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Abstract 

A Non-Uniform Cellular Automata Approach for the 

Optimization of Truss structures 

 

Mohamed EL Bouzouiki, Ph.D.  

Concordia University, 2023 

 

Cellular automata (CA) paradigm has been successfully applied to solve the topology 

and sizing optimization problems of truss structures and continuum bodies.  In a 

conventional uniform Cellular Automata (CA) model, a unit cell's behavior is updated 

based on information from its eight immediate neighboring nodes (in 2D 

configuration). However, this neighborhood system may not always be suitable for 

representing real truss structures. To address this limitation, a non-uniform CA 

approach has been proposed in this research study for the optimization of truss 

structures. 

The proposed non-uniform CA approach is based on non-identical cells, each of which 

is defined by a center node and members connecting the center node of the cell to all 

other nodes in its immediate neighborhood. This differs from the Moore neighborhood 

concept used in the conventional uniform CA approach, which only considers the eight 

immediate neighboring nodes. It has been shown that the proposed non-uniform CA 

approach provides a more realistic representation of truss structures and improves the 

optimization process.  

Moreover, conventional CAs rely on a fixed grid, thus with respect to design 

optimization of discrete structures,  they can only be used for sizing and topology of 

the structure while the layout optimization cannot be conducted as the coordinates of 

the nodes remain unchanged throughout the optimization process.   In this research 

study, a novel non-uniform CA design optimization algorithm has been formulated to 

solve the general problem of topology, sizing and layout optimization of truss 

structures subject to both stress and displacement constraints. Several benchmark case 

studies have been provided to demonstrate the efficiency and accuracy of the proposed 

design optimization methodology. 
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CHAPTER 1                                                                           

Introduction and Scope of Dissertation 

 

1.1 Introduction and motivation 

Structural optimization refers to the process of designing structures that meet specific 

criteria in a manner that is efficient, safe, and cost-effective [1]. This type of design 

process seeks the most efficient solutions for structures, materials, and components 

that satisfy all design and functional requirements while ensuring safety. 

As a multi-disciplinary field, structural optimization combines engineering analysis, 

material science knowledge, and advanced optimization techniques to find the most 

efficient design solutions that meet all design requirements [2]. In this regard, finite 

element analysis and other numerical techniques are used to evaluate the structural 

performance of a design under various loading conditions [1]. Additionally, 

optimization algorithms are incorporated in order to optimize the design parameters 

of a structure to meet given objectives [2]. 

Structural optimization has gained significant attention in recent years. The origins of 

this discipline can be traced back to 1904, when Michell published his ground-breaking 

work on the topology optimization of truss structural systems. Despite this early start, 

it took several decades for the technique to become a commonly used design tool. The 

advent of high-performance computing has revolutionized the field of structural 

optimization, allowing engineers and researchers to tackle complex optimization 

problems with ease using two popular methods to solve these problems - mathematical 

programming methods based on the calculation of gradients of the objective and 

constraint functions, and optimality criteria methods that derive conditions that 

characterize an optimal solution. Mathematical programming methods, such as Linear 

Programming (LP), Non-linear Programming (NLP), Integer Programming (IP), and 

Dynamic Programming (DP), calculate the gradients of the objective and constraint 

functions to determine the direction of the optimization. LP and NLP are used to find 

the optimal solution to linear and non-linear problems. IP is used to find the optimal 

solution to linear or non-linear problems subjected to linear or non-linear constraints 

in which some variables restricted to take only integer values. DP is used to find the 
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optimal solution to a problem that can be broken down into a sequence of smaller 

problems. However, these mathematical programming methods have limitations for 

solving large structural systems with many design variables and multiple constraints. 

This has led to the need for more robust methods that have the ability to find global 

optima when solving large non-convex structural optimization problems. This is where 

optimality criteria methods come into play. These methods use iterative techniques to 

change the design until optimal conditions are met, and have proven to be highly 

effective in solving structural optimization problems. 

Heuristic methods have become an increasingly popular tool in the field of structural 

optimization in recent years, offering a quick and effective approach to solving complex 

design problems. Heuristic methods are problem-solving strategies that use rules of 

thumb, intuition, or experience to find a solution that is good enough for a given 

purpose [3]. In the context of structural optimization, heuristics involve using trial-

and-error approaches or metaheuristics to find near-optimal or optimal solutions with 

relatively little computational effort. 

One commonly used heuristic method in structural optimization is the genetic 

algorithm (GA), which is based on the principles of natural selection and evolution and 

generates a population of potential solutions to find the best one [9]. The method 

involves representing the structure using binary strings and applying a crossover and 

mutation operator to generate new solutions. GAs have been used to optimize various 

types of structures, including trusses, beams, and plates [3].  

Particle Swarm Optimization (PSO) is another popular metaheuristic technique, which 

is a population-based optimization algorithm that mimics the behavior of bird flocking 

or fish schooling to identify the best solutions. Each particle represents a potential 

solution, and, guided by the best solutions found so far, the algorithm iteratively 

updates a swarm of particles that move in the search space to find the global optimum 

[4, 10].  

Simulated Annealing (SA) is a metaheuristic algorithm that is inspired by the 

annealing process used in metallurgy. It uses a temperature-controlled process to 

explore a wide range of solutions while avoiding getting stuck in local optima [11]. 

The Ant Colony Optimization algorithm is based on the behavior of ants searching for 

food. As ants move, they lay down pheromone trails that other ants follow. The 
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pheromone trail's strength increases with the amount of food found, and over time, the 

ants converge on the optimal solution. The algorithm simulates this behavior by 

constructing solutions by following the pheromone trails and updating the trail 

strength according to the quality of the solutions found. This way, the algorithm 

gradually improves the solution until it converges to an optimal solution [12].  

Heuristics have been shown to be effective in solving complex structural optimization 

problems, often yielding results that are comparable to traditional optimization 

methods [3]. They are capable of handling the nonlinear and nonconvex nature of the 

problem and exploring a wide search space to find near-global optimal solutions [8]. 

Furthermore, they offer several advantages, including the ability to handle design 

problems with multiple objectives and constraints, the ability to find near-global 

optimal solutions in a relatively short time, and the ease of implementation without 

any need for gradients of objective and constraint functions [4]. Another advantage of 

metaheuristic techniques is their ability to handle multi-objective optimization 

problems, where multiple conflicting objectives need to be considered, and can also be 

combined with other optimization methodologies like gradient-based optimization to 

enhance the accuracy of the results and efficiency of the overall optimization process. 

Additionally, metaheuristic techniques can be parallelized to improve the 

computational efficiency, which is useful for large-scale truss structures. 

However, these techniques still have the drawbacks of slow convergence rate and the 

need of high number of structural analyses.  These shortcomings have led the 

researchers in the last decade to investigate cellular automata paradigm (CA) to solve 

structural optimization problems and this trend has opened a wide range of new 

possibilities that were never before achievable in structural optimization. 

The concept of CA dates back to the 1940s when John von Neumann and his colleagues 

proposed the idea of building self-replicating machines, which laid the foundation for 

the development of CA [13]. However, it was not until 1970 that mathematician John 

Conway created the Game of Life, which is one of the most well-known examples of CA 

[14]. Since the creation of the Game of Life, many other types of CA have been 

developed and applied to various fields. In physics, CA have been used to simulate the 

behavior of fluids, gases, and other physical systems [15]. In computer science, CA have 

been used in the design of algorithms and in parallel computing [16]. In social sciences, 

CA have been used to model population behavior and the spread of diseases [17]. 
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Cellular automata (CA) is a type of algorithm that simulates the behavior of complex 

systems through simple rules that govern the behavior of individual cells in a grid or 

lattice. Each cell's state is updated based on the states of its neighboring cells, following 

a set of predetermined rules that dictate how the system evolves over time. 

In the case of structural optimization, CA can be used to simulate the stress and strain 

propagation in a structure and determine its equilibrium state under different loads. 

The goal is to find the optimal distribution of materials or design parameters that 

minimize the weight or cost of the structure while satisfying the required constraints 

[18]. CA-based structural optimization involves dividing the structure into a grid of 

cells and assigning each cell a set of parameters that determine its size, shape, and 

material properties. The state of each cell represents the local stress and strain at that 

point, which is subsequently updated based on the conditions of neighboring cells. The 

rules that govern the behavior of the cells are determined by a fitness function that 

measures the structural performance, such as the total weight or the maximum stress 

level [19]. Through iterations of the CA algorithm, the system evolves toward an 

equilibrium state that minimizes the fitness function. At each iteration, the cells' 

parameters are adjusted based on the updated stress and strain values, and the fitness 

function is re-evaluated. This process is repeated until the system converges to a stable 

state, which represents the optimized design [20]. 

CA-based structural optimization has been applied to various types of structures, 

including trusses, frames, and shells [21]. The method has shown promising results in 

reducing the weight and cost of structures while maintaining their strength and 

stiffness. However, the computational cost of CA-based optimization can be high, as 

the number of cells and iterations required to reach a stable solution increase with the 

complexity of the structure [22]. 

Cellular automata (CA) are highly versatile in their ability to model complex behavior 

through the use of simple rules. Despite the significant amount of memory and 

processing power required for simulating complex systems [23], the parallel 

computation capabilities of CA make them a valuable tool in various fields of research. 

As computational power continues to increase, CA are becoming highly suitable for 

solving large structural optimization problems. 
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1.2 Optimization of truss structures 

Truss structure optimization is a subfield of structural optimization that specifically 

deals with optimizing truss structures. A truss is a structure made of interconnected 

members carrying only tension and compression and is widely used in engineering and 

construction including bridges, towers, and buildings, because of its high strength-to-

weight ratio and material efficiency and ease of assembly [5, 6].  

The objective of truss structural optimization is to find the optimal connections, 

member sizes, and truss shape that minimize weight and/or cost while maintaining or 

improving strength and stability [5]. Cost is often a significant factor in truss design 

and it is important to minimize costs while maintaining or improving performance. 

This can be done by using lower-cost materials or simplifying the truss design to reduce 

weight. The optimization process begins with a truss design, which is then analyzed 

using numerical methods such as finite element method to determine its strength and 

stability. The results of this analysis are used to identify areas of improvement, by 

either changing the truss configuration or using different materials [5]. 

The aforementioned optimization techniques discussed in section 1.1, including 

mathematical programming, gradient-based optimization, heuristic optimization, and 

others can be effectively employed for optimizing truss structures. These techniques 

allow for the optimization of various structural parameters, such as material 

properties, geometric dimensions, and load conditions. 

The weight minimization problem of 2-d and 3-d elastic truss structures can be 

achieved by the solution of three different optimization sub-problems: Topology, 

Sizing and Layout optimization. Topology optimization is a design approach that aims 

to find the most efficient and structurally sound truss configuration, by optimizing the 

arrangement of nodes and bars in the structure. This is achieved by iteratively 

removing unnecessary material or structural members from an initial design, while 

preserving the overall stiffness and strength of the structure.  The optimization process 

typically starts with an initial design of truss structure, which include a set of truss 

members and nodes. The optimization algorithm then seeks to minimize a given 

objective function, such as the weight of the structure or the compliance of the system 

under certain loads, subject to constraints on the maximum allowable stresses and 

displacements. The algorithm removes elements that do not contribute significantly to 



6 

 

the objective and constraint functions, resulting in a new design iteration that is either 

stiffer and/or lighter than the previous one. 

Another design approach is sizing optimization, which generally aims to optimize the 

cross-sectional area of each member of a truss structure to minimize its weight, while 

satisfying certain constraints such as maximum allowable stresses, deflections and 

frequencies. The process typically starts with an initial design of the truss structure, 

which includes a set of member cross-sectional areas. The optimization algorithm is 

then used to iteratively adjust the cross-sectional areas of the members, with the goal 

of minimizing the weight of the structure while satisfying the required constraints. 

Finally, the aim of the layout optimization is to find the optimal coordinates of each 

node within the structure. Simultaneous size, topology and lay optimization is a very 

challenging task, which will result in an optimal design superior to each sub-problem. 

It is important to carefully consider constraints and related boundary conditions 

during the optimization process, maintain a minimum level of strength or stability, or 

to meet specific weight or cost requirements [7]. The manufacturing process and 

assembly of the structure should also be considered, as more efficient techniques, such 

as additive manufacturing, and cost-effective materials can be used [6]. 

A general design optimization problem for truss structures subject to stress and 

displacement constraints can be formally expressed as follows: 

 

                                            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑊(𝑃) = ∑ 𝜌𝑗𝐴𝑗𝐿𝑗
𝑚
𝑗=1                                                   (1a) 

                                            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑲𝒖 = 𝒇                                                                        (1b) 

                         | 𝜎𝑗| < 𝜎𝑗  ,        𝑗 = 1,2, ⋯ , 𝑚                                                (1c) 

    |𝑢𝑖| < 𝑢̅𝑖  ,        𝑖 = 1,2, ⋯ , 𝑘                                                 (1d) 

                                                     𝐴̅𝑙  <   𝐴𝑗 < 𝐴̅𝑢 ,        𝑗 = 1,2, ⋯ , 𝑚                                                    (1e) 

 

Equation (1a) defines the objective function. Aj are the design variables, which are 

considered to be the cross-sectional area of the truss members and m is the total 

number of bar members in the structure.  

Equation (1b) is an equality constraint (stiffness equation) stating the equilibrium 

condition. K is the stiffness matrix, u is the vector of nodal displacements and  f  is the 

vector of nodal forces. Equations (1c) and (1d) are inequality constraints defining the 
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stress and displacement constraints with 𝜎𝑗 and 𝑢̅𝑖  being the allowable stresses and 

allowable displacements, respectively, and equation (1e) defines the search space for 

the minimum weight design where 𝐴̅𝑢 and, 𝐴̅𝑙  are the upper and lower bounds on the 

cross-sectional areas, respectively.  

Member cross-sectional areas are either continuous or, selected from a catalogue of 

available sections and the lower bound is chosen to ensure that the kinematic stability 

of the structure is maintained during the optimization process. Solving for topology 

and sizing consists of minimizing the truss weight by determining the optimal member 

cross-sectional areas so that the stresses in the truss members do not exceed the 

allowable stress, the nodal displacements are less than the allowable displacement, and 

the external loads do not cause a loss of stability of the structure.  In this study, topology 

optimization has been implemented within the sizing optimization problem by 

removing members having cross-sectional area equal to their lower bound in the final 

optimal configuration. 

When Layout optimization is also considered, nodes’ coordinates are added to the 

design space beside the cross-sectional areas. Sizing and layout optimization problems 

have been extensively studied and numerous methods have been used to solve this 

optimization problem. These include mathematical programming methods, Optimality 

Criteria (OC) methods, Heuristic techniques and Fully Stressed Design (FSD) and Fully 

Utilized methods (FUD).  

 

1.3 Convexity Considerations in Truss Optimization problems 

Convex optimization is the process of minimizing a convex objective function while 

satisfying a set of convex constraints. In truss weight optimization, the concept of 

convexity plays a vital role in determining the feasibility and efficiency of the 

optimization procedure. Convexity ensures that both the objective function and the 

constraints possess convex properties, which enables the utilization of efficient 

algorithms to find globally optimal truss designs. However, determining the convexity 

of a truss optimization problem can be complex and depends on various factors, such 

as the design variables, objective function, and constraints involved. Therefore, it is 

important to carefully consider the choice of structural analysis models and design 

constraints to ensure convexity, and to do so, one has to analyze the convexity 
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conditions specific to each type of truss optimization problem to ascertain its feasibility 

and efficiency.   

It is important to note that while expressing optimization problems as convex 

optimization problems offers significant advantages in terms of optimization efficiency 

and global optimality guarantees, it can be sometimes a challenging task due to the 

nature of the problem at hand. Ongoing advancements in convex optimization 

techniques and the exploration of nonconvex approaches continue to contribute to the 

advancement the field of optimization of truss structures. 

 

1.4 Cellular automata for design optimization of truss 

structures 

Cellular Automata (CA) are mathematical models that have been inspired by biological 

systems and are used to simulate complex systems based on local information and 

simple rules. These models are discrete, dynamic, and spatially extended, which means 

they operate on a set of discrete states and update their states over time based on their 

neighboring states. The use of CA models has been successfully implemented in various 

fields such as physics, biology, computer science, and social sciences to simulate and 

predict the behavior of complex systems [23]. 

In a typical CA model, the physical domain is divided into a lattice of uniform cells. A 

state vector that describes its local behavior and can represent various characteristics 

such as the cell energy, density, temperature, or any other variable relevant to the 

system being modeled characterizes each cell. The state of each cell in the domain is 

updated based on local transition rules that consider the states of the cell neighbors. 

These transition rules determine how the state of a cell changes in response to the state 

of its neighbors [24]. 

The two major features of conventional CA models are locality and homogeneity. 

Locality refers to the fact that behavior of each cell is determined by the states of its 

immediate neighbors, while homogeneity refers to the fact that all cells in the lattice 

have the same state of transition rules. These features make CA models highly efficient 

and computationally tractable, enabling the simulation of large-scale complex systems 

[25]. 
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An example of a conventional uniform CA lattice structure, and the representation of 

the unit cell, is shown in Figure 1. 

 

 

Figure 1. A uniform CA representation of a two-dimensional truss structure and the 
representation of a unit cell 

 

Considering Figure 1, in a conventional uniform Cellular Automata (CA) model, the 

behavior of a unit cell is updated based on the information from its eight immediate 

neighboring nodes, also known as the "Moore neighborhood" [132]. However, this 

neighborhood system may not always be suitable for representing real truss structures. 

To address this limitation, a non-uniform CA approach has been proposed in this 

research study for the optimization of truss structures. 

 

1.5 Research scope and objectives 

In the past, Cellular Automata (CA) has been used successfully to optimize the topology 

and size of truss structures [117, 132]. However, the conventional CA algorithm is 

limited to uniform truss structures using identical cells and cannot handle 

displacement constraints, moreover they are not applicable to layout optimization 

problems. To overcome these limitations, this research study proposes a non-uniform 

CA algorithm that matches the boundary of the computational domain to that of the 

real structure, making it capable of solving topology, size, and layout optimization 

problems with stress, displacement, and local stability constraints. 

The main objective of the proposed research is to develop a non-uniform CA algorithm 

for finding the minimum weight design of truss structures. The proposed algorithm 

does not require selective assignment of cell properties, as the computational domain's 
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boundary is the same as that of the real structure. The algorithm also uses an improved 

version of the FSD/FUD at the cell level, avoiding the computation of all sensitivities 

of the design parameters at each design iteration. The analyses are embedded in the 

design optimization cycles.  The proposed CA does not rely on a fixed grid network, 

and thus by incorporating nodal coordinates into the vector of design variables, the 

proposed approach has been extended to solve the layout optimization in conjunction 

with topology and size optimization using a combination the FSD approach and a strain 

energy criterion. The developed design optimization methodology has two phases. The 

first phase involves an improved version of the FSD/FUD at the cell level to find the 

minimum weight design of 2-D and 3-D elastic truss structures subjected to 

displacement and stress constraints. In the second phase, a bi-level non-uniform CA 

algorithm optimizes cross-sectional areas and node coordinates separately to achieve 

a minimum weight while satisfying stress and displacement constraints. An alternating 

procedure couples the two types of design variables during the optimization process 

until the optimum solution is achieved.  

 

1.6 Organization of the Thesis 

The thesis is structured into six chapters, each with its own purpose and focus. Chapter 

1 serves as an introduction to the subject of structural optimization of truss structures, 

providing an overview of the various techniques that have been used to solve such 

problems and introducing the algorithm that has been implemented in this study. 

Chapter 2 is dedicated to reviewing the literature relevant to the field of structural 

design optimization, discussing recent works related to the subject matter. In Chapter 

3, proposed design optimization methodology using non-uniform CA paradigm and its 

implementation are presented.  

Chapter 4 presents the work done in the first phase of this research, which was 

published in the article entitled "A Non-Uniform Cellular Automata Framework for 

Topology and Size Optimization of Truss Structures Subjected to Stress and 

Displacement Constraints", Computers and structures, Vol. 242, 2021. This chapter 

elaborates on the implementation of the proposed non-uniform cellular automata 

algorithm and its application in solving topology and size optimization problems for 

truss structures that are subjected to stress and displacement constraints. 
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Chapter 5 presents the research work presented in the second article entitled 

"Development of a Non-Uniform Cellular Automata Framework for Sizing, Topology 

and Layout Optimization of Truss Structures", currently under final review in the 

Journal of Engineering Optimization. This chapter discusses the development of a bi-

level non-uniform cellular automata algorithm that simultaneously optimizes the 

sizing, topology, and layout of truss structures. The algorithm is demonstrated to 

effectively minimize the weight of truss structures, while satisfying stress, 

displacement, and local stability constraints. 

Finally, Chapter 6 concludes the thesis by summarizing the key findings and 

contributions of the study. The chapter also offers recommendations for future 

research directions in the field of structural optimization of truss structures. 
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Chapter 2                                                                                     

A State-of-the-Art Review 

 

 

 

2.1 Introduction 

Modern structural optimization has a rich history that dates back to the 1960s when 

mathematical programming techniques were first used to solve basic structural design 

problems. Over time, new approximation techniques have been developed and 

optimization approaches have been refined to solve more complex structural design 

problems with minimal computational cost while achieving optimal results. Today, the 

field boasts an impressive body of research that covers a broad range of structural 

optimization problems, making it a practical tool in structural design. 

One of the significant developments in the field of modern structural optimization has 

been the use of optimization methods for truss structures. Trusses are widely used in 

the construction of bridges, roofs, towers, and other structures, and optimizing their 

design has been a critical area of research. The history of the optimization of truss 

structures has been marked by continuous improvement in approximation techniques 

and optimization approaches, leading to practical applications in structural design. 

The classification of optimization methods for truss structures has provided a 

framework for solving complex design problems and achieving optimal results. The 

different methods for the optimization of truss structures can be classified into:  

 Mathematical programming (numerical search) methods [28-44, 102,104]. 

 Optimality Criteria (OC) methods [45-55]. 

 Convex approximation methods [56-64]. 

 Metaheuristic techniques such as Genetic Algorithms (GA) [65-71, 102,104], Ant 

Colony Optimization (ACO) [72-74], Guided Stochastic Search (GSS) [75-77], 

Charged System Search (CSS) [78-80], Particle Swarm Optimization (PSO) [81-

86], Simulated Annealing (SA) [87-89], Firefly Algorithm (FA) [90-92], Big 

Bang-Big Crunch optimization [93-95], Harmony search optimization [96-98] 

and differential evolution (DE)  [99-101]. 
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 Fully Stressed Design (FSD) and Fully Utilized Design methods (FUD) [108-

114]. 

Each of these optimization techniques have some limitations, which other methods 

have attempted to alleviate. Patnaik et al. [52] provided a thorough comparison 

between some of these methods, analyzing their performance in terms of 

computational efficiency and design quality. The results show that some algorithms 

are more suitable for certain types of problems and that no single algorithm is 

universally superior.   

The use of mathematical programming techniques in structural optimization started 

with Schmit's landmark paper in 1960. Schmit [28] studied a simple three-bar truss 

and showed that the minimum weight structure is not always the one in which each 

member is fully stressed. This contradicted the traditional assumption in the minimum 

weight design in which each member of the truss must be fully utilized in at least one 

load condition. This discovery led to extensive research in structural optimization. 

Dorn et al. [29] also used mathematical programming techniques in the field by 

applying a linear programming (LP) method to find the optimal layout of a truss 

structure. An assessment of the applications of mathematical programming methods 

to structural optimization during the decade from 1959 to 1969 was provided by Schmit 

[30]. 

In many structural design problems, the objective function and/or constraints are 

nonlinear in nature. Nonlinear programming (NLP) extends the capabilities of linear 

programming (LP) by allowing for the inclusion of nonlinear objective functions and 

constraints [31]. Pedersen [32] used a nonlinear programming method that employed 

gradients to solve the minimum weight design problem of plane truss structures.  

Vanderplaats and Moses [33] employed the method of feasible directions to optimize 

truss designs. This method starts with an initial feasible solution and iteratively 

explores the design space by moving in directions that satisfy the constraints and 

potentially enhance the objective function. The algorithm selects the direction that 

yields the greatest improvement and repeats the process until an optimal solution is 

found. The method of feasible directions relies on the availability of the analytic 

gradient of the objective function and the constraint functions associated with active 

constraints. 
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Adeli and Kamal [34] proposed an algorithm for optimizing the minimum weight 

design of space trusses with fixed geometry. The algorithm formulates the problem as 

a nonlinear programming (NLP) problem based on the virtual work method. The 

objective function is linear and subject to linear size and stress constraints, while the 

displacement constraints are nonlinear. 

Nonlinear Programming (NLP) problems can often be approximated as linear 

problems, allowing the use of Linear Programming (LP) methods for their solution. 

This approximation technique, called Sequential Linear Programming (SLP) [31, 35], 

involves linearizing the nonlinear objective function and constraints of an NLP 

problem at each iteration and thus, transforming the NLP problem into a series of 

linear subproblems, which can be optimized using efficient LP techniques.  

Hansen and Vanderplaats [36] proposed a truss optimization method that uses Taylor 

series expansions to approximate member forces instead of stresses and 

displacements. Pedersen and Nielsen [37] later used a sequential linear programming 

(SLP) method to minimize weight of truss structures subjected to multiple load cases 

and constraints on displacement, stress, and frequency. References [38] and [39] 

highlight recent articles that investigate the utilization of Sequential Linear 

Programming (SLP) in truss design problems. To maintain the accuracy of the 

approximate analysis during the utilization of Sequential Linear Programming (SLP), 

it is necessary to set bounds, referred to as move limits, on the allowable magnitudes 

of design changes, thus constraining the extent of modifications that can be made while 

relying on the linear approximations. 

Schmit and Farshi [40] introduced a cost-effective nonlinear approximation method 

called sequential approximate optimization, which combines the Fully Stressed Design 

(FSD) approach (explained later) for obtaining a gross material distribution and 

employs mathematical programming techniques for the detailed design. 

In a recent study, Jie and Tabatabaei [41] explore the optimization of truss structures 

under uncertain loading using non-linear programming methods. Additionally, the 

same authors, along with Akbari [42], apply non-linear programming techniques for 

the optimization of truss structures with discrete variables. A comprehensive 

examination of diverse mathematical programming methods for structural 

optimization is provided in reference [43]. 
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Mathematical programming techniques have the advantage of being general and can 

potentially be used to solve various structural optimization problems in a consistent 

manner. However, mathematical programming methods can be inefficient and 

converge to global optimum solutions with difficulty (they are generally trapped in 

local optimum point close to starting initial point), particularly for problems with a 

large number of design variables, and require the calculation of gradients of both 

objective and constraint functions which may be very difficult to obtain for most 

practical problems [44,69,70]. This limitation has led to efforts to not only looking for 

ways to improve the efficiency of these methods, but also to the development of the 

optimality criteria (OC) methods as an alternative approach to structural optimization. 

While optimality criteria methods emerged, mathematical programming techniques 

continued to improve and expand their use to a wider range of optimization problems 

such as layout optimization problems, leading to competition between the two 

methods. Unlike Mathematical Programming methods that primarily rely on 

information around the current point in the design space to find the search direction 

and how far to go in order to best reduce the weight of the structure directly. Optimality 

Criteria methods on the other hand, first establish specific conditions that characterize 

the optimal structure and subsequently, through an iterative procedure, adjust or 

modify the design to fulfill those conditions while indirectly optimizing the structure.  

These optimality criteria can be either intuitive like the Fully Stressed Design (FSD) 

approach, or derived from governing equations.  

Since their introduction in the late 1960s, Optimality Criteria methods have become a 

fundamental approach employed by designers for structural optimization. Prager's 

pioneering work [45] marked the first application of Optimality Criteria (OC) methods 

in structural optimization. He introduced an optimality criterion based on strain 

energy distribution within the optimal structure, and showed that, under stress 

constraints, if the work of the applied loads is limited as an equality constraint, the 

resulting optimum structure exhibits a uniform energy density distribution.  In the 

same year, Prager and Shield [46] introduced derivable optimality criteria methods 

that utilized variational approaches for optimizing specific continuum design 

problems. These methods presented optimality conditions expressed as differential 

equations, with their solutions describing the shape of the optimal structure. 
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Based on work of Prager et al. [45,46], Venkayya [47] presented an energy criteria 

method for designing structures subjected to static loading and proved the method to 

be extremely efficient at obtaining minimum weight structures and much faster 

compared to linear and nonlinear programming methods. Subsequently, many other 

studies have explored this efficient approach [48-50]. An assessment of the merits and 

limitations of the optimality criteria methods was provided by Patnaik [52]. The main 

drawback of OC methods is that they also require evaluation of gradients of the 

objective and constraint functions and maybe computationally inefficient even 

sometimes for modest small size problems [52]. Moreover, gradient-based methods 

are not capable of handling discrete design variables. Despite this limitation, OC 

methods continued to be popular in the field of structural optimization [53-55].   

Convex approximation methods [56-64] is another class of gradient-based methods, 

which, despite some limitations, can offer significant advantages in terms of 

optimization efficiency and global optimality is generally guaranteed.  Convex 

optimization refers to the general class of optimization problems where the objective 

function and constraints are convex. Linear programming is a specific form of convex 

optimization problem where both the objective function and constraints are linear. 

Numerous studies have been conducted on the convexity of truss weight optimization 

problems. Bendsoe and Sigmund's influential work [56] provided valuable insights 

into the convexity of such problems. They established conditions under which the 

topology optimization problem can be formulated as a convex optimization problem. 

They showed that, by assuming linear elastic material behavior and incorporating 

volume constraints, the optimization problem can be formulated as a convex problem. 

This allows for the use of efficient algorithms to find the global optimum. However, 

certain nonlinearities in the constraints or objective function can result in non-convex 

problems, requiring specialized optimization techniques. While Bendsoe and Sigmund 

[56] primarily focused on topology optimization for structures, their principles are 

applicable to other methods of truss optimization.  For sizing and shape optimization 

problems, the conditions for convexity can vary depending on the specific formulation. 

Nonlinear behaviors, additional constraints or objectives, and discrete design variables 

can all contribute to the non-convexity of the optimization problem. Kaveh and Ilchi 

Ghazaan [57] investigated the impact of design variables, objective functions, and 

constraints (e.g., stress, displacement, and buckling constraints) on the convexity of 
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truss sizing optimization problems. They provided mathematical formulations and 

conditions for determining when a truss sizing problem can be treated as a convex 

program. A comprehensive review of the convexity of structural optimization 

problems, including truss sizing optimization can be found in [58]. The authors 

discussed the fundamental concepts of convexity, convex optimization techniques, and 

various conditions for convexity. They analyzed different types of optimization 

problems, including single-objective and multi-objective problems, and explored their 

convexity properties. The review also covers convexity analysis for various structural 

systems, including truss structures, emphasizing the importance of convexity in 

improving the efficiency and reliability of optimization algorithms. It is important to 

note that most real-world truss structures may exhibit nonlinear behaviors, such as 

yielding, buckling, or other complex phenomena.  

In such cases, the optimization problem may become non-convex, and specialized 

techniques are typically employed to handle non-convexities in truss optimization 

problems. They aim to enable efficient and effective approximation and find the global 

optimum solution of the problems, either by linearizing constraints, constructing 

convex subproblems, or using quadratic approximations. One of the most popular 

techniques in handling non-convex optimization problems is the Convex Linearization 

method, commonly known as CONLIN [59]. Introduced by Fleury in 1989, CONLIN is 

specifically designed for problems characterized by nonlinear expressions in both the 

objective function and constraints. The key idea behind CONLIN is to divide the 

feasible region into multiple convex subdomains and approximate the nonlinear 

functions within each subdomain using linear functions. By performing convex 

approximations locally, the overall optimization problem can be formulated as a linear 

programming problem or a convex quadratic programming problem, which can be 

solved efficiently. CONLIN provides a trade-off between computational efficiency and 

accuracy, as the linear approximations may introduce some degree of error compared 

to the original nonlinear functions. However, it can be a valuable tool when dealing 

with complex optimization problems involving nonlinearities. 

The Method of Moving Asymptotes (MMA) [60] is an optimization technique that also 

addresses non-convex optimization problems by employing separable and convex 

approximations. MMA utilizes an iterative approach to update a set of "asymptotes" in 

order to approximate the original non-convex problem. It constructs a series of convex 



18 

 

subproblems that progressively approximate the underlying problem. By updating the 

asymptotes and solving these subproblems, the algorithm directs the search towards 

the global optimum. MMA is particularly effective in solving topology optimization 

problems. While it may be slower than OC methods for simpler compliance 

optimization problems, it demonstrates excellent convergence properties for more 

complex problems involving multiple constraints [56]. Both MMA and CONLIN rely 

on the utilization of separable and convex approximations, which constitute a 

fundamental aspect of these techniques. The separability property implies that the 

necessary optimality conditions of the subproblems do not interrelate or couple with 

each other. This characteristic has a profound impact on minimizing the computational 

effort required to solve the subproblems, particularly when dealing with optimization 

problems that involve only a small number of constraints [56]. 

Zhang and Domaszewski [61] proposed an approximation method called DQA-GMMA 

to solve non-convex truss optimization problems. it is a combination of the Diagonal 

Quadratic Approximation (DQA), which is a technique commonly used in the context 

of nonlinear programming, and the  Generalized  Method  of the  Moving  Asymptotes  

(GMMA).  The convexity and the separable form of this approximation makes it 

effective in handling sizing and shape variables concurrently and finding the globally 

optimum truss design. 

Non-convex optimization problems can sometimes be transformed into convex 

optimization problems through the introduction of supplementary variables and 

constraints. Some examples of the application of convex relaxation techniques in truss 

optimization can be found in [62-64]. 

It is important to note that the while convexity offers significant advantages in terms 

of optimization efficiency and finding the global optimum, it may impose limitations 

on the design space exploration. Some non-convex truss weight optimization problems 

with complex design constraints or nonlinear behaviors may require the use of more 

advanced optimization techniques, such as random or stochastic based search 

algorithms, also called heuristic algorithms [65-101], which have proven to be effective 

in addressing various optimization problems, especially highly nonlinear structural 

optimization problems. These methods require only function evaluations (no gradient 

requirements) and generally converge to near global optimum solution. However, 

random search algorithms often have a slow convergence rate and require a high 
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number of objective function evaluations without guaranteeing convergence towards 

global optima, especially for problems with many design variables [102-104]. This can 

make them less efficient than gradient-based methods for certain optimization 

problems. Therefore, researchers have proposed hybrid algorithms that combine 

gradient and stochastic optimization techniques to improve search accuracy and 

efficiency to catch the global optimum solution. 

Zuo et al. [105] proposed a hybrid optimization approach combining the Optimality 

Criteria (OC) and Genetic Algorithm (GA) methods to solve truss design optimization 

problems subjected to frequency constraints. The proposed approach (OC-GA) aims to 

improve the efficiency and accuracy of the optimization process by combining the 

advantages of both methods. The approach was able to catch the global optimum 

solution more efficiently compared with traditional optimization methods.  

Kaveh and Javadi [106] introduced a hybrid algorithm (HRPSO) to optimize the shape 

and size of trusses with multiple frequency constraints using a combination of 

Harmony Search (HS) and Ray Optimizer (RO) algorithms to enhance the performance 

of the Particle Swarm Optimization (PSO) algorithm. The also showed that their 

hybridized approach outperforms the others in terms of convergence speed and 

accuracy. 

Another hybrid algorithm used for optimizing truss layout has been proposed by 

Gholizadeh [107]. This method utilized the strengths of both the Particle Swarm 

Optimization (PSO) algorithm and the Cellular Automata (CA) approach to improve 

the efficiency and effectiveness of the optimization process. Overall, the combination 

of multiple optimization techniques and their integration through has showed to 

improve the optimization process, leading to better designs with improved 

performance.  

The last category of optimization techniques, which have been effectively utilized in 

structural optimization, are the FSD (Fully Stress Design) and FUD (Fully Utilized 

Design) methods [108-114].   The FSD method is effective in solving truss optimization 

problems under stress constraints; however, this methodology cannot handle 

structural optimization problems under displacement constraints. This limitation was 

actually the main reason behind the development of the NLP (Nonlinear 

Programming) and OC (Optimal Control) methods in the 1960’s. The limitation of FSD 

to address optimization problems under displacement constraints has also led to the 
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development FUD approach, which is a simple method that scales the design obtained 

from FSD uniformly to satisfy the most infeasible displacement constraint. While FUD 

can tackle structural optimization problems under both stress and displacement 

constraints, they have the drawback of producing overdesigned solutions.  

The shortcomings of aforementioned methods, have initiated the development of other 

optimization techniques. In recent decades, the exploration of artificial life simulation 

algorithms for optimization problems has been a focus of researchers. These 

algorithms, inspired by natural processes such as evolution, swarm behavior, and 

foraging, aim to understand and emulate these phenomena. Among these techniques, 

we find the commonly used metaheuristic techniques like Genetic Algorithms (GA) 

[65-71], Particle Swarm Optimization (PSO) [81-86], Ant Colony Optimization (ACO) 

[72-74], and Artificial Bee Colony (ABC) [103], which have been extensively studied 

and successfully applied in solving truss optimization problems. Another noteworthy 

approach is Cellular Automata (CA) algorithms. CA algorithms have attracted attention 

due to their effectiveness in solving not only structural optimization problems but also 

a wide range of other optimization problems. While the metaheuristic, artificial life 

simulation algorithms focus on optimization and search-based approaches, Cellular 

Automata (CA) algorithms possess unique characteristics that set them apart described 

below: 

 Local Interactions: Cellular automata algorithms are based on the concept of local 

interactions, where the behavior of an individual cell is determined by its 

neighboring cells. Each cell updates its state based on predefined rules that 

consider the states of nearby cells. This local interaction allows for the emergence 

of complex global behavior from simple local rules. 

 Discrete Space and Time: Cellular automata operate on a discrete grid-like space, 

where each cell can be in a finite number of states. Time in cellular automata is also 

discretized into discrete steps. At each time step, the state of each cell in the CA grid 

is updated based on the rules of the CA algorithm.  

 Emergent Behavior: One of the key strengths of cellular automata algorithms is 

their ability to generate emergent behavior. Simple local rules can lead to the 

emergence of complex, global patterns or phenomena that were not explicitly 

programmed. This property makes cellular automata well suited for studying self-

organization and emergent properties in complex systems. 
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 Simplicity and Parallelism: Cellular automata algorithms are often conceptually 

simple and computationally efficient. The parallel nature of cellular automata 

allows for efficient simulations on parallel architectures or distributed computing 

systems. 

 Versatility: Cellular automata algorithms can model a wide range of systems and 

phenomena. They have been used to simulate physical processes, ecological 

systems, social dynamics, and various other domains. The flexibility and 

adaptability of cellular automata make them suitable for exploring and 

understanding complex systems in different fields. 

2.2 Cellular automata for the optimization of truss structures 

Hajela [115] was one of the pioneers who first used a cellular automata approach in 

structural design optimization problems. He incorporated CA update rules in the 

design process for the solution of two-dimensional elasticity problems. It was 

concluded that the CA and artificial life simulations techniques in general have 

significant potential for optimizing the design of complex structures and thus can 

become a valuable tool for engineers and designers; however, more research is needed 

to fully understand their capabilities and limitations. 

Kita and Toyoda [116] also used the cellular automata paradigm for solving topology 

optimization problems for discrete and continuum structures. They first discussed the 

limitations of traditional structural design methods, which often rely on simple 

assumptions and may not fully capture the behavior and mechanics of complex 

systems. They then introduced the concept of CA and describe how they can be used to 

model the behavior of structural systems. They used CA rules for updating the topology 

and generating new designs while the analysis of the structure was performed using 

the finite element method. They provided several examples of the application of CA in 

structural design, such as optimizing the shape of a truss structure and minimizing the 

weight of a plate structure while maintaining the structural integrity.  

Tatting and Gürdal [117] were pioneers in using cellular automata (CA) for 

simultaneous analysis and design (SAND) to solve topology optimization problems for 

truss structures that exhibit linear and nonlinear responses, as well as buckling and 

plastic deformation. SAND approach involves simultaneously optimizing the design of 

a structure while analyzing its performance. They further extended their research to 
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the design of two-dimensional continuum elastic structures, such as plates and shells, 

by modeling the properties of the elastic medium with an equivalent truss-cell [118]. 

The apparent thickness of the continuum cell was determined by computing the 

equivalent cross-sectional area of the bars in the truss-cell, which maintained the 

equivalence of strain energy between the continuous and truss structures. CA was 

successfully used to optimize the shape of a plate subjected to uniform and non-

uniform loadings, as well as to minimize the weight of a shell structure. 

Another application of the CA paradigm with a SAND approach was presented by 

Abdalla and Gürdal [119] for the solution of eigenvalue problems, which can involve 

complex systems with nonlinear behavior. They provided several examples such as the 

design optimization of a column under buckling constraints and identifying critical 

members in a truss structure with nonlinear behavior.  Canyurt and Hajela [120] 

introduced the concept of Cellular Computation Models (CCM) and describe how they 

can be used in the design of structural systems.  They applied a hybrid approach 

combining Cellular Automata (CA) and Cellular Genetic Algorithm (CGA) for 

optimizing truss structures using the SAND approach. Faramarzi and Afshar [121] also 

utilized CA in a hybrid approach with Linear Programming (LP) to solve truss 

optimization problems with displacement constraints. Tajs and Bochenek [122] used 

CA to solve the column buckling design problem by locally optimizing the topology of 

the structure based on compliance minimization, rather than globally maximizing the 

buckling load. They showed how the CA could be used to design columns with optimal 

topologies that maximize the buckling load and concluded by discussing potential 

future applications of their approach in the design of other types of structures.  

Cellular Automata (CA) techniques are a type of optimization method that use local 

rules to guide the optimization process. They have the advantage of being simple to 

implement and inherently parallel, but they also have some limitations. One 

disadvantage of CA techniques is that they only consider a subset of the design space. 

Another limitation is that a uniform CA requires an identical cell structure, which 

means that the computational domain has to be rectangular. This poses challenges 

when designing truss structures with irregular boundaries, as cells outside the domain 

must be set to zero values for member cross-sectional areas, displacements, and nodal 

forces in order to match the shape of the actual domain. Thus, conventional CA cannot 

be applied for lay out structural design optimizations in which the nodal coordinates 
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are design variables rendering non-uniform cells.   Sipper [123] discusses the concept 

of co-evolution in non-uniform cellular automata (CA) for performing computations, 

where each cell may contain different rule. They proposed a new method for solving 

complex problems by using a fitness function to evaluate the performance of the CA 

and then using a genetic algorithm to evolve the rule set of the CA.  

The article by Vichniac et al.  [124] introduced the concept of inhomogeneous cellular 

automata (INCA). INCA is a type of CA where the cells have different update rules 

based on their location within the grid. Two types of INCA were proposed: annealed 

and quenched. Annealed INCA has a random distribution of update rules, while 

quenched INCA has a fixed distribution of update rules. They demonstrated the 

effectiveness of INCA by using it to simulate the behavior of a binary fluid. The results 

show that INCA can accurately model the behavior of complex systems and is more 

efficient than traditional methods of simulation.  

2.3 Layout optimization of truss structures  

The goal of layout optimization in truss structures is mainly to determine the best 

arrangement of structural nodes to minimize the weight of structures while satisfying 

the required constraints. When it is performed in conjunction with sizing optimization, 

and due to the inherent coupling between sizing and layout variables, the most efficient 

way to achieve the optimal design is through one-level approaches which involve 

solving for both sizing and layout simultaneously. This comes with a disadvantage 

though, since it requires combining variables of different types into a single large 

design vector. Because of the large size of the search space, this technique is usually 

numerically unstable, lengthy and has a slow rate of convergence [125]. An alternative 

solution to this issue is the use of bi-level methods, which consist of dividing joint 

coordinates and cross-sectional areas of members into two sets of design variables and 

then applying a different algorithm for each. All the categories of optimization 

techniques that have been presented previously, i.e. Mathematical programming 

methods, Convex approximation methods, Fully Stressed Design (FSD) approaches, 

and metaheuristic techniques, have been used in either single or dual-level schemes to 

solve the general problem of topology, sizing and layout optimization. 

Dorn et al. [29] was the first to use a linear programming (LP) method in order to find 

the optimal layout from a given ground-structure composed of permissible joints and 
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bars. They successfully identified the optimal configuration by eliminating members 

with zero cross-sectional areas in the final solution. 

Pedersen [32] discusses the use of a nonlinear programming method to solve the 

minimum weight design problem of plane truss structures. He specifically focused on 

the layout of the truss structure and how it can be optimized to meet multiple load 

cases using a nonlinear programming (LP) method employing the gradients of the 

objective and constraint functions to find the optimal design. The optimization 

problem was treated with and without consideration of stability and displacement 

constraints. Pedersen and Nielsen [37] later used a sequential linear programming 

(SLP) optimization approach for weight minimization of general 3D truss structures 

subjected to multiple load cases and involving displacement, stress and eigen-

frequency constraints, and with the design variables being simultaneously the cross-

sectional area and the positions of the joints.   

Hansen and Vanderplaats [36] developed an optimization technique that uses an 

approximation approach to reduce the computational effort required to find the 

optimal configuration of a truss. They reduced the degree of coupling between sizing 

and layout variables by using Taylor series expansions to approximate member forces 

instead of stresses and displacements and showed that the proposed approach provides 

solutions that are very close to the optimal solutions. 

A thorough review of mathematical programming techniques used in the layout 

optimization of skeletal structures has been provided by Topping [44].  Applications of 

convex approximation methods to solve the layout optimization problem can also be 

found in [57-59].  However, as mentioned previously, these gradient-based methods 

do not have the mechanism to capture the true global optimum solution [64].   

Gil and Andreu [109] proposed a single level technique to solve the optimization 

problem of plane truss structures involving constraints on stresses, displacements, and 

stability. Their technique combines the fully stressed design (FSD) approach with a 

conjugate gradient method to overcome the difficulties arising from merging sizing and 

layout design variables. The authors demonstrated the efficiency of their optimization 

approach through a case study of a truss structure used in a bridge and were able to 

improve the performance of the truss structure while satisfying all the constraints. 
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In their work, Vanderplaats and Moses [110] developed a bi-level optimization method 

for optimum design of truss structures. The method involves splitting the design space 

into two distinct sets of variables: sizing variables, which are optimized using the FSD 

approach, and layout variables, which are optimized using the constrained steepest 

descent method. These two sets of variables are dependent on each other, but are 

optimized separately. To ensure that the optimization process is effective, an 

alternating procedure is employed to couple the two types of design variables. This 

means that the sizing and layout variables are updated iteratively, with each iteration 

improving the overall design until an optimal solution is achieved. It was shown that 

this bi-level approach could significantly improve the performance of truss structures 

while satisfying various constraints. 

Wang el al. [111] used a similar approach to Vanderplaats and Moses [110] in their 

work, which involves an alternating procedure for optimizing the sizing and layout of 

truss structures subjected to constraints on stress, buckling, and displacement. The 

Fully Stressed Design (FSD) approach was initially used to optimize the sizing 

variables, while an evolutionary node shifting method was applied to manipulate 

layout variables based on sensitivity analyses. While the approach proved effective in 

yielding accurate optimal results when the initial design is near the optimal solution, 

it comes at a high computational cost. Flager et al. [126] used a new bi-level 

hierarchical method to optimize the layout and member sizing of both determinate and 

indeterminate truss structures. The upper-level of the proposed hybrid optimization 

algorithm focuses on finding the optimum joint positions using a gradient-based 

optimization method that operates on continuous layout variables while the lower level 

uses a Fully Constrained Design (FCD) method to find members cross-sectional areas. 

Bi-level optimization methods are useful because they can separate the sizing and 

layout optimization problems, which can substantially reduce the complexity of the 

overall optimization process. However, it is important to note that these methods may 

not always result in the global optimum design because the problems are not linearly 

separable. This means that the coupling between the sizing and layout variables can 

affect the overall optimization process, making it difficult to guarantee a global 

optimum design. Metaheuristic algorithms have also been used to optimize truss 

structures in both single-level and bi-level optimization schemes. These algorithms are 

designed to search for optimal solutions by exploring a large number of potential 
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design solutions and evaluating their fitness and can be used to optimize for topology, 

sizing, and layout to minimize the weight of the structure. Deb and Gulati [65], for 

instance, proposed the use of genetic algorithms (GA) for simultaneous optimization 

of topology, sizing, and layout of truss structures to minimize their weight under stress, 

displacement, and kinematic stability constraints. They used a fixed-length vector of 

design variables representing member cross-sectional areas and joint coordinates. 

They demonstrated the effectiveness of genetic algorithms for the optimization of truss 

structures by solving several truss structures with different load cases and constraints, 

and showed that the GA approach was able to find near-global optimal solutions for 

these problems. 

Wu and Chow [68] also utilized Genetic Algorithm (GA) in an integrated optimization 

approach that combines the discrete sizing variables mixed with continuous layout 

joint variables. The objective function of the optimization problem was to minimize the 

weight of the truss structures subjected to stress and displacement constraints and the 

approach was shown to be effective in finding optimal solutions with a low 

computational cost. Rahami et al. [66] also utilized a genetic algorithm (GA) in 

combination with energy and force methods to simultaneously optimize the topology, 

sizing, and layout of truss structures to minimize their weight. The approach included 

formulating the optimization problem in terms of energy concepts and introducing a 

new methodology to reduce the number of input variables, which enhanced the 

efficiency of the GA algorithm in the structural optimization process.  

Fourie and Groenwold [82] proposed the use of a particle swarm optimization (PSO) 

algorithm for size and layout optimization of truss structures. The PSO algorithm was 

found to be efficient and effective for size and layout optimization of truss structures 

and the optimization results suggest that the PSO algorithm outperformed GA in terms 

of solution quality, and that it is comparable to the gradient-based recursive quadratic 

programming algorithm in terms of convergence rate. Kaveh et al. [83] employed a 

Hybrid PSO and Swallow Swarm Optimization (SSO) algorithm to solve for layout and 

sizing in the weight minimization problem of truss structures involving multiple 

natural frequency constraints.  

Swallow Swarm Optimization (SSO) is another metaheuristic optimization algorithm 

inspired by the behavior of swallows in nature. The algorithm is based on the 

observation that swallows fly in a coordinated manner, adjusting their flight paths to 
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avoid obstacles and optimize their navigation. The algorithm was applied to several 

truss structures, and the results show that it is effective in finding optimal solutions 

that satisfy the dynamic constraints. Mortazavi et al. [84] employed an improved 

version of PSO called integrated particle swarm optimizer (iPSO) for simultaneous 

sizing, layout, and topology optimization of truss structures. The approach combines 

particle swarm optimization (PSO) and finite element analysis to optimize the truss 

structures for minimum weight while satisfying the design constraints. The PSO 

algorithm is used to search the design space, and the finite element analysis is used to 

evaluate the fitness of the solutions. The iPSO method was applied to optimize the 

weight of various truss structures under different loading conditions and showed to be 

effective in finding optimal solutions that satisfy the design constraints. However, for 

some problems, the iPSO method showed to have a slow convergence rate compared 

to other metaheuristic techniques.  

Ahrari et al. [114] proposed a novel approach for the simultaneous optimization of 

topology, sizing, and layout of truss structures. The approach combines the Fully 

Stressed Design (FSD) method with an Evolution Strategy (ES) technique, resulting in 

a hybrid optimization algorithm called FSD-ES. The results of their study showed that 

FSD-ES was highly efficient and competitive when compared to other optimization 

techniques and led to optimal designs with reduced weight while satisfying all of design 

constraints. Luh and Lin [72] proposed a bi-level ant colony optimization (ACO) 

algorithm to simultaneously optimize the topology, sizing, and layout of 2-D and 3-D 

truss structures subjected to stress, deflection, and kinematic stability constraints. The 

problem was formulated as a mixed-integer nonlinear programming (MINLP) 

problem, and the ACO algorithm was adapted to handle discrete variables and 

nonlinear constraints. The performance of the ACO algorithm was compared with 

other optimization techniques, such as the Genetic Algorithm (GA) and the Sequential 

Quadratic Programming (SQP) method. The results showed that the two-stage ACO is 

capable to find a better solution in terms of weight and convergence speed. In addition, 

a sensitivity analysis was conducted to investigate the effect of various parameters on 

the optimization results. The results showed that the performance of the ACO 

algorithm was sensitive to the parameter settings, and selecting the appropriate 

parameters was crucial for achieving accurate optimal results. 
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Gholizadeh [85] proposed a new hybrid optimization algorithm called Sequential 

Cellular Particle Swarm Optimization (SCPSO) for layout optimization of truss 

structures. The algorithm combines the Cellular Automata (CA) and Particle Swarm 

Optimization (PSO) algorithms to optimize the layout of truss structures. The CA 

algorithm is used to create an initial population of solutions, and the PSO algorithm is 

used to refine these solutions to find the optimal layout of truss structures. The SCPSO 

algorithm was tested on several benchmark problems and was able to find better 

optimum solutions at higher convergence rates compared with other optimization 

methods. The study demonstrated the effectiveness of the SCPSO algorithm for truss 

structure optimization and highlighted the potential of combining different 

optimization techniques for better results.  

Other metaheuristic techniques that have also been used to solve the sizing and layout 

optimization problem include among others: The Charged System Search (CSS) [78], 

the Ray Optimization (RO) algorithm [127,128] and the recently developed Jaya 

algorithm (JAYA) [129,130]. 

2.4 Conclusion 

In this chapter, a state-of-the-art review on optimization methods for truss structures 

has been provided. The concept of cellular automata is explained, highlighting its 

potential for achieving efficient and robust truss designs. The application of cellular 

automata-based techniques and their advantages in optimization of truss structures 

have been discussed. Furthermore, the chapter explores layout optimization methods 

for truss structures including various approaches and algorithms used to determine 

the optimal layout configuration of truss elements. The significance of layout 

optimization in enhancing structural performance and minimizing material usage is 

emphasized. In summary, Chapter 2 highlights the potential of cellular automata and 

layout optimization methods, providing a solid foundation for the subsequent chapters 

of the thesis.  
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Chapter 3                                                                       

Design Optimization Methodology Based on 

Non-Uniform Cellular Automata Paradigm 

 

3.1. Introduction 

In this chapter first, a general description of the design optimization methodology 

using non-uniform cellular automata approach together with brief discussion on 

analysis and design update rules are provided. Finally, the computer implementation 

of the proposed non-uniform CA methodology for both analysis and design 

optimization of truss structures is discussed.  

3.2 Non-uniform Cellular Automata for Design Optimization of 
Truss Structures 

As discussed in Chapte 1, in conventional uniform Cellular Automata (CA) model, the 

behavior of a unit cell in 2D-Truss strcutures is updated based on the information from 

its eight immediate neighboring nodes ( also known as the "Moore neighborhood"). 

However, this neighborhood system may not always be suitable for representing real 

truss structures as all the cells must have exactly the same number of neighboring 

nodes and connecting members. Thus, the missing nodes have to be added to those 

cells located on the boundary. Moreover the uniform CA cannot be used for lay 

optimization in which node coordinates are considered as design variables. To address 

this limitation, a non-uniform CA approach has been proposed in this research study 

for the optimization of truss structures 

The non-uniform CA approach is based on non-identical cells, each of which is defined 

by a center node and members connecting the center node of the cell to all other nodes 

in its immediate neighborhood. This differs from the Moore neighborhood concept 

used in the uniform CA approach, which only considers the eight immediate 

neighboring nodes. This non-uniform CA approach provides a more realistic 

representation of truss structures and improves the optimization process. 

Figure 2 illustrates the concept of the proposed non-uniform Cellular Automata (CA) 

model for a two-dimensional truss structure. Each structural node is connected to 

other nodes, and a representative unit cell is shown on the boundary. The number of 
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cell centers in the non-uniform CA model is equal to the number of nodes in the truss 

structure. In other words, there is a one-to-one relationship between nodes and cells. 

Thus 2D truss shown in Figure 12 contains 12 cells reprsented by each node. The non-

homogeneity feature of the model, as opposed to the conventional homogenous CA 

model shown in Figure 2, permits exploration of a larger design space by allowing 

additional bars to be added to the initial design. Moreover, in contrast to uniform CA, 

the proposed non-uniform CA model  also allows  to solve layout optimization by 

adding the positions of the nodes to the set of design variables along with the cross-

sectional areas of the members. This permits for a more comprehensive approach to 

truss optimization, as the position of the nodes is a critical factor in determining the 

structure's overall stability and strength. 

 

 

Figure 2. A non-uniform CA representation of a two-dimensional truss structure and the 
representation of a non-uniform unit cell 

 

The proposed non-uniform CA approach for structural optimization departs from 

conventional CA algorithms in that the cells are not necessarily identical and each cell 

has a number of members equal to the number of surrounding nodes, as opposed to a 

fixed number in a conventional uniform CA. The local behavior of each lattice cell is 

defined by a state vector that consists of field and design variables. The state vector of 

each cell is updated, with the analysis rules considering the structural behavior and the 

design rules optimizing the structural configuration by changing the cross-sectional 

areas of the members or the positions of the nodes.  
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In Cellular Automata (CA), the local behavior of each lattice cell is described by a state 

vector containing field and design variables. The field variables of a truss structure 

include nodal forces and nodal displacements, while the design variables are the cross-

sectional areas of the cell members for the size and topology optimization and the 

cross-sectional areas together with nodal coordinates for simultaneous size, topology 

and layout optimization. For the sake of simplicity, the state vector for a cell in a two-

dimensional truss structure on a plane may be mathematically represented by: 

 

𝑆𝑖 =  ({𝑢𝑖 , 𝑣𝑖}, {𝐹𝑥𝑖, 𝐹𝑦𝑖}, {𝐴1, 𝐴2, … , 𝐴𝑁}, {𝑥𝑖, 𝑦𝑖})                                  (2) 

 

where Si represents the collection of field and design variables within a particular cell 

i. The field variables refer to the nodal displacements, {𝑢𝑖 , 𝑣𝑖}, and nodal 

forces, {𝐹𝑥𝑖, 𝐹𝑦𝑖} in the x and y directions at the center node, while the design variables 

represent the cross-sectional areas {𝐴1, 𝐴2, … , 𝐴𝑁} of the N members in the cell i, and 

{𝑥𝑖, 𝑦𝑖} as the coordinates of the cell’s center node. 

As mentioned above, the calculation of the new state of each cell in the lattice in 

Cellular Automata (CA) optimization of truss structures is achieved through update 

rules that take into account the states of neighboring cells. These update rules usually 

rely on mathematical models that establish a relationship between the stiffness and 

stress of the members in a truss structure and their corresponding forces and 

displacements [26]. Moreover, the update rules may integrate extra constraints to 

guarantee that the updated state of each cell conforms to the design rules and physical 

principles that govern the behavior of the truss structure. 

In this research study, both analysis and design have been concurrently conducted 

using the developed non-uniform CA algorithm incorporating analysis and design 

updating rules. Updating rules are usually performed using either the Jacobi iterative 

method or Gauss-Seidel iterative method [132]. Jacobi iterative method is an explicit 

approach in which all new values of state variables are computed from the old ones. 

This means that the updated values are not used to calculate other new values. On the 

other hand, the Gauss-Seidel iterative method is an implicit technique, which uses 

updated values to compute new ones. In other words, the algorithm iteratively 

computes new values of the unknown variables by using the most recently updated 

values for the other unknowns. The Gauss-Seidel iterative method is known for its fast 
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convergence and it is widely used in solving linear equations in numerical analysis and 

scientific computing.  In this study, the Gauss-Seidel iterative method was selected in 

conjunction with the CA algorithm for efficient updating of state variables in structural 

optimization problems.  

 

3.3 Updating Rules 

3.3.1 Analysis Update 

The analysis update rules are implemented following each design solution to ensure 

that the equilibrium is met at the cellular level. For instance for 2D truss structures in 

Figure 2, the field variables {𝑢𝑖, 𝑣𝑖} and {𝐹𝑥𝑖 , 𝐹𝑦𝑖} are obtained by minimizing the 

potential energy of the cell. The analysis rule can be either linear or nonlinear, 

depending on how the strains are calculated [117]. This research is mainly focused on 

linear analysis. The elongation of a truss member j in a representative non-uniform cell 

shown in Figure 3 can be expressed as follows: 

𝛿𝑗 = (𝑢𝑗 − 𝑢𝑖) cos 𝜃𝑗 + (𝑣𝑗 − 𝑣𝑖) sin 𝜃𝑗                                       (3) 

 

in which direction cosines can be obtained as:  
 

             cos 𝜃𝑗 =
𝑥𝑗−𝑥𝑖

𝐿𝑗
     and    sin 𝜃𝑗 =

𝑦𝑗−𝑦𝑖

𝐿𝑗
                           (4) 

 

where (𝑢𝑖, 𝑣𝑖) and  (𝑥𝑖, 𝑦𝑖) denote the nodal displacement and nodal coordinate vector 

of the ith cell center node, respectively. Similarly, (𝑢𝑗 , 𝑣𝑗) and (𝑥𝑗 , 𝑦𝑗) denote the 

displacement and coordinates of the far end node of the jth member (j = 1,…, N).                  

It should be noted that the jth member has the first node i and end node j, defining the 

local axis from node i to node j as illustrated in Figure 3. The orientation angle of the 

member with respect to its unreformed configuration is denoted by 𝜃𝑗, and N 

represents the number of member elements within the cell. 
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Figure 3. A non-uniform cell with center node i, and a typical jth member in the cell with end 
node j 

 

The strain 𝜀𝑗, stress 𝜎𝑗 and force, 𝐹𝑗, in each member j of the cell can then be written as: 

 

𝜀𝑗 =
𝛿𝑗

𝐿𝑗
                                                                       (5)              

𝜎𝑗 = 𝐸𝑗𝜀𝑗                                                                    (6) 

𝐹𝑗 = 𝜎𝑗𝐴𝑗                                                                     (7) 

 

where 𝐸𝑗 is the material modulus of elasticity for the member j. The potential energy of 

a cell i can now be expressed as: 
 

𝑉𝑖 = ∑
𝐸𝑗𝐴𝑗𝐿𝑗𝜀𝑗

2

2

𝑁
𝑗=1 − 𝐹𝑥𝑖𝑢𝑖 − 𝐹𝑦𝑖𝑣𝑖                                          (8) 

 

where 𝐹𝑥𝑖 and 𝐹𝑦𝑖  denote the external loads applied at the center node of the cell i.  To 

obtain the governing equilibrium equations at the cellular level, we substitute equation 

(5) for strain and equation (3) for elongation into equation (8), and then minimize the 

resulting potential energy expression. The resulting equations can be expressed as 

follows: 

𝜕𝑉𝑖

𝜕𝑢𝑖
= 0,    

𝜕𝑉𝑖

𝜕𝑣𝑖
= 0                                                      (9) 

Differentiating equation (8) with respect to the nodal displacements at node i gives: 

                                            {
  

𝜕

𝜕𝑢𝑖
(∑

𝐸𝑗𝐴𝑗𝐿𝑗𝜀𝑗
2

2

𝑁
𝑗=1 − 𝐹𝑥𝑖𝑢𝑖 − 𝐹𝑦𝑖𝑣𝑖) = 0

  
𝜕

𝜕𝑣𝑖
(∑

𝐸𝑗𝐴𝑗𝐿𝑗𝜀𝑗
2

2

𝑁
𝑗=1 − 𝐹𝑥𝑖𝑢𝑖 − 𝐹𝑦𝑖𝑣𝑖) = 0

                                    (10) 

 

𝜃𝑗

     

     

𝜃   

   , , ,      𝜃 
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Now, substituting for strain  𝜀𝑗 =
𝛿𝑗

𝐿𝑗
 into Eq. (10) yields: 

                                                {
  

𝜕

𝜕𝑢𝑖
(∑

𝐸𝑗𝐴𝑗𝛿𝑗
2

2𝐿𝑗

𝑁
𝑗=1 − 𝐹𝑥𝑖𝑢𝑖 − 𝐹𝑦𝑖𝑣𝑖) = 0

  
𝜕

𝜕𝑣𝑖
(∑

𝐸𝑗𝐴𝑗𝛿𝑗
2

2𝐿𝑗

𝑁
𝑗=1 − 𝐹𝑥𝑖𝑢𝑖 − 𝐹𝑦𝑖𝑣𝑖) = 0

                                     (11) 

which becomes: 

                                                   {
 ∑

𝐸𝑗𝐴𝑗𝛿𝑗

𝐿𝑗

𝑁
𝑗=1 (

𝜕𝛿𝑗

𝜕𝑢𝑖
) − 𝐹𝑥𝑖 = 0

  ∑
𝐸𝑗𝐴𝑗𝛿𝑗

𝐿𝑗
(

𝜕𝛿𝑗

𝜕𝑣𝑖
)𝑁

𝑗=1 − 𝐹𝑦𝑖 = 0
                                               (12) 

Finally considering 𝛿𝑗 = (𝑢𝑗 − 𝑢𝑖) cos 𝜃𝑗 + (𝑣𝑗 − 𝑣𝑖) sin 𝜃𝑗, after differentiation, the Eq. 

(12), representing equilibrium equations for the cell i  may be expressed as: 

 

∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

cos2 𝜃𝑗 𝑢𝑖 +  ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin 𝜃𝑗 cos 𝜃𝑗 𝑣𝑖  = 𝐹𝑥𝑖 + ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

(cos2 𝜃𝑗 𝑢𝑗 + sin 𝜃𝑗 cos 𝜃𝑗 𝑣𝑗) 

   (13) 

∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin 𝜃𝑗 cos 𝜃𝑗 𝑢𝑖 +  ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

sin2 𝜃𝑗 𝑣𝑖  = 𝐹𝑦𝑖 + ∑
𝐸𝑗𝐴𝑗

𝐿𝑗

𝑁

𝑗=1

(sin 𝜃𝑗 cos 𝜃𝑗 𝑢𝑗 + sin2 𝜃𝑗 𝑣𝑗) 

 

During the optimization process, at each iteration of the analysis loop, the cell 

displacements are evaluated based on the updated values of the displacements of the 

neighboring cells using the Gauss-Seidel iterative method. 

 

3.3.2. Design Update  

The rules for updating a design depend heavily on the specific constraints of the 

problem. When dealing with only stress-constrained problems, the Fully Stressed 

Design (FSD) approach [112, 113] is often utilized to determine the updating rule for 

the cross-sectional area. This rule involves adjusting the cross-sectional area based on 

the level of stress experienced in the structure, ensuring that the material is being 

efficiently used while maintaining the required level of structural strength. The FSD 

rule can be written as: 

𝐴𝑗
𝑡+1 = 𝐴𝑗

𝑡 |𝜎𝑗
𝑡|

𝜎̅𝑗
                                                           (14) 
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For sizing and topology optimization, which involve both stress and displacement 

constraints, FSD cannot be used as it, will generally yield a design with violated 

displacement constraints. In this research study, an effective cellular design update 

rule has been developed in such a way that only the influence of the contributing cell 

members to the displacement of a given cell with a violated displacement is considered. 

This proposed design update rule for the cross-sectional areas, will be discussed in 

detail in chapter 4. The proposed design update rules for the case of Layout, Sizing and 

topology optimization, which involve, in addition to cross-sectional areas, the 

coordinates of the nodes will also be presented in chapter 5. 

3.4 Computer Implelemntation  

A computer code has been developed in Fortran using the object-oriented paradigm 

[131] to solve truss optimization problems based on the proposed analysis and design 

optimization strategy based on non-uniform cellular automata. Object-oriented 

programming (OOP) can improve the efficiency of a cellular automata (CA) algorithm 

by providing a structured and modular approach to the implementation of the 

algorithm. 

One of the main benefits of OOP is the ability to encapsulate data and methods within 

objects. This allows for the separation of the implementation of the CA algorithm from 

the data used by the algorithm, making it easier to understand, maintain, and modify 

the code. OOP also allows for the creation of reusable classes, which can be used to 

implement different types of CA algorithms. This can improve the overall efficiency of 

the implementation, as well as make it easier to test and debug the code.  Additionally, 

OOP allows for the use of inheritance and polymorphism, which can be used to create 

a hierarchy of classes that share common properties and methods. This can make the 

implementation of the algorithm more efficient and easier to understand.  Finally, OOP 

allows for the implementation of parallelism and concurrency through the use of 

thread-safe classes and methods. This can improve the performance of the algorithm 

when parallelized, and makes it easier to implement parallelism and concurrency in 

the algorithm, thus significantly increasing the efficiency of the design optimization 

algorithm.  

The proposed non-uniform CA algorithm benefits from the framework provided by 

Object-Oriented Programming (OOP). A "cell class" is created within the OOP system 
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to define the properties and behavior of a cell object. Such properties include the 

number of cell members and neighboring nodes, as well as an object array 

encompassing the cell members, and another object array containing the cell 

neighboring nodes. Additionally, each cell is assigned a "state object" to describe its 

evolution throughout the optimization process. To ensure the code is reusable, reliable, 

and universal in solving truss optimization problems, class libraries are employed to 

provide well-defined and pretested reusable components. The resulting object-

oriented CA-based optimization algorithm is represented in a simplified UML diagram 

in Figure 4, where classes, attributes, methods, and relationships are depicted to 

illustrate its structure. 

In this diagram, we have four main classes: Node, Element, Cell and State. Each class 

has its own set of attributes, which are shown as the variables listed under the class 

name. The "Node" class has the attributes of the node's Id, node's coordinates, and 

node's elements which is an object array encompassing all the bars meeting at the node. 

The "Element" class has the attributes of the element's type, element's Id, both nodes 

of that element, and other properties of the element. The "Cell" class has the attributes 

of the cell type, cell center node, the object array containing of all the bars in the cell, 

number of elements in the cell, the object array containing all the neighboring nodes 

of the cell, the number of the neighboring nodes, and the attribute "state" which links 

the "Cell" class to the "State" class which for 2D truss for instance has the attributes of 

displacements {𝑢𝑖 , 𝑣𝑖}, external nodal forces {𝐹𝑥𝑖,  𝐹𝑦𝑖}, cross-sectional areas of the 

members within the cell {𝐴1, 𝐴2, … , 𝐴𝑁}, and the coordinates of the cell’s center node. 

In addition to the attributes, the classes also have methods, which are shown as 

functions listed under the class name. However, in this diagram, the methods are not 

included for the sake of simplicity. The lines between the classes show the relationships 

between them. In this diagram, there is a relationship between "Cell" and "State", 

where to each "Cell" is associated a "State". This relationship is shown with an arrow 

pointing to the "State" class side. In conclusion, the class diagram above provides a 

visual representation of the structure of the CA optimization program and the 

relationships between its classes.  
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Figure 4. A simplified UML diagram of the object-oriented CA Algorithm 

 

3.5 Conclusion 

Chapter 3 presents a design optimization methodology based on the non-uniform 

cellular automata paradigm for truss structures. The main focus of the chapter is on 

the utilization of non-uniform cellular automata for the design optimization of truss 

structures. The concept of non-uniform cellular automata is explained, emphasizing its 

potential for achieving efficient and effective truss designs. The section provides 
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insights into the application of non-uniform cellular automata-based techniques and 

their advantages in optimizing truss structures. 

The chapter further delves into the updating rules employed in the methodology. It 

discusses the analysis update, which involves updating the structural analysis 

information within the cellular automata framework. Additionally, the design update 

is explored, addressing the process of updating the design variables based on the 

information obtained from the cellular automata analysis. Furthermore, the 

importance of the Object-Oriented approach in implementing the proposed non-

uniform CA algorithm is discussed. 

In conclusion, Chapter 3 presents a comprehensive methodology for design 

optimization of truss structures based on the non-uniform cellular automata paradigm. 

The chapter discusses the theoretical foundations of the methodology, including the 

non-uniform cellular automata concept, updating rules, and computer implementation 

considerations.  
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Chapter 4                                                                             

A Non-Uniform Cellular Automata Framework 

for Topology and Size Optimization of Truss 

Structures Subjected to Stress and Displacement 

Constraints 

 

4.1 Introduction 

This chapter presents a novel approach for Sizing and Topology optimization using a 

non-uniform Cellular Automata method that is based on non-identical cells and a 

modified FSD/FUD approach. The proposed algorithm is implemented using Fortran 

programming language and the Object-Oriented paradigm, and it aims to minimize the 

weight of truss structures under both stress and displacement constraints. To 

demonstrate its effectiveness and accuracy, the proposed methodology will be applied 

to various benchmark 2D and 3-D truss design problems. 

 

4.2 Problem Formulation 

The main objective of the design optimization is to find the best way to distribute 

material within a structure by solving topology and size optimization problems. The 

ultimate aim is to minimize the overall weight of the structure while ensuring that a set 

of stress and displacement constraints are met.  The optimization problem can be 

mathematically formulated as:  

 

                                           𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑊(𝑃) = ∑ 𝜌𝑗𝐴𝑗𝐿𝑗
𝑚
𝑗=1                                                  (15a) 

                                          𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝐾𝑢 = 𝑓                                                                        (15b) 

                                             | 𝜎𝑗| < 𝜎𝑗  ,        𝑗 = 1,2, ⋯ , 𝑚                                      (15c) 

                                                             |𝑢𝑖| < 𝑢̅𝑖  ,        𝑖 = 1,2, ⋯ , 𝑘                                       (15d) 

                                                                   𝐴̅𝑙  <   𝐴𝑗 < 𝐴̅𝑢 ,        𝑗 = 1,2, ⋯ , 𝑚                                     (15e) 

 
Equation (15a) represents the objective function of the weight minimization problem 

where 𝜌𝑗 , 𝐴𝑗 , 𝐿𝑗 and m denote the density, the  cross-sectional areas, 𝐿𝑗 and the total 
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number of bar members in the structure. The constraints include the stiffness equation 

(15b) which must be satisfied to maintain the equilibrium condition, stress constraints 

(15c), displacement constraints (15d), and side constraints (15e). In these equations, K 

represents the stiffness matrix, u represents the vector of nodal displacements, f 

represents the vector of nodal forces, and Aj represents the design variables, which are 

the cross-sectional area of the truss members. The variables 𝜎𝑗 and 𝑢̅𝑖  represent 

allowable stresses and allowable displacements, respectively, while 𝐴̅𝑢 and, 𝐴̅𝑙  are the 

upper and lower bounds on the cross-sectional areas, respectively. The variable k 

indicates the number of displacement constraints. The lower bound of the cross-

sectional area is set to a small positive value to ensure that the structure maintains 

kinematic stability during the optimization process. Additionally, topology 

optimization is integrated into the size optimization problem by eliminating members 

with a cross-sectional area equal to their lower bound in the final optimal 

configuration. 

4.3 Design Update  

As mentioned in Chapter 3, the rules for updating the design depend on the specific 

constraints of the problem. The updating rule for the cross-sectional area based on FSD 

can be expressed in Eq. (14) which is again stated below for the sake of clarity as: 
 

𝐴𝑗
𝑡+1 = 𝐴𝑗

𝑡 |𝜎𝑗
𝑡|

𝜎̅𝑗
                                                           (16) 

 

When a unit cell comprises collinear bars as depicted in Figure 5, the bar with the lower 

internal force value is removed during the FSD process. This is because the bar with 

the higher force value offers a more natural pathway for the force to flow through 

compared with other collinear bars. 
 

 

Figure 5. A non-uniform CA cell containing collinear elements 
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Although the Fully Stressed Design (FSD) is an efficient method for solving truss 

optimization problems with stress constraints, it cannot handle problems that involve 

displacement constraints. In such cases, the Fully Utilized Design (FUD) [52] approach 

is commonly used.  The FUD approach is based on a simple concept, which consists of 

scaling the FSD solution uniformly to satisfy the most infeasible displacement 

constraint. Although simple, the FUD approach has the limitation of usually producing 

overdesign solutions. Patnaik et al. [52] presented an improved version of the FUD 

approach called the Modified Fully Utilized Design approach (MFUD). Despite being 

more efficient than FUD, MFUD can still generate overdesign solutions. Makris and 

Panagiotis [133] proposed a more efficient energy-based method to handle 

displacement-constrained truss optimization problems. This method involves applying 

a virtual unit load at the cell where the displacement constraint is violated, calculating 

the virtual strain energy in each member, and determining the contribution of each 

member to the nodal displacement based on its virtual strain energy density.  The 

virtual strain energy in each member is calculated by multiplying the actual 

displacement in the member by the internal force induced due to the virtual unit load. 

The contribution of each member in the structure to the nodal displacement is 

proportional to the virtual strain energy density (virtual strain energy per unit volume) 

of the member 𝑈𝑗 normalized by the mean value 𝑈, which is averaged over all members 

of the structure. For a truss structure, 𝑈𝑗 can be described by the following relation: 

   𝑈𝑗 =
1

𝐴𝑗𝐿𝑗
(𝛿𝑃𝑗 × 𝛿𝑗) =

1

𝐴𝑗𝐿𝑗
(𝛿𝑃𝑗 ×

𝐹𝑗 𝐿𝑗

𝐸𝑗𝐴𝑗
) =

𝐹𝑗 𝛿𝑃𝑗

𝐸𝑗𝐴𝑗
2                             (17) 

 

where  𝛿𝑃𝑗 is the axial force in the j member of the cell due to the virtual unit force in 

direction of the desired contained displacement and 𝐹𝑗  represents the force in the same 

member due to the real load.   

This study tackles displacement-constrained truss optimization problems by utilizing 

a similar approach, which involves determining the contribution of each member to 

the nodal displacement of a specific cell. The first step in this approach is to obtain the 

FSD solution. When a truss member is fully stressed, the maximum strain energy is 

stored within that member, which allows us to eliminate its contribution to the 

displacement of a given cell by fixing it at its maximum stress level. As a result, there 

is no need to calculate the contribution of that member to the displacement of a cell 

with a violated displacement constraint, as is conducted in the conventional FUD 
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method. Instead, we can use a cellular design update rule that only considers the 

influence of the contributing cell members to the displacement of a given cell with a 

violated displacement constraint. Based on this idea, the proposed design update rule 

for the cross-sectional area of the jth member within the ith cell can be expressed using 

the following equation: 
 

𝐴𝑗,𝑖
𝑡+1 = 𝐴𝑗,𝑖

𝑡  (1 + 𝜂𝑗
|𝑢𝑘|−𝑢𝑘

𝑢𝑘
)                                            (18) 

 

where 𝑢𝑘 is the violated displacement associated with the cell k exceeding the allowable 

limit 𝑢̅𝑘. 𝜂𝑗  is a scaling factor, which is given by: 

𝜂𝑗 = {
 1          for 𝐹𝑈𝐷
 0          for 𝐹𝑆𝐷

                                                   (19) 

 

In summary, the proposed approach consists of two phases. The first phase involves 

the application of the FSD method without any consideration of the displacement 

constraints. In the second phase, the correction for active displacement constraints is 

performed by altering the cross-sectional areas of only those bars that contribute to the 

respective active displacement constraint while keeping the non-contributing 

members at their maximum stress level. The overall procedure can be summarized in 

the following steps: 

1- Obtain the FSD solution for the entire structure. 

2- Sort the violated displacement constraints in descending order.  For the sake of 

simplicity, let us assume that there are violated displacement constraints 

associated with cells k and k+1, with 
|𝑢𝑘|−𝑢𝑘

𝑢𝑘
>  

|𝑢𝑘+1|−𝑢𝑘+1

𝑢𝑘+1
 

3- Determine the uniform proration factor based on the most violated 

displacement constraint as 1 +
|𝑢𝑘|−𝑢𝑘

𝑢𝑘
. 

4- Loop through the cells of the structure and for each cell; uniformly scale          

(𝜂𝑗 = 1) using the proration factor obtained in step 3. If the scaling of the 

members of the cell i does not change the value of 𝑢𝑘, then, these members 

should remain unaltered, i.e., kept at their FSD condition with maximum stress 

level, without any scaling (𝜂𝑗 = 0). Otherwise, change the cross-sectional area 

of the contributing members using the uniform proration factor. 

5- Repeat step 4 until the displacement constraint is satisfied within a very small 

tolerance value ϵ, set at 10-6, i.e., 
|𝑢𝑘|

𝑢𝑘
− 1 < 𝜖. 
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6- Apply steps 2-5 for the remaining violated displacement constraints until all of 

them are satisfied. 

From Equation (19), it is clear that to consider the impact of members on the 

displacement of the active cell k, uniform scaling of those members is required. 

Alternatively, this contribution could be removed by keeping the total strain energy 

within the ith cell constant, which can be done by maintaining those members at their 

maximum stress level. 

4.4. Computer Implementation of the Proposed Analysis and 

Design Optimization Strategy 

The optimization algorithm for topology and sizing optimization of truss structures is 

based on a two-level approach where the design loop is nested inside the analysis loop. 

The first level is the analysis loop, which aims to determine the nodal displacements of 

the structure given the external loads and a given set of cross-sectional areas.  

The algorithm begins with a set of initial nodal displacement values and iterates 

through all the cells of the structure, using the equilibrium relations in Eq. (13) to find 

new values of the displacements for each cell. Once all nodal displacement values have 

converged, the design loop calculates new values for the design variables Aj using Eq. 

(18) for the given displacement field. 

The proposed non-uniform CA algorithm for topology and sizing optimization of a 

truss structure subject to stress and displacement constraints is shown in a simplified 

flowchart in Figure 6. 
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Figure 6. Flowchart of the non-uniform CA algorithm 

 

4.5. Benchmark Numerical Examples 

The proposed non-uniform CA approach has been tested on various benchmark 

problems. The results are presented and compared with those obtained using other 

optimization techniques published in literature. The main goal in all of the 

optimization problems discussed in the following sections is to find the optimal size 

and topology configuration to minimize the weight of truss structures, while ensuring 

that the stress and displacement constraints are met. It is noted that topology 



45 

 

optimization is implemented within the size optimization problem, where members 

whose cross-sectional areas hit the lower bounds (close to zero) are removed. 

The proposed algorithm guarantees equilibrium at each optimization iteration, and 

allows for a lower bound on the cross-sectional area to be set extremely low, resulting 

in negligible contribution of members whose cross-sectional areas hit the lower bounds 

to the final stiffness of the structure. In all following case studies, structures with 

optimized topology (after removing the members with lower bound values) have been 

analyzed using the optimal cross-sectional areas provided in tables to assure the 

stability and also satisfaction of displacement and stress constraints. Furthermore, re-

optimization of the final topology layouts to evaluate optimal cross-sectional areas was 

conducted, and the refined cross-sectional areas were found to be very close to the 

initial values, indicating that the removal of members with lower bound values had a 

negligible effect on the final optimum solutions. 

4.5.1. Problem 1: 11-Member, 6-Node Truss Structure 

The proposed CA-based analysis and optimization approach was used to solve a truss 

structure with 11 members and 6 nodes, as shown in Figure 7. The aim was to minimize 

the weight of the structure while adhering to stress and displacement constraints. 

Table 1 provides the material properties and problem parameters. The material density 

and modulus of elasticity were set at ρ = 0.1 lb/in3 and E = 104 ksi, respectively, for all 

members. Two external loads of 100,000 lb each were applied at the two end nodes, as 

depicted in Figure 7. The stress in all members should not exceed the specified 

allowable value of ±25 ksi, and the vertical displacements at the two end nodes were 

limited to a maximum of 2 inches. The value for all the components of the initial design 

vector 𝑋𝑜 is set at 𝐴̅𝑢 = 35 in2.  

 

Table 1. Problem parameters-11 member, 6-node truss structure 

Young’s modulus (E) 104 ksi 

Density (ρ) 0.1 lb/in 

Allowable stress (𝝈̅) ±25 ksi 

Allowable displacement (𝒖̅) 2.00 in 

𝐴̅𝑢 35 in2 

𝐴̅𝑙   10-10 in2 
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Figure 7. 11-member, 6-node truss structure 

 
 

Various optimization methods have been used by researchers to solve this benchmark 

optimization problem. For instance, Deb and Gulati [65] used a Genetic Algorithm 

(GA) and achieved an optimal configuration shown in Figure 8 with a total weight of 

4899.15 lb. Their optimal solution required 49500 objective function evaluations. Luh 

and Lin [72] utilized an ant colony optimization (ACO) algorithm and achieved the 

same truss topology with a total weight of 4899.11 lb, but after 41000 objective function 

evaluations. Faramarzi and Afshar [121] solved this problem using a hybrid CA and LP 

algorithm and obtained the same topology with an optimal weight of 4898.31 lb, with 

only 240 objective function evaluations. Our proposed methodology, based on a non-

uniform CA, resulted in the same optimal topology configuration but with a slightly 

lower total weight of 4898.22 lb and only 169 objective function evaluations. 

Table 2 compares the optimal size cross-sectional areas obtained using the proposed 

method with those reported in [65], [72], and [121]. The vertical displacements at the 

constrained nodes (under loads) in the optimal configuration were found to be active 

(2.00 in). Additionally, Table 3 provides the stress distribution in the optimal truss 

configuration. As it can be observed, the stress magnitude in all elements is lower than 

the allowable value of 25 ksi, indicating that there are no active stress constraints. 
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Figure 8. Optimized topology for the 11-member Truss structure 

 

Table 2. Optimal cross-sectional areas (𝑖𝑛2) for the 11-member Truss structure 

Member no. Deb and 

Gulati [65] 

Luh and 

Lin [72] 

Faramarzi and 

Afshar [121] 

Proposed 

Method 

0 29.6800 29.8100 30.0953 30.0600 

1 22.0700 22.2400 22.1321 22.263 

2 15.3000 15.1500 15.0476 15.028 

3 6.0900 6.0800 6.0802 6.0732 

4 21.4400 21.3900 21.2806 21.256 

5 21.2900 21.2400 21.2806 21.257 

Weight (lb) 4899.15 4899.11 4898.31 4898.22 

# of Objective function  
Evaluations 

49500 41000 240 180 

 

 

Table 3. Member stresses in the optimal configuration for the 11-member truss 

Member 

no. 

Stress (psi) 

0 6653.4 

1 -8983.4 

2 -6654.1 

3 23286.0 

4 -6653.4 

5 6653.1 
 

 

Interestingly, the effectiveness of the proposed algorithm was found to be unaffected 

by the choice of initial design vector, as demonstrated in convergence history shown in 
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Figure 9. Despite starting from widely separated initial points, with all components of 

the design vector set at 35 in2, 1 in2, and 10 in2, the algorithm was able to converge to 

the same optimal solution. 

 
 

 

Figure 9. Convergence history for the 11-member, 6-node truss structure 
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4.5.2. Problem 2: 15-Member, 6-Node Truss Structure 

This benchmark problem is similar to the Problem 1 with the exception that the initial 

design is a fully connected truss structure, which is illustrated in Figure 10. The 

material properties and problem parameters are similar to those outlined in Table 1.  

It is noted that the value for all the components of the initial design vector is also set 

at A̅u = 35 in2. 

 

 

Figure 10. 15-member, 6-node truss structure 

 

The proposed algorithm generated an optimal topology configuration as depicted in 

Figure 11. The optimized topology found using the proposed non-uniform CA approach 

is similar to those found using other methods. Deb and Gulati [65] s utilized a Genetic 

Algorithm with a population size of 450 and achieved an optimal weight of 4731.65 lb 

after 85050 objective function evaluations.  Luh and Lin [72] used an ACO algorithm 

and obtained an optimal weight of 4730.824 lb with 41000 objective function 

evaluations.   Faramarzi and Afshar [121] employed a hybrid CA and LP algorithm and 

reported an optimal structure with a total weight of 4730.42 lb after 310 evaluations. 

Using the proposed method, the total optimal weight is found to be 4730.40 lb, which 

is slightly lower than those previously reported, and it required only 267 objective 

function evaluations.  Table 4 compares the optimal size cross-sectional areas obtained 
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using the proposed method with those obtained using other optimization techniques. 

As in the previous problem, the vertical displacements at the constrained nodes (under 

loads) in the optimal configuration were found to be active (2.00 in), and the stress 

magnitude in all members is lower than the allowable value of 25 ksi, with no active 

stress constraints. Table 5 provides the stresses in the optimal truss configuration for 

the 15-member truss. 

 

 

Figure 11. Optimized topology for the 15-member truss structure 

 

 

Table 4. Comparison of optimal cross-sections (𝑖𝑛2) for the 15-member truss 

Member no. Deb and 

Gulati [65]      

Luh and 

Lin [72]     

Faramarzi and 

Afshar [121]    

Proposed 

Method 

0 5.219 5.428 5.4000 5.4000 

1 20.310 20.549 20.3647 20.365 

2 14.593 14.308 14.4000 14.400 

3 7.772 7.617 7.6367 7.6368 

4 28.187 28.876 28.8001 28.800 

5 20.650 20.265 20.3647 20.365 

Weight (lb) 4731.650 4730.824 4730.4237 4730.400 

# of Objective function 

Evaluations 

85050 41000 310 267 
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Table 5. Member stresses in the optimal configuration for the 15-member truss 

Member no. Stress (Psi) 

0 -18519.00 

1 -6944.40 

2 -6944.40 

3 18519.00 

4 6944.40 

5 6944.40 
 

 

The convergence history for different initial designs is shown in Figure 12 to 

demonstrate the insensitivity of the proposed algorithm with respect to the selection 

of the initial design point. As it can be realized, while there are slight differences in the 

number of structural analysis, optimized results are similar starting from different 

initial points. For instance, setting all components of the initial design vector to lower 

value of 1 in2   results in a computational cost of 276 structural analyses, practically the 

same as the 267 analyses required for the initial uniform design of 35 in2.  

 

 

Figure 12. Convergence history for the 15-member, 6-node truss structure. 
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4.5.3. Problem 3: 45-Member, 10-Node Truss Structure 

The proposed technique has also been employed to solve the 45-member, 10-node 

truss structure presented shown in Figure 13. The material properties and problem 

parameters are comparable to those of the 11-member truss example outlined in       

Table 1 (Problem 1), except that the lower and upper bounds of the cross-sectional area 

are set to 10-6 in2 and 1.0 in2, respectively. In addition, the stress in each member must 

not exceed 25 ksi, and the vertical displacement at the nodes of external loads is limited 

to a maximum of 2 inches. The value for the components of the initial design vector is 

also set at  𝐴̅𝑢 = 1 in2.  This problem is also a well-known benchmark problem that has 

been solved using various optimization techniques. 

 

 

Figure 13. 45-member, 10-node ground structure 

 

The optimal topology configuration obtained using the proposed method is presented 

in Figure 14. The topology is comparable to the one obtained by Deb and Gulati [65] 

using GA and the one obtained by Faramarzi and Afshar [121] using a hybrid CA and 

LP method. Deb and Gulati [65] reported a total weight of 44.033 lb, while Faramarzi 

and Afshar [121] achieved a slightly smaller weight value of 44.000 lb with 840 

objective function evaluations. The optimal configuration obtained using the proposed 

method has the same overall weight of 44.000 lb as reported in [121], but only required 

169 objective function evaluations. The stress in the optimal truss configuration is 

found to be uniformly distributed in each member, reaching its allowable value of         
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25 ksi. Additionally, all displacement constraints are satisfied, with vertical 

displacement under loads found to be -1.2500 in at the middle node and -0.7500 in at 

the two other nodes. Table 6 presents the optimal cross-sectional areas of the members 

for the various optimum design algorithms. 

 
 

 

Figure 14. Optimized topology for the 45-member truss structure 

 

 
 

Table 6. Comparison of optimal cross-sections (𝑖𝑛2) for the 45-member truss 

Member no. Deb and 

Gulati [65]      

Faramarzi and 

Afshar [121]    

Proposed 

Method 

0 0.566 0.5656 0.5656 

1 0.477 0.4472 0.4472 

2 0.477 0.4472 0.4472 

3 0.566 0.5656 0.5656 

4 0.082 0.4000 0.3999 

5 0.321 - - 

6 0.080 0.4000 0.4000 

Weight (lb) 44.033 44.000 44.000 

# of Objective Function 

Evaluations 

- 840 169 

 
 

 

The convergence history for this particular problem is shown in Figure 15, which 

further demonstrates that the algorithm is not affected by the initial design points, as 
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they all lead to the same optimal solution with only slight differences in the number of 

structural analyses required. 

 

 

Figure 15. Convergence history for the 45-member truss structure 

 

4.5.4. Problem 4: 39-Member, 12-Node Truss Structure 

This example involves a ground structure consisting of 39 members, as depicted in 

Figure 16. The constraints and material properties for this problem are the same as 

those of the 11-member truss problem in Problem 1, except for the bounds of the cross-

sectional area, which range from 10-6 in2 to 2.25 in2. The displacement at nodes under 

external loads should be less than or equal to 2 inches, and the stress in each member 

should not exceed the maximum allowable value of 20 ksi. The value for the 

components of the initial design vector is set at  𝐴̅𝑢 = 2.25 in2 
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Figure 16. 39-member, 12-node ground structure 

 
 

The optimal topology obtained using the proposed CA approach is shown in Figure 17. 

The optimal topology configurations obtained by Deb and Gulati [65] using GA with 

different population sizes are also presented in Figures 18 and 19 for the sake of 

comparison.   It can be observed that the optimal topology obtained by the proposed 

non-uniform CA approach is different from those found using GA reported by Deb and 

Gulati [65]. Table 7 also provides a comparison of the optimal cross-sectional areas. 

The best optimum design found by Deb and Gulati (Figure 19) had a total weight of 

196.546 lb and required a population size of 840. On the other hand, the total weight 

of the optimal truss configuration found using the proposed CA approach was found to 

be 192.00 lb and required only 399 objective function evaluations (it is noted that the 

total number of generations or number of structural analyses was not reported in 

Ref.[65]). The stress in each member of the optimal truss configuration was found to 

be equal to the allowable stress of 20 ksi while satisfying all displacement constraints.  

Figure 20 displays the convergence history of the proposed optimizer for the chosen 

initial design points, highlighting the rapid convergence of the algorithm to the optimal 

solution. It is noteworthy that the proposed algorithm is found to be insensitive to the 
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initial design points, as all initial designs lead to the same optimal solution with only 

minor variations in the number of structural analyses required to reach convergence. 

It can be observed from case study problems 1-4 that the proposed non-uniform CA 

based design optimization approach proposed yields designs that are either the same 

or lighter compared to those obtained by other optimization techniques while requiring 

significantly less structural analyses.  

 

 

 

Figure 17. Optimized topology for the 39-member truss structure obtained using the 
proposed CA approach  
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Figure 18. Optimized topology for the 39-member truss structure reported by Deb and 
Gulati [65] using GA, with a population size of 630 

 

 

 

Figure 19. Optimized topology for the 39-member truss structure reported by Deb and 
Gulati [65] using GA, with a population size of 840 
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Table 7: Comparison of optimal cross-sections (𝑖𝑛2) for the 39-member truss 

Member 

no. 

Deb and Gulati [13]      

Population size = 630 

Deb and Gulati [13]      

Population size = 840 

Proposed 

Method 

1,30 0.05 - - 

2,34 0.052 0.051 - 

3,37 - - - 

4,39 1.501 1.502 1.5000 

5,31 1.416 1.061 1.1702 

6,22 - - - 

7,35 0.050 0.051 - 

8,28 1.118 - 0.3465 

9,38 - 0.052 0.7319 

10,21 1.001 0.751 0.8277 

11,26 - - - 

12,32 - - 0.0862 

13,33 - 0.251 0.0862 

14,23 0.050 - - 

15 - - - 

16,27 - - - 

17,36 0.052 - 0.0862 

18,24 - 0.559 0.3857 

19,29 - - 0.3450 

20 - 1.005 0.3450 

25 1.002 - 0.309 

Weight 

(lb) 

198.00 196.546 192.000 

No. 
structural 
analyses 

- - 399 
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Figure 20. Convergence history for the 39-member, 12-node truss structure 

 

4.5.5. Problem 5: Geodesic Dome 

The geodesic dome structure shown in Figure 21, consisting of 132 members and 61 

nodes, is a well-known benchmark space truss structure. This is a relatively large size 

structure, which has been previously studied by Patnaik et al. [108] who solved this 

space truss design optimization problem using different optimization techniques, 

including MFUD and gradient-based methods based on SUMT (Sequential 

Unconstrained Minimization Technique). In this problem, the structure is subjected to 

a single downward vertical load of 2000 lb at the apex of the dome (node 1).  The 

maximum allowable stress for each member is set at 25 ksi. Additionally, the 

displacement at node 1 must not exceed 0.5 inches, and the displacements in all 

coordinate directions of the boundary nodes (nodes 38 through 61) are set to zero. The 

material properties and other parameters are listed in Table 8. The value for the 

components of the initial design vector for this problem is also set at 𝐴̅𝑢 = 1 in2 .   
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Table 8. Problem parameters for the Geodesic dome 

Young’s modulus (E) 104 ksi 
Density (ρ) 0.1 lb/in 
Allowable stress (𝝈̅) ±25 ksi 
Allowable displacement 

(𝒖̅) 

0.5 in 

𝐴̅𝑢 1 in2 

𝐴̅𝑙   10-2 in2 
  

 

 

Figure 21. Geodesic dome 

 

Table 9 presents the optimal results obtained using the proposed non-uniform CA 

approach for the 132-member geodesic dome structure. The proposed method 

successfully converged to a total weight of 95.67 lb after only 373 objective function 
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evaluations. The displacement constraint at node 1 under the load was found to be 

active while stress in elements are all lower than the allowable value. The weight of the 

obtained design is significantly lighter than those found by MFUD (119.44 lb) and 

SUMT (118.65 lb) as reported in Ref. [108]. The convergence of the proposed algorithm 

to the optimal solution is shown in Figure 22, which also again shows the insensitivity 

of the proposed algorithm to the initial design points. 

 

Table 9. Optimal cross-sections (𝑖𝑛2) for the 132-member geodesic dome 

Member no. Member 

area, in.2 

Stress 

(Psi) 

A1 : Members 1-6 

A2 : Members 7-12 

A3 : Members 13, 16,19, 22, 25 & 28 

A4 : Members 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30 

A5 : Members 31-42 

A6 : Members 43, 48, 53, 58, 63, 68 

A7 : Members 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70 & 71 

A8 : Members 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88 & 90 

A9 : Members 74,77,80,83,86 & 89 

A10: Members 91,98,105,112,119 & 126 

A11: Members 93,96,100,103,107,110,114,117,121,124, 128 & 131 

A12:Members 44,47,49,52,54,57,59,62,64,67,69,72,92,94,95,97, 

99,101,102,104,106,108,109,113,115,116,118,120,122,123,125,127,

129,130,132 

A1 1.71390 -3178.1 

A2 1.18860 3170.4 

A3 0.40182 -3185.6 

A4 0.13116 -3193.6 

A5 0.25970 3148.9 

A6 0.15376 -3283.2 

A7 0.13454 -3196.2 

A8 0.10199 3248.9 

A9 0.14479 2959.2 

A10 0.03707 -3769.4 

A11 0.09212 -3651.3 

A12 0.01000 - 

Weight (lb) 95.67  
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Figure 22. Convergence history for the geodesic dome truss structure 

 

4.5.6. Problem 6: 940-member, 365-node truss structure 

Finally, a large-scale plane truss structure with 940 members and 365 nodes shown in 

Figure 23 is studied. This problem has been previously addressed by Gashemi [69] and 

Dede et al. [71] using genetic algorithms. The material properties and problem 

constraints are provided in Table 10. The allowable stress limit for each member is set 

at 29 ksi, and the maximum allowable displacement at all nodes in both x and y 

directions is considered to be 1.5748 in. The value for the components of the design 

vector is initially set at 𝐴̅𝑢= 5 in2. 

 

Table 10. Problem parameters for the 940-member,                                                       
365-node truss structure 

Young’s modulus (E) 100 Msi 

Density (ρ) 0.1 lb/in 

Allowable stress (𝝈̅) ±29 ksi 

Allowable displacement (𝒖̅) 1.5748 in 

𝐴̅𝑢 5 in2 

𝐴̅𝑙   10-3 in2 
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(a) configuration of the 940-member structure.                                     (b)    member grouping of the 940-member   

Figure 23. 940-member, 365-node truss structure, (a) configuration of the 940-member 
truss structure, (b) member grouping of the 940-member truss structure. 

 

The optimal results obtained using the proposed non-uniform CA approach are 

presented in Table 11. The method was successful in reaching an optimal design with a 

total weight of 360.67 lb, after only 775 structural analyses, without violating any 

displacement or stress constraints. The optimal design obtained using the proposed 

method was found to be lighter than those found by Gashemi et al. [69] (370.96 lb) and 

Dede et al. [71] (368.56 lb). However, it should be noted that the total number of 

generations or structural analyses required by both GA algorithms were not reported 

in [69, 71]. The convergence history of the proposed algorithm is shown in   Figure 24, 

which again indicates rapid convergence to the optimal solution for this large-scale 

optimization problem. The graph also demonstrates the insensitivity of the proposed 

algorithm to initial design points. 
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Table 11. Comparison of optimal cross-sections (𝑖𝑛2) for the 940-member truss structure 

Group no. Gashemi et al. [69] 

Ps = 200 

 Dede et al. [71] 

Ps = 80 

Proposed 

Method 

A1 0.0918  0.0765 0.0870 

A2 0.1677  0.1515 0.1187 

A3 0.2329  0.2356 0.2362 

A4 0.4045  0.4036 0.4026 

A5 0.5748  0.5694 0.5690 

A6 0.7552  0.7444 0.7355 

A7 0.8927  0.8954 0.8987 

A8 1.5510  1.5348 1.5210 

A9 0.0921  0.0903 0.0865 

A10 0.0685  0.0604 0.0571 

A11 0.1157  0.1193 0.1122 

A12 0.1395  0.1377 0.1323 

A13 0.0643  0.0643 0.0627 

A14 0.0516  0.0516 0.0491 

A15 0.0948  0.0966 0.0929 

A16 0.1440  0.1485 0.1400 

A17 0.1916  0.1934 0.1871 

A18 0.2627  0.2510 0.2436 

Weight 

(lb) 

370.96  368.56 360.67  

No. 

structural 

analyses 

-  - 1443 
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Figure 24. Convergence history for the 940-member truss structure 

 

4.6. Conclusion 

A novel CA based approach for the optimization of truss type structures has been 

proposed. The method has been tested on various benchmark problems. The obtained 

results show that the method can achieve the same or better level of efficiency and 

effectiveness compared to other methods with a reduced computational cost. A further 

research goal is to exploit the non-homogeneity feature of the presented method to 

solve the general problem of Topology, Sizing and Layout optimization by adding the 

nodes’ coordinates to the set of state variables, and thus, allowing the nodes of the 

structure to move through the optimization process. Moreover, the performance of the 

presented algorithm can be enhanced by exploiting the parallelism feature of the CA 

techniques, which makes them highly suitable for solving large size structural 

optimization problems.  
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Chapter 5                                                                             

A Non-Uniform Cellular Automata Framework 

for Sizing, Topology and Layout Optimization of 

Truss  

 

5.1. Introduction 

This chapter introduces a bi-level non-uniform Cellular Automata (CA) algorithm for 

optimizing truss structures in terms of sizing, topology, and layout. In the previous 

phase of this research, the propsoed non-uniform CA algorithm was successfully 

implemented to solve weight optimization problems for sizing and topology 

optimization of plane and space truss structures subjected to stress and displacement 

constraints. In this chapter, the aim is to  extend the developed non-unform CA based 

design optimization methodology  by including the position of the cell node (joints) 

coordinates into the vector of design variables, which permits simultanous sizing, 

topology and layout optimization. Several benchmark problems were provided to 

demonstrate the efficiency and accuracy of the proposed methodology. 

5.2. Problem Statement 

The problem involves identifying the optimal cross-sectional areas, material 

distribution, and joint positions for truss structures that minimize their total weight 

while satisfying stress and displacement constraints. This optimization problem can be 

expressed mathematically as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑊𝑇 =   𝜌 ∑ 𝐴𝑗𝐿𝑗
𝑚
𝑗=1                                              (20a) 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑲𝒖 = 𝒇                                                                 (20b) 

| 𝜎𝑗|

𝜎̅𝑗
− 1 ≤ 0 ,        𝑗 = 1,2, ⋯ , 𝑚                                       (20c) 

                                                            
|𝑢𝑖|

𝑢𝑖
− 1 ≤ 0 ,        𝑖 = 1,2, ⋯ , 𝑝                                         (20d) 

                                        𝐴̅𝑙  ≤   𝐴𝑗 ≤ 𝐴̅𝑢 ,        𝑗 = 1,2, ⋯ , 𝑚                                   (20e) 

|∆𝑥𝑖| ≤ ∆𝑥̅𝑖 ,        𝑖 = 1,2, ⋯ , 𝑝                                        (20f) 



67 

 

 
 

where 𝜌 is the weight density (assumed to be uniform for all members), m is the total 

number of bar members in the structure. K is the stiffness matrix, f is the vector of 

nodal forces and u is the vector of nodal displacements.  The equilibrium is satisfied 

through the stiffness equation in constraint (20b) while constraints (20c) and (20d) 

are the stress and displacement constraints in which 𝜎𝑗 and 𝑢̅𝑖 represent the allowable 

values on stress and displacement, respectively. It is noted that to guard against 

buckling the allowable stress 𝜎𝑗  in compression members is taken to be the minimum 

value between the allowable compressive stress and the stress at which Euler buckling 

occurs. Constraints (20e) and (20f) are presented to limit cross-sectional areas and 

nodal coordinates, respectively where 𝐴̅𝑢 and, 𝐴̅𝑙  are the upper and lower bounds on 

the cross-sectional areas, while ∆𝑥̅𝑖  are the maximum allowable move on nodal 

coordinates. A very small positive value is used as the lower bound for cross-sectional 

area to maintain the kinematic stability of the structure during optimization. The 

vector of design variables consist of member cross-sectional areas and position of 

nodal coordinates. It should be noted that topology optimization is implemented 

within the sizing optimization problem by removing members with a cross-sectional 

area equal to their lower bound in the final optimal configuration. 

5.3. Design Update  

The design update rule in this approach involves two stages. The first stage involves 

optimization of sizing and topology through design update rules for the cross-sectional 

areas, while the second stage involves optimization of layout through design update 

rules for nodal coordinates. Both of these stages are implemented using the proposed 

non-uniform CA approach. 

5.3.1. Design update rules for the cross-sectional area 

The Fully Stressed Design approach (FSD) [44, 112] has been again adopted in this 

study for the optimization of sizing variables. Although FSD may not always lead to the 

most optimal results for truss structures that are indeterminate or have multiple load        

cases [44], it has been deemed as the most appropriate approach in this study because 

of its simplicity and compatibility with a strain energy criterion that assumes uniform 

strain energy distribution in optimally designed structures.  As discussed in Chapter 4, 

the FSD method suggests that every member in an optimally sized structure should 
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attain its stress limit. Therefore, the update rule for the cross-sectional areas of the 

members based on FSD as mentioned in Chapter 4 can be again expressed as: 

𝐴𝑗
𝑘+1 = 𝐴𝑗

𝑘 |𝜎𝑗
𝑘|

𝜎̅𝑗
                                                        (21) 

where k denotes design iteration number for the cross-sectional areas. Moreover, the 

strain energy in each member of the truss structure can be expressed as: 

𝑈𝑗 =
𝜎𝑗 

2𝐿𝑗𝐴𝑗

2𝐸𝑗
                                                            (22) 

The total strain energy of the structure and the contribution of each cell to the total 

strain energy of the structure can thus be presented as follows: 

𝑈𝑇 = ∑
𝜎𝑗 

2𝐿𝑗𝐴𝑗

2𝐸𝑗

𝑚
𝑗=1                                                      (23) 

and 

𝑈𝑐
𝑖 =

1

2
∑

𝜎𝑗 
2𝐿𝑗𝐴𝑗

2𝐸𝑗

𝑁
𝑗=1                                                      (24) 

where m denotes the number of members within the structure, and N is the total 

number of members within a given cell. To ensure that the sum of all strain energy 

associated with cells is equal to 𝑈𝑇, a ½ factor is introduced for consistency. If all 

members are under their maximum stress, then shifting the nodes to minimize the 

total strain energy becomes equivalent to the minimization of the total weight. Thus, if 

the coordinate  𝑥𝑖 of a given node is shifted, the resulting changes in total weight and 

total strain energy can be expressed as: 

𝑑𝑊𝑇

𝑑𝑥𝑖
= 𝜌

𝑑

𝑑𝑥𝑖
(∑ 𝐿𝑗𝐴𝑗

𝑚
𝑗=1 )                                              (25) 

     
𝑑𝑈𝑇

𝑑𝑥𝑖
=

𝜎 ̅
2

2𝐸

𝑑

𝑑𝑥𝑖
(∑ 𝐿𝑗𝐴𝑗

𝑚
𝑗=1 ) =

𝜎 ̅
2

2𝜌𝐸

𝑑𝑊𝑇

𝑑𝑥𝑖
                                    (26) 

To minimize the total weight of a structure, we need to shift the positions of the nodes 

in a way that minimizes the total strain energy. Thus, applying the FSD after every 

change in joint coordinates ensures that the optimization process moves in the 

direction that minimize the total weight of the structure. 

However, determining the shifting step for each node that represents a given cell can 

be challenging, particularly if there are buckling constraints or cross-section linking 

involved. In such cases, the allowable stress is not constant for all members, making 

the problem ill conditioned.  Nevertheless, this does not significantly affect the 

efficiency of the algorithm as it will be shown later in the benchmark examples. 
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5.3.2. Design update rule for the nodes’ coordinates 

The rules for updating a cell coordinates are determined by analyzing the distribution 

of strain energy within the structure. As mentioned above, this energy-based approach 

involves moving the cells coordinates in a way that minimizes the total strain energy of 

the structure, while keeping each member fully stressed. Essentially, we can achieve 

the optimal geometry by keeping each member at its maximum stress level while 

minimizing the overall strain energy of the structure.  

The change in the total strain energy resulting from shifting a particular node can be 

evaluated using Taylor expansion and linear approximation around the current nodal 

coordinates as: 

∆𝑈𝑇 ≅ (
𝑑𝑈𝑇

𝑑𝑥𝑖
) ∆𝑥𝑖 + (

𝑑𝑈𝑇

𝑑𝑦𝑖
) ∆𝑦𝑖 + (

𝑑𝑈𝑇

𝑑𝑧𝑖
) ∆𝑧𝑖                                 (27) 

In this study, the optimization process entails shifting the node position in a single 

direction during each iteration. Assuming that the direction is along the  𝑥𝑖 , in order to 

ensure that the shift leads to descent direction (i.e., ∆𝑈𝑇 ≤ 0), we must have: 

𝑠𝑖𝑔𝑛(∆𝑥𝑖) = −𝑠𝑖𝑔𝑛 (
𝑑𝑈𝑇

𝑑𝑥𝑖
)                                             (28) 

If we assume that the shifting steps have equal values, the most effective direction for 

optimization would be the one that leads to the smallest change ∆𝑈𝑇 . As a result, the 

search direction for shifting is selected based on the component of the gradient vector 

with the smallest value. The gradient vector is given by: 

 ∇𝑈𝑇 = [
𝑑𝑈𝑇

𝑑𝑥𝑖
,

𝑑𝑈𝑇

𝑑𝑦𝑖
,

𝑑𝑈𝑇

𝑑𝑧𝑖
].                                              (29) 

On the other hand, the shifting step, ∆𝑥𝑖 in the search direction is calculated at the cell 

level by enforcing the cell strain energy towards its average value. This average value is 

determined by computing the average strain energy for the cell, which is given by: 

𝑈̅𝑐 =
𝑈𝑇

𝑁
                                                             (30) 

where  𝑈̅𝑐 is the average cell strain energy 𝑈𝑇 is the total strain energy of the structure 

and N is the number of members within a cell.    It is worth mentioning that the average 

value of strain energy 𝑈̅𝑐 is computed by averaging the values of all cells within the 

structure. The shifting step ∆𝑥𝑖 for a specific node (cell) i is then determined using the 

general equation of the proposed gradient-based descent algorithm as: 
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     ∆𝑥𝑖 = −𝛼𝑡 ∗ 𝑠𝑖𝑔𝑛 (
𝑑𝑈𝑇

𝑑𝑥𝑖
) 𝑠𝑖𝑔𝑛 (

 (∆𝑈𝑐
𝑖)

𝑡

( ∆𝑈𝑐
𝑖)

0) [0.1 ∗ 𝐿𝑚𝑖𝑛 + 𝛽 |
(∆𝑈𝑐

𝑖)
𝑡

(
𝑑𝑈𝑐
𝑑𝑥𝑖

)
𝑡|]       (31) 

where 

       (∆𝑈𝑐
𝑖)

𝑡
= (𝑈𝑐

𝑖)
𝑡

− 𝑈̅𝑐
𝑡
                                              (32) 

To ensure that the shifting direction is reversed when necessary, the equation (31) 

includes the term 𝑠𝑖𝑔𝑛 ((∆𝑈𝑐
𝑖)

𝑡
/( ∆𝑈𝑐

𝑖)
0

). This term helps to monitor the change in the 

sign of ∆𝑈𝑐
𝑖,  and if the value becomes negative (i.e., 𝑠𝑖𝑔𝑛 ((∆𝑈𝑐

𝑖)
𝑡
/( ∆𝑈𝑐

𝑖)
0

) < 0), the 

shifting direction must be reversed.  𝐿𝑚𝑖𝑛 is the minimum member length within the 

structure, and 𝛼 and 𝛽 are control parameters determining the distance of travel in the 

design space. During each iteration (t), the shifting step of 0.1 ∗ 𝐿𝑚𝑖𝑛 operates at the 

global level and remains the same for all cells. However, the term  𝛽 |(∆𝑈𝑐
𝑖)

𝑡
/ (

𝑑𝑈𝑐

𝑑𝑥𝑖
)

𝑡

| is 

a local term used to direct the cell strain energy towards its average value. The control 

parameters 𝛼 and 𝛽 are incorporated in the algorithm to enhance its convergence. 

These parameters are crucial for improving the performance of the algorithm and 

ensuring its successful convergence. The choice of step size significantly affects the 

performance and convergence of the algorithm. While a smaller step size typically 

results in more precise solutions, it may slow down the convergence rate and, in certain 

instances, cause the algorithm to become trapped in a local optimum. To address this, 

the optimization process starts with a larger total step size ∆𝑥𝑖 to enable exploration of 

a wider search space, and the control parameter  𝛼𝑡 is introduced and its value 

decreases proportionally with its current value, in order to progressively decrease the 

total step size. Specifically, 𝛼𝑡 is calculated as  𝛼𝑡 = (0.99)𝑡 or 𝛼𝑡 = (0.95)𝑡 depending 

on the problem at hand. Meanwhile, the other control parameter 𝛽 operates at the cell 

level and is determined based on the optimization problem. Its value which is always 

less than or equal to 1, depends on the average strain energy of the cell. As the average 

cell strain energy 𝑈̅𝑐
𝑡
 increases, 𝛽 becomes smaller. While some tuning is required for 

𝛽, it is easy to determine. 

In summary, the proposed approach consists of two distinct phases. During the first 

phase, the FSD method is employed without taking the layout variables into 

consideration. This results in obtaining an initial FSD solution. In the second phase, 

the layout optimization process begins by calculating the sensitivities for the current 
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configuration. Specifically, the sensitivities 
𝑑𝑈𝑇

𝑑𝑥𝑖
,

𝑑𝑈𝑇

𝑑𝑦𝑖
,

𝑑𝑈𝑇

𝑑𝑧𝑖
 , and  

𝑑𝑈𝑐

𝑑𝑥𝑖
,

𝑑𝑈𝑐

𝑑𝑦𝑖
,

𝑑𝑈𝑐

𝑑𝑧𝑖
 are 

computed. Once the sensitivities have been calculated, the nodes are shifted 

simultaneously, with each node shifting in its corresponding direction chosen from the 

components of the gradient. The step size for each node is given by Eq. (31). The node 

coordinates are then updated using the following rule:  

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  ∆𝑥𝑖                                                     (33) 

This process is repeated until the layout optimization process converges to a solution 

that satisfies the design requirements. If, at the end of the optimization process, any of 

displacement constraints remain violated, the fully utilized displacement (FUD) 

approach [108] is employed and a uniform scaling is applied to the non-zero cross-

sectional area of the structure in order to ensure that the maximum nodal displacement 

is within the allowable value. 

5.3.3. Linking of sizing variables 

For problems involving linking of sizing variables (cross-sectional areas), the approach 

utilized in this study is to assign the cross-sectional area of elements in a given group 

to the value of the area of the element with the highest stress ratio. This method ensures 

that the stress levels are balanced across the group. 

5.3.4. Linking of layout variables 

For problems involving linking of layout variables, the approach utilized in this study 

is to assign the coordinates of nodes in a given group to the average coordinate value 

of nodes in the same group. Furthermore, it was found that in problems involving the 

linking of both sizing and layout variables, a better optimum design could be obtained 

by decreasing the lower bound of the cross-sectional area by a factor of α during each 

iteration of the layout optimization process. 
 

(𝐴̅𝑙)𝑡+1 =  𝛼 ∗ (𝐴̅𝑙)𝑡                                  (34) 

 

5.3.5 Termination tolerances 

The optimization algorithm incorporates termination tolerances that dictate the 

precision with which the algorithm ceases searching for a better solution. These 

tolerances are vital for ensuring that the obtained solution closely approximates the 
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optimal one. However, caution must be exercised when employing excessively small 

tolerances. While they can drive the algorithm to search for even the tiniest 

improvement in the optimal solution, resulting in minimal weight savings, they also 

require a significantly higher number of evaluations of the objective function. This 

increase in evaluations leads to a rise in computational cost. Consequently, a trade-off 

exists: exceedingly small tolerances may lead to excessive computational expenses for 

marginal improvements in solution quality. 

 

5.4 Computer Implementation of the Proposed Analysis and 

Design Optimization Strategy 

The computer implementation of the proposed bi-level non-uniform CA algorithm 

presented in the previous section is outlined in the simplified flowchart depicted in 

Figure 25. It is important to note that the termination tolerances 𝜀 and 𝜀𝑊 are specific 

to the problem being addressed. 
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Figure 25. Flowchart of the non-uniform CA algorithm for sizing and layout optimization 
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5.5 Benchmark Case Studies for layout optimization  

The effectiveness and accuracy of the proposed bi-level non-uniform CA method have 

been assessed through numerous benchmark case studies. The optimization results 

generated by the proposed approach are presented and compared with those based on 

other optimization algorithms in the existing literature. The aim is to obtain the 

concurrent optimal sizing, topology, and layout configuration of truss structures while 

adhering to both stress and displacement constraints. The design variables considered 

include the cross-sectional areas of the truss members and the nodal coordinates of 

specified joints. As previously mentioned, members whose cross-sectional areas 

approach the lower bounds (close to zero) are eliminated (topology optimization) 

during the sizing optimization. 

5.5-1. Test Problem 1: 13-bar Michell Truss 

This benchmark problem is a classic 13-bar, 8-node Michell truss structure, as shown 

in Figure 26, which has been widely studied in the literature. The material properties 

and problem parameters are listed in Table 12.  The goal is to minimize the weight of 

the structure while satisfying both stress and displacement constraints by optimizing 

the cross-sectional areas and nodal coordinates at the top side of the truss. 

 

 

Figure 26. Schematic of the 13-bar Michell truss 
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Table 12. Problem data for the 13-bar Michell truss 

Design variables  

Size variables: Ai; i = 1, 2, …, 13  

Geometry variables: x3=-x7; x4=-x6; x5; y3=y7; y4=y6; y5  

Behaviour Constraints 

Stress constraints   

(σt)i ≤ 240 MPa; i = 1,…, 13 

|(σc)i | ≤ 240 MPa; i = 1,…, 13 

Displacement constraint in all direction of the coordinate system 

|Δi | ≤ 3.8 mm; i = 1,…, 18 

Side constraints  

Cross section areas 

10-5 ≤ Ai ≤ 0.1 (cm2); i = 1, …, 13 

Loading data  

Node Fx Fy 

1 0.0 -200.0 KN 

Material properties  

Modulus of elasticity E = 210 GPa  

Density of the material ρ = 7800 kg/m3 

Control Parameters 

1 = 0.95  

β = 0.1 

Termination tolerances 

𝜀 = 10-7, 𝜀𝑊= 10-8 

  

This problem was first solved analytically by Michell, and subsequently by various 

researchers using different optimization techniques. The exact solution for this 

problem is given in [134]. Wang et al. [111] solved this problem using a bi-level 

evolutionary approach and reported a total weight of 20.9 kg with slightly different 

nodal coordinates compared to the analytical solution. The proposed methodology 

based on non-uniform CA achieved the exact weight of 20.9000 kg and the exact 

nodal coordinates after 2804 structural analyses. Table 13 compares the optimal 

values of sizing and layout variables obtained using the proposed method with those 

reported in [111]. The affected of control parameters α and β  on the convergence of 

the algorithm are presente in  Table 14. The optimized configuration and the 
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convergence history of the proposed method for both the total strain energy and the 

total weight from the initial design are shown in Figures 27 and 28, respectively. 

Results show that the proposed optimization method rapidly converges to the exact 

optimal solution. 

 

 

Figure 27. Optimized configuration for the 13-bar Michell truss 

 

Table 13. Comparison of optimal cross-sections (cm2) for 13-bar Michell truss 

Design variable Exact solution 

[134] 

Wang et 

al. [111] 

Proposed 

Method 

A1, A8 (cm2) 1.116 1.132 1.1166 

A2, A7 (cm2)            4.314 4.318 4.3137 

A3, A6 (cm2) 4.314 4.315 4.3125 

A4, A5 (cm2) 4.314 4.3111 4.3110 

A9, A13 (cm2) 2.233 2.201 2.2283 

A10, A12 (cm2) 2.233 2.262 2.2376 

A11 (cm2) 2.233 2.209 2.2286 

Y5 (m) 1.000 1.000 1.0005 

Y4 ,Y6 (m) 0.866 0.867 0.8660 

X3, X7 (m) 0.866 0.864 0.8660 

Weight (kg) 20.90 20.90 20.9000 

Max. stress 
constraint ratio 

- - 1.0000 

No. structural 
analyses 

- - 2804 
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Figure 28. Convergence history for the 13-bar Michell truss 

 

Table 14. The effect of control parameters α and β on convergence for the 13-bar Michell 
truss 

α β Weight (kg) No. structural 

analyses 

0.90 0.01 21.2519 3495 

0.90 0.10 20.9054 3305 

0.95 0.01 * - 

0.95 0.10 20.9000 2804 

0.99 0.01 * - 

0.99 0.10 * - 

  (*) indicates a divergence of the algoithm 

 

5.5.2. Test Problem 2: 15-Member, 8-Node Truss Structure 

The 15-bar, 8-node planar truss test problem is shown in Figure 29. The material 

properties and problem parameters are also listed in Table 15. The minimum value for 

the cross-sectional area of the members is set at 0.001 in2. 
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Table 15. Problem data for the 15-bar planar truss 

Design variables  

Size variables: Aj; j = 1, 2, …, 15  

Geometry variables: x2=x6; x3=x7; y2; y3; y4; y6; y7; y8  

Behaviour constraints 

Stress constraints   

(σt)j ≤ 25 ksi; j = 1,…, 15 

|(σc)j | ≤ 25 ksi; j = 1,…, 15    

Side constraints 

Cross-sectional areas 

0.001 ≤ Aj ≤ 30 (in2); j = 1, …, 15 

 

Nodal coordinates: 

100 in ≤ x2 ≤ 140 in;  220 in ≤ x3 ≤ 260 in;   

100 in ≤ y2 ≤ 140 in;  100 in ≤ y3 ≤ 140 in;    50 in  ≤ y4 ≤ 90 in;      

 -20 in ≤ y6 ≤ 20 in;    -20 in ≤ y7 ≤ 20 in;       20 in ≤ y8 ≤ 60 in 

Loading data  

Node Fx Fy 

8 0.0 -10.0 kips 

Material properties  

Modulus of elasticity E = 104 ksi  

Density of the material ρ = 0.1 lb/in3 

Control Parameters 

1 = 0.95  

β = 10-5 

Termination tolerances 

𝜀 = 10-8, 𝜀𝑊= 10-8 
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The optimized layout configuration achieved using the proposed non-uniform Cellular 

Automata (CA) approach is shown in Figure 30. Table 16 also provides a comparison 

of the optimal values of cross-sectional areas and nodal coordinates obtained using the 

proposed methodology with those found by other optimization methods. The proposed 

approach outperforms other methods previously employed for this problem. Rahami 

et al. [66] utilized a single-level Genetic Algorithm (GA) and found an optimal weight 

of 76.6854 lb after performing 8000 structural analyses. Gholizadeh [85] employed a 

hybrid bi-level optimization algorithm combining CA with Particle Swarm 

Optimization (PSO) to find an optimal weight of 72.5143 lb after conducting 4500 

structural analyses. Ahrari et al. [114] used the Fully Stressed Design based on 

Evolution Strategy (FSD-ES) method to achieve an optimal weight of 69.585 lb after 

performing 8508 structural analyses. The proposed design optimization method an 

optimal weight of 69.176 lb after only 240 structural analyses. It is also noted that the 

proposed method does not violate any of the stress constraints.   

Table 17 illustrates how the control parameters α and β affect the convergence of the 

algorithm.  The convergence history of the proposed algorithm, with respect to both 

total strain energy and total weight from the initial design, is shown in Figure 31. 

Results clearly show the rapid convergence of the proposed algorithm to the optimum 

solution.  

 

 

Figure 29. 15-bar, 8-node truss structure 
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Figure 30. Optimized geometry for the 15-bar truss structure 

 

 

 

 

Figure 31. Convergence history for the 15-bar, 8-node planar truss 
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Table 16. Optimal cross-sectional areas and nodal coordinates for the 15-bar planar truss 

Design variable Rahami 

et al. [66] 

Gholizadeh 

[85]    

Ahrari et al. 

[114] 

Proposed 

Method 

A1 (in2) 1.0810 0.954 0.954 0.89346 

A2 (in2) 0.5390          0.539 0.539 0.56598 

A3 (in2) 0.2870 0.270 - 0.00100 

A4 (in2) 0.9540 0.954 0.954 0.94409 

A5 (in2) 0.5390 0.539 0.539 0.46634 

A6 (in2) 0.1410 0.174 0.44   0.42026 

A7 (in2) 0.1110 0.111 - 0.00100 

A8 (in2) 0.1110 0.111 - 0.00100 

A9 (in2) 0.5390 0.287 - 0.00100 

A10 (in2) 0.4400 0.347 0.22 0.41556 

A11 (in2) 0.5390 0.347 0.44 0.36191 

A12 (in2) 0.2700 0.220 0.22 0.09597 

A13 (in2) 0.2200 0.220 0.22 0.25487 

A14 (in2) 0.1410 0.174 0.22 0.46587 

A15 (in2) 0.2870 0.270 - 0.00100 

X2 (in) 101.5775 137.2216 100.0000 140.000 

X3 (in) 227.9112 259.9093 229.8186 253.350 

Y2 (in) 134.7986 123.5006 135.1354 140.000 

Y3 (in) 128.2206 110.0020 124.4261 127.920 

Y4 (in) 54.8630 59.9356 - 90.000 

Y6 (in) -16.4484 -5.1799 -16.9664 0.000 

Y7 (in) -13.3007 4.2193 -9.2015 19.574 

Y8 (in) 54.8572 57.8829 56.1693 60.000 

Weight (lb) 76.6854 72.5143 69.585 69.176 

Max. stress 
constraint ratio 

0.9999 0.9996 1.0000 1.0000 

No. structural 
analyses 

8000 4500 8508 240 
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Table 17. The effect of control parameters α and β on convergence for the 15-bar planar 
truss 

α β Weight (lb) No. structural analyses 

0.90 0.00001 70.175 833 

0.90 0.00010 70.175 833 

0.95 0.00001 69.176 240 

0.95 0.00010 69.175 397 

0.99 0.00001 70.276 12914 

0.99 0.00010 70.276 9291 

 

 

5.5.3. Problem 3: 18-Member, 11-Node Truss Structure 

The third test problem tackled in this study involves an 18-member, 11-node truss 

structure shown in Figure 32, with material properties and problem parameters listed 

in Table 18. The cross-sectional area of the members is subject to a lower bound               

of 3.5 in2.   

 

 

Figure 32. 18-bar, 11-node truss structure 

 

 

 

Figure 33. Optimized geometry for the 18-bar truss structure  
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Table 18. Problem data for the 18-bar planar truss 

Design variables  

Size variables A1=A4=A8=A12=A16; A2=A6=A10=A14=A18; A3=A7=A11=A15; A5=A9=A13=A17 

Geometry variables: x3; x5; x7; x9; y3; y5; y7; y9  

Behaviour constraints  

Stress constraints   

(σt)j ≤ 20 ksi; j = 1,…, 18 

|(σc)j| ≤ 20 ksi; j = 1,…, 18 

Euler buckling Stress constraints   

|(σc)j | ≤ 4EjAj/Lj
2; j = 1,…, 18  

Side constraint Cross section areas: 

3.5 ≤ Aj ≤ 18 (in2); j = 1, …, 25 

Nodal coordinates: 

775 in ≤ x3 ≤ 1225 in;  525 in ≤ x5 ≤ 975 in;   275 in ≤ x7 ≤ 725 in;   25 in ≤ x9 ≤ 475 in;   

-225 in ≤ y3, y5, y7, y9 ≤ 245 in 

Loading data  

Node Fx Fy 

1, 2, 4, 6, 8 0.0 -20.0 kips 

Material properties  

Modulus of elasticity E = 104 ksi  

Density of the material ρ = 0.1 lb/in3 

Control Parameters 

1 = 0.95  

β = 10-7 

Termination tolerances 

𝜀 = 10-5 , 𝜀𝑊= 10-5 

 

Figure 33 displays the optimal layout configuration achieved through the proposed bi-

level non-uniform Cellular Automata (CA) methodology. Table 19 also provides a 

comparison of the optimal results obtained using the proposed methodology with 

those obtained using other optimization methods [36, 66, 85, 126]. As  it can be 

realized, the proposed approach resulted in a significantly lower optimal weight 

compared to Hansen et al. [36] who used a method based on first-order Taylor series 

expansions of the member forces and stresses, as well as compared to Rahami et al. 

[66] who employed GA, and Gholizadeh [85] who used a hybrid CA and PSO method. 
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Hansen et al. [36] achieved a minimum weight of 4505.0 lb after only eight structural 

analyses, while Rahami et al. [66] reported a total weight of 4530.68 lb after 8000 

structural analyses. Gholizadeh [85] obtained a slightly lower weight of 4512.365 lb 

after 4500 structural analyses. Flager et al. [126] found an optimal weight of 4321.52 

lb after 65870 structural analyses, using the Fully Constrained Design (FCD) method 

combined with a gradient-based optimization method. Although Flager et al. [126] 

achieved an optimal weight that was much smaller than previously reported values; it 

was obtained by violating the maximum stress constraint ratio (1.075) and required an 

exceedingly large number of analyses. In contrast, the proposed method obtained an 

optimal configuration with an overall weight of 4480.77 lb after 6574 structural 

analyses, without violating any stress or buckling constraints. The effect of control 

parameters α and β on the algorithm convergence is presented in Table 20. Figure 34 

also shows the convergence history of the proposed method for both the total strain 

energy and the total weight from the initial design. 

 

 

 

 

Figure 34. Convergence history for the 18-bar planar truss 
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Table 19. Optimal cross-sectional areas and nodal coordinates for the 18-bar planar truss 

Design 

variable 

Hansen et al. 

[36] 

Rahami et 

al. [66] 

Gholizadeh 

[85]    

Flager 

[126] 

Proposed 

Method 

A1 (in2) 12.76 12.25 12.50 11.25 10.159 

A2 (in2) 17.77 17.50 17.50 16.75 18.171 

A3 (in2) 5.55 5.75 5.75 5.75 9.008 

A4 (in2) 3.26 3.25 3.75 4.25 3.000 

X3 (in) 881.4 917.4475 907.2491 907.0477 983.06 

Y3 (in) 178.8 193.7899 179.8671 177.9134 180.19 

X5 (in) 628.9 654.3243 636.7871 635.1578 687.95 

Y5 (in) 124.9 159.9436 141.8271 136.8110 107.45 

X7 (in) 390.5 424.4821 407.9442 405.7088 417.87 

Y7 (in) 66.8 108.5779 94.0559 87.2047 65.554 

X9 (in) 313.2 208.4691 198.7897 198.3859 204.52 

Y9 (in) 45.0 37.6349 29.5157 21.4567 35.215 

Weight (lb) 4505.0 4527.6952 4512.365 4321.52 4480.77 

Max. stress 
constraint 
ratio 

- - - 1.075 1.000 

No. 
structural 
analyses 

8 8000 4500 65870 6574 

 

 

Table 20. The effect of control parameters α and β on convergence for the 18-bar planar 
truss 

α β Weight (lb) No. structural 

analyses 

0.90 10-7 5603.36 7018 

0.90 10-6 5603.3 12474 

0.95 10-7 4480.77 6574 

0.95 10-6 4480.54 13595 

0.99 10-6 5040.268 32670 
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5.5.4. Test Problem 4: 25-bar, 10-node space truss 

This problem is a widely known benchmark space truss, which has been tackled using 

various optimization techniques. The structure is illustrated in Figure 35, and its 

material properties and problem parameters are provided in Table 21. This problem 

involves the linking of both the cross-sectional areas and the nodal coordinates. The 

minimum cross-sectional area of members for this problem is not fixed. It is initially 

set at 0.3 in2 and it gradually decreases throughout the layout optimization process to 

a minimum value of 10-4 in2 at a rate β.  

 

Table 21. Problem data for the 25-bar space truss 

Design variables  

Size variables A1; A2= A3= A4= A5; A6= A7= A8= A9; A10 = A11; A12 = A13; A14 = A15= A16= A17; 

A18 = A19 = A20 = A21; A22 = A23 = A24 = A25 

Geometry variables: x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10;  y3 = y4 = -y5 = -y6; x7 = x8 = -x9 = 

-x10; x3 = x4 = x5 = x6   

Behaviour constraints  

Stress constraints: (σt)j ≤ 40 ksi; j = 1,…, 25;  |(σc)j | ≤ 40 ksi; j = 1,…, 25 

Displacement constraint in all direction of the coordinate system: |Δi | ≤ 0.35; i = 1,…, 18 

Side constraints: 

Cross-sectional areas: 10-4 ≤ Ai ≤ 1.2 (in2); i = 1, …, 25 

Nodal coordinates: 20 in ≤ x4 ≤ 60 in;  40 in ≤ x8 ≤ 80 in;  40 in ≤ y4 ≤ 80 in;  100 in ≤ y8 ≤ 

140 in;  90 in ≤ z4 ≤ 130 in 

Loading data  

Node Fx Fy Fz 

1 1.0 kips -10.0 kips -10.0 kips 
2 0.0 -10.0 kips -10.0 kips 
3 0.5 kips 0.0 0.0 
6 0.6 kips 0.0 0.0 

Material properties  

Modulus of elasticity E = 104 ksi  

Density of the material ρ = 0.1 lb/in3 

Control Parameters 

1 = 0.99  

β = 10-3 

Termination tolerances 

𝜀 = 10-3 , 𝜀𝑊= 10-6 
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The optimal layout obtained using the proposed method is presented in Figure 36, 

along with a comparison of optimal values of cross-sectional areas and nodal 

coordinates with those obtained using other optimization methods [36, 66, 85, 114] in 

Table 22. Hansen et al. [36] used a method based on first-order Taylor series 

expansions of member forces and stresses, and reported a minimum weight of 128.3 lb 

after seven structural analyses. In comparison, Rahami et al. [66] obtained a weight of 

120.1149 lb after 10000 structural analyses using GA, while Gholizadeh [85] achieved 

a smaller weight of 117.2227 lb after 4500 structural analyses using a hybrid CA and 

PSO. Ahrari et al. [114] also reported a smaller overall optimal weight of 114.417 lb after 

10000 structural analyses. 

On the other hand, the proposed method achieved an optimal configuration with an 

overall weight of 113.789 lb, which is smaller than those reported in previous studies. 

The proposed method required 7409 structural analyses and did not violate any stress 

or displacement constraints. The convergence of the algorithm under different control 

parameters α and β is presented in Table 23. The convergence history of the proposed 

method for both the total strain energy and the total weight from the initial design is 

also depicted in Figure 37. 

 

 

Figure 35. 25-bar, 10-node space truss 
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Figure 36. Optimized geometry for the 25-bar space truss 

 

 

 

Figure 37. Convergence history for the 25-bar space truss 

 

Uniform 
Scaling 
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Table 22. Optimal cross-sectional areas and nodal coordinates for the 25-bar space truss 

Design variable Hansen 

et al. [36] 

Rahami 

et al. [18]     

Gholizadeh 

[24]    

Ahrari et 

al. [22] 

Proposed 

Method 

A1 (in2) 0.010 0.1 0.1 - 0.01252 

A2 (in2) 0.487 0.1           0.1 0.1 0.09893 

A6 (in2) 0.836 0.9 1.0 0.9 0.93692 

A10 (in2) 0.021 0.1 0.1 - 0.00416 

A12 (in2) 0.123 0.1 0.1 - 0.03231 

A14 (in2) 0.084 0.1 0.1 0.1 0.00416 

A18 (in2) 0.698 0.2 0.1 0.1 0.16649 

A22 (in2) 0.548 0.9 0.9 1.0 1.01115 

X4 (in) 23.7 32.9609 36.9520 38.8713 35.960 

Y4 (in) 49.3 53.6141 54.5786 61.5207 49.090 

Z4 (in) 97.7 129.8648 129.9758 119.1785 130.000 

X8 (in) 27.5 43.6204 51.7317 49.4146 48.7777 

Y8 (in) 96.4 137.2674 139.5316 137.9423 139.590 

Weight (lb) 128.3 120.1149 117.227 114.417 113.789 

Max. stress 

constraint ratio 

- - - 0.4490 0.3268 

No. structural 

analyses 

7 10000 4500 10000 7409 

 

  Maximum displacement = 0.35000 
 

 

Table 23. The effect of control parameters α and β on convergence for the 25-bar space truss 

α β Weight (lb) No. structural 

analyses 

0.90 0.010 155.762 11019 

0.90 0.100 151.456 10519 

0.95 0.010 147.505 11492 

0.95 0.100 139.406 13094 

0.99 0.001 113.789 7409 

0.99 0.010 122.732 11142 
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5.5.5. Test Problem 5: 77-bar, 40-node truss bridge 

This test problem involves a 77-member, 40-node bridge structure shown in Figure 38. 

The bridge structure spans a distance of 6000 in and has 21 panel joints equally spaced 

at 300 in. The applied forces include self-weight and loads given in Table 24.             

Flager et al. [126] solved this problem using a single geometry variable, which is the     

y-coordinate of the top joints of the truss, and discrete sizing variables chosen from a 

list of W-shape profiles. The buckling constraints were based on the AISC-ASD 

standard. In this study, the proposed algorithm is based on the fully stressed approach, 

making it unsuitable for tackling discrete standard profiles. Therefore, we solve the 

problem using continuous sizing variables and compute the Euler buckling allowable 

stress in the same way as in test problem 3. Material properties and problem 

parameters are also given in Table 24, with a lower bound of 1.0 in2 set for cross-

sectional areas. 

 

 

 

Figure 38. 77-bar, 40-node truss bridge 

 

 

 

 

Figure 39. Optimized geometry for the 77-bar space truss 
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Table 24. Problem data for the 77-bar space truss 

Design variables  

Size variables: Aj; j = 1, 2, …, 77  

Geometry variables: y22; y23; y24; y25; y26; y27; y28; y29; y30; y31 

Behaviour constraints  

Stress constraints:  (σt)j ≤ 21.6 ksi; j = 1,…, 77;  |(σc)j | varies; j = 1,…, 77; 

Displacement constraint in all direction of the coordinate system: |Δi | ≤ 10.0 in; i 

= 1,…, 40 

Euler buckling Stress constraints: |(σc)j | ≤ 4EjAj/Lj
2; j = 1,…, 77 

Side constraints: 

Cross-sectional areas: 1.0 ≤ Aj ≤ 250 (in2); j = 1, …, 77 

Nodal coordinates: 0.0 in ≤ yi ≤ 1000 in;  i =22,…, 40 

Loading data  

Node Fx Fy  

i= 2,…, 

20 

0.0 -0.6 kips  

Material properties  

Modulus of elasticity E = 29000 ksi  

Yield stress = 36 ksi 

Density of the material ρ = 0.1 lb/in3 

Control Parameters 

1 = 0.95  

β = 10-2 

Termination tolerances 

𝜀 = 10-5 , 𝜀𝑊= 10-5 

        

The proposed method has generated the optimal layout, cross-sectional areas, and 

nodal coordinates for the bridge structure, which are presented in Figure 39 and Table 

25, respectively.  

In their study, Flager et al. [126] obtained an optimal overall weight of 511,037 lb after 

performing 7553 structural analyses. In contrast, the proposed method achieves a 

weight of 320038 lb which is considerably smaller than the overall weight reported in 

[126], despite addressing the buckling constraints differently. Additionally, the 

proposed algorithm reaches the optimal solution in just 5707 structural analyses 

without violating any stress or displacement constraints.  
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Table 26 demonstrates how the control parameters α and β affect the algorithm 

convergence, while Figure 40 depicts the convergence history of the proposed method 

for both the total strain energy and total weight from the initial design. 

 

  

Figure 40. Convergence history for the 77-bar space truss 

 

Table 25. Optimal cross-sectional areas and nodal coordinates for the 77-bar space truss 

Design variable Flager et al. [15] Proposed Method 

Geometry variables (in) 

Y22             

Y23                 

Y24                 

Y25                        

Y26                          

Y27                            

Y28                         

Y29                             

Y30                                      

Y31         

 

608.49 

608.49 

608.49 

608.49 

608.49 

608.49 

608.49 

608.49 

608.49 

608.49 

 

332.82 

492.48 

621.01 

729.20 

818.24 

886.96 

934.54 

961.56 

970.74 

976.81 

Uniform 
Scaling 
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Size variables  (in2) 

A1        

A2       

A3        

A4        

A5        

A6        

A7        

A8        

A9        

A10         

A21       

A22     

A23     

A24                      

A25      

A26     

A27     

A28      

A29     

A39      

A40       

A41      

A42      

A43      

A44      

A45      

A46      

A47      

A48      

A58      

A59       

A60       

A61       

A62       

A63       

 

20.0 

20.0 

38.8 

56.8 

75.6 

83.3 

101.0 

109.0 

117.0 

125.0 

42.7 

61.8 

75.6 

89.6 

101 

109.0 

117.0 

125.0 

125 

14.6 

74.0 

67.7 

55.8 

44.7 

39.9 

29.4 

25.9 

- 

- 

24.0 

14.6 

117.0 

44.7 

39.9 

35.3 

 

144.840 

144.840 

185.800 

209.130 

223.600 

233.940 

241.620 

248.240 

254.440 

259.880 

125.980 

136.170 

142.420 

146.110 

148.680 

150.820 

153.290 

156.000 

156.540 

16.822 

64.567 

70.234 

64.237 

56.953 

42.977 

36.449 

35.833 

15.763 

10.625 

162.670 

60.991 

44.596 

33.029 

26.945 

22.105 



94 

 

A64       

A65       

A66       

A67       

29.1 

23.2 

17.9 

14.6 

20.448 

20.107 

18.096 

3.245 

Weight (lb)  511,037 320,038 

Violated Constraints 0 0 

No. structural analyses 7553 5707 

                        Maximum displacement = 10.000 in 

 

Table 26. The effect of control parameters α and β on convergence for the 77-bar space truss 

α β Weight (lb) No. structural 

analyses 

0.90 0.010 * - 

0.95 0.010 320,038 5707 

0.95 0.100 * - 

    (*) indicates a very slow convergence 

 

5.5.6. Test Problem 6: 258-bar, 60-node space truss bridge 

This test problem addresses the 258-member, 60-node bridge structure shown in 

Figure 41, which has been solved by Decamps et al. [135]. The bridge spans a distance 

of 14 m and consists of 1 x 1 x 1 equally spaced modules. The supports are located at 

nodes 1, 2, 29 and 30, and are blocked in all three directions. The forces applied to this 

structure involve downward loads of magnitude 1 applied to the lower nodes of the 

structure. Additionally, a lateral horizontal force of 0.2 is applied at each of the lower 

nodes, on one side of the bridge and perpendicular to its main axis. The design 

variables include the cross-sectional area of the 258 members, and the x, y and z 

coordinates of the upper nodes. These nodes are allowed to move within a bounding 

box of 2 x 2 x 10 meters around each node's original position. The allowable stress and 

the Young modulus also have a value of 1. Control parameters and the termination 

tolerances for this problem, are given in table 27. 
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Table 27. Control parameters and termination tolerances for the 258-bar space truss 

Control Parameters 

1 = 0.995  
β = 10-5 
Termination tolerances 
𝜀 = 10-6 , 𝜀𝑊= 10-6 

        
 

The optimal layout as well as nodal coordinates and optimal cross-sectional areas 

obtained using the proposed method are shown in Figure 42, Table 28 and Table 29, 

respectively.  Decamps et al. [135] reported an optimal volume of 408.807, which was 

obtained after 1414 iterations. The proposed method achieves an optimal volume of 

389.53 which is about 5% smaller than the overall volume reported in [135].  Moreover, 

the proposed algorithm required 65432 structural analyses to converge to the optimal 

solution without violation of any stress. The effect of algorithmic parameters α and β 

on the convergence of the algorithm are presented in Table 30. The convergence 

history of the proposed method for both the total strain energy and the total weight 

from the initial design are shown in Figure 43. 

 

 

Figure 41. 258-bar, 60-node truss bridge 
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(a) 3D view of the optimized truss.  

 

 

      (b) Top view of the optimized truss. 

  

 

           (c) Front view of the optimized truss. 

 

 

Figure 42. Optimized geometry for the 258-bar space truss 
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Table 28. Optimal cross-sectional areas for the 258-bar space truss 

Member 
no. 

End 
Node 1 

End 
Node 2 

Aj σj   
Member 

no. 
End 

Node 1 
End 

Node 2 
Aj σj 

1 1 2 0.0050 0.0000   45 8 9 0.3311 -1.0000 
2 1 3 1.4412 1.0000   46 8 10 0.1831 1.0000 
3 1 4 0.7187 1.0000   47 8 36 0.5870 1.0000 
4 1 31 0.0050 0.0226   48 8 37 0.1938 1.0000 
5 1 32 0.0050 0.0127   49 8 38 0.1771 1.0000 
6 1 33 10.6170 -1.0000   50 8 40 0.0792 1.0000 
7 2 3 1.1198 -1.0000   51 9 10 0.0314 -1.0000 
8 2 4 0.7057 -1.0000   52 9 11 0.1273 -1.0000 
9 2 31 0.0050 -0.1610   53 9 12 0.0050 -0.5000 
10 2 32 0.0050 -0.1721   54 9 37 1.0076 1.0000 
11 2 34 10.6140 -1.0000   55 9 39 0.0050 0.4309 
12 3 4 0.0050 0.0000   56 9 40 0.0050 0.2382 
13 3 5 0.0050 -0.0021   57 9 41 0.0050 0.2511 
14 3 6 0.0089 0.9990   58 10 11 0.0941 -1.0000 
15 3 31 0.0050 0.2532   59 10 12 0.0050 0.0000 
16 3 33 0.0050 0.0393   60 10 38 0.0050 0.6527 
17 3 34 1.3281 1.0000   61 10 39 0.1666 1.0000 
18 3 35 0.0050 -0.8576   62 10 40 0.4320 1.0000 
19 4 5 0.8039 -1.0000   63 10 42 0.4419 1.0000 
20 4 6 0.2736 -1.0000   64 11 12 0.1964 -1.0000 
21 4 32 0.0050 0.2927   65 11 13 0.0050 0.0416 
22 4 33 0.0050 0.0318   66 11 14 0.0050 0.5208 
23 4 34 1.1878 1.0000   67 11 39 0.9618 1.0000 
24 4 36 0.0050 0.4140   68 11 41 0.0536 1.0000 
25 5 6 0.0357 1.0001   69 11 42 0.0050 0.7067 
26 5 7 0.0698 0.9999   70 11 43 0.0050 0.7029 
27 5 8 0.3984 1.0000   71 12 13 0.1133 -1.0000 
28 5 33 2.2934 1.0000   72 12 14 0.0471 1.0000 
29 5 35 0.0443 -1.0000   73 12 40 0.0050 0.6246 
30 5 36 0.0050 -0.1587   74 12 41 0.9174 1.0000 
31 5 37 1.5418 -1.0000   75 12 42 0.0050 0.8674 
32 6 7 0.1465 -1.0000   76 12 44 0.1222 1.0000 
33 6 8 0.1940 -1.0000   77 13 14 0.1667 -1.0000 
34 6 34 0.9408 1.0000   78 13 15 0.0050 -0.0393 
35 6 35 0.0050 0.3946   79 13 16 0.0050 0.4803 
36 6 36 0.0630 1.0000   80 13 41 0.1523 1.0000 
37 6 38 0.0050 0.6598   81 13 43 0.8514 1.0000 
38 7 8 0.1699 -1.0000   82 13 44 0.0050 0.8388 
39 7 9 0.0342 -1.0001   83 13 45 0.0050 0.6581 
40 7 10 0.0050 -0.0001   84 14 15 0.0388 -1.0000 
41 7 35 1.0002 1.0000   85 14 16 0.1014 1.0000 
42 7 37 0.0050 0.4206   86 14 42 0.0050 0.6622 
43 7 38 0.0050 0.2712   87 14 43 0.6086 1.0000 
44 7 39 0.0050 -0.1807   88 14 44 0.3849 1.0000 
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Table 28. Optimal cross-sectional areas for the 258-bar space truss (cont’d). 

Member 
no. 

End 
Node 1 

End 
Node 2 

Aj σj   
Member 

no. 
End 

Node 1 
End 

Node 2 
Aj σj 

89 14 46 0.0317 1.0001  133 21 51 0.0050 0.4309 
90 15 16 0.1850 -1.0000  134 21 52 0.0050 0.2382 
91 15 17 0.0050 -0.0393  135 21 53 1.0076 1.0000 
92 15 18 0.0388 -1.0000  136 22 23 0.0050 -0.0001 
93 15 43 0.0424 1.0001  137 22 24 0.1831 1.0000 
94 15 45 0.9174 1.0000  138 22 50 0.4419 1.0000 
95 15 46 0.0050 0.8412  139 22 51 0.1666 1.0000 
96 15 47 0.0424 1.0001  140 22 52 0.4320 1.0000 
97 16 17 0.0050 0.4803  141 22 54 0.0050 0.6527 
98 16 18 0.1014 1.0000  142 23 24 0.1699 -1.0000 
99 16 44 0.0050 0.7770  143 23 25 0.0698 0.9999 

100 16 45 0.5786 1.0000  144 23 26 0.1465 -1.0000 
101 16 46 0.4383 1.0000  145 23 51 0.0050 -0.1807 
102 16 48 0.0050 0.7770  146 23 53 0.0050 0.4206 
103 17 18 0.1667 -1.0000  147 23 54 0.0050 0.2712 
104 17 19 0.0050 0.0416  148 23 55 1.0002 1.0000 
105 17 20 0.1133 -1.0000  149 24 25 0.3984 1.0000 
106 17 45 0.0050 0.6581  150 24 26 0.1940 -1.0000 
107 17 47 0.8514 1.0000  151 24 52 0.0792 1.0000 
108 17 48 0.0050 0.8388  152 24 53 0.1938 1.0000 
109 17 49 0.1523 1.0000  153 24 54 0.1771 1.0000 
110 18 19 0.0050 0.5208  154 24 56 0.5870 1.0000 
111 18 20 0.0471 1.0000  155 25 26 0.0357 1.0001 
112 18 46 0.0317 1.0001  156 25 27 0.0050 -0.0021 
113 18 47 0.6086 1.0000  157 25 28 0.8039 -1.0000 
114 18 48 0.3849 1.0000  158 25 53 1.5418 -1.0000 
115 18 50 0.0050 0.6622  159 25 55 0.0443 -1.0000 
116 19 20 0.1964 -1.0000  160 25 56 0.0050 -0.1587 
117 19 21 0.1273 -1.0000  161 25 57 2.2934 1.0000 
118 19 22 0.0941 -1.0000  162 26 27 0.0089 0.9990 
119 19 47 0.0050 0.7029  163 26 28 0.2736 -1.0000 
120 19 49 0.0536 1.0000  164 26 54 0.0050 0.6598 
121 19 50 0.0050 0.7067  165 26 55 0.0050 0.3946 
122 19 51 0.9618 1.0000  166 26 56 0.0630 1.0000 
123 20 21 0.0050 -0.5000  167 26 58 0.9408 1.0000 
124 20 22 0.0050 0.0000  168 27 28 0.0050 0.0000 
125 20 48 0.1222 1.0000  169 27 29 1.4412 1.0000 
126 20 49 0.9174 1.0000  170 27 30 1.1198 -1.0000 
127 20 50 0.0050 0.8674  171 27 55 0.0050 -0.8576 
128 20 52 0.0050 0.6246  172 27 57 0.0050 0.0393 
129 21 22 0.0314 -1.0000  173 27 58 1.3281 1.0000 
130 21 23 0.0342 -1.0001  174 27 59 0.0050 0.2532 
131 21 24 0.3311 -1.0000  175 28 29 0.7187 1.0000 
132 21 49 0.0050 0.2511  176 28 30 0.7057 -1.0000 
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Table 28. Optimal cross-sectional areas for the 258-bar space truss (cont’d). 

Member 
no. 

End 
Node 1 

End 
Node 2 

Aj σj  Member 
no. 

End 
Node 1 

End 
Node 2 

Aj σj 

177 28 56 0.0050 0.4140  221 44 45 0.0050 -0.0685 
178 28 57 0.0050 0.0318  222 44 46 4.1682 -1.0000 
179 28 58 1.1878 1.0000  223 45 46 0.0988 1.0000 
180 28 60 0.0050 0.2927  224 45 47 12.2780 -1.0000 
181 29 30 0.0050 0.0000  225 45 48 0.0050 -0.0685 
182 29 57 10.6170 -1.0000  226 46 47 0.0050 -0.6469 
183 29 59 0.0050 0.0226  227 46 48 4.1682 -1.0000 
184 29 60 0.0050 0.0127  228 47 48 0.0571 1.0000 
185 30 58 10.6140 -1.0000  229 47 49 12.2900 -1.0000 
186 30 59 0.0050 -0.1610  230 47 50 0.1344 -1.0000 
187 30 60 0.0050 -0.1721  231 48 49 0.0050 0.5420 
188 31 32 0.0050 0.0142  232 48 50 4.2528 -1.0000 
189 31 33 0.0050 -0.1454  233 49 50 0.0192 1.0000 
190 31 34 0.0050 0.0288  234 49 51 12.3680 -1.0000 
191 32 33 0.0050 -0.1505  235 49 52 0.1698 -1.0000 
192 32 34 0.0050 0.0150  236 50 51 0.1914 1.0000 
193 33 34 0.2216 1.0000  237 50 52 4.7167 -1.0000 
194 33 35 9.3952 -1.0000  238 51 52 0.0050 0.2519 
195 33 36 0.0050 0.2479  239 51 53 11.7370 -1.0000 
196 34 35 1.3116 -1.0000  240 51 54 0.8811 -1.0000 
197 34 36 6.8594 -1.0000  241 52 53 0.0050 0.3151 
198 35 36 0.3997 1.0000  242 52 54 5.0798 -1.0000 
199 35 37 10.1010 -1.0000  243 53 54 0.5438 1.0000 
200 35 38 0.0050 0.9148  244 53 55 10.1010 -1.0000 
201 36 37 0.9494 -1.0000  245 53 56 0.9494 -1.0000 
202 36 38 5.8744 -1.0000  246 54 55 0.0050 0.9148 
203 37 38 0.5438 1.0000  247 54 56 5.8744 -1.0000 
204 37 39 11.7370 -1.0000  248 55 56 0.3997 1.0000 
205 37 40 0.0050 0.3151  249 55 57 9.3953 -1.0000 
206 38 39 0.8811 -1.0000  250 55 58 1.3116 -1.0000 
207 38 40 5.0798 -1.0000  251 56 57 0.0050 0.2479 
208 39 40 0.0050 0.2519  252 56 58 6.8594 -1.0000 
209 39 41 12.3680 -1.0000  253 57 58 0.2216 1.0000 
210 39 42 0.1914 1.0000  254 57 59 0.0050 -0.1454 
211 40 41 0.1698 -1.0000  255 57 60 0.0050 -0.1505 
212 40 42 4.7167 -1.0000  256 58 59 0.0050 0.0288 
213 41 42 0.0192 1.0000  257 58 60 0.0050 0.0150 
214 41 43 12.2900 -1.0000  258 59 60 0.0050 0.0142 
215 41 44 0.0050 0.5420       
216 42 43 0.1344 -1.0000       
217 42 44 4.2528 -1.0000       
218 43 44 0.0571 1.0000       
219 43 45 12.2780 -1.0000       
220 43 46 0.0050 -0.6469       
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Table 29. Optimal nodal coordinates for the 258-bar space truss 

Node 
no. 

x y z 

33 2.0000 0.0934 1.5504 
34 2.0000 0.9067 1.5504 
35 3.0000 0.1501 2.0524 
36 3.0000 0.8499 2.0524 
37 3.6731 0.1555 2.3209 
38 3.6731 0.8445 2.3209 
39 4.4539 0.1586 2.6097 
40 4.4539 0.8414 2.6097 
41 4.9876 0.1419 2.7547 
42 4.9876 0.8581 2.7547 
43 5.8976 0.1252 2.9200 
44 5.8976 0.8748 2.9200 
45 7.0000 0.1150 2.9864 
46 7.0000 0.8850 2.9864 
47 8.1024 0.1252 2.9200 
48 8.1024 0.8748 2.9200 
49 9.0124 0.1419 2.7547 
50 9.0124 0.8581 2.7547 
51 9.5461 0.1586 2.6097 
52 9.5461 0.8414 2.6097 
53 10.3270 0.1555 2.3209 
54 10.3270 0.8445 2.3209 
55 11.0000 0.1501 2.0524 
56 11.0000 0.8499 2.0524 
57 12.0000 0.0934 1.5504 
58 12.0000 0.9067 1.5504 

*Nodes 31, 32, 59, 60 are not presented because all the bars connected to them have zero cross-

sectional area. 

 

Table 30. The effect of algorithmic parameters α and β on convergence for the 258-bar 

space truss 

α β Optimal 

Volume 

No. structural 

analyses 

0.995 10-3 * Diverge 
0.995 10-5 389.53 65432 
0.999 10-5 * - 

    (*) indicates a very slow convergence 
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Figure 43. Convergence history for the 258-bar space truss 

 

5.6 Conclusion 

The problem of minimizing the weight of truss structures under stress and 

displacement constraints through simultaneous optimization of sizing, topology, and 

layout has been discussed in this Chapter. The proposed approach is a bi-level 

algorithm that uses an unconventional non-uniform cellular automata method, with 

an alternating procedure to couple sizing and layout during the optimization process. 

To evaluate the proposed algorithm, several benchmark problems were tested. The 

results demonstrate that the proposed algorithm outperforms other methods in terms 

of both efficiency and accuracy. The superiority of the proposed algorithm can be 

attributed to its ability to handle complex problems and its capability to obtain optimal 

solutions with fewer structural analyses compared to other optimization methods.  
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Chapter 6                                                              

Contribution, Conclusions, and Future work 

6.1  Contributions 

This research study proposes a non-uniform cellular automata (CA) framework for 

minimizing the weight of truss structures, taking into account stress, displacement, 

and buckling constraints. CA is a type of computational model that consists of a grid of 

cells, each of which can have a finite number of states, and a set of rules that determine 

how the cells change their states over time. Unlike conventional CA, which relies on 

identical cells, the non-uniform CA framework proposed in this dissertation is 

designed to handle different types of cells with different properties and behaviors, 

allowing for more flexibility in the optimization process. The proposed non-uniform 

CA framework was first formulated and implemneted for the topology and sizing 

optimization of truss structures and was later extended to solve the simulanaous sizing, 

topology and layout optimization problem by adding the nodal coordinates to the 

vector of design variables. 

 

The main contributions of this reseach dissertation may eb asuumarzied as: 

 

 The development of a non-uniform cellular automata framework for topology 

and sizing and layout optimization of truss structures that takes into account 

stress, displacement, and buckling constraints. 

 The implementation of a new bi-level approach for the solution of the layout 

optimization problem, where an alternating procedure was used to couple sizing 

and layout during the optimization process, thus improving the quality of the 

optimized designs. The FSD approach was effectly used to update the sizing 

variables, while the layout variables were updated based on an optimality 

criterion based on the the strain energy distribution within the structure, and 

using the standard steepest descent method. 

 The application of the proposed framework on different 2-D and 3-D truss 

structures, including relatively large structures, which shows its versatility and 

potential for various engineering problems. 
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 The efficiency and performance of the developed algorithm based on the 

proposed non-uniform cellular automata (CA) framework were demonstrated 

through several benchmark test problems. Results unanimously showed the 

superior performance of the proposed non-uniform CA in terms of both 

efficiency and accuracy compared with other optimization algorithms.  

In conclusion, non-uniform cellular automata is a powerful tool for optimizing truss 

structures. By exploring a wide range of design possibilities and simulating the 

behavior of individual cells, non-uniform CA can help engineers and designers to 

identify the most efficient and cost-effective truss structure for a given set of 

performance requirements. As non-uniform CA continues to evolve and improve, it is 

likely that it will play an increasingly important role in the design of complex truss 

structures. 

6.2 Major Conclusions 

Here are some of the major conclusions from this research study: 

 It was shown that the developed design optimization methodlogy based on the 

non-uniform cellular automata paradime can be effectively used for sizing, 

topology and layout design  optimization of plane and space truss structures 

subjected to displacement, stress and buckling constraints. Through several 

benchmark problmes, it was demonstrated that the proposed methodology can 

generate better optimal designs in  terms of both efficency and 

accuracycompared with other traditional optimization methods. 

 In layout optimization problems, the performance of the non uniform  CA 

algorithm is sensitive to the selection of control parameters. These parameters 

thus need to be carefully fine tuned for convergence. 

 The proposed approach can identify truss configurations that are not intuitive 

and would likely not be identified through manual design exploration.  

Overall, we conclude that non-uniform cellular automata can be an effective and 

efficient tool for the optimization of truss structures, enabling designers to identify 

novel solutions that are both material-efficient and structurally sound. However, it 

is important to consider that it may have some limitations when applying this 

approach to practical design problems. 
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6.3 Recommendation for the future works 

While this research has initiated a major leap toward implementation of CA in 

structural design optimization, there are some potential recommendations for future 

work regarding the use of non-uniform cellular automata: 

 Optimization of real-world truss structures: Most test problems in this study are 

idealized truss structures. Future work could focus on the optimization of real-

world truss structures, such as those used in bridges and cranes.  

 Investigation of alternative objectives: While we have focused on minimizing 

the weight of the structure, future work could explore alternative objectives such 

as maximizing the strength or increasing the load carrying capacity. . 

 Investigation of multi-objective optimization: Explore the optimization of truss 

structures for multiple objectives, where the algorithm seeks to find a balance 

between these competing objectives such as strength, stability, and cost-

effectiveness. 

 Refining the algorithm to effectively address optimization problems involving 

discrete cross-sections. 

 Incorporation of more design constraints: Investigate the inclusion of 

additional design constraints such as deflection, vibration, and global buckling 

into the non-uniform CA optimization process. 

 Incorporation of real-world constraints: In real-world engineering applications, 

there are often practical constraints that must be considered, such as material 

availability, manufacturing limitations, and construction constraints. Future 

work could explore the incorporation of these types of constraints into the non-

uniform CA optimization process, and investigate how they might affect the 

resulting truss designs. 

 Investigation of hybrid optimization techniques: Explore the possibility of 

integrating the proposed framework with other optimization algorithms, to 

improve the efficiency and accuracy of truss optimization. 

 Extension to other types of structures: While this non-uniform CA has been 

developed specifically for truss structures, future work could explore the 

applicability of the non-uniform CA to other types of structural systems, such as 

frames or shells or in general continuum structures.  
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 Investigation of uncertainty and variability: Investigate the effect of uncertainty 

and variability in the design parameters on the performance of the non-uniform 

CA approach. 

 Investigation of the impact of initial design: Investigate how the initial design 

of the truss structure affects the performance of the non-uniform CA approach. 

 Exploration of parallel computing techniques: The computational complexity of 

the non-uniform CA optimization can be a limiting factor. Future work could 

explore the use of parallel computing techniques to improve the efficiency of the 

optimization process. 

 Integration of machine learning: Explore the integration of machine learning 

techniques into the non-uniform CA optimization process. This could involve 

using machine learning to learn from previous designs and generate designs 

that are more efficient in the future. 

 Validation and comparison with newer methods: While non-uniform CA has 

shown promising results in truss optimization, it is important to validate its 

effectiveness and efficiency against newer methods such as deep learning and 

reinforcement learning.  
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