
An XAI-based Framework for Software Vulnerability
Contributing Factors Assessment

Ding Li

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

October 2023

© Ding Li, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ding Li

Entitled: An XAI-based Framework for Software Vulnerability Contributing

Factors Assessment

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Abdelwahab Hamou-Lhadj

External Examiner
Dr. Peter Rigby (CSE)

Examiner
Dr. Abdelwahab Hamou-Lhadj

Supervisor
Dr. Yan Liu

Approved by
, Chair
Department of Electrical and Computer Engineering

2023
, Dean
Faculty of Engineering and Computer Science

Abstract

An XAI-based Framework for Software Vulnerability Contributing Factors Assessment

Ding Li

Software vulnerability detection plays a proactive role in reducing risks to software security

and reliability. Despite advancements in deep learning-based detection, a semantic gap persists

between model-learned features and human-interpretable vulnerability semantics. The challenge

lies in the absence of a systematic approach to assess feature importance, capable of explaining

the relationship between these two elements. Explainable Artificial Intelligence (XAI) techniques

become indispensable in offering comprehensive explanations of features learned by AI models,

emphasizing their applicability in software vulnerability detection.

This research introduces an XAI-based framework to systematically evaluate XAI techniques

and apply them for assessing the contributing factors of feature representations in classifying soft-

ware code into Common Weakness Enumeration (CWE) types. The focus is on applying XAI

methods to examine the importance of features underlying vulnerability detection. An additional

challenge arises from the lack of a systematic evaluation to ensure consistent explanation results

during the selection of state-of-the-art XAI methods.

To address this, this thesis defines three evaluation metrics for XAI: consistency, stability, and

efficiency. A novel XAI method, named Mean-Centroid PredDiff, is introduced to strike a balance

among these three metrics, significantly enhancing the framework’s efficacy. This method, along

with SHAP, are integrated into the framework based on their well-performance across the evaluation

in three domain case studies.

Findings from this work reveal that the proposed framework enables the summarization of

the importance of 40 syntactic constructs and the similarities among 20 CWEs based on graph-

embedded semantic features. The study results align closely with expert knowledge from the CWE

iii

community, achieving approximately 77.8% Top1, 89% Top5 similarity hit rates and mean average

precision of 0.70 in CWE classification. The study validates the significance of attention values of

transformer-based models in representing the importance of code tokens.

Overall, this thesis contributes a new XAI method to the open-source community, achieving a

trade-off of efficiency with consistency and stability. In addition, the XAI-based framework success-

fully assesses the nine meta syntactic constructs importance across 20 CWE types and evaluate their

similarity. The dataset and the code of framework have been made publicly available on GitHub1.

1https://github.com/DataCentricClassificationofSmartCity/XAI-based-Software-Vulnerability-Detection.git

iv

Acknowledgments

I’m profoundly thankful to the many people who have played a part in the work encapsulated in

this thesis. My deepest gratitude goes to my supervisor, Prof. Yan Liu, whose consistent support,

valuable guidance, and extensive knowledge have been crucial throughout my Master’s journey. I’m

also thankful to Prof. Liu for her financial support, which has greatly enabled my research.

I want to extend my thanks to all the co-authors of my papers, as their joint efforts have signifi-

cantly enhanced this thesis. On a personal level, I owe much to my family, particularly my mother,

and my friends. Their love, support, and encouragement have been my pillar of strength. To all

these individuals, I extend my heartfelt appreciation.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Objective . 4

1.3 Contribution . 4

1.4 Outline . 5

1.5 Publications . 6

2 Background 7

2.1 Explainable AI (XAI) Techniques . 7

2.2 Software Vulnerabilities Detection . 8

2.3 Common Weakness Enumeration (CWE) Type 9

3 Related Work 11

3.1 Model-Agnostic XAI Taxonomy . 11

3.2 XAI Feature Importance Explanation Methods . 12

3.3 Evaluation of XAI Methods . 14

3.4 XAI-based Vulnerability Analysis . 15

4 Feature Importance XAI Explanation 16

vi

4.1 Explanation on Features . 16

4.2 XAI Evaluation Metrics . 17

4.2.1 Define Explanation Consistency . 17

4.2.2 Define Explanation Stability . 18

4.2.3 Analyze Time Complexity . 18

4.3 Developing a New XAI Method - Mean-Centroid PredDiff 19

4.3.1 Phase 1: Compute Prediction Difference under Feature Masking 19

4.3.2 Phase 2: Compute Feature Contribution Values 21

4.3.3 Phase 3: Convert to Feature Importance Order 21

4.3.4 Asymptotic Analysis on Time Complexity 21

5 The Framework’s Application: Assessing Contributing Factors of Code Vulnerability

Classification 22

5.1 Taxonomy of Related Work . 23

5.1.1 Text-based Code Representation and Feature Types 23

5.1.2 Graph-based Code Representation and Feature Types 26

5.1.3 Other Code Representations and Their Feature Types 27

5.2 An XAI-based Framework for Software Vulnerability Contribution Factor Assessment 28

5.2.1 The Graph Context Extraction of Program Code 29

5.2.2 Embedding by Graph Convolutional Networks 32

5.2.3 Multi-Classification of CWE Types . 32

5.2.4 Feature Masking . 33

5.2.5 Integrating XAI methods in Multi-Classification 34

5.3 CWE Similarity Summary and Validation . 36

5.3.1 Summary of XAI-based CWE Similarity 36

5.3.2 CWE Similarity Validation . 36

5.4 Extending the XAI-based Framework for Textual-based Feature Contribution As-

sessment . 39

5.4.1 Feature Representation . 39

vii

5.4.2 Multi-Classification of CWE Types . 41

5.4.3 Feature Variation . 41

5.4.4 Execute XAI Methods . 42

5.5 Experiments and Analysis . 43

5.5.1 Research Questions . 43

5.5.2 Dataset . 44

5.5.3 Selecting XAI Methods . 45

5.5.4 Ranking the Importance of Syntactic Constructs in AST (RQ1) 46

5.5.5 Validating CWE Similarity against Expert-defined Baseline (RQ2) 49

5.5.6 Assessing the Influence of Textual-based Features (RQ3) 52

5.6 Retrospection of Similar CWE Code Sample Siblings 58

5.6.1 A Detailed Showcase of CWE23 and CWE36 58

5.6.2 Constructs Ranking Examples of Four CWE Sibling Pairs 61

5.7 Comparative Analysis of The Findings with Existing Research 62

6 Threats to validity 64

7 Conclusion 66

Appendix A My Appendix 68

A.1 Evaluating XAI Methods Through Three Case Studies 68

A.1.1 Select XAI Method Based on XAI Goal 69

A.1.2 Case Study I, Academic Paper Ranking 69

A.1.3 Case Study II, Code Vulnerability Classification 72

A.1.4 Case Study III, Image Classification . 75

A.1.5 Evaluation Conclusion . 78

A.2 Analysis of CWE Sibling Pairs with Constructs Ranking 79

Bibliography 83

viii

List of Figures

Figure 3.1 Taxonomy of model-agnostic explainable AI methods. 11

Figure 4.1 The dataflow of Mean-Centroid PredDiff (Prediction Difference) explanation

summary. 19

Figure 4.2 An example of deriving two features’ contribution values by Gaussian Mix-

ture clusters. 20

Figure 5.1 Taxonomy of factors under various code feature representation techniques

(bold: assessed in this study). 24

Figure 5.2 The assessment of feature contribution by XAI explanations. The main com-

ponents include feature representation, feature variation, XAI method, pre-trained

model and analysis of XAI results. 28

Figure 5.3 The Abstract Syntax Tree of the code snippet from Listing 5.1. 30

Figure 5.4 The overview of embedding learning. The distributed representations of

target code token data is learnt from the relevant context tokens (blue nodes) that

are fed into a one layer GCN (Graph Convolutional Network). hwi , hwt are hidden

representations of context token and target token, and b is the added bias. 31

Figure 5.5 An example of how the window size restricts the selection of neighboring

nodes as source code node for the target code node data, considering both upwards

and downwards directions. 31

Figure 5.6 After masking syntactic constructs decl, the target data embedding will

not learn the information from AST paths and related source nodes with inflection

node decl. 33

ix

Figure 5.7 Framework of explainable text-based factors assessment. 40

Figure 5.8 Feature importance of meta syntactic constructs per CWE type, represented

in descending order clockwise. 48

Figure 5.9 CWE similarity score ρ for CWE pair from syntactic construct feature im-

portance based on XAI approach. 50

Figure 5.10 Code token length distribution. 53

Figure 5.11 Token attention value affects: the performance comparison (F1-Score) after

masking code tokens by multiple attention value percentile ranges. 56

Figure 5.12 Correlation between token’s feature contribution value from XAI methods

(SHAP, MCP-Mean Centroid PredDiff) and token’s attention values (annotated with

median value). 56

Figure 5.13 An example of deep learning model gives a incorrect prediction on CWE

siblings. 59

Figure 5.14 Higher attention value code tokens are not reflecting the vulnerable code

lines in two code snippet with CWE23 and CWE36. 60

Figure 5.15 The CWE23 code snippet owns two additional AST paths (marked with red)

with argument and operator to make the absolute path into a relative path,

compared with CWE36. 61

Figure A.1 The consistency and stability evaluation of four XAI methods in academic

paper ranking case study. 72

Figure A.2 Time consumption between XAI methods along with the data set size in-

creasing in academic paper ranking case study. 73

Figure A.3 The process of Mean-Centroid PredDiff on image explanation. 75

Figure A.4 Example of the original image, saliency map generated by XAI Method

(Mean-Centroid PredDiff), and masked image. 77

Figure A.5 The consistency and stability evaluation of four XAI methods in image clas-

sification case study. 78

x

List of Tables

Table 5.1 Syntactic constructs in AST (Abstract Syntax Tree) 29

Table 5.2 CWE categorized by baseline similarities 38

Table 5.3 CWE distribution by dataset . 45

Table 5.4 Performance of classifiers augmented with GraphCodeVec embeddings . . . 47

Table 5.5 CWE similarity evaluation results . 51

Table 5.6 Code token lengths effects: the performance comparison of increasing token

length across multiple models and datasets . 55

Table 5.7 Token type affects, top 20 tokens with high attention values (over 90 per-

centile) for each dataset . 57

Table 5.8 Constructs Ranking for CWE Sibling Pairs 62

Table 5.9 Relative comparison of the findings with existing work 63

Table A.1 Feature importance order summary of academic paper ranking case study . . 71

Table A.2 Feature importance order summary for code vulnerability classification case

study . 74

xi

Chapter 1

Introduction

Software vulnerability signifies the existence of flaws, weaknesses or faults in a software sys-

tem. These could be within the system’s internal controls, security procedures, or even the im-

plementation that may potentially be manipulated by threat sources [1]. Such vulnerabilities often

emerge from design errors, poor coding practices, or insufficient security testing. Detecting such

vulnerabilities in large-scale software systems poses significant challenges regarding accuracy and

transparency, in both academic and industrial settings [2, 3, 4, 5, 6, 7]. Implementing vulnerabil-

ity analysis and detection during the early stages of software development can provide a proactive

means of mitigating potential threats [8].

The methods for software vulnerability detection have evolved over time, transitioning from

static code analysis techniques to machine learning approaches. Static code analysis tools, which

rely on pattern matching techniques [9, 10] using predefined rules to identify bugs, are often plagued

by high false-positive rates [11]. The emergence of machine learning-based methods, utilizing

source code, software complexity metrics, and version control system data to predict vulnerabil-

ities, have gained significant attention [12, 13, 14]. These methods automate the process of fea-

ture extraction and enable the learning of complex patterns, which improves the need for extensive

expert-driven feature engineering [3, 15, 16, 17]. The application of these techniques has led to

enhancements in detection accuracy [18, 19].

1

1.1 Problem Statement

Despite significant advancements, machine learning based software vulnerability detection ap-

proaches possess discernible limitations [20]. These include underperformance in real-world appli-

cations, the learning of irrelevant features, and issues related to data duplication and imbalance [20].

Such challenges raise questions about the models’ effective and reliable transferability to different

datasets, as well as their transparency in operation [21, 22, 8].

The opacity of these models prompts inquiries such as: (1) To what extent can the signatures

of vulnerable artifacts, learned from one set of software projects, be transferred to others [21]? (2)

What factors most significantly influence representation learning? (3) How do these factors cause

variance in detection results across different learning methods [22]? Addressing these questions

requires an assessment of the importance of code features to the semantics of vulnerability detection.

Such an assessment should be model agnostic, focusing solely on the inputs (code features) and the

outputs (vulnerability classification) of the model.

The domain of software vulnerability detection has seen a development in the application of

eXplainable Artificial Intelligence (XAI) methodologies. XAI serves as an essential component of

responsible AI, fostering transparency by unraveling the intricate decision-making processes within

complex AI models. Offering insights into the association between specific inputs and outputs,

XAI enables a deeper understanding of AI systems, augmenting accountability and understand-

ability [23]. XAI utilizes various methods including SHAP (SHapley Additive exPlanations) [24],

LIME [25], and Lemna [26], to detect the relevance of features within program code representation.

One of the key concerns when implementing XAI in a specific domain, such as software vul-

nerability detection, lies in ensuring that the methods deliver consistent and stable explanations,

thus promoting trustworthiness [27]. It is imperative to maintain the robustness of XAI techniques,

which hinges on their ability to provide coherent explanations for similar inputs. Inconsistencies in

the results can instigate ambiguity, potentially undermining the reliability of AI predictions. This

poses the first core problem : Are the explanations derived from varying XAI methods trust-

worthy?

Addressing this issue involves two potential solutions. The first involves evaluating existing

2

XAI methods via defined metrics, which aspire to capture facets of feature contributions overlooked

by current methods. The second involves the development of a novel XAI algorithm, with the aim

of striking a balance between computational efficiency and the delivery of high-quality, consistent,

and stable explanations.

The goal of implementing XAI in software vulnerability analysis revolves around evaluating the

contribution of features under various program artifacts, encompassing code textual tokens, abstract

syntax trees, and other graph-based code representations. This applies to diverse machine learning

models, including natural language processing and graph-based models. By permuting the feature

input and summarizing from the outputs, model agnostic XAI methods can potentially achieve this

explanation goal.

However, existing works which leveraging XAI for software vulnerability analysis face set of

challenges. Some studies employ attention values from transformer-based deep learning models

to signify the relevance of code semantics [28, 29]. However, the correlation between high atten-

tion values and code feature importance remains a contentious issue [8, 30, 31]. Cross-validation

with feature value interpretation tools such as SHAP [24], coupled with a manual examination of

individual code blocks, is imperative.

Moreover, syntactic constructs such as operators, operands, and control flows are crucial el-

ements of code semantics. Nevertheless, studies investigating the correlation between these con-

structs and the significance of code semantics in software vulnerability detection are sparse [29].

Moreover, there is a notable absence of systematic methodologies to relate these constructs with

common attributes across various vulnerability types as defined by the Common Weakness Enumer-

ation (CWE) [32]. These list another core problem: How to develop an XAI-based framework to

reliably measure the various types of feature’s contribution and correlate them with common

attributes across various software vulnerability types?

3

1.2 Objective

This study aims to address the existing limitations within software vulnerability detection by

developing an XAI-based framework. The primary objective involves a comprehensive examina-

tion of existing XAI methods that explain on feature importance. Additionally, this thesis introduce

a novel approach, named Mean-Centroid PredDiff, designed to enrich the feature explanation tax-

onomy within XAI. This endeavor focuses on improving the reliability and trustworthiness of XAI

methods, thereby ensuring the quality of explanations they provide in terms of consistency, stability,

and efficiency.

By leveraging XAI methods to evaluate contributing factors in software vulnerability detection

analysis, the subsequent goal is to enhance the accuracy and transparency of machine learning-

based approaches. This objective is achieved by rendering the underlying learning models more

interpretable and trustworthy. Committed to identifying the contributing factors from both textual-

based and graph-based code feature types in software vulnerability, this work provides a systematic

explanation of how these elements shape the outcomes of software vulnerability detection.

1.3 Contribution

The contributions of this thesis can be summarized into four key points:

(1) This study proposes three evaluation metrics addressing the trustworthiness of XAI methods

concerning consistency, stability, and efficiency. Furthermore, it enriches the feature expla-

nation XAI taxonomy by introducing a novel XAI method, Mean-Centroid PredDiff, which

achieves a balance between consistency, stability, and efficiency, compared to the state-of-

the-art feature-based XAI methods.

(2) This study presents a XAI-based framework to assess contributing factors in software vulner-

ability analysis. To identify these factors, this thesis builds a taxonomy of code representation

techniques and extend it to the feature factor level.

(3) This study provides a comprehensive summary of feature importance explanations for syn-

tactic constructs in Abstract Syntax Trees (AST) at the vulnerability type level. This thesis

4

assesses nine meta-data syntactic constructs (with forty-three detailed constructs) for their

contributions across twenty CWE types. Additionally, this thesis analyzes CWE similarity

using ranking distance and validate our explanation results against an expert-defined base-

line, thereby demonstrating the effectiveness of the proposed approach. This knowledge can

potentially be used for IDE programming prompts, allowing the IDE to leverage the syntactic

construct priority to provide warnings for potentially vulnerable code.

(4) This study examines into the influence of code token length, code type, and attention values on

the model, particularly focusing on the relationship between code tokens’ attention values and

their significance in a model’s decision-making process. To achieve this, it utilizes attention-

based models and XAI methods.

In summary, this study begins by evaluating XAI methods to address trustworthiness, laying the

foundation for subsequent application in software vulnerability analysis. The taxonomy presented

in relation to code feature representation offers a comprehensive perspective on code feature types,

aiding practitioners in understanding the contributing factors in software developments. By applying

XAI techniques, evidence is presented that attention values from transformer-based models can in-

dicate token importance. However, it’s noted that these models also assign weight to separators like

commas, which might not hold semantic relevance in code. Furthermore, the XAI-based findings

on the importance of syntactic constructs reveal crucial insights into inner syntactic structures. Such

insights can guide practitioners in detecting similar CWE vulnerabilities during software develop-

ment. This research underscores the utility of XAI techniques in software vulnerability detection,

addressing concerns of weak transferability in real-world scenarios. The code and dataset for this

study are available as open-source resources1.

1.4 Outline

The organization of this thesis is as follows:

• Chapter 2 reviews the background of XAI, concepts of software vulnerabilities, and the CWE

(Common Weakness Enumeration) type.
1https://github.com/DataCentricClassificationofSmartCity/XAI-based-Software-Vulnerability-Detection.git

5

• Chapter 3 discusses related work in XAI techniques and their applications in software vul-

nerability domains.

• Chapter 4 presents evaluation metrics for XAI methods and introduces a novel approach

called Mean-Centroid PredDiff.

• Chapter 5 introduces our XAI-based framework for assessing software vulnerability contri-

bution factors and provides an in-depth analysis of the experimental results related to this

assessment.

• Chapter 6 addresses the limitations of our approach and discusses potential threats to validity.

• Chapter 7 offers a conclusion and summarizes the thesis.

1.5 Publications

The research presented in this thesis has been accepted for publication in the following:

(1) D. Li, Y. Liu, J. Huang, and Z. Wang, “A Trustworthy View on Explainable Artificial Intel-

ligence Method Evaluation,” Computer, vol. 56, no. 4, pp. 50-60, 2023. This publication

proposed the XAI evaluation metrics and the newly Mean-Centroid PredDiff XAI method in

Section 4.2 and 4.3 in Chapter 4.

(2) J. Huang, Z. Wang, D. Li, and Y. Liu, “The Analysis and Development of an XAI Process on

Feature Contribution Explanation,” in 2022 IEEE International Conference on Big Data (Big

Data), pp. 5039-5048, December 2022. IEEE. This publication developed a general XAI

process including XAI taxonomy (Section 3.1), the XAI goal, and XAI criterion to select

different XAI methods (Section A.1).

A journal paper is currently under review, focusing on applications assessing contribution fac-

tors of software vulnerability detection, as discussed in Chapter 5.

(1) D. Li, Y. Liu, J. Huang, ”Assessment of Software Vulnerability Contributing Factors using

Model-Agnostic eXplainable AI Techniques” IEEE Transactions on Software Engineering,

submitted September 2023.

6

Chapter 2

Background

This chapter introduces key terms of the research, including the concept of eXplainable Artifi-

cial Intelligence (XAI), software vulnerabilities, and the Common Weakness Enumeration (CWE)

type. It also traces the evolution of software vulnerability detection practices, from rule-based tools

to deep learning-based methodologies. The significance of the CWE type in classifying software

vulnerabilities is also covered.

2.1 Explainable AI (XAI) Techniques

The growing importance of black-box AI models in generating critical context outgrowths an

increasing demand for transparency from various AI stakeholders [33, 23]. The threat lies in the

creation and usage of decision-making processes that are unexplainable, unjustifiable, or illegiti-

mate [34]. In this light, explanations supporting the model’s outcoming become crucial. EXplain-

able AI (XAI) techniques suggests developing a suite of machine learning techniques that 1) create

more explainable models without compromising learning performance (such as prediction accu-

racy), and 2) enable humans to understand, trust appropriately, and effectively manage the rising

generation of AI partners [23]. XAI also considers the psychology of explanation, drawing insights

from Social Sciences [35].

Generally, XAI techniques can be broadly classified into two main categories: methods for

7

building inherently interpretable AI models and post-hoc methods for explaining existing mod-

els [36]. Inherently interpretable AI models often utilize algorithms such as linear regression,

logistic regression, and decision tree models, which offer built-in interpretability for specific do-

mains [37]. However, as deep learning models become increasingly prevalent across various do-

mains, their inherent lack of explainability has prompted the development of post-hoc methods.

Post-hoc methods are further divided into two subcategories: model-specific and model-agnostic

methods. Model-specific methods, as the name suggests, are tailored to explain specific types of

models, while model-agnostic methods treat the model as a black-box.

2.2 Software Vulnerabilities Detection

Software vulnerability detection is the practice of identifying and characterizing weaknesses,

flaws, or vulnerabilities in a software system that could potentially be exploited by malicious en-

tities [1]. This practice has seen a significant evolution over time, transitioning from traditional

rule-based tools to more advanced machine learning-based methods, especially those that incorpo-

rate deep learning models.

Rule-based Vulnerability Detection Tools Rule-based tools for vulnerability detection typi-

cally involve static code analysis [38] or dynamic code analysis [39]. Static code analysis exam-

ines the source code without executing the program. Each type of vulnerability is associated with

a predefined rule, and rule violations signal potential vulnerabilities. Tools like Flawfinder [40],

RATS [41] and ITS4 [42] exemplify rule-based static analyzers. Although effective in identifying

known vulnerabilities, these tools often struggle with detecting novel or complex vulnerabilities.

Dynamic analyzers evaluate potential vulnerabilities in relation to the program’s runtime behav-

ior [39]. They detect vulnerabilities by interpreting user inputs or by generating meaningful pro-

gram inputs that could cause the program to crash. While both static and dynamic analyzers offer

valuable insights, they also present limitations. These tools often struggle with high false positive

and false negative rates. Furthermore, their efficacy is confined to the scope of their existing rules,

making them less capable of identifying novel or unique vulnerabilities [43].

8

Deep Learning-based Vulnerability Detection Approaches Deep learning-based vulnerabil-

ity detection demonstrates promising results when compared with rule-based tools in recent years.

In this approach, the code is initially embedded as a feature representation. This includes text token-

based, graph-based, or binary-based representations. Following this, the model classifies the code

into either a binary label, indicating whether the code is vulnerable or not, or into multi-classification

labels, highlighting specific vulnerability types.

Several models have been designed to learn these code representations and conduct downstream

tasks like vulnerability classification. Early models, such as Code2Vec [44], leverage an atten-

tion mechanism to learn distributed representations of code partitions. Following the success of

transformer models, CodeBERT [45] introduces pre-trained models based on BERT [46], which

are specifically tailored for programming languages. Other transformer-based models, such as XL-

Net [47], Longformer [48], and Bigbird [49], incorporate more complex architectural designs to

address issues related to the independence assumption of masked tokens and limitations in handling

extended code sequences.

Furthermore, Graph Neural Networks (GNNs) have also shown their effectiveness in code vul-

nerability detection tasks. Models such as VulBERTa [50], Devign [18], GraphCodeBERT [51],

and GraphCodeVec [52], as well as VulDeeLocator [53] and REVEAL [20], utilize the ability of

GNNs to capture intricate relationships between code entities. This is achieved by representing pro-

gram structures as graphs and propagating information through graph nodes. The further taxonomy

introduction of code feature code representations is presented in Section 5.1.

2.3 Common Weakness Enumeration (CWE) Type

The Common Weakness Enumeration (CWE) [54] is a community-developed list of common

software security weaknesses. It serves as a common language for describing these vulnerabilities,

a standard for measuring software security tools, and as a baseline for identifying, mitigating, and

preventing issues. It also commonly used as labels for supervised learning in vulnerability detection.

Different CWE type often share similarities. These commonalities may be derived from their

impact on system functionality, the system components they affect, or the degree of access they

9

grant an attacker. The following presents an example of a vulnerability category along with similar

CWE types under that category.

Improper Input Handling: This category captures vulnerabilities that arise when a software sys-

tem fails to correctly validate input or mistakenly validates improper input. This could potentially

manipulate the control or data flow of the program. The related CWE types under this category are

CWE-78, 79, 89, and 90. CWE-78 (OS Command Injection): This weakness emerges when soft-

ware does not appropriately neutralize special elements that could alter an intended OS command

when sent to a downstream component. CWE-79 (Cross-site Scripting): Here, the software does

not adequately neutralize, or incorrectly neutralizes, user-controllable input before it is used in a

web page, which may lead to cross-site scripting (XSS) attacks. CWE-89 (SQL Injection): This

vulnerability occurs when the software forms an SQL command using externally influenced input

from an upstream component. If it does not correctly neutralize special elements, the intended SQL

command may be modified. CWE-90 (LDAP Injection): This flaw arises when the software con-

structs an LDAP (Lightweight Directory Access Protocol) query using externally influenced input

from an upstream component. If it fails to neutralize special elements properly, the intended LDAP

query could be modified.

10

Chapter 3

Related Work

This chapter provides a comprehensive review of XAI taxonomy and the existing XAI tech-

niques, discussing their strengths and limitations. It also introduces critical evaluation metrics that

measure the effectiveness and reliability of these XAI methods as part of the framework. Finally,

the chapter delves into the application of XAI methods in the software vulnerability domain.

3.1 Model-Agnostic XAI Taxonomy

Model-agnostic Explainable AI (XAI) methods investigate the connections between features

and prediction outcomes. Their aim is to provide understandable insights into model decision-

making processes. These methods can be primarily classified into three categories [55] based on

how they present their explanations as Figure 3.1.

Figure 3.1: Taxonomy of model-agnostic explainable AI methods.

11

Explain by Visualization [56]: These methods use visual tools to help illustrate model behav-

iors, often by highlighting key features in the data.

Explain by Feature Importance [57]: This group of methods determines the importance of

features on predictions, with a specific focus on feature masking and feature mutation. Feature

Masking: These techniques operate by removing or replacing certain input features to examine

how the model’s predictions change. This allows for an understanding of how individual features

contribute to the prediction. Feature Mutation: These techniques change one or a few feature

values to see how the individual prediction shifts, providing an understanding of the feature’s impact

on model predictions.

Explain by Simplification [25]: These methods attempt to create a simpler, more interpretable

model to emulate the complex black-box model. They include Rule-based Learners, which provide

decision rules to clarify prediction paths, and Additional Interpretable Models, which train another

interpretable model to explain the original one.

3.2 XAI Feature Importance Explanation Methods

Explainable AI (XAI) is an emerging research topic in recent years, aiming to explain AI mod-

els’ logic and decision-making processes for users in the goodness of safety and fairness. Conven-

tionally, post-hoc XAI methods are categorized as model-agnostic and model-specific [23]. Model-

specific methods probe and extract the model gradients or neuron activation states from the neural

network models. Examples are the family of XAI methods based on Class Activation Mapping

(CAM)[58] including EigenCAM[59], GradCAMElementWise [60], Grad-CAM++[61], XGrad-

CAM[62], and HiResCAM [63]. They have been applied to explain feature contributions to image

classification algorithms and tasks.

Model-agnostic methods are black-box based and non-intrusive to specific machine learning

algorithms [64]. PredDiff [65] quantifies the impact of each feature on a model’s prediction by

evaluating the changes in prediction scores after the perturbation of a particular feature. Formally,

12

the importance of feature j is given as follows:

ϕPredDiff
j = |f̂(x)− f̂(x−j)| (1)

Here, f̂(x) denotes the model’s prediction with all features, while f̂(x−j) represents the model’s

prediction after the perturbation or removal of feature j. The PredDiff method assumes that features

are independent, which might not hold true for many real-world applications [66]. LIME (Local

Interpretable Model-agnostic Explanations) [25] is an XAI method that explains the predictions of

any classifier or regression model by approximating it locally with an interpretable model. The

approximation is driven by the assumption that every complex model is linear at a local scale. The

explanation provided by LIME for instance x is formally given by:

ξ(x) = argming∈G[L(f̂ , g, πx) + Ω(g)] (2)

Here, L is a loss function that measures how well the explanation g approximates the prediction

function f̂ in the locality defined by πx, and Ω(g) is a measure of the complexity of the explana-

tion. The local linear approximations of LIME may be inaccurate for non-linear models, and the

explanations depend heavily on the quality of perturbations. LIME can also be computationally ex-

pensive. SHAP (SHapley Additive exPlanations) [24] assigns each feature an importance value for

a particular prediction based on the concept of Shapley values [67] from cooperative game theory.

It quantifies the contribution of each feature to the prediction for a specific instance. The SHAP

value, ϕ, is defined as:

ϕSHAP
j =

∑
S⊆P\j

w(S)

|S|!(|P | − |S| − 1)!
(f̂S∪j(x)− f̂S(x)) (3)

where P is the set of all features, S is a subset of P without feature j, |S| denotes the size of set

S, |P | denotes the size of set P , w(S) is the weight assigned to the subset S, and f̂S(x) and f̂S(x)

represent the model’s output with and without the feature j, respectively. The weights w(S) are

determined by a kernel function, such as the exponential kernel or the linear kernel. SHAP can be

computationally taxing for models with large scale features. CXPlain [68] utilizes causal inference

13

to provide feature importance explanations, CXPlain can be computationally burdensome, espe-

cially for tasks with numerous features or complex causal structures. ALE (Feature Importance by

Accumulated Local Effects) [69] calculates the cumulative effect of varying feature values on model

predictions, its assumption of feature independence may hinder its effectiveness with highly corre-

lated features. PDP (Partial Dependence Plot) [70] provides a global view of feature importance,

PDP visualizes the marginal effect of a feature on predicted outcomes. However, its assumption of

independent features may not hold true in many practical applications. ICE (Individual Conditional

Expectation) [71] is an extension of PDP providing local explanations of feature importance, ICE

may produce complex and dense plots that can be difficult to interpret when dealing with high-

dimensional data.

In summary, while these methods offer different perspectives for interpreting AI models, they

also encounter challenges concerning computational efficiency, feature correlation, and interpretabil-

ity, underscoring the need for a balanced XAI method.

3.3 Evaluation of XAI Methods

The evaluation of XAI methods is crucial for establishing their trustworthiness, particularly

because XAI methods highlight the transparency and understanding of AI models, as a part of

building responsible AI [72]. This trust is often evaluated at the level of individual predictions by

users. Correspondingly, the robustness of the explanation for each data sample prediction becomes

essential in shaping this trust. Subsequently, users may elevate their trust to the model level. In this

context, the consistency across multiple XAI methods applied to the same model becomes critical

to the AI model’s accountability. As XAI methods bloom, it becomes increasingly challenging

to identify the most reliable ones, particularly given the variability in the explanations generated

by different methods. Therefore, as emphasized in previous studies [73], well-defined quantifiable

metrics are important in measuring the results of XAI explanations, helping build trustworthy AI

systems.

14

Having robust evaluation metrics is thus indispensable for assessing the quality of XAI meth-

ods. These metrics evaluate factors like soundness, completeness, and trustworthiness of the expla-

nations generated by these methods. In turn, this facilitates the selection of suitable XAI methods

for specific applications and enhances the overall trust in deployed AI systems. For instance, a

study [74] introduced soundness and completeness as XAI evaluation metrics. Soundness measures

the correctness of the explanation but often requires access to a model’s ground truth, which might

not always be available. Completeness, on the other hand, estimates how thoroughly an explanation

covers the entire task model, being more relevant for global than for local explanations.

Another aspect of evaluating XAI methods is trustworthiness, as highlighted in a study on an

explainable book search system [75]. Here, trustworthiness evaluation was tied to retrieval system

performance, using ranking by user clicks, user responses to questionnaires, and user eye-tracking

data. The comparison of these results helped evaluate the trustworthiness of the system’s explana-

tions. In summary, the evaluation of XAI methods not only determines their performance but also

bolsters the trust in AI systems by ensuring the reliability of the explanations they provide.

3.4 XAI-based Vulnerability Analysis

Tanwar et al.[28] provide an interpretable instance for the Juliet test suite, where they visualize

attention values for each code line. VulANalyzeR[29] utilizes attention mechanisms to pinpoint

crucial instructions and basic blocks that lead to vulnerabilities. However, most studies concentrate

on visualizing attention values for individual code snippets and lack a method for further probing

the status of AST syntactic constructs and their linked code tokens. Code2Vec [44] and Multiple

Instance Learning (MIL) techniques [76] provide explainability at the individual AST path level.

Furthermore, several studies [77, 78, 79, 80] underscore the importance of syntactic identifiers like

name, literal, type, and parameter for vulnerability classification. Notably, a study by Sotgiu et

al.[81] uses SHAP to analyze the importance of code tokens. Duan et al.[82] investigate buffer error

vulnerability cases and find that names, conditions, and parameters are key features. Despite these

insights, a comprehensive evaluation of the importance of all syntactic constructs across multiple

vulnerability types is lacking, which forms the motivation for the investigation in this study.

15

Chapter 4

Feature Importance XAI Explanation

This chapter first defines the objective of feature importance explanation. It then illustrates

XAI engineering by evaluating various XAI methods using well-defined metrics, including consis-

tency, stability, and runtime efficiency. It introduces a novel model-agnostic XAI method, termed

Mean-Centroid PredDiff, which summarizes the explanation by employing the clustering centroid

of the prediction difference. This enriches the field of trustworthy XAI by offering an evaluation

of existing methods, coupled with the introduction of a new technique for trustworthy explanation

generation.

4.1 Explanation on Features

The analysis of feature importance explanation is key to discerning how individual features

influence a model’s predictions. This section initially introduces three fundamental terms - feature,

feature contribution value, and feature importance order.

At its core, a feature j is an individual measurable property or characteristic of a phenomenon

being observed. In the context of machine learning, features are used to represent the patterns that

the algorithm learns from and, thus, significantly contribute to the model’s predictive or classifica-

tion power. Features can span a wide range, for text tokens, token type [80], token frequency [83],

token attention value [84] in natural language processing tasks, pixel intensities in image recogni-

tion tasks [85], or even more complex constructs depending on the domain and the specific task.

16

The whole feature space is donated as P .

Feature contribution value, denoted as ϕj , represents the quantitative impact of a specific fea-

ture j in driving the model’s predictions [25]. Higher feature contribution values indicate more

substantial influences, while lower values suggest less impact.

Feature importance order, denoted as a sort vector sort(v) that v ← {∀j ∈ P, ϕj}, refers to

the ranking of features based on their feature contribution values. This ranking enables an intuitive

understanding of the relative importance of each feature in the model’s decision-making process.

By examining the ranking distances between different entities’ feature importance orders, it can

infers the similarity of these entities based on their feature characteristics.

4.2 XAI Evaluation Metrics

This section discuses three measurement metrics regarding the view of trustworthy XAI meth-

ods, consistency, stability and time complexity. Consistency assesses the agreement among different

XAI methods, ensuring they yield similar explanation results. Stability evaluates the agreement of

feature importance explanation results across similar data input in an inner-XAI method view. Time

Complexity examines the computational efficiency of XAI methods, providing insight into their

practicality for use in large datasets.

The three metrics provide a measure in relation to the XAI’s criteria [55]. For instance, a

lower value in the consistency metric indicates a higher degree of consistency across different XAI

methods. Conversely, a higher value in the consistency metric demonstrates a greater diversity

among the different XAI methods in achieving the explanation results.

4.2.1 Define Explanation Consistency

The goal of consistency metrics in the context of Explainable AI (XAI) is to quantitatively eval-

uate the agreement between different XAI methods when explaining the same dataset and model.

Consider f̂(xi) is the model prediction on instance xi < x1i , x
2
i , ...x

p
i >, where p is the number

of features. Suppose S is the subset of all the features by masking or removing a feature j that is

17

S ⊆ {1, 2, 3, ..., p}\{j} and P contains the whole features, P = S ∪ {j}. Under feature mask-

ing, the prediction on the masked feature set S and on the whole feature set P for each instance

x has the difference as δxi
j = f̂S(xi) − f̂P (xi). Hence the feature contribution to the payout by

masking feature j on the prediction of instance xi is defined as a function as ϕj(δ
xi
j). An XAI

method develops the aggregation of ϕj(δ
X
j) on all the data samples differently. Finally, by masking

the features one by one, the feature importance order is derived by ranking the feature contribution

values. After the transformation from feature contribution values to the feature importance order by

descending the contribution values, Kendall Tau Ranking Distance [86] is applied to measure the

distance dktrd of any two pairs of the XAI method’s feature importance order explanation results,

dktrd(sort(v
XAIm), sort(vXAIM)), where m and M are two different XAI methods.

4.2.2 Define Explanation Stability

Explanation stability refers to the degree of agreement within the explanations generated by

a single XAI method when applied to multiple datasets. In other words, it quantifies the vari-

ation in the explanations for different datasets given by the same XAI method. Given multiple

datasets with each producing an explanation summary through the same XAI method, it calculates

the distance between every pair of explanation summaries. It quantifies the stability of an XAI

method by calculating the mean of these distances across all pairs of datasets. This is expressed as

Average(dktrd(sort(v
datasetn), sort(vdatasetN))), where n and N are two different datasets.

4.2.3 Analyze Time Complexity

Asymptotic analysis for ϕj(δ
X
j) depends on the size of data instances number N and the number

of features P . Shapley value computes the feature value difference under feature masking δXj for

the whole data set for each masked feature. Shapley value considers the permutation when selecting

one feature to mask and makes the reverse value of permutation as the weight to sum the feature

contribution valueϕj . Overall, this work derives that the Shapley value has the complexity as Θ(N×

P×2P). KernelSHAP [24] uses the linear LIME explanation model and the classical Shapley value.

According to the definition, KernelSHAP depends on the LIME loss function [25], weighting Kernel

and the regularization term. Therefore, Kernel SHAP has the complexity of Θ(N × (2P + P 3)).

18

PredDiff removes each feature individually and measures the difference between each instance’s

prediction and the feature removal prediction. The time complexity of PredDiff is Θ(N × P).

Section 4.3 presents a newly proposed XAI method with the time complexity of Θ(N × P 2).

4.3 Developing a New XAI Method - Mean-Centroid PredDiff

The objective is to elucidate the impacts of feature masking by considering the relative differ-

ence in the ratio to the prediction made without feature masking. While state-of-the-art methods [65]

mainly focus on the absolute prediction difference, the proposed XAI method aims to offer a com-

parable consistency in explanation summary to these advanced techniques, while simultaneously

reducing computational time. Figure 4.1 illustrates the key tasks involved in computing the predic-

tion difference under feature masking and the feature contribution value for each masked feature,

divided into three distinct phases.

Figure 4.1: The dataflow of Mean-Centroid PredDiff (Prediction Difference) explanation summary.

4.3.1 Phase 1: Compute Prediction Difference under Feature Masking

Algorithm 1 presents that the prediction difference δxi
j (as x-coordinate) and its corresponding

prediction f̂P (xi) (as y-coordinate) form a data point in two dimensional Euclid plane. Hence, N

numbers of two-dimensional points are created for each masking feature j.

19

Algorithm 1 Mean-Centroid Prediction Difference (PredDiff) Explanation

Require: Input data set X , full feature set P , masking feature set S, model predictionf̂(xi)
1: /*Phase 1: compute the difference of prediction under feature*/
2: for all j ∈ P do ▷ P ,the whole features, P = S ∪ {j}
3: for all xi ∈ X do ▷ S ⊆ {1, 2, 3, ..., p}\{j}, the subset of all the features by absent feature j

4: δxi
j ← |f̂S(xi)− f̂P (xi)|

5: νij ←< δxi
j , f̂P (xi) >

6: end for
7: end for
8: Vj ← {ν[1]j , ν

[2]
j , ..., ν

[N]
j }

9: /* Phase 2: compute the feature contribution value
10: /* group Vj to kj clusters */ ▷ kj , the number of clusters under feature masking j
11: kj ← f̂agg(Vj) ▷ f̂agg , agglomerative clustering algorithm [87]
12: centroidj ← f̂gmm(kj , Vj) ▷ f̂gmm, gaussian mixture model [88]
13: ϕj(δ

X
j) = tanh(centroidj) ▷ Centroid as cluster centroid point

14: /*Phase 3: convert the contribution values to the feature importance orders */
15: order = sort(abs(ϕj(δ

X
j)))

Ensure: ϕj(δ
X
j), order

Figure 4.2: An example of deriving two features’ contribution values by Gaussian Mixture clusters.

20

4.3.2 Phase 2: Compute Feature Contribution Values

The observation from Phase 1 output is the data points form clusters. It further groups the data

points into kj numbers of clusters by agglomerative clustering algorithm [87]. It then estimates

the centroid data point of these clusters using the Gaussian mixture model [88]. For each masked

feature j, it defines its feature contribution value ϕj aggregated for all the input data samples as the

slope or tangent of the centroid data point to the origin point in a two-dimensional plane.

An example in Figure 4.2 depicts how the Gaussian mixture clusters aggregate the contribution

values of two feature markings. Data points are grouped into two clusters for each feature. The

centroid data point is derived as the weighted average by the clusters’ density points generated by

the Gaussian Mixture model. This algorithm has considered the distribution density of the prediction

changes of the whole data samples.

4.3.3 Phase 3: Convert to Feature Importance Order

The conversion is simply ranking the features in descending order according to their feature con-

tribution value. The consistency of the two explanations is then measured as the distance between

two orders.

4.3.4 Asymptotic Analysis on Time Complexity

Given the number of features P and the number of instances N , computing the prediction dif-

ference is of the time complexity Θ(N × P) in phase one. In phase two, computing the clusters

takes Θ(N × P 2). Overall, the time complexity is Θ(N × P 2).

21

Chapter 5

The Framework’s Application:

Assessing Contributing Factors of Code

Vulnerability Classification

This chapter applies the XAI based framework into the deep learning-based software vulnerabil-

ity detection domain. It aims to enhance the interpretability of the model’s decision-making process

in a model-agnostic perspective and provide valuable insights into the critical factors contributing

to software vulnerabilities by presenting an XAI-based framework for software feature contribution

assessment.

The vulnerability detection task is considered as a multi-class classification problem where the

source code is embedded and then categorized into different vulnerability types. The code program

is first presented as graph-based contexts including code tokens and the abstract syntax trees paths

with syntactic constructs. This work hence evaluates the importance of forty syntactic constructs

importance in terms of influencing the model predictions. These constructs importance ranking

summarize are also connected to the Common Weakness Enumerations (CWEs) types and used for

identifying CWE similarity.

On the other hand, up-to-date research has modeled software vulnerability detection as a natural

language processing (NLP) task by state-of-the-art attention-based models [89, 45] and provides

22

explanation from attention values. However, studies argue that attention values may not always

align with token importance [31]. This motivates this XAI-based framework to be extended to

examine whether attention values align the explanation results of the token importance from XAI

techniques.

This chapter is structured into seven sections. First the taxonomy of related work introduce the

existing research on software representations and vulnerability detection 5.1. The application of

XAI-based framework is introduced in Section 5.2, and it is applied to assessing contribution fac-

tors 5.2, summarizing CWE similarity 5.3, and extending to textual based features assessment 5.4.

The research questions and the following experiments and analysis are in Section 5.5. This chapter

also presents a retrospective analysis of a pair of similar CWE siblings code samples in Section 5.6,

examining how contributing factors are reflected in a detailed case study using both attention-based

and graph-based models. Finally, section 5.7 carries out a comparative review of the findings with

existing work, highlighting the contribution.

5.1 Taxonomy of Related Work

In exploring how source code is represented and transformed into a format that can be processed

by deep-learning models, this study establishes a taxonomy of code representation techniques and

their feature types. This taxonomy is structured around four primary representation techniques: text-

based, graph-based, code binary, and a mixed feature representation [90, 91, 92] as demonstrated in

Figure 5.1.

5.1.1 Text-based Code Representation and Feature Types

Text-based Code Representation Techniques. Text-based code representation approaches

treat source code similarly to natural languages, directly embedding existing word embedding tech-

niques into code [93, 94, 95]. Here, the code content is treated as plain text with no consideration

given to structural nuances like data flow and function call flow. With the advancement in the field

of natural language processing, representation techniques have progressed from static embeddings

such as word2vec [96] and fastText [93] to self-attention transfer learning-based models. These

23

Figure 5.1: Taxonomy of factors under various code feature representation techniques (bold: as-
sessed in this study).

include large corpus embedding models trained on code such as codeBERT [45], XLNet [47],

Longformer [48], BigBird [49], and GPT [97]. These models utilize pre-trained contextualized

embeddings, exhibiting a higher expressive capacity compared to static embeddings.

The codeBERT model [45] employs embeddings that utilize a dual-transformer architecture,

effectively merging the advantages of masked language modeling and code summarization. This

model handle with the challenges presented by long code sequences. XLNet embeddings [47] adopt

24

a permutation-based approach, recognizing inter-token dependencies and accommodating bidirec-

tional context for a comprehensive token representation. The BigBird [49] and Longformer [48]

models are specifically tailored for long token sequences, enabling extended input token lengths.

Longformer uses a sliding window-based local attention mechanism for proximate tokens and a

global attention mechanism for distant tokens. Conversely, BigBird amalgamates dense and sparse

attention patterns, adeptly managing lengthy text sequences while maintaining its capacity to model

long-range dependencies.

Text-based Feature Types. Within the framework of text-based code representation, a variety

of feature types have been distinguished. These features can influence the behavior of the model

when it processes source code. These features include token type [98, 80], token length [99], token

frequency [83], token n-grams [100], token lexical patterns [101], and token attention values.

Token Type: Tokens can be classified into comments and code. The previous work [98] has

indicated that comment tokens supplied by programmers can enhance the comprehension of code

semantics and structure for learning models. Another study [80] reveals the significant role of

separator symbols when models make predictions, as demonstrated by an attention-based model

assessment. Thus, token types can also be subdivided into textual tokens and symbol tokens.

Token Length: Constraining the length of code tokens can lead to information loss and have a

negatively influence on the model’s performance, as demonstrated by Yuan et al. [99]. Their analysis

restrict to a maximum sequence length of 512 tokens.

Token Frequency: As a prominent feature type in static text-based representation techniques,

token frequency can influence model performance. Zeng et al. [83] concluded that preserving code

frequency information results in superior model performance.

Token n-grams: These fixed-size, contiguous sequences of tokens capture the local context

within a set window [100]. However, their utility may be constrained for longer code sequences

and transformer models.

Token Lexical Patterns: Lexical patterns, which represent recurring structures in the code [101],

can facilitate comprehension of the basic logic and structure of the code. However, they may have

limited effectiveness in capturing more complex, high-level semantic information and dependencies

across distant tokens.

25

Token Attention Values: Attention values act as a feature type in transformer-based models that

can identify key tokens or content contributing to natural language processing tasks [84]. The at-

tention mechanism can adaptively learn the significance of even distant parts of the input code

sequence, better understanding the code’s contextual information and demonstrating effectiveness

in software vulnerability detection tasks [50, 102, 103, 104, 82]. Some researchers have suggested

that attention values can serve as a surrogate for token importance [30]. However, it’s important

to interpret this with caution as high attention values may not always align with high token impor-

tance [31].

5.1.2 Graph-based Code Representation and Feature Types

Graph-based code representations are widely employed in various studies. Common representa-

tions include Abstract Syntax Tree (AST), Program Dependence Graph (PDG), Control Flow Graph

(CFG), Data Flow Graph (DFG), and approaches that combine these graphs [20]. As outlined by

Zeng et al.[22], among these graph-based methods, AST-based approaches take the majority account

of existing works. AST nodes signify the syntactic constructs of code, such as loops, declarations,

and expressions, making them intuitive to developers[105].

Graph-based Code Representation Techniques. AST-based methods: Code2Vec [44] intro-

duces a method to learn vector representations from the AST’s path context, thereby emphasizing

their importance in predicting code semantic properties. Hariharan M. et al.[76] implement a Multi-

ple Instance Learning (MIL) technique that treats each AST path as a distinct instance for supervised

learning. GraphCodeBERT[51] combines the AST’s graph structure information with transformer-

based techniques to represent code structure. Recently, GraphCodeVec [52] learned generalizable

code embeddings from code tokens and AST structures, demonstrating state-of-the-art performance

in six code downstream tasks, including vulnerability detection.

Other graph-based methods: VulDeeLocator [53] employs PDG and integrates AST informa-

tion to learn discriminative vulnerable features. Devign [18] assembles a hybrid graph represen-

tation incorporating AST, CFG, and data dependence graph to capture complex code structural

information more effectively, albeit at a higher computational cost. REVEAL [20] extracts syn-

tax and semantic features from the Code Property Graph (CPG), which includes elements from the

26

data-flow, control-flow, AST nodes, and program dependency.

Graph-based Feature Types. The feature types in graph-based code representations rely on

specific graph structures, nodes, edges, and their definitions. In the case of the AST, leaf nodes

denote code tokens affiliated with specific syntactic constructs [105], rendering code token nodes

as one type of feature. Moreover, path-based representations, which include branch nodes as syn-

tax, can effectively capture code contextual semantics and are extensively used in leading-edge

approaches [44, 76, 52]. Features based on CFG and DFG [106, 107, 18], focus primarily on pro-

gram flows, such as data and control flow through variables, statements, and conditions. Lastly,

PDG-based features incorporate both control and data flow dependencies within a program, captur-

ing statements, expressions, variable def-use links, and function call flow [107, 108]. These features

represent individual programs more than entire software projects.

5.1.3 Other Code Representations and Their Feature Types

A number of studies have investigated binary code representation for vulnerability detection.

BVDetector [90] combines program slicing with a BGRU network for intricate vulnerability de-

tection. HAN-BSVD [109] adopts a hierarchical attention network for preserving context and em-

phasizing key regions. BinVulDet [110] harnesses decompiled pseudo-code and BiLSTM-attention

for robust vulnerability pattern extraction. VulANalyzeR [29], on the other hand, introduces an

explainable approach that employs multi-task learning and attentional graph convolution. Feature

types under binary representations typically include operand types, control flows, and program slic-

ing, among others. Code sequence representation, under text-based approaches, has been explored

in different contexts, such as function call sequences, data flow sequences, and system execution

traces. DeepTriage [111] is an example of a method that analyzes system execution traces for soft-

ware defect prediction.

27

Figure 5.2: The assessment of feature contribution by XAI explanations. The main components
include feature representation, feature variation, XAI method, pre-trained model and analysis of
XAI results.

5.2 An XAI-based Framework for Software Vulnerability Contribu-

tion Factor Assessment

This these proposes a workflow that leverages XAI techniques to extract mean feature contri-

bution values and analyze XAI explanation summaries. This approach enables us to quantitatively

evaluate the contributions of different features to the multi-classification of code vulnerabilities cat-

egorized as CWE types. As discussed in Section 2.3, CWE types are expert-defined classifications

based on extensive real-world samples. Their inherent similarities subtly impact the learning tasks

associated with vulnerability classification. Therefore, the workflow deploys XAI methods to probe

into the high-dimensional space of code features and correlate feature variations to classification

results.

As depicted in Figure 5.2, the workflow incorporates several key components distinct from tra-

ditional code vulnerability classification solutions. These include feature variation, XAI method ap-

plication, and XAI output analysis. The workflow employs post-hoc, model-agnostic XAI methods

to calculate feature contribution values under various feature variations, such as feature mutation,

masking, and removal. The outputs from XAI methods are subsequently analyzed to pinpoint a set

of code features with high contribution rankings.

28

Table 5.1: Syntactic constructs in AST (Abstract Syntax Tree)

Meta Syntactic Constructs [112] Syntactic Constructs

Name, Base Elements <name>, <block comment>, <literal>,...

Statements <block>,<case>,<expr stmt>,<for>,<do>,
<if stmt>,<return>,<switch>,<continue>,
<while>,<default>,<lambda>,<function>,
<decl stmt>, <decl>,<init> ,<new>,...

Statement subelements <expr>,<condition>,<block content>,<else>,
<type>,<if>,<incr>,<then>,<control>,...

Specifiers <specifier>,<public>,<static>,<private>,...

Classes, Interfaces, Annotations, and Enums <annotation>,<class>,<static>, <annotation defn>, ...

Expressions <call>,<this>,<super> ...

Arguments <argument>, <argument list>,...

Parameters <parameter>,<parameter list>, ...

Exception Handling <finally>,<throw>,<throws>,<try> ,<catch>,...

5.2.1 The Graph Context Extraction of Program Code

To capture the connections between semantic meanings and syntactic constructs, it first extracts

program paths from the AST (Abstract Syntax Tree) of input source code. These paths consist of

leaf nodes representing code tokens and non-leaf nodes denoting syntactic constructs. Figure 5.3

presents the full set of syntactic constructs for a code example with CWE23 Relative Path Traversal

Weakness.

1 public void action(String data) throws Throwable {

2 String root;

3 /* POTENTIAL FLAW: no validation of concatenated value */

4 root = "/home/user/uploads/";

5 if (data != null) {

6 File file = new File(root + data);

7 FileInputStream streamFileInputSink = null;

8 ...

9 }

Listing 5.1: Code snippet from Juliet dataset CWE23 relative path traversal weakness.

29

Figure 5.3: The Abstract Syntax Tree of the code snippet from Listing 5.1.
Note: The leaf nodes of the tree are code tokens, while the non-leaf nodes are syntactic constructs

that provide the syntax structure of the code

Syntactic constructs serve as the fundamental building blocks of program syntax, including ele-

ments such as loops, conditionals, declarations, and expressions. Table 5.1 provides a summary of

these constructs, including higher-level meta syntactic constructs as defined in previous work [112].

These meta constructs retain the semantic roles within a program. For instance, the Declarations,

Definitions, Initialization meta category includes syntactic constructs related to defining and initial-

izing variables, functions, and objects.

The focus then turns to the paths connecting code tokens, which preserve functional meanings.

As shown in Figure 5.3, a syntactic construct tree represents the code listed in List 5.1, which ex-

hibits a CWE23 relative path traversal weakness. The syntactic path String↑-name↑-type↑-

decl↓-name↓-root extends from the source code token String to the target code token root.

The symbols ↑ and ↓ indicate the traversal directions. In this example, decl alters the traversal di-

rection, switching from upward to downward—making it an inflection node. By traversing through

an inflection node, a pair of code tokens become linked, forming the shortest path that includes

the nearest inflection node. All nodes on this path then become neighbor nodes of the target code

token, including the source code token. As a result, it creates a graph context for the target token

by extracting the path that links the pair of source and target tokens.

Therefore, it extracts the program’s source code into distinct paths, with each path representing

the shortest traversal between pairs of code tokens. The graph context of a target node is composed

30

Figure 5.4: The overview of embedding learning. The distributed representations of target code
token data is learnt from the relevant context tokens (blue nodes) that are fed into a one layer GCN
(Graph Convolutional Network). hwi , hwt are hidden representations of context token and target
token, and b is the added bias.

Figure 5.5: An example of how the window size restricts the selection of neighboring nodes as
source code node for the target code node data, considering both upwards and downwards direc-
tions.

of all the paths originating from source leaf nodes and leading to the target node. All the source leaf

nodes in this context are considered neighbor nodes of the target code token. Syntactic constructs

are situated along these paths, serving as edges that link source code tokens with the target code

token. For instance, Figure 5.4 depicts the graph context obtained from the complete syntactic paths

covering the CWE23 vulnerability sample code provided in Listing 5.1.

The shaping of the graph context during generation involves two key configurations: path length

and window. Path length pertains to the length of the shortest AST path linking two leaf nodes, or

code tokens. The window, on the other hand, is the maximum distance allowable between the

target code token and its neighboring tokens within a code function, applicable in both upwards and

downwards directions (see Figure 5.5). When it analyzes a target code token, only the neighboring

tokens situated within this window, from either direction, are considered as source code token nodes

in the graph context. Hence, these two parameters, path length and window, crucially influence the

structure of the graph context.

31

5.2.2 Embedding by Graph Convolutional Networks

The graph context of each target token is used to learn the embedding of the target token. The

source tokens within the graph context form the input vector to a learning model and the output is

the target token data. Figure 5.4 shows the graph context vector is input to a one-layer Graph Con-

volutional Network (GCN) from a state-of-the-art approach GraphCodeVec [52]. It adopts the GCN

model developed in [113] which has demonstrated the usage for six software repository analysis

tasks including code classification. The output embedding for each code tokens are 128-dimension

vectors containing both code token and syntactic constructs information.

5.2.3 Multi-Classification of CWE Types

The GraphCodeVec produces a 128−dimensional embedding vector for each code token, which

can be input to models like textCNN [114], Transformer [84] , and Random Forests [115], similar to

the traditional NLP embeddings like Word2Vec [116]. These vectors are directly fed into traditional

machine learning models like Random Forests. For textCNN and Transformer models, the embed-

dings form the initial input layer, which is fine-tuned during training to reduce prediction errors and

optimize the representation of tokens for predicting multi-classification CWE types.

TextCNN [114] (Text Convolutional Neural Network) is a deep learning model specifically

designed for natural language processing tasks. After extracting code representations with graph

structural information from GraphCodeVec, it adopts TextCNN to capture the dependencies be-

tween the code tokens (also considering the AST path information) and assigning CWE labels from

the fully connected layer. This downstream classifier has proven its effectiveness in the original

work of GraphCodeVec [52]. Transformer [84] is based on self-attention mechanisms, which al-

low the model to weigh the importance of different tokens in the input sequence. It can effectively

capture long-range dependencies within the code, making it a suitable choice for vulnerability de-

tection. Random Forest [115] is another option for testing a simple tree-based classifier’s ability to

efficiently capture the structural information from GraphCodeVec.

By combining GraphCodeVec based embedding learning with these three classifiers, it aims

to evaluate the effectiveness of AST based code representation learning and classification in the

32

Figure 5.6: After masking syntactic constructs decl, the target data embedding will not learn the
information from AST paths and related source nodes with inflection node decl.

context of software vulnerability detection. Subsequently, it selects the best solution to perform

downstream XAI feature importance explanation.

5.2.4 Feature Masking

In the approach, it regards each syntactic construct as a feature, with the goal of measuring its

influence on the model’s predictions. This method does this by altering the feature space; specifi-

cally, it masks paths in the AST where the construct in the AST as an inflection node, effectively

removing some AST paths. For example, when examining the construct declaration, it masks

paths such as String↑-name↑-type↑-decl↓-name↓-data, where it serves as the inflection

node. This operation yields a graph context that lacks the declaration linking the source code

node String with the target node data. As a result, the data embedding lacks the information

from its neighboring node String and the syntactic meaning of declaration, as depicted in

Figure 5.6. It then retrieves the embeddings from this modified graph context data and use them to

generate predictions with the classification models, which allows us to evaluate the impact on the

model’s performance.

33

5.2.5 Integrating XAI methods in Multi-Classification

Feature explanation XAI methods require the predictions made by the model with and without

a specific feature. In the scenario, this involves the full graph context as well as the context with a

masked syntactic construct. Both serve as prediction outcomes for the downstream classifier which

predicts the logit of the ground truth label, given the complete feature results and results lacking a

particular feature.

1 CWE23 Vector: [("name", 0.969),("if", 0.478),("argument_list",

0.470),("finally", 0.349),("argument", 0.329),("literal",

0.324),("throws", 0.301),("decl", 0.296),("try", 0.281),("

operator", 0.210),...]

Listing 5.2: CWE23 vector featuring syntactic constructs and their corresponding contribution

values

As a result, the XAI method produces outputs as CWE vectors containing the features (i.e., syn-

tactic constructs) and their associated contribution values, as shown in List 5.2. Each CWE vector

consolidates feature contribution values from data instances with the same ground-truth CWE la-

bel. It sorts the features by their contribution values in descending order and establish the feature

importance order for each CWE vector, as outlined in Algorithm. 2. Each XAI method generates a

set of CWE vectors. It compiles these results by averaging the contribution values across different

XAI methods, thereby obtaining the final CWE feature importance order. This outcome facilitates

the understanding of how features contribute to model predictions and enables us to discern the

similarities and differences among various CWEs by comparing their feature importance orders.

We analyze the complexity of our algorithms. Given the size of the dataset samples N , the

number of feature number P and the CWE label number K, the complexity of Algorithm 2 is

Θ(P × K × Θ(Φ)), in which for SHAP, Θ(Φ) = Θ(N × (2P + P 3)), and for Mean-Centroid

PredDiff, Θ(Φ) = Θ(N × P 2).

34

Algorithm 2 Compute the CWE vector of each syntactic construct’s contribution value

Require: The input dataset X;
1: The full AST constructs feature set P = {1, ..., j, ...p};
2: The subset S ⊆ P\{j} by masking feature j
3: The feature j contribution value ϕj = Φ(P, S, j, f̂(X));
4: The model prediction under feature j masking f̂(X);
5: The CWE label set K = {cwe1, ..., cwek, ..., cweN}
6: /* Partition data set by ground truth CWE label */
7: for all xi ∈ X do
8: if xi owns label cwek then
9: Add xi to Xcwek

10: end if
11: end for
12: /* Compute CWE vector of feature contribution value */
13: for all Xcwek do
14: for all j ∈ P do
15: ϕcwek

j = Φ(P, S, j, f̂(Xcwek))
16: end for
17: ϕcwek

j = 1
||P ||

∑
ϕcwek
j

18: /* Create CWE vector */
19: for all j ∈ P do
20: V cwek ← ⟨j, ϕcwek

j ⟩
21: end for
22: end for
23: /* Sort elements in descending order by feature contribution values */
24: for all cwek ∈ K do
25: V cwek ← {sort(V cwek)}
26: end for
Ensure: CWE vector of each CWE label cwek ∈ K,V K

35

5.3 CWE Similarity Summary and Validation

The approach determines the similarity between CWEs based on the explanation of feature im-

portance related to syntactic constructs provided by XAI. This method allows us to numerically

express the similarity between CWE pairs by analyzing the distance between their corresponding

feature importance orders. To evaluate the effectiveness of the XAI-based CWE similarity results,

it compares them to an expert-defined baseline using four metrics: Top-N Similarity Hit, Mean Re-

ciprocal Rank (MRR), Mean Average Precision (MAP), and Average Normalized Similarity Score.

5.3.1 Summary of XAI-based CWE Similarity

It denotes the similarity score between CWEs as ρ. This score, which represents the relationship

between two CWEs, is derived from the normalized ranking distance [117] of their respective feature

importance orders, as described in Algorithm 2. A smaller ρ value implies a higher degree of

similarity between a CWE pair. The ρ value ranges from 1, indicating total dissimilarity, to 0, which

signifies identical CWE pairs. For ease of interpretation, it sorts the ρ values in ascending order,

which then serve as the similarity rankings for a given CWE. The specific steps for this process

are detailed in Algorithm 3. The complexity of Algorithm 3 depends on the number of CWE pair

combinations. The complexity is Θ(K2), where K is the number of CWE types.

5.3.2 CWE Similarity Validation

Table 5.2 shows the baseline CWE similarity that contributed by the community. The CWEs

sharing a common characteristic is categorized into tree leaves under a more abstract weaknesses

type. In the datasets being examined, the CWEs belong to seven different branches. For example,

CWE22, 23, 36 are under path traversal weakness. It can considers CWE23, CWE36 are two

siblings of CWE22.

To validate the CWE similarity from XAI explanation, we apply four metrics to compare with

the baseline, namely Top-N Similarity Hit, Mean Reciprocal Rank (MRR), Mean Average Pre-

cision (MAP), and Average Normalized Similarity Score. Bcwei is the set that contains all the

36

Algorithm 3 Create CWE similarity vector for CWE types

Require: Sorted vectors of feature importance for each CWE label V cwek output from Algorithm 2;
1: The CWE label set K = {cwe1, ..., cwek, ..., cweN};
2: Initialize an empty array d for storing ranking distances
3: for all distinct pairs of CWE labels ⟨cwei, cwej⟩ ∈ K ×K do
4: /*Calculate Kendall Tau ranking distance between CWE vectors*/
5: dij ← distance(V cwei , V cwej)
6: Store dij in vector d
7: end for
8: dmax = max(d)
9: /* Compute normalized CWE similarity distance */

10: for all CWE label cwej do
11: ρ(cwei, cwej) =

dij
dmax

12: W cwei ← ⟨cwej , ρ(cwei, cwej)⟩
13: end for
14: /* Sort elements in descending order by value of ρij */
15: for all cwek ∈ K do
16: W cwek ← {sort(W cwek)}
17: end for
Ensure: CWE similarity vector for each CWE label cwek ∈ K,WK

CWE types that are sibling to cwei defined in the baseline. W cwek is the set of CWE types de-

rived from Algorithm 3. Given an example CWE23, Bcwe23 = {cwe22, cwe36} and W cwe23 =

{cwe22, cwe79, ..., cwe36}.

(1) Top-N Similarity Hit is defined as the boolean value. For example Top-1 Similarity Hit of

CWE22 equals one.

Hcwek
N =

0 if Bcwek ∩W cwek ≡ ∅

1 otherwise
(4)

(2) Mean Reciprocal Rank (MRR) measures the mean reciprocal rank given a CWE type cwei.

MRRcwei =
1

||Bcwei ||

||Bcwei ||∑
1

1

rankcwej

, ∀cwej ∈ Bcwei (5)

where rankcwej is the position index value of cwej in W cwej . In the example of W cwe23 ,

CWE22 is ranked as one and CWE36 is ranked as k = 14. MRRcwe23 = 1
2 × (1 + 1

k) =

37

Table 5.2: CWE categorized by baseline similarities

Category Similar CWEs [32]

Path traversal and resource
management issues

CWE22, CWE23, CWE36

Trust boundaries and privilege
management

CWE500, CWE501, CWE15

Buffer errors CWE119, CWE120

Injection vulnerabilities CWE78, CWE79, CWE89, CWE90, CWE643,
CWE789

Cryptographic and sensitive data
handling issues

CWE327, CWE328, CWE330, CWE614

Use of pointer subtraction to
determine size

CWE469

NULL pointer dereference CWE476

1
2 × (1 + 1

14) = 0.5357.

(3) Mean Average Precision (MAP) is a metric to measure the XAI explanation accuracy of

CWE type similarity by averaging the precision of each CWE type’s similarity rank. Let

W cwei
N represent the top-N subset of W cwei , where N represent a cut-off rank. For a given

CWE type cwei, Average Precision (AP) is calculated as mean precision value at each rank:

AP cwei =
1

||Bcwei ||

N∑
κ=1

||Bcwei ∩W cwei
κ ||

||W cwei
κ ||

· rel(κ) (6)

where rel(κ) is an indicator function equaling one if the item at rank κ is a ground truth

sibling CWE type of cwei , that is W cwei [κ] ∈ Bcwei ; zero otherwise. In the example of

W cwe23 , CWE22 is ranked as one and CWE36 is ranked as k = 14. AP cwe23 = 1
2×(1+

2
k) =

1
2 × (1 + 2

14) = 0.5714. Finally, given an XAI explanation method Φ, MAP is calculated as

the mean average precision over all Q number of CWE types:

MAPΦ =
1

Q

Q∑
q=1

AP cweq (7)

item Average Normalized Similarity Score S measures the average normalized similarity

score for all CWE types in the baseline.

38

S =

∑||Bcwei ||
cwek∈Bcwei

∑||W cwei ||
cwej∈W cwei (1− ρ(cwek, cwej))

||Bcwei || · ||W cwei ||
(8)

where ρ(cwek, cwej) represents the similarity between a CWE type cwek in the baseline and

a CWE type cwej derived by an XAI method. ρ(cwek, cwej) is calculated in Algorithm 3.

Top-N Similarity Hit and Average Normalized Similarity Score help to observe the distance

between the baseline and XAI explanation derived CWE types’ similarity. Mean Reciprocal Rank

and Mean Average Precision measure the accuracy of the CWE similarity derived from the XAI

methods.

5.4 Extending the XAI-based Framework for Textual-based Feature

Contribution Assessment

This section is dedicated to the evaluation of three textual code token features - code token

length, code token type, and code token attention values - in the context of text-based explainable

code vulnerability learning. The extended framework from previous XAI-based feature contribution

assessment in Section 5.2.1 is illustrated in Figure 5.7. The first step involves using tokenization to

capture features in the source code while retaining critical symbols and comments. Following this,

it separates the dataset into training and testing subsets. Next, it employs three transformer-based

models - XLNet [47], Longformer [48], and BigBird [49] - to train on these token representations.

In the third phase, it modifies the features extracted from the test dataset, namely the code token

length and attention values, to immediately discern their impact on model performance. Afterward,

it integrates XAI techniques to further explore the influence of these feature adjustments. By juxta-

posing each token’s contribution value ascertained by XAI with the results of feature permutation

from performance difference, it is able to cross-validate the potency of the approach.

5.4.1 Feature Representation

Code Token Length: Retaining comments from the original source code leads to longer se-

quences, often reaching the input limitations of several models. Initially, it constrains the token

39

Figure 5.7: Framework of explainable text-based factors assessment.

length to 1,024 tokens per individual program, and subsequently extend this maximum length to

4,096 tokens for the Longformer and BigBird models. This adjustment permits us to directly ob-

serve if increased token length yields performance improvements.

Code Token Type: The previous research indicates that code comments significantly impact

the detection of code vulnerabilities [98], with models learning from comment content to guide

their decisions. In this study, the main focus lies in determining the influence of separator symbols

in code on transformer-based models. It observes the high importance tokens and their belonging

construct types.

Code Token Attention Value: The attention mechanism, specifically the scaled dot-product

attention, is designed to calculate the importance of input tokens for a particular output token.

These attention values help to understand the relationships between different input tokens and assist

the model in focusing on the most relevant parts of the input sequence when generating the output.

The scaled dot-product attention mechanism computes attention values for a code token j using the

following formula [84]:

at = softmax
(
QKT

√
dk

)
V, (9)

In this equation, Q, K, and V denote the query, key, and value matrices, respectively, while dk

represents the dimension of the key vector. The query matrix represents the current input token,

whereas the key and value matrices represent all tokens in the input sequence. The dot product

between the query and key matrices captures the similarity between tokens.

40

5.4.2 Multi-Classification of CWE Types

This research employs three state-of-the-arts transformer-based learning models for the task of

text-based code vulnerability detection: XLNet, Longformer, and Bigbird.

XLNet: XLNet [47] is an autoregressive pre-training transformer model, engineered to capture

bidirectional context via a permutation-based training strategy. Having proven its effectiveness

across a variety of natural language processing tasks, including text-based code classification [118],

XLNet does have limitations in terms of maximum input sequence tokens—1,024 for the XLNet-

large and 512 for the XLNet-base pre-training frameworks.

Longformer: The Longformer model [48] is designed specifically to process long input se-

quences more efficiently. It leverages a combination of global and sliding window-based self-

attention mechanisms, thus enabling it to handle input sequences of up to 4,096 tokens. Given

that the dataset it examines often contains long sequences of code, Longformer’s capacity to handle

such sequences is notably beneficial for the vulnerability detection task.

Bigbird: Bigbird [49], another transformer-based model, has been designed to handle lengthy

input sequences. It employs a sparse attention mechanism, known as block-sparse attention, which

enables it to scale linearly with sequence length. This unique feature renders Bigbird a suitable

choice for large-scale code vulnerability detection tasks. Additionally, it extends the maximum

input sequences to 4,096 tokens.

5.4.3 Feature Variation

This method first assesses the influence of the three features - code token length, code token type,

and code attention values - by observing performance differences after permuting these features.

For Code token length, this approach initially limits the token length to 1,024 tokens for an

individual program due to the constraints of certain models. It then extends the maximum length

to 4,096 tokens for the Longformer and BigBird models that can handle longer sequences. This

modification allows us to directly observe whether longer token lengths lead to performance im-

provements. For code attention values, it aims to assess whether the attention value of a token

correlates with its importance in the model’s performance. It accomplishes this by masking tokens

41

within different attention value percentile ranges and measuring the resulting performance differ-

ence from model. As for Code token type, it assesses the construct types from high attention

values token results. This study statistically analyzes these types, relating their frequency to their

associated attention values.

Algorithm 4 Assessment influence of token attention values
Require: Input data set X , full token set P ,

1: S ⊆ {1, 2, 3, ..., p}\{j}, the subset of all the tokens by masking a token j, model prediction
f̂(X), feature j contribution value ϕj = Φ(P, S, j, f̂(X)))

2: /*Compute attention values to define masked token set*/
3: for all j ∈ P do
4: Calculate attention value aj (Eq. 9) for token j
5: for all xi ∈ X do
6: if aj is in a certain percentile range then
7: Add t to the masked token set An

8: end if
9: end for

10: A← {A1, ...An, ...AN}
11: end for
12: /*Compute the prediction difference under attention value masking*/
13: for all An ∈ A do
14: δn ← |f̂P (X)− f̂An(X)|
15: end for
16: /*Compute token contribution values by XAI methods*/
17: ϕj = Φ(P, S, j, f̂(X))
Ensure: Set of {δn}, Set of {aj , ϕj}

5.4.4 Execute XAI Methods

XAI techniques are integrated to further cross-validate the findings of the previous steps. Fol-

lowing the extraction of token’s attention value, it obtains these tokens’ contribution values via XAI

methods. Comparing these two indicators of importance helps deepen the understanding of the rela-

tionship between the model’s attention mechanism and XAI methods’ explainability. For code token

length, it adjusts the max token length parameters in the models to observe the performance differ-

ence. For Code token type, it presents statistics derived from high-importance tokens according to

both attention value and contribution score determined by XAI methods. This part is formulated as

Algorithm 4.

42

5.5 Experiments and Analysis

This section designs experiments to systematically examine feature’s contribution that deep

learning models learn from, associating these with human-interpretative semantic meanings of vul-

nerable artifacts. The taxonomy, delineated in Section 5.1, identifies nine feature types from a

high-level perspective, thereby ensuring transferability across both text-based and graph-based code

representation methods.

5.5.1 Research Questions

In an Abstract Syntax Tree (AST), code token nodes are interconnected through inflection nodes,

representing syntactic constructs that convey higher-level abstract semantic meanings [119]. Using

XAI methods, it aggregates the importance of these syntactic constructs and emphasize the com-

monness of CWE labels based on their input data features. Additionally, it devises experiments to

derive and compare the similarity results with knowledge-based baselines. Furthermore, to deter-

mine if the attention value can serve as a proxy for the importance of code tokens, to understand

how the length of code tokens affects model prediction, and to identify high-importance code to-

ken types, it is motivated to evaluate text-based feature types and their influence. From the above

rationale, it derives the following research questions:

RQ1. What are the top-ranking syntactic constructs in Abstract Syntax Trees (AST) based

code representation relative to software vulnerability types? This question focuses on applying

XAI techniques to rank the importance of syntactic constructs in the prediction process of a machine

learning model across various vulnerability types.

RQ2. How does the CWE similarity, as summarized by the importance explanations of

syntactic constructs, align with expert-defined similarity? This question aims to validate whether

the patterns discerned via XAI-driven feature importance explanations align with expert-determined

baseline similarities. In doing so, it seeks to corroborate the effectiveness of the approach in quan-

tifying the similarity of vulnerability types against the baselines.

RQ3. How do text-based code features influence code vulnerability detection tasks? This

study assesses the impact of three text-based code features - code token type, code token length, and

43

code token attention value - and cross-validate the performance variance results using XAI methods.

These three research questions are refer to the second core question presented in Section 1.1.

To address research questions, this study divides the research into three primary sections, each cor-

relating with a specific task: 1) ranking the importance of syntactic constructs in the abstract syntax

tree; 2) validating CWE similarity against an expert-defined baseline; 3) assessing the influence

of text-based feature types. The dataset is first introduced. Each section comprises a step-by-step

approach, results, and conclusions.

5.5.2 Dataset

The investigation includes an examination of three benchmark software vulnerability datasets

at the method/function level: Juliet Test Suite (Java), OWASP Benchmark (Java), and the Draper

dataset (C/C++). Each of these datasets varies based on the method of collection and annotation of

code samples and can be classified into three distinct categories: synthetic, semi-synthetic, and real

data.

Synthetic data involves both the vulnerability code examples and their annotations being artifi-

cially constructed. For instance, the Juliet Test Suite, developed by the National Security Agency’s

Center for Assured Software, falls into this category. This dataset is composed of 217 vulnera-

ble methods (accounting for 42%) and 297 non-vulnerable methods (constituting 58%), offering a

balanced distribution of method-level examples, all of which are constructed based on recognized

vulnerability patterns.

Semi-synthetic data, on the other hand, pertains to either the code or its annotation being artifi-

cially derived. The OWASP Benchmark dataset, which is also based on Java, serves as an instance of

semi-synthetic data. It includes 1,415 vulnerable methods (52%) and 1,325 non-vulnerable methods

(48%).

Finally, real data consists of code and corresponding vulnerability annotations sourced directly

from real-world repositories. The Draper dataset is an example of this category. The functions in this

dataset were gathered from open-source repositories and annotated using static analyzers. Despite

the original dataset featuring an imbalanced distribution, it is been processed into a balanced dataset

for practical purposes while preserving all comments and code. As a result, this dataset encompasses

44

43,506 vulnerable functions, which constitutes 50.1% of the dataset.

Table 5.3 provides a summary of the vulnerability types and their respective distributions in

each of these datasets.

Table 5.3: CWE distribution by dataset

Dataset CWE CWE Name Percentage

OWASP

CWE22 Path Traversal 9.4%
CWE78 OS Command Injection 8.9%
CWE79 Cross-site Scripting 17.4%
CWE89 SQL Injection 19.2%
CWE90 LDAP Injection 1.9%
CWE327 Crypt. Issue 9.2%
CWE328 Info. Leak 9.1%
CWE330 Data Exposure 15.4%
CWE501 Trust Boundary 5.8%
CWE614 Sensitive Cookie 2.5%
CWE643 XPath Injection 1.2%

Juliet

CWE15 External Control of System or Config-
uration Setting

11.1%

CWE23 Relative Path Traversal 6.0%
CWE36 Absolute Path Traversal 11.1%
CWE500 Public Static Field Not Marked Final 1%
CWE643 XPath Injection 5.5%
CWE78 OS Command Injection 5.5%
CWE789 Uncontrolled Memory Allocation 25.3%
CWE89 SQL Injection 32.3%
CWEOther Other 2.9%

Draper

CWE119 Improper Restriction of Operations
within the Bounds of a Memory Buffer

28.4%

CWE120 Classic Buffer Overflow 26.9%
CWEOther Other 26.7%
CWE476 NULL Pointer Dereference 11.9%
CWE469 Use of Pointer Subtraction to Deter-

mine Size
6.1%

5.5.3 Selecting XAI Methods

The selection of XAI methods is based on the findings from the experiments detailed in the ap-

pendix A. Our goal is to achieve higher consistency and stability in the explanation results, such that

the selected XAI methods could agree and provide consistent syntactic constructs ranking outcomes

for observation. Additionally, it is important that the time required to obtain these results remained

reasonable.

Based on these criteria, we select SHAP due to its better performance in consistency evaluations,

and Mean-Centroid PredDiff, which has an acceptable runtime and also performs well in terms of

consistency and stability.

45

5.5.4 Ranking the Importance of Syntactic Constructs in AST (RQ1)

The approach to evaluating the importance of syntactic constructs consists of three main steps:

(1) code transformation and classifier application, (2) syntactic construct masking and prediction

difference calculation, and (3) the use of XAI methods and cross-validation for construct importance

determination.

Experiment Design

Step 1: Code Transformation and Classifier Application. It leverages the srcML tool1 to con-

vert method-level programs into Abstract Syntax Tree (AST) structures, discarding code comments

but retaining mathematical and logical operators. The resulting XML-based content, which en-

compasses both code tokens (AST leaf nodes) and AST paths, is converted into a graph context

as described in section 5.2.1. it maintains the default edge length of 8 and window size of 10 as

per [52].

Step 2: Code Token Embedding Learning. It employs a graph convolutional network-based

embedding model to convert the graph context into a 128-dimensional vector representation of

each code token. This model can be enhanced with a classifier layer for downstream tasks. The

hyperparameters are kept at default settings: one layer, a batch size of 64, and a dropout rate of 0.

Step 3: Syntactic Construct Masking and Importance Analysis. After generating full graph

context embeddings for all program code tokens, it masks each syntactic construct, yielding altered

embedding sets devoid of the masked constructs’ syntactic meanings. The XAI methods SHAP

and Mean-Centroid PredDiff utilize these prediction result differences as input, derived from clas-

sifications based on the embeddings. It then averages the contribution values across different XAI

methods to compile the results.

Experiment Results

Table 5.4 (for step 2) presents the performance of three classifiers augmented with GraphCode-

Vec embeddings on the Juliet, OWASP, and Draper datasets. From the results, it is evident that
1https://www.srcml.org/

46

the TextCNN classifier significantly outperforms RandomForest and Transformer in terms of both

accuracy and F1-score across all three datasets. It then choses TextCNN as the classifier with Graph-

CodeVec to perform the following XAI tasks.

Table 5.4: Performance of classifiers augmented with GraphCodeVec embeddings

Model Metric Juliet OWASP Draper

RandomForest
F1-Score 0.8074 0.5826 0.7121
Precision 0.8276 0.6031 0.7430

Recall 0.7881 0.5634 0.6837

TextCNN
F1-Score 0.8358 0.6956 0.7569
Precision 0.8412 0.6919 0.7470

Recall 0.8305 0.6993 0.7671

Transformer
F1-Score 0.7830 0.6200 0.7383
Precision 0.7714 0.6310 0.6983

Recall 0.7950 0.6094 0.7831

Figure 5.8 (for step 3) shows the meta syntactic constructs (categorized the syntactic constructs

in Table 5.1) importance ranking for each CWE type. It observes that 1) different CWEs have

varying importance orders of constructs, indicating that each vulnerability is affected differently

by the code syntax content. 2) Certain constructs, such as statement subelements, parameters,

name, statement consistently rank high across multiple CWEs, suggesting their general impact on

code vulnerabilities. In contrast, constructs like specifier, classes etc have lower importance across

CWEs. 3) Some vulnerabilities share common top-ranked constructs, which may be indicative

of similar code patterns. For instance, CWE78, CWE79, and CWE89 share similar top-ranked

constructs such as statement subelements, name, decl def init, and operators.

Conclusion, Answering RQ1

The significance of syntactic constructs varies across different CWEs and datasets, thus sug-

gesting a diverse role of these constructs in different contexts. Certain constructs, such as state-

men subelements, statement, name, and parameters, consistently feature high in the rankings across

sixteen CWEs approximate 80% of all CWE types. Moreover, certain CWE types share similar top-

ranking constructs, potentially indicating a commonality in the code patterns contributing to these

vulnerabilities.

47

Figure 5.8: Feature importance of meta syntactic constructs per CWE type, represented in descend-
ing order clockwise.
Note: Importance is quantified as normalized feature contribution value from XAI method, shown
in the leaves nodes after contracts name. CWEs that describe similar vulnerability issue [32] are

also categorized in the dendrogram.

48

While these prior studies [80, 82] identified statement subelements and name as key factors

influencing code vulnerability, they fell short of providing a comprehensive assessment of the role

of different syntactic constructs. The study extend these findings by offering a comprehensive view

of the role of syntactic constructs in contributing to code vulnerabilities.

5.5.5 Validating CWE Similarity against Expert-defined Baseline (RQ2)

Guided by the observation of syntactic similarities among certain CWE types, it boards on

quantifying CWE similarity based on feature importance order distance, comparing these results

with an expert defined CWE similarity baseline. While the baseline is from the understanding of

domain experts, the method leverages XAI techniques to extract insights directly from a data-driven

model.

Experiment Design

The experiment design comprises two steps: Step 1: This experiment calculates CWE similarity

based on the feature importance order of syntactic constructs, as demonstrated in Figure 5.8. Instead

of considering ten meta constructs, it focuses on forty more specific syntactic constructs’ importance

orders for a detailed comparison. Through the CWE similarity Algorithm 3, it can measures the

proximity between different CWEs based on their syntactic construct importance orders, as derived

from XAI explanations.

Step 2: It then validates the XAI-based CWE similarity against an expert-defined baseline [32].

The similar sibling set for each CWE (required in Algorithm 3) is detailed in Table 5.2. To evaluate

the results, it uses three metrics: Top-N Similarity Hit, Mean Reciprocal Rank (MRR), Mean Av-

erage Precision (MAP), and Average Normalized Similarity Score (Subsection 5.3.2). Each CWE

type yields a score for these three metrics, and it obtains a final score by averaging across all CWE

types. This process quantifies the effectiveness of the XAI-based method.

Experiment Results

Figure 5.9 (for step 1) presents the CWE similarity ρ across the CWEs examined in three

datasets based on the importance of syntactic constructs from the XAI approach. For example,

49

Figure 5.9: CWE similarity score ρ for CWE pair from syntactic construct feature importance based
on XAI approach.

CWE23 and CWE22 display a strong similarity, indicated by a low distance value, suggesting that

they share similar syntactic constructs. In contrast, CWE23 and CWE328 have a high distance

value in the matrix, indicating a low degree of similarity between them in terms of their syntax

information.

The results displayed in Table 5.5 (for step 2) highlight the effectiveness of the approach in

deriving CWE similarity based on XAI methods. A Top-1 Hit rate of 75% in alignment with the

expert-defined baseline shows robust agreement. Moreover, extending this to the Top-5 similar

CWEs, the alignment with the baseline increases further, with more than 87% of CWEs in the same

category as defined by the experts. These findings are reinforced by a Mean Average Precision

(MAP) score of 0.696, affirming that the approach tends to rank similar CWEs, as per the baseline,

higher in the list.

50

Table 5.5: CWE similarity evaluation results

CWE Top1 Top3 Top5 MRR Average
Preci-
sion

ANSS
(S)

CWE23 1 1 1 0.536 0.572 0.802

CWE327 1 1 1 0.393 0.736 0.628

CWE330 1 1 1 0.372 0.728 0.247

CWE79 1 1 1 0.372 0.728 0.250

CWE89 0 1 1 0.269 0.630 0.328

CWE22 0 0 0 0.089 0.115 0.118

CWE78 1 1 1 0.360 0.687 0.622

CWE90 1 1 1 0.377 0.743 0.610

CWE501 1 1 1 0.533 0.767 0.774

CWE614 1 1 1 0.524 0.738 0.761

CWE643 1 1 1 0.524 0.738 0.761

CWE328 0 0 1 0.144 0.233 0.620

CWE36 0 0 0 0.084 0.122 0.661

CWE15 1 1 1 0.750 1 1

CWE500 1 1 1 0.750 1 1

CWE789 1 1 1 0.750 1 1

CWE469 - - - - - -

CWE476 - - - - - -

CWE119 1 1 1 1 1 1

CWE120 1 1 1 1 1 1

Mean 0.778 0.833 0.889 0.491 0.696 0.677

Note: Top-1/3/5 represents the Top-N Similarity Hit, MRR represents Mean Reciprocal Rank,
MAP represents Mean Average Precision, that each row is the AP (Average Precision) of a CWE,
and S represents the Average Normalized Similarity Score. CWE469 and CWE476 do not have a

similar CWE in the datasets scope.

Conclusion, Answering RQ2

The XAI-based method for evaluating CWE similarity has demonstrated its effectiveness in

identifying related CWEs, capitalizing on shared syntactic construct characteristics. With a Top-1

Similarity Hit of 77.8%, a Top-5 Similarity Hit of 88.9%, and a MAP score of 0.696, the method

exhibits efficacy with expert-derived CWE similarity rankings. By emphasizing feature importance

and elucidating the reasons for CWE similarity, it provides an effective validation for expert sum-

maries built upon experiential knowledge.

51

5.5.6 Assessing the Influence of Textual-based Features (RQ3)

Experiment Design

The experiment encompasses five steps. Initially, it pre-processes the datasets and evaluate the

efficacy of three models on the code vulnerability detection task. It also examines their performance

as token length increases. Subsequently, it obtains the token attention values for the test dataset,

mask various attention percentiles of tokens, and execute the prediction task. It also employs two

XAI techniques, SHAP and Mean-Centroid PredDiff to determine code tokens’ contribution values

and juxtapose them with their attention values. Finally, it performs statistical analysis on the types

of high attention value tokens pertaining to the syntactic constructs displayed in Table 5.1, as well

as their frequency in each program within the dataset.

The raw code data encompasses several types of information: 1) code, 2) special symbols which

include punctuation characters (for example, . ,: ;? ()][’”), 3) mathematical and logical operators

(for instance, +-=/*! & |<>), 4) miscellaneous symbols (such as, @ˆ///**/), and 5) code comment

text. It performs data preprocessing by discarding miscellaneous symbols (category 4) utilizing reg-

ular expressions. In the Juliet dataset, it is found that the CWE information is directly incorporated

into the code. To avert data leakage, it extracts this content. For example, CWE89 SQL Injection is

replaced by an empty string as depicted in Listing 5.3. This precaution ensures that the model does

not have access to explicit CWE labels within the code during its training and evaluation phase,

thereby enabling a fair performance assessment.

1 # Before processing

2 package testcases.CWE89_SQL_Injection.s01;

3 public class CWE89_SQL_Injection__connect_tcp_execute_01 extends

AbstractTestCase

4 # After processing

5 package testcases s01

6 public class 01 extends AbstractTestCase

Listing 5.3: Remove CWE label content to avoid data leakage (from Juliet dataset)

52

Figure 5.10: Code token length distribution.
Note: Bars: Percentage of code token length in each dataset, Curves: kernel density estimation

smoothed

Step 2: Model Performance Evaluation. Even though the interpretations of a model with a

lower performance might be beneficial for a particular task, it is essential to accurately measure the

predictive proficiency. Hence, it tests the performance of three models: XLNet, Longformer, and

Bigbird, on a multi-class classification problem. It notes from Figure 5.10 that the token length

varies in each dataset. OWASP presents the longest code length exceeding 1024 tokens. While

XLNet has a maximum token length limitation of 1024, Longformer and BigBird can handle longer

documents and sequences, extending the max token length limit to 4096. It then evaluates the

efficacy of Longformer and BigBird using both token lengths, 1024 and 4096, to discern the optimal

configuration for the vulnerability detection task. This process enables us to identify the most

successful model by considering various metrics such as accuracy and F1-score.

Step 3: Analysis of Attention Value Ranges on Model Performance. After selecting the optimal

model, it extracts each token’s attention value within the source code using the model-specific at-

tention mechanism. It then establishes ten attention value ranges, like the top 90th percentile, 80th

to 90th percentile, and so on. For each range, it masks the tokens within that attention range by

53

replacing them with a null string. Afterwards, it employs the pre-trained model to evaluate the per-

formance on the altered corpus. This helps us analyze the impact of masking tokens within different

attention value ranges on the model’s performance.

Step 4: Correlation Validation between Token Importance by XAI Methods and Token Attention

Value. This step derives the importance of a token from feature importance explanation methods

such as SHAP, which quantify the contribution value of a code token. It applies two XAI tech-

niques, SHAP and Mean-Centroid PredDiff, to the best-performing model to ascertain each token’s

contribution to the vulnerability detection task. Due to the computational complexity of SHAP, it

concentrates on the top 1000 most frequent tokens. It then probes into the correlation between the

attention values of tokens and their contribution values, as determined by the XAI techniques.

Step 5: Analysing High Attention Value Tokens. To decipher which types of tokens the model

focuses on, it analyzes the top 20 tokens with attention values over the 90th percentile, based on

their frequency within each program. First, this approach compiles all tokens within each dataset

that exhibited attention values over the 90th percentile, creating a unique set. Subsequently, it

computes the frequency of these tokens by dividing the number of their appearances in this unique

set by the total number of programs. A frequency value of 100% indicates that the token appears

in every program. Additionally, it scrutinizes the construct types of these tokens, as detailed in

Table 5.1, to further comprehend their specific classifications.

Experiment Results

Table 5.6 (for step 2) illustrates that increasing token length enhances model performance es-

pecially for the OWASP dataset with longer code contents. Longformer with a 4096-token length

achieves the best performance on the Juliet dataset (F1-score: 0.8454) and the Draper dataset (F1-

score: 0.7595). However, XLNet has a limitation on token length and generally underperforms

compared to Longformer and BigBird on all datasets. Considering these results, Longformer is

chosen for the following validation steps due to its superior performance on two datasets.

Figure 5.11 (for step 3) shows the change in model performance when masking code tokens with

varying attention value percentiles. It observes that removing tokens with lower attention values

has a relatively minor impact on performance. However, when more than 60 percentiles of attention

54

Table 5.6: Code token lengths effects: the performance comparison of increasing token length
across multiple models and datasets

Model Metric Juliet OWASP Draper
Len=1024 Len=4096 Len=1024 Len=4096 Len=1024 Len=4096

XLNet* F1-Score 0.7618 - 0.7411 - 0.7311 -
Precision 0.7739 - 0.7416 - 0.7316 -

Recall 0.7500 - 0.7407 - 0.7307 -

Longformer F1-Score 0.7709 0.8301(+7.7%) 0.7486 0.8027(+7.2%) 0.7489 0.7492(+0.04%)
Precision 0.8056 0.9293 0.6145 0.8452 0.6830 0.7024

Recall 0.7391 0.7500 0.9577 0.7642 0.8288 0.8027

BigBird F1-Score 0.6989 0.8046(+15.1%) 0.7455 0.8380(+12.4%) 0.7456 0.7492 (+0.05%)
Precision 0.8935 0.8378 0.7642 0.8452 0.7320 0.7406

Recall 0.5739 0.7739 0.7277 0.8310 0.7597 0.7581

GraphCodeVec** F1-Score - 0.8358 - 0.6956 - 0.7569
(with TextCNN) Precision - 0.8412 - 0.6919 - 0.7470

Recall - 0.8305 - 0.6993 - 0.7671

Note: *: XLNet has the maximum token length 1,024. **: The performance of GraphCodeVec with TextCNN is from
Table 5.4, it outperforms the textual based models on Juliet and Draper dataset. As a graph-based represented model, it is
not examined by code token length. The bold is the best F1-Score in three attention-based models under the same dataset
and length.

values are removed, the performance degrades significantly. It is also observed that the performance

decline stabilizes after the 70th percentile of attention values. It is difficult to determine whether

these attention value ranges play the same contribution role, or if it is due to the model’s robustness,

which allows it to maintain performance despite having incomplete or partially removed contents.

To further investigate the influence of higher attention value tokens, it involves XAI methods in the

next step. From the dataset perspective, the effect of masking differs across datasets. The OWASP

dataset is more sensitive to masking, with a greater decline in F-1 Score compared to the Juliet

dataset.

Figure 5.12 (for step 4) demonstrates that tokens with a higher attention value range (over 90

percentile) tend to be associated with larger feature contribution values. While there are variances

in the contribution values across different percentile ranges, the prevailing pattern seems to be that

higher attention values are aligned with significant feature contribution. This noteworthy relation-

ship suggests that the attention value could be a proxy for the importance of a token. It notes a

consistency between two XAI methods, both indicating that tokens with higher attention values

contribute more significantly to the overall prediction, as evidenced by XAI-derived contribution

values.

55

Figure 5.11: Token attention value affects: the performance comparison (F1-Score) after masking
code tokens by multiple attention value percentile ranges.

(a) Juliet by SHAP (b) Owasp by SHAP (c) Draper by SHAP

(d) Juliet by MCP (e) Owasp by MCP (f) Draper by MCP

Figure 5.12: Correlation between token’s feature contribution value from XAI methods (SHAP,
MCP-Mean Centroid PredDiff) and token’s attention values (annotated with median value).

In addition, it summarizes the token content, their syntactic constructs, and the occurrence in the

dataset from tokens with an over 90 percentile range in Table 5.7 (for step 5). The occurrence with

100% means this high attention value tokens occur in every program in the dataset. It is noticeable

56

Table 5.7: Token type affects, top 20 tokens with high attention values (over 90 percentile) for each
dataset

Juliet Owasp Draper
Token Constructs Occurrence* Token Constructs Occurrence Token Constructs Occurrence
<s> <separator>** 100.0% <s> <separator>** 100.0% <s> <separator>** 100.0%
(){} <block>*** 100.0% (){} <block>*** 100.0% (){} <block>*** 81.07%
to <comment> 100.0% Bench <comment> 100.0% , <separator> 60.41%
Filename <comment> 98.26% owasp <name> 100.0% int <type> 52.2%
template <comment> 94.78% value <argument> 100.0% char <type> 40.23%
import <import> 72.17% public <specifier> 98.26% NULL <literal> 24.43%
java <name> 66.09% License <comment> 89.53% c <name> 23.49%
tmpl <comment> 65.22% Http <import> 87.79% n <name> 19.9%
support <import> 54.78% Exception <import> 86.34% ++ <operator> 18.4%
- <comment> 50.43% class <class> 71.22% s <name> 14.38%
File <type> 50.43% Response <expression> 53.49% != <operator> 11.85%
injection <name> 45.22% type <expression> 25.0% sizeof <size of> 11.68%
ERA <comment> 36.52% String <type> 22.38% return <return> 11.46%
, <separator> 33.91% java <name> 21.8% struct <name> 11.19%
null <literal> 31.3% weak <literal> 17.44% *p <modifier> 10.74%
Connection <comment> 29.57% age <name> 16.28% & <operator> 10.51%
statement <decl stmt> 26.09% param <declaration> 14.24% buf <name> 10.16%
sql <name> 25.22% user <name> 14.24% if <if> 10.08%
util <import> 25.22% request <name> 13.66% const <specifier> 9.79%
Variant <comment> 25.22% IO <import> 13.08% == <operator> 9.13%

Note: *: an occurrence of 100% indicates that the token appears in every program of the dataset. **:<s> is a special
token in Longformer model for separation. ***: we combine the percentage of (){} together.

that the separators, such as parentheses, commas, and special token from transformer model have a

higher occurrence. This is consistent with finding in other studies [80]. In Java-based code (Juliet

and Owasp), the content with a higher occurrence includes variable names, class names, and the cor-

pus from code comments. On the other hand, in C/C++ code (Draper), there is a higher occurrence

of variable type declaration, operators, such as arithmetic and logical operators. This observation

highlights the differences in token distribution and importance between programming languages,

suggesting that the model’s attention mechanism could capture language-specific features that con-

tribute to its performance.

Conclusion, Answering RQ3

The model’s performance is affected by the length of code tokens, with an increase in the token

length boosting the efficacy of attention-based transformer models, particularly the Longformer, a

finding which aligns with the results from the study by Yuan et al. [99]. When considering the type

of code tokens, attention-based models tend to focus on both semantically significant tokens, such as

variable names and code comments, as well as separators like commas and brackets that denote code

57

sections. This observation corroborates the conclusions drawn in the studies by Vashishth et al. [30],

Sharma et al. [80], and Sotgiu et al. [81], and is further reinforced by a particular case study from

the code vulnerability task. Transformer-based models are equipped to capture language-specific

features that exhibit variation between Java and C/C++.

The importance of tokens in vulnerability detection tasks is effectively mirrored by attention

values. This is evidenced by the model’s performance decline when tokens within higher attention

ranges are masked. There seems to be a correlation between attention values and token contribution

values derived through XAI methods, where tokens with higher attention values frequently cor-

respond to higher contribution values. The significance attributed to tokens by the attention values

(obtained from deep learning models) is found to be consistent with the contribution values (sourced

from backward reasoning and input-to-output tracing). Moreover, the two XAI techniques, SHAP

and Mean-Centriod PredDiff, consistently indicate that tokens with higher attention values carry

more importance.

5.6 Retrospection of Similar CWE Code Sample Siblings

5.6.1 A Detailed Showcase of CWE23 and CWE36

CWE23 (Relative Path Traversal Weakness) and CWE36 (Absolute Path Traversal Weakness)

are both children of the same parent CWE type, “Improper Limitation of a Path Name to a Restricted

Directory.” These sibling CWE types share a common problem: a lack of input validation. This

section reflects from experiment results to reveal how the framework analysis the similarity of the

code property.

Figure 5.13 showcases a code snippet where user input data is used directly to access files,

creating a potential security risk. The distinction between CWE23 and CWE36 lies in the way this

input is utilized: in CWE23, it is appended to a root path, while in CWE36, it is used directly as

the path. Mis-classification can occur when a deep-learning model mistakenly identifies a CWE36

type code as CWE23, due to the shared parent and resulting similarity between these types. The

established CWE knowledge base [32] can be used to identify similarities between any pair of CWE

types. Given that the CWE type is the target output of a learning model, the similarities between

58

Figure 5.13: An example of deep learning model gives a incorrect prediction on CWE siblings.
Note: CWE23 with relative path traversal weakness and CWE36 with absolute path traversal
weakness. The prediction results are from GraphCodeVec [52] model in Juliet dataset [120].

sibling CWEs can provide insight into how a model determines its prediction results based on the

importance of program code feature representation.

This study proposes using XAI methods to explore the high-dimensional space of program code

and its association with potential vulnerability types. Given that feature importance explanation

methods are post-hoc and model agnostic, they are well-suited to assessing the encoded feature

representation of different types of models. The XAI methods associate outputs with changes in

inputs, referring to specific metrics such as feature contribution value and feature importance rank.

In the case shown in Figure 5.13, it is found that both attention-based and graph-based models

had difficulty differentiating between the similar CWE labels, CWE23 and CWE36. By examining

these cases, it could be explored how models interpret vulnerability based on the similarity of CWE

types in the feature representation space.

For instance, the code snippet in Figure 5.13 showcases a significant difference in the way

CWE23 and CWE36 handle paths. However, attention-based models, like Longformer, often fail

to focus on essential code statements and can lean towards learning irrelevant features, as shown in

Figure 5.14. Therefore, attention values may not directly provide understandable visualization of

vulnerable code features, emphasizing the need for cross-validation with XAI methods.

59

Figure 5.14: Higher attention value code tokens are not reflecting the vulnerable code lines in two
code snippet with CWE23 and CWE36.

Note: The prediction results are from Longformer model.

In contrast, the graph-based model GraphCodeVec struggles to predict accurately in this case.

However, the XAI method could offer an interpretive order of feature importance for syntactic

constructs. This ability to provide a deeper understanding of how different constructs contribute to

vulnerability is unique to the XAI method, making it a crucial tool in vulnerability detection. For

instance, the XAI method identified argument list, argument, and operator as higher-

ranking constructs for CWE23 compared to their ranking in CWE36, as highlighted in Table 5.8.

This finding corresponds with the unique characteristics of CWE23, where an additional argument

root and a + operator are incorporated into the file, thus transforming it into a relative path. This

distinct AST path difference between the two cases is depicted in Figure 5.15.

Despite the overarching similarity in feature importance orders between the two cases, with

name and if leading the ranking, the XAI method offers an in-depth understanding of how distinct

constructs contribute to the identification of a vulnerability. This XAI-based analysis increases the

60

Figure 5.15: The CWE23 code snippet owns two additional AST paths (marked with red) with
argument and operator to make the absolute path into a relative path, compared with CWE36.

Note: The prediction results are from GraphCodeVec model.

transparency and interpretability in AI-driven software vulnerability detection.

5.6.2 Constructs Ranking Examples of Four CWE Sibling Pairs

We summarize four CWE sibling pairs, each representing a distinct CWE category in Table 5.8.

This analysis encompasses the exploration of vulnerability differences and their associations with

constructs derived from code snippets. Simultaneously, these differences are mirrored in the con-

struct ranking sequences, as revealed by the XAI explanations applied to each code snippet. For

detailed code snippets, as well as an in-depth analysis of similarities and differences of these CWE

siblings, refer to the Appendix A.2.

61

Table 5.8: Constructs Ranking for CWE Sibling Pairs

CWE Main Difference Construct Ranking Sequences (Listed in Descend-
ing Order of Importance)

327 In the CWE327 case, the hardcoded al-
gorithm is called, resulting in a high
ranking for call.

specifier, call, argument, operator,
throw, try, throws, type, break,
decl stmt, . . .

328 The CWE328 case allows for a con-
figurable algorithm; besides call,
argument also ranks high.

argument, specifier, expr stmt, call,
if, operator, function, return, init,
decl, . . .

78 CWE78 cases use add() to append
unsanitized input to a command string.

operator, specifier, parameter list,
throws, init, type, function, return,
call, if stmt, . . .

79 The CWE79 case directly writes un-
sanitized input into the HTTP response
using write().

operator, specifier, throws, argument,
call, parameter list, try, throw,
function, parameter, . . .

119 CWE119 cases focus on if stmt
and block content to assign a new
value to variables without proper mem-
ory bounds.

else, block content, if stmt, sizeof,
goto, argument list, operator,
argument, break, expr, . . .

120 CWE120 cases allocate memory with-
out a preceding check, focusing on the
sizeof constructs.

else, sizeof, operator, if, break,
default, argument, argument list, decl,
block content, . . .

23 CWE23 represents a relative path
traversal weakness, adding data into
root via the argument list con-
struct.

name, if, argument list, finally,
argument, literal, throws, decl, try,
operator, . . .

36 CWE36 represents an absolute path
traversal weakness.

name, if, literal, finally, decl stmt,
argument list, else, condition, try,
throws, . . .

5.7 Comparative Analysis of The Findings with Existing Research

This section consolidates the findings and offer a comparative analysis with existing studies.

The central objective is the creation of an XAI-based framework capable of evaluating notable ele-

ments from four main feature categories for multi-classification in software vulnerability detection.

Instead of a straightforward contrast of classification performance, it offers a comparative study

using insights from contemporary research, highlighting both areas of agreement and the unique

findings. A summary of the discoveries can be found in Table 5.9.

62

T a
bl

e
5.

9:
R

el
at

iv
e

co
m

pa
ri

so
n

of
th

e
fin

di
ng

s
w

ith
ex

is
tin

g
w

or
k

A
ss

es
sm

en
tT

yp
e

T
he

Fi
nd

in
gs

E
xi

st
in

g
W

or
k

C
on

tr
ib

ut
io

ns

Sy
nt

ac
tic

co
n-

st
ru

ct
s

im
po

r-
ta

nc
e

C
om

pr
eh

en
si

ve
im

po
rt

an
ce

ra
nk

in
g

of
ni

ne
m

et
ad

at
a

sy
nt

ac
tic

co
ns

tr
uc

ts
an

d
ov

er
40

sy
nt

ac
tic

co
ns

tr
uc

ts
ac

ro
ss

tw
en

ty
C

W
E

s
pr

es
en

te
d

in
Fi

gu
re

5.
8;

s
t
a
t
e
m
e
n
t
s
u
b
e
l
e
m
e
n
t
s
,

s
t
a
t
e
m
e
n
t
,

n
a
m
e
,

p
a
r
a
m
e
t
e
r
s

ar
e

of
hi

gh
ra

nk
-

in
gs

ac
ro

ss
80

%
C

W
E

s.

St
ud

ie
s

[8
0]

[8
2]

hi
gh

lig
ht

n
a
m
e

an
d

s
t
a
t
e
m
e
n
t
s
u
b
e
l
e
m
e
n
t
s

as
m

os
t

im
po

rt
an

t
fa

ct
or

s
w

ith
-

ou
t

a
fu

ll
as

se
ss

m
en

t
of

al
l

sy
nt

ac
tic

co
ns

tr
uc

ts
.

Fu
ll

ev
al

ua
tio

n
of

sy
nt

ac
tic

co
ns

tr
uc

ts
im

po
rt

an
ce

(f
or

ty
co

ns
tr

uc
ts

,
ni

ne
m

et
ad

at
a

co
ns

tr
uc

ts
ac

ro
ss

tw
en

ty
C

W
E

s)
pr

ov
id

ed
.

C
W

E
si

m
ila

ri
ty

C
om

pa
ri

so
n

of
C

W
E

si
m

ila
ri

ty
w

ith
ex

pe
rt

-d
efi

ne
d

ba
se

lin
e

us
in

g
m

ul
tip

le
m

et
ri

cs
;

77
.8

%
To

p1
si

m
ila

ri
ty

C
W

E
hi

tr
at

e
an

d
an

M
A

P
sc

or
e

of
0.

69
6

ar
e

ac
hi

ev
ed

.

C
om

m
un

ity
pr

ov
id

es
ex

pe
rt

-
de

fin
ed

ba
se

lin
e

C
W

E
si

m
ila

ri
ty

su
m

m
ar

y
[3

2]
.

T
he

C
W

E
si

m
ila

ri
ty

is
de

riv
ed

fr
om

a
da

ta
-d

riv
en

an
d

X
A

I-
ba

se
d

re
tr

os
pe

c-
tiv

e
ap

pr
oa

ch
.

T
he

si
m

ila
ri

ty
ex

pl
an

a-
tio

n
pr

ov
id

es
a

pr
ob

in
g

vi
ew

to
un

de
r-

st
an

d
fe

at
ur

e
ef

fe
ct

s
on

de
ep

le
ar

ni
ng

m
od

el
’s

cl
as

si
fic

at
io

n
fo

rs
im

ila
rC

W
E

ty
pe

s
un

de
rs

ub
tle

co
de

va
ri

at
io

ns
.

C
od

e
to

ke
n

le
ng

th
C

la
ss

ifi
ca

tio
n

pe
rf

or
m

an
ce

(F
1-

Sc
or

e)
im

pr
ov

es
w

ith
in

cr
ea

se
d

in
pu

t
to

ke
n

le
ng

th
.

Sa
m

e
fin

di
ng

re
po

rt
ed

in
w

or
k

[9
9]

.
It

pr
ov

id
es

a
sp

ec
ifi

c
ev

id
en

ce
fr

om
th

e
so

ft
w

ar
e

vu
ln

er
ab

ili
ty

ta
sk

.

C
od

e
to

ke
n

ty
pe

A
tte

nt
io

n-
ba

se
d

m
od

el
s

fo
cu

s
on

se
-

m
an

tic
al

ly
in

fo
rm

at
iv

e
to

ke
ns

an
d

se
pa

ra
to

rs
;

Tr
an

sf
or

m
er

-b
as

ed
m

od
el

s
ca

pt
ur

e
la

ng
ua

ge
-s

pe
ci

fic
fe

at
ur

es
.

O
bs

er
va

tio
n

al
ig

ns
w

ith
w

or
k

[8
0,

81
]

(b
ot

h
cl

ai
m

se
pa

ra
to

r
an

d
id

en
tifi

er
ar

e
fo

cu
se

d
by

m
od

el
),

su
pp

or
te

d
by

a
sp

ec
ifi

c
ca

se
st

ud
y.

E
va

lu
at

io
n

co
nd

uc
te

d
us

in
g

tw
o

la
n-

gu
ag

es
:J

av
a

an
d

C
/C

++
.

A
tte

nt
io

n
va

lu
es

C
on

si
st

en
cy

ob
se

rv
ed

be
tw

ee
n

th
e

im
-

po
rt

an
ce

at
tr

ib
ut

ed
to

to
ke

ns
by

at
te

n-
tio

n
va

lu
es

an
d

X
A

I
co

nt
ri

bu
tio

n
va

l-
ue

s.
H

ow
ev

er
,

hi
gh

at
te

nt
io

n
va

lu
es

m
ay

no
t

al
w

ay
s

re
fle

ct
on

vu
ln

er
ab

le
co

de
lin

es
.

T
he

co
m

m
un

ity
de

ba
te

s
w

he
th

er
at

te
nt

io
n

va
lu

e
re

fle
ct

s
to

ke
n

im
po

rt
an

ce
.

Su
pp

or
tin

g
st

ud
-

ie
s

[3
0,

44
,7

6]
us

e
at

te
nt

io
n

va
l-

ue
s

to
re

fle
ct

co
de

to
ke

n
im

po
r-

ta
nc

e,
bu

t
ca

ut
io

n
is

ad
vi

se
d

in
ot

he
rs

tu
di

es
[3

1]
.

Pr
ov

id
in

g
ev

id
en

ce
th

at
ov

er
al

l
at

te
n-

tio
n

va
lu

es
ar

e
co

ns
is

te
nt

w
ith

to
-

ke
n

im
po

rt
an

ce
fr

om
X

A
I,

bu
tc

au
tio

n
sh

ou
ld

be
ex

er
ci

se
d

as
th

ey
m

ay
fo

cu
s

on
se

pa
ra

to
rs

an
d

no
tr

efl
ec

tv
ul

ne
ra

bl
e

co
de

lin
es

.

63

Chapter 6

Threats to validity

This research’s validity may be affected by several potential obstacles, including threats to in-

ternal and external validity.

Threats to internal validity might stem from model evaluation and the choice of datasets for XAI.

The XAI evaluation in this study is confined to a single case study — the arXiv scholarly paper rank-

ing — which utilizes forty datasets directly for consistency and stability assessment. Assuming their

similarity without a data shifting test might introduce limitations. For software vulnerability detec-

tion, this research leverages three datasets: Juliet, OWASP, and Draper. Both Juliet and OWASP are

characterized by synthetic samples with artificially constructed annotations, potentially constraining

their generalizability to real-world scenarios. While Draper comprises samples from actual source

code, it lacks overlapping CWE types with both Juliet and OWASP. This disparity means it does

not have cross-validation of top-ranking sequences of syntactic constructs for common CWE types

across multiple datasets. Consequently, this study can’t further validate XAI explanation consis-

tency across datasets. The explanation consistency metrics, defined in Section 4.2, aim to measure

explanations across various datasets.

Regarding external validity, the primary concern is the generalizability of our findings. Although

the GraphCodeVec model is adept at managing graph-based feature embeddings, it focuses mainly

on AST-based code representation. This scope falls short of providing a holistic view of code graph

representation, unlike the study [20] which gleans syntax and semantic features from the Code

Property Graph (CPG) by harnessing a complete graph context inclusive of data-flow, control-flow,

64

AST nodes, and program dependencies. Similarly, this thesis adopts a single model, S2Search, for

academic paper ranking, and ImageNet for image classification. While these models stand out in

their respective domains, an expanded evaluation encompassing more models would offer a more

robust analysis.

This research includes twenty CWE types from three datasets, six of which appear in the ”Top

25 Most Dangerous Software Weaknesses” list by the CWE community [121]. However, the ab-

sence of balanced data samples for all CWEs and the lack of data labels compatible with deep

learning classification models present significant challenges. The findings’ transferability might

be limited, particularly given that the evaluation is primarily focused on Java (Juliet, Owasp) and

C/C++ (Draper) codes. A broader, language-agnostic assessment would enhance the study’s exter-

nal validity.

65

Chapter 7

Conclusion

This study highlights the potential application of eXplainable AI (XAI) methods for software

vulnerability detection, particularly in assessing contributing factors. The evaluation of existing

XAI methods focuses on scrutinizing their trustworthiness from three perspectives: consistency,

stability, and efficiency. Acknowledging the challenge that current XAI methods encounter in

achieving a balance among these evaluation points, this research introduces a novel approach named

Mean-Centroid PredDiff, devised specifically for this objective.

This thesis first establishes the explanation between program code in a graph context as fea-

tures and semantics of vulnerability types collectively defined by open community experts. The

study begins with defining a feature type taxonomy of code representations, subsequently progress-

ing to analyze syntactic constructs within abstract syntax tree-based graph code representations. It

develops an XAI-based framework to explain the relation among the combination of 20 code vul-

nerability types and over 40 syntactic constructs from three Java and C++ datasets. It is observed

that the variation of syntactic construct importance ranking relates to intrinsic similarities amongst

certain CWEs that share common characteristics of vulnerability. This work thus derives the CWE

similarity based on the XAI explanation summary and validated it by the expert-defined baseline.

This work further extends the XAI-based framework to assess three textual factors: code token

length, code type, and token attention value, and their influence on the model’s predictions.

In summary, this research advances the assessment of explanation consistency, stability, and

66

efficiency among existing XAI methods and offers guidance in the development of new ones, form-

ing the foundation for the proposed XAI service pipeline. This study provides valuable insights

into the diverse impacts of code syntax on CWE vulnerability types, links the comprehension of

code semantics and syntactic feature representation learned by deep learning models for vulnerabil-

ity classification. This knowledge can enhance IDE programming prompts, allowing for the early

detection of potentially vulnerable code through prioritized syntactic constructs.

67

Appendix A

My Appendix

A.1 Evaluating XAI Methods Through Three Case Studies

The previous sections introduces three metrics—explanation consistency, stability, and effi-

ciency—to evaluate the trustworthiness of Explainable AI (XAI). This study also propose a new

addition to the XAI feature explanation branch for this evaluation. Explanation consistency reflects

the level of agreement among multiple XAI methods when explaining the same dataset and the same

model. In contrast, explanation stability represents the level of agreement within the explanations

provided by a single XAI method applied to different datasets. The focus of this chapter lies in

understanding the ability of these XAI methods to ensure stability and consistency in their expla-

nations and their efficiency in reaching an explanation. Given this focus, this section proposes two

research questions (RQ) to guide the evaluation of XAI methods:

RQ-I. How consistent and stable are the explanations generated by different XAI methods

across various case studies?

RQ-II. How does the Mean-Centroid PredDiff method balance computational efficiency

with explanation consistency and stability?

These two research questions are refer to the first core question presented in Section 1.1. To ad-

dress research questions, three case studies are selected, each representing a different data structure

and machine learning task. The first case study focuses on a regression problem involving tabu-

lar data, specifically an academic paper ranking. The second case study explores an NLP (Natural

68

Language Processing) multi-label classification problem - code vulnerability detection. The final

case study examines the use of XAI methods in an image classification problem, which involves a

masking-type classification task.

This chapter begins by selecting the XAI methods based on their XAI goals. It then proceeds

with evaluation of the three case studies, providing detailed descriptions of the datasets and models

used, the experiment settings, observations, results, and conclusions. Each case study contributes

to answering the research questions, providing insights into the stability, consistency, and efficiency

of various XAI methods.

A.1.1 Select XAI Method Based on XAI Goal

This work considers the goal of explanation as a criterion to select the most suitable XAI meth-

ods, based on the study [55]. For case studies such as academic paper ranking and code vulnerability

detection, where the aim is to sort features by their contribution values, it selects XAI methods that

explain feature importance through feature masking, namely PredDiff [65], Shapley Value [67],

Mean-Centroid PredDiff [98], and SHAP [24]. On the other hand, the Grad-CAM family of XAI

methods are dedicated to image explanation via saliency maps. A saliency map in image explana-

tion works by highlighting the areas of the image that a neural network model finds most relevant

for making a prediction. In essence, it provides a visual understanding of which parts of the input

image were significant in influencing the model’s decision, thereby helping to interpret the model’s

reasoning process. Therefore, this work selects six state-of-the-art model-specific methods from

the Grad-CAM family, namely Grad-CAM [122], EigenCAM [59], GradCAMElementWise [60],

Grad-CAM++ [61], XGrad-CAM [62], and HiResCAM [63], to compare with the proposed Mean-

Centroid PredDiff.

A.1.2 Case Study I, Academic Paper Ranking

This case study aims to evaluate four XAI methods, namely PredDiff [65], Shapley Value [67],

Mean-Centroid PredDiff [98], and SHAP [24], within the context of an academic paper ranking

model. The model under examination is the open-source Semantic Scholar Search ranking model

(S2Search) [123], which predicts the ranking score for each scholarly article given a query keyword

69

and various distinctive features. The chosen XAI methods are employed to discern the overall

importance order of these features and subsequently assessed based on explanation consistency and

stability.

Model and Dataset

The target model for this evaluation is S2Search [123], an open-source machine learning rank-

ing model developed by Semantic Scholar. This model ranks papers based on user behavior data

gathered from search logs and user clicks.

The dataset employed for this study is derived from the arXiv metadata collection available

on Kaggle 1, specifically focusing on entries within the field of Computer Science. This dataset

encompasses 542,877 academic papers, each assigned one or more meta topics. For the purposes

of the study, each paper’s secondary categories within the Computer Science field, as provided by

arXiv, are utilized as individual datasets, culminating in forty datasets in total.

Each paper within the dataset is characterized by six key features: title, abstract, venue, authors,

publication year, and the number of citations (n citations). These features form a tabular type of

data. The objective of the study is to ascertain the importance order of these six features.

Experiment Setting

In the experimental setup, this study applies each of the selected XAI methods to the S2Search

model in conjunction with the arXiv dataset. The performance of these methods is evaluated based

on their ability to accurately ascertain the importance order of the six features, paying particular

attention to the stability and consistency of explanations each method provides. Furthermore, it

also assesses the computational efficiency required by each method to achieve their results. The

experiment is executed via the Google Colab Pro 2 machine learning services platform, leveraging

the NVIDIA Tesla T4 GPU for computation.
1https://www.kaggle.com/datasets/Cornell-University/arxiv
2https://colab.research.google.com/

70

Experiment Results

Feature Importance Order Summary. The explanatory results are obtained through the fea-

ture importance order defined in Section 4.1. For the forty datasets, it derives forty sets of feature

contribution values for each method. It calculates the mean value of these groups to obtain an over-

all feature contribution value, which in turn helps us to determine the overall feature importance

order as explained by each method. These results are detailed in Table A.1.

Table A.1: Feature importance order summary of academic paper ranking case study

Method Feature Importance Order (With Contribution Value)
PredDiff abstract(0.938) year(0.306) title(0.127) n citations(0.073) venue(0.068) authors(0.033)

Mean-Centroid PredDiff abstract(0.987) title(0.107) year(0.094) venue(0.066) n citations(0.022) authors(0.008)
Shapley Value abstract(0.960) title(0.219) venue(0.156) year(0.069) n citations(0.027) authors(0.016)

SHAP abstract(0.965) title(0.197) year(0.159) venue(0.065) n citations(0.027) authors(0.017)

Observe Explanation Stability. The median contribution values help us to determine the fea-

ture importance order of an XAI method across the forty datasets. It computes the KTRD distance

between this aggregated feature importance order and the orders from the forty datasets to compare

them. The median value of KTRD distances across datasets is depicted in Figure A.1a, indicating

that Mean-Centroid PredDiff, Shapley Value, and KernelSHAP offer more stability than Prediff.

Observe Explanation Consistency. This study rotational selects a baseline method from the

four methods under examination. Then the Kendall Tau Ranking Distance (KTRD) distance is

computed between the feature importance order from two XAI methods pair. The 50th percentile

of KTRD distances is plotted in Figure A.1b. It shows that Mean-Centroid PredDiff has greater

consistency than PredDiff, although less than the other two methods.

Analysis of Computation Time Consumption The curve illustrating time consumption, as

shown in Figure A.2, ascends with the growth in the number of data samples. PredDiff and Mean-

Centroid PredDiff consume less time compared to KernelSHAP and Shapley Value. The Mean-

Centroid PredDiff method consumes approximately 10% more time than Prediff due to the need for

cluster computation.

71

(a) Explanation Stability (b) Explanation Consistency

Figure A.1: The consistency and stability evaluation of four XAI methods in academic paper ranking
case study.

Note: A shorter link edge indicates a more consistent or stable XAI method.

A.1.3 Case Study II, Code Vulnerability Classification

This case study focuses on evaluating four XAI methods - PredDiff [65], Mean-Centroid Pred-

Diff [98], SHAP [24], and Shapley Value [67] - in the context of a natural language processing

(NLP)-based classification problem. Specifically, this case examines software code vulnerability

detection based on three features: code comments, code body, and import packages. It use the

state-of-the-art NLP model XLNet [47] to classify vulnerable software code into different Common

Weakness Enumeration (CWE) types at the method level. The aim is to understand the contribution

and importance of each feature to code vulnerability classification using XAI methods and evaluate

their performance based on explanation consistency and accuracy of feature importance ranking.

Model and Dataset

The datasets used in this study come from the Open Web Application Security Project (OWASP)

Benchmark [124], the Juliet test suite [120], and the Draper dataset [125]. These resources provide

a robust corpus of method-level software code files, each labeled with CWE types. The datasets

comprise the code body, comments, and import packages. For instance, the OWASP Benchmark

includes 2,740 test cases, with 52% of the files indicating vulnerable code mapped to one of 11 CWE

72

Figure A.2: Time consumption between XAI methods along with the data set size increasing in
academic paper ranking case study.

labels. In comparison, the Juliet test suite contains a total of 514 files, 217 of which are vulnerable.

While Draper dataset contains 86,839 methods with full code and comments information that with

50.1% vulnerable functions.

The model used for this study is XLNet, a state-of-the-art NLP model renowned for its ability

to capture bidirectional text information and outperform other top-tier NLP models. Each piece of

text content in a code file that contains a method with a CWE label is considered a data instance and

paired with a label. To determine which of these contexts have the most significant impact on the

machine learning classifier, it identifies three features within the data: comments, code body, and

import packages.

Experiment Setting

Each dataset is shuffled and split into a training set and a testing set, using a 70:30 ratio. The

training set is used to fine-tune the XLNet model, while the testing set is employed for masking

features and gathering predictions for XAI processing. To prevent unintentional data leakage that

might artificially boost model accuracy, it removes any direct mentions of CWE types both from

code and comment. Moreover, labels accounting for less than ten percent of the total size are

73

Table A.2: Feature importance order summary for code vulnerability classification case study

XAI Methods Juliet OWASP Draper
PredDiff comment > code > import code > import > comment code > comment

Mean-Centroid PredDiff comment > code > import code > import > comment code > comment

Shapley value comment > code > import comment > code > import code > comment

SHAP comment > code > import comment > code > import code > comment

combined. To compute the log-odd probability of the ground truth CWE label, features are removed

before being input into the XLNet model. The experiment is conducted using the Google Colab Pro

platform.

Experiment Results

Following a similar approach to the previous case study, it derives the feature importance order

for the three data sets, as shown in Table A.2. The Draper dataset lacks the ”import” feature, so it

considers only two features for its importance.

Observe Explanation Stability. In this case, as only selecting three data sets, the explanation

stability metric value for the Shapley Value and SHAP methods is 0, given that their feature im-

portance orders across the three data sets are identical. For PredDiff and Mean-Centroid PredDiff,

the value is 0.223. These results suggest that the Shapley Value and SHAP methods exhibit greater

stability compared to the PredDiff and Mean-Centroid PredDiff methods.

Observe Explanation Consistency. The feature importance order results of the four XAI meth-

ods are consistent for the Juliet test cases, with ”comment” being more important than ”code” and

”import”. Each method has a zero Kendall tau distance with the others, indicating perfect agree-

ment. Similar results are found in the Draper dataset.

However, for the OWASP Benchmark dataset, PredDiff and Mean-Centriod PredDiff offer dif-

fering insights on features. When it measures by Kendall tau distance, the average feature impor-

tance order distances for PredDiff and Mean-Centroid PredDiff from the other two methods are

found to be 0.33. This suggests a higher level of consistency achieved by the Shapley Value and

SHAP methods.

74

A.1.4 Case Study III, Image Classification

The third case study explores the potential applicability of the Mean-Centroid PredDiff method

to image classification, specifically focusing on face mask detection. Unlike traditional feature

importance methods that rank feature contributions, image explanations concentrate on pixel attri-

bution and saliency maps, offering insight into the active areas of an image that influence model

predictions.

Although the Mean-Centroid PredDiff method is model-agnostic, it will be cross-validated with

six state-of-the-art model-specific XAI methods that specialize in image models. These meth-

ods include Grad-CAM [122], EigenCAM [59], GradCAMElementWise [60], Grad-CAM++ [61],

XGrad-CAM [62], and HiResCAM [63]. This case study will showcase how the MCP method,

despite its model-agnostic properties, can effectively be used in model-specific scenarios such as

image Convolutional Neural Networks (CNN).

Applying Mean-Centroid PredDiff to Image Explanation

As depicted in Figure A.3, the MCP method is applied to generate a kernel masking matrix.

This matrix is used to iteratively mask pixels in the image by filling in zeros. Consequently, it

gets a set of (l × l)/(n × n) masked images for model prediction, where the image size is (l × l),

and the kernel masking matrix has a size of (n × n). The MCP method summarizes pixel feature

contributions based on the prediction difference between the original and masked images. In the

experiment, it uses an image size l of 256 and a kernel masking matrix size n of 8.

Figure A.3: The process of Mean-Centroid PredDiff on image explanation.

75

Model and Dataset

For this case study, it utilizes a pre-trained ResNet50 [126] model for image classification.

The data set3 contains 2,630 images with five different labels, ‘wearing N95 mask’, ‘wearing cloth

mask’, ‘wearing a surgical mask’, ‘mask worn incorrectly’ and ‘no mask’.

Experiment Setting

In the experimental setup, the pre-trained ResNet50 model is used to classify images from the

selected dataset. Using the Mean-Centroid PredDiff method, it generates a kernel masking matrix

enabling iterative pixel masking. This procedure aids us in summarizing pixel feature contributions

by comparing prediction differences between original and masked images.

Six Grad-CAM familiy XAI methods are also used to elucidate the saliency map of input im-

ages. These saliency map explanations help highlight the active regions within images that sig-

nificantly contribute to the model’s prediction. This approach offers a comparative view of how

these methods perform against the Mean-Centroid PredDiff method in a model-specific setting. The

experiment is executed by the Google Colab Pro platform as well.

Experimental Results

Summary of Prediction Change Aggregation. In the image classification task, it initially

extracts a saliency map using an XAI method. The saliency map indicates the impactful areas of

the image contributing to the model’s prediction. It denotes the model’s prediction on the original

image xi as f̂P (xi), and x+i as the masked image derived from the saliency map ρ(xi). The model’s

prediction on this masked image is f̂S(x+i). Hence, the prediction changes for the data sample xi is

formulated as: ∣∣∣∣∣ f̂P (xi)− f̂S(x
+
i)

f̂P (xi)

∣∣∣∣∣× 100, where x+i ← ρ(xi). (10)

This implies that even after masking the image based on the saliency map, the model should cor-

rectly classify the image. Figure A.4 showcases an example of a saliency map generated by the

XAI method (Mean-Centroid PredDiff), along with an image masked by this saliency map. In this
3https://github.com/youyinnn/ai face mask detection project.git

76

scenario, the change in prediction represents the difference in prediction logits for the ground truth

label ’wearing a surgical mask’ between two images: a) the unmasked image, and c) the masked

image.”

Figure A.4: Example of the original image, saliency map generated by XAI Method (Mean-Centroid
PredDiff), and masked image.

Observing Explanation Stability. The explanation stability results are summarized by consid-

ering each prediction change on a data sample as a single summary. It calculates the distance be-

tween any two pairs of these summaries and plot the distribution of these distances in Figure A.5a.

It observes that Mean-Centroid PredDiff has the lowest mean value on the stability metric, while

EigenCAM is on the opposite end.

Observing Explanation Consistency. The distribution of prediction change distances for 2,630

images is compared across different XAI methods in Figure A.5b. EigenCAM has the widest range,

suggesting that the explanations of feature contributions by EigenCAM vary significantly across

images. On the other hand, the Mean-Centroid PredDiff plot has the narrowest range, indicating

consistent explanations across all images.

Time Complexity Analysis. Mean-Centroid PredDiff has a time complexity of Θ(N × P 2),

with N as the number of images and P as the number of features. In this context, an image with a

masking kernel matrix is counted as one feature. Therefore, P = (l × l)/(n× n) is the number of

features. Since Grad-CAM family methods derive the saliency map directly from the model, they

are faster than post-processing the features and re-running the model prediction.

77

(a) Explanation Stability (b) Explanation Consistency

Figure A.5: The consistency and stability evaluation of four XAI methods in image classification
case study.

A.1.5 Evaluation Conclusion

Answering RQ-I (How consistent and stable are the explanations generated by different

XAI methods across various case studies?). This experiment examines ten XAI methods, group

into image and non-image case studies. Among the feature masking based XAI methods, named

SHAP, Shapley Value, PredDiff and Mean-Centroid PredDiff, SHAP achieves the best performance

in terms of stability and consistency, followed by Mean-Centroid PredDiff and Shapley Value. In

the image classification case study, Mean-Centroid PredDiff achieves the smallest distance of pre-

diction difference compared to methods from the Grad-CAM family. EigenCAM performs the least

effectively within the Grad-CAM family.

Answering RQ-II (How does the Mean-Centroid PredDiff method balance computational

efficiency with explanation consistency and stability?). The examination in the academic paper

ranking case study shows that Shapley Value and SHAP are two low-efficiency XAI methods, with

efficiency decreasing as the number of data samples increases. Mean-Centroid PredDiff is 10% less

efficient than PredDiff, but much quicker than SHAP and Shapley Value, while providing similar

stability and closer consistency with SHAP and Shapley Value. Compared with model-specific XAI

methods from the Grad-CAM family that directly derive the explanation during the model prediction

process, Mean-Centroid PredDiff is less efficient.

78

In conclusion, Mean-Centroid PredDiff achieves a trade-off of consistency, stability, and effi-

ciency compared to other XAI methods in different case studies. Mean-Centroid PredDiff, SHAP

achieves the highest consistency in non-image case studies, while Grad-CAMEW and Grad-CAM++

are the top two consistent and stable methods.

A.2 Analysis of CWE Sibling Pairs with Constructs Ranking

We summarize another three CWE sibling pairs, each from one CWE category in Table 5.2,

analyzing the differences in code snippets, the similarities, and the constructs ranking from XAI

explanations for each pair.

CWE327 and CWE328:

CWE327 showcases the usage of the Data Encryption Standard (DES) encryption algorithm,

which is considered weak and outdated, making the encrypted data susceptible to decryption by

attackers. CWE328 case represents the usage of a hashing algorithm (potentially Secure Hash

Algorithm (SHA-512), which is strong, but the exact algorithm can be changed based on properties).

Both vulnerabilities are centered around cryptographic operations, with one focusing on encryption

and the other on hashing.

Vulnerable code line:

1 // CWE327

2 ...

3 javax.crypto.Cipher c = javax.crypto.Cipher.getInstance("DES/CBC

/PKCS5Padding"); // Vulnerable code line

4 ...

5

6 // CWE328

7 ...

8 String algorithm = benchmarkprops.getProperty("hashAlg1", "

SHA512");

79

9 java.security.MessageDigest md = java.security.MessageDigest.

getInstance(algorithm);

10 md.update(input); // Vulnerable code line

11 ...

Construct difference: Algorithm specification: CWE327 case has a hardcoded algorithm;

CWE328 case potentially allows configurable algorithms. From List A.1 we note that the construct

argument is ranked foremost in the CWE-328 case, highlighting the significance of algorithm con-

figuration in this vulnerability. Additionally, the construct call occupies a high rank in both cases,

underscoring the prominence of invoking the algorithm’s object in both of these vulnerabilities.

1 Code snippet #1 with CWE327:

2 {specifier > call > argument > operator > throw > try > throws >

type > break > decl_stmt > ...}

3 Code snippet #2 with CWE328:

4 {argument > specifier > expr_stmt > call > if > operator >

function > return > init > decl > ...}

Listing A.1: Ranking of syntactic constructs’ feature importance for CWE327 and CWE328.

CWE78 and CWE79

CWE78 case is concerned with unsanitized input being used in system command execution, po-

tentially allowing malicious command injection. CWE79 case deals with unsensitized input being

reflected back to the user, which could lead to Cross-Site Scripting (XSS) attacks. Both vulnerabil-

ities arise from the lack of input sanitization and validation.

Vulnerable code line:

1 // CWE78

2 ...

3 argList.add("echo" + bar); // Vulnerable code line

4 ...

80

5 // CWE79

6 ...

7 response.getWriter().write("Parameter value:" + bar); //

Vulnerable code line

8 ...

Construct difference: CWE78 case involves argument constructs where unsanitized input is

appended to a command string. CWE79 case involves output constructs where unsanitized input is

written directly to the HTTP response. We observe from List A.2 that in both cases, the operator +

holds significance, followed by the specifier. However, the primary difference between CWE78 and

CWE79 cases arises from the way they handle the add() method; one appends via add() while the

other directly employs write() to the response. It is hard to observe these subtle differences from the

syntactic constructs.

1 Code snippet #1 with CWE79:

2 {operator > specifier > throws > argument > call >

parameter_list > try > throw > function > parameter > ...}

3 Code snippet #2 with CWE78:

4 {operator > specifier > parameter_list > throws > init > type >

function > return > call > if_stmt > ...}

Listing A.2: Ranking of syntactic constructs’ feature importance for CWE79 and CWE78.

CWE119 and CWE120:

CWE119 case pertains to the improper restriction of memory buffer operations, while CWE120

case deals with a classic case of buffer overflow due to the absence of a size check. Both vulnera-

bilities arise from inadequate management or verification of memory buffers.

Vulnerable code line:

1 // CWE119

2 ...

81

3 if (value && (newvariable = ast_var_assign(name, value))) {

AST_LIST_INSERT_HEAD(headp, newvariable, entries); }

4 ...

5 // CWE120

6 ...

7 iflist->data = malloc(sizeof(*(iflist->data)) * iflist->size);

8 ...

1 Code snippet #1 with CWE119:

2 {else > block_content > if_stmt > sizeof > goto > argument_list

> operator > argument > break > expr > ...}

3

4 Code snippet #2 with CWE120:

5 {else > sizeof > operator > if > break > default > argument >

argument_list > decl > block_content > ...}

Listing A.3: Ranking of syntactic constructs’ feature importance for CWE119 and CWE120.

Construct difference: CWE119 case: assigning a new value to a variable and inserting a new

entry in a list without proper memory bounds. CWE120 case: allocating memory based on a partic-

ular size without a preceding check to ensure the size of input does not exceed the allocated memory.

In the case of CWE119, three constructs are relevant to the areas of vulnerability. if stmt: em-

ploying conditional statements is crucial for enforcing boundary checks prior to executing memory

operations. block content: capturing critical code segments within blocks is key to ensuring

localized effect and facilitating easier error handling. argument list: it is essential to validate

arguments passed to functions adequately, especially when these arguments pertain to memory op-

erations. For CWE120, the emphasis shifts to: sizeof: the utilization of the sizeof operator is

instrumental in determining the size of data types and structures, thereby assisting in accurate mem-

ory allocation. if and else: utilization of conditional statements is essential for performing size

checks and addressing any discrepancies in a suitable manner. The importance of these constructs

as portrayed in the Listing A.3 aptly reflects the differences between CWE119 and CWE120.

82

Bibliography

[1] National Institute of Standards and Technology. Vulnerability definition. Computer

Security Resource Center. URL https://csrc.nist.gov/glossary/term/

vulnerability. Accessed: 2023-03-15.

[2] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and Aditya Ghose.

Automatic feature learning for predicting vulnerable software components. IEEE Transac-

tions on Software Engineering, 2019.

[3] Zhen Li, Deqing Zou, Shouhuai Xu, Xinming Ou, Hai Jin, Suo Wang, Zhongyang Deng, and

Yang Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv

preprint arXiv:1801.01681, 2018.

[4] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software vulnerability analysis

and discovery using machine-learning and data-mining techniques: A survey. ACM Comput-

ing Surveys (CSUR), 50(4):56, 2017.

[5] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. Evaluating com-

plexity, code churn, and developer activity metrics as indicators of software vulnerabilities.

IEEE Transactions on Software Engineering, 37(6):772–787, 2010.

[6] Robert Russell, Leanna Kim, Lois Hamilton, Tom Lazovich, John Harer, Onur Ozdemir,

Paul Ellingwood, and Mark McConley. Automated vulnerability detection in source code

using deep representation learning. In 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA), pages 757–762. IEEE, 2018.

83

https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/vulnerability

[7] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for a needle

in a haystack: Predicting security vulnerabilities for windows vista. In 2010 Third Interna-

tional Conference on Software Testing, Verification and Validation, pages 421–428. IEEE,

2010.

[8] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. Software vulner-

ability detection using deep neural networks: a survey. Proceedings of the IEEE, 108(10):

1825–1848, 2020.

[9] David A. Wheeler. Flawfinder. https://github.com/david-a-wheeler/

flawfinder, 2021.

[10] Checkmarx. Checkmarx software security platform. https://www.checkmarx.com,

2021.

[11] Muhammad Nadeem, Byron J Williams, and Edward B Allen. High false positive detection of

security vulnerabilities: a case study. In Proceedings of the 50th Annual Southeast Regional

Conference, pages 359–360, 2012.

[12] Y Shin, A Meneely, L Williams, and J A Osborne. Evaluating complexity, code churn, and

developer activity metrics as indicators of software vulnerabilities. IEEE Trans. Softw. Eng.,

37(6):772–787, Nov 2011.

[13] Y Shin and L Williams. An empirical model to predict security vulnerabilities using code

complexity metrics. In Proc. 2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas., pages

315–317, Oct 2008.

[14] Y Shin and L Williams. Can traditional fault prediction models be used for vulnerability

prediction? Empirical Softw. Eng., 18(1):25–59, Feb 2013.

[15] C D Sestili, W S Snavely, and N M VanHoudnos. Towards security defect prediction with ai.

arXiv preprint arXiv:1808.09897, 2018.

[16] G Lin, M Tang, Y Wang, W Luo, X Luo, and X Liao. Cross-project transfer representation

84

https://github.com/david-a-wheeler/flawfinder
https://github.com/david-a-wheeler/flawfinder
https://www.checkmarx.com

learning for vulnerable function discovery. IEEE Trans. Ind. Informat., 14(7):3289–3297, Jul

2018.

[17] J Jiang, S Wen, S Yu, Y Xiang, and W Zhou. Identifying propagation sources in networks:

State-of-the-art and comparative studies. IEEE Commun. Surveys Tuts., 19(1), 2017.

[18] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective

vulnerability identification by learning comprehensive program semantics via graph neural

networks. Advances in neural information processing systems, 32, 2019.

[19] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang,

Yansong Feng, Lizhong Bian, and Zheng Wang. Combining graph-based learning with au-

tomated data collection for code vulnerability detection. IEEE Transactions on Information

Forensics and Security, 16:1943–1958, 2020.

[20] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning

based vulnerability detection: Are we there yet? IEEE Transactions on Software Engineer-

ing, 48(9):3280–3296, 2022. doi: 10.1109/TSE.2021.3087402.

[21] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier De Vel, Paul Montague, and Yang Xi-

ang. Software vulnerability discovery via learning multi-domain knowledge bases. IEEE

Transactions on Dependable and Secure Computing, 18(5):2469–2485, 2019.

[22] Peng Zeng, Guanjun Lin, Lei Pan, Yonghang Tai, and Jun Zhang. Software vulnerability

analysis and discovery using deep learning techniques: A survey. IEEE Access, 8:197158–

197172, 2020.

[23] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham

Tabik, Alberto Barbado, Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard Ben-

jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities

and challenges toward responsible ai. Information fusion, 58:82–115, 2020.

[24] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

Advances in neural information processing systems, 30, 2017.

85

[25] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explain-

ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[26] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. Lemna: Ex-

plaining deep learning based security applications. In proceedings of the 2018 ACM SIGSAC

conference on computer and communications security, pages 364–379, 2018.

[27] Boris Babic, Sara Gerke, Theodoros Evgeniou, and I Glenn Cohen. Beware explanations

from ai in health care. Science, 373(6552):284–286, 2021.

[28] Anshul Tanwar, Hariharan Manikandan, Krishna Sundaresan, Prasanna Ganesan, Sathish Ku-

mar Chandrasekaran, and Sriram Ravi. Multi-context attention fusion neural network for

software vulnerability identification. arXiv preprint arXiv:2104.09225, 2021.

[29] Litao Li, Steven HH Ding, Yuan Tian, Benjamin CM Fung, Philippe Charland, Weihan Ou,

Leo Song, and Congwei Chen. Vulanalyzer: Explainable binary vulnerability detection with

multi-task learning and attentional graph convolution. ACM Transactions on Privacy and

Security, 2023.

[30] Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui. Attention

interpretability across nlp tasks. arXiv preprint arXiv:1909.11218, 2019.

[31] Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pages 3543–3556, 2019.

[32] MITRE Corporation. CWE-1000: Research concepts, 2022. URL https://cwe.

mitre.org/data/definitions/1000.html. Accessed: 2022-09-01.

[33] Alun Preece, Dan Harborne, Dave Braines, Richard Tomsett, and Supriyo Chakraborty.

Stakeholders in explainable ai. arXiv preprint arXiv:1810.00184, 2018.

[34] David Gunning. Explainable artificial intelligence (xai): technical report defense advanced

research projects agency darpa-baa-16-53. DARPA, Arlington, USA, 2016.

86

https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html

[35] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial

intelligence, 267:1–38, 2019.

[36] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[37] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[38] L. Developers. Clang, 2019. [Online]. Available: clang.llvm. org.

[39] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for increasing

greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE international confer-

ence on automated software engineering, pages 475–485, 2018.

[40] Oliver Ferschke, Iryna Gurevych, and Marc Rittberger. Flawfinder: A modular system for

predicting quality flaws in wikipedia. In CLEF (Online Working Notes/Labs/Workshop),

pages 1–10, 2012.

[41] Daniel Persson and Dejan Baca. Software security analysis: Managing source code audit,

2004.

[42] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw. Its4: A static vulnerability

scanner for c and c++ code. In Proceedings 16th Annual Computer Security Applications

Conference (ACSAC’00), pages 257–267. IEEE, 2000.

[43] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and YuQian Zhou.

Evaluating static analysis defect warnings on production software. In Proceedings of the 7th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineer-

ing, pages 1–8, 2007.

[44] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed

representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):

1–29, 2019.

87

[45] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun

Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for program-

ming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[47] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V

Le. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in

neural information processing systems, 32, 2019.

[48] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-

former. arXiv preprint arXiv:2004.05150, 2020.

[49] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,

Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:

Transformers for longer sequences. arXiv preprint arXiv:2007.14062, 2021.

[50] Hazim Hanif and Sergio Maffeis. Vulberta: Simplified source code pre-training for vulnera-

bility detection. In 2022 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2022.

[51] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan

Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code represen-

tations with data flow. arXiv preprint arXiv:2009.08366, 2020.

[52] Zishuo Ding, Heng Li, Weiyi Shang, and Tse-Hsun Chen. Towards learning generalizable

code embeddings using task-agnostic graph convolutional networks. ACM Transactions on

Software Engineering and Methodology, 2022.

[53] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. Vuldeelocator:

a deep learning-based fine-grained vulnerability detector. IEEE Transactions on Dependable

and Secure Computing, 19(4):2821–2837, 2021.

88

[54] MITRE Corporation. The common weakness enumeration community, 2006. URL https:

//cwe.mitre.org/community/.

[55] Jun Huang, Zerui Wang, Ding Li, and Yan Liu. The analysis and development of an xai

process on feature contribution explanation. In 2022 IEEE International Conference on Big

Data (Big Data), pages 5039–5048, 2022. doi: 10.1109/BigData55660.2022.10020313.

[56] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional net-

works: Visualising image classification models and saliency maps. CoRR, abs/1312.6034,

2014.

[57] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework

for model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

[58] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning

deep features for discriminative localization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2921–2929, 2016.

[59] Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-cam: Class activation map

using principal components. In 2020 International Joint Conference on Neural Networks

(IJCNN), pages 1–7. IEEE, 2020.

[60] Jacobgil. Jacobgil/pytorch-grad-cam: Advanced ai explainability for computer vision. sup-

port for cnns, vision transformers, classification, object detection, segmentation, image simi-

larity and more. URL https://github.com/jacobgil/pytorch-grad-cam.

[61] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian.

Grad-cam++: Generalized gradient-based visual explanations for deep convolutional net-

works. In 2018 IEEE winter conference on applications of computer vision (WACV), pages

839–847. IEEE, 2018.

[62] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and Biao Li. Axiom-

based grad-cam: Towards accurate visualization and explanation of cnns. arXiv preprint

arXiv:2008.02312, 2020.

89

https://cwe.mitre.org/community/
https://cwe.mitre.org/community/
https://github.com/jacobgil/pytorch-grad-cam

[63] Rachel Lea Draelos and Lawrence Carin. Hirescam: Faithful location representation in visual

attention for explainable 3d medical image classification. arXiv preprint arXiv:2011.08891,

2020.

[64] Jaspreet Singh, Megha Khosla, Wang Zhenye, and Avishek Anand. Extracting per query

valid explanations for blackbox learning-to-rank models. In Proceedings of the 2021 ACM

SIGIR International Conference on Theory of Information Retrieval, pages 203–210, 2021.

[65] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural

network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

[66] Stefan Blücher, Johanna Vielhaben, and Nils Strodthoff. Preddiff: Explanations and interac-

tions from conditional expectations. Artificial Intelligence, 312:103774, 2022.

[67] Harold William Kuhn and Albert William Tucker. Contributions to the Theory of Games,

volume 2. Princeton University Press, 1953.

[68] Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation

under uncertainty. Advances in Neural Information Processing Systems, 32, 2019.

[69] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box

supervised learning models, 2016. URL https://arxiv.org/abs/1612.08468.

[70] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The

Annals of Statistics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https:

//doi.org/10.1214/aos/1013203451.

[71] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking inside the black

box: Visualizing statistical learning with plots of individual conditional. page 23.

[72] Qinghua Lu, Liming Zhu, Jon Whittle, and James Bret Michael. Software engineering for

responsible ai. Computer, 56(4):13–16, 2023. doi: 10.1109/MC.2023.3242055.

[73] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the quality

of machine learning explanations: A survey on methods and metrics. Electronics, 10(5):593,

2021.

90

https://arxiv.org/abs/1612.08468
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

[74] Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and Weng-

Keen Wong. Too much, too little, or just right? ways explanations impact end users’ mental

models. In 2013 IEEE Symposium on visual languages and human centric computing, pages

3–10. IEEE, 2013.

[75] Sayantan Polley, Rashmi Raju Koparde, Akshaya Bindu Gowri, Maneendra Perera, and An-

dreas Nuernberger. Towards trustworthiness in the context of explainable search. In Pro-

ceedings of the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 2580–2584, 2021.

[76] M Hariharan, Anshul Tanwar, Krishna Sundaresan, Prasanna Ganesan, Sriram Ravi,

R Karthik, et al. Proximal instance aggregator networks for explainable security vulnera-

bility detection. Future Generation Computer Systems, 134:303–318, 2022.

[77] Leonhard Applis, Annibale Panichella, and Arie van Deursen. Assessing robustness of

ml-based program analysis tools using metamorphic program transformations. In 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

1377–1381. IEEE, 2021.

[78] Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and Mo-

hammad Amin Alipour. On the generalizability of neural program models with respect to

semantic-preserving program transformations. Information and Software Technology, 135:

106552, 2021.

[79] Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained models of

code. In Proceedings of the 44th International Conference on Software Engineering, pages

1482–1493, 2022.

[80] Rishab Sharma, Fuxiang Chen, Fatemeh Fard, and David Lo. An exploratory study on code

attention in bert. In Proceedings of the 30th IEEE/ACM International Conference on Program

Comprehension, pages 437–448, 2022.

91

[81] Angelo Sotgiu, Maura Pintor, and Battista Biggio. Explainability-based debugging of ma-

chine learning for vulnerability discovery. In Proceedings of the 17th International Confer-

ence on Availability, Reliability and Security, pages 1–8, 2022.

[82] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun

Wu. Vulsniper: Focus your attention to shoot fine-grained vulnerabilities. In IJCAI, pages

4665–4671, 2019.

[83] Wei Zheng, Jialiang Gao, Xiaoxue Wu, Yuxing Xun, Guoliang Liu, and Xiang Chen. An

empirical study of high-impact factors for machine learning-based vulnerability detection. In

2020 IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF), pages 26–34, 2020.

doi: 10.1109/IBF50092.2020.9034888.

[84] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural infor-

mation processing systems, 2017.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[86] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Proceed-

ings of the 19th international conference on World wide web, pages 571–580, 2010.

[87] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals

of Data Science, 2(2):165–193, 2015.

[88] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663),

2009.

[89] Charles Jin and Martin Rinard. Evidence of meaning in language models trained on pro-

grams. arXiv preprint arXiv:2305.11169, 2023.

[90] Junfeng Tian, Wenjing Xing, and Zhen Li. Bvdetector: A program slice-based binary

code vulnerability intelligent detection system. Information and Software Technology, 123:

106289, 2020.

92

[91] El Habib Boudjema, Sergey Verlan, Lynda Mokdad, and Christèle Faure. Vyper: Vulnerabil-

ity detection in binary code. Security and Privacy, 3(2):e100, 2020.

[92] Sean Heelan and Agustin Gianni. Augmenting vulnerability analysis of binary code. In

Proceedings of the 28th Annual Computer Security Applications Conference, pages 199–208,

2012.

[93] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. Transactions of the Association for Computational Lin-

guistics, 5:135–146, 2017.

[94] Alexey Svyatkovskiy, Vadim Zaytsev, and Neel Sundaresan. Semantic source code mod-

els using identifier embeddings. In 2019 IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 554–565. IEEE, 2019.

[95] Pablo Loyola, Bartosz Matzger, and Gregor Schiele. Import2vec learning embeddings for

software libraries. In 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 1106–1108. IEEE, 2019.

[96] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-

sentations of words and phrases and their compositionality. Advances in neural information

processing systems, 26, 2013.

[97] OpenAI. Gpt-4 technical report, 2023.

[98] Ding Li, Yan Liu, Jun Huang, and Zerui Wang. A trustworthy view on explainable artifi-

cial intelligence method evaluation. Computer, 56(4):50–60, 2023. doi: 10.1109/MC.2022.

3233806.

[99] Xue Yuan, Guanjun Lin, Yonghang Tai, and Jun Zhang. Deep neural embedding for soft-

ware vulnerability discovery: Comparison and optimization. Security and Communication

Networks, 2022:1–12, 2022.

[100] Mamdouh Alenezi, Mohammed Zagane, and Yasir Javed. Efficient deep features learning for

93

vulnerability detection using character n-gram embedding. Jordanian Journal of Computers

and Information Technology (JJCIT), 7(01), 2021.

[101] Gong Jie, Kuang Xiao-Hui, and Liu Qiang. Survey on software vulnerability analysis method

based on machine learning. In 2016 IEEE first international conference on data science in

cyberspace (DSC), pages 642–647. IEEE, 2016.

[102] Zhou Zhou, Lili Bo, Xiaoxue Wu, Xiaobing Sun, Tao Zhang, Bin Li, Jiale Zhang, and Sicong

Cao. Spvf: security property assisted vulnerability fixing via attention-based models. Empir-

ical Software Engineering, 27(7):171, 2022.

[103] Junae Kim, David Hubczenko, and Paul Montague. Towards attention based vulnerabil-

ity discovery using source code representation. In Artificial Neural Networks and Machine

Learning–ICANN 2019: Text and Time Series: 28th International Conference on Artificial

Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part IV 28, pages

731–746. Springer, 2019.

[104] Yi Mao, Yun Li, Jiatai Sun, and Yixin Chen. Explainable software vulnerability detection

based on attention-based bidirectional recurrent neural networks. In 2020 IEEE International

Conference on Big Data (Big Data), pages 4651–4656. IEEE, 2020.

[105] Terence Parr. The definitive antlr 4 reference. [sl]: Pragmatic bookshelf, 2013.

9781934356999. Citado na, page 22.

[106] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–30, 1970.

[107] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph and its

use in optimization. ACM Transactions on Programming Languages and Systems (TOPLAS),

9(3):319–349, 1987.

[108] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh

Phung. Regvd: Revisiting graph neural networks for vulnerability detection. In 2022

IEEE/ACM 44th International Conference on Software Engineering: Companion Proceed-

ings (ICSE-Companion), pages 178–182, 2022. doi: 10.1145/3510454.3516865.

94

[109] Han Yan, Senlin Luo, Limin Pan, and Yifei Zhang. Han-bsvd: a hierarchical attention net-

work for binary software vulnerability detection. Computers & Security, 108:102286, 2021.

[110] Yan Wang, Peng Jia, Xi Peng, Cheng Huang, and Jiayong Liu. Binvuldet: Detecting vulner-

ability in binary program via decompiled pseudo code and bilstm-attention. Computers &

Security, 125:103023, 2023.

[111] Senthil Mani, Anush Sankaran, and Rahul Aralikatte. Deeptriage: Exploring the effective-

ness of deep learning for bug triaging. In Proceedings of the ACM India joint international

conference on data science and management of data, pages 171–179, 2019.

[112] Michael L Collard, Michael John Decker, and Jonathan I Maletic. srcml: An infrastructure

for the exploration, analysis, and manipulation of source code: A tool demonstration. In 2013

IEEE International conference on software maintenance, pages 516–519. IEEE, 2013.

[113] Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya,

and Partha Talukdar. Incorporating syntactic and semantic information in word embed-

dings using graph convolutional networks. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages 3308–3318, Florence, Italy, July 2019.

Association for Computational Linguistics. doi: 10.18653/v1/P19-1320. URL https:

//aclanthology.org/P19-1320.

[114] Yahui Chen. Convolutional neural network for sentence classification. Master’s thesis, Uni-

versity of Waterloo, 2015.

[115] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[116] Kenneth Ward Church. Word2vec. Natural Language Engineering, 23(1):155–162, 2017.

[117] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[118] Yao Li, Tao Zhang, Xiapu Luo, Haipeng Cai, Sen Fang, and Dawei Yuan. Do pre-

trained language models indeed understand software engineering tasks? arXiv preprint

arXiv:2211.10623, 2022.

95

https://aclanthology.org/P19-1320
https://aclanthology.org/P19-1320

[119] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Pearson Education, 2006.

[120] Software Assurance Reference Dataset (SARD). Juliet test suite for C/C++ and Java. Tech-

nical report, National Institute of Standards and Technology (NIST), 2019.

[121] MITRE Corporation. Cwe top 25 list 2023, 2023. URL https://cwe.mitre.org/

top25/archive/2023/2023_top25_list.html. Accessed: [insert date you ac-

cessed the link].

[122] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi

Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the IEEE international conference on computer vision,

pages 618–626, 2017.

[123] Allen Institute for AI. Github - allenai/s2search: The semantic scholar search reranker., 2020.

URL https://github.com/allenai/s2search.

[124] Jeff Williams and Dave Wichers. The OWASP benchmark project. In Open Web Application

Security Project (OWASP), 2019.

[125] Gili Draper, Jonah Buchanan, Brett Hutchinson, Feiyi Liu, and Erica Dietrich. Automated

vulnerability detection in source code using deep representation learning. In 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA), pages 757–762.

IEEE, 2018.

[126] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-

age recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

96

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://github.com/allenai/s2search

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objective
	Contribution
	Outline
	Publications

	Background
	Explainable AI (XAI) Techniques
	Software Vulnerabilities Detection
	Common Weakness Enumeration (CWE) Type

	Related Work
	Model-Agnostic XAI Taxonomy
	XAI Feature Importance Explanation Methods
	Evaluation of XAI Methods
	XAI-based Vulnerability Analysis

	Feature Importance XAI Explanation
	Explanation on Features
	XAI Evaluation Metrics
	Define Explanation Consistency
	Define Explanation Stability
	Analyze Time Complexity

	Developing a New XAI Method - Mean-Centroid PredDiff
	Phase 1: Compute Prediction Difference under Feature Masking
	Phase 2: Compute Feature Contribution Values
	Phase 3: Convert to Feature Importance Order
	Asymptotic Analysis on Time Complexity

	The Framework's Application: Assessing Contributing Factors of Code Vulnerability Classification
	Taxonomy of Related Work
	Text-based Code Representation and Feature Types
	Graph-based Code Representation and Feature Types
	Other Code Representations and Their Feature Types

	An XAI-based Framework for Software Vulnerability Contribution Factor Assessment
	The Graph Context Extraction of Program Code
	Embedding by Graph Convolutional Networks
	Multi-Classification of CWE Types
	Feature Masking
	Integrating XAI methods in Multi-Classification

	CWE Similarity Summary and Validation
	Summary of XAI-based CWE Similarity
	CWE Similarity Validation

	Extending the XAI-based Framework for Textual-based Feature Contribution Assessment
	Feature Representation
	Multi-Classification of CWE Types
	Feature Variation
	Execute XAI Methods

	Experiments and Analysis
	Research Questions
	Dataset
	Selecting XAI Methods
	Ranking the Importance of Syntactic Constructs in AST (RQ1)
	Validating CWE Similarity against Expert-defined Baseline (RQ2)
	Assessing the Influence of Textual-based Features (RQ3)

	Retrospection of Similar CWE Code Sample Siblings
	A Detailed Showcase of CWE23 and CWE36
	Constructs Ranking Examples of Four CWE Sibling Pairs

	Comparative Analysis of The Findings with Existing Research

	Threats to validity
	Conclusion
	Appendix My Appendix
	Evaluating XAI Methods Through Three Case Studies
	Select XAI Method Based on XAI Goal
	Case Study i, Academic Paper Ranking
	Case Study ii, Code Vulnerability Classification
	Case Study iii, Image Classification
	Evaluation Conclusion

	Analysis of CWE Sibling Pairs with Constructs Ranking

	Bibliography

