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Abstract: 

Driving force computation for fatigue crack growth based on the integration 

of fracture mechanics with artificial neural networks 

S. Navid S. Mortazavi, PhD. 

Concordia University, 2023 

Fracture mechanics principles play a crucial role in characterizing fatigue crack growth (FCG) 

rates based on the concept of driving force. Two well-known and promising driving forces in 

fracture mechanics are the stress intensity factor range (æK) and cyclic J-integral (æJ). While æK 

is a linear elastic fracture mechanics (LEFM) parameter, æJ is an elasto-plastic fracture mechanics 

(EPFM) parameter. However, both driving forces have limitations when it comes to FCG 

characterization. æK fails to account for relatively large-scale plasticity, rendering it inadequate 

for describing the short crack (SC) regime. On the other hand, æJ inherently has the potential to 

consider large-scale plasticity, but its application on real engineering problems is challenging. The 

difficulty arises from the need to perform complex and time-consuming elasto-plastic analyses to 

compute the actual elasto-plastic stress, strain, and displacement fields near the crack tip for the 

calculation of æJ. This study explores the integration of artificial neural networks (ANNs) with 

fracture mechanics principles to overcome these challenges. The research is carried out in three 

phases: 

Phase 1 focuses on integrating ANN with æK as a LEFM parameter. Unlike æK-based models that 

solely formulate FCG rate based on the maximum stress intensity factor (Kmax) and æK, this 

approach incorporates other controlling parameters. FCG rate is considered as a function of æK 

and stress ratio (R) in the long crack (LC) regime, and as a function of stress level (ů) in addition 

to æK and R in the SC regime. ANNs are developed to reveal these non-linear and complex 

functions in both regimes, using experimental FCG data sets from Ti-6Al-4V titanium alloy, 2024-

T3, and 7075-T6 aluminum alloys for training and verification. Although this phase shows 

potential, the reliance on limited FCG data sets due to costly procedures remains a challenge. 

Moreover, æK as a LEFM parameter inherently cannot handle large-scale plasticity in the SC 

regime. 

To address these issues, a novel approach is suggested and investigated in Phases 2 and 3. Phases 

2 and 3 propose replacing æK with æJ as a promising EPFM driving force and combining finite 

element (FE) analyses with ANN algorithms. Firstly, the implementation of FE models provides 

ample datasets for training the ANNs. Secondly, this integration allows for the determination of 

æJ through a linear elastic solution rather than complex elasto-plastic analyses. 

Phase 2 involves FE analyses to determine stress, strain, and displacement fields under elastic and 

elasto-plastic states near a crack tip for a notched specimen made of stainless steel (SS304) under 

monotonic loading. Hypothetical elastic stress, strain, and displacement fields around the crack tip 

are used as input data for the developed ANNs. The corresponding actual elasto-plastic stress, 

strain, and displacement fields are the output of the ANNs. Well-trained ANNs successfully 

establish relationships between the elastic and elasto-plastic fields, enabling predictions of elasto-

plastic stress, strain, and displacement based on hypothetical elastic data. An in-house model based 

on the equivalent domain integral (EDI) method is developed to determine J-integral as a function 



iv 
 

of stress, strain, and displacement fields around the crack tip. This model can be served as a post-

processing step after elasto-plastic FE analyses. In addition, it can be employed to determine J-

integral based on ANN predictions. The accuracy of the in-house model is verified by the J-integral 

data in the literature. ANN predicted elasto-plastic stress, strain, and displacement fields are 

compared and verified with those obtained from elasto-plastic FE analyses. The proposed method 

demonstrates significant accuracy in determining J-integral values. 

Phase 3 extends the approach to cyclic loading conditions. The developed ANNs are trained on 

cyclic stress, strain, and displacement fields. The in-house model is upgraded to determine æJ 

under cyclic loading. The accuracy of cyclic ANN-predicted elasto-plastic stress, strain, and 

displacement fields is compared with those obtained from elasto-plastic FE models, resulting in 

significant agreement. The in-house model is verified by the æJ data in the literature. Moreover, 

æJ values predicted by the proposed model are comparable to those directly determined by elasto-

plastic FE analyses. 

The integration of artificial neural networks with fracture mechanics principles provides valuable 

insights into overcoming traditional driving force limitations in FCG characterization. This 

research offers a promising avenue for future research and practical applications in the field of 

fatigue crack growth analysis. 
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In this chapter, fatigue crack growth (FCG), its definition and significance in the industry are 

briefly provided. Additionally, different fatigue crack regimes during the progress of crack 

propagation before the final fracture are discussed. Subsequently, the primary conventional 

approaches to determine the total life of a component subjected to fatigue are categorized. The 

significant studies in the literature for each category are reviewed to specify the limitations of 

current models in accurately and efficiently determining the fatigue life of engineering 

components. Furthermore, neural network algorithms as machine learning methods are introduced. 

Finally, the application of neural networks in the fields of fatigue crack growth and elasto-plastic 

mechanics is discussed.  

1.1. Fatigue crack growth and different crack regimes 

The fatigue damage process comprises multiple damage phases, including crack nucleation, crack 

growth, including early propagation of short cracks and long crack propagation, and the final 

fracture [1]. It is broadly accepted that fatigue failure is the most common failure mode in 

numerous industries [2]. Since the fatigue damage process occurs under cyclic loading, the primary 

purpose of almost all investigations on fatigue failure mode is to determine the fatigue life or the 

total number of loading cycles (ὔ) a component withstands before the final fracture. It is widely 

accepted that the total fatigue life includes the number of loading cycles that cause the initiation 

of incipient crack (ὔ), and subsequently, the number of loading cycles within crack propagation 

from its initial to its final length just before the final fracture, as shown in Eq. (1.1)  

ὔ ὔ ὔ  (1.1) 

The crack initiation is defined based on its detectability. A crack is considered to be initiated when 

it is ó0.01 inch-longô, as a criterion firstly suggested by the US Navy. Consequently, crack initiation 

is defined as ñthe inception and growth of a short crack to the experimentally detectable limitò [1]. 

Fatigue crack propagation consists of different crack regimes based on the crack size and the 

controlling parameters that govern the FCG behavior. FCG involves the propagation of short 

cracks (SCs) and long cracks (LCs). SCs are classified as those cracks shorter than 0.5 to 1 mm. 

The microstructure significantly affects the FCG behavior in the SC regime. SCs are divided into 

microstructurally short cracks (MSCs) and physically short cracks (PSCs). The length of an MSC 

is comparable with the microstructural characteristics of the material, i.e., the grain size. As a 

result, the material cannot be considered a continuum at that length scale. However, the size of a 

PSC is adequately long to assume the material behavior as a continuum. The size of LCs is longer 

than 0.5 to 1 mm. It is widely acknowledged that microstructural characteristics have no influence 

on the LC regime [1]. The different crack regimes based on the crack size are schematically shown 

in Figure 1.1. 

There are mainly two distinguished approaches to determine the fatigue life of components: 1) the 

ñcrack initiationò approach and 2) the ñfracture mechanicsò approach discussed as follows: 

1.2. Crack initiation   

The crack nucleation-based models consider the number of loading cycles for crack initiation (ὔ) 

as the total life. In other words, such models assume that components initially have no cracks and 

the components should be replaced or repaired after the crack nucleation. The crack initiation 

methods are categorized based on stress-life (S-N approach) and strain-life (‐-N approach) 
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prediction methods. S-N approaches quantify fatigue damage and, subsequently, fatigue life based 

on the nominal stress. On the other hand, the ‐-N approach employs the local notch tip strains and 

stresses to determine the fatigue damage. Since crack initiation methods are noticeably applicable 

in many industries, the S-N approach [3-5] and ‐-N approach [6-12] have received great interest 

among the researchers. One of the most critical shortcomings of the crack initiations approach is 

the principal assumption that components have no pre-existing cracks. According to most of the 

fabrication processes, such an assumption contradicts reality.   

 

Figure 1.1 Schematic of different crack regimes [13] 

1.3. Fracture Mechanics 

To the contrary of the crack initiation approach, the fracture mechanics approach assumes that the 

cracks are pre-existing in structures. Such principal assumption is in more accordance in 

comparison with the one in crack initiation approach. The main aim of fracture mechanics is to 

determine the FCG rate based on a proper driving force, as shown in Eq. (1.2):  

Ὠὥ

Ὠὔ
ὪὨὶὭὺὭὲὫ ὪέὶὧὩ (1.2) 

N and a are the number of cycles and crack size, respectively. There is significant number of 

controlling parameters affecting the FCG rate, e.g. the geometry of structures, the loading type, 

alternative stress, mean stress, etc. The suggested driving force in Eq. (1.2) is required to be 

comprehensive to account for as many controlling parameters affecting the FCG rate in order to 

accurately calculate the fatigue life of structures. Almost all of the fracture mechanics-based 

models can be classified into the two main groups based on the elected driving force. The first 

group is linear elastic fracture mechanics (LEFM), and the second one is elasto-plastic fracture 

mechanics (EPFM) discussed in detail as follows:  

1.3.1. Linear elastic fracture mechanics 

On of the most prominent parameters in fracture mechanics is the stress intensity factor (ὑ). The 

stress intensity factor (SIF) is defined as ñthe magnitude of the stress singularity at the tip of a 
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mathematically sharp crack in a linear elastic materialò [14] or a ñdirect measure of the elastic 

strain energy in a stressed material that contains a crackò [15]. The SIF is mainly used to specify 

the stress state around the crack tip of an elastic material in fracture mechanics. The SIF is 

quantified by Eq. (1.3): 

ὑ ὣὛЍ“ὥ (1.3) 

where Y represents the geometry factor, S stands for the nominal stress, and a denotes the crack 

length. Two well-known SIF-based models used to characterize the stress/strain field around the 

tip of cracks and deep notches are the Westergaard method [16] and the Creager-Paris solution 

[17]. The closed form Creager-Paris solution under mode I type of loading, which determines the 

stress distribution in the vicinity of a blunt crack tip, is shown in Eq. (1.4):  
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where ” is the radius of the crack tip, K stands for the SIF, r is the radial distance between an 

arbitrary point and the origin of coordinate system, and — is the angle between the r and the 

horizontal coordinate axis. The origin of the coordinate system is located behind the crack tip at a 

distance of  as schematically shown in Figure 1.2. 

It has been widely acknowledged that stress and strain fields around the crack tip govern the 

behavior of FCG. As a result, Paris and Erdogan [18] suggested the SIF range (Ўὑ ὑ
ὑ ) as the driving force in Eq. (1.2). ὑ  and ὑ , correspond to the maximum and minimum 

stress levels under cyclic loading, as schematically shown in Figure 1.3 for constant amplitude 

loading. As depicted in Figure 1.3, the stress amplitude („), mean stress („ ), and stress range 

(Ў„) are determined by Eq. (1.5)-(1.7). 

„
„ „

ς
 (1.5) 

„
„ „

ς
 (1.6) 

Ў„ „ „  (1.7) 
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Figure 1.2 Schematic of coordinate system in Creager-Paris solution. 

 

Figure 1.3 Main characteristics of a constant amplitude loading [19]. 

The model suggested by Paris and Erdogan is one of the most well-known fracture mechanics 

models used to characterize FCG rate. This model is known as Parisô law as expressed in Eq. (1.8): 

Ὠὥ

Ὠὔ
ὅЎὑ  (1.8) 

where a and N represent crack size and the number of loading cycles, respectively, while C and m 

are the material constants. The Paris model is schematically shown in Figure 1.4. As depicted in 

Figure 1.4, Parisô law depicts the second phase, which is between the Ўὑ  and Ўὑ. The SIF range 

threshold (Ўὑ ) specifies the minimum driving force required to cause the fatigue crack 

propagation in the LC regime and the critical SIF range (Ўὑ) is corresponded to the final crack 

size and the instantaneous fracture. Although Parisô law is considered as one of the principals of 

LEFM, it has noticeable shortcomings. One of the most crucial deficiencies of the Paris model is 

its incapability to account for the mean stress or R-ratio. R-ratio, as an influential parameter in 

FCG behavior, is defined as Eq. (1.9). 
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Ὑ
„

„
 (1.9) 

As schematically shown in Figure 1.5, the Paris model exhibits different curves under various R-

ratios in the LC regime for a particular material. Consequently, the FCG rate can be quantified by 

means of Eq. (1.10) as a function of Ўὑ and Ὑ. 

 

 

Figure 1.4 Schematic of Parisô law. 

Ὠὥ

Ὠὔ
ὪЎὑȟὙ (1.10) 

However, it has been demonstrated that such characterization, as illustrated in Eq. (1.10) is only 

feasible in the LC regime [1]. The inherent disparities between the LC and SC regimes, known as 

ñsimilitude breakdownò are as follows [1]: 

i) FCG rates in the SC regime are higher than those in the LC regime . 

ii) The threshold in the SC regime is lower than that in the LC regime Ўὑ ȟ Ўὑ ȟ . 

iii) The threshold in the SC regime varies with crack length, in contrast to the LC regime, where 

the threshold remains constant.  

Experimental FCG data demonstrate that the FCG rate in the SC regime can be quantified based 

on stress level „ in addition to the Ўὑ and Ὑ as shown in Eq. (1.11) 

Ὠὥ

Ὠὔ
ὪЎὑȟὙȟ„ (1.11) 
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The FCG rate and the mentioned similitude breakdown schematically shown in Figure 1.6. 

The limitations of Parisô law have prompted many researchers to advocate for various Ўὑ-based 

models that account for the R-ratio effect.  

Elber [20] and Newman [21] were among the first to propose the concept of crack closure as a 

crucial parameter that significantly influences the FCG behavior. It was claimed that 

comprehending the concept of plasticity-induced crack closure is pivotal in quantifying the effect 

of R-ratio on the FCG rate. According to the concept of plasticity-induced crack closure, plastic 

deformation zone (PDZ) forms ahead of a relatively short crack, as depicted schematically in 

Figure 1.7 (a). As the crack propagates, it penetrates through this PDZ. As a result, the crack-wake 

plasticity is formed. Consequently, the surfaces of a relatively larger crack size become involved 

with the crack-wake plasticity and its closure effect. The influence of the crack-wake plasticity 

increases and finally stabilizes once the crack enters the LC regime. It has been widely 

acknowledged by many researchers that the change in slope observed in the load-displacement 

curve during fatigue crack propagation results from the plasticity-induced crack closure concept 

[22]. To determine the SIF at the point of crack closure corresponding to the change in slope in 

the load-displacement curve, it was suggested that both the opening SIF (ὑ  during loading) and 

closing SIF (ὑ  during unloading) must be specified [23]. Consequently, the effective SIF range 

(see Eq. (1.12)) was proposed as the driving force to calculate the FCG rate. 

 

 

 

Figure 1.5 The effect of R-ratio on FCG. 
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Figure 1.6 FCG rate in the SC and LC regime: a) 3D view for different R-ratios, b) 2D view for a constant R-ratio. 

 

Figure 1.7 Description of plasticity induced crack closure [1]. 

Ўὑ ὑ ὑ έὶ ὑ  (1.12) 

The literature comprises numerous studies, ȹK-based models, and finite element (FE) analyses 

that focus on crack closure [24-36]. Among these models, the NASGRO model, known as the 

Forman/Mettu equation [37], shown in Eq. (1.13), stands out as one of the most renowned crack 

closure-based models.  

Ὠὥ

Ὠὔ
ὅ
ρ Ὢ

ρ Ὑ
Ўὑ

ρ
Ўὑ
Ўὑ

ρ  
ὑ
ὑ

 (1.13) 

where R is the stress ratio, Ўὑ  is the SIF threshold, ὑ  is the critical value of SIF, C, n, p, and 

q are calibration coefficients, and f is the Newmanôs function describing the crack closure. The 

mentioned parameters are discussed in detail in the literature [38]. 
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Crack closure-based models have significantly advanced the characterization of FCG rates in terms 

of applicability. Therefore, these models have found practical applications even in the aerospace 

industry. Nevertheless, uncertainties and questions have emerged regarding whether crack closure 

truly serves as the primary lost-controlling parameter in ȹK-based models. Diverse perspectives 

have been proposed to reinforce these uncertainties [1]. One of the most critical points among 

these perspectives is the revelation that the change in slope observed in load-displacement curves 

may also be attributed to the presence of a PDZ ahead of the crack tip during the development of 

a monotonic plastic zone [39, 40]. Additionally, numerous constants need to be calibrated in the 

majority of crack closure-based models, which presents a considerable challenge in many cases. 

These uncertainties and the need for extensive calibrations have hindered the widespread success 

of crack closure-based models, especially in the SC regime. 

Besides the crack-closure concept, the ñUnified approachò has garnered significant interest among 

researchers as a means to modify the Ўὑ-based models in order to address the effect of R-ratio, 

which is not considered in Parisô law. The Unified approach proposes the inclusion of ὑ  in 

addition to Ўὑ as part of the driving force in Eq. (1.2). One of the initial models based on the two 

parameter driving force was proposed by Walker [41] as shown in Eq. (1.14). 

Ὠὥ

Ὠὔ
ὅ ρ Ὑ ὑ ὅЎὑ ὑ  (1.14) 

where ὴ and ‎ are constants that need to be determined based on the procedure discussed in the 

literature [41]. The walker model was later modified by Donald and Paris [42]. While both models 

demonstrate significant agreement with FCG rate data in cases of relatively higher R-ratios, this 

agreement diminishes notably in situations with lower R-ratios. To enhance the accuracy of the 

two-parameter driving force-based model, Kujawski [43] proposed replacing Ўὑ with the tensile 

part of the stress intensity factor range (Ўὑ , as shown in Eq. (1.15). 

Ὠὥ

Ὠὔ
ὅ Ўὑ ὑ  (1.15) 

Kujawskiôs model indicates noteworthy correlation with experimental FCG data. However, the 

correlation for positive R-ratios is significantly higher than that within the range of negative R-

ratios. The two-parameter driving force-based model was also proposed by Sadananda and 

Vasudevan [44, 45]. Sadananda and Vasudevan [44] claimed that two distinct thresholds should 

be taken in to account in addition to the two-parameter driving force. It was suggested that both 

ὑ  and Ўὑ must exceed their threshold values, denoted as ὑ ȟ  and Ўὑ , respectively, in 

order to cause fatigue crack propagation. Noroozi et al. [46, 47] proposed employing the residual 

SIF (ὑ) in addition to the two-parameter driving force and two thresholds. That model is known 

as the UniGrow model shown in Eq. (1.16): 

Ὠὥ

Ὠὔ
ὅ ὑ ȟ Ўὑ  (1.16) 

where  ὴ and ‎ are the constants that need to be determine based on the procedure discussed in the 

literature [46] and ὑ ȟ  and Ўὑ  are defined as Eq. (1.17)-(1.18). 

ὑ ȟ ὑ ὑ (1.17) 
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Ўὑ Ўὑ ὑ (1.18) 

where residual SIF (ὑ) is defined as: 

ὑ „ ὼάὼȟὥὨὼ (1.19) 

where a is the crack length, άὼȟὥ is the weight function determined by the procedure discussed 

in the literature [48], and „ is the residual stress ahead of the crack tip, and x is the coordinate 

axis along the crack axis. It should be noted that the crack is considered a micro notch in the 

UniGrow model. 

UniGrow model is considered one of the most recent and significant improvement in LEFM. This 

model indicates that a proper driving force can account for different controlling parameters 

affecting FCG rate. The UniGrow model demonstrates that by employing a promising two-

parameter driving force to characterize FCG rate, different curves based on various R-ratios 

collapse into a single FCG curve predicted by the model for each material, as schematically shown 

in Figure 1.8. This highlights the importance of using a comprehensive and appropriate driving 

force in fracture mechanics. The UniGrow model has received significant attention in many studies 

[49-54].  Unfortunately, application of UniGrow model or unified approaches, in general, has not 

been reported successful so far in the case of the SC regime [55, 56]. It should be emphasized that 

the success of the UniGrow model in the LC regime is attributed to the employment of residual 

SIF (ὑ) accounting for the effects of residual stress field ahead of the crack tip in addition to using 

a two-parameter driving force.  

 

Figure 1.8 a) Representative of FCG data under different R-ratios; b) UniGrow FCG prediction and its correlation 

with experimental data [57]. 
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One may realize that the actual elasto-plastic stress around the crack tip is required to determine 

the residual stress „ and subsequently the residual SIF (ὑ). However, SIF, as a LEFM parameter, 

is only capable of converting nominal stress to the elastic stress field and does not account for the 

actual elasto-plastic stress field around the crack tip. As a result, the UniGrow model integrates 

the Creager-Paris solution introduced in Eq. (1.4) with Neuber rule to determine the actual elasto-

plastic stress/strain fields ahead of the crack tip.  

Neuber [58] developed one of the most famous notch correction methods known as Neuberôs rule. 

Neuberôs rule states that ñthe total strain energy density at the notch root equals to the pseudo 

strain energy density and complementary energy density as if a body was to hypothetically remain 

elasticò [59] as shown graphically in Figure 1.9 (a).The superscripts ñeò in („ ȟ‐ ) and ñaò in 
(„ ȟ‐ ) stand for elastic and actual stress/strain fields, respectively. Neuberôs rule can be derived 

for uniaxial loading type as: 

„‐ „‐ (1.20) 

Topper et al. [60] extended the Neuberôs rule to account for a wide range of geometries under 

uniaxial cyclic loadings. Molski et al. [61] proposed the equivalent strain energy density (ESED) 

stating that ñthe actual elasto-plastic strain energy density at the notch root equals to the pseudo 

strain energy density as if a body hypothetically behaved elasticò [59] as shown in Figure 1.9 (b). 

Hoffman and Seeger [62] extended Neuberôs rule to an equivalent form as: 

„ ‐ „ ‐  (1.21) 

where „  and ‐  are the equivalent elastic stress and strain, respectively, if the material remained 

elastic, and „  and ‐  are the actual elasto-plastic equivalent stress and strain at the notch root, 

respectively. Neuberôs rule has received a grate interest among researchers, and it has been further 

extended under proportional and nonproportional loading, as well as for micro notches [59, 63-

68]. Unfortunately, Neuberôs rule is limited to the notches and micro notches and has not been 

extended to the cracks so far.   

As discussed in this section, Ўὑ-based models have been significantly improved to address all 

controlling parameters in the LC regime, enabling them to characterize FCG rates in this regime. 

However, Ўὑ-based models show significant limitations in the case of the SC regime so far. That 

is attributed to the fact that Ўὑ is inherently a LEFM parameter. Although it is possible to employ 

Ўὑ to characterize FCG rates in the presence of relatively small and ignorable PDZs around the 

crack tip, Ўὑ is not able to account for the relatively large scale of plasticity around the crack tip. 

Large-scale plasticity occurs either under high stress levels, or in the case of the SC regime where 

the size of the crack is comparable with the PDZ size. Therefore, it is not possible to ignore the 

plastic deformation around the crack tip in the latter case.  
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Figure 1.9 Graphical interpretation of Neuberôs rule [59]. 

1.3.2. Elasto-plastic fracture mechanics 

Elasto-plastic fracture mechanics (EPFM) employs a driving force (see Eq. (1.2)) that is potentially 

able to account for relatively large-scale plasticity in the vicinity of the crack tip in order to 

accurately determine the FCG rate. According to the literature, such driving forces mainly include 

crack tip opening displacement (CTOD) and Ўὐ-integral. 

CTOD (‏) can be defined as the distance between the opposite faces of a crack tip at the positions 

where the intercept of lines between these positions and the crack tip establishes the angle of 90 

degrees, as shown in Figure 1.10. CTOD-based models have garnered great interest among 

researchers [69-73]. One of the most notable models based on CTOD to characterize FCG rate in 

both the SC and LC regimes is the one proposed by Shyam et al. [74-76]. This model suggests 

considering two stages. The first stage involves the accumulation of irreversible damage as a result 

of plastic response of material in the vicinity of the crack tip. The second stage involves localized 

fracture ahead of the crack tip due to the accumulated plastic damages exceeding their critical 

value. The latter stage causes the crack to extend. Shyam et al. adopted CTOD to address the 

accumulation of damage from plasticity or the plastic strain around the crack tip. That model is 

given as Eq. (1.22): 

Ὠὥ

Ὠὔ
Ὧ• • (1.22) 

where k is a constant that required to be calibrated based on the material, temperature, and loading 

frequency.  •  and • are the monotonic and cyclic CTOD, respectively. According to that model, 

crack extension occurs if and only if •  exceeds its critical value (• ), which can be defined 

based on the procedure explained in the literature [74-76]. Although this model was further 

improved [77, 78], it is not successful in the full range of the SC regime.  
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Figure 1.10 Definition of CTOD based on the ωπᶼ intercept procedure [73]. 

J-integral is a line integral in a two-dimensional state. Rice [79] introduced J-integral to 

characterize stress and strain fields around the notch tip for the first time. Rice suggested that the 

integral path must start from one surface on the notch, continue through the notched body, embrace 

the notch tip, and reach the other surface of the notch. The schematic of an arbitrary path (ɜ) to 

define the J-integral is depicted in Figure 1.11. The J-integral is quantified by the means of Eq. 

(1.23): 

ὐ ὡὨώὝȢ
‬ό

‬ὼ
Ὠί (1.23) 

where W is the strain energy density, x and y are the coordinate axes (ὼ ὼ Ǫ ώ ὼ), T is the 

traction vector defined with respect to the normal vector (n) along the path integral (ɜ), u is the 

displacement vector, and s is the infinitesimal element of the integral path (ɜ).  W and T can be 

defined as shown in Eq. (1.24) and (1.25), respectively. 

ὡ ὡ ὼȟώ ὡ ‐ „Ὠ‐ (1.24) 

Ὕ „ὲ (1.25) 

where „  and ‐ are the stress and strain tensor, respectively. According to Greenôs theorem, Eq. 

(1.23) as a line integral can be rewritten as a surface integral in a 2D analysis as follows: 

ὐ
‬ὡ

‬ὼ

‬

‬ὼ
„
‬ό

‬ὼ
Ὠὃ (1.26) 

where dA is an infinitesimal area element (dA=dx.dy) surrounded by ɜ in Figure 1.11. 

The J-integral can be defined as the potential energy density release rate with respect to the notch 

length extension, as shown in Eq. (1.27) and depicted schematically in Figure 1.12.  

ὐ
Ὠὖ

Ὠὰ
 (1.27) 
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Figure 1.11 Schematic of a path-integral to calculate J-integral in a 2D state. 

 

Figure 1.12 Schematic of potential energy release rate with respect to the notch length extension. 

where P is defined as the potential energy per unit thickness in the ᾀ ὼ  direction (See Figure 

1.12). The J-integral should be regarded in two different states to be physically interpreted [79].  

In the elastic state, the potential energy density only consists of elastic strain energy density. As a 

result, the J-integral equals the strain energy release rate with respect to the notch length in the 

absence of any external traction force on the notch (ὐ Ὃ). In this case, two distinguished energy 

types can be considered during the notch extension. The first one is the surface energy density 

related to the new surfaces created as the result of the notch extension. That energy increases the 

potential energy density. The second energy type is the elastic strain energy density decreasing the 

potential energy density with the notch extension [80]. The conflict between the density of surface 

energy and the elastic strain energy is schematically depicted in Figure 1.13. As shown in Figure 

1.13, the extension of the notch beyond a critical value (ὰᶻ) results in the decreasing of potential 

energy density. As a result, ὰᶻ is the minimum notch length required to have notch extension in the 

elastic state.  
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Figure 1.13 Schematic of the different energy types with respect to the notch length. 

Since the J-integral equals G, the strain energy release rate in the elastic state, the J-integral has a 

closed-form relationship with the SIF in the case of elasticity, as shown in Eq. (1.28) and (1.29) 

under plane stress and plane strain condition, respectively [79]: 

ὑ Ὁὐ (1.28) 

ὑ
Ὁὐ

ρ ‡
 (1.29) 

where E and ‡ are the elastic modulus and Poissonôs ratio, respectively. One of the most important 

advantages of J-integral in the elastic state is its path-independency. It has been proved that the 

value of the J-integral is the same for any arbitrary path, such as the one schematically shown in 

Figure 1.11 if and only if [79, 81]: 

i) material response to the load is linear elastic, non-linear elastic, or deformation-type elasto-

plastic. In other words, the stress is one-to-one function of strain (Mashing behavior).  

ii)  there is an absence of any force or stress on the notch faces and tip.  

On the other hand, the J-integral loses its physical interpretation as the strain energy density release 

rate in the elasto-plastic state. The reason is attributed to the fact that there is the plastic strain 

energy type in addition to the elastic strain energy and surface energy shown in Figure 1.13. That 

being said, a portion of energy is lost and cannot be quantified directly as the result of plastic 

deformation around the notch tip.  

It has been shown that the concept of J-integral can be extended to cracks and three-dimensional 

cracked/notched bodies [79]. The J-integral has been defined based on deformation theory of 

plasticity and not incremental theory of plasticity. In other words, unloading is forbidden when the 

J-integral is employed. With this in mind, the critical question that arose is: is it is possible to adopt 

the J-integral to characterize FCG rate? Dowling and Begeley [82] and Lamba [83] suggested that 

cyclic J-integral (Ўὐ) required to be defined only based on the loading half cycles to characterize 

fatigue cracksô behavior. In that case, Ўὐ can be defined as shown in Eq. (1.30): 
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Ўὐ ЎὡὨώЎὝȢ
‬Ўό

‬ὼ
Ὠί (1.30) 

Dowling and Begeley [84] employed both Ўὐ and Ўὑ as the driving forces to characterize FCG 

rates in both the LC and SC regimes. It was experimentally shown that the agreement between 

suggested Ўὐ-based model (as EPFM model) and experimental FCG data is significantly better 

than the agreement between Parisô law (as LEFM model) and experimental FCG data in the SC 

regime or large-scale plasticity. However, the accuracy of both models was reported to be the same 

in the case of LC regime or small-scale plasticity. El Hedad et al. [85] further investigated the 

application of the Ўὐ-based model in the SC regime for different materials and geometries, and a 

noticeable agreement between the Ўὐ-based model and experimental FCG rates was observed. As 

a result, Ўὐ-based models have received great interest in determining FCG rate in the case of large-

scale plasticity [86-88]. One of the most crucial studies on Ўὐ was provided by Tanaka [80], in 

which the physical interpretation of Ўὐ under elasto-plastic state is suggested. Tanaka [80] defined 

Ўὐ as a measure of energy dissipation spent on movement of dislocations in the PDZ around the 

crack tip during one cycle.  

Although Ўὐ has been suggested as a promising driving force in order to calculate FCG rates in 

the presence of large-scale plasticity, its application has been reported significantly difficult, either 

by the means of experimental procedures or numerical methods. Ngoula et al. [89] developed an 

in-house model to numerically determine Ўὐ to characterize FCG rates for the cracks initiated in 

various butt and welded joints. Unfortunately, calculation of stress and strain tensors during the 

crack deflection was reported dramatically difficult and time consuming. Metzger et al. [90] 

suggested to employ virtual crack extension (VCE) method as a built-in functionality of 

commercial FE package ABAQUS to determine Ўὐ. However, since the built-in functionality of 

ABAQUS is not able to calculate cyclic J integral, Metzger et al. developed a restart analysis via 

post-processing and a user-material subroutine. Such an approach was reported to be significantly 

complicated. Therefore, this method is strictly limited to the lab specimens. There are different 

approaches to determine Ўὐ, e.g. employing handbook solutions, analytical approximation 

equations, experimental procedures based on load deflection curves, and FE analyses [91-95]. 

Unfortunately almost all of the mentioned approach are either very time consuming or limited to 

particular geometry or loading conditions [81].  

One of the most appealing method to calculate J and Ўὐ is equivalent domain integral (EDI) 

method, first introduced by Miyakazi et al. [96] and further developed by Nikishkov et al. [97, 98]. 

The EDI method suggests calculating J and Ўὐ in an equivalent domain surrounded by an inner 

boundary (ɜ) and an outer boundary (ɜ), as schismatically shown in Figure 1.14. A proper q-

function (known as s-function as well) as schematically shown in Figure 1.14 is required to be 

adopted in order to achieve the same value of J or Ўὐ based on conventional and EDI methods. 

Such q-function was first introduced by Lorenzi [99] to define the virtual crack extension in a 3D 

cracked body. The procedure to choose the appropriate q-function is discussed in the literature 

[100]. According to the EDI method, Eq. (1.26) can be rewritten as Eq. (1.31) using the weight 

function (q). 

ὐ  „
‬ό

‬ὼ
ὡ‏

‬ή

‬ὼ
Ὠὃ (1.31) 
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where ‏  is Kronecker delta and q is a wight function of ὼ ὼ and ὼ ώ as the coordinate axes. 

The q-function has its maximum value on ɜ, and it decreases linearly to zero on ɜ. The maximum 

value of q in a 2D problem is one. 

General formulation of the EDI method under mode I and II loading in cracked bodies has been 

discussed in the Appendix A.  

The EDI method has a significant advantage over the conventional method in calculating J and Ўὐ 
values. That advantage lies in the fact that it is possible to exclude the crack tip and its vicinity in 

the EDI method calculation. One of the most crucial difficulties in analysing a cracked body 

problem is dealing with the singularity problem around the crack tip. There are different 

approaches to overcome this problem. One such approaches is considering the crack as a micro 

notch as a simplifier assumption. As a result, the radios of the crack tip would be a finite non-zero 

value. Another approach is employing Barsoum elements in FE analyses. These elements, first 

introduced by Barsoum [101], are high order elements that account for the singularity problem. 

The required characteristics of such high order elements are described in detail in literature [101]. 

However, almost all of the approaches to overcome the singularity problem are either not 

coincident with reality or difficult to employ. The other crucial difficulty of FE analyses in the 

presence of cracks is the necessity of using very fine mesh around the crack tip, which increases 

the computational time especially in the real-life problems. As a result, the EDI method, which 

avoids dealing with singularity problem and the vicinity of the crack tip, has a compelling 

advantage over conventional method in the J-integral calculation. Additionally, it has been proved 

that the EDI method is a mesh-independent approach [102], substantially easing the FE analyses 

to determine J-integral. Consequently, EDI method has received great interest among researchers.  

Raju and Shivakumar [103] compared the EDI method and conventional method to calculate J-

integral values under different modes of loading in a FE analysis. The accuracy of the EDI method 

was confirmed under various types of loading in that study. Shivikumar and Raju [100] employed 

the EDI method in a FE analysis for three-dimensional mixed-mode fracture problems, and the 

determined J-integral values were reported to be in good agreement with the ones in the literature. 

Okada and Ohata [104] used the EDI method in a FE analysis for cracks with different curvatures 

and kinks in a 3D space. A noticeable accuracy was observed in that study for cracks with kinks 

and various curvatures.  

 

Figure 1.14 Schematic of EDI method and q-function. 
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Wang et al. [81] developed a FE model to characterize FCG rate for 304 stainless steel by using 

EDI method. The results confirmed the accuracy of predicted FCG rates based on EDI method. 

Although the EDI method significantly simplifies the J and ЎJ calculations in comparison with the 

conventional method, a complicated non-linear elasto-plastic analysis is required to characterise 

FCG rate using ЎJ-based models. Unfortunately, such analyses are not time-efficient to be applied 

in many industries. That reason has led many researchers to apply higher level of analyses, such 

as machine learning algorithms, to estimate the lifetime of engineering specimens.  

1.4. Machine learning  

Artificial intelligence (AI) has received great interest in almost all engineering and scientific areas. 

AI is simply defined as the simulation of the whole processes and procedures of human intelligence 

by means of machines, specifically computer systems. AI embraces various techniques and 

approaches. However, the most developed and numerously applied branch of AI is machine 

learning as shown in Figure 1.15. Machine learning (ML) includes any developed algorithm that 

is able to extract specific pattern(s) from a given dataset and establish logical relationship(s) 

between its input(s) and output(s). ML was initially developed to be applied in limited areas such 

as image and voice recognition, traffic controls, marketing, and weather forecasting. However, its 

application has spread through almost any field. The first and the most crucial step of ML 

application is to provide a dataset. The term ñdatasetò in the application of ML refers to the 

sequence of inputs and their corresponding outputs. ML methods are mainly categorized into four 

different classes based on the learning program, as shown in Figure 1.16: Supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. Supervised learning 

is a type of ML technique that establishes a logical relationship between labeled datasets. In other 

words, the inputs and their corresponding output(s) are determined in advanced and then fed to the 

training process. Training process is referred to the process in which the machine learns from the 

datasets.  

 

 

Figure 1.15 AI as a broad term. 
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Figure 1.16 Different Types of ML 

Such types of ML are mainly applied for regression (e.g., distortion assessment of DMD parts) 

and classification (e.g., failure detection in none-destructive evaluation methods) types of 

problems. The most important algorithms implemented in regression type of problems are linear 

regression, neural network, support vector, decision trees, lasso regression, ridge regression, etc.  

The most well-known techniques in the case of classification type of problems are Naive Bayes 

classifier, decision trees, support vector machines, and random forest as shown in Figure 1.16. On 

the other hand, the algorithms implemented in unsupervised learning methods are trained based on 

unlabeled data. In such cases, the target variable is not available, or particular outputs cannot be 

assigned to the corresponding inputs. In these algorithms, the machine tries to determine the 

similarities and differences between the data. As a result, such methods are well-suited for 

clustering types of problems. The reinforcement learning algorithms, known as decision making 

algorithms, try to determine the best decision for so-called intelligent agents in a particular 

environment in order to maximize the cumulative reward.  

Many of mentioned algorithms have been received noticeable interest from researchers in solid 

mechanics, such as artificial neural networks (ANNs), decision trees (DTs), support vector 

machines (SVMs), etc. However, unlike the numerous and well-organized datasets that are 

available in many fields such as image recognition, the reliable datasets that are appropriate to be 

fed to the ML algorithms are limited in solid mechanics. The reason is attributed to the fact that 

such datasets in solid mechanics are provided by expensive experimental tests, which make them 

exclusive to the companies that performed the tests. Therefore, the application of ML algorithms 

is in its early stages in solid mechanics compared to other research domains.  
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1.4.1. Neural Networks 

As shown in Figure 1.15, neural networks (NNs) are one of the strongest and most appealing 

approaches among researchers as a ML method that is able to extract complex relationship(s) 

between the inputs and output(s) through a well-organized dataset. NNs are mainly developed into 

three groups based on the application, as shown in Figure 1.17. 

¶ Artificial neural networks (ANNs): ANNs are the most well-known and extensively 

utilized type of NNs that can be implemented in both regression and classification problems 

(see Figure 1.16). ANNs have shown a noticeable potential to extract any pattern or 

relationships, including complicated and non-linear relationships, between the inputs and 

output(s) of a properly-organized and adequate dataset through its layer-based structures 

schematically shown in Figure 1.17. There are different types of hyperparameters, in 

addition to the number of layers, such as the number of neurons, weights, and biases that 

are employed to extract the relationships.  

 

Figure 1.17 Different types of neural networks. 

The mentioned hyperparameters will be discussed in detail in the following. ANNs estimate the 

output as a function of inputs and all initially determined hyperparameters through a forward 

propagation. Then a backward propagation is operated to evaluate the error and subsequently 

minimize that error by adjusting the weights and biases. Such a process is known as the network 

training, and the combination of one forward and backward propagations is known as an epoch. 

Training of an ANN may take hundreds of epochs. As shown in Figure 1.17, information is 

transferred only in one direction in the training process of an ANN. The structure of an ANN 

and its hyperparameters will be discussed in detail in the following. 

¶ Recurrent neural networks (RNN): RNN is higher level of NN algorithm compared to the ANN 

approach. RNNs are developed to overcome particular limitations of ANNs. RNNs can handle 

a given dataset that includes different types of data sizes and/or formats, which cannot be 






























































































































































































































































