
Minimizing Energy Consumption in Data Centers Using

Embedded Sensors and Machine Learning

Nalveer Moocheet

A Thesis

in

Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master’s of Applied Software Engineering at

Concordia University

Montréal, Québec, Canada

September 2023

© Nalveer Moocheet, 2023



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Nalveer Moocheet

Entitled: Minimizing Energy Consumption in Data Centers Using Embed-

ded Sensors and Machine Learning

and submitted in partial fulfillment of the requirements for the degree of

Master’s of Applied Software Engineering

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Mirco Ravanelli
Chair

Dr. Mirco Ravanelli
Examiner

Dr. Yann Gaël Guéheneuc
Examiner

Dr. Brigitte Jaumard
Thesis Supervisor

Dr. Tristan Glatard
Thesis Supervisor

Approved by

Dr. Leila Kosseim, Graduate Program Director

September 29, 2023

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science



Abstract

Minimizing Energy Consumption in Data Centers Using Embedded

Sensors and Machine Learning

Nalveer Moocheet

Cloud Data Centers (DCs) consume extensive amounts of energy, making a significant

contribution to environmental concerns. Moreover, with the emergence of 5G and future

B5G networks, which are increasingly inclined towards software orientation and reliant

on cloud computing, there is an urgent requirement for optimizing the energy consump-

tion of DCs. We address this issue by proposing an energy-aware Virtual Machine (VM)

placement solution for energy minimization.

In the first part of this study, we propose a highly accurate model for predicting the

dynamic power consumption of cloud computing devices. Our proposal takes advantage

of the various sensors that are now embedded in physical machines, or more generally in

cloud server machines, as well as Performance Monitoring Counters (PMCs) to implement

a highly accurate Machine Learning (ML) power prediction model. The core part of this

study then integrates the novel feature space of real-time sensors’ measurements and the

predictive power model to propose a scalable placement algorithm, enabling proactive and

energy-aware Virtual Machine placements. In addition, it utilizes a new set of temperature-

related features that enables proactive hotspot avoidance.

Our ML predictive models, as well as our proposed placement algorithm, were exten-

sively evaluated on a cluster of real physical machines and demonstrated a significantly

higher performance as compared to the implemented reference models and algorithms, re-

ducing energy consumption by up to 7%, CPU temperature by 2%, and overloading by

iii



28%.

iv



Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr. Brigitte Jaumard for her

dedicated support and guidance. I am also grateful for the support of my co-supervisor

Dr. Tristan Glatard and the team at GAIA Ericsson. I would like to acknowledge Pierre

Thibault for his valuable technical support. Lastly, I sincerely appreciate the support of my

family during my Graduate Studies.

This research project was supported by a MITACS - Ericsson Internship and Concordia

University.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Virtual Machine Management & Operation . . . . . . . . . . . . . 3

1.3 Project Definition: Virtual Machine Placement for energy minimization . . 5

1.4 Key References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Experiment Environment 9

2.1 Cluster Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Load Emulation and Data Collection . . . . . . . . . . . . . . . . . 10

2.2.2 Static VM Deployment . . . . . . . . . . . . . . . . . . . . . . . . 12

3 A Sensor Predictive Model for Power Consumption using Machine Learning 13

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



3.3.1 Power Consumption Models with CPU only . . . . . . . . . . . . . 17

3.3.2 More General Power Consumption Models . . . . . . . . . . . . . 18

3.3.3 Temperature: A Key Parameter for Power Prediction . . . . . . . . 19

3.3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Real-time Sensor Measurements vs. Analytical Formulas . . . . . . . . . . 20

3.4.1 Workload Characterization . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Heterogeneous PMs & Temperature . . . . . . . . . . . . . . . . . 22

3.5 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Performance Monitoring Counters . . . . . . . . . . . . . . . . . . 24

3.5.2 Embedded Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Multiple Linear Regression Model (MLR) . . . . . . . . . . . . . . 29

3.6.2 Extreme Gradient Boosting Algorithm (XGBoost) . . . . . . . . . 29

3.6.3 Multi-layer Perceptron (MLP) Regressor Model . . . . . . . . . . . 29

3.6.4 Long Short-Term Memory (LSTM) Neural Network . . . . . . . . 30

3.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 Experimental Setup, Load Emulation & Data Collection . . . . . . 31

3.7.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33

3.7.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Virtual Machine Placement using Embedded Sensors and Machine Learning

for Energy Minimization 39

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



4.3.1 Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Thermal-Aware Approaches . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Need For Thermal-aware Techniques . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Influence of Temperature & Need for Enhanced Feature Space . . . 49

4.4.2 Critical Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 A Proactive Energy & Thermal-aware Approach . . . . . . . . . . . . . . . 52

4.5.1 Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Criticality of a Physical Machine . . . . . . . . . . . . . . . . . . . 54

4.6 Virtual Machine Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.2 Criticality-based Random Sampling . . . . . . . . . . . . . . . . . 58

4.6.3 Greedy Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . 59

4.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7.2 Load Emulation & Data Collection . . . . . . . . . . . . . . . . . 60

4.7.3 Evaluation: Predictive ML Models . . . . . . . . . . . . . . . . . . 61

4.7.4 Evaluation: VM Placement . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion & Future Works 68

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71

viii



A Additional Experiment Results 76

A.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of Figures

1 Expected Increase in global DC Energy Consumption [23]. . . . . . . . . . 2

2 Virtualization of a physical machine [46]. . . . . . . . . . . . . . . . . . . 4

3 Illustration of Virtual Machines deployment over cloud Data Centers. . . . 4

4 Three-Node Architecture of OpenStack [39] . . . . . . . . . . . . . . . . . 10

5 VM Load Emulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Emulation v/s Trace CPU Utilization pattern . . . . . . . . . . . . . . . . . 11

7 Heat Map of a HPE ProLiant BL460C Gen8 PM . . . . . . . . . . . . . . . 16

8 CPU utilization to Power relation for different workloads. . . . . . . . . . 21

9 Inlet temperature under similar load . . . . . . . . . . . . . . . . . . . . . 23

10 CPU temperature under similar load. . . . . . . . . . . . . . . . . . . . . . 23

11 2D Heat Map of a PM (HP ProLiant BL460c G8) with Sensors location . . 26

12 Snapshot of a real-time sensor reading & description . . . . . . . . . . . . 27

13 MLP Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . 30

14 Performance of ML models for each Workload . . . . . . . . . . . . . . . 35

15 Feature weights of best performing model . . . . . . . . . . . . . . . . . . 37

16 Heat Map of a HPE ProLiant BL460C Gen8 PM . . . . . . . . . . . . . . . 43

17 Resource Utilization v/s Measured Power and impact of Temperature . . . . 50

18 Snapshot of a real-time sensor reading & description . . . . . . . . . . . . 51

x



19 Increase in average power prediction error at high temperature . . . . . . . 54

20 Measured Power Distribution in Datasets . . . . . . . . . . . . . . . . . . 62

21 Measured Criticality Distribution in Datasets . . . . . . . . . . . . . . . . 62

22 Power Consumption Comparison of Algorithms. . . . . . . . . . . . . . . . 66

23 Percentage of time each PM spends at an overloaded CPU state. (tCPU
PM

) . . 66

24 Percentage of time each PM spends to the peak power state. (tPOWER
PM

) . . . 66

25 Experiment 1 - Power Consumption Comparison of Algorithms. . . . . . . 76

26 Experiment 1 - Percentage of time each PM spends at an overloaded CPU

state. (tCPU
PM

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

27 Experiment 1 - Percentage of time each PM spends to the peak power state.

(tPOWER
PM

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

28 Experiment 1 - Average Temperature at Processor 1 (tCPU
PM

) . . . . . . . . . 77

29 Experiment 1 - Average Temperature at Processor 2 (tPOWER
PM

) . . . . . . . 78

30 Experiment 2 - Power Consumption Comparison of Algorithms. . . . . . . 78

31 Experiment 2 - Percentage of time each PM spends at an overloaded CPU

state. (tCPU
PM

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

32 Experiment 2 - Percentage of time each PM spends to the peak power state.

(tPOWER
PM

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

33 Experiment 2 - Average Temperature at Processor 1 (tCPU
PM

) . . . . . . . . . 79

34 Experiment 2 - Average Temperature at Processor 2 (tPOWER
PM

) . . . . . . . 80

xi



List of Tables

1 Cluster & Physical Machine’s Description. . . . . . . . . . . . . . . . . . . 10

2 Performance Monitoring Counters (PMCs) . . . . . . . . . . . . . . . . . . 25

3 Average Resource utilization by Workloads . . . . . . . . . . . . . . . . . 32

4 Model Performance (R2 score) on each workload . . . . . . . . . . . . . . 36

5 Average Model Performance (All Workloads) . . . . . . . . . . . . . . . . 37

6 Models’ Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Experiment 1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Experiment 2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xii



Chapter 1

Introduction

1.1 Motivation

Cloud computing is experiencing an unprecedented surge, driven by the continuous evo-

lution of technology, particularly with the emergence of 5G/B5G which is shifting to be

more software-oriented. This growth is further propelled by the rapid expansion of low-

latency technologies like the Internet of Things (IoT), smart cities, and self-driving cars.

However, this increased adoption of cloud services also leads to a rise in energy consump-

tion by Cloud Data Centers (DCs). According to the International Energy Agency (IEA)

Data Centers account for around 1.5% of global electricity demand and are responsible for

1% of all energy-related greenhouse gas emissions. Furthermore, as illustrated in Figure

1, these numbers are expected to increase exponentially in the coming years [23]. Thus,

with this ever-increasing demand, coupled with the rising costs of energy and the growing

focus on environmental sustainability, the Data Center industry has heightened the urgency

to improve their operational efficiency, more specifically the optimization of the comput-

ing sub-system’s resource management(e.g., Virtual Machine Scheduling, Placement, and

Migration), aiming to minimize their overall energy consumption and carbon footprints.

1



Figure 1: Expected Increase in global DC Energy Consumption [23].

1.2 Background

Compute servers and cooling systems are the two primary components to consider in rela-

tion to energy consumption. A typical DC houses thousands of physical machines (PMs)

mounted on multiple racks or chassis, along with other essential equipment such as net-

work switches and cables that are vital for the compute system’s operation. In fact, these

computing components (e.g., Server, Networking, and Storage) can account for 50% of the

total data center’s energy consumption [17]. Similarly, an almost equal amount of energy

is consumed by the cooling system for handling the resulting massive heat generation of

those hardware components. In addition, excess heat may lead to the formation of hotspots

that greatly impact the system’s reliability. These hotspots can trigger hardware failures,

resulting from damage to silicon components [24].

Therefore, optimizing the operation and management of those PMs, remains a key area

of focus for energy minimization in Cloud Data Centers. In Infrastructure as a Service

2



(IaaS), PMs are responsible for hosting and executing computational tasks or workloads

mostly in the form of Virtual Machines (VMs) or Containers. Efficiently orchestrating the

VMs among the PMs in the Data Center holds significant importance for both effective en-

ergy management and hotspot avoidance. As such, it forms the central focus of this thesis.

In the following sub-sections, we offer a comprehensive description of Virtual Machines

and their management, as they serve as the fundamental components of this study.

1.2.1 Virtual Machine

Virtual Machines (VMs) are an essential aspect of virtualization technology, which enables

the partition of computing resources into separate environments. As illustrated in Fig. 2, a

hypervisor that runs on a PM, allows each VM to provide an independent operating system

(OS) for its applications, essentially creating multiple isolated virtual components within

the PM [46]. VMs play a vital role as a core component of cloud computing and have expe-

rienced a remarkable surge in usage due to the emergence of distributed software-oriented

network architectures. This evolution is driven by the rapid adoption of technologies such

as Network Function Virtualization (NFV) and Virtual Network Functions (VNFs). Unlike

traditional non-virtualized networks, which rely on vendor-specific software and hardware

to implement network functions, VMs enable the deployment of VNFs that encompass a

wide array of network functionalities, such as virtual firewalls, routers, and load balancers,

promoting greater flexibility and efficiency in the cloud environment.

1.2.2 Virtual Machine Management & Operation

The operation and management of VMs consist of 3 main components: Scheduling, Place-

ment, and Migration. Scheduling first accepts and decides the VMs’ deployment time or

order based on their precedence graph, hierarchy, or priority. After one or a set of VMs

are ready for deployment, Placement determines the allocation of the VMs to specific PMs

3



Figure 2: Virtualization of a physical machine [46].

(Can be across multiple DCs, see Fig. 3) based on certain policies or strategies for efficient

resource allocation. Finally, Dynamic Migration handles the execution of certain required

migrations, that is the transfer of a VM from one PM to another, either while active (hot

migration) or inactive (cold migration). Dynamic migration has been a popular area of

Figure 3: Illustration of Virtual Machines deployment over cloud Data Centers.

focus in relation to optimizing the operations of VMs. Through specific strategies such as

consolidation, VMs undergo periodic or reactive rearrangements to handle fluctuations in

workload to optimize energy and handle over-loaded or over-heated machines. However,

4



there are various challenges associated with migration, especially the live transfer of VMs

since it requires significant network bandwidth and computing resources [9]. In fact, a

high number of inefficient migrations poses a serious risk of Quality of Service (QoS) and

energy-efficiency degradation. Thus, several studies have instead shifted towards optimiz-

ing VM Placement.

1.3 Project Definition: Virtual Machine Placement for en-

ergy minimization

The goal of a VM placement algorithm is to select the most suitable PMs for VMs al-

location in order to optimize multiple, very often conflicting objectives such as resource

allocation, performance, energy efficiency, hotspot avoidance, and Quality of Service. Fur-

thermore, a placement algorithm can be utilized for both, initial placement which involves

the first selection of PMs for VMs’ deployment, as well as, in the context of migration, for

which the algorithm helps determine the new destination for a VM’s transfer [54]. Hence,

the goal of this research project is to develop an efficient and scalable VM placement algo-

rithm. The primary objectives are to minimize energy consumption, ensure proper resource

allocation, maintain high performance, and avoid hotspots within the cluster of server ma-

chines.

1.4 Key References

Data centers are typically designed to handle peak traffic to avoid SLA violations, overload,

or hotspot conditions. Consequently, resources are frequently over-provisioned, leading to

energy inefficiency, as idle servers may consume up to 70% of their maximum energy [6].

Hence, VM consolidation is a widely used technique, aiming to minimize active PMs and

5



power off underutilized/idle ones. Several authors, e.g., [4], [5] and [36] consider VM

placement as an energy-aware bin packing problem, employing best-fit heuristics to deploy

VMs on a minimum number of physical machines (PMs). However, these approaches may

cause numerous hotspots due to sudden traffic spikes, leading to frequent virtual machine

migrations and significant energy and resource costs. Additionally, delays in reactivating

inactive machines may lead to Service Level Agreement (SLA) violations.

Some studies, e.g., [21], [14], and [43] tackle these issues by presenting proactive ap-

proaches for VM consolidation. These methods consider both current and future resource

utilization by employing prediction models to approximate the future resource needs of

VMs and PMs based on their historical data, enabling better placement or migration de-

cisions. [9] raises the need for different placement strategies based on respective traffic

patterns and workload categories, or the DC operator’s goal. The proposed approach intro-

duces a dynamic VM placement method based on DQN (Deep Q-Network) which utilizes

six placement heuristics in its action space. The objective is to enable the agent to select

the most suitable placement heuristic for specific situations and goals, ultimately improving

the efficiency and effectiveness of VM placement.

Consolidating VMs onto a smaller number of active physical machines (PMs) can lead

to higher peak temperatures, requiring a colder air supply at the inlets to maintain standard

operational temperatures. This trade-off between reduced compute energy consumption

and increased cooling energy usage may often have negative outcomes on the overall en-

ergy consumption, Thus, a few studies have explored thermal-aware or holistic solutions.

For instance, [31] proposes GRANITE, a holistic approach based on using overall total

power consumption including the cooling system’s. [20] propose a mixed integer linear

programming (MILP) and a greedy heuristic for a temperature-aware virtual data center

embedding scheme. Similarly, [24] proposes a greedy algorithm that allocates VMs on

PMs with the lowest predicted CPU and inlet temperature.

6



1.5 Our Contributions

Our major contributions are summarized as follows;

1. We implement predictive Machine Learning (ML) models to enhance the accuracy of

power consumption prediction for physical server machines (PMs). This is achieved

through the introduction of a novel feature space that incorporates real-time data from

the PMs’ embedded heat sensors, internal fan speed, and Performance Monitoring

Counters (PMCs).

2. We introduce the concept of "Criticality" and the use of all internal components’

critical temperature thresholds for precise hotspot detection and avoidance.

3. We develop a scalable, proactive, energy-aware, and thermal-aware VM Placement

algorithm that effectively reduces energy consumption while ensuring appropriate

resource allocation and hotspot avoidance.

4. We perform a series of experiments on an actual cluster of Physical Machines (PMs)

within a private data center. These experiments provide a comprehensive evaluation

of all Machine Learning (ML) models, as well as our implemented VM placement

algorithm.

To the best of our knowledge today, there is no existing work that considers the tem-

perature and critical temperature thresholds of all PM’s internal components in the context

of power prediction, placement, or hotspot avoidance. Moreover, there is very limited re-

search works that implement and test their solutions in a real data center.

7



1.6 Plan of the Thesis

This thesis is organized as follows: In Chapter 1, we presented the motivation and back-

ground of our study. Chapter 2 describes in further detail the environment and load em-

ulation methodology for all the experiments conducted in this study. Chapter 3 provides

the implementation of power models that will play a critical role in our proposed Virtual

Machine placement algorithm that is presented in Chapter 4. Chapter 3 and Chapter 4 are

organized as separate Conference and Journal papers, respectively. Finally, we conclude

this thesis and discuss future works in Chapter 5.

8



Chapter 2

Experiment Environment

This chapter outlines our experimental setup that is utilized for conducting all the experi-

ments of the research papers presented in Chapter 3 and Chapter 4. Additionally, we detail

our methodology for generating Virtual Machine (VM) loads and the collection of both

software and hardware-related data.

2.1 Cluster Architecture

All experiments have been conducted in a private data center on a cluster of 8 HP ProLiant

BL460c G8 physical machines (PMs) mounted on an HP C7000 chassis. As described

in Table 1, each of those PMs consists of 2 processors of 8 cores, 16 threads, and 128

GB RAM. Our test bed runs with OpenStack as the cloud platform for the management

of the Virtual Machines (VMs) and follows a Three-Node architecture that consists of 3

systems: Controller Node, Compute Node, and Storage Node [39] (See Figure 4). One

PM is used as the controller node where most of the OpenStack services run and supply

API, scheduling, and other shared services for the cluster. 6 PMs run as compute nodes

where VM instances, also known as Nova compute instances are deployed, and 1 PM is

used as the storage node to host data. In addition, a custom VM management module is

9



Chassis HP C7000 × 1

Blade/PM ProLiant BL460c Gen8. × 8

Processor Intel(R) Xeon(R), 8 core, 16 threads, 2.70GHz. × 2

Memory 128GB RAM (DIMM DDR3). × 2

Disk HDD 900GB. × 2

Table 1: Cluster & Physical Machine’s Description.

implemented on the controller node for conducting data collection, executing experiments,

and integrating new VM placement algorithms.

Figure 4: Three-Node Architecture of OpenStack [39]

2.2 Experiments

2.2.1 Load Emulation and Data Collection

Our environment can handle a maximum of 180 VMs with each compute node/PM having

a VM limit set to 30. All VMs use an Ubuntu 20.04 LTS image [53] with a flavor of 2

VCPU, 4 GB Memory, and 20GB of disk. We illustrate in Figure 5 our process for gen-

erating real-like loads on VMs. All VMs are created with an image consisting of a load

10



emulation Python script and stress software (stress-ng). Stress-ng [51] is a tool for work-

load generation that can subject a system to a configurable measure of resource utilization

such as CPU, memory, and disk stress. First, a unique VM trace file from a dataset of Mi-

crosoft Azure’s cloud VM traces [11] is transferred through SSH and SCP to the VM. After

a trigger signal is sent, the load emulator uses stress-ng to emulate the load by replicating

the load levels as recorded in the Azure trace file as a time series. This enables the VMs

to have real-like resource usage levels and patterns on the PMs. Indeed, Figure 6 illus-

trate the results of an experiment demonstrating the similarity in usage pattern between the

measured CPU utilization of a VM and the respective trace during load emulation.

Figure 5: VM Load Emulation.

Figure 6: Emulation v/s Trace CPU Utilization pattern

11



The controller node is also used for collecting and storing the monitoring data of each

PM. OpenStack and Linux commands (e.g., vmstat, lsCPU) are used for recording all

software-related data such as the Performance Monitoring Counters (PMCs). In terms of

hardware data, the real-time heat sensor data, internal fan speed, and power measurements

are collected using IPMItool [40] through the Intelligent Platform Management Interface

(IPMI) which is a standardized message-based hardware management interface.

2.2.2 Static VM Deployment

During our experiments, we encountered several technical issues. These included VM de-

ployments failing or experiencing large delays, as well as connection failures during load

emulations. These challenges mainly arose from technical problems related to the network

interfaces and the presence of faulty cables. Thus, to guarantee failure-free and consistent

experiments, we employ static instead of dynamic VM deployment. VMs are first pre-

deployed, checked for their operational status and network connection, and kept idle. After

the state of the machines has stabilized, dynamic VM deployments are emulated by select-

ing an idle VM from the VM pool, establishing a connection, and emulating workloads

based on specific trace files. Since all VMs are homogeneous with similar configurations

and capacities, idle VMs can be picked randomly and characterized using only their as-

signed trace file. Additionally, any variation caused by static deployments only impacts the

overall static or idle power usage, which has a minimal influence on our study since our

primary focus is dynamic power consumption.

12



Chapter 3

A Sensor Predictive Model for Power

Consumption using Machine Learning

This chapter was accepted for publication in the IEEE CloudNet 2023 Conference, titled

"A Sensor Predictive Model for Power Consumption using Machine Learning", written by

N. Moocheet, B. Jaumard, P. Thibault, and L. Eleftheriadis.

3.1 Abstract

Reducing the power consumption of computing devices remains a challenge for the data

center industry. In 2022, it represents approximately 2% of global electricity consumption

and 1% of global greenhouse gas emissions. In addition, data centers must integrate the

5G and B5G challenges into their strategies, by increasing the computing resources avail-

able to face higher-quality service constraints. Indeed, 5G and B5G future networks are

increasingly software-oriented and therefore, rely heavily on cloud computing to process

large amounts of data from multiple sources in real-time.

Several research works on energy management have been proposed to ensure a reduc-

tion of the energy consumed by the various components of a data center (e.g., software,

13



computing devices, or cooling systems). However, to optimize the energy consumption of

computing devices (e.g., virtual machines/container operations), it is essential to have an

accurate model for predicting power consumption. Thus, we propose in this study a new

sensor predictive model to predict the dynamic power consumption of cloud computing

devices with high accuracy.

Our proposal takes advantage of the various sensors that are now embedded in physical

machines, or more generally in cloud server machines, as well as Performance Monitoring

Counters to implement a Machine Learning power prediction model.

The performance evaluation results confirm that our power consumption prediction

models outperform previous literature models in terms of accuracy. Indeed, our best model

achieves a R2 score of 93.6% which is higher than the compared baseline model by 21.1%.

3.2 Introduction

With the emergence of 5G and B5G future networks, there is an ever-increasing demand for

improved cloud service capabilities and energy efficiency. Future networking technologies

are evolving to be more software-oriented (as virtual processes replace physical processes)

and thus, rely significantly on cloud resources and the associated infrastructures. Further-

more, the rapid growth of highly network-dependent and low-latency technologies such as

Internet of Things (IoT), Smart Cities, and Self Driving Cars, increases, even more, the

strain on Data Centers (DC). As a result, there is a global rise in energy consumption by

Data Centers (DC). The International Energy Agency estimates that 1-1.5% of all global

electricity is used by data centers and that by 2025, they will consume 1/5 of the world’s

power supply. Data Center energy minimization has therefore become a huge challenge

internationally. Communication Service Providers (CSP) continue to invest heavily to ad-

dress the energy issue. Even a 1% improvement of energy efficiency in a Data Center can

lead to significant savings in operational costs and in reducing carbon footprint [23].

14



The key concepts that are being applied to achieve DC energy efficiency are energy-

aware virtual machine (VM) or container operations: scheduling, placement, and migra-

tion [36]. The main idea consists of managing VMs among the physical machines (PM)

of a Data Center in such a way that the overall energy consumption is reduced. To im-

plement energy-aware DC VM management strategies, it is essential to have an accurate

model for power consumption prediction. However, existing solutions, mostly analytical

power models, fail to capture multiple non-linear inter-dependencies that affect the power

consumption of PMs in a data center. In addition, most of these models use resource uti-

lization, more specifically, Central Processing Unit (CPU) utilization as the only feature

for power prediction. These models fail to capture the other essential dependencies such as

the heat generation inside the PMs or possible differences in workload characteristics such

as being I/O intensive, thus, leading to inaccurate power models.

In this paper, we propose a novel sensor predictive model for accurate power consump-

tion prediction for server physical machines (PMs) in the context of dynamic traffic. Server

PMs are today equipped with multiple sensors: heat sensors, fan speed meters, and power

meters. Sensors help with their real-time measurements, to detect hotspots, i.e., high tem-

peratures that can lead to unnecessary downtime [28]. For instance, power meters are very

useful for detecting if the current power consumption reaches or exceeds the configured

power budget. Yet, there is a need for predicting the required power (the objective of the

present study) in order to proactively manage virtual machines in order to minimize the DC

energy consumption, and facilitate the DC management [35].

Figure 7 illustrates a typical heatmap that can be generated, using various temperature

sensor measurements, for the physical machine we used in our experiments. Therein, each

dot represents the temperature of one particular sensor. A detailed description of the sensors

is provided in Section 3.5. In addition, we propose the use of Performance Monitoring

Counters (PMCs) for improved characterization of the dynamic workload and resource

15



utilization.

We conducted various experiments on a private DC with a 6 PM cluster, with each

PM equipped with multiple onboard heat sensors, fan speed counters, and power meters

to investigate traffic load factors that impact energy consumption. We then implemented

four machine learning models: Multiple Linear Regression (MLR), Multi-Layer Perceptron

(MLPRegressor), Long Short-Term Memory (LSTM), and XGBoost. All four models used

real-time sensor measurements and PMCs to provide accurate power predictions. These

are compared to the power prediction derived from the most commonly used analytical

formulas, see, e.g., Fan et al. [12]. The reported results show that our proposed machine

learning models can accurately predict dynamic power values, much more than the clas-

sical analytical power formula, under different traffic load characteristics. The paper is

Figure 7: Heat Map of a HPE ProLiant BL460C Gen8 PM

organized as follows. Section 3.3 contains an overview of the literature review on the pre-

diction of server power consumption. A first study in Section 3.4 exhibits the requirements

and challenges for designing accurate power prediction models considering the signature

characteristics of the PMs using PMs and sensor measurements vs. analytical formulas.

16



We then propose in Section 3.5, four different machine learning models, which rely on

PMCs and real-time sensor measurements. The prediction ML algorithms are discussed in

Section 3.6. Finally, we present our performance results in Section 3.7. Conclusions are

drawn in the last section.

3.3 Literature Review

Numerous studies have been proposed in the area of power prediction in the context of

energy management in data centers (DCs). Predictive energy or power consumption mod-

els are crucial for energy management in DCs, as most energy-efficient virtual machine

management solutions require their use. For example, Beloglazov et al. [4] proposed

energy-aware scheduling based on allocating each VM on a PM that has the lowest pre-

dicted increase in power consumption, using a linear to CPU utilization model inspired by

Fan et al. [12].

3.3.1 Power Consumption Models with CPU only

Simple regression model is the most popular of all models for power consumption predic-

tion [25]. Fan et al. [12] used the relationship between the CPU utilization and total power

consumption of a server, to propose a simple linear model. They assume that the power

increases linearly to the CPU utilization starting from the idle power to the power at maxi-

mum utilization. In the same work, they also proposed a non-linear model that has the same

dependencies with the addition of a calibration variable that aims to minimize the square

error of their model. Beloglazov et al. [4], Kavanagh et al. [27] and Lien et al. [33] are

other examples of research works that propose power models that are mainly dependent on

CPU utilization, idle state power consumption, and peak utilization state power consump-

tion. However, while these models are simple and practical to use, they are only suitable

17



for power modeling in CPU-intensive servers. They are likely to produce large prediction

errors when the servers are running workloads that are for example, more I/O or memory

intensive.

3.3.2 More General Power Consumption Models

To obtain better accuracy, several works propose power models that take into account sev-

eral server components in addition to the CPU. For example, Basmadjian et al. [3] pro-

posed an additive model that considers the memory, disk, fan speed, and CPU frequency

to model the energy consumption. Similarly, Perumal et al. [41] and Song et al. [50]

model the server energy consumption as the sum of the energy consumed by the CPU,

memory, disk, network interface card (NIC), and mainboard. Tudor et al. [52] uses the

clock frequency and service time of a memory and I/O request to model the energy con-

sumption of advanced RISC machine (ARM) multicore servers. While more accurate than

simple regression models, the analytical formulas of these additive models are often valid

for only a few sets of servers since the power consumption of each component depends on

its configurations and hardware. Although more accurate than simple regression models,

the analytical formulas of these additive models lack generality: they are often only valid

for a few sets of servers since the power consumption of each component depends on its

configurations and hardware. Alan et al. [1] and Li et al. [32] propose Multiple Regression

Models that use factors such as memory access rate, hard disk I/O, and network I/O, in ad-

dition to CPU utilization. Furthermore, Kansal et al. [26] propose Joulemeter, a solution to

provide virtual machine (VM) power metering functionality by considering the number of

last level cache (LLC) misses, in addition to the generic components such as I/O, memory,

and CPU. Xiao et al. [59] and Bircher et al. [7] propose a different category of power mod-

eling technique that uses performance monitoring counters (PMCs). This implies the use

18



of the system or application-level performance-related statistics for modeling power con-

sumption at the sub-system’s or VM’s level. For example, Bircher et al. consider PMCs

such as LLC, translation lookaside buffer (TLB), Direct memory access (DMA), and Inter-

rupt to account for the power consumption of components such as the processor, memory,

disk, and I/O controller.

3.3.3 Temperature: A Key Parameter for Power Prediction

Temperature is another essential feature that very few power and energy prediction-related

works considered so far.

Rezaei et al. [44] and Wang et al. [56] show the direct effect of temperature on the

power consumption of cloud data centers. They both propose an improved version of the

very popular linear analytical formulas from Fan et al. [12] that uses the inlet and outlet

temperature of a server/physical machine to improve the power consumption prediction

accuracy. Similarly, Witkowski et al. [58] make use of clock frequency and CPU cores’

temperature in their proposed technique for power consumption estimation of physical ma-

chines or systems in High-Performance Computing (HPC) clusters.

3.3.4 Concluding Remarks

While the first generation of studies for server power modeling relied mostly on analyti-

cal formulas, the second generation try to take advantage of temperature-aware solutions.

However, most of these last studies only consider the CPU, ambient, or inlets’ temperature

while the temperature of the other system-related components is also crucial for an accurate

power prediction model. The goal of our study is indeed to investigate these other critical

parameters for accurate power prediction.

19



3.4 Real-time Sensor Measurements vs. Analytical For-

mulas

We discuss here the benefits of using a data-driven approach for an accurate prediction of

power consumption while identifying the right features. We first investigate the key features

to be considered for the traffic workload and then those for the computing resources in order

to accurately predict the power consumption. We then compare the results of a real-time

data-driven approach against the use of analytical formulas which are not only for static

traffic but too generic to meet the need for accurate power prediction.

3.4.1 Workload Characterization

A data center (DC) is a facility composed of networked computers, storage systems, and

computing infrastructure. Each server also called a host or physical machine (PM), typi-

cally manages virtual machines (VMs) or containers of multiple categories. PMs can be

used as, e.g., database servers, file servers, web servers, game servers, and application

servers [25]. Today, 5G networks are foreseen to rely on the cloud which will be physically

distributed among multiple DCs in different locations to dynamically deploy Virtualized

Network Functions (VNFs) [47]. VNFs are software implementations of network equip-

ment of several categories, such as routers, firewalls, load balancers, or mobile core network

components that can be deployed on Virtual Machines (VMs).

Therefore, due to these multiple categories of VMs/containers, the workload of PMs is

highly heterogeneous. PMs may be operated with different software/hardware components

according to their VMs’ workload characteristics. For example, a PM used mostly as a

game server will have considerably more CPU usage than those used as database servers.

Power models that are linear to CPU utilization assume that the impact of those different

20



(a) Exp. 1: CPU Only

(b) Exp. 2: CPU & Memory

(c) Exp. 3: CPU & Disk

Figure 8: CPU utilization to Power relation for different workloads.

load characteristics is negligible, however, we demonstrate otherwise in Fig. 8. We con-

ducted several experiments, with emulated loads of varying characteristics. On a set of

120 VMs, we first run a CPU-usage-based load emulation, followed by other experiments

with similar CPU usage levels but with additional simulated memory and disk operations.

Indeed, Exp. 2 and Exp. 3 in Fig. 8, shows that the relation between the CPU utilization

and power consumption varies based on the load characteristic. Details of the experimental

setup and load simulation is later provided in Section 3.7.

A first conclusion is that it is essential to have a real-time accurate characterization

21



of the VM loads and tasks running on the different PMs to accurately model their power

consumption. While resource utilization such as CPU utilization is the most used metric

to characterize the workload of a PM, other parameters should be collected in the work-

load traces, while preserving security or privacy agreements. It is acknowledged that the

CPU is the heaviest power consumer [6] and is also relatively easy to measure, thus, the

majority of DC energy optimization-related works use models that are solely dependent on

CPU utilization and ignore the power consumption of the other load or task components.

However, as discussed in [2], the total estimated power consumption by these components

is not insignificant. In addition, as shown in Fig. 8 and previously explained, for work-

loads of different characteristics, there will be large variations in power consumption even

at similar CPU utilization levels, which will result in large prediction errors for those CPU

Utilization dependent predictive models.

3.4.2 Heterogeneous PMs & Temperature

Data Centers, especially large-scale ones, are highly heterogeneous. They contain a huge

number of Physical Machines (PMs) which are very likely to be from different manufactur-

ers. The physical architecture, configuration, and performance of those PMs will have large

variations based on their manufacturer and hardware type. Thus, using standard analyti-

cal models is highly impractical for such data centers, since they require to be calibrated

through various experiments for each type of hardware. Furthermore, in a dynamic data

center, each PM is very likely to have different inlet and internal temperatures based on

their location inside the DC, in relation to the cooling units and room air circulation. In-

deed, Fig. 9 and Fig. 10 displays the difference in the inlet and CPU temperature between

3 PMs, all with similar hardware (HP ProLiant BL460c G8), with similar configurations

including energy-based configurations, and running similar loads. Thus, temperature is a

key factor that must be considered in relation to power consumption prediction, since in

22



general, much of the electrical energy that goes into those server PMs gets turned into heat.

However, most existing thermal-aware power or energy models, only consider the CPU or

inlet temperature and ignore the other internal components of the PM. Getting a PM’s inlet

temperature without sensors often consists of modeling DC room heat circulation through

Computational Fluid Dynamics (CFD) which is highly computational and thus, not appro-

priate for dynamic large-scale DC.

Figure 9: Inlet temperature under similar load

Figure 10: CPU temperature under similar load.

3.5 Machine Learning Model

To develop an effective model for accurately predicting the power consumption of Physical

Machines (PMs) within the context of Virtual Machine (VM) placement for heterogeneous

23



dynamic data centers that handle multiple categories of traffic load, it is imperative to con-

sider comprehensive factors such as detailed resource utilization and temperature across all

PM components. Thus, in this section, we propose our methodology which consists of the

following;

• To use Performance Monitoring Counters (PMCs) for improved workload character-

ization and a detailed measure of resource utilization.

• To consider the temperature of various internal components of physical machines, as

well as their internal fan speeds.

• Implementing a Multiple Linear Regression, Multi-layer Perceptron Regressor (ML-

PRegressor), Long Short-Term Memory (LSTM), and XGBoost models that take ad-

vantage of the enhanced feature space to provide highly accurate power predictions.

• Predict the power consumption of a PM at a time t using the CPU utilization of the

PM at t, PMCs at t-1, and all sensors’ data at time t-1, as input features for our

ML models, since PMCs & temperature cannot be extrapolated as easily as the CPU

utilization.

3.5.1 Performance Monitoring Counters

Performance Monitoring Counters (PMCs) consist of various kinds of system data such as

CPU, memory, and disk usage that are often used by system administrators to monitor sys-

tems for performance or behavior problems, as well as, to examine the resource usage of

systems. We take advantage of those PMCs, especially the system data related to resource

usage to improve the characterization of the workload and resource utilization on the phys-

ical machines (PMs). PMCs can be used to model the power consumption of the memory,

disk, and other subsystems outside of the processor.[59][7]. For example, the amount of

Interrupts, context switching, and time spent by the CPU waiting for I/O captures the I/O

24



Table 2: Performance Monitoring Counters (PMCs)

PMCs Description

r Number of processes in a running state

b Number of processes in uninterruptible sleep

state

swpd Amount of virtual memory used

free Amount of idle memory

buff Amount of memory used as buffers

cache Amount of memory used as cache

si Amount of memory swapped in from disk (/s)

so Amount of memory swapped to disk (/s)

bi Blocks received from a block device (blocks/s)

bo Blocks sent to a block device (blocks/s)

in Number of interrupts per second

cs Number of context switches per second

us CPU time spent running non-kernel code

sy CPU time spent running kernel code

us_t Overall CPU utilization

id CPU time spent idle

wa CPU time spent waiting for I/O

st CPU time stolen from a virtual machine

cpu_freq CPU frequency

usage and thus, the estimated power consumed by these I/O operations. While there exist

several PMCs that can be collected through various tools, in this work we consider those

performance statistics that can be easily collected in real-time through built-in monitoring

utilities such as ’vmstat’ [34]. Table 2 lists and describes the set of PMCs that we collect

and consider in our experiments and model implementation.

3.5.2 Embedded Sensors

Most physical machines (PMs) in data centers now contain multiple temperature sensors

embedded in their internal components to monitor their temperature and used to mitigate

hotspots. Each of these sensors has a critical temperature threshold which, when reached,

can force the PM to shut down. Moreover, reaching high temperatures also influence power

consumption due to the increase in silicon leakage current. Thus, we consider the temper-

ature of those components as key feature for an accurate power model. We make use of an

25



open-source tool called ’ipmitool’ [40], to collect those sensor data in real time to derive a

complete temperature profile for each PM. As a result, we are able to take into account the

temperature of several components in addition to the CPUs, such as the Memory, I/O, and

other system-related components, including the heat generated at the outlets (exhausts).

Additionally, we also collect the speed of internal fans as they also influence temperature

and power consumption. Adding component temperature and fan speed along with perfor-

mance monitoring counters (PMCs) to our feature space allows our models to derive and

accurately account for the power consumption of all the sub-components inside the physi-

cal machine, thus greatly improving the performance of the power model. Figure 11 shows

a 2-dimensional version of Fig. 7, which is a heat map generated for one of our PMs, as

well as the location of the 28 internally embedded temperature sensors that we consider

in this study. Fig. 12 then provides the corresponding sensors’ description, coordinates,

critical thresholds, and an example of real-time temperature readings.

Figure 11: 2D Heat Map of a PM (HP ProLiant BL460c G8) with Sensors location

3.5.3 Data pre-processing

Data pre-processing is a crucial step that can affect the performance of machine learning

(ML) models, especially for data from a dynamic environment with high fluctuations and

26



Figure 12: Snapshot of a real-time sensor reading & description

features of various measurement units and scales. The dataset was first cleaned by re-

moving samples with any missing values. Samples for each 1-minute interval were then

grouped and averaged for data reduction and more importantly to account for high fluc-

tuations. Spearman rank-order correlation coefficient was then used for feature selection.

Spearman’s rank coefficient of correlation is a nonparametric measure of the statistical de-

pendence of ranking between two variables or features. More specifically, it measures the

strength and direction of the association between two ranked variables, especially for non-

linear correlations. The Spearman coefficient varies between -1 and +1, with 0 implying no

correlation and -1 or +1 implying an exact monotonic relationship. Thus, after calculating

the correlation between each independent feature and the measured power consumption,

we discarded all features that have a Spearman coefficient of 0. Spearman rank-order cor-

relation coefficient is written:

ρ = 1− (6
∑

i

d2i )/n(n
2 − 1), (1)

27



where n is the number of data points of the two features and di the difference in ranks

of the ith element. The features that were found to have 0 correlation with the power,

thereby, removed from our feature set were the ’HD MAX’, ’HDcntlr Inlet’, and ’LOM

Card’ component’s temperature and the ’swpd’, ’si’, ’so’, and ’st’ from the PMCs.

The data-set is standardized for the Machine Learning (ML) models to converge faster

and have better performance. Indeed, features are measured at different scales and there-

fore, do not contribute equally to the model fitting which might create biases. Thus, we

transform the features to a relatively similar scale or close to a normal distribution. A

feature is standardized using equation (2) which results in a distribution with a standard

deviation equal to 1 and an approximate mean of 0. The mean µ and standard deviation

σ of the training set are used to standardize the testing set to prevent the leakage of its

distribution information. The standardization is written:

zi = (xi − µ)/σ, (2)

where zi is the ith value of the standardized feature, xi is the ith value of feature x, µ is the

mean and σ the standard deviation for feature x .

Three datasets are derived: first dataset only contains PMC features; second dataset

contains the fan speed and temperature-related features; third dataset contains all the fea-

tures from datasets 1 and 2. For each ML model implementation, we derive 3 types of

models using these 3 datasets.

All datasets are time-series data of 1 minute intervals with new shifted columns so that

each row contains CPU utilization (labeled as us_t_N ) and Power values at time t and the

required feature values at time t− 1.

28



3.6 Machine Learning Algorithms

We now discuss the various machine learning algorithms.

3.6.1 Multiple Linear Regression Model (MLR)

Multiple linear regression (MLR) is an extension of simple linear regression that makes

it possible to evaluate the linear relationships between a dependent variable and several

independent or explanatory variables. We use MLR technique to model the relationship

between our selected set of 45 independent features and our prediction target variable which

is the power consumption of a physical machine. The advantage of this approach is that it

leads to a more accurate and precise understanding of the association of each feature with

the prediction output. A MLR model is defined as follows:

Y = β0 + β1X1 + β2X2 + ...+ βiXi + ε (3)

where Y is the dependent feature, β0 is a constant term for the y-intercept, βi is the slope

coefficient for Xi, which is the ith independent variable, and ε the residual of the model.

3.6.2 Extreme Gradient Boosting Algorithm (XGBoost)

Extreme Gradient Boosting is an efficient, scalable, and open-source implementation of a

tree-boosting system proposed by Chen et al. [10].

3.6.3 Multi-layer Perceptron (MLP) Regressor Model

A Multi-layer Perceptron Regressor (MLPRegressor) is a class of feed-forward artificial

neural networks that performs regression. In a feed-forward neural network, the units are

arranged into a graph without any cycle for sequential computations. Our model (Fig. 13

29



consists of a fully connected network with a first layer being the input-layer (n = 45) that

takes the values from the input features, 3 hidden layers, and the output-layer that outputs

the power consumption prediction. The first hidden layer has 3 perceptrons or units, the

Figure 13: MLP Neural Network Architecture

second hidden layer has 5 units and the last hidden layer has 2 units. We use ’lbfgs’ which

is an optimizer in the family of quasi-Newton methods for weight optimization, as a solver

in our MLP model training. As for the activation function, we use the ’identity’ or Linear

Activation Function which returns f(x) = x, where x is the input value.

3.6.4 Long Short-Term Memory (LSTM) Neural Network

Long Short-Term Memory Network (LSTM) which was introduced by Hochreiter & Schmidhuber[22],

is a specialized type of Recurrent Neural Network (RNN) designed for learning long-term

dependencies. It is a specific recurrent neural network (RNN) architecture that was de-

signed to model temporal sequences and their long-range dependencies more accurately

than conventional RNNs, and therefore particularly effective on time-series data. Our Neu-

ral Network consists of an LSTM layer of 32 units, 2 dense hidden layers with 16 and 8

perceptrons or units, and finally an output layer of 1 unit. In addition, we add a dropout

layer with a dropout rate of 0.1 after the first hidden layer to prevent overfitting. As for

the activation function of the hidden layers, we use a simple identity function f(x) = x

30



which is commonly used for regression tasks. The optimization algorithm used to update

the neural network during training is the Adaptive Moment Estimation (Adam) which is

known to achieve faster convergence and better generalization.

3.7 Numerical Results

We implemented all proposed machine learning algorithms described in Section 3.6 with

the models presented in Section 3.5. The models are then evaluated on a cluster of real

VMs in a private data center. Results are then compared with the work of Fan et al. [12]

and Wang et al. [56].

3.7.1 Experimental Setup, Load Emulation & Data Collection

All experiments have been conducted in a private data center on a cluster of 6 HP ProLiant

BL460c G8 physical machines(PMs). OpenStack [57], an open-source cloud computing

infrastructure software, is used for the deployment and management of Virtual Machines

(VMs) on the cluster of server PMs. The workload consists of a set of 120 VMs of an

Ubuntu 20.04 LTS image [53] and a flavor of 2 VCPU, 4 GB Memory, and 20GB of disk.

Four of the PMs are used as compute nodes, one as a controller node to manage data

collection and VM deployment, and lastly one PM as local block storage.

Load emulations on the VMs are done through stress software with Microsoft Azure’s

cloud VM traces [11]. Stress [51] is a tool for workload generation that can subject a

system to a configurable measure of CPU, memory, and disk stress. The traces contain

the measurements of the average CPU usage at 5-minute intervals for real VMs running on

Azure servers. Thus, using these traces, we are able to emulate real-like levels of PM’s CPU

utilization. Memory and disk operations are added through the stress tool for generating

traffic of different characteristics. Indeed, as seen previously in Fig. 8, multiple workloads

31



Workload CPU(%) Memory(%) Disk (%) PMs

Training Sets

TR-CPU 42 34 28 PM1,PM2,PM3

TR-MEM 55 44 29 PM1,PM2,PM3

TR-DISK 55 42 31 PM1,PM2,PM3

Testing Sets

TS-CPU 47 35 29 PM4

TS-MEM 54 46 29 PM4

TS-DISK 57 43 31 PM4

TS-ALL 48 48 31 PM4

Table 3: Average Resource utilization by Workloads

with different characteristics are generated by varying load configurations of the stress

tool. Details of these workloads, such as the average percentage resource utilization are

provided in table 3. Workloads with the ’CPU’ labels imply that they solely consisted of

default CPU-based emulation from the Azure VM traces while the ’-MEM’ and ’-DIsk’

consisted of added memory and disk operations along with the VM traces, respectively.

Workload ’TS-ALL’ consists of combined CPU, memory, and disk emulations, while also

having several dips and peaks in utilization level to investigate the impact of a high rate of

change in temperature and utilization levels on the prediction models.

At the start of the experiments, the controller node transfers the load emulation python

scripts and a unique VM trace file to each VM deployed on PMs. After the load emulation is

triggered, OpenStack and Linux commands (e.g., vmstat, lsCPU) are used to start recording

the Performance Monitoring Counters (PMCs). In addition, the controller node runs scripts

that use IPMItool [40] for collecting and storing sensors’ data including the fan speed and

power consumption for all compute nodes. Each PM is then subject to load emulations of

different categories with a 16 hour experiment duration.

For non-biased results, the evaluation is done using test sets derived from a server ma-

chine labeled ’PM4’, whose data was never used during model training. Each VM on this

PM has a unique VM trace file, thus having distinct utilization levels. Moreover, the test set

also consists of workloads of different characteristics as previously described and shown in

Table 3.

32



3.7.2 Performance Evaluation

We provide here a detailed performance evaluation and analysis of the proposed Multiple

Linear Regression (MLR), Multi-Layer Perceptron Regressor (MLP), Long Short-Term

Memory (LSTM), and XGBoost models on our different types of VM traffic loads. For

performance evaluation, we use the mean absolute percentage error (MAPE), Root Mean

Square Error (RMSE), and R2 score.

MAPE is the most common measure (percentage) of error for forecast systems [29].

Similarly, the RMSE is also a measure of error and is defined by the square root of the mean

of the square of all the model’s prediction errors. R-squared (R2) is known as the coefficient

of determination and is a statistical measure representing the proportion of the variance for

a dependent variable that’s explained by the independent variables. As compared to MAPE,

RMSE, and other KPIs that have an arbitrary range, R2 can be expressed as a percentage

with a fixed scale and thus, is more informative. The best-performing model will be the

one that has the highest R2 score and the lowest MAPE and RMSE.

MAPE =

(

1

N

N
∑

i=1

|(Ai − Pi)|/Ai

)

× 100 (4)

RMSE =

√

√

√

√

(

N
∑

i=1

(Pi − Ai)2

)

/N (5)

R2 =

(

1−

(

N
∑

i=1

(Ai − Pi)
2/

N
∑

i=1

(Ai − Ā)2

))

× 100, (6)

where N is the number of data points, Ai denotes the actual, and Pi the predicted values at

data point i, and Ā is the average of the actual values. To better interpret the performance

of our proposed models, we compare them with the nonlinear analytical formula of Fan et

al. [12] and the model of Wang et al. [56], i.e., an improved version of the linear formula

33



of Fan et al. [12] with the addition of the inlet temperature:

P Fan et al.(u) = PIDLE + (2u− ur)(PBUSY − PIDLE)

PWang et al.(u) =PIDLE + u(PBUSY − PIDLE) + a0 + a1TINLET + a2T
2

INLET

where u is the CPU utilization scaled to range (0, 1), P (u) is the PM predicted power

consumption at overall CPU utilization u, PIDLE and PBUSY are the power consumption of

the PM at idle state and peak usage state, respectively, and TINLET is the inlet temperature.

r, a0, a1, and a2 are calibration parameters to fit the model and minimize the forecast error.

To achieve the best fit for our PMs using the training set, we set the values of r, a0, a1, and

a2 as 1.5, -20, 0.005, and 0.1, respectively.

As described in our model description in Section 3.5, we have 3 categories of data-sets

to derive 3 different power prediction models for each of the ML algorithms we considered:

(i) PMC-LSTM, PMC-LR, PMC-MLP, and PMC-XGB are PMC-based LSTM, MLR,

MLP, and XGBoost models, respectively.

(ii) Sensor-LSTM, Sensor-LR, Sensor-MLP, and Sensor-XGB are the sensor-based ML

models that make use of only temperature sensors and fan speed features.

(iii) PMC_Sensor-LSTM, PMC_Sensor-LR, PMC_Sensor-MLP and PMC_Sensor-XGB

that combine the PMC and sensor features.

The best model performance was that of the Sensor_PMC-XGB with a RMSE of 11.9

and a R2 score of 93.6%: It outperforms Wang et al’s best reference model’s R2 score by

21.1% and improves the RMSE by 48.0%. A key performance factor of our study is the

ability to provide accurate results for multiple load categories. A detailed assessment for

each of the workloads described in Table 3 is therefore provided in 4. The average perfor-

mance over all test datasets is then presented in Table 5. Additionally, for each workload

34



(a) TS-CPU

(b) TS-MEM

(c) TS-DISK

(d) TS-ALL

Figure 14: Performance of ML models for each Workload

35



Models TS-CPU TS-MEM TS-DISK TS-ALL

Analytical Formulas-R2 score

Fan et al. 81.8 58.9 89.2 -28.8

Wang et al. 87.8 78.7 94.3 29.4

Machine Learning Models-R2 score

PMC-LSTM 95.1 86.9 97.5 63.6

PMC-LR 95.1 90.9 95.7 83.8

PMC-MLP 95.1 90.9 95.7 83.9

PMC-XGB 96.0 90.8 94.5 86.1

Sensor-LSTM 85.5 68.9 95.6 15.3

Sensor-LR 95.0 90.7 97.6 83.8

Sensor-MLP 95.0 90.7 97.0 83.9

Sensor-XGB 96.6 91.9 97.0 86.1

Sensor_PMC-LSTM 93.2 75.5 95.3 76.2

Sensor_PMC-LR 90.9 84.8 94.5 83.1

Sensor_PMC-MLP 90.9 84.8 94.5 82.9

Sensor_PMC-XGB 96.5 92.1 98.4 87.2

Table 4: Model Performance (R2 score) on each workload

(TS-CPU, TS-MEM, TS, DISK, and TS-ALL), we illustrate in Fig. 14, the performance of

the Sensor_PMC based models.

3.7.3 Observations

As previously discussed in Section 3.4, analytical and linear models fail to capture the

multiple dependencies that affect power consumption. As a result, for all considered work-

loads, the XGBoost ML model with a feature space consisting of multiple PMCs and Sen-

sors’ data outperforms considerably the other baseline models. All evaluated models are

seen to have the lowest performance on Workload ’TS-ALL’. This may be due to the sev-

eral sudden peaks and dips in the utilization levels that cause a high rate of change in the

temperature of internal components. Moreover, Since the evaluation is performed on a

different server machine, analytical models such as Fan et al. and Wang et al. that were

calibrated based on the training set, have extremely poor performance due to the difference

in the behavior of the PMs. Fig. 15 illustrates the weights of the best prediction model’s

features (refer to Table 2 and Fig. 12 for feature description). The weights of all sensor

components and the significantly high weight of the internal Fan’s speed prove our argu-

ments presented in this paper. The sensor-related features were in fact more important than

36



Models MAPE (%) RMSE R2 (%)

Analytical Formulas

Fan et al. 10.5 30.5 50.3

Wang et al. 7.7 22.9 72.5

Machine Learning Models

PMC-LSTM 4.95 16.0 85.7

PMC-LR 5.03 14.7 92.0

PMC-MLP 5.02 14.7 91.4

PMC-XGB 3.86 14.7 91.9

Sensor-LSTM 8.48 24.5 66.3

Sensor-LR 4.76 14.1 91.6

Sensor-MLP 4.76 14.1 91.7

Sensor-XGB 3.51 12.6 92.9

Sensor_PMC-LSTM 5.85 18.5 85.1

Sensor_PMC-LR 6.21 17.7 88.3

Sensor_PMC-MLP 6.23 17.7 88.2

Sensor_PMC-XGB 3.34 11.9 93.6

Table 5: Average Model Performance (All Workloads)

Figure 15: Feature weights of best performing model

37



the CPU utilization, which is considered by most existing works as the main dependency

of power models. Additionally, as discussed in Section 3.4, even if the CPU is the largest

power-consuming component, other parts such as memory or disk-related components do

have a significant contribution to the power consumption. Indeed, this is proven by the

considerably high feature importance of components such as Buffer, Cache, Interrupts, and

Context Switching.

3.8 Conclusion

We proposed a highly accurate prediction model for data center power consumption based

on machine learning models with a performance monitoring counter (PMC) feature space

and detailed temperature values. The best XGBoost model obtains a R2 score of 93.6%

on multiple datasets with different workload characteristics. Thus, our proposed Machine

Learning models can be used for virtual machine scheduling or placement algorithms aimed

at minimizing energy (or maximizing energy efficiency) by making energy-aware decisions

based on the predicted power consumption of a data center’s Physical Machines.

Acknowledgment

Work of the first author was supported by a MITACS - Ericsson internship.

38



Chapter 4

Virtual Machine Placement using

Embedded Sensors and Machine

Learning for Energy Minimization

This chapter has been submitted as a Journal paper titled "Virtual Machine Placement

for Energy Minimization using Embedded Sensors and Machine Learning" written by N.

Moocheet, B. Jaumard, and P. Thibault.

4.1 Abstract

Cloud Data Centers (DCs) consume vast amounts of energy and contribute significantly to

environmental concerns. Moreover, with the advent of 5G and B5G future networks which

are increasingly software-oriented and becoming heavily dependent on cloud computing,

there is an urgent need for optimizing their energy usage. Thus, in this study, we present a

Virtual Machine placement algorithm that minimizes the energy consumption of a cluster

of server machines. Our solution is embodied through the utilization of embedded sen-

sors inside server physical machines, which enables the introduction of novel features for

39



sensitive thermal awareness and proactive hotspot avoidance. Leveraging this significantly

enhanced feature space, we implement data-driven predictive Machine Learning models

together with a heuristic placement algorithm (CPP), enabling proactive VM placements

that are both energy-aware and thermal-aware. Indeed, experiments conducted on a cluster

of real server physical machines demonstrate high performance by both the ML models and

placement algorithm (CPP). Relative to the best baseline algorithm, our solution reduced

energy consumption and temperature by 7% and 2%, respectively, while avoiding hotspots

and maintaining effective load distribution reducing PMs over-loading by 28%.

4.2 Introduction

The emergence of cloud computing has brought a multitude of benefits, including increased

flexibility, enhanced security, and the opportunity for consumers to reduce their infrastruc-

ture investment. Reliance on cloud computing continues to grow at an unprecedented rate

as the technology continues to evolve, especially with the advent of 5G/B5G becoming

more software-oriented, coupled with the rapid proliferation of low-latency technologies

such as the Internet of Things (IoT), smart cities and self-driving cars. As a result, there is

an overall increase in energy consumed by Cloud Data Centers (DCs).

According to the International Energy Agency (IEA), Data centers consume 1-1.5% of

global electricity and are responsible for 1% of all energy-related greenhouse gas emis-

sions. The rising costs of energy and the growing focus on environmental sustainabil-

ity have heightened the urgency for the DC industry to improve its operational efficiency.

However, this remains a challenge due to the complex nature of modern large-scale DCs

consisting of multiple mechanical and electrical equipment including cooling, computing,

and control systems. Indeed, A data center consists of several rack-mounted physical ma-

chines (PMs), networking equipment, monitoring devices, a cooling system to maintain

adequate equipment operational temperature, and many other facility-related subsystems.

40



Some of those rack-mounted machines have the potential to consume up to 1,000 watts

of power each, reaching peak temperatures as high as 100 degrees Celsius [24]. There-

fore, computing and cooling subsystems are the two primary sources of a DC’s power

consumption and the key areas of focus for research on energy efficiency or minimization.

Improving the cooling subsystem’s energy efficiency involves the consideration of the in-

tricate architecture and components of the DC, such as coolers, pumps, and heat sensors to

optimize the cold air circulation and equipment configuration control. A notable example

is Jim & Guo [15], a Machine Learning solution by Google Cloud Service which aims to

increase their Power Usage Efficiency (PUE) by considering indoor cooling system compo-

nents, as well as, outdoor factors such as wind speed, direction, and air humidity. Similarly,

optimizing energy consumption in the computing subsystem holds significant importance.

It not only accounts for the highest energy consumption but is also a large contributor to

the energy and thermal inefficiency of a DC. The computing subsystem consists of core

components and infrastructure, most specifically, Physical Machines (PMs) or Blades that

are responsible for hosting, processing, or executing computational tasks and workloads

mostly in the form of Virtual Machines (VMs) or Containers. The orchestration of these

VMs among the PMs of a Data Center is crucial for energy management. Indeed, the key

concepts that are being applied to achieve DC energy management are energy-aware vir-

tual machine (VM) or Container management: scheduling, placement, and migration. The

main idea consists of strategically orchestrating VMs among the physical machines (PM)

of a Data Center to achieve optimal energy consumption.

The objective of this work is to develop and implement a Virtual Machine (VM) place-

ment algorithm that achieves energy minimization and thermal-aware orchestration of VMs

on a cluster of Physical Machines/Blades. More specifically, we aim to determine the best

PM to deploy each VM so as to minimize power consumption and peak temperatures.

Existing research works have extensively explored dynamic consolidation strategies as a

41



popular solution. These strategies aim to minimize the number of active Physical Ma-

chines by consolidating multiple VMs into fewer PMs. By effectively managing resources,

this approach significantly reduces power consumption in data centers by shutting off idle

machines. However, consolidation relies heavily on accurate traffic prediction for adequate

functioning. In the event of sudden increases in traffic volumes, the under-provisioning of

resources will result in the over-utilization of PMs, leading to high response times, delays,

and overheating of physical components. Consequently, implementing most consolidation

techniques in real-world data centers, which often handle large volumes of heterogeneous

workloads and unpredictable traffic patterns, may not be feasible or practical. In fact, most

Data Centers today mostly employ over-provisioning of resources to guarantee Quality of

Service (QoS). In general, the DC operator selects the VM orchestration strategy of a Data

Center based on their traffic profile, volume, and the contractual agreement or commitment

of service level with their clients. To ensure no violation of Service Level Agreements

(SLA) occurs, Load Balancing (LB) strategies specific to the traffic profile are preferred

to maintain appropriate levels of PM utilization, handle unpredicted traffic peaks, and re-

duce overheating of machines. In fact, the default placement policies employed by main

Cloud Computing Virtualization platforms such as Kubernetes, vSphere, and OpenStack

are all based on efficient resource allocation through filtering and scoring based on affin-

ity specifications, data locality, and Load Balancing [30], [16], [38]. Thus, the challenge

is to design a VM placement algorithm that maintains the key aspects of LB while also

reducing energy consumption. Our approach is based on the fact that Physical Machines

including those of similar hardware, may have different power consumption even at similar

load and resource utilization due to differences in their heat profile. Unlike most thermal-

aware works that focus on reducing peak rack heat generation to lower the DC’s cooling

energy cost, our solution takes a different approach aiming to instead, minimize the overall

42



energy consumption of the compute/server subsystem itself without the need for consoli-

dation and PM power offs. We achieve this by considering the high-accuracy heat profile

of each individual PM through their multiple embedded heat sensors. Figure 16 illustrates

a typical heatmap that can be generated using various temperature sensor measurements

for our physical machines. Therein, each dot represents the temperature of one particular

sensor.

Figure 16: Heat Map of a HPE ProLiant BL460C Gen8 PM

Taking advantage of the enhanced feature space, we first introduce the concept of PMs’

criticality by taking into account the critical temperature thresholds of each internal compo-

nent. We then implement predictive Machine Learning (ML) models (XGBoost) for power

and criticality predictions. Those models are then used by a greedy heuristic algorithm for

proactive energy-aware and thermal-aware VM placement. Our contributions in this paper

can be summarized as follows:

1. Take advantage of the embedded heat sensors and Internal Fan Speed Meters to get

detailed heat profiles of Physical Machines.

43



2. Consider the critical temperature threshold of the internal sensors to introduce the

concept of a PM’s criticality.

3. Implement highly accurate Power and Criticality prediction Machine Learning mod-

els.

4. Provide a weighted random sampling algorithm that improves scalability.

5. Implement a Greedy Heuristic Placement algorithm for a proactive energy-efficient

and thermal-efficient VM placement.

Our proposed solution is evaluated on a cluster of real Physical Machines (HP ProLiant

BL460c G8) in a private Data Center and is shown to have a significant reduction in overall

energy consumption and temperature. Our paper is structured as follows: Section 4.3 pro-

vides an overview of existing literature related to Virtual Machine orchestration. Section

4.4 exhibits the need for thermal-aware solutions and introduces a new feature set of real-

time sensor data. The implementation of Machine Learning predictive models for power

and criticality prediction is discussed in Section 4.5. Section 4.6 then provides our pro-

posed Virtual machine placement algorithm. Finally, all models and placement algorithm

evaluation results are presented in Section 4.7, and Conclusions are drawn in Section 4.8.

4.3 Literature Review

4.3.1 Consolidation

Data centers are generally designed to handle peak traffic for preventing SLA violations,

overload, or hotspot conditions. As a result, resources are very often over-provisioned, thus

leading to energy inefficiency since idle servers can consume up to 70% of their maximum

energy [6]. Therefore, VM consolidation which consists of minimizing the number of ac-

tive PMs and switching off those that are underutilized/idle is a widely used technique for

44



increasing energy efficiency. Most authors, e.g., [4], [5] and [36], consider VM placement

as an energy-aware bin packing problem and implement best-fit heuristics to deploy VMs

on a minimum number of physical machines (PMs). Beloglazov et al. [5] also proposed

threshold-based overload and underload detection heuristics, as well as a VM selection al-

gorithm for a time-driven dynamic consolidation. Similarly, [18] proposes a bin-packing

VM placement and an Integer Linear Programming (ILP) algorithm to maximize the num-

ber of idle servers while satisfying power limits and resource availability constraints. Using

these types of heuristics and reactive consolidation policies often results in a high number

of hotspots due to sudden peaks in the DC’s dynamic traffic. The need for immediate

hotspot management drives a large number of virtual machine migrations that come at a

considerable cost in energy and resources. Additionally, delays in reactivating inactive

machines also lead to potential SLA violations.

Thus, Haghshenas and Mohammadi [21] and Farahnakian et al. [14] propose proac-

tive approaches to VM consolidation that take into account the use of both current and

future resources. They use a regression-based model to approximate the future resource

utilization of VMs and PMs based on their historical data. Ranjbari and Torkestani [43]

explore another proactive solution that uses a learning automata-based overload detection

that enhances the VM consolidation by predicting the CPU usage of PMs. However, these

solutions are only guaranteed to work on the specific traffic pattern that they were trained

with, thus, not appropriate for real data centers with large variations in traffic patterns and

characteristics. Moreover, although these solutions can be effective in certain scenarios,

they overlook the impact of heat generation.

4.3.2 Thermal-Aware Approaches

Consolidating virtual machines (VMs) onto a smaller number of active physical machines

(PMs) often increase peak temperatures, which in turn requires a colder air supply at the

45



inlets to maintain standard operational temperatures. This trade-off between reduced com-

pute energy consumption and increased cooling energy usage can lead to negative out-

comes, particularly depending on the type of cooling system utilized in the data center. In

order to minimize overall energy consumption in data centers, some researchers have ex-

plored thermal-aware or holistic solutions. For instance, Guo et al. [20] propose a mixed

integer linear programming (MILP) and a greedy heuristic for a temperature-aware virtual

data center embedding scheme. Their solutions focus on mapping VMs with high CPU

demand to colder racks in order to reduce the required inlet temperature. Similarly, Ilager

et al. [24] propose a greedy algorithm that allocates VMs on PMs with the lowest predicted

CPU and inlet temperature. In another approach, Gill et al. [19] implement a deep learning-

based framework to predict the thermal impact of VMs and allocate them to PMs based on

their temperature profiles. Li et al. [31] proposes a holistic approach called GRANITE

that places VMs based on their predicted total power consumption and performs threshold-

based migrations at regular intervals to respect SLA and utilization level constraints. How-

ever, these temperature-aware solutions typically only consider the temperature at the rack

level or only a few components such as the CPU and Inlet temperature.

4.3.3 Reinforcement Learning

Reinforcement learning (RL) has emerged as a promising approach for addressing the

challenges of VM placement and consolidation in cloud environments. Unlike traditional

heuristic or optimization-based solutions, RL-based solutions are autonomous and adap-

tive to changing conditions in real-time. RL enables an agent to learn an efficient policy

for allocating VMs through repeated interactions with its environment and feedback in the

form of rewards or penalties for its actions. Farahnakian et al. [13] employed Q-learning, a

popular RL technique, to implement dynamic VM consolidation with an agent which made

informed decisions on the power mode of physical machines (PMs) based on resource

46



utilization information. Similarly, Qin et al. [42] uses Q-learning in the context of VM

placement to optimize two objectives, that are the minimization of resource wastage and

energy consumption. While simplistic state spaces consisting only of resource information

like CPU utilization may be sufficient for simpler environments, they are inadequate for

complex ones like data centers where there exist several factors influencing the behavior of

its components.

Thus, Qin et al. [55] propose a VM scheduling framework that uses a Deep Neural

Network (DNN) Quality of Service (QoS) feature extraction model based on a denoising

autoencoder which enables more robust feature information to be used as state informa-

tion for their Q-Learning RL agent. However, a more detailed state space also implies a

higher number of state-action pairs, which considerably enlarges the search space and con-

vergence time, thus, limiting its scalability in complex environments. A common solution

for this issue is Deep Q-Network (DQN), a variant of Q-learning that uses a deep neural

network to approximate the Q-values of state-action pairs instead of storing them in a Q-

table. For instance, Caviglione et al. [9] proposes a DQN-based approach for dynamic

VM placement. In their approach, the action space consisted of six placement heuristics

including three novel ones, the aim being for the agent to select the best placement heuristic

appropriate for specific situations and goals. Another possible way of addressing the issue

of slow convergence time is the use of domain knowledge or expert advice. For example,

Shaw et al. [48] proposes the use of an advanced reward shaping technique called Potential

Based Reward Shaping (PBRS) to encourage more optimal decision-making in the earlier

stages of the Q-learning exploration phase. All these RL-based solutions similar to most

other existing works were implemented and evaluated on Cloud Simulators. Indeed, it is

quite challenging to train RL models on a real data center since it requires performing ac-

tual Virtual Machines deployments and load emulations for large time periods, thus very

costly in terms of resources and energy. In addition, there is also a lack of flexibility for

47



scale-up in cases where any addition of new PMs would require the model to be re-trained

due to the change in the model’s state/observation space.

4.3.4 Concluding Remarks

Energy-efficient resource management is a well-known necessity, and several studies have

explored VM orchestration solutions with energy awareness. However, these solutions have

predominantly relied on consolidation-based approaches, which are often reactive, and em-

ploy analytical formulas and threshold-based methods. Consequently, they are prone to

failure in complex and dynamic environments. Additionally, very few studies consider

thermal-aware solutions and they focus solely on the temperature at the rack level or spe-

cific components such as CPUs or inlets, disregarding the impact of heat generation at

other internal components of the PMs. Indeed, this work addresses these shortcomings by

considering all internal components through embedded sensors and investigating proactive,

data-driven models for energy-aware and thermal-aware VM placement.

4.4 Need For Thermal-aware Techniques

Physical machines (PMs) in a large-scale data center (DC) are often densely arranged in

rack, cabinet, or enclosure structures with an optimized modular design to minimize the

use of physical space. These architectures are likely to cause server machines to overheat

due to the dense arrangement of electronic devices, consequently increasing the energy

cost of the cooling subsystem and further decreasing system reliability due to failures un-

der high thermal conditions. Moreover, it also directly influences the energy consumption

of physical machines due to the increased internal fan speeds for dissipating internal heat.

High temperatures may also cause increased leakage current of electronic devices’ sili-

con which calls for new semiconductor technologies that use much less switching energy

48



than current CMOS transistors [8]. Thus, thermal management is essential for the over-

all energy-efficient operation of a data center. Indeed, every degree increase in the peak

temperature of a data center incurs significant operational costs, amounting to millions of

dollars [49].

4.4.1 Influence of Temperature & Need for Enhanced Feature Space

The importance and complexity of thermal awareness are often underestimated in studies,

which consider only a very limited number of features as discussed in Section 4.3.2. In the

sequel, we demonstrate the need for an increased number of features, having in mind, e.g.,

the characteristics of the different classes of 5G traffic (CPU greedy vs. RAM intensive

traffic). Stress testing experiments were conducted on a set of PMs in a private data center.

Results are summarized in Figures 17a and 17b, which illustrate the relation between the

resource utilization level which is a weighted sum of the CPU, memory, and disk utilization,

and the measured power consumption for a set of PMs. The resource utilization of a PM is

given as;

R(%) = wCPURCPU + wMEMRMEM + wDISKRDISK (7)

where RCPU , RMEM ,and RDISK are the percentage CPU, Memory, and Disk Utilization

levels, respectively. The weight variables are set as wcpu = 0.8 and wmem = wdisk = 0.1

since the CPU is the highest contributor to a PM’s power consumption. Several instances

reveal large differences in power consumption despite similar levels of resource utilization.

For example, at R = 80%, there is a difference of up to 30% between the lowest power-

consuming sample and the highest. While most of those inefficiencies can be attributed

to the high temperature of the CPUs or Inlets (as indicated in the color maps in Fig.17a

and Fig. 17b), several samples, particularly at R > 60% exhibit relatively higher power

consumption, even at low CPU and Inlet temperature. Therefore, this validates the need for

49



(a) CPU Temperature (oC)

(b) Inlet Ambient Temperature (oC)

Figure 17: Resource Utilization v/s Measured Power and impact of Temperature

an enhanced feature space with more features such as the temperature of other components

(e.g. memory, power supply units, etc..) and additional resource utilization data.

While existing techniques consider the temperature at the PM or Server level (e.g.,

[24], [19], [31]), rack level [20], and DC’s room level [20], in this study, we consider

the micro-level consisting of the internal components of each individual Physical Machine

(PM). Indeed, in modern Server Physical Machines, various sensors are installed, includ-

ing heat sensors, fan speed meters, and power meters. These heat sensors offer real-time

measurements of multiple internal components, enabling us to gain valuable insights into

the system’s thermal behavior and accurately detect hotspots. Fig. 18 displays a snapshot

of the list of sensors along with their location, related components, and critical thresholds.

50



Figure 18: Snapshot of a real-time sensor reading & description

4.4.2 Critical Temperature

The critical threshold of each component is another key factor that has been ignored by

existing thermal-aware solutions. As shown in Fig. 18, each component has a caution or

critical temperature threshold that may differ significantly from each other. For instance,

the critical temperature of the considered PM’s (HPE ProLiant BL460C Gen8 PM ) CPUs

is 70 ◦C as compared to the Inlet Ambient’s which is 40 ◦C. Hence, relying solely on a

single temperature threshold to identify overheating or hotspot conditions, while consider-

ing temperature values alone, fails to accurately assess the true criticality of the PMs. In

our study, we address this limitation by incorporating critical thresholds into our feature

space. We achieve this by scaling the temperature of each component based on its respec-

tive critical threshold. This scaling process yields a metric that represents the component’s

temperature as a percentage of its critical temperature, as described in (8).

Tc =
Tmeasured

Tcritical

× 100 (8)

51



Additionally, similar to the temperature we also scale the power consumption of each

PM as a percentage of its maximum power consumption (power cap) since in a typical data

center, PMs have different power caps due to differences in hardware, capacity, and energy

configurations.

4.5 A Proactive Energy & Thermal-aware Approach

We now present the two key components to achieve proactive energy-aware and thermal-

aware placement of virtual machines. First, we propose, in Section 4.5.1, a machine learn-

ing power model that enables informed decisions based on energy/power for virtual ma-

chine placement. In view of its limitations and a need for thermal awareness, we next

introduce the concept of PM’s criticality in Section 4.5.2, The latter plays an important role

in proactive hotspot avoidance and facilitates energy-efficient placement.

4.5.1 Power Model

To implement proactive energy-aware VM placement strategies, it is essential to have an

accurate model for power consumption prediction. However, existing studies (e.g., [19],

[20], [31]), mostly employ analytical power models which fail to capture multiple non-

linear inter-dependencies that affect the power consumption of DC’s PMs. Indeed, as

discussed in Section 4.4, it is imperative to consider temperature for explaining or mod-

eling the power consumption behavior of physical machines (PMs). The heterogeneous

workload of large data centers necessitates having a more detailed characterization of the

workload in terms of the utilization of computational resources (e.g., i/o intensive video

streaming), rather than using models depending solely on CPU utilization.

52



Therefore, we make use of our previous work [37] which tackles this issue by introduc-

ing an enhanced feature space of the real-time sensor measurements (Fig.18) and Perfor-

mance Monitoring Counters(PMCs) for highly accurate power predictions. In the latter, the

ML models predict the power consumption of a PM for time t using the CPU utilization of

the PM at t, PMCs at t− 1, and all components’ temperatures measured at time t− 1 since

PMCs & temperature cannot be extrapolated or estimated as easily as the CPU utilization.

Extreme Gradient Boosting (XGBoost) was found to be the best model after evaluation

and comparison to other models such as Long Short-Term Memory (LSTM), Multi-Layer

Perceptron Network (MLP)), and analytical formulas of Fan et al. [12] and Wang et al.

[56].

In this study, we improve the XGBoost model implemented in [37] by re-training using

a significantly enlarged dataset (10,990 data points) derived from deploying up to 180 VMs

on 6 PMs. The detailed experiment setup is later described in Section 4.7.1 and results are

provided in Section 4.7.3.

Observation

The XGBoost model had an average R2 score of 96.5%, RMSE of 11.7 W, and MAPE

of 2.8%, outperforming the best baseline model’s R2 score by 6.1% and improves the

RMSE by 40.0%. See Section 4.7 for details on the models’ performance evaluation and

results. While on average the XGBoost power model provides accurate predictions, the

high fluctuations in power at high temperature and resource utilization levels as shown in

Fig. 17a and Fig. 17b, cause large prediction errors. Indeed, Fig. 19 shows the increase

in average prediction error of the XGBoost power model when reaching high-temperature

levels (e.g. at CPU and Power-Supply). These PM states of high power, temperature,

and resource utilization are the main contributors to energy inefficiency and hence, where

proactive thermal and energy-aware VM placement plays a key role. Relying solely on

53



power predictions that are susceptible to errors at such states may have a negative impact

in relation to hotspot avoidance. Therefore, this issue is addressed in the next section by

introducing a second feature to be considered during placement in addition to power.

Figure 19: Increase in average power prediction error at high temperature

4.5.2 Criticality of a Physical Machine

Following the findings of the previous section, a PM is significantly influenced by its

heat profile and highly susceptible to high power fluctuations when reaching certain high-

temperature states. Moreover, after reaching certain peak power states or power caps,

power predictions become obsolete since any added load would result in a nearly zero

power increase. Indeed, the aim of an efficient VM placement would be to prevent PMs

from such inefficient states. Hence, we present in this section a new feature that is the

criticality of a PM.

The common method of identifying those states often labeled as hotspots is the use

of pre-defined thresholds, for instance, resource utilization level thresholds, maximum

power, and CPU temperature thresholds. Our approach consists of taking advantage of

the enhanced feature space (Tc of all PM’s components) to accurately identify such ineffi-

cient/hotspot states. We introduce the concept of a PM’s criticality which is a measure of

54



how close the PM is to reaching that hotspot status. After stressing a PM, several samples

with relatively high power and temperature can be identified (e.g., in Fig. 17) and labeled as

their worst reachable states. By collecting and averaging the state vectors of these collected

samples, a state vector S⃗HOTSPOT is generated that represents a hotspot status for that specific

PM hardware model. The state vector of a PM consists of all its components’ temperature

scaled over their critical temperature (Tc). The criticality of a PM is then calculated by em-

ploying a similarity measure such as the Cosine Similarity (similarity between two vectors

of an inner product space) between the PM’s state vector and the hardware type’s respective

pre-calculated S⃗hotspot. The Criticality of a PM with measured state S⃗PM is defined as:

CPM =
S⃗PM · S⃗HOTSPOT

||S⃗PM|| × ||S⃗HOTSPOT||
. (9)

Criticality Prediction

For a proactive approach, similar to the power consumption prediction, a Machine Learning

model is implemented for predicting the Criticality of PMs. More specifically, a model that

predicts how close a PM will be to the hotspot status after deployment of a particular VM.

The criticality of a PM at a time/interval t is predicted using the estimated CPU utilization

of the PM at t and measured heat profile (temperature (Tc) of all components), Memory,

and Disk Utilization at time t− 1. The data collection, pre-processing, and the investigated

ML models are similar as in Section 4.5.1. XGBoost was once again the selected model

with an R2 score of 90.9%, RMSE of 0.05, and MAPE of 7.3%. Model evaluation and

results are presented in Section 4.7.

4.6 Virtual Machine Placement

We now propose a dynamic VM placement algorithm that proactively minimizes the energy

consumption and temperature of PMs in a data center using the Machine Learning models

55



presented in Section 4.5.1 and 4.5.2.

4.6.1 Problem formulation

For a timestep t, where n VMs are in the scheduling queue ready for deployment in a DC

with m active PMs, the objective is to place the n VMs among the m PMs such as the

overall increase in power consumption and criticality is minimized at t+ 1. Using the ML

models to predict the power and criticality of each PM for time-step t+1, an energy-aware

and thermal-aware decision can be made based on the expected power increase and critical-

ity. However, the importance of these 2 factors may vary based on workload levels or the

DC operator’s priorities. For example, when a PM reaches a certain level of resource uti-

lization (close to 100%), its power consumption reaches the power cap causing a very small

or no increase in power for additional load. In such states, power-based decisions have a

very low impact or a negative outcome. In comparison, a temperature-based measure such

as criticality has a higher significance since these states have higher heat generation. There-

fore, we define PCt+1, a weighted sum of the predicted increase in power consumption and

criticality, with weights wC and wP. It is defined as follows:

PCt+1

PM
= wP

(

P t+1
PM

(ut+1)− P t
PM

Pmax
PM
− P idle

PM

)

+ wCCt+1

PM
(ut+1) (10)

where P t
PM

is the measured power at t, Pmax
PM

and P idle
PM

are the maximum and idle PM

power, used for scaling the increase in dynamic power on a scale of 0 to 1, P t+1
PM

and

Ct+1
PM

are the predicted power consumption and criticality, respectively, for an estimated

resource utilization ut+1 at t+1. As previously explained, wC and wP are weight parameters

for balancing the importance of the power and criticality. In this study, we use weights

wC = wP = 0.5 at Criticality (Ct
PM
) < 0.99, otherwise wP = 0 and wC = 1 to maximize the

importance of the criticality upon reaching peak power.

56



We next develop a mathematical model for optimal VM placement aiming to minimize

energy consumption and criticality. It requires a single set of variables: xPMVM indicates the

assignment of a particular VM to a specific PM, at a given time-step. Below t indices are

omitted in order to alleviate the notations.

min
∑

PM∈V PM

∑

VM∈V VM

xPM,VMPCPM (11)

subject to:

∑

PM∈V PM

xPM,VM = 1 VM ∈ V VM (12)

∑

VM∈V VM

xPM,VM ≤ θmax
VM

PM ∈ V PM (13)

RCPU

PM
≤ θCPU PM ∈ V PM (14)

RRAM

PM
≤ θRAM PM ∈ V PM (15)

RDISK

PM
≤ θDISK PM ∈ V PM (16)

TPM,s ≤ TMAX
s s ∈ STEMP (17)

xPM,VM ∈ {0, 1} VM ∈ V VM, PM ∈ V PM. (18)

Constraints (12) enforce the condition that each VM can be assigned to only one PM. Con-

straints (13) impose a VM threshold θmax
VM

to prevent overloading of PMs (if PMs have

different characteristics, the threshold may need to depend on the PM). Similarly, Con-

straints (14)-(16) sets PM thresholds for the utilization level of the compute resources,

here, CPU, Memory, and Disk, denoted by RCPU

PM
, RRAM

PM
, and RDISK

PM
, respectively. In addi-

tion, Constraints (17) make sure that the temperature (Tc) at all components s of a PM must

be maintained below a threshold TMAX
s to avoid hotspots.

57



4.6.2 Criticality-based Random Sampling

Large-scale data centers operated by major cloud providers can have thousands or even mil-

lions of PMs that handle vast numbers of VMs. An optimal solution where every single PM

is considered for each VM placement is highly impractical. Indeed, the deployment execu-

tion time is a Key Performance Indicator (KPI) for an effective VM placement. Moreover,

our solution consists of using predictive ML models that require a considerable amount of

real-time data collection(e.g., Sensors) which can have significant execution time based on

the network’s bandwidth availability.

Therefore, a sampling strategy is employed to reduce the size of the PM candidate

set for each VM’s allocation, more specifically a weighted random sampling based on the

classical Accept-Reject method [45]. A random sample V RAND of size k is derived from a

set V PM of m PMs where k < m. The inclusion probability PPM of a PM is proportional to

its weight which is equal to its criticality CPM. The criticality-based weight adds a thermal-

aware aspect to the randomness of the sampling, reducing the probability of high criticality

PMs being selected, hence, also improving hotspot avoidance. The sampling method is

described in Algorithm (1).

Algorithm 1 : Criticality-based Accept-Reject Sampling

V ALL ← V PM, V RAND ← ∅
k ← Sub-sample size, k < m
while |V RAND| < k do

j ← Generate uniform random integer, 1 ≤ j ≤ m
PPM ← Criticality of PMj, PMj ∈ V PM, 0 ≤ PPM ≤ 1
u← Generate uniform random integer, 0 ≤ u ≤ 1
if u > PPM then

V RAND ← V RAND ∪ PMj

V ALL ← V ALL\{PMj}
return V RAND

58



4.6.3 Greedy Heuristic Algorithm

Finding the optimal solution for this problem (Equation 11) is an NP-hard problem, still

significantly complex and unpractical for large-scale data centers despite the random sam-

pling process, due to the high computational time. Therefore, for a practical solution that

can give a near-optimal solution, we provide a simple greedy heuristic VM placement la-

beled (CPPS) described in Algorithm (2).

Algorithm 2 : VM Placement - CPPS

Input: VM_list, PM_list

Output: VMs assignment to PMs

map← ∅
for each VM ∈ V VM do

V RAND ← Random Sampling: Algorithm (1)
destination← Null
PCmin ←∞
for each PM ∈ V RAND do

PCPM ← PCt+1
PM

: Equation (10)

if (PCPM < Pcmin) and Constraints (12)− (18) Satisfied then

destination← PM

PCmin ← PCPM

if destination = Null then

reject VM

else

map← map ∪ (VM, destination)
return map

For each VM, a sub-sample of PM candidates is generated based on the accept-reject

sampling described in Algorithm (1). The VM is then placed on the PM with the low-

est PCPM: predicted increase in power consumption and criticality for the next interval

t + 1, while respecting the constraints of resource utilization and temperature thresholds

described in Section 4.6.1. The worst-case and best-case complexity of CPPS is therefore,

O(NM) and O(Nk), respectively, where N is the number of VMs, M is the number of

PMs, and k is the pre-defined sub-sample size of candidate PMs for placement.

59



4.7 Numerical Results

4.7.1 Environment

All experiments have been conducted in a private data center on a cluster of 8 HP ProLiant

BL460c G8 physical machines(PMs) mounted on an HP C7000 chassis. Each of those

PMs consists of 2 processors of 8 cores, 16 threads, and 128 GB RAM. Our test bed runs

with OpenStack as the cloud management platform for Virtual Machines (VMs) manage-

ment and follows a Three-Node architecture that consists of 3 systems: Controller Node,

Compute Node, and Storage Node [39]. One PM is used as the controller node where

most of the shared OpenStack services run and supply API, scheduling, and other shared

services for the cluster. 6 PMs run as compute nodes where VM instances, also known as

Nova compute instances are deployed, and 1 PM is used as the storage node to host data.

Our placement algorithm is part of a custom VM management module implemented on the

controller node for monitoring and managing the VMs on those 6 compute PMs.

4.7.2 Load Emulation & Data Collection

Our environment can handle a maximum of 180 VMs with each compute node/PM having

a limit of 30 VMs (θmax
vm = 30 Equation 13). All VMs are of an Ubuntu 20.04 LTS image

[53] with a flavor of 2 VCPU, 4 GB Memory, and 20GB of disk. Load emulations on

the VMs are done through stress software with Microsoft Azure’s cloud VM traces [11]

for real-like resource utilization patterns of data centers’ VMs. Stress [51] is a tool for

workload generation that can subject a system to a configurable measure of CPU, memory,

and disk stress. The traces contain the measurements of the average CPU usage at 5 minutes

intervals for real VMs running on Azure servers. Thus, using these traces, we are able to

emulate real-like levels of PM’s CPU utilization. Additionally, memory and disk operations

are also added through the stress tool for generating traffic of different characteristics. At

60



the start of the experiments, the placement module from the controller transfers the load

emulation Python scripts with a unique VM trace file to the deployed VMs. OpenStack

and Linux commands (e.g., vmstat, lsCPU) are then used for recording the Performance

Monitoring Counters (PMCs). In addition, the placement module runs scripts that use

IPMItool [40] for collecting and storing sensors’ data including the fan speed and power

consumption for all compute PMs.

4.7.3 Evaluation: Predictive ML Models

This section presents a detailed performance evaluation and analysis of our proposed power

and criticality prediction ML models labeled as ’XGB-Power’ and ’XGB-Criticality’, re-

spectively. We conduct this evaluation using a test dataset (5,194 data points) derived by

running multiple experiments on the setup presented in Section 4.7.1. The distribution of

measured power and criticality in both the testing & training sets are illustrated in Fig. 20

and Fig. 21.

To gauge the power model’s performance, we implement two baseline models for com-

parison. Firstly, an analytical formula from Wang et al.’s [56] that is dependent on a PM’s

idle & busy power, CPU utilization, and inlet temperature. In addition, we train an XG-

Boost model labeled ’XGB_R-power with a feature space limited to resource utilization

features only (CPU, Memory, and Disk). All models are then evaluated using three met-

rics: mean absolute percentage error (MAPE), Root Mean Square Error (RMSE), and R2

score expressed in Equations (19), (20), and (21), where N is the number of data points, Ai

denotes the actual, and Pi the predicted values at data point i, and Ā is the average of the

actual values. Table 6 provides the evaluation results of the criticality and power models

including the baselines.

61



(a) Training Set

(b) Testing Set

Figure 20: Measured Power Distribution in Datasets

(a) Training Set

(b) Testing Set

Figure 21: Measured Criticality Distribution in Datasets

62



Models R2 (%) RMSE MAPE (%)

XGB-Criticality 90.9 0.05 7.3

XGB-Power 96.5 11.7 2.8

XGB_R-Power 90.4 19.5 4.9

Wang et al. 77.7 29.7 8.3

Table 6: Models’ Performance.

MAPE =

(

1

N

N
∑

i=1

|(Ai − Pi)|

Ai

)

× 100 (19)

RMSE =

√

√

√

√

√

N
∑

i=1

(Pi − Ai)2

N
(20)

R2 =









1−

N
∑

i=1

(Ai − Pi)
2

N
∑

i=1

(Ai − Ā)2









× 100, (21)

4.7.4 Evaluation: VM Placement

All placement algorithms are implemented as part of the placement module on the con-

troller node in the setup described in Section 4.7.1. Since the experiments run on a real

environment limited to 6 compute nodes/physical machines, the random sampling proce-

dure was expected to decrease the algorithm’s performance. Hence, in addition to CPPS

(Algorithm 2) with k set to 3, we consider an algorithm labeled as CPP which omits the

random sampling phase. To access our proposed solutions, we implement and evaluate

three placement algorithms as baselines for comparisons: a resource-based load balanc-

ing (LB-R) which considers the PM with the lowest measured resource utilization as the

best destination (Given in Algorithm 3), VM-based load balancing (LB-VM) which main-

tains an equal distribution of VMs among the PMs, and a greedy thermal-aware placement

algorithm (TAS) from a VM scheduling framework proposed by Ilager et al. [24]. The

63



evaluation metrics employed are the overall dynamic energy consumption and the average

time fraction during which PMs operate near overload states, including instances of CPU

bottlenecks and peak power usage. In addition, we also consider the CPU’s and PMs’ aver-

age temperature (TCPU
avg & T PM

avg ) to evaluate heat generation. The metrics are described as

follows;

Algorithm 3 : VM Placement - (LB-R)

map← ∅
for each VM ∈ V VM do

destination← Null
Rmin ←∞
for each PM ∈ V PM do

RPM ← Equation (7)

if (RPM < Rmin) and Constraints (12)− (18) Satisfied then

destination← PM

Rmin ← RPM

if destination = Null then

reject VM

else

map← map ∪ (VM, destination)
return map

EDynamic =
∑

PM∈V PM

(P avg
PM
− P idle

PM
)× t (22)

OverloadCPU =
1

|V PM|

∑

PM∈V PM

tCPU
PM

t
(23)

OverloadPower =
1

|V PM|

∑

PM∈V PM

tPOWER
PM

t
(24)

where P avg
PM is the average measured power, P idle

PM
is the power consumption of the PM

at idle state, t is the total experimentation time, tCPU
PM

is the time spent by a PM with its

run-queue size (number of active processes) larger than the number of logical CPUs, and

tPOWER
PM

the time spent close to peak power consumption (> 360W ).

64



Algorithm Edynamic(kWh) OverloadCPU OverloadPower TCPU
avg (◦C) T PM

avg (◦C)

CPP 9.86 0.23 0.06 47.4 32.7

CPPS 10.24 0.26 0.06 47.8 32.8

TAS 10.59 0.32 0.13 48.5 32.8

LB-R 10.88 0.32 0.14 48.8 33.4

LB-VM 11.12 0.41 0.15 48.4 33.0

Table 7: Performance Comparison

We conducted several experiments, each ranging from 160 to 180 VMs deployed over

a period of up to 10 hours. Those experiments sustained high utilization levels on all ma-

chines for an extended time period thus, ensuring a robust evaluation that enabled us to

thoroughly assess the placement algorithms. Our proposed solution demonstrated its effi-

ciency in handling high workloads while reducing the power consumption relative to the

baseline algorithms. Indeed, CCP and CCPS reduced the total dynamic energy consump-

tion EDynamic by up to 6.9% and 3.4%, respectively, when compared to the best reference

algorithm TAS. Our proposed algorithms also demonstrated efficient load allocation with

CPP reducing OverloadCPU by 28% and OverloadPower by 57%. Since the PMs benefit

from appropriate cooling with the temperature at inlets mostly maintained around 15 ◦C,

no hotspots were detected, that is, none of the components reached their critical thresholds

during the experiments. However, CPP still reduces the CPUs’ average temperature and

the PMs’ average temperature by 2.3% and 0.3%, respectively. Finally, Table 7 provides

the detailed results of the experiment illustrated in Figure 22. Figure 23 and Figure 24

displays the tCPU
PM

and tPOWER
PM

of each PM to demonstrate the proper load distribution of

our algorithms.

4.8 Conclusion

The key motivation of this study was to implement a Virtual Machine placement algorithm

that minimizes energy consumption while effectively managing workload distribution and

65



Figure 22: Power Consumption Comparison of Algorithms.

Figure 23: Percentage of time each PM spends at an overloaded CPU state. (tCPU
PM

)

Figure 24: Percentage of time each PM spends to the peak power state. (tPOWER
PM

)

avoiding hotspots. By making use of embedded heat sensors that provide real-time tem-

perature data of physical machines, a new set of features was introduced for implementing

66



highly accurate learning-based power and criticality prediction models. We then imple-

mented a simple and highly scalable greedy algorithm that leverages the predictive model’s

output for proactive energy-aware and thermal-aware placements. Indeed, after a thorough

performance evaluation of our proposed solution in an actual data center, it was found to

reduce energy consumption by 7% while also maintaining an efficient load distribution and

reducing the average CPU’s temperature by 2%. Furthermore, this also implies a 7% re-

duction in the total cooling energy since the cooling power required to dissipate the heat

produced by the physical machines is proportional to their consumed power. In the context

of large-scale data centers, this holds immense potential, as even a 1% improvement can

result in substantial cost savings, amounting to millions of dollars, and a significant re-

duction in carbon footprints. For instance, extrapolating our experiments’ results for 1000

PMs and assuming a ratio of 1:0.8 for the cooling system’s consumption, we can estimate

a reduction of 220 kWh in the overall energy consumption. Moreover, the application of

the placement algorithm can also be extended to VM destination selection during dynamic

migrations. Indeed, our future work consists of improving this study by considering a com-

plete VM’s lifecycle: scheduling, placement, and dynamic migration for more specific DC

traffic such as 5G Network’s Virtual Machines or Containers.

67



Chapter 5

Conclusion & Future Works

5.1 Conclusions

The motivation for this study was the minimization of energy consumption in cloud data

centers through efficient Virtual Machine placements. In the initial phase, we implemented

a highly accurate prediction model for DC servers’ power consumption. First, through

several experiments, we investigated the challenges involved and demonstrated the inef-

fectiveness of analytical formulas in the context of data centers with heterogeneous traffic

(e.g., 5G traffic with various applications) and physical machines. We addressed these

issues by proposing the use of machine learning models with an enhanced feature space

of performance monitoring counters (PMCs) and real-time sensor measurements. Indeed,

our models showed a significant improvement in prediction accuracy. In the next phase,

the power model was integrated into the core part of the study for a proactive energy-

efficient Virtual Machine placement. Using the embedded heat sensors and the critical

temperature thresholds of all PMs’ internal components, we presented "Criticality" as a

new feature that was employed for high-precision hotspot detection and energy-efficient

VM placements. Moreover, we showed how the "Criticality" can be used for promoting

a scalable placement based on Accept-Reject random sampling while maintaining thermal

68



awareness. Our placement algorithm achieved up to 7% reduction in energy consumption,

all the while maintaining an efficient load distribution reducing PM overload by up to 28%.

In conclusion, our solution is able to produce significant improvement in multiple objec-

tives with a reduction in both the compute and cooling subsystems’ energy consumption.

In the context of large-scale data centers, this result holds significant importance since even

a 1% improvement in a DC can result in substantial cost savings, amounting to millions of

dollars, and a reduction in carbon footprints.

5.2 Future Works

This study can propel future works for further improvements in multiple directions;

• It can be extended to apply in a complete framework of Virtual Machine management

for further improved energy and temperature minimization. Indeed, the placement

explored in this thesis is only concerned with the initial placement, which may lose its

efficiency with time as the workload and states of the machines change dynamically.

Thus, the next phase would be to apply this study to dynamic migration algorithms

that handle the re-optimization of VMs’ placement.

• Container-based services have gained substantial popularity and similar to VMs, ur-

gently demand energy-efficient approaches. An interesting direction would be the

adaptation of this study to different scenarios and architectures such as Container

placement on server physical machines (bare-metal) or on Virtual Machines.

• One of the key arguments discussed in this thesis is the fact that different load profiles

or characteristics heavily influence the behavior of the servers in relation to energy

consumption. While this work can be applied generally to all Data Centers, another

prospective study would be investigating its application to specific Data Centers or

workload types such as 5G traffic, video streaming servers, or gaming servers.

69



70



Bibliography

[1] I. Alan, E. Arslan, and T. Kosar. Energy-aware data transfer tuning. In IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, pages 626±634,

2014.

[2] L. A. Barroso, U. Hölzle, and P. Ranganathan. The datacenter as a computer: De-

signing warehouse-scale machines. Synthesis Lectures on Computer Architecture,

13(3):i±189, 2018.

[3] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani. A methodology

to predict the power consumption of servers in data centres. pages 1 ± 10, May 2011.

[4] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuris-

tics for efficient management of data centers for cloud computing centers. Future

Generation Computer Systems, 28(5):755±768, 2012.

[5] A. Beloglazov and R. Buyya. OpenStack Neat: a framework for dynamic and energy-

efficient consolidation of virtual machines in OpenStack clouds. Concurrency and

Computation: Practice and Experience, 27(5):1310±1333, 2015.

[6] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya. Chapter 3 - a taxonomy and sur-

vey of energy-efficient data centers and cloud computing systems. In M. Zelkowitz,

editor, Advances in Computers, volume 82, pages 47±111. Elsevier, 2011.

[7] W. L. Bircher and L. K. John. Complete system power estimation using processor

performance events. IEEE Transactions on Computers, 61(4):563±577, 2012.

[8] D. Bizo. Silicon heatwave: the looming change in data center climates. Technical

Report 74, Uptime Institute, 2022.

[9] L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco. Deep reinforcement learning

for multi-objective placement of virtual machines in cloud datacenters. Soft Comput-

ing, 25(19):12569±12588, 2021.

[10] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), pages 785±794, 2016.

71



[11] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini.

Resource central: Understanding and predicting workloads for improved resource

management in large cloud platforms. In 26th Symposium on Operating Systems

Principles, pages 153±167, 2017.

[12] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized

computer. ACM SIGARCH computer architecture news, 35(2):13±23, 2007.

[13] F. Farahnakian, P. Liljeberg, and J. Plosila. Energy-efficient virtual machines consol-

idation in cloud data centers using reinforcement learning. In 2014 22nd Euromicro

International Conference on Parallel, Distributed, and Network-Based Processing,

pages 500±507. IEEE, 2014.

[14] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu, and H. Tenhunen.

Energy-aware VM consolidation in cloud data centers using utilization prediction

model. IEEE Transactions on Cloud Computing, 7(2):524±536, 2019.

[15] J. Gao. Machine learning applications for data center optimization. Google Research,

2014.

[16] P. Gayam and A. Jagadeeshwara. Load balancing performance of DRS in vSphere

7.0, performance study. https://www.vmware.com/content/dam/

digitalmarketing/vmware/en/pdf/techpaper/performance/

drs-vsphere7-perf.pdf, 2020.

[17] G. Ghatikar, M. A. Piette, S. Fujita, A. McKane, J. H. Dudley, A. Radspieler,

K. Mares, and D. Shroyer. Demand response and open automated demand re-

sponse opportunities for data centers. Technical report, Lawrence Berkeley National

Lab.(LBNL), Berkeley, CA (United States), 2009.

[18] C. Ghribi, M. Hadji, and D. Zeghlache. Energy efficient VM scheduling for cloud

data centers: Exact allocation and migration algorithms. In IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing (CCGrid), pages 671±678, 2013.

[19] S. Gill, S. Tuli, A. Toosi, F. Cuadrado, P. Garraghan, R. Bahsoon, H. Lutfiyya,

R. Sakellariou, O. Rana, S. Dustdar, and R. Buyya. Thermosim: Deep learning based

framework for modeling and simulation of thermal-aware resource management for

cloud computing environments. Journal of Systems and Software, 166(110596):234

± 248, April-June 2020.

[20] C. Guo, K. Xu, G. Shen, and M. Zukerman. Temperature-aware virtual data center

embedding to avoid hot spots in data centers. IEEE Transactions on Green Commu-

nications and Networking, 5(1):497±511, 2021.

[21] K. Haghshenas and S. Mohammadi. Prediction-based underutilized and destination

host selection approaches for energy-efficient dynamic vm consolidation in data cen-

ters. The Journal of Supercomputing, pages 1±18, 2020.

72



[22] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9(8):1735±1780, 1997.

[23] S. Ilager and R. Buyya. Energy and thermal-aware resource management of cloud

data centres: A taxonomy and future directions. ArXiv, abs/2107.02342, 2021.

[24] S. Ilager, K. Ramamohanarao, and R. Buyya. Thermal prediction for efficient energy

management of clouds using machine learning. IEEE Transactions on Parallel and

Distributed Systems, 32(5):1044 ± 1056, 2021.

[25] C. Jin, X. Bai, C. Yang, W. Mao, and X. Xu. A review of power consumption models

of servers in data centers. Applied Energy, 265:114806, 2020.

[26] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya. Virtual machine power

metering and provisioning. In 1st ACM symposium on Cloud computing, pages 39±50,

2010.

[27] R. Kavanagh and K. Djemame. Rapid and accurate energy models through calibration

with IPMI and RAPL. Concurrency and Computation: Practice and Experience,

31(13):e5124, 2019.

[28] C. Kelley, H. Singh, and V. Smith. Data center efficiency and it equipment reliability

at wider operating temperature and humidity ranges. The Green Grid, White Paper,

50, 2012.

[29] S. Kim and H. Kim. A new metric of absolute percentage error for intermittent de-

mand forecasts. International Journal of Forecasting, 32(3):669±679, 2016.

[30] Kubernetes. Kubernetes scheduler. https://kubernetes.io/docs/

concepts/scheduling-eviction/kube-scheduler/.

[31] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu. Holistic virtual machine scheduling

in cloud datacenters towards minimizing total energy. IEEE Transactions on Parallel

and Distributed Systems, 29(6):1317 ± 1331, 2018.

[32] Y. Li, Y. Wang, B. Yin, and L. Guan. An online power metering model for cloud

environment. In IEEE 11th International Symposium on Network Computing and

Applications, pages 175±180, 2012.

[33] C.-H. Lien, Y.-W. Bai, and M.-B. Lin. Estimation by software for the power con-

sumption of streaming-media servers. IEEE Transactions on Instrumentation and

Measurement, 56(5):1859±1870, 2007.

[34] Linux vmstat. vmstat(8) - Linux man page. https://linux.die.net/man/

8/vmstat.

[35] R. Milocco, P. Minet, E. Renault, and S. Boumerdassi. Proactive data center manage-

ment using predictive approaches. IEEE Access, 8:161776±161786, 2020.

73



[36] F. Moges and S. Abebe. Energy-aware VM placement algorithms for the OpenStack

neat consolidation framework. Journal of Cloud Computing, 8(1):1±14, 2019.

[37] P. T. Nalveer Moocheet, Brigitte Jaumard and L. Eleftheriadis. A sensor predictive

model for power consumption using machine learning. In 12th International Confer-

ence on Cloud Networking. IEEE, 2023.

[38] OpenStack. Scheduling. https://docs.openstack.org/mitaka/

config-reference/compute/scheduler.html.

[39] Oracle. Installing and configuring openstack (kilo) in oracle® solaris, three-node ar-

chitecture overview. https://docs.oracle.com/cd/E65465_01/html/

E61044/archover.html.

[40] Oracle. Using ipmitool to view system information.

[41] V. Perumal and S. Subbiah. Power-conservative server consolidation based resource

management in cloud. International Journal of Network Management, 24:415±432,

Nov./Dec. 2014.

[42] Y. Qin, H. Wang, S. Yi, X. Li, and L. Zhai. Virtual machine placement based on

multi-objective reinforcement learning. Applied Intelligence, 50:2370±2383, 2020.

[43] M. Ranjbari and J. Torkestani. A learning automata-based algorithm for energy and

SLA efficient consolidation of virtual machines in cloud data centers. Journal of

Parallel and Distributed Computing, 113:55±62, 2018.

[44] M. Rezaei-Mayahi, M. Rezazad, and H. Sarbazi-Azad. Temperature-aware power

consumption modeling in hyperscale cloud data centers. Future Generation Computer

Systems, 94:130±139, 2019.

[45] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method. John

Wiley & Sons, 2016.

[46] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi. Performance

comparison between container-based and vm-based services. In 2017 20th Confer-

ence on Innovations in Clouds, Internet, and Networks (ICIN), pages 185±190. IEEE,

2017.

[47] S.D.A.Shah, M. Gregory, and S. Li. Cloud-native network slicing using software

defined networking based multi-access edge computing: A survey. IEEE Access,

9:10903±10924, 2021.

[48] R. Shaw, E. Howley, and E. Barrett. An advanced reinforcement learning approach

for energy-aware virtual machine consolidation in cloud data centers. In 2017 12th

International Conference for Internet Technology and Secured Transactions (ICITST),

pages 61±66. IEEE, 2017.

74



[49] M. Song and K. Chen. Numerical study on the optimal power distribution of server

racks in a data center. Building Simulation, 16:983 ±± 995, 2023.

[50] S. Song, K. J. Barker, and D. J. Kerbyson. Unified performance and power modeling

of scientific workloads. In 1st International Workshop on Energy Efficient Supercom-

puting (E2SC), 2013.

[51] L. Stress. stress(1) - linux man page. https://linux.die.net/man/1/

stress.

[52] B. Tudor and Y. Teo. On understanding the energy consumption of arm-based mul-

ticore servers. In ACM SIGMETRICS/international conference on Measurement and

modeling of computer systems, pages 267±278, 2013.

[53] Ubuntu. Ubuntu 20.04.5 lts (focal fossa), 2023.

[54] Z. Usmani and S. Singh. A survey of virtual machine placement techniques in a

cloud data center. Procedia Computer Science, 78:491±498, 2016. 1st International

Conference on Information Security and Privacy 2015.

[55] B. Wang, F. Liu, and W. Lin. Energy-efficient VM scheduling based on deep rein-

forcement learning. Future Generation Computer Systems, 125:616±628, 2021.

[56] Y. Wang, D. Nörtershäuser, S. Le Masson, J.-M. Menaud, et al. An empirical study of

power characterization approaches for servers. In International Conference on Smart

Grids, Green Communications and IT Energy-aware Technologies, pages 1±6, 2019.

[57] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang. Comparison of open-source cloud

management platforms: OpenStack and OpenNebula. In 9th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD), pages 2457 ± 2461, 2012.

[58] M. Witkowski, A. Oleksiak, T. Piontek, and J. Węglarz. Practical power consump-

tion estimation for real life HPC applications. Future Generation Computer Systems,

29(1):208±217, 2013.

[59] P. Xiao, Z. Hu, D. Liu, G. Yan, and X. Qu. Virtual machine power measuring tech-

nique with bounded error in cloud environments. Journal of Network and Computer

Applications, 36(2):818±828, 2013.

75



Appendix A

Additional Experiment Results

A.1 Experiment 1

180 Virtual Machine was deployed over a period of close to 7 hours. CPP was recorded to

have 5.1% less energy consumption than the best reference algorithm TAS. Average PM’s

overload time and CPU temperature were reduced by 22.3% and 0.8%, respectively. Figure

25 to Figure 34 and Table 8 provide the detailed results of Experiment 1.

Figure 25: Experiment 1 - Power Consumption Comparison of Algorithms.

Algorithm Edynamic(kWh) OverloadCPU OverloadPower TCPU
avg (◦C) T PM

avg (◦C)

CPP 7.333 0.271 0.085 49.35 33.71

CPPS 7.607 0.312 0.091 49.60 33.59

TAS 7.731 0.349 0.098 49.76 33.59

LB-R 7.892 0.389 0.164 49.88 34.05

LB-VM 8.188 0.464 0.215 50.16 34.00

Table 8: Experiment 1 Results.

76



Figure 26: Experiment 1 - Percentage of time each PM spends at an overloaded CPU state.

(tCPU
PM

)

Figure 27: Experiment 1 - Percentage of time each PM spends to the peak power state.

(tPOWER
PM

)

Figure 28: Experiment 1 - Average Temperature at Processor 1 (tCPU
PM

)

77



Figure 29: Experiment 1 - Average Temperature at Processor 2 (tPOWER
PM

)

A.2 Experiment 2

160 Virtual Machine was deployed over a period of close to 8.5 hours with a batch of 10

VMS deployed at every 20-minute interval. CPP was recorded to have 4.4% less energy

consumption than the best reference algorithm TAS. Average PM’s overload time and CPU

temperature were reduced by 26.0% and 0.2%, respectively. Figure 30 to Figure 34 and

Table 9 provide the detailed results of Experiment 2.

Figure 30: Experiment 2 - Power Consumption Comparison of Algorithms.

Algorithm Edynamic(kWh) OverloadCPU OverloadPower TCPU
avg (◦C) T PM

avg (◦C)

CPP 8.804 0.368 0.131 48.72 32.80

CPPS 9.134 0.440 0.172 48.99 33.07

TAS 9.209 0.497 0.192 48.83 32.84

LB-R 9.383 0.474 0.173 48.71 32.81

LB-VM 9.673 0.531 0.218 49.27 33.22

Table 9: Experiment 2 Results.

78



Figure 31: Experiment 2 - Percentage of time each PM spends at an overloaded CPU state.

(tCPU
PM

)

Figure 32: Experiment 2 - Percentage of time each PM spends to the peak power state.

(tPOWER
PM

)

Figure 33: Experiment 2 - Average Temperature at Processor 1 (tCPU
PM

)

79



Figure 34: Experiment 2 - Average Temperature at Processor 2 (tPOWER
PM

)

80


	Introduction
	Motivation
	Background
	Virtual Machine
	Virtual Machine Management & Operation

	Project Definition: Virtual Machine Placement for energy minimization
	Key References
	Our Contributions
	Plan of the Thesis

	Experiment Environment
	Cluster Architecture
	Experiments
	Load Emulation and Data Collection
	Static VM Deployment


	A Sensor Predictive Model for Power Consumption using Machine Learning
	Abstract
	Introduction
	Literature Review
	Power Consumption Models with CPU only
	More General Power Consumption Models
	Temperature: A Key Parameter for Power Prediction
	Concluding Remarks

	Real-time Sensor Measurements vs. Analytical Formulas
	Workload Characterization
	Heterogeneous PMs & Temperature

	Machine Learning Model
	Performance Monitoring Counters
	Embedded Sensors
	Data pre-processing

	Machine Learning Algorithms
	Multiple Linear Regression Model (MLR)
	Extreme Gradient Boosting Algorithm (XGBoost)
	Multi-layer Perceptron (MLP) Regressor Model
	Long Short-Term Memory (LSTM) Neural Network

	Numerical Results
	Experimental Setup, Load Emulation & Data Collection
	Performance Evaluation
	Observations

	Conclusion

	Virtual Machine Placement using Embedded Sensors and Machine Learning for Energy Minimization
	Abstract
	Introduction
	Literature Review
	Consolidation
	Thermal-Aware Approaches
	Reinforcement Learning
	Concluding Remarks

	Need For Thermal-aware Techniques
	Influence of Temperature & Need for Enhanced Feature Space
	Critical Temperature

	A Proactive Energy & Thermal-aware Approach
	Power Model
	Criticality of a Physical Machine

	Virtual Machine Placement
	Problem formulation
	Criticality-based Random Sampling
	Greedy Heuristic Algorithm

	Numerical Results
	Environment
	Load Emulation & Data Collection
	Evaluation: Predictive ML Models
	Evaluation: VM Placement

	Conclusion

	Conclusion & Future Works
	Conclusions
	Future Works

	Bibliography
	Additional Experiment Results
	Experiment 1
	Experiment 2


