, the application of ML algorithms 

is in its early stages in solid mechanics compared to other research domains.  
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1.4.1. Neural Networks 

As shown in Figure 1.15, neural networks (NNs) are one of the strongest and most appealing 

approaches among researchers as a ML method that is able to extract complex relationship(s) 

between the inputs and output(s) through a well-organized dataset. NNs are mainly developed into 

three groups based on the application, as shown in Figure 1.17. 

• Artificial neural networks (ANNs): ANNs are the most well-known and extensively 

utilized type of NNs that can be implemented in both regression and classification problems 

(see Figure 1.16). ANNs have shown a noticeable potential to extract any pattern or 

relationships, including complicated and non-linear relationships, between the inputs and 

output(s) of a properly-organized and adequate dataset through its layer-based structures 

schematically shown in Figure 1.17. There are different types of hyperparameters, in 

addition to the number of layers, such as the number of neurons, weights, and biases that 

are employed to extract the relationships.  

 

Figure 1.17 Different types of neural networks. 

The mentioned hyperparameters will be discussed in detail in the following. ANNs estimate the 

output as a function of inputs and all initially determined hyperparameters through a forward 

propagation. Then a backward propagation is operated to evaluate the error and subsequently 

minimize that error by adjusting the weights and biases. Such a process is known as the network 

training, and the combination of one forward and backward propagations is known as an epoch. 

Training of an ANN may take hundreds of epochs. As shown in Figure 1.17, information is 

transferred only in one direction in the training process of an ANN. The structure of an ANN 

and its hyperparameters will be discussed in detail in the following. 

• Recurrent neural networks (RNN): RNN is higher level of NN algorithm compared to the ANN 

approach. RNNs are developed to overcome particular limitations of ANNs. RNNs can handle 

a given dataset that includes different types of data sizes and/or formats, which cannot be 
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analyzed through an ANN. RNNs are mostly employed in the case of sequential data series 

(e.g., text/audio data) where the sequence and occurrence of the data are prominent factors. One 

of the most important difference between RNNs and ANNs is how information is transferred 

through the network. In an ANN structure, information is passed in a forward direction. 

However, in RNNs, the information of a particular neuron in a hidden layer may be transferred 

back to the previous neuron, as shown in Figure 1.17. 

• Convolution neural networks (CNNs): CNNs consist of various layers, including convolutional 

layers, filter or kernel layers, and pooling layers, in addition to the fully connected NNs similar 

to ANNs, as shown in Figure 1.17. Convolutional layers are the filters that can detect and extract 

features from a given image and convert them into numerical values. Pooling layers are used 

for size reduction, and the main NN is implemented and trained similar to the one in the case 

of ANN. CNNs are mostly implemented in the area of image recognition. CNN is the most 

similar NN to the human brain, as it can distinguish different parts of an image and consider 

them separately while retaining the arrangement of the original image. 

Base on the differences between all types of NNs, it is concluded that ANNs are well-suited for 

many regression-types of problems in solid mechanics. Although ANNs are capable of extracting 

any type of relationships between inputs and outputs of the system, there are major limitations and 

shortcomings in their applications. One of the most crucial limitations is the requirement for a 

large-size and well-organized dataset. In other words, the dataset needs to be adequately 

comprehensive to thoroughly reveal all aspects of the problems. Unfortunately, providing such 

dataset(s) is often very challenging in many problems in solid mechanics due to the restrictive 

regulations and standards required to be followed during experimental tests. The construction of 

ANNs itself and the determination of numerous hyperparameters need optimization processes 

involving lots of trial and error to achieve a well-trained ANN. It should be noted that the 

hyperparameters cannot be determined based on a straightforward or theoretical method [105, 

106]. The ANNs cannot be implemented for the extrapolation in the case of regression type of 

problems [107-110]. 

As discussed in detail by Rosenblatt [111], a multi-layer artificial neuron consists of two crucial 

mathematical operators known as activation function (𝜑) and the net input of the neuron (𝑧). The 

net input of the neuron is defined as: 

𝑧 = 𝑤⃗⃗ 𝑇𝑥 + 𝑏 (1.32) 

where 𝑤 is the weight, 𝑥 is the input, and  𝑏 is the bias, as shown in Figure 1.18. The ANN model 

consists of one input layer, one output layer, and one or more hidden layers. The number of neurons 

in the input layer equals the number of inputs, and the number of neurons in each hidden layer 

varies as a hyperparameter that needs to be tuned. The schematic of an ANN with one hidden layer 

is described in Figure 1.19. Each neuron in an ANN may be remain silent or become active based 

on the activation criterion. The weights are the values between zero to one, and the higher the 

weight, the higher influence of the neuron on output. Initially, preliminary values are considered 

for weights and biases. Feeding the inputs vector to the preliminary ANN results in the outputs. A 

proper error function can be established to measure the deviation of results from actual output 

values.  
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Figure 1.18 Schematic of a multilayer neuron in artificial neural networks. 

 

Figure 1.19 Configuration of a three layers artificial neural network. 

Thus, adjusting and tuning the weights and biases in order to minimize the error function is 

performed. Such minimization known as training algorithms. One of the most efficient training 

algorithms is the “gradient descent approach with backpropagation” [112], which minimizes the 

error by determining of the local optima of the loss function. The basics of gradient descent 

approach can be interpreted by Taylor expansion [112] as follows: 

𝑓(𝑥 + ℎ𝑠 ) = 𝑓(𝑥 ) + (∇𝑓)𝑇𝑠 ℎ + 𝑂(ℎ2) 
(1.33) 

𝑑𝑓 = 𝑓(𝑥 + ℎ𝑠 ) − 𝑓(𝑥 ) ≈ (𝛻𝑓)𝑇𝑠  
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where 𝑓 represents the loss function, ℎ is a step size known as the learning rate, and 𝑠 is a vector 

of the derivatives of the loss function with respect to the inputs in the network. As a result, each 

component of 𝑠 can be expressed as [112]: 

𝛿𝑛,𝑙 =
𝜕𝑓

𝜕𝑧𝑛,𝑙
 (1.34) 

After the determination of optimal step direction (𝑠 ), the weights and biases can be adjusted to 

minimize the loss function based on the reverse computation, which is known as the backward 

propagation method. The gradient descent algorithm with backpropagation in the ANN is applied 

thoroughly on the network, and the predicted outputs of each epoch are stored to update the weights 

and biases for the next epoch. Once the loss function is minimized, the training is completed. A 

well-trained model can be employed for prediction purposes. Some of the most important 

parameters, as well as the characteristics related to the ANN configuration, are listed as follows: 

• The number of hidden layers and the number of neurons in each layer. The number of 

hidden layers and the number of neurons depend on the size of the inputs and the 

nonlinearity and complexity of the relationship between inputs and output(s). On one hand, 

the number of hidden layers and neurons should be large enough to comprehensively 

acknowledge the effect of each input parameter and detect any interrelationships between 

them. On the other hand, an excessive number of hidden layers can result in overlooking 

the effect of inputs in the ANN model. 

• Activation function. It is highly recommended to employ a non-linear activation function 

to establish the non-linear and complex relationship(s) in a dataset. Activation functions 

specify whether a neuron is active or inactive. The most well-known non-linear activation 

functions with continuous and non-zero derivatives are the sigmoid, hyperbolic tangent, 

and rectified linear unit (ReLU) functions.  

• Loss function. A proper loss function is required to determine the deviation of predicted 

results by the ANN from the real outputs to complete the training process discussed earlier, 

using the gradient descent approach with backpropagation. Mean squared error (MSE) and 

cross-entropy are the most popular loss functions for regression and classification types of 

problems, respectively. 

• Learning rate. Learning rate is one of the most important hyperparameters that need to be 

properly tuned by the user of ANN algorithms. That hyperparameter is expressed as ℎ in 

Eq. (1.33). The learning rate determines the step size at each iteration in order to move 

towards the minimum value for the chosen loss function. Consequently, the loss function 

specifies the speed of the training process. The effect of learning rate on loss function 

during the epochs/training is demonstrated in Figure 1.20. A very high learning rate is not 

capable of decreasing the loss values due to the unbalanced condition that occurs when 

updating all of the weights and biases. Similarly, a high learning rate is not capable of 

reaching the minimum loss value because the step size is too high, causing it to miss the 

appropriate ranges for biases and weights through the iterations. On the other hand, a low 

learning rate substantially increases the training time and may not allow the loss function 

to reach its potential minimum value.  
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Figure 1.20 Effect of the learning rate in the ANN training 

• Number of epochs. The number of epochs should be determined based on the complexity 

and level of non-linearity of the problem. Additionally, the number of epochs should be 

consistent with the learning rate to avoid overfitting and underfitting problems, which are 

among the most common obstacles during ANNs training.  

• Overfitting and underfitting. One of the most common problems that cause inaccurate 

predictions in the implementation of ANNs is related to underfitting or overfitting (see 

Figure 1.21). Underfitting occurs when the ANN has not established the relationships 

within the dataset. One of the reasons for this problem may be the small number of epochs. 

That being said, the algorithm needs more time and/or more iterations to discover the 

relationships between inputs and output(s). Another reason may be related to the dataset. 

The dataset is required to be well-organized, large in size, and accurate enough to result in 

a well-trained ANN. Overfitting refers to the state where the trained ANN shows high 

accuracy with the training data but a high error with the test data. In other words, the 

trained ANN predicts the output(s) of the datasets that have been seen during the training 

process, but it cannot predict the output(s) based on new inputs. 

 

Figure 1.21 Description of underfitting and overfitting problems during the ANN training 



25 
 

1.4.1.1. Neural network Application in Fatigue 

It has been widely acknowledged that NNs are powerful tools for finding and establishing 

relationships between inputs and outputs in a given dataset. They are capable of learning complex 

patterns and structures from data and can uncover relationships that are not easily discernible by 

human observers. ANNs consist of interconnected nodes that process information in a hierarchical 

manner, with each layer building upon the features learned by the previous layer. This allows NNs 

to identify and extract relevant features from the input data, and then use these features to make 

predictions about the output. Additionally, NNs can also reveal the interrelationships between 

inputs, which can provide valuable insights into the underlying mechanisms that drive the system 

being modeled. As a result of these capabilities, ANNs have become an increasingly popular tool 

even in fatigue-related engineering fields. The reason is that fatigue-related engineering problems 

are usually very complex due to the large number of controlling parameters, such as crack length, 

mechanical properties, microstructural properties of the material, mean stress, amplitude stress, 

geometric characteristics, etc. These controlling parameters not only affect the fatigue life and/or 

fatigue cracks behavior but also may have interinfluence on each other. With this in mind, NNs 

have received noticeable interest among researchers to investigate this area. Figure 1.22 shows the 

number of publications that investigate the application of NNs in fatigue-related problems in the 

past three decades.  

 

Figure 1.22 Number of researches in application of NNs in fatigue-related problems in the last three decades [113]. 

NN applications in Fatigue can be categorized into five main groups: a) fatigue life prediction, b) 

fatigue crack, c) fatigue diagnosis and prognosis, d) fatigue strength, and e) fatigue load, as shown 

in Figure 1.23. Some of most important researches in each group are reviewed as follows: 

Fatigue life prediction has been the most extensively researched topic among all NN applications 

for fatigue. Typically, the input variables comprise material and experimental variables, while the 

output is the fatigue life [114]. A standard approach involves employing an ANN with one or 

multiple hidden layers, an input layer, and an output layer. The fatigue life may be predicted 

indirectly, or it can be utilized as an output variable. 

Maleki et al. [115] studied the effect of shot peening on the fatigue life of steels by employing a 

feedforward ANN. The inputs were chosen as shot peening variables, fatigue loadings, and the 
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type of steel, while the fatigue life was assigned to the output. The experimental data size of 94 

was used. Different loss functions, coefficient of correlation (𝑅2), root mean square error (RMSE), 

mean relative error (MRE), and mean absolute error (MAE), were employed to assess the 

application of developed ANN. The error of all mentioned criteria was reported to be less than 1% 

for testing data. Vassilopoulos et al. [116] employed ANN to establish the constant life diagram 

for two different composite materials. The prediction of the ANN model was reported to be 

successful in generating an almost identical constant life diagram to the one based on conventional 

methods. Yan et al. [117] developed a fatigue life prediction model utilizing an ANN algorithm.  

 

Figure 1.23 Classification of NN application in fatigue. 

The suggested ANN model was developed based on a single hidden layer and constructed within 

the MATLAB environment. The inputs were chosen to be asphalt content, air void, and strain 

level. Training data for the ANN model was obtained by conducting four-point bending fatigue 

tests under various conditions. The results revealed that the ANN predictions were superior to the 

empirical fatigue life prediction model in the particular cases that were investigated in that study. 

Dresia et al. [118] developed an ANN to predict the fatigue life of liquid rocket engine combustion 

chambers. The finite element method was used to generate the training data. The inputs of the 

model were the dimensions of the chambers, pressure, and temperature, while the output of the 

model was the fatigue life. The results showed that the developed ANN model can predict the 

fatigue life of unseen data (test data) 107 times faster than the finite element method, with a mean 

absolute error of around 7%.  All of the developed ANN models reviewed in the literature [115-

118] directly predict the fatigue life. That being said, the output of the model is fatigue life in the 

mentioned studies, while the inputs differ with respect to the problems and their controlling 

parameters. The same approach has been used in many studies to directly predict the fatigue life 

of components made in metals [119-148] and composite materials [116, 117, 149-160]. 

In some research, fatigue life has been used as an input. Junior et al. [161, 162] developed ANNs 

to build constant life diagrams of composite materials. The mean stress (𝑆𝑚) and fatigue life (𝑁) 

were considered as inputs, and the amplitude stress (𝑆𝑎) was assigned as the output. The 

experimental data were collected under different R-ratios to be fed to the network. Various network 

structures in terms of the number of neurons, data, and R-ratios were used to develop a well-trained 

model. The results showed that with a proper structure, the suggested model can build constant 
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life diagrams with significant accuracy. Similar studies have been conducted to build constant life 

diagrams of composite materials under different temperatures [163-166]. The results demonstrated 

good agreement with those obtained by conventional methods. 

The other approach is calculating fatigue life indirectly. That being said, ANNs are employed to 

calculate other valuable parameters as the outputs. Subsequently, the fatigue life is determined 

based on those outputs by using other/conventional models. The reason lies the fact that 

conventional models are not easy to use or they are significantly time consuming. Genel [167] 

developed four different ANNs to predict the fatigue ductility coefficient (𝜀𝑓
′), fatigue strength 

coefficient (𝜎𝑓
′), fatigue strength exponent (𝑏), and fatigue ductility exponent (𝑐), which are used 

in the Manson-Coffin relationship. The Manson-Coffin relationship is a well-known approach 

categorized under the strain-life method discussed earlier. Manson-Coffin relationship estimates 

the fatigue life (𝑁) as follows: 

∆𝜀

2
=
𝜎𝑓
′

𝐸
(2𝑁)𝑏 + 𝜀𝑓

′(2𝑁)𝑐 (1.35) 

The outputs of each the four models were assigned to represent one of the mentioned Manson-

Coffin coefficients/exponents, while the material properties served as the inputs for the ANNs. 

Subsequently, the Manson-Coffin relationship was utilized to determine the fatigue-life. The 

suggested method demonstrated superior performance compared to conventional approach. Cai et 

al. [168] developed an ANN model to determine the ultimate failure strain and, consequently, the 

fatigue life of epoxy molding compound. The same approach has also been adopted in various 

other studies, which can be found in literature [169-171]. 

In addition to ANN, other types of NNs have been utilized for fatigue life prediction.  Li et al. 

[172] developed an RNN to estimate the influence of load-keeping time on the fatigue life in the 

case of creep-fatigue life of steels. The load-keeping time and the fatigue life were assigned as the 

input and output of the RNN, respectively. The results were then compared with those obtained by 

conventional methods, and the suggested model demonstrated significantly accurate outcomes. 

Several studies have explored the application of different types of NNs (beyond ANN) for "fatigue 

life prediction," which can be found in the literature [173-185]. However, the number of such 

studies is significantly less than those focusing on ANN applications. Nevertheless, there are 

studies that compare the application of different types of NNs in the context of "fatigue life 

prediction," as presented in [150, 178, 186-196]. Such studies revealed that it is not possible to 

designate a single type of NNs as superior for “fatigue life prediction”. However, it appears that 

ANN can be considered a better choice due to its more straightforward implementation. Moreover, 

ANN achieves almost the same accuracy as higher-level NNs without the need to deal with their 

complexity.  

All of the studies discussed in "fatigue life prediction" involve the technical coupling of NN 

algorithms with conventional theories known as the "crack initiation" method, as discussed earlier, 

to achieve safe-life design. On the other hand, "fatigue crack" entails the application of NNs in 

"fracture mechanics" to investigate fatigue crack and damage tolerance design. Typically, the SIF 

range is used as the input (or one of the inputs), and the FCG rate is considered as the output in 

this context. Similar to the previous section, ANN is the most frequently used type of NN for this 

approach.  Mohanty et al. [197] developed an ANN model to investigate the effect of stress ratio 

on the FCG rate for different aluminium alloys. The SIF range, SIF maximum, and the R-ratio 
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were used as inputs, while the FCG rate was assigned as the output in their study. The predicted 

results were then compared with the experimental results, with the reported error of predicted 

fatigue life being less than 5%. The noticeable potential of ANNs in predicting the nonlinearity of 

FCG rate based on the SIF range and their ability to establish relationships between the FCG rate 

and a chosen fatigue crack propagation driving force (see Equation (1.2)) has attracted the interest 

of many researchers. Similar approaches have been employed in other studies, such as [198-211] 

in the LC regime. One limitation of this method lies in its poor prediction in the threshold and final 

fracture phase (phase (I) and phase (III) in Figure 1.4). That being said, those phases are 

challenging for the developed ANNs to learn from the dataset. Iacoviello et al. [212] developed an 

ANN model with the FCG rate as input and the SIF range as output to address that limitation. 

Additionally, different types of NNs, such as the extreme learning machine (ELM) and radial basis 

function neural networks (RBFNNs), have been used to characterize the FCG rate based on a 

proper driving force, as seen in [213-218]. All of the mentioned studies reported accurate 

predictions. Moreover, it has been concluded that there is no a superior type of NN in the case 

“fatigue crack” so far.  

For fatigue diagnosis, fatigue damage mainly represents the state of health of the material (e.g., 

reduction of static strength [219]). Durodola et al. [220] developed an ANN model to predict 

fatigue damage under Gaussian stationary loadings. The input and output of the ANN model were 

chosen to be material properties and fatigue damage fraction, respectively. The results of the 

developed ANN model were compared with one of the most well-know conventional methods 

known as rain flow counting-Miner’s rule framework. The comparison demonstrated good 

performance for the suggested ANN model. Ramachandra et al. [221] further investigated the 

approach proposed in [220] and compared the ANN predictions with experimental results. A good 

agreement was observed between the ANN predictions and the experimental results. This model 

was subsequently extended to account for mean stress effects [222] and non- Gaussian loading 

[223], and the prediction results showed a high potential for ANN models in the suggested 

approach. 

Other types of NN algorithms, such as RNN, have been developed using the same approach for 

fatigue diagnosis. These studies can be found in [224-228]. However, no specific advantage(s) 

over ANNs were identified. 

Numerous studies have been conducted to implement NN algorithms for estimating the remaining 

fatigue life of materials and structures, categorized as fatigue prognosis. For instance, Feng et al. 

[229] employed ANN to create a predictive model for real-time fatigue life. They generated 700 

data points from FE analyses utilizing stochastic parameters within specific ranges. The resulting 

structural responses were then assigned as input variables for the ANN model. The predictions of 

the suggested ANN model were reported to be in good agreement with the results of conventional 

models. Gabraeel et al. [230] developed ANN models to predict bearing failures. An experimental 

setup was established to perform accelerated bearing tests and generate vibration information. 

Subsequently, this information was fed to the ANNs as input, with the remaining fatigue life 

chosen as the output. It was observed that 90% of the suggested model's predictions had an error 

of less than 20%. Amiri et al. [231] employed ANNs to establish relationships between ultrasonic 

testing (UT) results and fatigue life of resistance spot weld specimens made of different types of 

low carbon steels. The suggested ANN models demonstrated that fatigue life can be predicted 

based on UT results with acceptable accuracy. Chatterjee et al. [232] developed an ANN model to 

predict the remaining fatigue life of a topside piping. In this study, the stress level, crack size, and 
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mechanical properties of the material were assigned as inputs to the model, with the remaining 

fatigue life chosen as the output. The predictions of the suggested model showed an accuracy of 

96%. Similar studies applying ANN models for fatigue prognosis can be found in the literature 

[233-236].  

In addition to ANNs, RNN [237-240] and CNN [241] have been employed for fatigue prognosis 

using similar approaches. Comparisons between different types of NNs indicate that there is no 

superior type of NN in all of the approaches [113].  

Fatigue strength refers to the stress level that a material can endure for a given life period, and this 

approach is commonly utilized in safe-life design across various fields. The input variables 

typically include microstructure, chemical composition, processing parameters, and work 

conditions, such as temperature and fatigue loadings, while the output is the fatigue strength. Lotfi 

and Beiss [242] suggested an ANN model to predict the fatigue strength of porous steels. The 

inputs were the iron morphology, an important microstructural characteristic, the fabrication 

process (as sintered, machined), and loading mode (axial, plane bending, rotary bending). The 

predictions showed that the suggested model has an accuracy of more than 96%. Zhao et al. [243] 

used ANN models to predict the high-cycle fatigue strength of Ti-6Al-4V based on microstructure 

properties and loading types as the inputs. The maximum error of the suggested model was 

reported to be less than 20%. Similar studies in which the fatigue strength is assigned as the output 

can be found in the literature [244-250].  

NNs algorithm have also been employed to predict fatigue load spectrums. Cabell et al. [251] 

developed a ANN model to predict the spectrum of loading for critical parts of a helicopter, such 

as pitch links. The training data were obtained experimentally from 13 flights. The correlation 

coefficient of the predicted results was reported to be between 0.6 and 0.9. Vera-Tudela and Kuhn 

[252] employed ANN algorithms to determine the bending moment for wind farm flow. The 

correlation coefficient of predictions ranged from 0.817 to 0.899. Similar studies with the aim of 

fatigue load estimation employing ANNs can be found in [253-257]. 

1.4.1.2. Neural network application in elasto-plastic mechanics 

Neural network algorithms have recently received noticeable attention in elasto-plastic mechanics. 

Hajializadeh and Ince [258, 259] proposed a novel approach to determine residual stress in 

components made by direct metal deposition (DMD) as an additive manufacturing (AM) process. 

It was suggested that integrating FE-based models with ANN algorithms is able to significantly 

reduce the computation time of residual stresses. The residual stresses predicted by the developed 

ANN models were compared with those determined by conventional FE analyses, and a noticeable 

agreement was observed. In their study, Burghardt et al. [260] created an ANN model to determine 

the correlation between elastic and elasto-plastic stress and strain in notch roots, considering both 

uniaxial and multiaxial proportional loading conditions. The outcomes demonstrated significant 

promise for the proposed approach. Kazeruni and Ince [261] presented a similar strategy, 

employing an ANN algorithm to forecast the elasto-plastic stress-strain behavior of diverse 

materials, utilizing their elastic response as a basis. The proposed method demonstrated a notable 

ability to predict local elasto-plastic stress and strain at various positions within notch roots. Zhang 

and Mohr [262] recommended employing ANNs to establish the relationship between stress and 

strain, as an alternative to using constitutive equations. The study compared the results obtained 

from ANNs with those derived from the Von-Mises equation, revealing a promising level of 
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agreement. Masi et al. [263, 264] suggested using ANN to predict a constitutive model based on a 

novel data-driven approach. It was suggested that the physics law, specifically derivatives of the 

free-energy, should be embedded in the training algorithms of ANN models.  

Additionally, apart from ANNs, RNNs and CNNs have been utilized in the realm of elasto-plastic 

mechanics. Addressing a comparative perspective, Mozaffar et al. [265] compared the application 

of ANNs and RNNs to establish the path-dependent stress-strain relationship. The results indicated 

RNNs' superiority over ANNs in this particular case. However, it was observed that the number of 

data required to train an RNN is significantly larger than that for ANN training. Furthermore, in 

related research, Tancogne-Dejean et al. [266] and Wu et al. [267] developed RNNs to model path-

dependent plasticity in the context of heterogeneous materials. 
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The various approaches investigating fatigue crack behavior have been discussed in detail in 

Chapter 1. Figure 2.1 provides a concise summary of most of these approaches. As depicted in 

Figure 2.1, the conventional methods for addressing fatigue crack behavior can be categorized as 

“crack initiation methods” and “fracture mechanics” approaches. The crack initiation methods 

consider components without cracks and propose that the fatigue life of components equals the 

number of cycles required for crack initiation. As a result, crack initiation methods do not align 

with reality. Fracture mechanics approaches can be further classified into linear elastic fracture 

mechanics (LEFM) and elasto-plastic fracture mechanics (EPFM). LEFM methods, primarily 

based on ∆K models, inherently cannot account for relatively large-scale plasticity. A common 

scenario involving the presence of large-scale plasticity is a fatigue crack in the short crack regime. 

EPFM models possess the capability to address large-scale plasticity, with one of the most 

promising parameters being the J-integral. Unfortunately, the application of J-integral-based 

models is straightforward and time-efficient only for specific geometries. However, significantly 

complex and time-consuming elasto-plastic finite element (FE) analyses are required to calculate 

the J-integral for engineering problems. Consequently, researchers have been attempting to modify 

LEFM methods, which solely require linear elastic solutions, to incorporate large-scale plasticity. 

Regrettably, these modifications have not yet yielded successful results. In addition to the classical 

approaches, there has been considerable attention given to the application of neural network 

models as machine learning algorithms to address fatigue crack behavior. Among these models, 

artificial neural networks (ANN) have been extensively utilized in this field. Although ANNs have 

demonstrated significant potential in characterizing fatigue crack behavior, they heavily rely on a 

substantial amount of data. The present dissertation integrates robust ANN models with fracture 

mechanics approaches to overcome the aforementioned limitations. 

• In Chapter 3, ANN models are developed to characterize fatigue crack growth (FCG) rate 

based on ∆K as a parameter in LEFM. The proposed approach has been applied to both 

the long and short crack regimes. The ANN predictions have compared with the 

experimental FCG data to assess the ANN models. The investigation conducted in this 

chapter demonstrates the high potential of ANNs in capturing the nonlinear relationship 

between FCG and its controlling parameters. However, the realization of this promising 

potential heavily relies on the availability of a sufficient amount of data required to train 

the ANN models. Unfortunately, obtaining experimental data for characterizing FCG 

involves expensive and time-consuming procedures, particularly in the case of the short 

crack regime. The majority of such data have been provided by NASA. As a result, the 

integration of ANN algorithms with LEFM-based models is limited to conditions where 

an adequate amount of experimental data is available. The novelty of Chapter 3 is applying 

ANN algorithms in the case of short crack regime for the first time.  

• In Chapter 4, the study focuses on integrating ANN models with FE analyses to address 

the issue raised in Chapter 3. FE analyses are suggested to provide extensive and well-

structured data required for training ANN models. Hence, FE analyses are conducted on a 

standard notched specimen with varying crack sizes, considering both elastic and elasto-

plastic conditions. The outcomes of the analyses in the elastic state are collected to serve 

as input data for the ANN models. Correspondingly, the results obtained under the elasto-

plastic state are designated as the output data for the ANN models. It has been proposed 

that developing well-trained ANN(s) enables the identification of relationships between 

hypothetical elastic stress, strain, and displacement fields and the actual elasto-plastic 

fields around the crack tip. Consequently, the J-integral, as a function of actual elasto-
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plastic stress, strain, and displacement fields around the crack tip, can be determined using 

a linear elastic solution instead of a complex and nonlinear elasto-plastic solution. In this 

stage, an in-house model based on equivalent domain integral (EDI) method is developed 

to determine the J-integral based on the results of FE analyses and ANN predictions under 

different conditions. The EDI method offers significant advantages over conventional 

techniques, which will be thoroughly discussed in Chapter 4. The suggested approach has 

been evaluated under monotonic loading conditions in Chapter 4. The in-house model 

based on EDI method is verified by the built-in functionality of ABAQUS and the result 

in the literature. The ANN predicted elasto-plastic stress, strain, and displacement fields 

are compared with the ones determined by the elasto-plastic FE analyses. The results 

demonstrate a noticeable accuracy in predicting the elasto-plastic stress, strain, and 

displacement fields around the crack tip, as well as the J-integral for various crack sizes.  

• In Chapter 5, the application of the aforementioned method under cyclic loading 

conditions is discussed. The in-house model was upgraded to determine ∆𝐽 under cyclic 

loading. The developed ANN models establish the relationship between cyclic elastic 

stress, strain, and displacement fields and the corresponding cyclic elasto-plastic fields. 

Based on the predictions of the ANN models, ∆J values for different crack sizes are 

estimated. The developed in-house model has been verified by the results in the literature 

and the ANN predicted stress, strain, and displacement fields are compared with the results 

of elasto-plastic FE analyses. The results demonstrate the promising nature of the proposed 

method under cyclic loading.  

The novelty of chapter 4 and 5 is addressing two of most important challenges of using 

fracture mechanics and ANN models. Integration of FE analyses with ANN models can 

provide adequate data to train the ANN models. Such integration also enables effective 

handling of the inherent limitations of ANN models in extrapolation tasks. On the other 

hand, the proposed approach can determine J-integral as an EPFM parameter through a 

linear elastic solution under the both monotonic and cyclic loading. Such ability is 

significantly appealing in the FCG characterization problems. 

 

Figure 2.1 Different approaches for FCG characterization and the suggested ones in the different chapters.



 
 

 

 

 

 

 

 

Chapter 3 
 

 

 

 

An Artificial Neural Network Modeling 

Approach for Short and Long Fatigue Crack 

Propagation 
 

 

 

 

 

 

 

3. An Artificial Neural Network Modeling Approach for Short and Long Fatigue Crack 

Propagation 

 

 

 

 



35 
 

3.1. Abstract 

Fatigue crack growth-based damage modeling approaches have received great interest due to its 

critical importance in the industry. However, a substantial deficiency of an explicit fatigue damage 

model to quantify the accurate fatigue crack growth behavior remains due to the complex fatigue 

crack growth behavior in different length scales. This complexity arises from the fact that fatigue 

crack growth (FCG) in different length scales depends on many damage controlling parameters. 

Machine learning-based fatigue damage modeling approaches have received noticeable attention 

for fatigue crack growth analysis due to their abilities to account for numerous damage parameters 

simultaneously. In the presented paper, a radial basis function artificial neural network (RBF-

ANN) model has been developed to predict the FCG behavior, including the short and long crack 

regimes. The presented RBF-ANN model has been trained and verified by experimental data sets 

of Ti-6Al-4V titanium alloy, 2024-T3 and 7075-T6 aluminum alloys. The predictions showed that 

the RBF-ANN model has a good interpolation capability to predict the nonlinearity of both short 

and long crack growth behavior. However, the model shows poor extrapolation capability for 

accurate short crack growth predictions for cases that there are limited data sets in hand. The model 

effectiveness greatly depends on sufficient available input data. 

3.2. Introduction 

Fatigue failure is encountered as the most common failure mode in many industries. It is widely 

accepted that the fatigue damage process inherently has multiscale damage characteristics. Fatigue 

process is comprised of multiple damage phases including initiation of an incipient crack known 

as crack nucleation, early propagation of the short crack, and finally long crack propagation leading 

to the final fracture. All the traditional "crack initiation" methods, which consider the crack 

initiation phase of total fatigue life, are based on stress-life [3-5, 268] and strain-life prediction 

methods [6-12] On the other hand, linear elastic fracture mechanics (LEFM) method was 

developed to predict fatigue crack propagation mainly in the long crack regime. However, it is 

well-known that the short crack (SC) propagation dominates total fatigue life at lower stress levels 

corresponded to high cycle fatigue [1]. One of the earliest and most popular LEFM methods to 

quantify the fatigue crack growth (FCG) rate was proposed by Paris and Erdogan [18] in Eq. (3.1): 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3.1) 

Where 
𝑑𝑎

𝑑𝑁
 is the crack growth rate, ∆𝐾 is the stress intensity factor range, and C and m are materials 

constants. As broadly recognized, the FCG rate in terms of stress intensity factor (SIF) range shows 

three different regions, which are namely, the threshold region, Paris-region/linear region and 

fracture region. Shortcomings in Paris’ law lead many researchers to propose modifications for 

Paris’ law to address additional controlling parameters affecting the FCG rate. Elber [20] and 

Newman [21] suggested the crack closure concept to quantify the stress ratio effects on the crack 

growth behavior. Although the crack closure concept is widely utilized in the aircraft industry, 

there is a noticeable ambiguity that if crack closure really happens in the short crack regime and/or 

if this is an influential parameter controlling the fatigue crack growth [1]. In addition, crack closure 

based models require a number of fitting parameters derived from extensive experimental data 

[47]. Noroozi et al. [47] recently introduced UniGrow model based on the two-parameter driving 

force concept to predict the FCG behavior in the long crack regime. The authors suggested that 

the residual stress at the crack tip induces the residual stress intensity factor (𝐾𝑟). The residual 

stress intensity factor (𝐾𝑟) subsequently affects both the stress intensity factor range (∆𝐾) and 
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maximum stress intensity factor (𝐾𝑚𝑎𝑥) in order to account for the R-ratio effects. Vasudevan et 

al. [44] introduced the “Unified Approach” employing two controlling parameters as a FCG 

driving force. The first one is the maximum stress intensity factor (𝐾𝑚𝑎𝑥) corresponded to the 

monotonic plastic deformation zone, and the second one is the (∆𝐾) corresponded to the cyclic 

plastic deformation zone. Many different crack growth models have been proposed to consider 

only long crack behaviors by considering the ∆𝐾, R-ratio, and 𝐾𝑚𝑎𝑥. However, multi-length scales 

characteristics of the fatigue damage mechanism needs to be studied to account for the SC and LC 

growth behaviors. Fatigue cracks in different length scales are generally defined as the short crack 

including microstructurally short cracks (MSCs) and physically short cracks (PSCs) up to the long 

crack (LC) regimes, as graphically depicted in Kitagawa- Takahashi type diagram in Figure 3.1. 

Bang and Ince [55, 56] recently modified UniGrow model taking into account the rates of crack 

propagation in both short crack and long crack regimes. The authors presented that the modified 

UniGrow model provides good correlations with long crack growth data, but the it shows poor 

correlations with the short crack data [56]. It is widely agreed that total life in high cycle fatigue 

(HCF) regime is mostly driven by the SC growth and the LC propagation is considered as of less 

importance [56]. In addition, the SCs may grow faster than the LCs at the same stress intensity 

range and they may even grow at a ∆𝐾 below the threshold traditionally defined for LCs [1]. 

Considering these essential points, it is crucially prominent to develop an accurate FCG model in 

a multiscale framework to account for the complete crack length shown in Figure 3.1. To quantify 

the FCG rate in the SC regime, two main approaches are suggested so far. First one, formulation 

of ∆𝐾 as the crack growth driving force. Second one, replacement of ∆𝐾 mostly by crack-tip 

plasticity, cyclic J-integral (∆𝐽), and strain energy factor range [13].  

 

Figure 3.1 Kitagawa-Takahashi type diagram [56]. 

For instance, Xiulin and Hirt [269] proposed a model based on the idea of replacing ∆𝐾 = 𝐾𝑚𝑎𝑥 −
𝐾𝑚𝑖𝑛 by the effective SIF range, ∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑡ℎ due to the fact that FCG occurs if the SIF 

meet 𝐾𝑡ℎ. This method received more improvements by further studies [270-272] and finally was 

proposed in Eq. (3.2) as follows: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾 − ∆𝐾𝑡ℎ)

𝑚 (3.2) 

A noticeable work was suggested by Chapetti [270] in which the SIF range threshold is formulated 

with respect to some microstructural and mechanical properties, which can be obtained by simple 

experimental tests. He assumed that ∆𝐾𝑡ℎ should be regarded as a variable varying according to 

the crack length. This concept first introduced by Tanaka and Akiniwa [273] and known as the R-

curve behavior. In this model, two important concepts have been cleverly incorporated as the 

microstructural properties and the crack closure concept that increases slowly with respect to the 

crack length until steady-state conditions are reached [1]. However, the Chapetti model is just 

suitable for PSCs but it is not capable of explaining the behavior of MSCs [13]. All of the 

mentioned models characterize the FCG rate in terms of ∆𝐾. The critical factor, ∆𝐾 is a quantity 
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defined in LEFM and it is not capable of accounting for the plastic deformation zone (PDZ) at the 

crack tip. Although utilizing LEFM in the presence of the relatively small yielded zone size 

responses proper enough, it collapses when the PDZ size is comparable with the crack size. In 

other words, the limitation of LEFM is the relatively large PDZ size at the crack tip. The question 

that arises here is: Under which circumstances, the PDZ size is comparable with crack length? One 

can easily predict that either the stress level is significantly high or the crack size is small. As a 

result, LEFM is not applicable to explain FCG rate behavior in the case of short cracks. Many 

modifications have been suggested to approximately address the PDZ at the crack tip. However, 

replacing ∆𝐾 with a criterion related to energy seems to be a logical solution [13]. Shyam et al. 

[74-76] suggested a crack growth model based on the dislocation theory by replacing the SIF with 

monotonic and cyclic crack tip opening displacement (CTOD) parameters. In this model, if CTOD 

meets a critical value, crack propagation occurs. This model was improved by Deng et al. [77], but 

the results showed that the crack tip opening displacement is not suitable to account for MSCs. 

Another replacement of ∆𝐾 is based on the cyclic J-integral concept, firstly introduced by Dowling 

and Begley [82]. Many researchers tried to use this parameter defined in elasto-plastic fracture 

mechanics to characterize the fatigue cracks behavior [274-276]. However, describing the fatigue 

damage mechanism of short cracks remains a challenge. Almost all research efforts to predict the 

FCG behavior lead us to realize that the final aim is to quantify the FCG rate (
𝑑𝑎

𝑑𝑁
) by an explicit 

mathematical model. Such FCG model should be capable of predicting complex nonlinear 

behavior of crack propagation characteristics in such a way that crack growth rates can be 

formulated based on a so-called crack growth driving force depending on a number of controlling 

variables. To achieve this goal, researchers have been trying to account for critical damage 

controlling variables to come up with a suitable mathematical formula. Experimental fatigue can 

be very useful to map out key damage controlling variables on FCG rates. Those parameters 

subsequently can be employed in the mathematical formation of an FCG model. The most 

noticeable of such parameters are R-ratio, ∆𝐾, ∆𝐾𝑡ℎ and 𝐾𝑐, which are traditionally introduced to 

describe crack propagation behavior for long cracks as depicted in Figure 3.2a). Short crack growth 

behavior shows complex propagation characteristics such a way that crack growth rates depend on 

additional controlling parameters e.g. the stress levels and the crack length-dependent short crack 

threshold as shown in Figure 3.2b). With all these in mind, machine learning is considered as a 

promising modeling method due to its strong nonlinear prediction and multi-variables capability 

to account for not only many variables, but also the interplay relationship among those variables. 

Therefore, several research studies have been recently undertaken to adopt the machine learning 

approach to shed light on the characterization of FCG behavior. Machine learning algorithm 

(MLA)s are classified into a large number of groups. Two main groups of MLAs are regarded as 

supervised learning and unsupervised learning methods. Almost all of the (MLA)s methods which 

are applicable to function approximation are classified in the supervised learning group. Most of 

methods in this group are regression-based techniques such as linear regression, support vector 

regression (SVR), ensemble methods, decision trees, etc. Among them, the artificial neural 

network (ANN) has been received substantial attention since its capability to fit the relationship 

among nonlinear multivariable. Subsequently, ANN has been adapted in different areas such as 

material science [214, 277-279] and fracture mechanics problems including fatigue failure, creep, 

and even corrosion fatigue [142, 143, 216]. Artymiak et al. [121] estimated the application of 

artificial neural networks to predict S-N curves and fatigue limit by means of a comprehensive 

database from different materials. The prediction results showed accurate agreement with 

experimental data sets 
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a)  

 

 

b)  

 

 

c)  

 

 

Figure 3.2 FCG rate depends on a) SIF and R-ratio in the LC regime, b) SIF, R-ratio, and stress level in the SC 

regime, and c) SIF and stress level in the SC regime under a constant R-ratio. 
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Wang et al. [199] developed different types of ANN, including radial basis function artificial 

neural network (RBF-ANN), extreme learning machine (ELM), and genetic algorithms optimized 

backpropagation network (GABP) to predict FCG rates in the LC regime. Wang et al. compared 

the results obtained from different ANN models mentioned above to determine the advantages and 

disadvantages of each model. It should be pointed out that all of the methods showed significant 

potential to predict FCG rates in the LC regime. Zhang et al. [214] developed an RBF-ANN model 

to predict the FCG rates in terms of the ∆𝐾 in the LC regime under different R-ratios. The authors 

compared the predicted results with experimental data for several materials. The excellent 

agreement revealed the high potential of ANN algorithms to describe the nonlinearity of FCG rate 

behavior in terms of ∆𝐾 under different R-ratios in the LC regime. Barbosa et al. [280] developed 

a new constant life diagram (CLD) for P355NL1 steel based on an artificial neural network 

algorithm. The experimental data of S-N curves, which are basically used in LC regime, under 

different R-ratio were employed to train the network. The proposed model is able to estimate the 

safety region as a function of the mean stress and stress amplitude. Martinez et al. [166] proposed 

an approach to predict the fatigue life of steel S420MC based on an artificial neural network 

algorithm. The suggested model can account for load sequences and temperature effects. As a 

result, ANN-based algorithms are suggested as promising approaches to stablish the relationship 

between sequence effects and the fatigue life. As mentioned earlier, FCG rate depends on many 

damage controlling parameters. Therefore, machine learning algorithms have recently received 

much attention in order to study fatigue failure. It is worth mentioning that in addition to the 

machine learning algorithms, Muc [281] suggested a fuzzy approach as another robust method to 

describe the uncertainty and randomness of parameters controlling fatigue strength of composite 

materials. In spite of all those research works, no successful FCG model has been developed yet 

to address complete damage mechanisms on all crack length scales.  

According to the literature review provided in this section, it is crucially important to come up 

with a model to account for both the SC and LC regimes in Figure 3.1. However, due to the 

limitation of the stress intensity factor as a LEFM parameter to deal with relatively large-scale 

plasticity at a given short crack tip, traditional models failed to address the short FCG rate. Besides, 

employing other fracture mechanics parameters such as CTOD and J-integral has not been 

successful so far. The reason is the complexity of using such parameters and quantifying them 

under various conditions of geometries and loading types. Fortunately, using artificial neural 

networks showed a high potential to address the fatigue cracks’ behavior in the LC regime. 

However, there is not any report to reveal the capability of such algorithms in the SC regime. The 

significant potential of machine learning-based models shed light into the characterization of the 

FCG rate even in the SC regime, which remained a challenging problem. It is in this spirit that an 

RBF-ANN algorithm is proposed to provide an integrated modeling framework to predict both the 

short and long crack propagation by considering multivariable crack growth controlling parameters 

in the present study. 

3.3. Modeling Methodology  

3.3.1. Radial Basis Function Artificial Neural Network  

It has been for decades that researchers utilize biological neural network-based methods to 

approach practical problems. Among all neural network-based algorithms, the radial basis function 

neural network has received significant attention as a robust method when it comes to function 
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approximation, system control, etc. [214]. As for the ANN applied to an approximation problem, 

the key idea is that every point in a particular data set influences the value of the hypothesis at an 

arbitrary point. The question that emerges here is how this influence should be defined? In the 

RBF-ANN, as the word “Radial” suggests, the hypothesis affected through the distance. It means 

closer a data point to the hypothesis, more influence on the hypothesis. Assuming ℎ as a function 

standing for the hypothesis mentioned above, 𝐷 as a particular 2-dimensional domain including 

the data set, and X as coordinates of data in a 2D domain (X=(x,y)), Eq. (3.3) can be written as 

follows: 

∀ (𝑥𝑛, 𝑦𝑛) ∈ 𝐷  𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑠  ℎ(𝑋)  𝑏𝑎𝑠𝑒𝑑 𝑜𝑛  ||𝑋 − 𝑋𝑛|| (3.3) 

To quantify such a purpose, different types of functions can be employed e.g. Gaussian functions, 

multi-quadric functions, linear functions, etc. The most operational function, which is engaged in 

the present paper as well, is the Gaussian function shown graphically in Figure 3.3. As a result, 

the hypothesis function can be defined as follows: 

ℎ(𝑥) = ∑𝑤𝑘𝑒𝑥𝑝(−𝛾‖𝑋 − 𝜇𝑘‖
2) + 𝑏𝑘

𝐾

𝑘=1

 𝑎𝑛𝑑 𝐾 ≤ 𝑁 (3.4) 

 

Figure 3.3 A schematic of Gaussian functions. 

In the equation above, 𝑁 is the number of data, K is the number of radial basis functions, or in this 

case gaussian functions, b is a parameter named bias, 𝜇𝑖 are the center of each activation function, 

𝑊𝑖 are called weights, and 𝛾 is a positive constant parameter. It is noticeable that the maximum 

number of activation functions is N. In this case, Eq. (3.4) can be replaced as follows: 

ℎ(𝑥) = ∑𝑤𝑛𝑒𝑥𝑝(−𝛾‖𝑋 − 𝑋𝑛‖
2) + 𝑏𝑛

𝑁

𝑛=1

 (3.5) 
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As shown in Figure 3.3, 𝜇𝑘(𝑋𝑛) as the centers of the bumps are the most influential coordinates, 

and the influence gradually decreases and finally dies symmetrically as the distance increases. 

With this in mind, RBF-ANN is suitable at local approximation. Figure 3.4 illustrates the 

schematic structure of an RBF-ANN used in the present study. As presented in Figure 3.4, the 

RBF-ANN is a network consisting of 3 main layers. The first layer consists of all input data shown 

by {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁}. The model clusters K subdomains and assigns a center, 𝜇𝑖, to each of them. 

Thereafter, the distance from all data to their corresponded centers, ‖𝑋𝑖 − 𝜇𝑖‖, is calculated and 

delivered to the only hidden layer employing Gaussian functions,𝜑𝑖. Afterward, a set of 𝑁 

equations and 𝐾 unknowns (𝐾 ≤ 𝑁) is solved simultaneously to calculate 𝑤𝑖 and 𝑏𝑖, as shown in 

Eq. (3.6). 

[
 
 
 
𝑒𝑥𝑝(−𝛾‖𝑋1 − 𝜇1‖

2) … 𝑒𝑥𝑝(−𝛾‖𝑋1 − 𝜇𝐾‖
2)

𝑒𝑥𝑝(−𝛾‖𝑋2 − 𝜇1‖
2) … 𝑒𝑥𝑝(−𝛾‖𝑋2 − 𝜇𝐾‖

2)
⋮ ⋮ ⋮

𝑒𝑥𝑝(−𝛾‖𝑋𝑁 − 𝜇1‖
2) … 𝑒𝑥𝑝(−𝛾‖𝑋𝑁 − 𝜇𝐾‖

2)]
 
 
 
[

𝑤1
𝑤2
⋮
𝑤𝐾

] + [

𝑏1
𝑏2
⋮
𝑏𝐾

] ≈ [

𝑦1
𝑦2
⋮
𝑦𝑁

] (3.6) 

Finally, the mathematical formula to calculate the FCG rate is proposed as the output in the third 

layer. It is noticeable that RBF-ANN is a feedforward static neural network.  

 

Figure 3.4 The structure of RBF-ANN. 

It means that the transformation of information is done in just one direction (see Figure 3.4) in 

contrast to backpropagation models. There have been efforts to show that feedforward neural 

network-based models have significant advantages over backpropagation ones in the matter of 

nonlinear problems [175, 282]. 
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3.3.2. The Establishment and Training of the Artificial Neural Network (ANN) 

One of the most important advantages of characterizing the FCG rate in terms of ∆𝐾 in LC regime 

is that propagation rates are independent of specimen geometry, crack length, stress level, etc. In 

contrast, in SC regime: 

 I) FCG rates depend on crack length, 

 II) FCG rates are higher than those of LCs,  

III) SIF range threshold varies with crack length, and  

IV) SIF range threshold is below the SIF range threshold of LCs. 

These differences have been known as “break down of similitude” for short cracks [1]. The break 

down of similitude is shown in Figure 3.2b) schematically. As discussed earlier, Figure 3.2a) 

shows FCG rate in LC regime depends on R-ratio and ∆𝐾.  With this in mind, the FCG rate can 

be written as a function of ∆𝐾 and 𝑅 for the long crack regime in Eq. (3.7). 

𝑑𝑎

𝑑𝑁
= 𝑓(∆𝐾, 𝑅) (3.7) 

Equation (3.7) emphasizes that two controlling parameters are needed as R-ratio and ∆𝐾 to 

calculate the FCG rate in the LC regime. On the other hand, the stress level (𝜎) is a controlling 

damage parameter in addition to the ∆𝐾 and R-ratio in the SC regime as schematically shown in 

Figure 3.2 b). As a result, the short crack regime the FCG rate can be expressed as a function of 

∆𝐾, 𝑅 and 𝜎  in Eq. (3.8). 

𝑑𝑎

𝑑𝑁
= 𝑔(∆𝐾, 𝑅, 𝜎) (3.8) 

It should be pointed out that the break down of similitude for short cracks may be the result of 

characterizing fatigue cracks behavior in terms of the SIF. Recently, Sadananda et al. [1] stated 

that there would not be any break down of similitude if an appropriate two-parameter driving force 

in terms of 𝐾𝑚𝑎𝑥 and ∆𝐾 is chosen. However, such characterization needs to quantify internal 

stresses imposed by microstructural properties of materials, which is not practically possible, at 

least currently. 

With all these in mind, in the present paper, two separate RBF-ANN models are developed in order 

to account for the FCG rate in both the SC and LC regimes. First model deals with the LC regime 

and the second one predicts SCs propagation behavior. As shown in Figure 3.5, in the first model 

a two-input single-output RBF-ANN is proposed. 
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Figure 3.5 Input and output data in RBF-ANN models in SC and LC regimes. 

The inputs are ∆𝐾 and R-ratio and the output is fatigue crack growth rate (𝑑𝑎 𝑑𝑁⁄ ). Based on the 

inputs and output quantities for the LC regimes, it is intended to formulate the function “f” in Eq. 

(3.7) to model the crack growth behavior. As for the SC regime, the function “g” is considered on 

the basis of three input parameters in Eq. (3.8). However, considering the fact that the FCG data 

in the literature is limited, short fatigue crack growth behavior is characterised for a constant R-

ratio. Let’s consider the schematic of Figure 3.2b) as a behavior of FCG rate for a given material. 

This figure shows that for different R-ratios (𝑅1, 𝑅2, 𝑅3), stress levels (𝜎1, 𝜎2, 𝜎3, 𝜎4) and ∆𝐾, there 

would be a corresponded 
𝑑𝑎

𝑑𝑁
 as FCG rate. However, in the case of limited data at 𝑅1 and 𝑅3, it is 

possible to consider only a particular R-ratio e.g. 𝑅2. As a result, the behavior of FCG rate can be 

depicted by Figure 3.2c) in SC regime. It should be pointed out that Figure 3.2c) shows a 2D view 

of a 3D FCG space of Figure 3.2b). The normal vector of this surface is axis R in Figure 3.2b). In 

other words, instead of obtaining the function “g” in Eq. (3.8), it is possible to come up with the 

function 𝑔∗ defined as follow: 

𝑑𝑎

𝑑𝑁
= 𝑔(∆𝐾, 𝑅, 𝜎)

𝑖𝑓: 𝑅=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
→           

𝑑𝑎

𝑑𝑁
= 𝑔∗(∆𝐾, 𝜎) (3.9) 

 In this way, the potential of RBF-ANN can be evaluated in the SC regime. Based on this 

assumption, a two-input single-out put RBF-ANN has been developed to account for the SC 

regime as depicted in Figure 3.5. In this model ∆𝐾 and stress level are inputs and 𝑑𝑎 𝑑𝑁⁄  is the 

output. In addition, the important assumption is that the stress ratio is constant in the short crack 

regime. Both the SC and LC regime should be considered simultaneously and two separate RBF-
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ANN should be integrated in a same modeling framework in order to calculate total propagation 

fatigue life. The schematic flowchart is developed to establish such a procedure shown in Figure 

3.6. As shown in Figure 3.6, the first step is data preprocessing, including two parts, 1) taking the 

logarithm of ∆𝐾 in order to decrease the scatter influence imposed by order of the magnitude, 2) 

normalizing the data from the first part. The second and most essential step is the development and 

training the neural network model. Therefore, Neural Network toolbox of MATLAB R2018b 

software is employed to developed ANN model(s) on the basis of the method explained in section 

3.2.1. The neural network toolbox provides a function called “newrb” modeling a radial basis 

network. This function is adapted in the presented study and its formulation can be expressed as 

the command shown in Eq. (3.10). 

Net = newrb (P, T, goal, spread) (3.10) 

Where P and T are the input and output data (described in Figure 3.5), respectively, “goal” presents 

mean square error, and “spread” shows the spread of radial basis function. These parameters are 

further discussed in next parts. The modeling steps taken by the “newrb” are indicated as green 

boxes in flowchart of Figure 3.6. The third step is comparing the model results with the 

experimental data. In order to do that, experimental data sets of 2024-T3, 7075-T6 aluminum 

alloys, and Ti-6Al-4V titanium alloy are used to verify if all the unknown factors in Eq. (3.6) are 

obtained properly. The last step is adjusting the parameters calculated in the previous step and 

optimizing the RBF-ANN. These parameters are the number of the neurons, value of bias, weights, 

etc. discussed earlier. The optimized values of almost all of these parameters are obtained by the 

ANN model via an iteration method (see Figure 3.6). This optimization is operated by the ANN 

model and mentioned parameters are updated automatically.   

However, the model is developed in such a way that a user is able to adjust a few parameters, e.g., 

the maximum number of neurons and the mean square error (MSE) goal, as a criterion should be 

satisfied before the end of the procedure main loop. In addition, the user can determine the portion 

of the data used for verification. The data are chosen randomly by the model. In the presented 

study, 30% of the data have been used to verify the model. It means the model continues the loop 

shown in Figure 3.6 until the MSE calculated by 30% of data decreases to the criterion determined 

by the user. The other prominent parameter is the spread of radial basis function (SRBF)  which is 

introduced as 𝛾 in Eq. (3.5). As discussed earlier, the activation function in RBF-ANN is a 

Gaussian function. The spread of radial basis function determines how sharp or smooth this 

function varies with respect to the distance. This dependency is shown in Figure 3.7. It is evident 

that in Figure 3.7a) the hypothesis may be under the influence of data located in the large distance. 

On the other hand, in Figure 3.7 the impact decreases sharply. It means only extremely close data 

can affect the hypothesis. By considering this fact, tuning the spread of radial basis function is 

significantly crucial due to the estimation of the two different capabilities of RBF-ANN. First one 

is the capability of producing a nonlinear function to fit scatter fatigue crack growth data. In order 

to do that a sharp activation function like Figure 3.7c) is a better choice since the interpolation 

would be more accurate. Subsequently, presenting a nonlinear function to fit scattered data, would 

be more likely to achieve. Second one is how powerful RBF-ANN is when it comes to 

extrapolation. In other words, the capability of crack behavior prediction in situations in which 

there is no data in hand. 
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Figure 3.6 Schematic flowchart of the ANN model. 
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a) 

 

b) 

 

c) 

 
 

Figure 3.7 The influence of the spread of the radial basis function on the Gaussian function. a) high SRBF, b) 

average SRBF, and c) low SRBF. 

Under such circumstances, choosing an activation function like Figure 3.7a) would be the solution. 

It is evident that if there is no data located at a small distance to the hypothesis, the only way is to 

predict based on data located in the larger distance. As a result, the determination of a proper value 

as the spread of radial basis function is challenging to balance both sides. This challenge would be 

more crucial when the input data are not chosen appropriately, or when there are not appropriate 

input data in hand. Basically, such a challenge occurs under three conditions: 1) the number of 

data (it is better to say the density of data) is not large enough 2) the data are not sufficiently 

accurate 3) the data is not properly distributed.  

3.4. Results and discussion 

3.4.1. Experimental details 

In the presented study, experimental FCG data sets of 2024-T3 and 7075-T6 aluminum and Ti-

6Al-4V titanium alloys have been utilized to train and verify the presented ANN models. Original 

FCG data sets of those materials can be found in literature [46, 47, 56, 214, 283] for the LC regime 

and [56, 284-288] for the SC regime, respectively. In the case of LC data for Al7075-T6, FCG 

data were obtained by center-cracked tension (CCT) specimens. These specimens were milled to 

the dimensions of 75 mm wide by 300 mm long by 2.3 mm thick. The crack starter notch was 

considered as a slot with the dimensions of 5 mm long and 0.5 mm high. Applied loading 

conditions were consistent with the ASTM Standard Test for measurement of FCG rates (E- 647) 

[289]. FCG data of Al7075-T6 in the SC regime, were obtained by single-edge-notch tension 

(SENT) specimens. The SENT specimens’ dimensions were 50 mm wide by 300 mm long by 2.3 

mm thick. The radius of semicircular notch as the starter notch was 3.2 mm. The loading conditions 

were the same as ones for LC regime [289]. The LC experimental data of Al2024-T3 were obtained 

by round side-grooved specimens with chevron notches. The tests were operated by using an in-

plane bending fatigue testing machine. The length and thickness of the specimens were 75 mm 

and 4 mm respectively. The width of the specimens was 14 mm and 5 mm in the grip side and 

force side respectively. The detailed dimensions of specimens and the testing machine can be 

found in the literature [290]. The loading conditions were based on the ASTM standard of (E-647). 

In the case of Al2024-T3 and Ti6Al4V in the SC regime, SENT specimens were tested to obtain 
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the FCG data. The SENT specimens’ dimensions were 50 mm wide by 305 mm long by 2.3 mm 

thick. The radius of semicircular notch in these specimens was 3.18 mm [285]. The loading 

conditions were based on the guidelines of AGARD Cooperative Test Programme [291]. As for 

Ti6Al4V in the LC regime, compact-tension (CT) specimens were used o obtain FCG data for this 

alloy. The dimensions of these specimens were 400× 25 × 8 mm. The loading conditions were in 

accordance with the ASTM standard of (E-647) [292]. 

3.4.2. Long Cracks 

To train RBF-ANN discussed in section 3.2.2, FCG data in terms of ∆𝐾 under different R-ratios 

is required. The experimental data sets of 2024-T3 and 7075-T6 aluminum and Ti-6Al-4V titanium 

alloys have been utilized. Figure 3.8 presents the long fatigue crack growth data of those alloys 

extracted from literature [46, 47, 56, 214, 283] under different R-ratios. It should be noted that 

30% of the data are randomly chosen to verify the model predictions by means of the RBF-ANN. 

In other words, only 70% of the data are utilized in order to train the network. Figure 3.9 presents 

the results of interpolation and extrapolation of the model for the Al7075-T6 by using input data 

shown in Figure 3.8a). Figure 3.9a) indicates that the RBF-ANN model can predict the crack 

growth behavior of the LCs as a 3D prediction surface at different R-ratios. In this case, the model 

is somehow capable of showing acceptable extrapolation in the regions determined by the red 

dashed closed curves as shown in Figure 3.9a). Furthermore, the model shows good prediction in 

the threshold and high ∆𝐾 regions. Figure 3.9b) presents the crack growth curves as a function of 

∆𝐾 under various R-ratios to show the potential capability of RBF-ANN to predict the nonlinearity 

of the FCG rate in terms of ∆𝐾, even in the Paris-region the Al7075-T6. Figure 3.10 presents the 

model predictions in the LC regime for the Al2024-T3 indicated in Figure 3.8b). To deeply assess 

the capability of RBF-ANN, two separate models have been developed in the case of the Al2024-

T3 in the LC regime. The only difference between these two models is the value of SRBF. As a 

result, it is possible to present the importance of this spread parameter and its effects on the 

prediction of RBF-ANN. SRBF is defined as 𝛾 in Eq. (3.5) and a more detailed discussion can be 

found in section 3.2.2 (see Figure 3.7). Figure 3.10a) and b), show accurate interpolation to predict 

the nonlinearity of FCG rate in terms of stress intensity factor range based on a low spread of radial 

basis function (𝛾 = 5) for the Al 2024 such as the one schematically shown in Figure 3.7c). On the 

other hand, Figure 3.10c) and d) indicated extrapolation capability of the high spread of radial 

basis function (𝛾 = 11) such as the one schematically shown in Figure 3.7a) to predict the behavior 

of long cracks in areas shown by red dashed closed curves which are beyond the input data. 
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a) 

 

b) 

 

c) 

 

Figure 3.8 FCG data in LC regime of a) Al7075-T6, b) Al2024-T3 and c) Ti-6Al-4V. 

Based on the effects of the spread of radial basis function in Figure 3.10, it is evident that the 

spread parameter in Figure 3.10a) and b) is smaller than the one used to obtain the results in Figure 

3.10c) and d). As depicted in Figure 3.10a) and c), it can be stated that by increasing the spread of 

radial basis function (from 𝛾 = 5 to 𝛾 = 11), it is possible to predict the behavior of the FCG rate 

even in the areas in which there is limited crack growth data in hand. From this point of view, the 

higher SRBF corresponded to Figure 3.10c) has the advantage of extrapolation over the lower 

SRBF in Figure 3.10a). 
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a) 

 

b) 

 

Figure 3.9 LCs experimental and corresponded ANN results of Al7075-T6 in a) 3D vies and b) 2D view. 

However, Figure 3.10b) and d) indicate that the cost of extrapolation reduces the accuracy of 

results and capability of predicting the nonlinear behavior in the Paris-region. The question that 

arises here is that why it is essential to employ two different models with two diverse spread values 

of radial basis function in the case of the Al2024-T3 demonstrated in Figure 3.10. On the other 

hand, the results show that both the extrapolation and high accuracy in predicting nonlinear 

behavior are possible simultaneously in the case of the Al7075-T6 shown in Figure 3.9. The key 

to answering this question is a number or density of input data points. In the case of the Al7075-

T6 (see Figure 3.9), the number of input data is 365, but in the case of the Al2024-T3 (see Figure 

3.10), the size of the input data decreases to 93. In addition, in the case of the Al7075-T6, the 

domain of prediction is between the R-ratio of 0 to 0.75. However, this domain is between R-ratio 

of -1 to 0.5 in the case of the Al2024-T3. It means the higher density of input data increases the 

possibility of achieving accurate interpolation and extrapolation simultaneously. For instance, 

predicting the FCG behavior of the Al7075-T6 at R-ratio of -1 or -0.5 dramatically decreases 

prediction accuracy at the R-ratio of 0 to 0.75 and thus degrading the capability of the model to 

predict nonlinear behavior. It should be noticed that most of the neural network-based methods, 

especially RBF-ANN, are not developed for extrapolation. As a result, extrapolation is limited to 

regions shown by the red dashed closed curves in Figure 3.9a) and Figure 3.10c). The other 

important point about extrapolation is the behavior of FCG rate data in terms of SIF range at 

different R-ratios in the LC regime and at different stress levels in the SC regime. 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure 3.10 LCs experimental and corresponded ANN results of Al2024-T3 a) 3D view and low SRBF, b) 2D view 

and low SRBF, c) 3D view and high SRBF, and d) 2D view and high SRBF. 

As mentioned earlier, in the case of LCs shown schematically in Figure 3.2a), the response of the 

FCG rate at different R-ratios is somehow the same. It means all of the curves corresponded to 

different R-ratios show that the FCG rate increases by increasing the SIF range. On the other hand, 

in the case of SCs shown schematically in Figure 3.2b), the response of the FCG rate at different 

stress levels is very complicated. In other words, different curves corresponded to different stress 

levels are not necessarily monotonic with respect to the SIF range. As a result, extrapolation would 

be more achievable in the case of the LC regime rather than the SC regime. Figure 3.11 shows the 

results of ANN for the Ti-6Al-4V. Good agreement has been obtained between the ANN results 

and the experimental data, as shown in Figure 3.11.  
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a) 

 

b) 

 

Figure 3.11 LCs experimental data and corresponded ANN results of Ti6Al4V in a) 3D view and b) 2D view. 

𝑒𝑟𝑟𝑜𝑟 = (𝑑𝑎 𝑑𝑁⁄ )𝑝 − (𝑑𝑎 𝑑𝑁⁄ )𝑒 (3.11) 

Probability density function (PDF) is used to evaluate the prediction accuracy of the RBF-ANN 

model for each analyzed material at different R-ratios in the LC regime. The PDF measures the 

prediction error values between the predicted FCG rates (𝑑𝑎 𝑑𝑁⁄ )𝑝 and the experimental FCG 

rates (𝑑𝑎 𝑑𝑁⁄ )𝑒 for a given material as expressed in Eq. (3.11). The model prediction is regarded 

conservative for positive error values and non-conservative for negative error values.  Error 

distributions have been considered as normal probability distribution to fit PDFs. Figure 3.12 (a)-

(d) show error PDFs for Al7075-T6, Al2024-T3 for low SRBF, Al2024-T3 for high SRBF and 

Ti6Al4V, respectively. The scatter of the error distribution of PDFs show that the developed RBF-

ANN is capable for accurate predictions of FCG behavior of all three analyzed at various R-ratios 

in LC regime. 

3.4.3. Short Cracks 

In this section, the FCG behavior of the SC regime is investigated by the RBF-ANN method. It 

should be emphasized that the propagation behavior of SCs is significantly more complicated than 

that of the LCs. It is due to the fact that the number of damage controlling parameters affecting the 

FCG rate in the SC regime is noticeably larger than the one in the LC regime. As shown in Eq. 

(3.9), the explicit mathematical model to predict short FCG rates should be based on a function of 

both the ∆𝐾 and stress level under a constant R-ratio. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.12 Probability Density Function (PDF) of prediction error in LC regime for a) Al7075-T6, b) Al2024-T3 

and low SRBF, c) Al2024-T3 and high SRBF and d) Ti6Al4V. 

The experimental data sets of 2024-T3 and 7075-T6 aluminum and Ti-6Al-4V titanium alloys have 

been utilized in the present section in order to train the RBF-ANN. These materials are the same 

ones employed in the case of LCs in section 3.3.1. The R- ratio for each material during 

investigation in the SC regime is a constant and is equal to 0.0, 0.5, and 0.1 for the Al7075-T6, 

Al2024-T3, and Ti-6Al-4V, respectively. Figure 3.13 presents the experimental data sets of each 

material. These data sets classified by maximum stress levels can be found in the literature [56, 

285-289]. An RBF-ANN model as discussed in section 3.2.2 was developed to characterize the 

FCG rate in terms of SIF range and stress level while R-ratio is kept constant (see Figure 3.5). 

Figure 3.14 shows the experimental data and ANN results for the Al7075-T6 in both 2D and 3D 

views. As shown in Figure 3.14, the RBF-ANN is not capable of predicting nonlinearities in the 

case of the Al7075-T6 in the SC regime due to the lack of data. It should be pointed out that one 

can decrease the domain of prediction and choose the spread of radial basis function in such a way 

to obtain a more accurate prediction for each stress level (at 𝜎𝑚𝑎𝑥 = 120 𝑎𝑛𝑑 𝜎𝑚𝑎𝑥 = 140 𝑀𝑃𝑎). 
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a) 

 

b) 

 

c) 

 

Figure 3.13 FCG data in SC regime of a) Al 7075-T6, b) Al 2024-T3, and c) Ti-6Al-4V. 

However, this approach induces the lack of accuracy in predicting the FCG rate for stress levels in 

which there is no data in hand (at 120 𝑀𝑃𝑎 < 𝜎𝑚𝑎𝑥 < 140 𝑀𝑃𝑎). This is precisely similar to the 

argument discussed in the case of Al2024-T3 in the LC regime (See Figure 3.10). Figure 3.15 

presents a comparison of the predicted results and the short crack growth data of the Al2024-T3. 

As shown in Figure 3.15, the RBF-ANN model is able to predict nonlinear behaviors at a constant 

stress level and to predict the FCG rate at different stress levels simultaneously. Comparing the 

results of the Al7075-T6 and Al2024-T3 in Figure 3.14 and Figure 3.15 shows how prominent the 

input data distribution could be in an RBF-ANN method.  
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a) 

 

b) 

 

Figure 3.14 SCs experimental data and corresponded ANN results of Al 7075-T6 in a) 3D view and b) 2D view. 

Since the presented model is multi-input single-output, an appropriate prediction is achievable if 

the number of data is sufficient with respect to both the stress level and ∆𝐾. In other words, the 

number of data in both dimensions (stress intensity factor range and stress level) in Figure 3.14a) 

and Figure 3.15a) is important to achieve accurate predictions of the FCG rate. In the case of the 

Al7075-T6 as shown in Figure 3.13a) the FCG data are provided at only two different stress levels 

(120 and 140 MPa). On the other hand, in the case of the Al2024-T3 as shown in Figure 3.13b), 

the data are provided at three different stress levels (195, 205, and 225 MPa). 

a) 

 

b) 

 

Figure 3.15 SCs experimental data and corresponded ANN results of Al 2024-T3 in a) 3D view and b) 2D view. 

Therefore, that is the reason why RBF-ANN can predict the nonlinearity well enough in the case 

of the Al2024-T3 in Figure 3.15, but it is not satisfactorily accurate in the matter of the Al7075-

T6 due to the lack of the FCG data as indicated in Figure 3.14. It is obvious that only a line can be 

fitted between two points. To fit the data by a curve at least three points are required. Although the 

model is unable to predict the nonlinearity in Figure 3.14, it is still acceptable when it comes to 
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FCG rate estimation approximately in the range of 120 to 140 MPa. Figure 3.16 compares 

experimental data and ANN results in the case of Ti-6Al-4V. The input data are distributed at four 

stress levels (613, 620, 655, and 690 MPa). As a result, it is possible to observe the complexity of 

short cracks response with respect to stress levels. It is important to declare that the final desire of 

estimating the FCG rate is obtaining the fatigue life under a wide range of the applied load. 

However, as shown in Figure 3.14 and Figure 3.15, in the case of Al7075-T6 and Al2024-T3, the 

prediction of the model is limited to a narrow range of various stress levels. That is because of the 

limited input data and deficiency of the extrapolating ability of most of the neural network 

methods. With this in mind, in the case of Ti-6Al-4V, a set of artificial data called boundary 

condition at 𝜎𝑚𝑎𝑥 = 500 and 𝜎𝑚𝑎𝑥 = 800 𝑀𝑃𝑎, is employed to increase the range of prediction. 

Those two values are chosen based on the full range of experimental fatigue lives data that can be 

found in the literature [56]. The artificial data is obtained by an iteration method. In each stress 

level (𝜎𝑚𝑎𝑥 = 500 and 𝜎𝑚𝑎𝑥 = 800 𝑀𝑃𝑎), a polynomial function from the order of two was 

considered. 

a) 

 

b) 

 

Figure 3.16 SCs experimental data and corresponded ANN results of Ti-6Al-4V in a) 3D view and b) 2D view. 

The iteration procedure calculates the coefficients one by one, by assuming the others as constants. 

The iteration method is subjected to three constraints. First, the fatigue crack growth rate should 

be higher than 10−10𝑚 𝑐𝑦𝑐𝑙𝑒⁄ , since it is not possible to consider the crack propagation length less 

than the distance between atoms in each cycle. Second, as the stress level increases, the FCG rate 

rises as well. It means the boundary condition has to be located under all ANN results in Figure 

3.16b) for 𝜎𝑚𝑎𝑥 = 500 𝑀𝑃𝑎 and be above of them for 𝜎𝑚𝑎𝑥 = 800 𝑀𝑃𝑎. Third, the FCG rate of 

the SC regime has to be collapsed on the LC curve at ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, in which the SCs are transitioned 

into the LCs. ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is discussed in detail in the next section. The iteration method stops if all 

three constraints mentioned above are satisfied. Figure 3.16 presents a good agreement between 

ANN results and the experimental data. By considering Figure 3.14-Figure 3.16, it can be realized 

that the ANN model(s) can predict even complicated behavior of the SCs with acceptable accuracy. 

The only shortcoming of this approach is that the predicted region is limited to a narrow range of 

applied stress levels. This problem can be overcome by providing more experimental data to 

produce an appropriate distribution of input data. Unlike FCG behaviors in LC regime, applied 
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stress levels are considered as a controlling variable on FCG behaviors in SC regime. Therefore, 

predictions errors of PDF are provided for Al7075-T6, Al2024-T3, and Ti6Al4V under different 

stress levels in SC regime in Figure 3.17a) - Figure 3.17c), respectively. Different PDF curves 

shows the prediction error values between the predicted FCG rates (𝑑𝑎 𝑑𝑁⁄ )𝑝 and the 

experimental FCG rates (𝑑𝑎 𝑑𝑁⁄ )𝑒 for each stress level. As seen from these figures that less scatter 

error distributions can be observed for lower stress values. Nonetheless, the distribution of the 

PDFs and the range of errors in Figure 3.17a)- Figure 3.17c) indicate the acceptable prediction 

accuracy of the ANN model for all different stress levels in SC regime. 

3.4.4. Predicted short and long crack growth behavior 

Figure 3.18a)-c) show predicted FCG curves for the Al7075-T6, Al2024-T3, and Ti-6Al-4V 

alloys, respectively at a constant R-ratio. As shown in Figure 3.18, the FCG rate in terms of ∆𝐾 is 

described by different curves in the SC regime. This is due to the fact that the stress level is a 

controlling parameter in addition to the ∆𝐾 in the SC regime. However, the FCG rate is described 

by a single curve since the influence of the stress level is not considered as a controlling parameter 

in the LC regime. 

a) 

 

b) 

 

c) 

 

Figure 3.17 Probability Density Function (PDF) of prediction error in SC regime for a) Al7075-T6, b) Al2024-T3, 

and c) Ti6Al4V. 
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A pivotal point to calculate fatigue life is to determine the transition point in which a short crack 

changes to a long crack. In the presented model, a critical stress intensity factor range is defined 

to distinguish the short and long crack regimes. The critical stress intensity factor range should be 

defined for each material under a constant R-ratio. That is to say, the critical stress intensity factor 

range is a function of the material and the R-ratio. By taking this assumption into consideration, 

the behavior of cracks can be presented by Figure 3.19 for each of these materials. This figure 

shows that under a constant R-ratio, the FCG rate depends on the stress level and it is described 

by different curves up to the SC and LC transition point in which the stress intensity factor range 

reaches ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. However, under SIF ranges higher than ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 the FCG rate is characterized 

by a single curve in the LC regime. ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is determined to be to 4 𝑀𝑃𝑎√𝑚 for the Al7075-T6 

and Al2024-T3 and 11 𝑀𝑃𝑎√𝑚 for the Ti-6Al-4V.  

a) 

 

b) 

 

c) 

 

Figure 3.18 ANN results of SCs and LCs in the same framework under constant R-ratio of a) Al 7075-T6, b) Al 

2024-T3, and d) Ti-6Al-4V. 
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To obtain those values, experimental data and ANN results have been explored and the transition 

point where the SC data collapse on the LC data is chosen as ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. That is to say, ∆𝐾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
distinguishes the SC (∆𝐾 < ∆𝐾𝑡ℎ) and LC (∆𝐾 ≥ ∆𝐾𝑡ℎ) regimes under a constant R-ratio as 

depicted in Figure 3.19. As a result, it is possible to take the numerical integration from FCG rates 

in both regimes to obtain the crack propagation life and stress-life curves. As mentioned earlier, 

the FCG prediction is limited to a narrow range of applied stress levels for the Al7075-T6 and 

Al2024-T3 in Figure 3.19a) and Figure 3.19b), respectively. 

a) 

 

b) 

 

c) 

 

Figure 3.19 The transition of cracks between SC and LC regime. a) Al 7075-T6, b) Al 2024-T3, and c) Ti-6AL-4V. 

However, by introducing boundary conditions for the Ti-6Al-4V discussed in section 3.3.2, it is 

possible to expand this prediction range.  It should be pointed out that boundary conditions or 

artificial data are employed only in the case of Ti-6Al-4V. The reason is that the number of data 

points for this material is sufficiently large   in the SC regime unlike Al7075-T6 and Al2024-T3 
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alloys. As a result, the Ti-6Al-4V is used to assess the application of artificial data to expand the 

range of prediction. As discussed before, the higher number and less scattered FCG data would 

yield improved prediction of the ANN model(s) by increasing the model extrapolation and 

nonlinear capabilities. The numerical integrations of predicted FCG by RBF-ANN in both the SC 

and LC regime can then be used to calculate fatigue lives as depicted in the flowchart shown in 

Figure 3.6.  

3.5. Conclusion 

In this chapter, a machine learning-based method is developed to predict the FCG rate in both the 

short and long crack regimes. The model is based on the radial basis function artificial neural 

network. To validate the model, the results of the presented model are compared with experimental 

FCG data sets of 2024-T3 and 7075-T6 aluminum alloys, and Ti-6Al-4V titanium alloy. The 

results show that RBF-ANN based on a neural network algorithm has a potent capability of 

predicting nonlinearity of crack growth behavior in both of the SC and LC regimes. In addition, 

RBF-ANN can predict fatigue crack behavior under conditions in which there are limited data in 

hand. However, the efficiency of the RBF-ANN method significantly depends on the number of 

input data point and range. To establish a proper set of FCG data, three data characteristics should 

be considered; 1) density of the input data (number of data in the predicted region), 2) distribution 

of data, 3) accuracy of data.   
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4.1. Abstract  

Artificial neural networks (ANNs) integrated with a finite element (FE)-based equivalent domain 

integral method are developed to compute 𝐽-integral at the vicinity of crack tips through a time-

efficient approach. Robust ANN models are trained to establish nonlinear relationships between 

FE predicted elastic and elasto-plastic stress, strain, and displacement fields of stainless steel 

(SS304). Subsequently, elastic-plastic 𝐽-integral can be determined by using only elastic FE 

analysis solution rather than computationally expensive elasto-plastic FE analysis solution. The 

results show that well-trained ANN models can efficiently and accurately determine 𝐽-integral 

around the crack tips on the basis of numerical elastic FE analysis solution. 

4.2. Introduction 

Fatigue failure has been reported as the most common failure in the industry [2]. Consequently, 

accurate fatigue life assessment methods of components have been considered as attractive topic(s) 

among researchers for decades. Damage tolerance design philosophy has been developed to assess 

the remaining useful life of structural components containing initial cracks induced by 

manufacturing and environmental factors. Damage tolerance methods use fracture mechanics 

principles to assess effects of initial defects/cracks on the remaining fatigue life of structural 

components in service conditions [1]. Fracture mechanics approach assumes that the initial 

crack(s) are always present in the components. It has been widely accepted that such assumption 

is compatible with real life engineering applications. This is attributed to the fact that emergence 

of microscopic defects and cracks during fabrication processes and in-service conditions is almost 

inevitable in most of the engineering applications. Linear elastic fracture mechanics (LEFM) 

methods have been developed for carrying out fatigue crack growth (FCG) analysis to predict the 

remaining residual life of the structures containing initial cracks. As for LEFM-based FCG 

analysis methods, stress intensity factor (SIF), is deemed as a controlling crack growth driving 

force parameter to determine the crack growth and characterize stress, strains and displacement 

fields in the crack tip region [16, 17]. Paris and Erdogan [18] suggested that the SIF range can be 

used to determine the FCG rate known as the Paris equation in Eq. (4.1). 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (4.1) 

where a is the crack length, N is the number of cycles, ∆𝐾 is the SIF range, and C and m are 

experimentally determined material constants.  

One of the crucial limitations of the Paris equation is that the mean stress effect or R-ratio is not 

accounted for. Therefore, the Paris equation has received many modifications to account for R-

ratio on crack growth behavior. Some of such modifications have been developed based on the 

“crack closure” concept [284, 293] introduced by Elber [20] and further improved by Newman 

[21]. One of the most well-known crack closure-based models is the NASGRO model known as 

Forman/Mettu equation [37] in Eq. (4.2) where R is the stress ratio, ∆𝐾𝑡ℎ is the SIF threshold, 

𝐾𝑐𝑟𝑖𝑡 is the critical value of SIF, C, n, p, and q are calibration coefficients, and f is the Newman’s 

function describing the crack closure. 
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𝑑𝑎

𝑑𝑁
= 𝐶 (

1 − 𝑓

1 − 𝑅
∆𝐾)

𝑛 (1 −
∆𝐾𝑡ℎ
∆𝐾

)
𝑝

(1 − 
𝐾𝑚𝑎𝑥
𝐾𝑐𝑟𝑖𝑡

)
𝑞 (4.2) 

The detail description of these parameters can be found the literature [38]. The crack closure-based 

models considered ∆𝐾𝑒𝑓𝑓 as the driving force parameter effected by crack-wake plasticity behind 

the crack tip to characterize FCG rate. The other group of modifications are based on “unified 

approach” employing two crack driving forces parameters, 𝐾𝑚𝑎𝑥 and ∆𝐾 [45, 294, 295]. One of 

the most important and successful models on the basis of two-parameter driving force models is 

UniGrow model [46, 47]. Although the UniGrow model is significantly successful in long crack 

(LC) regime, it has shortcomings in short crack (SC) regime [55-57]. Bang and Ince [55-57] 

modified the UniGrow model in the application of the SC regime. In spite of successful 

developments of all LEFM-based FCG models. The ∆𝐾-based models are still considered to have 

certain limitations to completely account for crack growth behavior in the SC regime. Such 

limitation can be attributed to the fact that SIF is a linear elastic fracture mechanics (LEFM) 

parameter, and it inherently cannot account for the plastic deformation zone (PDZ) near the crack 

tip. Even though the application of SIF-based model is significantly time efficient, such models 

can be only employed in the presence of small-scale plasticity (see Figure 4.1a)). However, 

application of LEFM cannot be extended in the presence of large-scale plasticity. In other words, 

PDZ at the crack tip cannot be neglected when the plasticity size radius (𝑟𝑦) is comparable with 

other significant dimensions e.g. notch root radius (𝜌) and crack length (a) (see Figure 4.1b)) [82]. 

One may realize that large-scale plasticity ahead of the crack tip emerges either under relatively 

high load levels, e.g. low cycle fatigue (LCF), or crack tip plasticity in the SC regime. Under such 

conditions, mainly two different approaches have been suggested so far. 

 

Figure 4.1 Plastic deformation zone around the crack tip. a) small-scale plasticity, and b) large-scale plasticity 

The first one is based on the integration of the multiaxial Neuber rule and material constitutive 

model very recently proposed by Ince and Glinka [68] to transform hypothetical elastic 

stress/strain fields to the actual elasto-plastic fields in the vicinity of crack tips. The application of 

the multiaxial Neuber rule has been reported successful for notches under the multiaxial cyclic 

loading [59, 66], however it has not been proven for its distinct success for cracked bodies made 

of different metallic alloys yet. Furthermore, the multiaxial Neuber rule has not been able to 

account for sharp cracks, unless crack tips are assumed to have a small finite radius [68]. The 

second approach is replacing the SIF range as an LEFM parameter with an elasto-plastic fracture 

mechanics (EPFM) parameter. One of the promising EPFM parameters is 𝐽-integral introduced by 
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Rice [79]. It was shown that J-integral as a line integral has the same value for all paths imbedding 

the notch tip in a 2D strain field of elastic and elasto-plastic deformation states of materials [79]. 

Such definition has been extended in the presence of cracks as well. Subsequently, 𝐽-integral has 

been known as a parameter to characterize the elasto-plastic stress/strain fields at the notch and 

crack tips. With this in mind, the application of 𝐽-integral is mostly limited to the condition as 

follows: a) the deformation theory of plasticity (and not the incremental theory of plasticity) is 

employed to determine the elasto-plastic behavior of materials, b) there is no force or stress at the 

notch faces or crack flanks, c) material represents Mashing behavior [79, 81]. The later condition 

points out that strain should be a unique and one-to-one function of stress. As a result, the 

unloading is forbidden in order to have path-independency of 𝐽-integral [82]. The question comes 

to mind is that “is it possible to extend the application of 𝐽-integral under cyclic loading?”. Dowling 

and Begley [82] answered this question for the first time and proposed cyclic 𝐽-integral (∆𝐽). It 
was suggested that only loading half-cycles should be considered to determine ∆𝐽 to characterize 

the FCG rate. In addition, Wuthrich [91] showed that ∆𝐽 is also path-independent under the 

mentioned a-c conditions. 𝐽 and ∆𝐽 can be interpreted as the energy release rate with respect to the 

variation of crack length for elastic materials. Such interpretation is lost in the case of elasto-plastic 

material. Subsequently, Tanaka [80] interpreted path-independent ∆𝐽 as a measure of energy lost 

or dissipated to heat due to dislocations movement in the PDZ during one cycle. It should be 

pointed out that 𝐽-integral (𝐽) and cyclic 𝐽-integral (∆𝐽) are advantageous to characterize FCG rate 

even under the condition in which path-independency is lost. However, in such case the application 

of 𝐽 and ∆𝐽 cannot be considered as computational and time efficient. This can be attributed to the 

fact that a complex elasto-plastic analysis is required to determine stress, strain, and displacement 

field and subsequently 𝐽 and ∆𝐽 around the crack tip. Consequently, the most crucial challenge is 

efficient and accurate determination of ∆𝐽. Ngoula et al. [89] developed an in-house numerical 

code to determine ∆𝐽 for various welded joints. It was reported that a strict numerical modeling 

process is required to specify a path for accurate calculation of ∆𝐽. In addition, Ngoula et al. 

reported that the calculation of stress and strain components were crucially difficult through the 

in-house code during crack deflection. Metzger et al. [90] suggested using built-in functionality of 

Abaqus to calculate ∆𝐽. Since built-in functionality of Abaqus is only able to determine 𝐽-integral 

based on virtual crack extension (VCE) under monotonic loading, it was suggested to replace the 

parameters (i.e. 𝜎, 𝜀, and 𝑢) with their counterparts (i.e. ∆𝜎, ∆𝜀, and ∆𝑢) in order to determine ∆𝐽. 
However, such approach requires a relatively complicated post-processing technique to carry out 

a restart finite element (FE) analysis to shift the stress/strain coordinate system with respect to the 

crack tip and a user-material subroutine needs to be developed. Hence, a significant complicated 

procedure is required to carry out the later approach. Chen [296] proposed a linear matching 

method (LMM) to determine the ∆𝐽. The proposed method utilizes some geometric coefficient 

limiting the application of LMM significantly. Wang et al. [81] developed an equivalent domain 

integral (EDI) method to compute 𝐽 and ∆𝐽. The proposed method was verified under monotonic 

loading by comparing the 𝐽-integral values computed by the EDI method with ones determined by 

means of the built-in functionality of Abaqus based on the VCE method. The verified method was 

also successfully applied to the cyclic loading. There are several other approaches in the literature 

[91-93] to calculate 𝐽 and ∆𝐽 based on using analytical solutions, and experimental procedures 

using load-deflection data. However, those approaches are significantly limited to specific 

geometries. According to early works in the literature, finite element methods (FEMs) are 

considered to provide the best generality and expandability in comparison to other suggested 

methods so far [81]. 
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Artificial neural networks, (ANN)s as machine learning algorithms has been developed to establish 

any relationships among nonlinear multivariable. Subsequently, ANNs have received noticeable 

attention in various areas such as material science [214, 277-279] and fracture mechanics problems 

e.g. creep and fatigue failure [142, 143, 216]. Hajializadeh and Ince [259] employed an ANN 

model to predict the residual stress field for additively manufactured components during the 

fabrication process. Zhan and Li [148] used the integration of continuum damage mechanics theory 

with two different machine learning algorithms, ANN and random forest, in order to investigate 

the fatigue damage behavior of additively manufactured aerospace alloys. Artymiak et al. [121] 

successfully trained an ANN by comprehensive datasets of a wide range of materials to predict the 

S-N curve and, subsequently, the fatigue limit of materials. Gan et al. [297] investigated the 

application of the random forest and the kernel extreme learning machine as two well-known 

machine learning algorithms to estimate the fatigue life of different metallic alloys in the presence 

of mean stress. Wang et al. [199] developed radial basis function artificial neural network (RBF-

ANN), extreme learning machine (ELM), and genetic algorithms optimized backpropagation 

network (GABP) as different types of ANNs to predict the FCG rate of metallic materials in the 

LC regime. Zhang et al. [214] trained an RBF-ANN model to predict FCG rate in the LC regime 

in terms of stress ratio and SIF range. Mortazavi and Ince [298, 299] developed two separate ANNs 

using SIF range and stress ratio as input variables in the LC regime and using SIF range, stress 

ratio, and stress level as input variables in the SC regime. Himmiche et al. [300] compared the 

potential of RBF-ANN and ELM to predict the FCG rate of different lightweight alloys in the SC 

regime. Wang et al. [301] developed a procedure to predict FCG failure in the presence of curved 

crack under variable amplitude loading based on ANN and FCG path/life predictions models. The 

noticeable potential of different types of ANN algorithms for prediction of the fatigue failure 

attract significant attention in recent years [113]. Burghardt et al. [260] developed ANN model to 

predict the actual elasto-plastic local equivalent stress based on the hypothetical elastic local 

equivalent stress in the vicinity of notch tip for different geometries and materials. It should be 

noted that sufficiently large and well-structured datasets have been deemed to be necessary in 

almost all of the ANN-based modeling approaches. Therefore, the application of ANN models is 

limited to the circumstances in which there are enough datasets in hand [298].  

In addition to the ANN, convolutional neural network (CNN) algorithms have been recognized as 

noticeably powerful machine learning algorithms. CNN algorithms are used in the case of image 

recognition and analyses [302, 303]. It means the input or output, or both are fed to networks in 

the form of image dataset. The robust CNN algorithms are capable to analyze the images and 

convert them to numerical dataset(s). Such algorithms have received great interest in the solid 

mechanics field such as fatigue, creep, and prediction of stress/strain fields. Zhang et al. [119] 

employed CNN algorithms to present a method to predict the life of components under creep, 

fatigue, and the creep-fatigue conditions. Kamiyama et al. [304] used deep CNN to predict the 

microscopic image of fatigue cracks after being under low-cycle fatigue for a sputtered Cu thin 

film. Nie et al. [305] developed a CNN model to predict the von Mises stress filed of cantilevered 

structures under static load(s) in elastic state. The inputs of that model are the structure geometry, 

the applied loads, displacement boundary conditions. Since the present study is based on the 

numerical input and output datasets and ANN algorithms have shown a noticeable potential in the 

case of similar regression-type of problems [259, 260], ANN algorithms are chosen over CNN 

ones in the present study. Employing CNN and using the image of the cracked-specimen to predict 

the elasto-plastic stress/strain fields can be considered for the future studies.  
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The present chapter aims to propose an innovative modeling method to determine 𝐽-integral by 

integrating numerical FE methods and artificial neural network (ANN) algorithms. Robust ANN 

models are developed to establish the interconnection between elastic and elasto-plastic behavior 

of grade 304 (SS304) stainless steel around the crack tip in a plate body. As a result, a linear elastic 

FE analysis would be enough to predict the elasto-plastic response of the material in the presence 

of the crack. In order to do so, two discrete FE models are developed under elastic and elasto-

plastic states. The obtained stress, strain, and displacement components around the crack tip under 

elastic and elasto-plastic states are fed to the ANN models as input and output data, respectively. 

An in-house EDI-based model is developed to calculate 𝐽-integral based on the predicted results 

of developed ANNs and those results obtained from the elasto-plastic FEM. The results show that 

the ANN model accurately predicts elasto-plastic stress, strain, and displacement fields around the 

crack tip through the proposed method under monotonic loading. Subsequently, the determined 𝐽-
integral values based on predicted results of ANNs show a good agreement with the ones obtained 

by a complicated elasto-plastic FEM.  

4.3. Modeling approach 

In the present chapter, ANN models are developed to predict elasto-plastic stress, strain, and 

displacement fields around the crack tip based on elastic FE analysis results. Consequently, 𝐽-
integral as an EPFM parameter can be determined from ANN predicted elasto-plastic stress, strain 

and displacement results on the basis of a linear and time-efficient FE analysis. The proposed 

modeling framework is schematically illustrated in Figure 4.2. In the first step, two independent 

finite element models have been developed to determine local stress, strain, and displacement 

fields around the crack tip in a 2D cracked plate under both elastic and elasto-plastic states to 

obtain numerical input and output data for ANN models. 

FE datasets for various crack lengths have been obtained to generate datasets for various crack 

sizes. Subsequently, all components of stress, strain, and displacement fields were extracted and 

divided into three groups of training, verification, and test data under each state. In the next step, 

three different ANN models were developed in order to establish the relationships between elastic 

and elasto-plastic stress (𝜎𝑖𝑗
𝑒𝑙 and 𝜎𝑖𝑗

𝑒𝑙−𝑝𝑙
), strain (𝜀𝑖𝑗

𝑒𝑙 and 𝜀𝑖𝑗
𝑒𝑙−𝑝𝑙

), and displacement (𝑢𝑖
𝑒𝑙 and 𝑢𝑖

𝑒𝑙−𝑝𝑙
) 

fields. The extracted field datasets under the elastic state were fed to the ANN models as input 

data. The corresponding datasets obtained under the elasto-plastic state were considered as output 

data for the ANN models as schematically illustrated in Figure 4.2. Then, the trained ANN models 

were verified and tested by using different verification and test datasets. The elastic components 

of the stress, strain and displacement fields were fed to the trained models to predict elasto-plastic 

fields. The predicted ANN results were compared against elasto-plastic FE analysis data. 

Subsequently, an in-house model based on the EDI method was developed to calculate J-integral 

by using the stress, strain, and displacement results predicted by ANN models and elasto-plastic 

FEMs. Finally, the 𝐽-integral results determined by ANN models were compared with those 

calculated by elasto-plastic FE models. The developed FE models, EDI method, and ANN models 

are discussed in detail in the following sections. 
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Figure 4.2 The flowchart of modeling framework 
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4.3.1. Finite element modeling 

Abaqus commercial FE software package was employed to perform elastic and elasto-plastic FE 

analyses to determine stress, strain, and displacement fields around the crack tip. FE models were 

developed as a parameterized model through the Abaqus script file in Python to carry out efficient 

post-processing of numerical data extraction. The script file includes designing compact tension 

(CT) notched specimens, defining material properties, specification of load and boundary 

conditions, and mesh generation. The analysis results of FE model(s) in terms of stress, strain, and 

displacement data are accessible via the output databases (ODB) file generated by Abaqus. As a 

result, the script file also includes post-processing coding to extract stress, strain, and displacement 

components of particular elements and nodes around the crack tip in a desired configuration which 

can be fed to the ANN models afterward. Data extraction configuration is discussed in section 

4.2.3. Geometrical dimensional parameters of the CT specimen used in the present study are shown 

in Figure 4.3. The material was chosen as the 304 stainless steel (304SS) for FE models and 

material properties of 304SS are given in Table 4.1 [81].  

 

Figure 4.3 The CT specimen for FE models. 

Table 4.1 Material properties of 304SS 

Modulus of 

elasticity 

Poisson’s ratio Yield stress Hardening modulus Elastic-plastic 

model 

195100 MPa 0.267 206 MPa 570 MPa Bilinear isotropic 

hardening 

As shown in Figure 4.3, two reference points (𝑃1 and  𝑃2) were set up in the center of each pin 

hole. The kinematic type coupling constraint of full degree freedom was assigned between the 

reference point and the inner wall of each pin hole. A vertical (mode I) point force (F) was applied 

to the upper reference point (𝑃1) and the fixed displacement constraints were applied to the lower 

reference point (𝑃2) as shown in Figure 4.3. Two partitions, zone 1 and zone 2, were used to 

generate two different mesh sizes to allow finer mesh in the close vicinity of the crack tip to obtain 
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accurate stress, strain and displacement results. The element type was fully integrated linear plane 

strain element (CPE4) for both zones. Structured mesh with the size of 0.1 mm and 2.0 mm was 

used in zone 1 and zone 2, illustrated in Figure 4.3, respectively. As shown in Figure 4.4, an area 

consisting of 480 (40×12) elements (blue elements) in the vicinity of the crack tip is chosen to 

extract the dataset. The mesh size in zone 1 and the number of elements in the particular area 

shown in Figure 4.4 were selected so that the chosen area can embrace the PDZ around the crack 

tip and a portion of the elastic area around the PDZ. 

 

 

Figure 4.4 The chosen area around the crack tip to extract datasets. 

In other words, the chosen area is larger than the PDZ size generated under the maximum applied 

load (20 KN) and maximum crack length (10 mm) used in the present study. The results of 𝐽-
integral values calculated by the present elasto-plastic FE analysis have been compared with those 

results reported by Wang et al. [81]. As shown in the result and discussion section, the element 

size of 0.1 mm is fine enough to provide accurate FE results. The selected element size of 0.1 mm 

is relatively larger than those element sizes, which are commonly used around the crack tip in the 

literature, to reduce the run time of the post-processing model to extract data. It has been accepted 

that the 𝐽-integral calculated based on EDI method is not sensitive to the mesh size in the vicinity 

of the crack tip [101]. It should be reminded here that one of the most important objectives of this 

study is to propose a time-efficient modeling method to calculate 𝐽-integral under the elasto-plastic 

deformation state. The determined 𝐽-integral by the means of 0.1 mm element size is compared 

with the ones calculated with finer mesh such as 0.004 mm as discussed in section 4.3.1. 

4.3.2. J-integral calculation based on equivalent domain integral method 

𝐽-integral is a surface integral or a line integral in a 3D or 2D state, respectively. According to the 

Green’s theorem, a line integral can be rewritten as a surface integral in a 2D state in Eq. (4.3). 
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𝐽 = ∫(
𝜕𝑊

𝜕𝑥
−
𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥
))𝑑𝐴 (4.3) 

where dA is an infinitesimal area element (dA=dx.dy=dx1.dx2), u is the displacement vector, W is 

strain-energy density, and x (x1) and y (x2) are cartesian axes. x is parallel to the crack, and y is 

perpendicular to the crack face. 

The value of J-integral corresponds to the hatch area surrounded by Γ as shown in Figure 4.5a). 

That approach is known as the conventional method. On the other hand, the 𝐽-integral value 

corresponds to the hatched area surrounded by the inner boundary (Γ1) and outer boundary (Γ0) as 

shown in Figure 4.5b) is based on the EDI method introduced by several researchers [100-102]. 

The 𝐽-integral expression in Eq. (4.3) can be rewritten on the basis of the EDI method in Eq. (4.4) 

[100]: 

𝐽 =  ∫ (𝜎𝑖𝑗
𝜕𝑢𝑗

𝜕𝑥
−𝑊𝛿1𝑖)

𝜕𝑞

𝜕𝑥𝑖A

𝑑𝐴 (4.4) 

where 𝛿1𝑖 is Kronecker delta and q is a weight function of 𝑥1(𝑥) and 𝑥2(𝑦) as the coordinate axes. 

The integral region shown in Figure 4.5b) can be replaced by a finite number of elements as shown 

in Figure 4.5c) in a FE-based model. One of the most prominent advantages of the EDI method 

over the conventional method is that the area or the elements adjacent to the crack tip can be 

excluded in the calculation of J-integral. As for dealing with singularity problem, extremely fine 

mesh around the crack tip, and employing the extended finite element method (XFEM) or Barsoum 

elements [101] at the crack tip are not necessary. Another important feature of the EDI method is 

that it was showed as a mesh size-independent approach which facile its application in FE methods 

[101]. The value of q is 1 for the inner boundary, and it decreases linearly to its minimum value 

(0) on the outer boundary for a two-dimensional problem [81, 100]. The expansion of Eq. (4.4) in 

a 2D cartesian system is derived as follows: 

 

Figure 4.5 Different methods of J-integral calculation. a) Conventional method; b) EDI method; c) EDI method in a 

FEM-based model 

𝐽 = ∫ [(𝜎11
𝜕𝑢1
𝜕𝑥

+ 𝜎12
𝜕𝑢2
𝜕𝑥

−𝑊)
𝜕𝑞

𝜕𝑥
+ (𝜎12

𝜕𝑢1
𝜕𝑥

+ 𝜎22
𝜕𝑢2
𝜕𝑥
)
𝜕𝑞

𝜕𝑦
] 𝑑𝐴

𝐴

 (4.5) 

The Abaqus FE package is employed to analyze the cracked problem in both elastic and elasto-

plastic states. Therefore, stress, strain, and displacement fields around the crack tip can be obtained 

from the ODB file provided by Abaqus. However, the in-house model should calculate other 

parameters, such as 
𝜕𝑢2

𝜕𝑥1
 introduced in Eq. (4.5) as a part of the post-processing file mentioned 
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before. In order to carry out numerical calculations, the in-house model has been developed as an 

object-oriented programming method in Python. As a result, it can be compiled by Abaqus and 

calculate J-integral based on stress, strain, and displacement fields around the crack tip obtained 

by elasto-plastic FE analysis. In addition, the same model can be used in the script, including the 

ANNs training, compiled by Python integrated development and learning environment (IDLE) to 

calculate J-integral based on ANNs predictions.  It should be emphasized that stress and strain 

components are obtained on Gaussian points. However, displacement components are received on 

the nodes of elements. 

4.3.3. Artificial Neural Network models 

ANN algorithms have been developed to investigate probable patterns from a given dataset and 

determine the relationship between input and output dataset. In this dissertation, the term “dataset” 

is defined as a sequence of numerical input(s) and their corresponded output(s). As a result, ANN 

algorithms are theoretically able to establish any complex nonlinear relationships among input and 

output variables. It is significantly prominent to provide well-structured datasets in the application 

of ANN algorithms. Such datasets are able to represent all aspects and characteristics of a given 

problem. In other words, well-structured datasets represent complete controlling parameters of a 

problem in order to fully establish any relationship among nonlinear multivariable. The structure 

of a hypothetical ANN, including one input layer, two hidden layers, and one output layer, is 

schematically shown in Figure 4.6. Let’s assume the input data of a particular dataset is given as 

(𝑋1, 𝑋2, … , 𝑋𝑛). The first step in training of an ANN model is to prepare raw input data into a 

proper data structure to feed to the network. Data preparation may be different for different types 

of problems. Data normalization is a common process for a vast majority of problems to achieve 

proper training if dataset with an order of the magnitude in the case of multivariable problems. In 

the present study, data normalization is carried out by using Eq. (4.6). 

 

Figure 4.6 Structure of an ANN. 
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𝑥𝑖 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (4.6) 

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values among the input data, respectively. 

The prepared data in the input layer is fed to the network. The input layer shown in Figure 4.6 

includes m nodes or neurons. In the next step, each neuron is multiplied by a positive value called 

weight (𝑤𝑖𝑗)  and results in the activated neuron (𝑥𝑖𝑤𝑖𝑗). Weights are positive values between 0 to 

1. The higher value of weight means that a particular neuron is highly activated and has more 

impact on the output. The sum of all activated neurons is added to a positive value called bias (b) 

and delivered to the first hidden layer. For an example, the value received by the first neuron in 

the first hidden layer is (𝑥1𝑤11 + 𝑥2𝑤21 +⋯+ 𝑥𝑛𝑤𝑛1 + 𝑏). First and second hidden layers have 

activation functions, Γ and Φ, respectively which can be differently chosen for each hidden layer 

based on the type of problem. In the next step the output of each neuron in the first hidden layer is 

activated by weights (𝑤𝑖𝑗
′ ). The same process is carried out to transfer the calculated values to the 

second hidden layer and output layer. It should be pointed out that each input and output have one 

single value named 𝑥𝑖 and 𝑦𝑖, respectively, in Figure 4.6. However, each neuron in input and output 

layers may consist of different values such as 𝑥𝑖 = [𝑥𝑖1
′ , 𝑥𝑖2

′ , … , 𝑥𝑖𝑗
′ ]. In the latter example the 𝑖𝑡ℎ 

neuron has j distinct values or j features. In the present study, each neuron in the input and output 

layer has four features in the case of stress, three features in the case of strain, and two features in 

the case of displacement predictions, as shown in Figure 4.7-Figure 4.9. All the hyperparameters, 

including weights, biases, the number of hidden layers, the number of neurons in each layer, and 

activation functions, must be appropriately determined to develop a well-trained network. There 

are different functions that can be employed as activation functions such as tanh or sigmoid 

functions. Rectified linear activation unit (ReLU) is known as one of the best choices when it 

comes to nonlinear problems, and it is used in the present study. The non-complicated formulation 

of ReLU provides less intense computation and makes it an efficient activation function. Given 

datasets used in ANN are commonly categorized into three different groups of training data, 

verification data, and testing data in the application of ANNs. The ANN algorithms use training 

datasets in the structure of ANN illustrated in Figure 4.6 to perform a combination of 

hyperparameters to achieve desired accuracy in the training process. In the present study, mean 

square error (MSE) has been used as the measure of accuracy. Afterward, a particular combination 

of hyperparameters is evaluated in the case of verification data. The combination should be 

updated if the desired MSE or accuracy is achieved only for training data and not for verification 

data. This procedure is repeated until a particular combination of hyperparameters provides 

desirable accuracy in terms of MSE for both the training data and verification data. In the end, the 

selected ANN structure should be tested for a new dataset (i.e. testing data) that has not been 

introduced during the network training and verification stages. Many different algorithms have 

been suggested to properly determine hyperparameters of ANNs. ANN developed by Keras with 

TensorFlow that has a high-level neural networks application programming interface (API), 

written in Python is adopted in this study. Implementing Keras API facilitates the construction and 

modification of the ANN and guarantees high-performance computations using parallel 

computation. In the application of Keras, number of hidden layers, number of neurons in each 

layer, and type of activation functions are chosen by a user, and values for weights and biases are 

determined automatically through the Keras algorithms.  

In the present study, the hypothetical elastic stress, strain, and displacement fields around the crack 

tip of a cracked body under the elastic deformation state obtained from the linear elastic FE 
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analysis are fed to the network as the input data. Subsequently, the elasto-plastic stress, strain, and 

displacement fields around the crack tip of the same cracked body under the elastic-plastic 

deformation state obtained from an elasto-plastic FE analysis are used as the network's output data 

so that ANN model(s) can determine any nonlinear relationship between the elastic and elasto-

plastic responses of the material in the presence of cracks. Three different ANNs are trained to 

predict the elasto-plastic stress, strain, and displacement distribution around the crack tip. It should 

be noted that it is possible to develop a single network structure that can receive elastic stress, 

strain, and displacement fields as the input and deliver the elasto-plastic stress, strain, and 

displacement fields as the output. In the latter case, trained ANN algorithms are able to detect and 

take advantage of the particular relationships between stress and strain fields (expressed by 

constitutive models) and between strain and displacement fields (known as the Kinematic rule). In 

this study, three different networks are separately trained by using stress, strain, and displacement 

datasets as separate data for each network in order not to take advantage of interplay relationships 

among these quantities. As expressed in Eq. (4.5), stress, strain, and displacement components are 

required to calculate 𝐽-integral. However, there are many engineering applications in which only 

elasto-plastic stress or strain fields are desirable. With this in mind, separate networks have a wider 

range of engineering applications. As shown in Figure 4.4, 2D FE models are developed under 

plane strain condition. The stress tensor on each GP has four independent stress components. That 

being said, the ANN model for the stress prediction is trained based on the datasets with four 

features. Input variables in this case is: 

𝑋1 = (𝜎11, 𝜎22, 𝜎33, 𝜎12) (4.7) 

where 𝜎𝑖𝑗 are the stress components of the first GP in the first element in Figure 4.4. 

The FE models are developed for various crack sizes between 1 to 10 mm. Table 4.2 presents 

different crack sizes used to provide training, verification, and test data. According to Table 4.2, 

all stress, strain, and displacement results from elastic and elasto-plastic FE models in the presence 

of ten, six, and three different crack sizes are used as the training, verification, and testing datasets, 

respectively. The structure of input and output stress data used as training data in order to train the 

ANN model to predict elasto-plastic stress fields are shown in Figure 4.7. 𝜎𝑖𝑗
𝑛,𝑠

 is used as the 

notation to show input and output data matrices in Figure 4.7. The subscript i and j refers to the 

location of stress component in the stress tensor. The first superscript “n” refers to the number or 

order of the dataset in the input and output matrices. Finally, the second superscript “s” refers to 

the state of the material as elastic or elasto-plastic in the FE analyses. The letter “e” and “a” are 

employed to refer to the elastic, and elasto-plastic states, respectively. The same notation and the 

same superscripts are used in the case of strain and displacement, respectively, in Figure 4.8- 

Figure 4.10. 

FE analyses for 25 load increments, and 10 different crack sizes have been performed to provide 

training datasets. It means training input and output matrices have 480000 (4 × 480 × 25 × 10) 

numerical data points considering that each element has 4 GPs, the chosen area (see Figure 4.11) 

has 480 elements. 
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Figure 4.7 Structure of input and output data array for elasto-plastic stress prediction. 

 

Figure 4.8 Structure of input and output data array for elasto-plastic strain prediction. 

 

Figure 4.9 Structure of input and output data array for elasto-plastic displacement prediction. 
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Figure 4.10 Structure input and output data array for elasto-plastic displacement derivative prediction. 

Table 4.2 ANN datasets for a range of different crack sizes. 

Type of data Crack size (mm) 

training data 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 

 verification data 1.5, 3.5, 4.5, 6.5, 7.5, 9.5 

testing data 
2.5, 5.5, 8.5 (used in section 4.3.2) 

1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2 (used in section 4.3.3) 

 

Figure 4.11 Gridding used in the contours based on GPs. 

The input and output data structure for verification datasets have been generated in a similar 

manner and fed to the ANN algorithms. Verification stress data has a size of 288000 

(4 × 480 × 25 × 6) numerical data points. The training datasets to train the ANN in order to 

predict elasto-plastic strain and displacement fields around the crack tip can be organized by using 

the same approach as shown in Figure 4.8- Figure 4.9. Since the FE models are developed based 

on plane strain condition. Therefore, strain data has three (corresponded to the three non-zero 

independent strain components) and displacement data has two displacement quantities 
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considering two degrees of freedom for each nodal displacement. The displacement components 

are extracted from the nodes of elements and the stress and strain components are extracted from 

the GPs. It means the size of strain training datasets has also 4880000 data points similar to stress 

data (See Figure 4.8). However, the size of displacement training data has 134250 

(537 × 25 × 10) data points in which the value of 537 corresponds to the number of nodes in the 

selected data area shown in Figure 4.11.  

The 𝐽-integral value is a function of stress, strain and displacement components as expressed in 

Eq. (4.5). However, displacement components are not directly employed in Eq. (4.5), contrary to 

the stress and strain components. The derivative of displacement components with respect to the 

(x) as a coordinate axis is required to determine the 𝐽-integral value. With this in mind, two 

different approaches are taken to calculate the derivative of displacements. First one is based on 

elastic and elasto-plastic displacement fields around the crack tip. It means an ANN is trained 

based on the values of displacement components, as shown in Figure 4.9. One may realize that if 

this approach is employed to determine 𝐽-integral based on ANN predictions, the accuracy of 

calculated 𝐽-integral may be comprimised. The reason is attributed to the fact that the error of the 

predicted displacement field by the ANN model is magnified by the numerical error for calculation 

of the displacement derivative. To overcome that problem, another approach can be adopted. As 

for the second an ANN model can be trained by using the derivative of displacement data rather 

than the displacement data. It means that the derivative of displacement in elastic and elasto-plastic 

states can be used as the input and output of the network, respectively, as shown in Figure 4.10. 

The number of hidden layers, number of neurons, learning rates, and other essential 

hyperparameters to train all three ANNs are given in Table 4.3. The initial number of neurons in 

each hidden layer was chosen as 256. Then that number was increased to 512 and 1024 and so on 

until the acceptable accuracy was achieved. Learning rate is considered as a tuning hyperparameter 

during the optimization algorithm that specify the step size at each iteration or epoch while 

approaching a minimum of loss function. That being said, a relatively larger learning rate decreases 

the training time significantly. However, the optimum values of weights and biases may not be 

determined if the learning rate is too high. 

Table 4.3 Description of different hyperparameters to train the ANNs. 

ANN model 

Num. of 

input 

variable 

Num. of 

hidden 

layers 

Num. of 

neurons 

in 1st 

hidden 

layer 

Number 

of 

neurons 

in 2nd  

hidden 

layer 

Activation 

function 

in 1st  

hidden 

layer 

Activation 

function 

in 2nd  

hidden 

layer 

Learning 

rate 

Stress 4 2 1024 512 relu relu 1e-4 

Strain 3 2 1024 512 relu relu 1e-5 

Displacement 

1st 

approach 
2 2 1024 512 relu relu 

1e-8 

2nd 

approach 
2 2 1024 512 relu relu 

1e-4 
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In the present study, all of the ANN models were initially trained by using learning rate values of 

1e-1, 1e-2, 1e-3, and so on until a good acceptable accuracy was achieved. In other words, the 

learning rate(s) are chosen in such a way that the reducing of MSE and/or increasing of accuracy 

are acceptable in terms of prediction accuracy and computation time. The present ANN-based 

modeling approach can establish the relationships between the hypothetical elastic stress, strain, 

and displacement fields of the cracked body in elastic state with actual elasto-plastic corresponding 

components. With having such ANNs in hand, only a linear and relatively simple FE analysis 

rather than a complex and computationally expensive non-linear FE analysis is required to 

determine elasto-plastic stress, strain, and displacement fields around the crack tip. Such ANNs 

can be employed in various applications such as 𝐽-integral calculation, as in the present study. In 

addition to crack geometries, the present approach can be also applied to notches, micro notches 

and crack propagation modeling for different engineering applications. The present study also aims 

to shed light on calculating cyclic 𝐽-integral under cyclic loading using the same approach for a 

future study. The present approach can be extended to modeling fatigue crack growth on the basis 

of the cyclic 𝐽-integral. 

4.4. Results and discussion 

The 𝐽-integral results predicted by the developed in-house model based on the EDI method, are 

compared against results obtained from the model developed by Wang et al. [81] and results of 

built-in functionality of ABAQUS to verify the accuracy of the in-house model in section 4.3.1 for 

calculating the 𝐽-integral. Elasto-plastic stress, strain, displacement, and derivative of 

displacements fields in the vicinity of the crack tip predicted by the developed ANN models are 

compared with corresponding results obtained from the elasto-plastic FE analysis in section 4.3.2 

to verify the prediction accuracy of ANN models to determine stress, strain, displacement, and 

derivative of displacements fields. Finally, 𝐽-integral values calculated based on the ANN 

predicted stress, strain and displacement results are compared against 𝐽-integral results obtained 

from elasto-plastic FE analysis to verify the proposed modeling approach to compute the 𝐽-integral 

as an EPFM parameter in section 4.3.3. 

4.4.1. J-integral based on Finite Element Analysis and the in-house Equivalent 

Domain Integral model 

𝐽-integral results predicted by the EDI-based in-house model are compared to the conventional 

method (i.e. Abaqus built-in functionality) and the original EDI method developed by Wang et al. 

[81] for 10 different load levels in the range of 1 to 10 KN as shown in Figure 4.12. The dashed 

blue, dotted green and solid black lines represent the 𝐽-integral results obtained from the EDI-

based in-house model, the conventional method and the original EDI method respectively. All of 

the FE parameters used in the original EDI method [81] are the same as the ones employed in the 

present study except for the mesh size and pattern. However, the EDI method is considered as a 

mesh-independent method [102]. Therefore, different mesh size and pattern are not deemed to 

have significant effects on the calculated 𝐽-integral results. 
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Figure 4.12 Comparison of J integral results under monotonic load. 

Figure 4.12 shows that all three 𝐽-integral calculation methods are in a good agreeement since all 

three 𝐽-integral curves almost collapse onto each other. Figure 4.13 presents an investigation on 

the effect of mesh size on calculated 𝐽-integral. The solid black line shows the results of Wang et 

al. model with the mesh size of 0.004 mm around the crack tip. Purple and blue dash dotted lines 

present the results of in-house model with the element size of 0.05 and 0.1 mm, respectively. The 

calculated 𝐽-integral curves in Figure 4.13 confirm that different mesh sizes do not have any 

considerable effects on the results. 

The present approach does not rely on the built-in functionality of ABAQUS. Because the 

developed in-house model can be employed in the ABAQUS FE package as the post-processing 

model in addition to the Python IDLE in order to calculate 𝐽-integral on the basis of ANN stress, 

strain and displacement predictions. Applying the built-in functionality of ABAQUS to determine 

𝐽-integral based on ANN models is not time-efficient. Furthermore, the built-in functionality of 

ABAQUS is not applicable to determine cyclic 𝐽-integral under cyclic loading. Although in the 

current study, the cyclic 𝐽-integral is not considered, the present authors plan to extend the current 

modeling approach to predict the cyclic 𝐽-integral for various cracked bodies under cyclic loading 

conditions. 
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Figure 4.13 The effect of mesh size on the J-integral calculation. 

 

4.4.2. ANN predicted stress, strain, and displacement fields 

In this section, ANN predicted stress, strain and displacement fields of the test data in Table 4.2 

are presented. One of the most common problem of training ANN models is the occurrence of 

overfitting. There is a significant number of hyperparameters in the ANN structures (see Figure 

4.6), which can be fitted and tuned in such a way underlying patterns between input(s) and 

output(s) can be learned. Overfitting problem is described as once the hyperparameters are chosen 

in such a way that the ANN only produce good results for training dataset, however it shows a 

relatively high error when it comes to other dataset such as validation/verification and testing 

datasets. The accuracy and the MSE values for training and validation datasets for stress and strain 

ANNs are presented in Figure 4.14a) and Figure 4.14b), respectively, to investigate the absence of 

such problem in the present study. ANN models encounter overfitting when the accuracy or the 

MSE values of training and validation dataset start to diverge after a number of epochs during the 

training process. However, high accuracy of ANN predictions (approximately 98%) for training 

and validation data in these figures shows that ANNs for stress and strain generalize well from the 

training dataset to the validation dataset. The same behaviour has been observed in the case of 

displacement and derivative of displacement data. Furthermore, the developed ANN models are 

also tested by testing/unseen data (see Table 4.2), which have not been used during the training 

process to ensure the absence of overfitting in the present study. One of the differences between 

Figure 4.14a) and Figure 4.14b) is the number of epochs required to achieve the minimum MSE 

or loss function.  
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Figure 4.14 Accuracy and MSE trends for training and validation datasets during training the ANN model to predict: 

a) stress distribution, b) strain distribution. 

Since the learning rate for strain distribution is significantly smaller than that for stress distribution, 

the number of epochs for strain distribution is approximately five times more than that in the case 

of stress distribution. A well-trained ANN model is capable of predicting the stress, strain, and 

displacement fields with good accuracy for any crack sizes that have not been used during the 

training and verification stages of ANN model(s). Therefore, the ANN predicted results only for 

testing data are discussed in this section. The crack tip is located at the origin of the coordinate 

system (x=y=0) for all result contours presented in this chapter. As previously discussed, the 

number of datasets in the case of stress and strain fields in Figure 4.11 corresponds to the number 

of GPs but not the number of nodes. The comparison of ANN predicted elasto-plastic 𝜎11 stress 

distributions around of the crack tip with those results obtained from the elasto-plastic FE analysis 

is shown for the crack size of 8.5 mm under the force of 20 KN in Figure 4.15. 25 load increments 

have been used to reach the peak loading point of 20 KN. The stress and strain components in all 

incremental points of the load are required to determine strain energy in Eq. (4.5). However, due 

to the amount of the large datasets for all 25 load increments, only the results of the last load 

increment (25 out of 25) is presented in Figure 4.15. The prediction error of stress components 

between ANN model and elasto-plastic FE analysis is defined as the percentage of error (POE) to 

quantify prediction errors as expressed in Eq. (4.8). 

𝑃𝑂𝐸(%) =
𝜎𝑖𝑗
𝐴𝑁𝑁 − 𝜎𝑖𝑗

𝑒𝑙−𝑝𝑙 𝐹𝐸𝑀

𝜎𝑖𝑗
𝑒𝑙−𝑝𝑙 𝐹𝐸𝑀

× 100 (4.8) 

Figure 4.15a) and Figure 4.15b) show that the ANN model can accurately predict the first 

component of stress tensor 𝜎11 field. In addition, Figure 4.15c) shows that prediction error values 

are approximately ±10% range which is deemed to be acceptable.  As shown in Figure 4.15c), 

only a small number of GP points, behind the crack tip have error values greater ±10%. However, 

the POE is less than ±5% in most elements around the crack tip. Figure 4.16- Figure 4.17 present 

the second and third components of stress tensor (𝜎22, 𝜎33) around the crack tip. The POE for the 

ANN predictions is approximately between -12 to 8% and -8 to 6% for 𝜎22 and 𝜎33 stress 

components, respectively. Only an ignorable number of locations (GPs) show POE values higher 

than -12% or 8%. Figure 4.15- Figure 4.17 show that the stress distributions of normal stress 

components predicted by the ANN are in a good agreement with elasto-plastic FE analysis results. 

Figure 4.18 shows results of shear stress (𝜎12) for ANN and elasto-plastic FE models. 
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Figure 4.15 𝜎11 stress field for a=8.5 mm, F=20 KN a) ANN prediction, b) FE results, c) prediction error 



81 
 

 

 

 

Figure 4.16 𝜎22 field for a=8.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.17 𝜎33 field for a=8.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.18 𝜎12 field for a=8.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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The POE values for shear stress (𝜎12) in Figure 4.18c) are in the range of ±60%, which is 

significantly higher than the ones in the case of normal stress components (Figure 4.15- Figure 

4.17). However, those relatively high POE values belong to narrowly localized points along 

approximately ± 45 degrees of the crack axis (see Figure 4.18c)). According to the shear stress 

distribution in Figure 4.18a) and Figure 4.18b), those high stress locations correspond to relatively 

high stress gradient locations. In addition, the area above the crack axis is under the positive shear 

stress and the area below that is under the negative shear stress. However, the contours are 

symmetric in the case of all three normal stresses. With all these in mind, the number of training 

data in the case of shear stress component is almost half of the data in the case of normal stresses 

because of symmetry conditions. The accuracy of ANN models in the case of shear stress can be 

increased by introducing more crack sizes as the training data or increasing the number of 

increments in applications where higher accuracy is required. Figure 4.18c) shows that the POE 

values in the vicinity of the crack tip where 𝐽-integral should be determined is approximately in 

the range of ±15, which is acceptable for the purpose of this study. Figure 4.19 shows the second 

stress component 𝜎22  for the load increment 15 out of 25. The accuracy of the ANN model for the 

increment of 15 is almost the same as the last increment of 25 previously discussed. Almost the 

similar accuracy for all increments has been observed in all prediction quantities including stress, 

strain, displacement, and derivative of displacement fields. Therefore, only the last increment 

results of strain, displacement, and derivative of displacement are discussed in the following parts 

even although the ANN models can predict stress, strain, and displacement fields for all load 

increments between 0 to 20 KN. It should be pointed out that the learning rate in the case of stress 

predictions has been chosen as 1e-4 as shown in Table 4.2. According to the high accuracy of 

ANN models shown in Figure 4.14 for training and validation data and prediction results for testing 

data in Figure 4.15 to Figure 4.18, the chosen learning rate is considered to be small enough. Figure 

4.20 shows the first strain component, 𝜀11 field around the crack tip for the crack size of 5.5 mm 

(testing data). The accuracy of the ANN model is in the range of-15 to +10% except for two GPs 

shown with the dark blue color with a POE value of approximately -30% behind the crack tip in 

Figure 4.20c). Figure 4.21 presents the values of the second component of the strain tensor (𝜀22). 
The POE values are between -5 to 15% except for only two GPs with 20% of POE shown with 

dark red in the error contour of Figure 4.21c). 
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Figure 4.19 𝜎22 field for a=8.5 mm, F=20 KN, and increment 15. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.22 shows the calculated shear strain (𝜀12) fields around the crack tip for ANN and FE 

models in Figure 4.22a) and Figure 4.22b), respectively. The accuracy of the ANN model is almost 

in the POE range of -4 to +6%. Similar to the shear stress results in Figure 4.18, high POE values 

correspond to local narrow bands along direction of ±45 degrees with respect to the crack axis. 

The learning rate in the case of strain distribution is 1e-5 which is one order lower than that of 

stress distribution. The reason is the fact that the values of strain is closer to each other and make 

a narrower range in comparison with the stress values. Although all of the data are normalized and 

are in the range of 0 to 1, the distribution of data between the 0 and 1 range may be different. It 

means the normal distribution of strain values has a narrower range than the one for the stress 

values. As expressed in Eq. (4.5), the first and second components of the displacement vector (𝑢1 

and 𝑢2) is required to determine the derivative of displacement (
𝑑𝑢1

𝑑𝑥
 and 

𝑑𝑢2

𝑑𝑥
) in order to calculate 

𝐽-integral. However, 
𝑑𝑢1

𝑑𝑥
 is equal to the first strain component 𝜀11 presented in Figure 4.20. 

Therefore only 𝑢2 and 
𝑑𝑢2

𝑑𝑥
 fields are discussed in the following parts. Figure 4.23 presents the 

second component of displacement field around the crack tip. The distribution of 𝑢2 is accurately 

predicted by the ANN model. However, the POE values for the 𝑢2 field are approximately in the 

range of -25 to +5%. The accuracy of the predicted displacement field by the ANN is lower than 

POE values obtained for stress and strain results. This can be attributed to the fact that training 

datasets in the case of displacement corresponds to the number of nodes, which is significantly 

less than the number of GPs used for stress and strain training datasets. The learning rate in the 

case of displacement distribution is 1e-8 which is noticeably smaller than that of stress and strain 

distribution. As discussed before, the reason is the closer data and narrower range of data in this 

case in comparison with the stress and strain distribution. The accuracy can be improved by 

increasing the number of load increments to provide larger training datasets. The same accuracy 

has been observed in the case of 𝑢1. However, although the POE values in the range ±15% are 

considered to be acceptable in the case of stress and strain fields, that is not acceptable in the case 

of the displacement field. The reason is that taking derivatives with a numerical approach imposes 

greater error(s) that can be accumulatively added to the error of ANN models. With this in mind, 

an ANN model is developed to directly determine the derivative of the second displacement 

component vector, as shown in Figure 4.10. The predicted 
𝑑𝑢2

𝑑𝑥
 is presented in Figure 4.24.  
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Figure 4.20 𝜀11 field for a=5.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.21 𝜀22 field for a=5.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.22 𝜀12 field for a=5.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.23 𝑢2 field for a=2.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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Figure 4.24 
𝑑𝑢2

𝑑𝑥1
 field for a=8.5 mm, F=20 KN, and increment 25. a) ANN prediction, b) FE results, c) prediction 

error. 
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The POE in that case is between -30 to +20. It should be noticed that only a few locations show a 

relatively high error, such as -30 or 20%. In most areas, the POE is between -15 to +10. The 

learning rate in this case is 1e-4. 

4.4.3. Predicted J-integral 

In this section, the 𝐽-integral results determined by using stress, strain, displacement and derivative 

of displacement predicted by the ANN models are compared with those results obtained from 

elasto-plastic FEMs. In Figure 4.25, the solid black curve shows the J-integral values determined 

by the in-house model based on the EDI method. The dotted green curve shows the J-integral 

values calculated by the built-in functionality of ABAQUS based on the conventional method (see 

Figure 4.5a)). The blue densely dashed line corresponds to the developed in-house model based 

on post-processing script implemented in ABAQUS. The red loosely dashed line shows the 𝐽-
integral calculation based on the ANN stress, strain, and displacement predictions. Finally, the 

yellow dash dotted line shows the results of 𝐽-integal based on the ANN stress, strain, and 

derivative of displacement. Figure 4.25 indicates 𝐽-integral values for the crack size of 18 mm 

under various load levels. The J-integral values calculated by using ANN predicted stress, strain, 

and displacement results shows unacceptable accuracy for relatively higher load levels.  That can 

be attributed to the fact that displacement is not directly used for the 𝐽-integral calculation in Eq. 

(4.5). Taking the derivative of predicted displacement values by the numerical methods based on 

shape functions induced high prediction errors in 𝐽-integral calculations. It is shown that the error 

increases with the increase of the load level. The 𝐽-integral values determined by using the stress, 

strain, and derivative of displacement predicted by ANN models present good accuracy. Figure 

4.26 shows the determined J-integral under 20 KN of loading for different crack lengths.  

According to Table 4.2, new crack lengths (1.2, 2.2, 3.2, …, and 9.2 mm) are considered as new 

testing data that have not been utilized during training and verification stages. The 𝐽-integral curves 

correspond to the built-in functionality of ABAQUS and the in-house model as the references are 

almost collapsed onto each other. The accuracy of  𝐽-intregral calculation based on ANN predicted 

stress, strain, and displacement responses is considered to be poor. This poor prediction can be 

attributed to high error(s) induced by to the numerical derivative of displacement. Since the load 

level in Figure 4.26 is 20 KN which is significantly higher than load levels (0 to 10 KN) in Figure 

4.25, the error of displacement and subsequently 𝐽-integral values are noticeably higher. It means 

𝐽-integral calculations based on stress, strain, and displacement fields predicted by ANNs are 

reliable only under relatively low load levels. However, only ANN models computing on stress, 

strain, and derivative of displacement should be employed in order to calculate 𝐽-integral value(s) 

in the case of relatively high load levels. Figure 4.26 show that the accuracy of determined 𝐽-
integral based on stress, strain, and derivative of displacement predicted by ANN is considered to 

be acceptable. 
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Figure 4.25 J-integral values with respect to the load level for the crack size of 18 mm. 

 

 

Figure 4.26 J-integral values with respect to the crack length under 20 KN of loading. 

4.5. Conclusion 

In the present chapter, ANN model(s) have been developed to predict elasto-plastic stress, strain, 

and displacement fields for a cracked body made of stainless steel (SS304) by only using 

hypothetical elastic stress, strain, and displacement results. The proposed ANN models have been 

verified by comparing results obtained from elasto-plastic FE analysis for various crack sizes. The 

stress, strain, and displacement fields in the vicinity of the crack tip determined by FE models are 

used to provide well-structured input and output datasets to train the developed ANN models. The 

stress, strain, and displacement fields obtained from FE models under elastic and elasto-plastic 

states are utilized as the inputs and outputs of the ANNs, respectively. The results showed that 

well-trained ANNs are able to predict the nonlinear relationships between the elastic and elasto-



94 
 

plastic states of the material in the presence of cracks with reasonable accuracy. Furthermore, the 

ANNs predicted elasto-plastic stress/strain and derivative of displacement fields are used in house 

model to efficiently determine the 𝐽-integral as an EPFM parameter. The present modeling 

approach shows that ANN model(s) are powerful and efficient methods to compute elasto-plastic 

stress, strain and displacement fields around of a crack tip and determine elasto-plastic 𝐽-integral 

by utilizing results of elastic FE analysis rather than complex elasto-plastic FE analysis. 
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5.1. Abstract 

This study aims to develop a new modeling framework to compute cyclic J-integral around a crack 

tip under elastic-plastic deformation state. The proposed modeling approach is based on the 

extension of authors' recent time-efficient J-integral computation method, which involves the 

integration of artificial neural networks (ANNs) with finite element (FE) analyses under 

monotonic loadings. The ANN-FE integration allows efficient and accurate prediction of elastic-

plastic stresses, strains and displacement fields from the linear elastic FE solution for a crack body 

under cyclic loadings. Cyclic stress, strain, and displacement fields around the crack tip of stainless 

steel (SS304) are determined by FE analyses under both elastic and elasto-plastic states. ANNs 

models are developed to establish the nonlinear relationship between the two states. As a result, 

the suggested approach can predict the elasto-plastic ∆𝐽 based on a time- efficient and linear FE 

analyses instead of a complicated elasto-plastic solution under cyclic loading. The results show 

that such an approach can accurately predict elasto-plastic cyclic ∆𝐽 while avoiding the complex 

computation of elastic-plastic deformation fields around the crack tip under cyclic loading. 

5.2. Introduction 

The fatigue life of components is mainly assessed by three different methods. First is the “crack 

initiation method,” considering the fatigue life as the number of cycles the component can tolerate 

before the nucleation of any crack. Such an approach can be either based on stress-life [3-5, 268] 

or strain-life [6-12]. Since almost all components have defects and cracks due to the fabrication 

processes, the crack initiation method is not theoretically defendable. However, it should be 

mentioned that the crack initiation method is used in many engineering industries where relatively 

high accuracy is not required. Second is the fracture mechanics approach, assuming the component 

already has the crack. Therefore, fatigue life is considered as the number of cycles that take the 

initial crack size to its final or critical size that causes the instantaneous fracture. Fracture 

mechanics characterizes the fatigue crack growth (FCG) rate based on a so-called driving force 

that accounts for controlling parameters affecting the crack propagation rate. That approach is 

either based on linear elastic fracture mechanics (LEFM) or elasto-plastic fracture mechanics 

(EPFM). LEFM mainly uses the stress intensity factor range (∆𝐾) to characterise FCG rate. The 

first and the most well-known ∆𝐾-based model is the Paris’ law [18] shows in Eq. (5.1): 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (5.1) 

where 
𝑑𝑎

𝑑𝑁
 is the FCG rate, and C and m are materials constants. Although Paris’ law explains the 

fundamentals of fracture mechanics, it has significant shortcomings. One of the most important 

ones is that Paris’ law cannot account for the mean stress or R-ratio, which is an important 

controlling parameter for the FCG rate. As a result, many researchers have tried to overcome that 

shortcoming. Such efforts are mainly based on the “crack-closure” concept and “unified 

approach”. Crack-closure concept, introduced by Elber [20] and further developed by Newman 

[21], briefly states that the plastic deformation zone behind the crack tip tends to close the crack. 

Newman suggested that such a closing parameter is the missing part in the Paris’ law and required 

to be quantified. The crack closure concept has received much interest and has been applied to 

characterize FCG rates in both the long crack (LC) and short crack (SC) regimes [24, 25, 27, 30-

32, 34, 36, 38]. Unfortunately, the crack closure-based models have many constants required to be 
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determined by complicated calibrations. In addition, noticeable limitations have been observed in 

the case of the SC regime [13]. On the other hand, the unified approach or two-parameter driving 

force models, firstly introduced by Walker [41] and further improved by Vasudevan and 

Sadananda [44], briefly states that the maximum stress intensity factor (𝐾𝑚𝑎𝑥) is required to be 

employed as the driving force in addition to the (∆𝐾). Unified approach has been received many 

modifications. However, one of the most recent and prominent ones is suggested by Noroozi et al. 

[46-48] as the UniGrow model. The UniGrow model shown in Eq. (5.2) can successfully determine 

the FCG rate for the LC regime and account for the missing effect of the R-ratio [48]. 

𝑑𝑎

𝑑𝑁
= 𝐶[(𝐾𝑚𝑎𝑥,𝑡𝑜𝑡)

𝑝
(∆𝐾𝑡𝑜𝑡)

1−𝑝]
𝛾

 (5.2) 

Since the UniGrow model has shown a significant improvement in LEFM, it has been applied in 

many cases [55, 56]. Unfortunately, the UniGrow model cannot account for the SC regime [56]. 

The main reason for the limitations of both crack closure-based models and two-parameter driving 

force models is that ∆𝐾 is a LEFM parameter and cannot account for the plastic deformation zone 

around the crack tip. Plastic deformation zone around the crack tip under low stress levels, brittle 

materials, and in the presence of long cracks can be ignored. However, in the presence of relatively 

large-scale plasticity (e.g., in the case of the SC regime), an EPFM is needed. One of the most 

well-known EPFM parameters is J-integral introduced by Rice [79]. Dowling and Begeley [82] 

and Lamba [83] suggested that the J-integral can be used under cyclic loading and introduced ∆𝐽. 
Dowling and Begeley suggested that the ∆𝐾 in Eq. (5.1) can be replaced by ∆𝐽 as an EPFM 

parameter. J-integral is the potential energy density release rate with respect to the crack extension 

under elastic state [79]. Tanaka [80] suggested that the ∆𝐽 can be defined as a measure of energy 

dissipation to the heat around the crack tip during one cycle under elasto-plastic state. ∆𝐽- based 

models have received many interests to characterise FCG rate in both the LC and SC regimes [86-

88]. The application of ∆𝐽-based models in the SC regime has been shown that such EPFM 

parameter has the potential to successfully account for SC regime as well [13, 86-88]. J and ∆𝐽 can 

be determined based on either conventional method or more recent suggested method as equivalent 

domain integral method (EDI). Since it is possible to avoid dealing with the vicinity of the crack 

tip in EDI method, that approach has been received many interests by researchers [96-100]. ∆𝐽 can 

be determined by analytical solution, experimental procedures, and finite element (FE) analyses 

[81]. Analytical and experimental techniques are limited to specific geometries [81]. On the other 

hand, FE analyses can be generalized for almost all of the geometries and cases [81, 91-93]. 

Unfortunately, the application of ∆𝐽 in the characterization of FCG rate has been reported 

challenging and time-consuming [81, 89, 90]. Although EDI has facile the application of ∆𝐽, it is 

still considered a complex and significantly time-consuming approach to characterize FCG rate by 

means of ∆𝐽-based models in comparison with ∆𝐾-based models. The reason is that a basic and 

straight-forward linear analyses is required to utilize ∆𝐾 for FCG characterization. However, a 

nonlinear and complicated elasto-plastic analysis is needed to determine elasto-plastic stress, strain 

and displacement fields around the crack tip and subsequently determine ∆𝐽 based on those 

components [81].  

The application of machine learning (ML) algorithms has spread in almost every fields in the 

recent years due to their promising potential to overcome many unsolved problems. Subsequently, 

those algorithms have received great interests among researchers to assess fatigue life of 

components and elasto-plastic mechanics. Any algorithm that is capable of detecting pattern(s) 

between the inputs and output(s) of a given dataset and subsequently establishing the 
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relationship(s) between them can be called an ML algorithm. One of the most well-known and 

extensively used ML algorithms is the neural network (NN). NN algorithms can be divided into 

artificial neural networks (ANNs), recurrent neural networks (RNNs), and convolutional neural 

networks (CNNs). ANNs have shown a noticeable potential to extract any pattern, nonlinear 

relationships included, through a given dataset. ANNs have been employed in different areas, such 

as material sciences [306-308], and solid mechanics [258, 259]. Since the FCG rate is a 

complicated function of many controlling parameters (e.g., mean stress, crack length, 

microstructure, mechanical properties of the material, geometry of specimen), ANN algorithms 

have been extensively used to reveal such complex functions. The majority of such researchers 

considered the FCG rate as the output and one or a few main controlling parameters as the inputs 

to characterize the FCG rate. For instance, Mohanty et al. [197] collected 195 experimental FCG 

rate data to investigate the effect of R-ratio on the FCG rate for aluminum alloys. The R-ratio, SIF 

range, and the maximum of SIF were chosen as the inputs. Subsequently, the FCG rate was 

selected as the output. The predictions of the suggested ANN algorithm showed an error of less 

than 5%. Mohanty et al. [200] used experimental FCG data to study the influence of mixed mode 

(I and II) overload on FCG rate for 7020 T7 and 2024 T3 aluminum alloys. The predicted residual 

fatigue life by the developed ANN model was reported to be in good agreement with the 

experimental data. Haque and Sudhakar [205] developed an ANN model to characterize corrosion- 

fatigue crack growth rate of dual phase (DP) steels. The input and output of the ANN model were 

SIF range and FCG rate, respectively. The results of predictions were in a good agreement with 

the experimental data. Similar researches can be found in the literature [212]. Mortazavi and Ince 

[298, 299] developed different ANNs to characterize FCG rates for both the SC and LC regimes 

for the first time. The experimental FCG rate data of Ti-6Al-4V titanium and 2024-T3 and 7075-

T6 aluminum alloys were used to train the ANN models. The prediction results were in good 

agreement with the experimental data. Himmiche et al. [300] compared two types of ANNs (ELM 

and RBF-ANN) to characterize FCG rate in the SC regime. The prediction results showed a high 

potential of ANNs in the characterization of FCG rate even in the SC regime. 

The application of ANNs has been proliferating in elasto-plastic mechanics [258, 259, 263, 264, 

309]. The following reviewed literatures in the field of elasto-plastic mechanics should be 

distinguished as two different categories. First is the usage of NNs to establish the stress-strain 

behavior of material under elasto-plastic state. In other words, the input and output of NNs are the 

strain data and stress data, respectively. As a result, the aim of NNs application is detecting a 

function like 𝑓 in Eq. (5.3). The superscript a refers to the actual elasto-plastic state. One may 

realize that in that application f is similar to the constitutive equations. Second is the application 

of NNs to establish the relationship between hypothetical elastic and actual elasto-plastic response 

of materials under loading. That being said, the hypothetical elastic stress and/or strain data are 

assigned as the input and the actual elasto-plastic stress and strain data are assigned as the output 

of the model. In this case, the aim is revealing a function like “g” in Eq. (5.4). The letter “e” refers 

to hypothetical elastic state. 

𝜎𝑎 = 𝑓(𝜀𝑎) (5.3) 

(𝜎𝑎, 𝜀𝑎) = 𝑔(𝜎𝑒 , 𝜀𝑒) (5.4) 

Burghardt et al. [260] developed an ANN model to establish the relationship between elastic and 

elasto-plastic stress and strain in notch roots under uniaxial and multiaxial proportional loading. 

The results showed a noticeable potential for the suggested purpose. Kazeruni and Ince [261] 
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proposed the similar approach to predict the elasto-plastic stress-strain behavior of various 

materials based on their elastic response through an ANN algorithm. The suggested method 

showed a significant capability to predict the local elasto-plastic stress and strain in different 

positions of notch roots. Zhang and Mohr [262] suggested application of ANNs to detect the 

correlation of stress and strain under elasto-plastic state and isotropic hardening instead of 

constitutive equations. The results have been compared with the Von-Mises equation and 

promising agreement was observed. Huang et al. [310] performed a study to compare the potential 

of NNs with piecewise linear functions, radial basis functions, and radial basis function networks 

in order to detect the stress-strain behavior of  materials. The observations showed that the 

application of NNs exceeds the other methods.  

In addition to the ANNs, RNNs and CNNs have been applied for fatigue cracks and elasto-plastic 

mechanics. Gong et al. [311] used an RNN algorithm to study the effect of stop-hole diameters 

and loading angles on fatigue life and crack path under mixed-mode cyclic loading (mode I and 

II). The results were reported as encouraging to apply RNN algorithms for similar purposes. Zhang 

et al. [119] developed CNN models to estimate the fatigue life of components made of 316 

austenitic stainless steel under fatigue, creep, and fatigue-creep conditions. The results were 

reported to be successful. Kamiyama et al. [304] suggested CNN algorithms to predict the 

development of fatigue cracks in thin metal films after 2000 cycles. The results showed a 

noticeable accuracy. Mozaffar et al. [265] compared the application of ANNs and RNNs to 

establish the path-dependent stress-strain relationship. The results showed that RNNs are superior 

from ANNs in that case. However, the number of data to train an RNN is dramatically larger than 

the one required for ANN training. In a similar study, Tancogne-Dejean et al. [266] and Wu et al. 

[267] developed RNNs to model path-dependent plasticity for the case of heterogenous materials. 

RNNs and CNNs can be specified as higher levels of NN algorithms than ANN. However, ANNs 

are the most extensively used NN algorithms for fatigue life estimation [113]. One of the most 

important reasons for that is attributed to the fact that ANNs are more efficient and more 

straightforward to be applied. Since the primary goal of the present approach is to propose a time-

efficient and facile method to determine ∆𝐽, ANN has been selected over RNN and CNN. A 

comprehensive review of NN applications for fatigue modeling can be found in the literature [113]. 

Considering the literature review discussed in the present section, employing a proper driving force 

like ∆𝐽 is vital to account for relatively large plastic deformation near the crack tip for FCG 

characterization. However, the application of ∆𝐽 has been reported to be difficult and dramatically 

time-consuming regarding the required elasto-plastic analysis. On the other hand, the application 

of ANNs for fatigue modeling has been reported very promising. The authors [309] recently 

suggested a time-efficient approach to determine the J-integral. The authors verified that robust 

ANNs can establish the relationship between the elastic and elasto-plastic response of the material 

around the crack tip under monotonic loading. As a result, J-integral can be calculated through an 

elastic FE analysis rather than complicated elasto-plastic analyses. In this chapter, the authors 

apply the same approach under cyclic loading in order to determine ∆𝐽 through an elastic FE 

analysis. The good agreement between predicted ∆𝐽 by ANN models and the ones calculated based 

on elasto-plastic FE analyses shows that the suggested approach facile the application of ∆𝐽 for 

FCG characterization.  
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5.3. Modeling approach 

In the present work, a time-efficient method is suggested to calculate ∆𝐽 for a 2D cracked body 

specimen. In the first step, two separate elastic and elasto-plastic FE analyses have been developed 

to determine elastic and elasto-plastic stress, strain, and displacement fields around the crack tip 

under cyclic loading. The developed models have been operated for different crack sizes to provide 

a sufficiently large and comprehensive dataset. The dataset in the present study refers to the 

combination of elastic stress, strain, and displacement fields (𝜎𝑖𝑗
𝑒 , 𝜀𝑖𝑗

𝑒 , 𝑢𝑖
𝑒) as the input and their 

corresponding actual elasto-plastic stress, strain, and displacement fields (𝜎𝑖𝑗
𝑎 , 𝜀𝑖𝑗

𝑎 , 𝑢𝑖
𝑎) as the output. 

Then the dataset was divided into training, validation, and testing data. In the second step, three 

separate ANN models are developed to establish the relationship between the hypothetical elastic 

and actual elasto-plastic stress, strain, and displacement fields in the vicinity of the crack tip. The 

training and validation data in the first step were employed to train the ANN models.  In the third 

step, an in-house model was developed to calculate ∆𝐽 based on the EDI method as a function of 

stress, strain, and displacement fields around the crack tip. In the last step, the developed EDI 

method has been used to calculate ∆𝐽 based on the elasto-plastic stress, strain, and displacement 

fields predicted by ANN models and calculated by elasto-plastic FE analyses for the testing data. 

Subsequently, the values of ∆𝐽 based on the two approaches have been compared. The first two 

steps are schematically shown in Figure 5.1, and the two different approaches are schematically 

shown in Figure 5.2. Figure 5.2 illustrates how the present approach avoids dealing with complex 

non-linear elasto-plastic analyses and monotonic and cyclic plastic deformation zones around the 

crack tip for the calculation of elasto-plastic ∆𝐽. It should be mentioned that the elasto-plastic FE 

analyses should be operated for particular crack sizes in order to train the ANN models. However, 

after the training, only elastic analyses are required to determine ∆𝐽 for any crack length. All of 

the developed models are discussed in detail in the following sections. 

 

Figure 5.1 Schematic of the first two steps of present approach. 
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Figure 5.2 Schematics of conventional and present approach for ∆𝐽. 

 

5.3.1. Finite element modeling 

The elastic and elasto-plastic FE analyses, which aimed to calculate the stress, strain, and 

displacement fields in the vicinity of the crack tip, were conducted using the Abaqus commercial 

FE software package. FE models were developed using the Abaqus script file in Python to 

efficiently extract and process numerical data and easily operate the models for different crack 

sizes. The script file includes various parts such as designing the compact tension (CT) notched 

specimen, specification of material properties, assigning loads and boundary conditions, and mesh 

generation. In addition, the script file contains the extraction of FE models’ results from the output 

databases (ODB) file generated by Abaqus. That being said, the script file also contains post-

processing code to extract stress, strain, and displacement components of specific elements and 

nodes around the crack tip in the desired configuration for further use in ANN models. The 

structure of extracted data in order to feed to the ANNs is discussed in detail in section 5.2.3. The 

specimen dimensions, reference points (𝑃1 and 𝑃2), boundary conditions are schematically shown 

in Figure 5.3.  
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Figure 5.3 CT specimen dimensions, chosen area around the crack tip for data extraction, and nodes and GPs of 

elements. 

As shown in Figure 5.3, 480 (12×40) elements around the crack tip have been chosen to extract 

the data to train the ANN models. In addition, the nodes of elements and the (Gauss points) GPs 

are schematically shown in Figure 5.3. It is crucial to distinguish the nodes and the GPs due to the 

fact that displacement fields are extracted from the nodes and the stress and strain fields are 

extracted from GPs in a FE analysis. The material used in this study is the 304 stainless-steel with 

the module of elasticity, Poisson’s ratio, and yield stress of 195100 MPa, 0.267, and 206 MPa, 

respectively. The elastic-plastic model has been chosen as bilinear isotropic hardening. The 

specimen dimensions, material properties, mesh characteristics, reference points, and boundary 

conditions are kept the same as the FE model discussed in detail in section 4.2.1. The only 

difference between the present model in this chapter and the one discussed in the previous chapter 

is the loading conditions. As mentioned before, the authors investigate the proposed approach 

under monotonic loading in the literature [309], whereas this paper applies that under cyclic 

loading. The different cyclic loading conditions are specified in Table 5.1 and schematically shown 

in Figure 5.4. As shown in Figure 5.4, each loading half cycles has been divided to 50 increments. 

Since seven cycles of loading has been investigated in the present study, 350 (7×50) increments 

can be used to extract data to train the ANN model. As Wang et al. [81] and the current authors 

[309] investigated, 25 increments for each loading half cycle is adequate for accurate FE analyses. 

The number of increments is crucially essential to accurately calculate strain energy density (∆𝑊 

under cyclic loading and 𝑊 under monotonic loading). The adequate number of increments is 

discussed in detail in the previous chapter. In this chapter 50 increments have been chosen to 

increase the number of data and subsequently the accuracy of ANN models. 
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Table 5.1 Loading conditions 

Loading case 𝐹𝑚𝑖𝑛(kN) 𝐹𝑚𝑎𝑥(kN) R-ratio Number of 

cycles 

1 0.8 8.0 0.1 3 

2 1.47 7.33 0.2 3 

3 2.03 6.77 0.3 3 

4 2.51 6.29 0.4 3 

5 2 20 0.1 7 

 

Figure 5.4 Number of cycles and increments in the FE analyses. 

5.3.2. Determination of ∆𝐉 based on equivalent domain integral method 

∆𝐽 is a line integral in a 2D state that can be considered a surface integral according to Green’s 

theorem, as shown in Eq. (5.5). 

∆𝐽 = ∫(
𝜕∆𝑊

𝜕𝑥
−
𝜕

𝜕𝑥𝑗
(∆𝜎𝑖𝑗

𝜕∆𝑢𝑖
𝜕𝑥

))𝑑𝐴 (5.5) 

where dA is an infinitesimal area element, ∆𝑢 is the displacement vector corresponding to the 

maximum and minimum load under cyclic loading, ∆𝑊 is the difference between strain energy 

density corresponding to the maximum and minimum load under cyclic loading, and 𝑥 (𝑥1) and 𝑦 

(𝑥2) are the cartesian axes. The crack is parallel to the x-axis. Equation (5.5) refers to the 

calculation of ∆𝐽 based on the conventional method. However, it is possible to rewrite that equation 

based on the EDI method, as shown in Eq. (5.6). 

∆𝐽 = ∫ (∆𝜎𝑖𝑗
𝜕∆𝑢𝑗

𝜕𝑥
− ∆𝑊𝛿1𝑖)

𝜕𝑞

𝜕𝑥𝑖
𝑑𝐴

𝐴

 (5.6) 

where 𝛿 is Kronecker delta, and q is the weight function of coordinate axes. It should be pointed 

out that A in Eq. (5.5) corresponds to the area schematically shown in Figure 5.5a), whereas A in 

Eq. (5.6) is corresponded to the area schematically shown in Figure 5.5b). One may realize that 
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the privilege of the EDI method over the conventional method is avoiding dealing with the area 

relatively closer to the crack tip. One of the usages of such a method is that no extremely fine mesh 

is required around the crack tip to perform FE analyses. For a 2D problem, q has a value of one at 

the inner boundary and linearly decreases to 0 at the outer boundary. 

 

Figure 5.5 Different methods of ∆𝐽 calculation. A) Conventional method, b) EDI method, c) EDI method in a FEM-

based model [309]. 

The expansion of Eq. (5.6) can be written as follows: 

∆𝐽 = ∫ [(∆𝜎11
𝜕∆𝑢1
𝜕𝑥

+ ∆𝜎12
𝜕∆𝑢2
𝜕𝑥

− ∆𝑊)
𝜕𝑞

𝜕𝑥
+ (∆𝜎12

𝜕∆𝑢1
𝜕𝑥

+ ∆𝜎22
𝜕∆𝑢2
𝜕𝑥

)
𝜕𝑞

𝜕𝑦
]

𝐴

𝑑𝐴 (5.7) 

As mentioned earlier, Abaqus has been employed to perform the FE analyses. Since ∆𝐽 is defined 

based on the deformation theory of plasticity, the calculation of ∆𝐽 is not embedded as a built-in 

functionality in Abaqus. As a result, an in-house model has been developed to extract the results 

of FE analyses from ODB files and determine ∆𝐽 based on Eq. (5.7). The in-house model directly 

extracts ∆𝜎𝑖𝑗, 
𝜕∆𝑢1

𝜕𝑥
= ∆𝜀11. However, other parameters of Eq. (5.7): 

𝜕∆𝑢2

𝜕𝑥
, ∆𝑊, and 

𝜕𝑞

𝜕𝑥𝑖
 should be 

determined in the in-house model as another part of the post-processing in the Abaqus script file 

discussed earlier. It should be pointed out that the developed in-house model is developed by 

Python, so it can directly be employed to calculate ∆𝐽 based on the ANN predictions discussed in 

the following sections. Equation (5.7) shows that the ∆𝐽 is a function of stress, strain, and 

displacement field around the crack tip.  

5.3.3. Artificial neural networks models 

Artificial neural networks (ANNs) are a type of machine learning algorithms inspired by the 

structure and function of biological neurons in the human brain. They are used for various 

applications, including function approximation. As schematically shown in Figure 5.6, the basic 

structure of an ANN consists of an input layer, one or more hidden layers, and an output layer. 

Each layer contains one or more nodes, also called neurons. The input layer receives the input data, 

and the output layer produces the output. The hidden layers perform calculations on the input data, 

transforming it into a form that can be used by the output layer. Each neuron in an ANN receives 

input from other neurons or the input data, performs a mathematical operation on the input, and 

produces an output. The output of each neuron is typically passed through an activation function, 

which determines whether the neuron should fire or not. The activation function introduces 

nonlinearity into the model, allowing it to approximate complex functions. The value of each 
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neuron may be multiplied by a weight (𝑤) which is between 0 to 1. The higher value of the weight 

shows the greater influence of that neurons on the final output. Then the result may be added to a 

bias (b) and transferred to the activation function of the next neuron in the next hidden layer. The 

weights and biases of the connections between neurons are adjusted during training to minimize 

the difference between the actual output of the ANN and the desired output. ANNs can be used for 

function approximation by training the network on a set of input-output pairs. The network learns 

to approximate the underlying function that maps the input to the output. During training, the 

biases and weights in an ANN are updated using a process called backpropagation. 

Backpropagation is an optimization algorithm that adjusts the biases and weights to minimize the 

difference between the predicted output of the network and the actual output. The process begins 

with the forward pass, where the input data is passed through the network, and an output is 

produced. 

 

Figure 5.6 Schematic of developed ANN structure and the feeding dataset. 

This output is then compared to the desired output, and the difference between the two is calculated 

using a loss function. The backpropagation algorithm then works backwards through the network, 

calculating the contribution of each neuron and connection to the overall error. This contribution 

is then used to update the biases and weights in each neuron, using a technique called gradient 

descent. The gradient descent algorithm works by taking the partial derivative of the loss function 

with respect to each weight and bias in the network. The gradient gives the direction of the steepest 

ascent, so to minimize the loss function, the weights, and biases are updated in the opposite 

direction of the gradient. The size of the update is controlled by a learning rate, which determines 

how much to change the weights and biases at each iteration. If the learning rate is too high, the 

network may converge too quickly and fail to find the optimal solution. If the learning rate is too 

low, the network may converge too slowly and take too long to find the optimal solution. The 

backpropagation algorithm is repeated over multiple iterations or epochs until the error between 
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the predicted output and the desired output is minimized. At this point, the network has learned to 

approximate the underlying function that maps the input to the output and can be used to predict 

new data. Three different types of data are employed to develop a well-trained ANN model. 

Training data is the initial dataset used to train the neural network. It is used to teach the network 

how to map inputs to outputs, forming the basis of the network's knowledge. The training data is 

used repeatedly to adjust the weights and biases of the network until it achieves a desired level of 

accuracy. Verification data is used once the network has been trained on the training data. It is 

crucial to evaluate its performance on a separate set of data to ensure that it has not overfit to the 

training data. The validation data is used to fine-tune the hyperparameters of the network, such as 

the learning rate. This helps to prevent the network from overfitting to the training data and to 

improve its generalization performance. After the network has been trained and validated, it is 

evaluated on a separate data set called testing data. The testing data is used to evaluate the 

network's performance on new, unseen data and to estimate its generalization performance. This 

is an essential step in assessing the quality of the network's performance and determining whether 

it is ready for deployment.  

As discussed in the previous section, elasto-plastic stress, strain, and displacement fields are 

required to determine ∆𝐽. As a result, three separate ANN models are developed to predict those 

fields based on hypothetical elastic stress, strain, and displacement fields. Another possible 

approach would be training one ANN model to predict all three desirable fields. However, the 

determination of ∆𝐽 based on ANN predictions is only one application of machine learning 

algorithms in this field. Developing three distinguished ANN can be employed for other problems, 

such as when only stress, strain, or displacement is needed. In addition, relationships between 

stress and strain (constitutive equation) and strain and displacement (Kinematic rules) may assist 

a single ANN model for the present purpose. Developing three separate ANN models avoid 

making use of such relationships and merely results in the relationships between elastic and elasto-

plastic states. 

As shown in Figure 5.3, 480 elements around the crack tip have been chosen to extract the data in 

order to feed to ANN models. According to the element type used in the FE analysis, each element 

has four GPs. As shown in Figure 5.4, the FE analyses have 350 (7×50) increments. However, 

only the data corresponding to the 50 increments of the last loading half-cycle has been employed 

to feed to the ANN models. The reason is to evaluate the proposed approach to predict ∆𝐽 through 

the ANN models trained based on only the last cycle for the other cycles as well. The FE analyses 

under elastic and elasto-plastic states have been operated for 10, 6, and 12 different crack sizes to 

generate the training, validation, and testing data, respectively, as shown in Table 4.2. As a result, 

the dataset in the present study includes 960,000 (4𝐺𝑃 × 480𝑒𝑙𝑒𝑚𝑒𝑛𝑡 × 50𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 × 10𝑐𝑟𝑎𝑐𝑘 𝑠𝑖𝑧𝑒) 
data for stress and strain. Since the FE analyses have been operated based on plain strain condition, 

each GP has four components for stress and three components for the strain. It should be pointed 

out that the displacement data has been extracted from the nodes (not GPs). As a result, the number 

of training data for the case of displacement filed is 268,500. Three separate ANN models have 

been developed to predict elasto-plastic stress, strain, and displacement fields around the crack tip 

based on elastic ones. That being said, the elastic components of stress (𝜎11
𝑖,𝑒 , 𝜎22

𝑖,𝑒 , 𝜎33
𝑖,𝑒 , 𝜎12

𝑖,𝑒
), strain 

(𝜀11
𝑖,𝑒 , 𝜀22

𝑖,𝑒 , 𝜀12
𝑖,𝑒

), and displacement (𝑢1
𝑖,𝑒 , 𝑢2

𝑖,𝑒
) have been adopted as the input, and their 

corresponding elasto-plastic stress (𝜎11
𝑖,𝑎, 𝜎22

𝑖,𝑎, 𝜎33
𝑖,𝑎, 𝜎12

𝑖,𝑎
), strain (𝜀11

𝑖,𝑎, 𝜀22
𝑖,𝑎, 𝜀12

𝑖,𝑎
), and displacement 

(𝑢1
𝑖,𝑎, 𝑢2

𝑖,𝑎
) have been assigned as the out put of the ANN models. For instance, the ANN model 
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trained in the case of stress field has the input of (𝑋𝑖) and output (𝑌𝑖) as shown in Figure 5.6 and 

expressed in Eq. (5.8)-(5.9) as follows: 

𝑋𝑖 = (𝜎11
𝑖,𝑒 , 𝜎22

𝑖,𝑒 , 𝜎33
𝑖,𝑒 , 𝜎12

𝑖,𝑒) (5.8) 

𝑌𝑖 = (𝜎11
𝑖,𝑎, 𝜎22

𝑖,𝑎, 𝜎33
𝑖,𝑎, 𝜎12

𝑖,𝑎) (5.9) 

As mentioned earlier, the superscript 𝑖 in the case of stress varies between 1 to 960,00. However, 

that varies between 1 to 268,500 in the case of displacement. The superscript “𝑒” and “𝑎” refer to 

the elastic and actual elasto-plastic states, respectively. The format and the number of data for 

stress, strain, and displacement fields have been shown in Figure 4.7- Figure 4.9. As shown in Eq. 

(5.7), the derivative of displacement with respect to the coordinate axis is required to determine 

the ∆𝐽. As a result, the authors employed two different approaches to predict elasto-plastic 

displacement fields under monotonic loading in the literature [309] (Chapter 4). The first one, 

which has also been used in the present paper, is using the displacement fields under elastic and 

elasto-plastic as the input and output data for training the ANN model. The second one uses the 

displacement derivative under each state as the input and output data. The authors claimed that the 

accuracy of displacement prediction is lower than the ones in the case of stress and strain fields 

due to the smaller number of training data. If the first approach is applied, the error of displacement 

prediction will result in a higher error for the derivative of displacement. In other words, the error 

accumulatively increases through the sequence of steps as displacement predictions, taking 

derivative, and calculation of ∆𝐽. That is why the authors suggested the second approach in the 

previous study [309] (Chapter 4). However, in the present study (chapter), 50 increments (instead 

of 25 in the literature [309] (Chapter 4)) have been chosen to provide more data. As discussed in 

the result and discussion section, this number is large enough to provide adequate data even in the 

case of displacement fields. With this in mind, only the first approach has been employed in the 

present paper, and ∆𝐽 calculation can be conducted based on the displacement fields directly 

predicted by the developed ANN model. The number of hidden layers, the number of neurons in 

each hidden layer, activation functions in each hidden layer, and learning rates , loss function, and 

data preparation method of the developed ANN models are kept the same as the ones used in the 

proposed approach in the case of monotonic loading shown in Table 4.3. Keras with TensorFlow 

is adopted in order to train the suggested ANN model in the present study.  

5.4. Results and discussion 

The results of the present chapter can be discussed in three distinguished parts. The first part is 

verifying the in-house model in order to determine the ∆𝐽 around the crack tip based on the EDI 

method. The second part compares the stress, strain, and displacement fields predicted by 

developed ANN models with the ones determined by elasto-plastic FE analyses around the crack 

tip. The last part compared the ∆𝐽 values predicted by the suggested approach against those 

determined by the FE analyses under different loading conditions. 

5.4.1. Determination of elasto-plastic ∆𝐉 based on the in-house equivalent domain 

integral model 

In the present section, ∆𝐽 values determined by the developed in-house model are compared with 

the ones calculated by Wang et al. [81]. All of the FE analysis parameters used in the present study 

are the same as the ones utilized by Wang et al., except for the element size and pattern around the 
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crack tip. A detailed discussion has been presented in the literature [309] (Chapter 4) on the 

element size when it comes to the EDI method in the current approach. The main point of that 

discussion shows that implementing the element size of 0.1 mm and 0.004 mm around the crack 

tip results in the same ∆𝐽 values in the EDI method. The reason is the fact that the EDI method can 

be regarded as a mesh-independent approach [102]. As discussed earlier, the in-house model has 

been developed through Python and can be compiled as a post-processing calculation by Abaqus. 

The present in-house model has already been verified under monotonic loading in the literature 

[309] (Chapter 4). In the literature [309] (Chapter 4), the results of the in-house model have been 

compared with the results of Wang et al. [81] study and the built-in functionality of Abaqus, which 

can determine 𝐽-integral based on the conventional method under monotonic loading. Since the 𝐽-
integral is defined based on the deformation theory of plasticity, it cannot be determined during 

unloading. As a result, the built-in functionality of Abaqus is not able to determine the ∆𝐽 under 

cyclic loading. With all these in mind, the results of the in-house model is only compared with the 

ones of Wang et al. [81] under cyclic loading. The ∆𝐽 values as the results of present in-house 

model have been compared with the ones in the literature under four different R-ratio as shown in 

Figure 5.7. Figure 5.7a) to Figure 5.7d) are corresponded to the R-ratio of 0.1, 0.2, 0.3, and 0.4 

and the loading case 1 to 4 in Table 5.1, respectively. The difference between the results of the in-

house model and the results of Wang et al. is not higher than -6.2%, -4.6%, -2.5%, and 4.3% in 

Figure 5.7a) to Figure 5.7d), respectively. It should be pointed out that the loading conditions 1 to 

4 presented in Table 5.1 has been used in the study of Wang et al. [81]. 
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Figure 5.7 Comparison of ∆𝐽 values under cyclic loading for a) R=0.1, b) R=0.2, c) R=0.3, and d) R=0.4. 
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5.4.2. ANN predicted stress, strain, and displacement fields under cyclic loading 

In the present section, the ANNs predicted stress, strain, and displacement fields around the crack 

tip are compared with the ones determined through elasto-plastic FE analyses. As discussed earlier, 

three different types of data are used during the development of a well-trained ANN model: 

training, validation, and testing data. Since the primary purpose of developing an ANN model is 

to be applied for the unseen cases, only the results of testing data (for the crack size of 2.5, 5.5, 

and 8.5 mm) are discussed in this section. The percentage of error (POE) is used to quantify the 

accuracy of the developed models.  

As mentioned earlier, overfitting and underfitting are the most common problems in ANN 

development. Overfitting occurs when the model is too complex and is trained too well on the 

training data to the point where it memorizes the training data instead of learning the underlying 

patterns. As a result, the model performs well on the training data but poorly on new, unseen data. 

This can happen when the model has too many parameters or when the training data is too small. 

On the other hand, underfitting occurs when the model is too simple and is unable to capture the 

underlying patterns in the data. As a result, the model performs poorly on both the training data 

and new, unseen data. This can happen when the model is too constrained or when the training 

data is insufficient. A few ways exist to determine whether a trained model has overfitting or 

underfitting issues. High training accuracy but low validation accuracy, a significant difference 

between training and validation accuracy, and/or poor performance on new data are the signs of 

overfitting problems. On the other hand, low training accuracy, low validation accuracy, and/or 

poor performance on training and testing data are the witnesses of the underfitting issue for a 

trained model. The performance of all three trained ANN models for testing data is investigated in 

detail in this section. In addition, the behavior of increasing accuracy (decreasing the MSE) for 

both the training and validation data has been monitored during the training process to ensure the 

absence of those issues in the present study. Such monitoring has been shown in Figure 5.8 for the 

ANN model developed to predict the elasto-plastic stress field.    

 

Figure 5.8 Accuracy and MSE values during training for validation and testing data for training the ANN model to 

predict stress distribution. 

As shown in Figure 5.8, the accuracy (or MSE) graph for training and validation data are collapsed 

onto each other and reach a relatively high value (or low value) in the last epochs that guarantee 

the absence of overfitting and underfitting for the trained model. The same behavior has been 
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observed in the case of strain and displacement fields. There are two differences between Figure 

5.8 (under cyclic loading) and Figure 4.14a) (under monotonic loading). First is the number of 

required epochs to reach the minimum of MSE, which is 1000 epochs for cyclic loading (see Figure 

5.8) and 200 epochs for monotonic loading (see Figure 4.14a)). Second is the maximum accuracy 

which is 92 to 93% for cyclic loading and 98% for monotonic loading. The reason for the both 

differences is attributed to the fact that the number of data used in the case of cyclic loading is 

almost twice larger than the one used under monotonic loading. Also, predicting stress, strain, and 

displacement fields around the crack tip under cyclic loading is significantly more challenging for 

the ANN than predicting those under monotonic loading. The residual stress as the result of each 

cycle dramatically affects the stress, strain, and displacement fields of the next cycle, especially 

for the initial increments of each half-loading cycle. There is no such residual stress under 

monotonic loading. Figure 5.9 shows the stress field around the crack tip predicted by the 

developed ANN model and determined by elasto-plastic FE analysis for the crack size of 8.5 mm 

(as testing data) under loading case 5 described in Table 5.1 for the last increment. In all of the 

contours in the present paper, the crack tip is at the origin of the coordinate system, and the crack 

is parallel to the x direction. As shown in Figure 5.9a) and b), the developed ANN model can 

appropriately predict the distribution of 𝜎11 around the crack tip. Figure 5.9c) shows that the POE 

of the developed ANN model for this case is not beyond -20%. However, the POE of such 

relatively high error are corresponded to only a few GPs (e.g., two GPs approximately located at 

x=0.2 & y=0). However, the majority of POEs are less than -15%. Figure 5.10- Figure 5.11 show 

the 𝜎22 and 𝜎33 around the crack tip under loading condition 5 in Table 5.1 for the crack length of 

8.5 mm and the last increment. Figure 5.10a) and b) and Figure 5.11a) and b) show that the 

developed ANN model can properly predict the distribution of second and third components of the 

stress tensor. Figure 5.10c) and Figure 5.11c) show that the POE for the 𝜎22 and 𝜎33 is in the range 

of -10 to +6% and -14 to + 2%. As shown in Figure 5.10c) and Figure 5.11c), the relatively higher 

POE occurs at a small number of GPs. Figure 5.12 shows the capability of the developed model to 

predict the shear stress (𝜎12). Regarding Figure 5.12a) and b), the developed ANN model can 

predict the shear stress distribution around the crack tip. Figure 5.12c) shows that the POE, in this 

case, is between -25 to + 20%, which is relatively higher in the case of normal stresses in Figure 

5.9- Figure 5.11. Similar to the normal stresses, only the minority of GPs show relatively high 

POE close to -25 % or 20%. In addition, the positions having relatively higher POE show a 

particular pattern in the case of shear stress. As shown in Figure 5.12c), most GPs with relatively 

higher POE are located at the bisector of the first and fourth quadrant of the coordinate system. 

The reason is that those locations correspond to the maximum stress gradient in the case of shear 

stress. As a result, the number of data in that range of stress is smaller than the other ones. The 

other important point is that stress fields in the case of normal stresses are symmetric (the x-axis 

is the axis of symmetry). However, the sign of values is different in the case of shear stress. That 

being said, the number of data in the case of shear stress is half that of normal stresses. As a result, 

the accuracy is relatively lower for the shear stress. The other point is the difference between the 

accuracy of shear stress under cyclic loading (investigated in the present paper) and the one under 

monotonic loading (studied in the literature [309] (Chapter 4)). The highest POEs at the bisector 

of the first and fourth quadrant of the coordinate system are around ±60% under monotonic 

loading (see Figure 4.18c)). However, those values are around ±20% under cyclic loading. The 

reason is attributed to the fact that each loading half-cycle has been divided into 50 increments for 

cyclic loading, while the number of increments under monotonic loading was 25. As a result, the 

number of data available for training the ANN model is larger for the cyclic loading. 
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Figure 5.9 𝜎11 stress field for a = 8.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.10 𝜎22 stress field for a = 8.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.11 𝜎33 stress field for a = 8.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.12 𝜎12 stress field for a = 8.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Although stress prediction under cyclic loading is more challenging for the developed ANN model, 

the accuracy of the developed ANN model under cyclic loading is higher than the one under 

monotonic loading for the 𝜎12. It should be reminded that the accuracy of stress prediction under 

cyclic loading is lower than the one under monotonic loading if all of the components of the stress 

tensor and all of the GPs are taken to account (compare Figure 5.8 with Figure 4.14a)). As 

mentioned earlier, Figure 5.9- Figure 5.12 correspond to the last increment (increment 50) of the 

last cycle (cycle 7th). The same accuracy has been observed in the case of other increments. Figure 

5.13 shows the 𝜀11 field around the crack tip of 5.5 mm as a testing data and loading case of 5 in 

Table 5.1 for the last increment. According to the Figure 5.13a) and b), the distribution of 𝜀11 field 

has been accurately predicted by the developed ANN model. The POE in this case is between -20 

to +10 percent, as shown in Figure 5.13c). Only ignorable locations reach the relatively high POE 

such as -20% in Figure 5.13c). Figure 5.14 compares the 𝜀22 field predicted by the developed ANN 

model and determined by the FE analysis for the crack size of 5.5 mm under loading conditions 

depicted as case 5 in Table 5.1. Comparing Figure 5.14a) and b), the distribution of 𝜀22 field as 

the ANN prediction is in good agreement with the one determined by the elasto-plastic FE analysis. 

The range of POE for this case is between -10 and +15%, as shown in Figure 5.14c). Only three 

to four GPs show the POF higher than 10%. Figure 5.15 compares the prediction of the developed 

ANN model and the results of elasto-plastic FE results for the shear strain (𝜀12) under the same 

conditions as normal strains. The distribution of the shear stress field as the results of the ANN 

model and FE analysis are similar. The POE of the developed ANN model is between -12 to 8 %, 

which is acceptable for the present purpose. The relatively higher POEs are located in a particular 

pattern similar to the shear stress discussed earlier. Figure 5.13 to Figure 5.15 show that the 

developed ANN model can establish the relationship between elastic and elasto-plastic strain fields 

around the crack tip. Figure 5.13 to Figure 5.15 correspond to the last increment of loading in the 

last cycle as examples. Figure 5.16 shows the second component of the displacement vector around 

the crack tip for the crack length of 2.5 mm under the loading condition of case 5 in Table 5.1 for 

the last increment. The distribution of 𝑢2 field has been accurately predicted by the developed 

ANN model considering Figure 5.16a) and b). The POE of the ANN prediction is between -14 to 

6%, while only a few GPs show relatively higher errors. The important point is that the range of 

POE in Figure 5.16c) is almost half of the one in the case of monotonic loading in Figure 4.23c). 
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Figure 5.13 𝜀11 stress field for a = 5.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.14 𝜀22 stress field for a = 5.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.15 𝜀12 stress field for a = 5.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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Figure 5.16 𝑢2 stress field for a = 5.5 mm and increment 50 and cycle 7th, loading case 5, a) ANN prediction, b) FE 

results, c) prediction error. 
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As mentioned earlier, the reason is the higher number of training data used in the case of cyclic 

loading. As a result, such prediction is adequately accurate to be used to calculate ∆𝐽, and there is 

no need to develop another ANN model to predict the derivative of displacement similar to the 

approach employed under monotonic loading. As shown in Eq. (5.7), the first component of the 

displacement vector (𝑢1) is included in ∆𝐽 calculation as a strain component (𝜀11 =
𝜕𝑢1

𝜕𝑥
), which 

can be predicted by the ANN model developed to predict strain tensor. However, an ANN model 

is required to indicate the displacement vector to predict the second component of the displacement 

vector (𝑢2) in order to calculate 
𝜕𝑢2

𝜕𝑥
 and subsequently ∆𝐽. As a result, only 𝑢2 filed is discussed in 

the present paper while knowing that the same accuracy and performance of the ANN model has 

been observed in the case of 𝑢1 field as well.  

As mentioned earlier, there are two crucial differences between the suggested approach for the 

calculation of 𝐽 and ∆𝐽 under monotonic loading (discussed in the literature [309] (Chapter 4)) and 

cyclic loading (discussed in this chapter), respectively. First is that the number of data used to train 

the ANN models in the case of cyclic loading is larger than the one employed under monotonic 

loading. Second, predicting elasto-plastic stress, strain, and displacement fields under cyclic 

loading is inherently more complex than monotonic loading. The first factor potentially results in 

better predictions in the case of cyclic loading. Meanwhile, the second factor decreases the 

accuracy of ANN models. That is why in some cases of Figure 5.9 to Figure 5.16 the POE is 

smaller, and in some cases, it is larger than in the case of monotonic loading. However, it seems 

significantly increasing the number of data has had a stronger influence on the final result. The 

witness of such a claim is that the accuracy in the case of the displacement field has been improved 

significantly. Therefore, as discussed in part 5.3.3, it is not required to develop another ANN model 

to predict the derivative of the displacement field, such as the one developed under monotonic 

loading to determine ∆𝐽 based on ANN predictions. 

5.4.3. Predicted ∆𝑱 

In this section, ∆𝐽 values determined through the ANN predicted stress, strain, and displacement 

fields around the crack tip are compared with the ones calculated by elasto-plastic FE analyses. 

Figure 5.17 shows the ∆𝐽 values under four different R-ratios, introduced as the loading conditions 

1 to 4 in Table 5.1 for the crack size of 18 mm. The solid black curves present the ∆𝐽 values 

calculated through an EDI method developed by Wang et al. in the literature [81]. The green 

dashed curves show those values determined by the in-house model based on the EDI method 

developed by the present authors. Finally, the red dash-dotted curves present the ∆𝐽 values 

determined by the ANN-predicted stress, strain, and displacement fields around the crack tip. All 

three types of results collapse onto each other. The maximum POE of ANN predicted ∆𝐽 with 

respect to the in-house model is 3.6, 1.8, 12.7, and 8.7 % for R-ratio of 0.1, 0.2, 0.3, and 0.4, 

respectively. It should be emphasized that the developed ANN models have been trained based on 

loading case of 5 in Table 5.1, with the maximum load of 20 kN and R-ratio of 0.1, and for crack 

sizes between 1 to 10 mm (introduced in Table 4.2). However, Figure 5.17 evaluates the trained 

ANN models for the crack size of 18 mm for different R-ratios and loading cases. In addition, the 

developed ANN models have been trained based on the datasets extracted from the last cycle (see 

Figure 5.4). 
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Figure 5.17 ∆𝐽 values under cyclic loading for the crack length of 18 mm for the R-ratio of a) 0.1, b) 0.2, c) 0.3, and 

d) 0.4. 
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However, they can be used to calculate ∆𝐽 values for other cycles as well, if the cyclically strain 

hardening/softening is ignorable. As discussed in Table 5.1, 5 different loading cases have been 

used in the present study. The number of cycles is 3 and 7 for loading cases 1 to 4 and 5, 

respectively. The reason is that the ∆𝐽 value used for the FCG characterization for each crack size 

corresponds to the cycle(s) in which the stress-strain is completely cyclically stabilized. As shown 

in Figure 5.17, the ∆𝐽  values for all of the loading half cycle is almost the same. Therefore, three 

cycles are enough to reach such a condition. However, seven cycles have been chosen for the last 

loading case, which has a significantly higher maximum load to ensure the stress-strain is 

cyclically stabilized. That is one of the interesting points about the proposed approach to calculate 

∆𝐽. The reason is that the stress-strain behavior under the elastic state is completely reversible. As 

a result, the developed ANN models need to establish the relationship between the elastic response 

of the material under only the first cycle of loading and the elasto-plastic response of that for the 

last cycle (for the cycle that the stress-strain is stabilized). That being said, the proposed approach 

can avoid dealing with two time-consuming and complicated steps of ∆𝐽 determination during 

fatigue crack propagation. First, elastic FE analyses are needed rather than complicated elasto-

plastic ones. Second, only one cycle of loading is required to be modeled under the elastic state to 

predict the elasto-plastic ∆𝐽 value corresponding to the last cycle of loading for each crack size. It 

should be reminded that elasto-plastic FE analyses are required to generate output data for training 

the ANN models for specific crack sizes. With all these in mind, the developed ANN models and, 

subsequently, the proposed approach has a high potential to determine ∆𝐽 values through a time-

efficient and not complicated manner with acceptable accuracy. 

5.5. Conclusion 

ANN models have been developed and trained to detect the relationship between the hypothetical 

elastic and elasto-plastic response of stainless steel (SS304) around the crack tip in terms of stress, 

strain, and displacement field under cyclic loading. Elastic and elasto-plastic FE analyses have 

been developed to provide well-structured data for different crack sizes to train ANN models. The 

ANNs predicted elasto-plastic stress, strain, and displacement fields have been compared with the 

ones determined by elasto-plastic FE analyses. The result showed that well-trained ANN models 

can accurately predict the elasto-plastic stress, strain, and displacement fields. Cyclic J-integral 

(∆𝐽) has been calculated by the means of actual stress, strain, and displacement fields predicted by 

ANN models and compared with the ones determined based on conventional FE methods for 

different crack sizes and loading conditions. The results showed that the suggested method is able 

to accurately calculate (∆𝐽) values without operating complex and non-linear elasto-plastic 

analyses for all of the crack sizes.  
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In this chapter, the most valuable and significant outcomes of the study are highlighted. 

Additionally, several areas that offer potential for future research are listed. 

6.1. Conclusion 

In the present study, a novel approach that integrates artificial neural networks (ANNs) with 

fracture mechanics principals is proposed to overcome the limitations of the two most extensively 

used driving forces fatigue crack growth (FCG) characterization, namely ∆𝐾 and ∆𝐽. One of the 

most significant limitations of ∆𝐾-based models is their inability to account for the SC regime. On 

the other hand, employing ∆𝐽 for FCG characterization faces a significant difficulty due to the 

complicated, nonlinear, and time-consuming process required for ∆𝐽 determination.  

In the first phase of the project, robust ANNs are employed to unveil the nonlinear and intricate 

relationships between FCG rate and its controlling parameters in terms of the stress intensity factor 

range (∆𝐾) as defined within the framework of linear elastic fracture mechanics (LEFM). Through 

the process to subsequent project phases, ANNs are utilized to address the challenges of J and ∆𝐽 
determination. Furthermore, FE analyses are conducted to determine stress, strain, and 

displacement fields around the crack tip of a standard notched specimen made of SS304 under the 

both elastic and elasto-plastic states. The data obtained from the FE analyses were fed to the ANNs, 

enabling them to learn the relationships between hypothetical elastic and actual elasto-plastic 

materials responses under both monotonic and cyclic loadings. By using hypothetical elastic stress, 

strain, and displacement fields as input and the corresponding actual elasto-plastic fields as output 

for the ANNs, it is demonstrated that well-trained ANN models can accurately predict actual 

elasto-plastic stress, strain, and displacement fields near the crack tip based on the hypothetical 

elastic field data. This prediction method allows the efficient determination of J and ∆J based on a 

simple linear elastic solution, thus avoiding the need for complex nonlinear calculations. 

The most important outcomes can specifically list as follows: 

• In the context of LEFM, FCG rate is characterized based on ∆𝐾 and R in the LC regime 

and ∆𝐾, R, and stress level in the SC regime. 

• Radial Basis Function Artificial Neural Network (RBF-ANN) is capable of establishing 

complex nonlinear relationships in FCG rates. This modeling approach is achieved by 

considering ∆𝐾 and R in the LC regime, and ∆𝐾, R, and stress level in the SC regime. 

• The accuracy of RBF-ANN strongly relies on several important factors such as data 

quantity, data distribution, and data density available for training.    

• Although RBF-ANN is very promising in the case of interpolation purposes, they show 

relatively poor prediction performance in the case of extrapolation.  

• Equivalent domain integral (EDI) method used computing J-integral and ∆𝐽 offers a mesh-

independent approach. To employ this method, fine mesh is required to have accurate 

stress, strain, and displacement fields around the crack tip rather than for the adjacent 

elements to the crack tip.  

• Integration of FE analyses with ANNs can significantly improve the application of ANNs 

in many problems where experimental data is limited. Numerical methods such as FE 

analyses can provide well-structured datasets to comprehensively represent various aspects 

of problems for ANNs. 

• ANNs can establish the relationships between hypothetical elastic and actual elasto-plastic 

stress, strain, and displacement fields around the crack tip. That being said, ANNs can 
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predict the elasto-plastic stress, strain, and displacement fields around the crack tip based 

the elastic state. 

• J-integral and ∆𝐽 values can be accurately determined based on the elasto-plastic stress, 

strain, and displacement fields predicted by ANNs.  

• The quantity of available data strongly affects the accuracy of the ANNs. However, training 

times can be significantly extended by increasing the data size.   

• ANNs can be trained based on a relatively lower R-ratio (e.g., R=0) under cyclic loading 

and subsequently be applied to predict behavior for relatively higher R-ratios (R>0).  

6.2. Future works: 

The results of this research suggest several areas that can be further explored: 

• Physics-based ANNs can be developed by incorporating underlying physical principals in 

the ANN architecture/loss function. Physical-based ANN theoretically improve 

extrapolation capability of ANNs for given dataset. For instance, ANNs can be utilized to 

reveal the relationships between hypothetical elastic and actual elasto-plastic stress, strain, 

and/or displacement fields in the vicinity of the crack tip. However, a physical principal 

can be employed instead of purely mathematical criteria for optimizing the 

hyperparameters of ANNs during the training. In the present thesis, MSE is used to 

optimize the hyperparameters during the training procedures. However, J and/or ∆J can be 

used as optimizing criteria. That being said, J and/or ∆J can be calculated based on 

predicted stress, strain, and displacement fields as the output of the ANN model after each 

epoch during the training. The determined J and/or ∆J can be compared with the real values 

of J and or ∆J based on the known analytical or numerical solutions. The difference 

between these two values can be considered as the error, which need to be minimized based 

on gradient decent algorithm, instead of MSE (or any other purely mathematical errors).  

• ANNs can be applied to directly determine K and J based on the elastic stress, strain, and 

displacement fields. In this scenario, the hypothetical elastic stress, strain, and 

displacement fields around the crack tip are provided as input. Subsequently, K and J can 

be assigned as the output(s) of the ANN(s). 

• SIF has a closed-form relationship with J under elastic state. However, no relationships 

have been established between these driving forces under the elasto-plastic state. 

According to the promising results of the present thesis, ANNs may have the capability to 

establish the relationship(s) between K and J even under the elasto-plastic state.  

• CNNs rather than ANNs can be applied for the same purpose of the present study. In this 

case, the contours of elastic and elasto-plastic stress, strain, and displacement fields (as the 

images) can be directly used as the input and output of CNN(s), respectively. 

• RNNs rather than ANNs can be applied for the similar purpose. In this case, the path-

dependency of loading conditions can be theoretically captured with the NNs.  
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Appendix A 

General formulation of the equivalent domain integral (EDI) method under mode I and II loading 

in cracked bodies. 

In the present appendix, mode I and mode II of loading are discussed. Similar formulation can be 

developed for mode III as well. 

Figure 1 schematically shows a tube with radius of 𝜀 that embeds a segment of crack front with 

the length of ∆. The limit of ∆ and 𝜀 ∆⁄  tends to zero. The J-integral with respect to volume 

surrounded by the surface 𝐴𝜀 is defined as Eq. 1: 

∫ 𝐽𝑥𝑘∆
𝑑𝑥3 = lim

𝜀 ∆→0⁄
∆→0

∫ [𝑊𝑛𝑘 − 𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑘
𝑛𝑗] 𝑑𝐴                                                                                    (1) 

where W is the strain energy density,  𝜎𝑖𝑗 is the stress tensor, 𝑢𝑖 is the displacement vector, and 𝑛𝑘 

is the normal vector on the closed surface 𝐴𝜀. In the present notation, i and j take the values 1, 2, 

and 3, and k takes the values 1 and 2 corresponding to the mode I and II, respectively. As a result, 

𝐽𝑥𝑘  is the total energy flux leaving the closed surface 𝐴𝜀 per unit crack front length in the direction 

of k. As shown in Fig. 1,  𝑥1 and 𝑥3 are in the crack plane and are normal and tangential to crack 

front, respectively. 𝑥2 is normal to crack plane. The complete surface integral with respect to the 

surfaces shown in Fig.1 can be written as Eq.  2 as follows: 

∫ 𝐽𝑥𝑘∆
𝑑𝑥3 = ∫ 𝑄

𝐴𝜀
𝑑𝐴 + ∫ 𝑄

𝐴𝜀1+𝐴𝜀2
𝑑𝐴 + ∫ 𝑄

𝐴𝜀𝑐𝑡+𝐴𝜀𝑐𝑏
𝑑𝐴                                                                         (2) 

where 𝐴𝜀1 and 𝐴𝜀2 are cross-sectional areas of the tube at the points 𝑂1 and 𝑂2, respectively. The 

subscripts ct and cb represent the crack surfaces at the top and bottom of the crack, respectively, 

and Q and W are defined as follows: 

𝑄 = [𝑊𝑛𝑘 − 𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑘
𝑛𝑗]                                                                                                                                        (3) 

𝑊 = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝜀𝑖𝑗
0

                                                                                                                                                     (4) 

 

Fig. 1 Crack front and enclosed surface 𝐴𝜀 in the conventional approach. 
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Figure 2 shows two tubular surfaces 𝐴𝜀 and 𝐴 spanning along cross-sectional areas at 𝑂1 and 𝑂2 

on the crack front. The tube A is arbitrary and encloses the tube 𝐴𝜀 on which the J-integral is 

determined. The right hind side of Eq. 2 can be multiplied by unity as follows: 

∫ 𝐽𝑥𝑘∆
𝑑𝑥3 = 1. ∫ 𝑄

𝐴𝜀
𝑑𝐴 + 1. ∫ 𝑄

𝐴𝜀1+𝐴𝜀2
𝑑𝐴 + 1. ∫ 𝑄

𝐴𝜀𝑐𝑡+𝐴𝜀𝑐𝑏
𝑑𝐴 − 0. ∫ 𝑄𝐴 𝑑𝐴                                             (5) 

It should be noted that Eq. 5 assumes a unit extension of the crack front segment along 𝑥1. If an 

arbitrary virtual extension of crack front is considered, Eq. 5 is required to be modified as:  

∫ 𝐽𝑥𝑘𝑆∆
 𝑑𝑥3 = 1. ∫ 𝑄𝑆

𝐴𝜀
𝑑𝐴 + 1. ∫ 𝑄𝑆

𝐴𝜀1+𝐴𝜀2
𝑑𝐴 + 1. ∫ 𝑄𝑆

𝐴𝜀𝑐𝑡+𝐴𝜀𝑐𝑏
𝑑𝐴 − 0. ∫ 𝑄𝑆𝐴

𝑑𝐴                                 (6) 

where 𝑆(𝑥1, 𝑥2, 𝑥3) is an arbitrary and continuous function with the following properties: 

𝑆(𝑥1, 𝑥2, 𝑥3) = 0   at surface 𝐴                                                                                                                           (7) 

𝑆(𝑥1, 𝑥2, 𝑥3) = 0   at end surfaces (𝑂1 and 𝑂2) of the tubes                                                                     (8) 

𝑆(𝑥1, 𝑥2, 𝑥3) = 𝑆(𝑥3) on the surface 𝐴𝜀                                                                                                 (9) 

The function S is shown as q as a typical notation in a 2D cracked specimen. Since lim∆→ 0, 𝐽𝑥𝑘 

can be considered as a constant along the crack front segment length ∆. Thus, Eq. 6 can be written as: 

𝐽𝑥𝑘 . 𝑓 = ∫ 𝑄𝑆
𝐴𝜀

𝑑𝐴 + ∫ 𝑄𝑆
𝐴𝜀1+𝐴𝜀2

𝑑𝐴 + ∫ 𝑄𝑆
𝐴𝜀𝑐𝑡+𝐴𝜀𝑐𝑏

𝑑𝐴 − ∫ 𝑄𝑆
𝐴

𝑑𝐴                                                (10) 

where 

𝑓 = ∫ 𝑆(𝑥3)𝑑𝑥3
𝑂2

𝑂1
                                                                                                                                                (11) 

According to the Eq. 7-9, Eq. 10 can be rewritten as: 

𝐽𝑥𝑘 . 𝑓 = −∫ 𝑄𝑆
𝐴+(𝐴−𝐴𝜀)𝑐𝑡+𝐴𝜀+(𝐴𝜀−𝐴)𝑐𝑏

𝑑𝐴 + ∫ 𝑄𝑆
(𝐴−𝐴𝜀)𝑐𝑡

𝑑𝐴 + ∫ 𝑄𝑆
(𝐴𝜀−𝐴)𝑐𝑏

𝑑𝐴 + ∫ 𝑄
𝐴𝜀𝑐𝑡+𝐴𝜀𝑐𝑏

𝑑𝐴       (12)  

 

Fig. 2 Domain around the crack front in equivalent domain integral method. 
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The left-hand side of Eq. 12 can be expressed as: 

𝐽𝑥𝑘 . 𝑓 = (𝐽𝑥𝑘 . 𝑓)𝑑𝑜𝑚𝑎𝑖𝑛
+ (𝐽𝑥𝑘 . 𝑓)𝑐𝑟𝑎𝑐𝑘 𝑓𝑎𝑐𝑒𝑠

                                                                                               (13) 

For traction free crack faces (𝐽𝑥𝑘 . 𝑓)𝑐𝑟𝑎𝑐𝑘 𝑓𝑎𝑐𝑒𝑠
 vanishes. Thus, with using Green’s divergence 

theorem, the closed surface integrals of Eq. 12 can be written as: 

𝐽𝑥𝑘 . 𝑓 = −∫𝑄𝑆 𝑑𝐴 = −∫ [𝑊𝑛𝑘 − 𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑘
𝑛𝑗] 𝑆𝑑𝐴                                                                     (14) 

𝐽𝑥𝑘 . 𝑓 = −∫ [
𝜕(𝑊𝑆)

𝜕𝑥𝑘
−

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
𝑆)]

(𝑉−𝑉𝜀)
𝑑𝑉                                                                             (15) 

Hence: 

𝐽𝑥𝑘 . 𝑓 = −∫ [𝑊
𝜕𝑆

𝜕𝑥𝑘
− 𝜎𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑆

𝜕𝑥𝑗
]

(𝑉−𝑉𝜀)
𝑑𝑉 − ∫ [

𝜕𝑊

𝜕𝑥𝑘
− 𝜎𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝑥𝑘
] 𝑆

(𝑉−𝑉𝜀)
𝑑𝑉                                        (16) 

In the case of mashing behavior: 

𝑊 = ∫𝜎𝑖𝑗𝑑𝜀𝑖𝑗  →
𝜕𝑊

𝜕𝜀𝑖𝑗
= 𝜎𝑖𝑗                                                                                                                             (17) 

𝜕𝑊

𝜕𝑥𝑘
=

𝜕𝑊

𝜕𝜀𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝑥𝑘
                                                                                                                                                         (18)                         

As a result: 

∫ [
𝜕𝑊

𝜕𝑥𝑘
− 𝜎𝑖𝑗

𝜕𝜀𝑖𝑗

𝜕𝑥𝑘
] 𝑆

(𝑉−𝑉𝜀)
𝑑𝑉 = 0                                                                                                    (19) 

Thus: 

𝐽𝑥𝑘 . 𝑓 = ∫ [𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑆

𝜕𝑥𝑗
−𝑊

𝜕𝑆

𝜕𝑥𝑘
]

(𝑉−𝑉𝜀)
𝑑𝑉                                                                                      (20) 

𝐽𝑥𝑘 . 𝑓 = ∫ [𝜎𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑘
−𝑊]

(𝑉−𝑉𝜀)

𝜕𝑆

𝜕𝑥𝑗
𝑑𝑉                                                                                                 (21)    

 


