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Abstract

A brief Introduction to Kodaira dimension and Iitaka Conjecture
Emanuele Ronda
In the work A brief introduction to Kodaira dimension and Iitaka Conjecture
by Emanuele Ronda, we define the concept of Kodaira dimension and state
the Iitaka Conjecture Cn,m. We therefore prove some results on the Kodaira
dimension and study, at different levels of detail, three, already known,
instances of the Conjecture; namely:

i Cn,1 for base curves of general type and fibres of positive geometric
genus;

ii C2,1;

iii Cn,m for base spaces of maximal Albanese dimension.
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1

Introduction

In almost all branches of human knowledge, a very common approach to the
study of the objects under consideration is to group those together with respect
to some shared properties. In other words, we do not need to comprehend
the differences between the Ross seal and the Weddell seal to know what a
seal is!
This is a rather naive description of what the problem of classification is.
In mathematics, as in all the subjects, the classification problems play a
key role, both the ”easy” ones like the characterization of finite dimensional
vector spaces over a fixed field and the hardest ones like the classification of
the finite simple groups. The first one, for example, gives a powerful tool
to work with, while the other had been one of the leading problems in the
development of Group Theory in the 20th century.
In both these examples, we classify the objects (respectively vector spaces
and finite simple groups) up to isomorphism. There obivously are many more.
In Complex Differential Geometry for example, one can classify spaces up to
bimeromorphic map which are invertible meromorphic maps that are proper
over both factors.
The main focus in this discussion are some known instances of an open
problem that arose in the study of the classification of algebraic varieties up
to birational equivalence.
We define a birational map between two varieties X, Y to be a rational map
(not necessarily defined everywhere)

f : X Y

such that there are open dense subsets U ⊆ X, V ⊆ Y , such that the
restriction

f|U : U → V
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is a well-defined morphism, is bijective and its inverse is again a morphism.
An example that explains well the situations we are interested in is the one
of the nodal cubic. Consider k an algebraically closed field, and consider the
vanishing locus in the plane of the following polynomial:

Y 2 −X3 −X2

The gradient of the polynomial is

∇(Y 2 −X3 −X2) = (−3X2 − 2X, 2Y )

and so it is singular only at the origin, which is a point in the vanishing locus
of the polynomial.
This means that the origin is a singular point of the curve.
In this case, the tangents are the bisectors of the plane. For every other point
there is only one tangent line to the curve in that point. So if we denote by
X the curve, we can consider the map

X \ {(0, 0)} → A2(k)× P1(k)

(x, y) 7−→ ((x, y), [−3x2 − 2x, 2y])

that associates to each point the couple of the point itself and the tangent
direction on it. It is well-defined.
Let Γ be the graph of such map and X̃ its closure. Then the first projection

Γ → X \ {(0, 0)}

is a bijective continuous map of varieties. Thus an open dense subset of X
is isomorphic to Γ which is open dense in B. We showed that X and B are
the same ”up to a bunch of points”: indeed notice that B \ Γ consists of two
points, namely (0, 0, t1), (0, 0, t2) where t1, t2 correspond to the bisectors of
the plane. This example is summarized in the following picture.

x

y

π
x

y

z
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What we have just studied is the construction of the blow-up of X at the
origin. Blow-ups are the fundamental example of birational maps! Now that
we have an understanding of some kind of what the concept of birational
equivalence is, we can move on and talk a bit about the classification.
The classification of compact complex manifolds up to bimeromorphic equiva-
lence began during the 19th century with the study of curves. Nowadays it
is a very well understood problem: Riemann proved that compact Riemann
surface is actually a projective algebraic curve, therefore, the concepts of
bimeromorphic equivalence and rational equivalence are the same for such
objects. From the algebraic point of view it has been proved that every
irreducible projective algebraic curve is birational to a smooth projective
curve: this implies that the problem of classification actually relies only on
the smooth case. Moreover, the smooth projective curves are then classified
through an important topological invariant: the genus.
The case of surfaces has a much more involved solution: there are exam-
ples of compact complex surfaces that are not algebraic; though many great
mathematicians (Del Pezzo, Severi, Albanese and Zariski, just to name few
of them) have attempted the solution between the end of the 19th and the
beginning of the 20th century, a complete and correct solution only came in
1935 thanks to Walker. Moreover, in the case of surfaces the geometric genus
is not sufficient anymore to give a satisfying classification, thus there have
been introduced new invariants, like the plurigenera, the Kodaira dimension
and the irregularity are introduced.
There is a clear pattern in this: the higher the dimension, the messier the
picture!
The problem of resolution of singularities, of course over the complex numbers
has been finally solved in 1964 by Hironaka. In the following decade, Iitaka
and Ueno developed the theory of birational classification of algebraic varieties.
Iitaka, in particular, introduced, in his doctoral thesis ([13]), the now-called
Iitaka dimension of a line bundle over a projective algebraic variety: a number
that measures, in the same time, both how big can be the image of the
variety under a map canonically associated to the line bundle and how big
are, asymptotically, the spaces of global sections of the tensor powers of the
line bundle itself.
The existence of several line bundles over a given variety is a non-trivial
problem, but for every variety we can identify two line bundles (that can
coincide): the trivial one, associated to the structure sheaf of the variety
and the canonical one, parametrizing the holomorphic differential forms of



4

maximal degree on the variety. The Iitaka dimension of the canonical bundle
plays an important role in the birational classification of algebraic varieties,
indeed it is a birational invariant. Iitaka at first called it canonical dimension
of the variety, but it became more kown as Kodaira dimension, as an omage
to Iitaka’s doctoral supervisor, Kodaira.
In another of his papers ([14]), Iitaka, also posed several open problems. The
most interesting one was about the Kodaira dimension. The Conjecture C
states that: let

f : X → Y

be an algebraic fibre space, which is a surjective morphism of smooth projective
varieties with connected fibres. Then

κ(X) ≥ κ(Y ) + κ(F )

where F is a general (that is: taken in an open dense subset) fibre of f and
κ(V ) is the Kodaira dimension of the variety V for every V ∈ {X, Y, F}.
As of today, the problem of classification has strayed a bit from Iitaka’s
approach and the most powerful tools to understand the problem are given by
Mori’s Minimal Model Program, but Iitaka’s ideas and results still play a very
important role in the classification problem. In particular Iitaka Conjecture
is deeply linked to the Abundance Conjecture.
Therefore, many of the greatest algebraic and analytic geometers, like Mori,
Fujita, Fujino, Kawamata, Viehweg, Kollár, Hacon, Birkar, Cao, Cascini,
McKernan and many others, have kept working also on Iitaka Conjecture-
related issues. However, regardless of its importance in the picture of the
classification, Iitaka Conjecture is a deeply fascinating problem that, as all
the great questions, has never lost and, hopefully, will never lose its power to
amaze whomever comes in contact with it.
The main focus of this discussion, as it might be clear by now, is the Conjecture,
or to be precise some instances of it that have been proven over the years.
As a matter of fact Iitaka did not state its conjecture in the terms we used:
indeed, the definition of canonical bundle does not require the hypothesis
of projective (hence algebraic) variety to be posed and thus Iitaka stated it
in the more general setting of a compact Kählerian variety. In this setting,
however, the inequality does not always hold, indeed, in a paper of his Ueno
proposed a counterexample (for more details one can look at [29] Chapter
IIII, Remark 15.3).
Another question one can ask about Iitaka Conjecture is that, since all the key
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definitions are algebraic, whether this statement makes sense for varieties over
a positive characteristics algebraically closed field. Everything makes sense
in such setting, and there have been many developments in this direction,
mainly due to Lei Zhang (see, for example, [33]).
We will focus on the setting in which we stated the Conjecture: an algebraic
fibre space between two smooth projective varieties over the complex numbers.
In this setting there have been many results, some of them still valid for non
necessarily algebraic manifolds. An obviously non-comprehensive list is

i Ueno proved the inequality, in the stronger form of an equality, for
Moishezon manifolds ([29]);

ii Fujita proved the inequality for Kähler fibre spaces over curves in [9];

iii Kawamata proved the inequality, in the stronger form of an equality, in
case the base space is of general type in [15];

iv thanks to the developments in the study of the Minimal Model Theory,
Birkar concluded that the Iitaka inequality is satisfied for domains of
dimension at most 6 ([2]);

v Cao and Păun proved the inequality for fibrations over varieties of
maximal Albanese dimension in [5];

vi Cao proved also that the Conjecture holds for fibrations over surfaces
in [4].

We chose to focus our attention on three instances: a proof of the case of a
fibration over a curve given by Lazarsfeld in [18] which is substantially Fujita’s
proof; a proof of the case surface-curve based only on algebraic methods given
by Wessler in [32]; the outline and the main ideas of Cao and Păun’s proof
([5]) in the exposition given by Hacon-Popa-Schnell in [10].
We preferred to use almost only algebraic methods, even though at some
point we needed to introduce some analytic notions that are necessary. Many
results are presented without proofs, in perfect accordance to the very italian
principle of ”se una scena è complicata, non la famo, ma lo dimo.” 2 with
the obvious interpretation in this case for those proofs that are lengthy, but
not too important. Or also are too difficult.
The discussion is divided into three chapters. In the first one there are the

2”If a scene is too complicated we don’t do that, but we say it.”
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main definitions of the varieties, divisors, linear systems, Iitaka and Kodaira
dimension, ample and nef line bundles, Iitaka fibration, ample and nef vector
bundles.
The second chapter contains: Castelnuovo–Mumford regularity theorems,
vanishing theorems, Fujita theorem and Mourougane theorem.
The third chapter gives some general results on the Iitaka and Kodaira
dimension and the proofs of those instances of Cn,m.
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Chapter 1

Preliminaries

As usual, before going into deep detail with the study of the Iitaka Conjecture,
we will need to recall and prove some basic facts and definitions about some
stuff. Throughout the entire discussion we will be assuming as known the
theory of Sheaf Cohomology. Some good references for this are the fourth
chapter of [31] and the third chapter of [12]. We tried to recall (and give
a good reference) for all the tools from Sheaf Cohomology that we used;
sometimes, though, we used some results without mentioning them, mainly
abouto higher direct image sheaves or flat morphisms. All of these results
can be explicitly found in [12] Chapter III Sections 8 and 9.

1.1 Projective Complex Varieties

1.1.1 Projective Algebraic Varieties

In this section we will define what a smooth projective complex variety is.
These will be the main objects on which all of the constructions will be made.
For this part the main references have been the second section of the first
chapter of [12]. We will always work over the complex numbers C and all the
rings we consider will be commutative and unital.

Definition 1.1.1. A graded ring is a ring S together with a decomposition

S =
⊕

d∈N

Sd
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in which each Sd is an abelian group and for every d, e ∈ N:

Sd · Se ⊆ Sd+e.

An element of Sd is called an homogeneous element of degree d. An ideal

a ⊆ S

is said to be homogeneous if there exists a set of generators for a in which
every element is homogenous.

Now, we want to see, for a fixed n ∈ N, the ring C[X0, . . . , Xn] as a graded
ring: for monomials in such ring we have an obvious definition of degree,
hence, we define, for each d ∈ N, Sd to be the set of C-linear combinations of
only monomials of degree d.
Now, let f ∈ C[X0, . . . , Xn] be a fixed homogeneous polynomial; then we can
define its zero locus in Pn(C) as

V (f) = {P = [x0, . . . , xn] ∈ Pn(C) : f(P ) = 0}.

Of course, since f is homogeneous this definition is well-posed: indeed, for a
fixed point P ∈ Pn(C), we can have two distinct homogeneous coordinates,
namely

[x0, . . . , xn] = [ξ0, . . . , ξn]

and there exists a non-zero λ ∈ C such that

xi = λξi, 0 ≤ i ≤ n.

Set now
x = (x0, . . . , xn), ξ = (ξ0, . . . , ξn)

then, by homogeneity of f :

f(x) = λdf(ξ)

where d is the degree of f . This computation shows that the vanishing of f
at a given point does not depend on the choice of homogeneous coordinates.
In the same way as the one polynomial case we can define the vanishing locus
of a family of homogeneous polynomials T :

V (T ) = {P ∈ Pn : f(P ) = 0, ∀f ∈ T}.
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Definition 1.1.2. A subset Y ⊆ Pn is an algebraic set if there exists a set T
of homogeneous polynomials such that Y = V (T ).

Lemma 1.1.3. The union of two algebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. The empty set
and the whole space are algebraic sets.

Proof. Omitted. Can be found in [12] Chapter 1, Section 2, Proposition
2.1

Now, observe that the previous Lemma implies that the algebraic subsets
of Pn are canonically the closed subsets of a topological space. This way we
can define a topology on Pn: the Zariski topology.
We can give the following:

Definition 1.1.4. A projective algebraic variety is an irreducible algebraic
subset of Pn.

Definition 1.1.5. If Y is an algebraic subset of Pn we can consider the
homogeneous ideal associated to Y , namely:

I(Y ) = {f ∈ C[X0, . . . , Xn] : f is homogeneous and f(P ) = 0 ∀P ∈ Y },

and the coordinate ring associated to Y , which is

S(Y ) =
C[X0, . . . , Xn]

I(Y )
.

Now, one may notice that on Pn we have two natural topologies that we
can consider, namely the usual topology induced as a quotient of Cn+1 and
the Zariski topology. This can lead to many questions, like ”Why have we
chosen the Zariski topology to define our varieties?” or ”Are the results one
obtains using these two different topologies in some sense related?”
These are really important questions and, indeed, we will work almost only
with the usual Hausdorff topology, but it felt easier to give these definitions
in the Zariski topology. In the following subsection we will also define the
complex manifolds and the complex analytic spaces, and state some classical
results on both projectivity of such spaces and on the relation between the
two approaches.
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1.1.2 Comparison between Algebraic and Analytic Meth-
ods

We will state some results that link together the approach we outlined in the
previous to the one we will actually use throughout the discussion. This will
allow us to move in complete freedom among the different references that
might use differing languages.
First of all, in the Hausdorff topology the concept that is the closest to the
one of algebraic variety is the following:

Definition 1.1.6. A complex analytic space is a locally ringed space (X,OX),
which can be covered by open sets, each of which is isomorphic, as a locally
space, to one of the following kind Y : let U ⊆ Cn be the polydisc

{|zi| < 1 : 1 ≤ i ≤ n}

and let f1, . . . , fr holomorphic functions on U , then Y is the vanishing locus
of the fj’s and has, as structure sheaf, the quotient

OY =
OU

(f1, . . . , fr)
.

An analytic complex space is said to be normal if, as a ringed space, each
stalk of its structure sheaf is an integrally closed ring.

Now, we will state some classical results.

Definition 1.1.7. Let (X,OX) be a ringed space then a coherent sheaf F
over X is a sheaf of OX-modules such that for every x ∈ X, there exists an
open neighborhood U ⊆ X of x, natural numbers n,m ∈ N and morphisms
φ, ψ such that the following sequence is exact:

On
U Om

U F|U 0
φ ψ

Theorem 1.1.8. Let X be a projective scheme over C. Then there exists a
complex analytic space Xh associated to X such that the assignation:

h : X 7−→ Xh

is functorial and such that h induces an equivalence of categories between the
category of coherent sheaves over X and the category of coherent analytic
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sheaves over Xh. Furthermore, for every coherent sheaf F on X, the natural
maps

αi : H
i(X,F) → H i(Xh,Fh)

are isomorphisms for every i.

Proof. Omitted. Can be found in [27].

Theorem 1.1.9. If Y is a compact analytic subspace of the complex manifold
Pn(C), then there is a subscheme X ⊆ Pn

C such that Xh = Y .

Proof. Omitted. Can be found in [6].

Now the only thing that is still missing to tie together these different
approaches is to link a variety as in Definition 1.1.4 to a scheme.

Proposition 1.1.10. There is a natural fully-faithful functor

t : VarC → SchC

from the category of varieties over C to the category of schemes over C. For
any variety V , its topological space is homeomorphic to the set of closed points
of the topological space of t(V ) and its sheaf of regular functions is obtained
by restricting the structure sheaf of t(V ) via this homeomorphism.

Proof. Omitted. See [12] Chapter II, Section 2, Proposition 2.6

We conclude with a definition: thanks to these results, one can see any
projective algebraic variety as a complex analytic space, hence as a ringed
space and just like for these spaces, there is a well-defined notion of smoothness
or regularity.

Definition 1.1.11. Let (X,OX) be a complex analytic space. A point x ∈ X
is said to be regular or smooth if there is an open neighborhood U of x such
that U is isomorphic, as a locally ringed space, to an open ball of Cn. If every
point of X is smooth, then X is smooth.

All the varieties we consider will be smooth and projective. Actually
some of the results still hold under weaker hypotheses, but we redirect the
interested reader to the literature we used to get an appropriate discussion
about these other cases.
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1.1.3 Divisors

In this subsection we will define the concepts of Cartier divisor on a smooth
projective variety X. The main references are [12] and [19].
So let X be a fixed smooth projective variety over C. Then it is canonically
defined its field of rational functions usually denoted as C(X). Let MX be
the constant sheaf associated to C(X). In particular, MX contains as a
subsheaf the structure sheaf of OX ; hence we have an inclusion

O×
X ⊆ M×

X

of the multiplicative groups.

Definition 1.1.12. A (Cartier) divisor on X is a global section of the sheaf
M×

X

O×
X

. We denote the group of the divisors as Div(X).

More explicitly one can describe a fixed divisor D through the following
data:

{(Ui, fi)}i∈I ,

where the Ui’s are an open covering of X and fi ∈ Γ(Ui,M
×
X) for every i ∈ I

are such that for every i, j ∈ I such that Uij = Ui ∩ Uj ≠ ∅, there exists a
section gij ∈ Γ(Uij,O

×
X). The section fi is said to be a local equation for the

divisor at each point of Ui.
A divisor D represented by {(Ui, fi)}i∈I is effective if, for every i ∈ I, fi is
regular on Ui and we denote it as D ≥ 0.
Of course, any global section f ∈ Γ(X,M×

X) determines a divisor

D = div(f)

and it is called principal. Two divisors are said to be linearly equivalent if
their difference1 is a principal divisor.
If D is a divisor on X, and f : Y → X is a morphism, one can define,
as long as certain conditions hold, a divisor f ∗D on Y by pulling-back the
local equations of D. This makes sense, only if (in case Y is reduced) the
components of Y are not mapped into the support of D.
Now, if L is an invertible sheaf over X, let s ∈ Γ(X,L) be fixed. For every

1Since the group
M

×

X

O
×

X

is abelian we will use the additive notation regardless the fact

that it canonically is described as a multiplicative group.
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U ⊆ X open on which the restriction of L is trivial, we can choose an
isomorphism

φU : L|U
∼= OU

Making U vary over an open covering we get a collection

{(U, φU(s|U )}

As, the φU ’s, on the intersections of the opens we chose are defined up to an
invertible section of OU , the above data defines a divisor.

Definition 1.1.13. Such a divisor is called the divisor of zeroes of s and is
denoted as div(s).

Remark 1.1.14. Usually, there are two different notions of divisors, namely,
Weil divisors and Cartier divisors. In complete generality the two notions do
not coincide, but, in the case of a smooth projective variety, which is the only
case we will be considering, the two are equivalent. A good reference for this
is the Section 6 of Chapter II of [12].

Let D be a fixed divisor of X. We will associate to it a line bundle OX(D).
Precisely, if D is represented by the data

{(Ui, fi)}i∈I

then, we can consider it to be an atlas for our line bundle OX(D) with
transition maps the gij’s that we defined in the explicit definition of D as
represented by the sections fi’s.
From a more abstract point of view, one has the following short exact sequence:

0 O×
X M×

X

M×
X

O×
X

0

and, by taking the sheaf cohomology of such sequence, we have the following
exact sequence:

Γ(X,M×
X) Div(X) H1(X,O×

X)

At this point:
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Definition 1.1.15. We define Pic(X) to be the group of line bundles over
X up to isomorphism.

Lemma 1.1.16. There is a canonical isomorphism H1(X,O×
X) = Pic(X).

Proof. Omitted. See [24] Chapter 2, Proposition 2.1.3.

In particular, this last sequence implies the following equivalence

D1 ≡lin D2 ⇐⇒ OX(D1) ∼= OX(D2).

Let’s finish this section with the following results:

Proposition 1.1.17. The global sections of a line bundle over a projective
variety are a finitely generated C-vector space.

Proof. Omitted. See [12] Chapter II, Section 5, Proposition 5.19.

Theorem 1.1.18. If X is irreducible, the map

Div(X)

≡lin

→ Pic(X)

is an isomorphism.

Proof. Omitted. See [12] Chapter II, Section 6, Corollary 6.16.

1.1.4 Linear Systems

In this subsection we will define and state some properties about the linear
systems. As usual, the main references will be [12] and [19].
Before starting to talk about linear systems, we want to recall a result.

Proposition 1.1.19. Let X be a smooth projective variety over C. Let D0

be a divisor on it and L = OX(D0) be the associated line bundle. Then:

i for each non-zero global section of L its divisor is an effective divisor
linearly equivalent to D0;

ii every effective divisor linearly equivalent to D0 is the zero-divisor of a
global section of L;
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iii two distinct s, s′ sections have the same zero-divisor if and only if there
is a non-zero complex number λ such that s = λs′.

Proof. Omitted. See [12] Chapter II, Section 7, Proposition 7.7.

Definition 1.1.20. A complete linear system on a smooth projective variety
is defined as the set (possibly empty) of all effective divisors linearly equivalent
to a given divisor. If the given divisor is D, the complete linear system is
denoted as |D|.

By the Proposition, one has that if D is a divisor and L is its associated
line bundle, we have a bijection:

|D| ∼= P(Γ(X,OX(D))).

Using this last definition, we can also talk about the complete linear system
associated to a line bundle L, denoted as |L|. Furthermore, for every subspace
V of the global sections of L, we use the following notation:

|V | = P(V ).

Definition 1.1.21. Fixed a line bundle L on X, a linear system is a linear
subspace of |L|.

Now, let us fix a projective algebraic variety X, a line bundle L on it and
V a subspace of the global sections of L.
The evaluation of the sections of V gives rise to a morphism:

V ⊗C OX → L

that, gives rise to another morphism

ψV : V ⊗C L∨ → OX .

Definition 1.1.22. The base ideal of |V | is denoted as b(|V |) and is defined
as the image sheaf of ψV . We also define the base locus of V as the closed
subset of X of the points at which all sections of V vanish and it is denoted
as Bs(|V |).

Definition 1.1.23. One says that |V | is free or basepoint-free if Bs(|V |) is
empty. A divisor is said to be free if the correspondent linear system is. For
a line bundle, if its associated complete linear system is basepoint-free, we
say that is globally generated or generated by global sections.
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Definition 1.1.24. Now, fixed a basis s0, . . . , sr for V , we have a well defined
morphism

φ|V | : X \ Bs(|V |) → Pr

x 7−→ [s0(x), . . . , sr(x)].

Usually, we want to think about it as a rational map

φ|V | : X Pr.

Now we will conclude with a very important example of this kind of map.

Example 1.1.25. In the same situation as above, let W ⊆ V be a subspace.
Then

Bs(|V |) ⊆ Bs(|W |).

Thus both φ|V | and φ|W | are defined over X \ Bs(|W |). If, furthermore, one
considers, the projection with center P

(
V
W

)
, namely

π : P(V ) \ P

(
V

W

)
→ P(W ),

one has that π is a map such that

φ|W | = π ◦ φ|V |.

1.2 Iitaka Dimension and Kodaira Dimension

In this section we will define the Iitaka dimension of a line bundle and
consequentely the Kodaira dimension of a variety. In the end we will present
some results on both of them. The main reference for this part is [19].

1.2.1 Definitions

Definition 1.2.1. Let L be a line bundle on a smooth irreducible projective
variety X. The semigroup of L is the following set

N(L) = N(X,L) = {m ∈ N : H0(X,L⊗m) ̸= 0}.

When N(L) ̸= {0} we also define the exponent of L, noted e(L), as the
greatest common divisor of all elements in N(L). If L = OX(D) for some
divisor D, we use the notations N(D) and e(D).
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Example 1.2.2. Let X be a smooth irreducible projective variety and L a
fixed line bundle on it. Then, each of its tensor powers defines a (possibly
zero) linear system, namely |L⊗m| for every m ∈ N.
For m ∈ N(L), we have that such linear system is non-trivial, so, by the
construction we gave in Definition 1.1.24 (in the same notations), we have a
rational map

φm = φ|L⊗m| : X P(H0(X,L⊗m))

We denote by Ym ⊆ P(H0(X,L⊗m)) the image, under the canonical projection,
of the closure of the graph of φm.

Definition 1.2.3. In the same notation as above, assume also that X is
normal. Then we define the Iitaka dimension of L as follows:

κ(L) = κ(X,L) = max
m∈N(L)

{dimφm(X)},

provided that N(L) ̸= {0}. Otherwise, we simply put κ(L) = −∞. Further-
more, if X is not normal, we can consider its normalization

ν : X‘ → X,

and then define
κ(L) = κ(ν∗L).

In the end, as usual, if L = OX(D) for some divisor D, we simply use the
notation κ(D).

At this point we should prove that this definition is well-posed, which, in
this case means, that the maximum actually exists. We won’t be doing that
immediately, but in a second moment (Lemma 1.2.12).
From this definition we clearly see that for every line bundle L over X:

κ(L) ∈ {−∞, 0, . . . , dimX}.

Another result one can prove is the following

Lemma 1.2.4. Let X,L be fixed as above and put κ = κ(L). Then there are
constants a, b > 0 such that

a ·mκ ≤ dimh0(X,L⊗m) ≤ b ·mκ

for all m sufficiently large in N(L) and where h0(X,L⊗m) = dimC H
0(X,L⊗m).
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Proof. Omitted. See [19] Corollary 2.1.38.

In particular, we can now give another (equivalent) definition for the Iitaka
dimension.

Definition 1.2.5. For L a line bundle:

κ(L) = lim sup
m−→+∞

log h0(X,L⊗m)

logm

A special case of the Iitaka dimension is the case of in which L is the
canonical bundle of X.

Definition 1.2.6. Let X be a smooth projective variety of dimension n and
let TX be its holomorphic tangent bundle. So, I define the line bundle

ωX =
n∧
(TX)∨

This line bundle is said to be the canonical bundle of X. Since by Theorem
1.1.18 in such hypotheses every line bundles is associated to a unique class
of divisors modulo linear equivalence, we denote with KX every divisor such
that

ωX = OX(KX)

and we refer to such divisors as canonical divisors.

Definition 1.2.7. The Kodaira dimension of X is the Iitaka dimension of
its canonical bundle and is denoted as κ(X).

Lemma 1.2.8. The Kodaira dimension of a variety is a birational invariant.

Proof. Omitted. See [24] Chapter 3, Section 2, Proposition 3.2.6.

Definition 1.2.9. An algebraic fibre space is a surjective projective mapping
f : X → Y of reduced irreducible varieties such that f∗OX = OY .

Theorem 1.2.10. An algebraic fibre space has connected fibres.

Proof. Omitted. See [24] Chapter 3, Section 1, Lemma 3.1.5.

Lemma 1.2.11. Let f : X → Y be an algebraic fibre space and let L be a
line bundle on Y . Then,

H0(X, f ∗L⊗m) = H0(Y, L⊗m)

for all m ∈ N.
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Proof. In generality

H0(X, f ∗L⊗m) = H0(Y, f∗f
∗L⊗m).

But, then, by the Projection Formula and the fact that we are in fibre space

f∗f
∗L⊗m = f∗OX ⊗ L⊗m = L⊗m;

hence our claim.

1.2.2 Examples

Here we will state and prove some basic results about both the Iitaka dimension
and the Kodaira dimension.

Lemma 1.2.12. The definition of the Iitaka dimension of a line bundle L
over a normal projective variety X is well-posed.

Proof. To prove that the Iitaka dimension is well-defined we need to show
that such a maximum exists.
Of course we can assume that N(L) ̸= {0}. Furthermore, up to change L
with L⊗e, where e = e(L), we can assume that L has exponent 1. In such
case, there exists ℓ0 ∈ N such that for ℓ ≥ ℓ0, ℓ ∈ N(L).
Let m ∈ N(L) be fixed, and let k = dimφm(X) and let ℓ ≥ ℓ0 also be fixed.
Multiplying by a non-zero section of H0(X,L⊗ℓ) gives an inclusion

H0(X,L⊗m) ⊆ H0(X,L⊗(m+ℓ)).

Thus, following the construction in Example 1.1.25, there is a rational map

νℓ : P(H
0(X,L⊗(m+ℓ))) P(H0(X,L⊗m))

such that, where they are all defined, φm = νℓ ◦ φm+ℓ.
This implies, that

dimφm+ℓ(X) ≥ dimφm(X).

A consequence of this is that the sequence

{dimφm(X) : m ∈ N}

has an increasing subsequence. But it is bounded by dimX, hence, the entire
family is finite and admits a maximum.
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Remark 1.2.13. Lemma 1.2.12 also implies that there infinitely manym ∈ N(L)
such that φm(X) has as dimension the Iitaka dimension of L.

Example 1.2.14. The Iitaka dimension is absolutely non-stable under re-
strictions; indeed: let X be the blow-up of P2 at a point, H the pull-back of
an hyperplane divisor, and E the exceptional divisor.
Let L1 = OX(H), L2 = OX(H + E). They are both ample line bundles, so
they have maximal Iitaka dimension. But, when restricted to E they have as
Iitaka dimensions 0 and −∞ respectively.
In this case the Iitaka dimension has decreased with the restriction, but this is
not a general fact, indeed: if X = P1 × P1, and L = pr∗1OP1(−1)⊗ pr∗2OP1(1)
the Iitaka dimension of L is −∞, but when restricted to Y = {∗}×P1, it has
maximal Iitaka dimension 1.

Example 1.2.15. We will now compute the Kodaira dimension of an irre-
ducible projective algebraic curve. It will be used the following version of the
Riemann-Roch Theorem whose proof can be found in the Chapter 4 of [12].

Theorem 1.2.16. Let C be an irreducible projective algebraic curve of genus
g and K its canonical divisor. For every divisor D on C:

i deg(D) < 0 =⇒ ℓ(D) = 0;

ii ℓ(0) = 1;

iii deg(K) = 2g − 2;

iv ℓ(D)− ℓ(K −D) = deg(D) + g − 1.

where ℓ(D) = dimH0(C,OC(D)).

Applying this theorem, we have 3 cases:

a g = 0, then the canonical divisor has negative degree and therefore all
of its multiple too. This implies that N(K) = {0}, hence κ(P1) = −∞.

b g = 1 implies that the canonical divisor has degree 0, thus the canonical
bundle is trivial, hence its powers are all isomorphic and have ℓ(nK) = 1,
thus κ(C) = 0.
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c g ≥ 2: applying Riemann-Roch to mK,n ≥ 1, yields us that

ℓ(mK) = (2m− 1)(g − 1).

Hence
log(2m− 1)(g − 1)

logm
=

log(2m− 1)

logm
+

log(g − 1)

logm
,

and the second summand is infinitesimal for m → +∞. Now, observe
that

1 =
logm

logm
≤

log(2m− 1)

logm
≤

log(2m)

logm
=

log 2

logm
+ 1,

and taking the limit one shows κ(C) = 1.

Example 1.2.17. LetX, Y be irreducible projective varieties, and f : X → Y
an algebraic fibre space. Then the induced homomorphism

f ∗ : Pic(Y ) → Pic(X)

is injective.
Indeed, let A be a line bundle on Y such that

f ∗A = OX .

Then,
f∗f

∗A = f∗OX = OY .

But on the other hand

f∗f
∗A = f∗OX ⊗ A = OY ⊗ A = A,

hence, the map has trivial kernel.

Example 1.2.18. Let f : X → Y be a projective surjective morphism of
normal varieties, and let

C(Y ) ⊆ C(X)

be the corresponding inclusion of function fields. Then f is a fibre space if
and only if C(Y ) is algebraically closed in C(X).
To prove this statement we will need the following Theorem and Definition:
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Theorem 1.2.19. Let f : X → Y be a projective morphism of Noetherian
schemes. Then f factors into g ◦ f ′ where

f ′ : X → Y ′

is a projective morphism with connected fibres, and

g : Y ′ → Y

is a finite morphism.

Proof. Omitted. See [12] Capter III, Corollary 11.5.

Definition 1.2.20. A factorization of a morphism like the one in Theorem
1.2.19 is called Stein factorization.

So, in this setting, consider the Stein factorization of f

X Y ′ Y
φ ν

where φ is a fibre space and ν is a finite morphism. Of course it is clear that
f itself is a fibre space if and only if Y ′ = Y and ν = idY .
At first observe that ν, being a finite morphism, gives rise to a finite (hence
algebraic) intermediate extension:

C(Y ) ⊆ K = C(Y ′) ⊆ C(X).

Moreover, any of such extensions gives rise to a finite morphism from some
variety Z:

Z → Y.

Thus, ν is trivial if and only if there are no algebraic extensions over of C(Y )
in C(X).

1.3 Positivity Notions for Line Bundles

In this subsection we will introduce some definitions and results regarding
line bundles. The main reference is [19]. We will be considering as known the
definitions and the notations of the Intersection Theory.
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Definition 1.3.1. Let X be a projective variety and L a line bundle on it.
We say that L is very ample if there exists a closed embedding

φ : X ↪→ Pn

for some n ∈ N such that
L = φ∗OPn(1).

We say that L is ample if some of its tensor powers is very ample. A divisor
D is either very ample or ample if the corresponding line bundle is.

We can give a nice cohomological characterization of ampleness:

Theorem 1.3.2. Let L be a line bundle on a projective variety. The following
are equivalent:

i L is ample;

ii for any coherent sheaf F on X there exists a natural number m1 = m1(F)
such that

H i(X,F ⊗ L⊗m) = 0, ∀i > 0 ,m ≥ m1.

iii for any coherent sheaf F on X there exists a natural number m2 = m2(F)
such that F ⊗ L⊗m is globally generated for every m ≥ m2;

iv there exists a natural number m3 such that L⊗m is very ample for every
m ≥ m3.

Proof. Omitted. See [19] Theorem 1.2.6.

Remark 1.3.3. Usually the second condition is referred to as Serre’s Vanishing.

Corollary 1.3.4. Let f : X → Y be a finite mapping of projective varieties
and L an ample line bundle on X. Then f ∗L is ample on Y . In particular,
for any subvariety of X, the restriction to such subvariety of L is still ample.

Proof. Let F be a coherent sheaf on Y . Then, we have that

f∗(F ⊗ L⊗m) = f∗F ⊗ L⊗m

by the Projection Formula. Furthermore, f∗F is quasi-coherent (See [12],
Chapter II, Proposition 5.8). Then, for every i

H i(Y,F ⊗ L⊗m) = H i(X, f∗F ⊗ L⊗m) = 0,

hence the thesis.
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Corollary 1.3.5. Suppose that L is globally generated on a projective variety
X and let

φ = φ|L| : X → P = P(H0(X,L))

be the map defined through the linear system |L|. Then L is ample and if and
only if φ is a finite mapping, or equivalently, if

c1(L) · C > 0

for every irreducible curve C ⊆ X.

Proof. By Corollary 1.3.4, if φ is finite, then L is ample. In this case, for
every C ⊆ X irreducible curve L|C is still ample, hence

c1(L) · C = deg(L|C ) > 0.

Conversely, if φ is not finite, there exists a subvariety Z ⊆ X of positive
dimension that is contracted to a point. As L = φ∗OP(1), then one sees that
the restriction of L to Z is trivial; in particular it is not ample and for every
irreducible curve C ⊆ Z we have that

c1(L) · C = deg(L|C ) = 0.

Another characterization of ampleness that generalizes Corollary 1.3.5 is
the following result known as Nakai-Moishezon-Kleiman Criterion.

Theorem 1.3.6. Let L be a line bundle on a projective variety X. Then L
is ample if and only if

c1(L)
dimV · V > 0

for every irreducible subvariety of positive dimension V of X.

Proof. Omitted. See [19], Theorem 1.2.23.

Corollary 1.3.7. Let f : Y → X be a finite and surjective map of projective
varieties, and let L be a line bundle on X. If f ∗L is ample, then also L is.

Proof. Let V ⊆ X be a fixed irreducible subvariety. By surjectivity, there
exists an irreducible subvariety W ⊆ Y that is, finitely, mapped into V ,
namely

f(W ) = V.
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Indeed, to construct such a variety, one can consider f−1(V ) and take any
irreducible component. Then

c1(f
∗L)dimW ·W = deg(f)c1(L)

dimV · V

and by Theorem 1.3.6 we conclude.

We conclude the discussion about ample line bundles with this result
about the case in which X is not reduced or is reducible. The proof is omitted
and one can find it in [19] Proposition 1.2.26.

Proposition 1.3.8. Let X be a projective variety and L a line bundle on it.

i L is ample on X if and only if Lred is ample on Xred.

ii L is ample on X if and only if the restriction of L to each irreducible
component of X is nef on such component.

Now, we consider a slightly more general class of line bundles.

Definition 1.3.9. Let X be a projective variety. A line bundle L on X is
said to be numerically effective or nef, if for every irreducible curve C ⊆ X

c1(L) ·X ≥ 0.

As usual, we extend the definition to divisors.

Remark 1.3.10. Every ample line bundle is nef and the tensor product of two
nef line bundles is again nef.

I will conclude with some basic properties which I present without a proof.

Theorem 1.3.11. Let X be a projective variety and L be a line bundle on it.

i Let f : Y → X be a proper mapping. If L is nef, then f ∗L is a nef line
bundle on Y . In particular, restriction of nef line bundles are nef line
bundles.

ii In the situation of i, if f is surjective and f ∗L is nef, then L itself is
nef.

iii L is nef if and only if Lred is on Xred.

iv L is nef if and only if is nef when restricted to each irreducible component
of X.
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1.4 The Iitaka Fibration

In this section we will prove an important theorem regarding fibred spaces,
namely the Iitaka Fibration.

1.4.1 Semiample Line Bundles

Definition 1.4.1. A line bundle L on a smooth projective variety is said to
be semiample if there exists an m ∈ N such that L⊗m is globally generated.
A divisor is said to be semiample if its associated line bundle is.

Definition 1.4.2. Let V a complex vector space, then, we define the tensor
algebra T (V ) associated to V as

T (V ) =
⊕

n∈N

V ⊗n.

In such algebra consider the bilateral ideal I generated by the elements of
the form x⊗ y − y ⊗ x for every x, y ∈ V . The quotient

S(V ) =
T (V )

I
,

is the symmetric algebra associated to V . This has canonically the structure
of a graded algebra and we denote, for every k ∈ N, as SkV the homogeneous
elements of degree k.

Example 1.4.3. Let X be a smooth projective variety and L a semiample
line bundle on it. Let furthermore m be such that L⊗m be globally generated.
For k ≥ 0, SkH0(X,L⊗m) determines a free linear subsystem of

∣∣L⊗km
∣∣:

indeed, there is a canonical injective map

SkH0(X,L⊗m) ↪→ H0(X,L⊗km);

hence, the fact that it induces a subsystem. For the freedom, one can simply
argue like this: as L⊗m is globally generated, then for every P ∈ X there
exists an s ∈ H0(X,L⊗m) which is non-zero on P , but then

sk(P ) ̸= 0,

hence, the linear subsystem induced by SkH0(X,L⊗m) is free.
In the notation of Example 1.2.2, by Example 1.1.25, this subseries induces
a finite map (a finite projection) νk, such that the following diagram is
commutative:
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X

Ykm

Ym

φm

φkm

νk

Furthermore, the ample line bundle OP(H0(X,L⊗))(1) restricts to a very ample
line bundle Am on Ym that, by the definition of φm, pulls back to L⊗m.

Now, for X a smooth projective variety and L a semiample line bundle,
we define

M(X,L) = {m ∈ N : L⊗m is free }

and also define its exponent to be the greatest common divisor of all its
elements.

Lemma 1.4.4. Let X be a smooth projective variety and L a semiample line
bundle. Fix m ∈ M(X,L). In the notation of Example 1.4.3, for all k large
enough, the composition

X Ykm Ym

φkm νk

gives the Stein factorization φm. In particular, Ykm and φkm are independent
of the choice of k sufficiently large.

Proof. Consider

X V Ym

ψ µ

the Stein factorization of φm, so ψ is a fibre space, V is normal and µ is finite.
Let Am be the ample line bundle on Ym that pulls back to L⊗m. Since µ is
finite, B = µ∗Am is ample on V . This implies that B⊗k is very ample for all
k sufficiently large. On the other hand, ψ∗B⊗k = L⊗km and

H0(V,B⊗k) = H0(X,L⊗km)
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by Lemma 1.2.11. But this implies that V is the image of X under φ|L⊗km|.

Therefore
V = Ykm, φkm = ψ

for all k sufficiently large.

Theorem 1.4.5. Let X be a smooth projective variety and L be a semiample
line bundle on X. Then there is an algebraic fibre space

φ : X → Y

such that for all sufficiently large m ∈ M(X,L),

Ym = Y, φm = φ,

where φm, Ym are, respectively, the morphism induced by |L⊗m| and its image.
Moreover there is an ample line bundle A on Y such that φ∗A = L⊗f , where
f is the exponent of M(X,L).

Proof. Up to change L with L⊗f we may assume that the exponent is 1. This
means that all sufficiently large powers of L are free.
Let p, q ∈ N relatively prime, large enough, integers such that for all k ≥ 1,

Ykp = Yp, φkp = φp, Ykq = Yq, φkq = φq.

Such numbers exist by Lemma 1.4.4 and by the assumption of the exponent
to be 1.
In particular we have that

Yp = Yqp = Yq, φp = φpq = φq;

so they define the same fibre space which we will call

φq = φp = φ : X → Y = Yp = Yq.

We know, by Lemma 1.4.4 that on Y are defined line bundles Ap and Aq such
that

φ∗Aℓ = L⊗ℓ, ℓ ∈ {p, q}.

We can choose r, s ∈ Z such that rp+ sq = 1, so, the pull-back through φ of

A = A⊗r
p ⊗ A⊗s

q
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is L.
Now, as φ is a fibred space, thus

φ∗ : Pic(Y ) → Pic(X)

is injective by Example 1.2.17, hence Ap = A⊗p and Aq = A⊗q and A is
ample.
We only need to show the independence of the choice of an element ofM(X,L).
Fix c, d ≥ 1 integers. Then, ScH0(Y,A⊗p)⊗ SdH0(Y,A⊗q) determines a free
linear subsystem of

H0(Y,A⊗cp+dq) = H0(X,L⊗cp+dq)

and, by what we have shown in Example 1.4.3, φ can be factorized through
φcp+dq followed by a finite mapping, thanks to this linear subsystem. Now,
noticing that all sufficiently large integers can be written as cp+dq for suitable
c, d ≥ 1 we can conclude.

1.4.2 The Iitaka Fibration Theorem

Theorem 1.4.6. Let X be a smooth projective variety and L a line bundle
on X such that κ(X,L) > 0. Then for all sufficiently large k ∈ N(X,L), the
rational mappings, induced by the linear systems

∣∣L⊗k
∣∣,

φk : X Yk,

are birationally equivalent to a fixed algebraic fibre space

φ∞ : X∞ → Y∞

of normal varieties, and the restriction of L to a very general fibre of φ∞ has
Iitaka dimension 0. More precisely, there exists, for every sufficiently large
k ∈ N(X,L), a commutative diagram:

X∞ X

Y∞ Yk

u∞

φ∞ φk

νk
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of rational maps and morphisms, where u∞ and νk are birational and u∞ is
a morphism and Y∞ is such that dimY∞ = κ(X,L). Furthermore, if we set
L∞ = u∗

∞L, and take F ⊆ X∞ a very general fibre of φ∞, then

κ(F, L∞|F ) = 0

and with ”very general fibre” we mean that F is the fibre of a point that
belongs to the complement of countably many subavarieties of Y∞.

Proof. Fix m ∈ N(X,L) such that dimYm = κ(X,L): such an integer always
exists by Lemma 1.2.12.
Let φℓ be the rational map defined by the linear system

∣∣L⊗ℓ
∣∣ for every ℓ ∈ N

and let Yℓ be its image.
The first thing we want to prove is that for all k sufficiently large, the rational
map

φkm : X Ykm,

is birationally equivalent to a fixed algebraic fibre space

ψ(m) : X(m) → Y(m)

of normal varieties.
We consider a resolution of the indeterminacies of φm

um : X(m) → X

of X, by which I mean a birational morphism um such that

u∗
m

∣∣L⊗m
∣∣ = |Mm|+ Fm

where Mm is a globally generated line bundle on the normal variety X(m) and
Fm is the fixed divisor of |u∗

mL
⊗m| and the map

ψm = φ|Mm| : X(m) → Ym ⊆ P(H0(X(m),Mm)) = P(H0(X,L⊗m))

is such that the following triangle is commutative:

X(m) X

Ym

um

ψm
φm
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Now, consider the morphism induced by
∣∣M⊗k

m

∣∣:

ψ′
km : X(m) → Y ′

km.

This map, being induced by a linear subsystem of |u∗
mL

⊗m|, is such that there
exists a finite map

λk : Y
′
km → Ym

that makes the following diagram commutative (this is the same process as
in Example 1.4.3):

Y ′
km Ym

XX(m)
um

ψmψ′
km

φm

λk

Now, observe that Mm, being globally generated is trivially semiample, hence,
by Theorem 1.4.5 for k sufficiently large, the morphisms ψ′

km stabilize to a
fixed fibre space

ψ(m) : X(m) → Y(m).

We know that
∣∣M⊗k

m

∣∣ is, for every (sufficiently large) k, a linear subsystem
of |u∗

mL
⊗m|, and therefore also of |L⊗m|. Moreover, X(m) is birational to X,

hence, we can consider ψ(m) as a morphism from X and, therefore, get a
factorization:

X

Ykm

Y(m)

φkm

ψ(m)

µk
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with µk generically finite. But, by Example 1.2.18, C(Y(m)) is algebraically
closed in C(X) as ψ(m) is a fibre space, hence µk is birational, otherwise, νk
would induce an algebraic extension of C(Y(m)). This implies that for every
sufficiently large k, φkm is birational to ψ(m). This proves the claim.
Now we claim that the fibre spaces

X(m) → Y(m)

just constructed are all birationally equivalent and, to prove such thing we
will construct a common model.
Up to change L with L⊗e we can consider L to have exponent 1.
Now let p, q ∈ N, large relatively prime such that

dimYp = dimYq = κ(X,L)

In the same notations used up till now, for m sufficiently large we have fibre
spaces

ψ(p) : X(p) → Y(p)

ψ(q) : X(q) → Y(q)

and the morphisms are defined by the linear systems
∣∣∣M⊗pm−1

p

∣∣∣ and
∣∣∣M⊗qm−1

q

∣∣∣
respectively: even though in the previous discussion we did not choose these
particular numbers, we proved that the choice is independent, in the sense of
birational equivalence, of the multiplication times a sufficiently large element
of N(X,L) and this is case for this choice of p, q.
Now, fix a normal variety X∞ together with birational morphisms

vp : X∞ → X(p)

vq : X∞ → X(q)

such that up ◦ vp = uq ◦ vq: such a variety always exists. Indeed, as up and uq

are birational morphisms, there are, for ℓ ∈ {p, q}, open subsets Uℓ ⊆ X such
that the inverse of uℓ is well-defined on Uℓ and is an isomorphism. Let

Z = X \ (Up ∩ Uq)

and we may consider
X∞ = BlZ(X)
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the blow-up ofX at Z. With this choice ofX∞ we have, canonically, birational
morphisms

vℓ : X → X(ℓ), ℓ ∈ {p, q}

such that the following diagram is commutative:

X∞ X(p)

X(q) X

vp

vq u∞ up

uq

Now, let
Mp,q = v∗pM

⊗pm−1

p ⊗ v∗qM
⊗qm−1

q .

This is a globally generated line bundle on X∞, hence it induces a morphism

φ|Mp,q | : X∞ → P(H0(X∞,Mp,q)).

Denote with Y∞ the normalization of the image of such morphism. Let

φ∞ : X∞ → Y∞

be the induced map.
Let ℓ ∈ {p, q} be fixed. With an observation analogous to the one we did for
um, as X∞ is birational to X, we can consider φ∞ to be a morphism from X
and the same for ψ(ℓ). Thus, we can find a finite morphism wℓ such that the
following triangle is commutative:

X

Y∞

Y(ℓ)

φ∞

ψ(ℓ)

wℓ

That implies that the morphisms wp, wq are such that the following diagram
commutes:
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X(p) X∞ X(q)

Y(p) Y∞ Y(q)

ψ(p)

vp

φ∞

vq

ψ(q)

wp wq

In particular, dimY∞ = κ(X,L) and therefore, wp, wq are generically finite.
Since they factor the algebraic fibre spaces ψ(p) ◦ vp and ψ(q) ◦ vq respectively,
they are birational. As, φ∞◦wp is an algebraic fibre space and wp is birational
and generically finite, then φ∞ is also a fibre space.
Since both Y(p) and Y(q) are projective, they are equipped with an ample
line bundle. The pull-backs of these line bundles are then ample on Y∞ and
therefore their tensor product is as well. Let Ap,q = A such line bundle. Then
it pulls back to Mp,q via φ∞.
Now, fix positive integers c, d. Then

H0(X∞,Mp,q) ⊆ H0(X∞, u∗
pM

⊗(cpm−1)
p ⊗ u∗

qM
⊗(dqm−1)
q )

⊆ H0(X∞, u∗
∞L⊗(cpm+dqm))

where the first inclusion comes from the multiplication by a fixed section of

u∗
pM

⊗((c−1)pm−1)
p ⊗ u∗

qM
⊗((d−1)qm−1)
q and the second from the commutativity of

the diagram defining X∞.
But then we have a factorization that makes the following diagram commute:

X∞ X

Y∞ Ycpm+dqm

u∞

φ∞ φcpm+dqm

µcpm+dqm

furthermore, as φ∞ ◦ u−1
∞ (where it is defined) is a fibre space, µcpm+dqm is

generically finite and birational. By taking, as νk, its inverse (as a birational
map) we get the diagram in the statement.
The last thing to prove is the vanishing of the Iitaka dimension of the pull-back
of L when restricted to a very general fibre.
Let L∞ = u∗

∞L. By, the above inclusions of cohomology groups we have that
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for a very general fibre F of φ∞

κ(F, L∞|F ) ≥ 0.

So, let y ∈ Y∞ be a point and let F be its fibre. We can now assume that νk
is defined and regular at y for every k sufficiently large and that u∞(F ) does
not meet the indeterminacy locus of any φk. These are a countable number of
conditions on y that lead us to the very general hypothesis of the statement
of the Theorem.
In particular, the situation is described in the following diagram:

X∞ X

Y∞ Yk

u∞

φ∞ φk

νk

and the, by the conditions on y, all maps, when restricted to F or F ′ = u∞(F )
are well-defined.
Under these assumptions, the image under φk of F ′ is again a point, but then,
the restriction map

ρk : H
0(X∞, L⊗k

∞ ) → H0(F, L⊗k
∞|F

)

has rank 1 for every k sufficiently large. To prove this we just have to notice
that in this situation, we have that the restriction

φk : F
′ → Yk

is a constant map, but this map is defined through the global sections of
L⊗k: let s0, . . . , snk

be a basis for the global sections of L⊗k, thus φk in some
homogeneous coordinates is represented by

x 7−→ [s0(x), . . . , snk
(x)].

The restriction to F ′ is constant, so for every x, ξ ∈ F ′, there exists λ ∈ C×

such that for every 0 ≤ i ≤ nk

si(x) = λsi(ξ).
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Thus, for a fixed k, the restriction of φk induces a non-zero map

F ′ → C,

hence the restriction map has rank 1.
Now let B be a very ample line bundle on Y∞. Then there exists a large
positive integer m0 such that

H0(X∞, L⊗m0
∞ ⊗ φ∗

∞B∨) ̸= 0.

Indeed, A⊗m1 ⊗B∨ has a non-zero section for m1 large enough. On the other
hand M⊗m1

p,q is canonically a subsheaf of L
⊗(pm+qm)m1
∞ , hence

L⊗m1
∞ ⊗ φ∗

∞B∨ ⊇ φ∗
∞(A⊗m1 ⊗ B∨);

thus the non-vanishing.
Now, we have that

L⊗m1
∞ ⊗ φ∗

∞B∨ ⊋ OX∞ ,

thus,
φ∗
∞B ⊊ L⊗m0

∞ .

Therefore, for r > 0 and fixed k, we have the following commutative diagram

H0(X∞, L⊗k
∞ ⊗ φ∗

∞B⊗r) H0(X∞, L
⊗(k+rm0)
∞ )

H0(F, (L⊗k
∞ ⊗ φ∗

∞B⊗r)F ) H0(X∞, (L
⊗(k+rm0)
∞ )F )

βk+rm0
ρk+rm0

where the horizontal maps are inclusions and the vertical maps are induced
by the restrictions.
Observe that βk+rm0 can be identified with the map

αk+rm0 : H
0(Y∞, φ∞∗L

⊗k
∞ ⊗ B⊗r) → H0(Y∞, φ∞∗L

⊗k
∞ ⊗ B⊗r)⊗ C(y),

obtained by evaluating the sections of φ∞∗L
⊗k
∞ ⊗ B⊗r at y; here with C(y) is

the residue field of Y∞ at y.
By Theorem 1.3.2 for r large enough φ∞∗L

⊗k
∞ ⊗ B⊗r is globally generated.
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Therefore αk+rm0 and also βk+rm0 are surjective, but, by the commutativity
of the above diagram, the rank of βk+rm0 is also 1. This implies, that

dimH0(F, (L⊗k
∞ ⊗ φ∗

∞B⊗r)F ) = 1

but, the restriction of φ∗
∞B⊗r to F is trivial by Corollary 1.3.4, then

h0(F, L⊗k
∞|F

) = 1

for every k. This implies that the Iitaka dimension of L restricted to F is zero:
indeed, the canonical maps through which we define the Iitaka dimension
have, as target space, the projective space associated to the H0(F, L⊗r

∞|F
),

but these spaces are all 1-dimensional, thus their projective spaces are just
points.

Definition 1.4.7. In the setting of Theorem 1.4.6, φ∞ : X∞ → Y∞ is the
Iitaka fibration associated to L. We define the Iitaka fibration associated to a
divisor D as the fibration associated to the line bundle associated to D. The
Iitaka fibration of an irreducible variety X is the Iitaka fibration associated
to the canonical bundle of a smooth model of X.

We conclude this section with a couple of Remarks.
The first two steps of the proof of Theorem 1.4.6 we presented are, nowadays,
dated; indeed, there exist a proof which relies on the finite generation of the
canonical ring, which is

R(X) =
⊕

n∈N

H0(X,ω⊗n
X ).

This result has both an algebraic proof given by Birkar-Cascini-Hacon-
McKernan in [3] and an analytic proof given by Siu in [28].
A natural question to ask is whether there exist an effective bound for the
stabilization of the Iitaka fibration. For general type varieties there is an
explicit bound depending only on the dimension found by Hacon-McKernan
in [11]. More generally, the dependance requires more than the dimension,
examples of this kind of results have been found by Mori-Fujino [8] and
Pacienza [23].
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1.5 Positivity Notions for Vector Bundles

In this section we will present some definitions and results about the positivity
of vector bundles of rank larger than 1. A necessary tool to understand and
even define such notions is the construction of the projective bundle associated
to a vector bundle E over a variety X. The theory regarding such construction
is developed in the 7-th section of Chapter II of [12]. The main reference for
this section is [18].

Definition 1.5.1. A vector bundle E on a projective variety X is ample
(respectively nef ) if the line bundle OP(E)(1) is ample (respectively nef) on
the projective bundle P(E).

Notice that if E is a line bundle, then P(E) is canonically isomorphic to
X, and the canonical bundle OP(E)(1) is isomorphic to E itself. This shows
that the above definition actually generalizes the rank 1 case.

Proposition 1.5.2. Let E be a vector bundle on a projective variety X.
Then:

1. If E is ample (or nef) every quotient bundle of Q of E is as well.

2. Let f : X → Y be a finite mapping. If E is ample (or nef), then the
pull-back f ∗E is also ample (or nef).

Proof. A surjective map E → Q induces an inclusion P(Q) ⊆ P(E) such that

OP(Q)(1) = OP(E)(1)|Q

Now, the restriction of an ample (or nef) line bundle is again ample (or nef),
we conclude the ampleness (or nefness) of OP(Q)(1) and therefore the same
property for Q.
For the second statement, just notice that f gives rise to a finite map

F : P(f ∗E) → P(E)

such that
OP(f∗E)(1) = F ∗OP(E)(1)

and by the corresponding results for line bundles we can conclude.

Proposition 1.5.3. Let E be a vector bundle on a projective variety X.
Then:
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i E is ample (or nef) if and only if Ered is ample (or nef) on Xred.

ii E is ample (or nef) if and only if its restriction to any irreducible
component of X is.

iii If f : X → Y is a finite surjective map and f ∗E is ample, then E is
ample too.

iv If f : X → Y is a surjective map and f ∗E is nef, then E is nef too.

Proof. It just is an application of the corresponding results for line bundles.

Theorem 1.5.4. Let E be a vector bundle on the projective variety X. The
following are equivalent:

i E is ample;

ii Given any coherent sheaf F on X, there is a positive integer m1 = m1(F)
such that

H i(X,SmE ⊗F) = 0, ∀ i > 0, m ≥ m1

iii Given any coherent sheaf F on X, there is an integer m2 = m2(F) such
that SmE ⊗F is globally generated for every m ≥ m2.

iv For any ample divisor H on X there is a positive integer m3 = m3(H)
such that SmE is a quotient of copies of OX(H) for every m ≥ m3.

v For some ample divisor H on X there is a positive integer m3 = m3(H)
such that SmE is a quotient of copies of OX(H) for every m ≥ m3.

Proof. Omitted. See [18] Theorem 6.1.10.

Proposition 1.5.5. Let E1, E2 be vector bundles over X. Then:

i The direct sum E1 ⊕ E2 is ample if and only both summands are ample.

ii If F is an extension of E2 by E1, and if both E1, E2 are ample, also F
is.

Proof. Omitted. See [18] Proposition 6.1.13.
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Proposition 1.5.6. A vector bundle E over X is ample if and only if SkE
is ample for some k. This is also equivalent to ask that SkE is ample for
every k.

Proof. Omitted. See [18] Theorem 6.1.15.

Proposition 1.5.7. If E,F are ample vector bundles over X, so is E ⊗ F .
In particular tensor powers of ample line bundles are ample.

Proof. Omitted. See [18] Corollary 6.1.16.

Theorem 1.5.8. Let X be a projective variety.

i Quotients and arbitrary pull-backs of nef vector bundles on X are nef.
Given a vector bundle E on X and a surjective morphism f : Y → X
of projective varieties, if f ∗E is nef, so is E.

ii Direct sums and extensions of nef vector bundles are nef.

iii A vector bundle E on X is nef if and only if SkE is nef for some (or
equivalently all) k ≥ 1.

iv Tensor products and exterior products of nef bundles are nef. If E is
nef and F is ample, then E ⊗ F is ample.

v If E is a vector bundle and B an ample divisor on X such that SmE ⊗
OX(B) is nef for every m sufficiently large, than E itself is nef.

Proof. Omitted. See [18] Theorem 6.2.12 and Example 6.2.13.
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Chapter 2

Positivity Results for Direct
Image Vector Bundles

Now we will state and prove under some assumptions some classical results
about the positivity of direct image vector bundles. These results will be
crucial in the proof of Cn,1.

2.1 Castelnuovo-Mumford Regularity

In this section we will study Mumford’s theorems on regularity.

2.1.1 Koszul Complex

At first we will introduce an important object associated to a vector bundle
E on a smooth projective variety X. The main references are, as usual, [12]
and [19].
Let A be a ring and let f1, . . . , fn ∈ A be fixed. The Koszul complex associated
to a free A-module K1 of rank n is defined as follows: in degree 0 we have A;
in degree 1 we have K1; for m > 1 in degree m there is Km =

∧m K1.
Fixed a basis e1, . . . , en of K1, we have that for every m ≥ 1, Km has as a
basis the elements

ei1 ∧ · · · ∧ eim , 1 ≤ ij ≤ n

for every j and they are all distinct. In order to define the boundary maps
of the complex it suffices to define those on a basis and then they can be
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extended by A-linearity. Put

d : Km → Km−1

ei1 ∧ · · · ∧ eim 7−→
m∑

j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ eim .

Lemma 2.1.1. The Koszul complex defined above is an actual complex.

Proof. In the same notations as above, consider for K1 and a fixed e ∈ K1,
the following sequence of free A-modules

0 A K1 K2 · · · Kn 0
ℓe ℓe ℓe ℓe ℓe

where ℓe is the homomorphism

ℓe : Km → Km+1

x 7−→ e ∧ x.

As for every 0 ≤ m ≤ n and every x ∈ Km we have that

ℓe ◦ ℓe(x) = e ∧ (e ∧ x) = 0,

thus this sequence is a co-complex. On the other hand we can consider its
dual which is a complex, namely

0 K∨
n · · · K∨

2 K∨
1 A 0

ℓ∨e ℓ∨e ℓ∨e ℓ∨e

Now, with the choice of e =
∑n

i=1 fiei, we can choose isomorphisms

φm : Km → K∨
m

for every 0 ≤ m ≤ n in order such that the for all m’s the following square
commutes

Km Km−1

K∨
m K∨

m−1

d

φm φm−1

ℓ∨e
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therefore, what we called the ”Koszul complex” is isomorphic to a complex,
hence is itself a complex.

We denote the Kozsul complex as K•(f1, . . . , fn;K1).
Notice that the choice of n elements of A is equivalent to the choice of an
A-module homomorphism

φ : K1 → A;

so we may also use the notation K•(φ;K1).
Once we defined what we mean by the Kozsul complex of a free A-module
with respect to a fixed homomorphism of A-modules, we can easily generalize
the situation to a locally free OX-module on a ringed space (X,OX).
We conclude with a result without proof and a remark that will be useful in
the following discussion.

Proposition 2.1.2. Let X,E as above, and let P(E) be associated the pro-
jective bundle. Let g : Y → X be any morphism. Then to give a morphism
of Y to P(E) over X is equivalent to give a surjective morphism g∗E → L,
where is a line bundle.

Proof. Omitted. See [12] Chapter II, Proposition 7.12.

Remark 2.1.3. By Proposition 2.1.2, to give a section of X over P(E) is
equivalent to find a surjection onto a line bundle L from E.

2.1.2 Mumford Regularity Theorems

Let V be a complex vector space of dimension r + 1 and let P = P(V ) its
associated r-dimensional projective space.

Definition 2.1.4. Let F be a coherent sheaf on P and let m be an integer.
F is m-regular in the sense of Castelnuovo-Mumford if for every i > 0:

H i(P,F(m− i)) = 0.

Theorem 2.1.5. In the notations above, let F be an m-regular sheaf on P.
Then, for every k ∈ N:

i F(m+ k) is globally generated.
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ii The natural maps

H0(P,F(m))⊗H0(P,O(k)) → H0(P,F(m+ k))

are surjective.

iii F is (m+ k)-regular.

Proof. For k = 0, the second and the third statement are trivial.
At first we will prove the second statement and the third statement for k = 1,
then, by induction, it will hold for every other k.
In the notations above consider V and the projective bundle P = P(V ). By
the definition of the Koszul complex, to define one we only need a section

σ : P → P

and by Remark 2.1.3, it suffice to find a surjection onto a line bundle

VP → L

where VP = V ⊗OP and V is the sheaf of locally constant V -valued functions
on P(V ). Canonically, we have a surjection

VP → OP(1),

and we twist it via OP(−1), obtaining a surjection (the tensor product is
right-exact):

VP(−1) → OP.

Then the Koszul complex is

0 (
∧r+1 VP)(−r − 1) · · · VP(−1) OP 0

where we used the fact that if k ∈ N, E a vector bundle and F line bundle,
then it holds that

k∧
(E ⊗ F ) =

k∧
E ⊗ F⊗k,

to write

k∧
(VP(−1)) =

k∧
(VP ⊗OP(−1)) =

k∧
(VP)⊗OP(−k) = (

k∧
VP)(−k)

for every 1 ≤ k ≤ r + 1.
Twisting by F(m+ 1) yields



45

· · ·
∧2 VP ⊗F(m− 1) VP ⊗F(m) F(m+ 1) 0

Now, notice that there exists a canonical isomorphism

V ∼= (C)r+1

thus
VP

∼= (C)r+1 ⊗OP
∼= Or+1

P

and this shows that VP is free. Therefore also its exterior powers are free. Let
ri be the rank of

∧i+1 VP then

i+1∧
VP ⊗F(m− i) = Ori

P ⊗F(m− i) = F(m− i)⊕ri .

This implies that

H i(P,
i+1∧

VP ⊗F(m− i)) = H i(P,F(m− i)⊕ri) = H i(P,F(m− i))⊕ri = 0.

By taking the cohomology of the exact sequence

∧2 VP ⊗F(m− 1) VP ⊗F(m) F(m+ 1) 0

one finds that the map

H0(P, VP ⊗F(m)) → H0(P,F(m+ 1))

is surjective. Moreover

H0(P, VP ⊗F(m)) = H0(P,F(m))⊕(r+1) = H0(P,F(m))⊗ Cr+1 =

= H0(P,F(m))⊗ V = H0(P,F(m))⊗H0(P,OP(1)) :

the second statement for k = 1 is proved.
In order to prove the third statement, we need to show that

H i(F(m− (i− 1))) = 0.

Fix i > 0, consider the Koszul complex associated to the surjection

VP(−1) → OP

and twist it by F(m+ 1− i), obtaining
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· · ·
∧2 VP ⊗F(m− i− 1) VP ⊗F(m− i) F(m+ 1− i) 0

Observe that

H i(P, VP ⊗F(m− i)) = H i(P,F(m− i))⊕(r+1) = 0

and that

H i+1(P,
2∧
VP ⊗F(m− i− 1)) = H i+1(P,F(m− i− 1))⊕r2 = 0.

Thus, by taking cohomology of the exact sequence

∧2 VP ⊗F(m− i− 1) VP ⊗F(m− i) F(m+ 1− i) 0

in degree i:

0 = H i(P, VP ⊗F(m− i)) H i(P,F(m+ 1− i)) H i+1(P,
∧2 VP ⊗F(m− i− 1)) = 0

hence, H i(P,F(m+ 1− i)) = 0. The third statement is proven for k = 1.
Now, let k > 1 such that the second and the third statement are true for k−1.
Then, F is m+ k − 1-regular, and by the above proof is also (m+ k)-regular
and, therefore, the map

H0(P,F(m))⊗H0(P,OP(k)) → H0(P,F(m+ k))

is surjective. By the induction principle, the two statements are true for every
k ∈ N.
Now, as

H0(P,F(m))⊗H0(P,OP(k)) → H0(P,F(m+ k))

for all k’s, we have an induced morphism

H0(P,F(m))⊗OP → F(m)

where H0(P,F(m)) is the locally constant sheaf associated to H0(P,F(m)).
Before going on with the proof, it is necessary to make an observation: given
an exact sequence of sheaves
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G1 · · · Gn

on P, there exists an ℓ0 ∈ N such that for every ℓ ≥ ℓ0 the sequence of sections

G1(ℓ) · · · Gn(ℓ)

is again exact. To prove this claim, consider, for every 1 ≤ i ≤ n the sheaf

Hi = ker(Gi → Gi+1) = im(Gi−1 → Gi).

Then there are short exact sequences

0 Hi Gi Hi+1 0

As for every ℓ ∈ N, the sheaf OP(ℓ) is locally free it also is flat, hence the
following sequence is exact

0 Hi(ℓ) Gi(ℓ) Hi+1(ℓ) 0

By Serre’s Vanishing (Theorem 1.3.2) there exists an ℓi > 0 such that
H i(P,Hi(ℓ)) = 0 for every ℓ ≥ ℓi. This implies that

0 H0(P,Hi(ℓ)) H0(P,Gi(ℓ)) H0(P,Hi+1(ℓ)) 0

is exact. Now, let ℓ0 to be the maximum of the the ℓi. Then, for every ℓ ≥ ℓ0
the last sequence is exact for every 1 ≤ i ≤ n, therefore so is

G1(ℓ) · · · Gn(ℓ)

for such ℓ’s.
Going back to the main statement, let

K = ker(H0(P,F(m))⊗OP → F(m))

and let C be the cokernel of such map. Then the following is exact
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0 K H0(P,F(m))⊗OP F(m) C 0

therefore there exists an ℓ0 > 0 such that for every ℓ ≥ ℓ0 the twisted sequence
is exact as well. But, on the other hand, by Serre’s Vanishing Theorem, exists
ℓ1 > 0 such that for ℓ ≥ ℓ1, F(m+ℓ) is globally generated. Thus, for ℓ greater
both than ℓ0 and ℓ1, the twisted sequence is exact and C(ℓ) = 0. Twisting

0 C(ℓ) 0

by OP(−ℓ) implies that C is itself 0, thus

H0(P,F(m))⊗OP → F(m)

is surjective. This proves that the first statement is true for k = 0. Now, if
k ≥ 1, F is (m+ k)-regular, thus, F(m+ k) is globally generated.

Remark 2.1.6. By taking a closer look to the proof of this last Theorem, one
may notice that the crucial hypotheses are the fact that P (in the notations
of the proof) is a projective variety and the fact that OP(1) is an ample line
bundle. Thus we give the following definition and a result which is presented
without proof. For more details, see [19], Proposition 1.8.5.

Definition 2.1.7. Let X be a projective variety and B an ample line bundle
over X, that is generated by its global sections. A coherent sheaf F on X is
m-regular with respect to B if

H i(P,F ⊗B⊗(m−i)) = 0

for i > 0.

Theorem 2.1.8. In the notations of Definition 2.1.7, for every k ≥ 0:

i F ⊗B⊗(m+k) is globally generated.

ii The natural maps

H0(X,F ⊗B⊗m)⊗H0(X,B⊗k) → H0(X,F ⊗B⊗(m+k))

are surjective.

iii F is (m+ k)-regular with respect to B.
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2.2 Kollár Vanishing Theorem

In this section we will present, without proofs, some results about the van-
ishing of the cohomology groups of positive degree of determined sheaves on
smooth projective varieties. The main reference is [19].

Theorem 2.2.1. Let X be a smooth irreducible projective complex variety
and A an ample divisor on X. Then

H i(X,OX(KX + A)) = 0, ∀i > 0.

Proof. Omitted. See [19] Theorem 4.2.1

This result have been later generalized by Kawamata and Viehweg ob-
taining another vanishing result. In order to state such result, we need the
following:

Definition 2.2.2. Let X be a smooth projective variety over C, then a line
bundle L is said to be big if

κ(X,L) = dimX

A divisor D is called big if OX(D) is.

Theorem 2.2.3. Let X be a smooth projective variety over C and let D be a
nef and big divisor on X. Then

H i(X,OX(KX +D)) = 0

for all i > 0.

Proof. Omitted. See [19] Theorem 4.3.1.

We now present, without proof, two results due to Kollár. For the proofs,
one can see [16].

Theorem 2.2.4. Let X be a smooth projective complex variety and L a
semiample divisor on X. Given k ≥ 1, fix any divisor D ∈ |kL|. Then the
homomorphisms

H i(X,OX(KX +mL)) → H i(X,OX(KX + (m+ k)L))

naturally defined via D are injective for all i ≥ 0 and m > 0.
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Theorem 2.2.5. Let f : X → Y be a surjective morphism of projective
varieties with X smooth. Then:

i Rjf∗OX(KX) is torsion-free for all j.

ii Rjf∗OX(KX) = 0 for j > dimX − dimY .

iii For any ample divisor A on Y and every j ∈ N,

H i(Y,Rjf∗OX(KX)⊗OY (A)) = 0, i > 0.

2.3 Fujita Theorem

In this section is presented a very important result, due to Fujita, about the
positivity of the direct image of the relative canonical bundle of a fibration
over a curve. The Theorem first appeared in [9] and is, there, proved through
analytic means. Due to the very algebraic nature of this discussion we chose
not to present such proof, but instead we present the Theorem as stated by
Fujita and prove an analogous result as presented by Lazarsfeld in [18] and,
in the end, spend some words on some generalizations. The main references
are [18] and [30].

Definition 2.3.1. Given f : X → Y an algebraic fibre space, the relative
canonical bundle of f is defined as

ωX/Y = ωX ⊗ f ∗ω∨
Y

Theorem 2.3.2. Let X be a smooth projective variety of dimension n and
suppose f : X → C is a surjective morphism with connected fibres to a smooth
projective curve. Then f∗ωX/C is a nef vector bundle on C.

Proof. Omitted. See [9].

In the case of a smooth fibration, the proof is much easier and can be
generalized to the case of a target of arbitrary dimension. Before stating the
result and proving it, we need an auxiliary result.

Theorem 2.3.3. Let f : X → Y a morphism of smooth projective varieties, F
a coherent sheaf over X, Y ′ another smooth projective variety and u : Y ′ → Y
a smooth morphism. Moreover let X ′ = X ×Y Y ′ and v the induced morphism
such that the following diagram is commutative
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X ′ X

Y ′ Y

v

g f

u

Then,
u∗Rif∗F ∼= Rig∗v

∗F ,

canonically, for every i > 0. Furthermore if y ∈ Y,Xy is the fibre through f
and Fy the induced sheaf on the fibre and C(y) be constant sheaf at y, for
every i ∈ N

H i(Xy,Fy) ∼= H i(X,F ⊗ C(y))

and the isomorphism is canonical.

Proof. Omitted. See [12] Chapter III, Proposition 9.3 and Corollary 9.4.

Proposition 2.3.4. Let f : X → Y be a smooth surjective morphism between
smooth projective varieties. Then f∗ωX/Y is nef.

Proof. Fix s > 0 and consider the fibre product

f (s) : X(s) = X ×Y · · · ×Y X︸ ︷︷ ︸
s times

→ Y.

By the smoothness of f also X(s) is smooth. Moreover, by the Base Change
Formula (Theorem 2.3.3) it holds that

f (s)
∗ ωX(s)/Y = (f∗ωX/Y )

⊗s.

If dimY = d and B is a very ample line on Y such that B ⊗ ω∨
Y is ample.

Consider

H i(Y, (f∗ωX/Y )
⊗s ⊗ B⊗(d+1−i)) = H i(Y, f (s)

∗ ωX(s)/Y ⊗ B⊗(d+1−i)).

Now, by
f (s)
∗ ωX(s)/Y = f (s)

∗ (ωX(s) ⊗ f (s)∗ω∨
Y )

and the Projection Formula, then

H i(Y, f (s)
∗ ωX(s)/Y ⊗ B⊗(d+1−i)) = H i(Y, f (s)

∗ ωX(s) ⊗ ω∨
Y ⊗ B⊗(d+1−i))
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Lastly by Kollár Vanishing Theorem (Theorem 2.2.5), this last cohomology

group is zero. But then f
(s)
∗ ωX(s)/Y is (d+1)-regular with respect to B, hence

f (s)
∗ ωX(s)/Y ⊗ B⊗(d+1) = (f∗ωX/Y )⊗s ⊗ B⊗(d+1)

is globally generated by the Castelnuovo-Mumford Regularity Theorem (The-
orem 2.1.8).
This holds for every s > 0. In particular, for every s > 0 also

Ssf∗ωX/Y ⊗ B⊗(d+1)

is globally generated, thus, by Theorem 1.5.8, f∗ωX/Y is nef.

When considering the most general case, which is of an arbitrary morphism
onto a variety of arbitrary dimension, Fujita’s Theorem yields a weaker result:
the direct image of the relative canonical bundle has still some positivity
properties, but, in full generality, cannot be nef. In order to give the precise
statement we need to give some definitions.

Definition 2.3.5. A quasi-projective variety is an open subvariety of a
projective variety.

Definition 2.3.6. Fixed a reduced quasi-projective variety Y , Y0 ⊆ Y an
open dense subvariety of Y and G a locally free sheaf over Y of finite constant
rank. G is said to be weakly positive over Y0 if for every ample invertible sheaf
H on Y and every α > 0 there exists a β > 0 such that

SαβG ⊗Hβ

is globally generated over Y0.

Theorem 2.3.7. Let f : X → Y be a surjective morphism of smooth projective
complex varieties and Y0 ⊆ Y be the largest open subvariety such that

f|
f−1(Y0)

: f−1(Y0) → Y0

is smooth. Then, f∗ωX/Y is weakly positive over Y0

Proof. Omitted. See [30] Theorem 2.41 and following results.

Remark 2.3.8. The proof we cited is completely algebraic.
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2.4 Mourougane Theorem

Positivity results like Fujita Theorem are key results in the study of the
known cases of the Cn,m conjecture. We will later prove how Fujita Theorem
directly implies Cn,1 and more recently, in an expository paper by Hacon,
Popa and Schnell study the positivity properties of

f∗(ωX/Y ⊗ L⊗ I(h))

where L is a nef and relatively big line bundle, h a singular hermitian metric
with semi-positive curvature on L and I(h) is the multiplier ideal sheaf of h
(see Definition 3.4.10), in order to deduce the Cn,m in the case of a base space
being an abelian variety. We will not go into much detail about this proof,
but the everything can be found either in the paper by Hacon-Popa-Schnell
[10] or in the original article by Cao and Păun [5].
Here we present with its proof an intermidiate result of Mourougane. The
main reference is [21]. Before that we will give some definitions and proofless
results that will be useful throughout the proof.

Definition 2.4.1. Given a fibre space f : X → Y an algebraic fibre space, a
vector bundle E on X is relatively big or f -big is its restriction to a general
fibre of f is a big vector bundle on the fibre.

Theorem 2.4.2. Let f : X → Y be smooth morphism of smooth projective
varieties, F a coherent sheaf over X which is flat over Y . If furthermore
there exists i ∈ N such that

y 7−→ hi(y,F) = dimC(y) H
i(Xy,Fy)

is constant on Y , then Rif∗F is locally free on Y .

Proof. Omitted. See [12] Chapter III, Corollary 12.9.

Theorem 2.4.3. Let f : X → Y a smooth surjective morphism between two
smooth projective varieties. Let L be a nef and f -big line bundle over X.
Then

f∗(ωX/Y ⊗ L)

is locally free and nef.
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Proof. Consider for every i > 0 the following direct image sheaf:

Rif∗(ωX/Y ⊗ L) = Rif∗(ωX ⊗ L⊗ f ∗ω∨
Y );

then by Projection Formula, the latter is equal to

Rif∗(ωX ⊗ L)⊗ ω∨
Y .

By Kawamata-Viehweg Vanishing Theorem (Theorem 2.2.3), as L is nef and
big on the fibres, we have that

H i(X,ωX ⊗ L) = 0.

In particular, this holds on the fibres, hence,

Rif∗(ωX ⊗ L) = 0.

By smoothness of f the map

φ : y 7−→ dimC(y) H
0(Fy, (ωX/Y ⊗ L)|Fy

)

is locally constant in Y : as f is smooth, then it is flat. So we can apply
Theorem 2.3.3. By the second statement of this theorem, if Fy is the fibre
over a fixed y ∈ Y

H0(Fy, (ωX/Y ⊗ L)|Fy
) = H0(X,ωX/Y ⊗ L⊗ C(y)).

Observe now that, as Y is smooth, each point is smooth and the Krull
dimension of OY,y is locally constant, therefore also the transcendence degree
of C(y) is locally constant for y ∈ Y .
And since ωX/Y ⊗L is locally free over X the map φ is indeed locally constant.
By Grauert’s Theorem (Theorem 2.4.2) we conclude that

f∗(ωX/Y ⊗ L)

is locally free.
Now we want to prove that f∗(ωX/Y ⊗ L) is globally generated. Fix a very
ample line bundle B on Y and let d = dimY .

H i(Y, f∗(ωX/Y ⊗ L)⊗ ωY ⊗ B⊗(d+1−i)) = H i(Y, f∗(ωX ⊗ L)⊗ B⊗(d+1−i))
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and the equality holds by the Projection Formula. Again by the Projection
Formula

H i(Y, f∗(ωX ⊗ L)⊗ B⊗(d+1−i)) = H i(Y, f∗(ωX ⊗ L⊗ f ∗B⊗(d+1−i))).

And as the higher direct images of ωX ⊗ L vanish we can write

H i(Y, f∗(ωX ⊗ L⊗ f ∗B⊗(d+1−i))) = H i(X,ωX ⊗ L⊗ f ∗B⊗(d+1−i)).

As L is nef and B is very ample, L⊗ f ∗B⊗(d+1−i) is nef. Now, for every i, if
n = dimX

∫

X

c1(L⊗ f ∗Bd+1−i)n =

∫

X

(c1(L) + c1(f
∗Bd+1−i))n =

=

∫

X

n∑

k=0

(
n

k

)
c1(L)

n−kc1(f
∗B⊗(d+1−i))k

Now, by linearity of the Intersection Product, Naturality of the Chern classes
and the Projection Formula for the integration along the fibres

∫

X

c1(L⊗ f ∗Bd+1−i)n =
n∑

k=0

(
n

k

)∫

Y

f∗c1(L)
n−kc1(B

⊗(d+1−i))k.

Notice that, by the very-ampleness of B and the relative bigness of L all
the summands are non-negative and, in particular, the last is positive. This
implies that L⊗ f ∗B⊗(d+1−i) is big for every i.
By Kawamata-Viehweg, the cohomology group

H i(X,ωX ⊗ L⊗ f ∗B⊗(d+1−i))

vanishes for every 1 ≤ i ≤ d. Therefore, f∗(ωX/Y ⊗ L)⊗ ωY is d+ 1-regular
with respect to B⊗(d+1−i). And therefore f∗(ωX/Y ⊗ L) is globally generated.
Fix s > 0 and let X(s) be the fibre product of s copies of X over Y . Let πi

the projection on the i-th factor. And let f (s) the resulting map to Y . As f
is smooth, so are X(s) and f (s). Now, let

L(s) =
s⊗

i=1

π∗
iL
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Moreover, by the Base Change Formula,

f (s)
∗ (ωX(s)/Y ⊗ L(s)) = (f∗(ωX/Y ⊗ L))⊗s

Now, the very same proof we used to prove that f∗(ωX/Y ⊗ L) is globally
generated can be redone for f (s) and therefore, one proves that for every
s ∈ N:

(f∗(ωX/Y ⊗ L))⊗s

is globally generated, but this implies that for every s ∈ N

Ssf∗(ωX/Y ⊗ L)

is globally generated as well, hence, f∗(ωX/Y ⊗ L) is nef.



57

Chapter 3

Kodaira Dimension of Algebraic
Fibre Spaces

In this last chapter we finally present the most general statement of the Iitaka
Conjecture for smooth projective varieties. Then we state and prove some
basic facts on the Kodaira dimension under some particular hypothesis. We
then prove the Conjecture in the known case of the base space being a curve
and present some ideas from a paper by Markus Wessler about an alternative
proof of C2,1 (see [32]). Lastly, we present some ideas about the proofs of the
case in which the base space is either a variety of general type or an abelian
variety.

3.1 Iitaka Conjecture

In this section we will present some ideas that are deeply linked to the Iitaka
Fibration Theorem and have lead to the statement of the Iitaka Conjecture.
The main reference for this section is Fujino’s book [7].
In his paper [13], Shigeru Iitaka proved the Iitaka Fibration Theorem (in this
discussion Theorem 1.4.6), linking some birational properties of a complex
smooth projective variety to a fixed fibration whose domain is birationally
equivalent to the variety one started with.
By the proof of Iitaka Theorem and by the Fujita-like results, it is clear that,
among all varieties and line bundles that one can consider, a main role is
played by those varieties X that satisfy the following

κ(X) ∈ {−∞, 0, dimX}
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respectively called, by Iitaka, of elliptic, parabolic and hyperbolic type. In
particular, the Iitaka Fibration Theorem implies that in order to study the
birational classification, one need to concetrate on either this kind of varieties
or to fibrations whose general fibre is of parabolic type.
The study of such fibrations lead Iitaka to pose, in [14], the following

Conjecture 3.1.1. Let f : X → Y be a surjective morphism between smooth
projective varieties X of dimension n and Y of dimension m, with connected
fibres. Then

κ(X) ≥ κ(Xy) + κ(Y )

for a sufficiently general fibre Xy of f .

3.2 General Results

Here we present some general results about the Iitaka dimension and the
Kodaira. The main reference are some notes by Popa [25]. Before giving
proofs, we need the following:

Definition 3.2.1. Let Y be non-singular closed subvariety of the non-singular
variety X. Let I be its sheaf ideal. We define the normal bundle of Y in X as

NY/X = (
I

I2
)∨.

Theorem 3.2.2. Let f : X → Y be an algebraic fibre space of smooth
projective varieties. Then

κ(X) ≤ κ(F ) + dimY

where F is a general fibre of f .

Proof. In κ(X) = −∞ the statement is clear.
We will, at first, prove the more general statement: let f : X → Y be an
algebraic fibre space of smooth projective varieties and let L be a line bundle
on X. Then

κ(X,L) ≤ κ(F, L|F ) + dimY.

Assume κ(X,L) ≥ 0. By Iitaka Fibration Theorem there exists m sufficiently
large and divisible such that the canonical rational map φm, associated to
|L⊗m| is actually the Iitaka Fibration. Thus, denoting Z = φm(X), it holds
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that dimZ = κ(X,L).
Moreover, m is such that, for the general fibre F ,

dimφm(F ) ≤ κ(F, L|F ).

Indeed, the restriction map

H0(X,L⊗m) → H0(F, L⊗m
|F

),

induces a rational map

Φ : P(H0(F, L⊗m
|F

)) P(H0(X,L⊗m))

such that the following diagram is commutative

F P(H0(F, L⊗m
|F

))

X P(H0(X,L⊗m))

ψm

Φ

φm

with obvious definition of ψm. Therefore

dimφm(F ) = dimΦ ◦ ψm(F ) ≤

≤ dimψm(F ) ≤ κ(F, L|F ).

Now, let
W = (f, φm)(X) ⊆ Y × Z.

As the canonical projection on the second factor

π2 : W → Z

is surjective,
κ(X) = dimZ ≤ dimW ;

on the other hand, W is the union of all π−1
1 (y), y ∈ Y . These sets have, for

y ∈ Y general, the same dimension and therefore,

dimW = dimY + dim π−1
1 (Y );
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but
dim π−1

1 (y) ≤ dimφm(F ) ≤ κ(F, L|F )

and by putting everything together one obtains the statement.
Now, fix y ∈ Y general and fix a local holomorphic coordinate system

(η1, . . . , ηn)

for Y around y. Consider also the normal bundle N = NF/X on F the fibre
of y. The dual of N is globally trivialized by

f ∗(dη1 ∧ · · · ∧ dηn);

therefore it is trivial, and so is N . By the Adjuction Formula (See Chapter
II, Proposition 8.20 of [12] as a reference):

ωF = ωX ⊗
dimX−dimF∧

N = ωX ⊗
dimX−dimF∧

OF = ωX ⊗OF = ωX|F
.

Specializing the general statement to ωX :

κ(X) = κ(X,ωX) ≤ κ(F, ωX|F
)+dimY = κ(F, ωF )+dimY = κ(F )+dimY.

Before proving the next result we need to recall a couple of results from
Hartshorne [12]. For the proofs, one can check the Propositions 8.10 and 8.11
of the second chapter of [12].

Proposition 3.2.3. Let f : X → Y, g : Y ′ → Y be morphisms of smooth
projective varieties and f ′ : X ′ = X×Y Y ′ → Y ′ be the base change morphism.
Then

ΩX′/Y ′ = π∗
1ΩX/Y

where π1 is the projection on the first factor and the Ω’s are the sheaves of
relative differentials.

Proposition 3.2.4. Let f : X → Y, g : Y → Z be morphisms of smooth
projective varieties. Then there exists an exact sequence of sheaves on X

f ∗ΩY/Z ΩX/Z ΩX/Y 0
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Theorem 3.2.5. Let X, Y be smooth projective varieties. Then

κ(X × Y ) = κ(X) + κ(Y ).

Proof. In order to apply the Base Change Formula for the sheaf of differentials,
just notice that our varieties are all schemes over C. So, we have that if
ΩX ,ΩY are the sheaves of differentials relative to C on X and Y respectively,
then, by the Base Change Formula

ΩX×Y/X = π∗
1ΩX , ΩX×Y/Y = π∗

2ΩY

where πi is the projection on the i-th factor for i ∈ {1, 2}.
Then we have exact sequences

π∗
1ΩX ΩX×Y π∗

2ΩY 0
φ1 φ2

π∗
2ΩY ΩX×Y π∗

1ΩX 0
ψ1 ψ2

We now want to prove that ψ1 is a right inverse to φ2 and that φ1 is a right
inverse for ψ2. Hence the short exact sequences

0
π∗
1ΩX

ker(φ)
ΩX×Y π∗

2ΩY 0
φ

0
π∗
2ΩY

ker(ψ)
ΩX×Y π∗

1ΩX 0
ψ

are split. We therefore have isomorphisms

π∗
1ΩX ⊕

π∗
2ΩY

ker(ψ)
∼= ΩX×Y

∼=
π∗
1ΩX

ker(φ)
⊕ π∗

2ΩY .

And this implies that
{
ker(φ) = ker(ψ) = 0

ΩX×Y
∼= π∗

1ΩX ⊕ π∗
2ΩY

.

The proof of these facts is very scheme-theoretic, so we will regard the varieties
as schemes and assume as known all the definitions and constructions related
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to the sheaves of differentials. For more details one can check [12] Chapter II,
Section 8.
We need to prove that a certain map of sheaves is the identity and, since this
is a local property at each point, we can restrict to an arbitrary open affine
cover of X × Y and prove it here. So take Spec(A) ⊆ X and Spec(B) ⊆ Y
be open affines, then Spec(A⊗C B) is an open affine in X × Y and varying
A,B on all the rings that define open affines of X and Y respectively, we get
an open affine cover of X × Y .
By how the first exact sequence is defined, and using again the base change
in the other direction, we know that the sequence of sheaves derives from the
following exact sequence of A⊗C B-modules

ΩA/C ⊗A (A⊗C B) ΩA⊗CB/C ΩB/C ⊗B (A⊗C B) 0
φ̃1 φ̃2

where the Ω·/C’s are the modules of C-differentials on the ring.
The map φ̃1 is defined as follows on the simple tensors

φ̃1 : (a⊗ b)⊗ dα 7−→ (a⊗ b)d(α⊗ 1)

and
φ̃2 : d(a⊗ b) 7−→ (a⊗ 1)⊗ db

In the same way the second exact sequence derives from

ΩB/C ⊗B (A⊗C B) ΩA⊗CB/C ΩA/C ⊗A (A⊗C B) 0
ψ̃1 ψ̃2

with definitions,

ψ̃1 : (a⊗ b)⊗ dβ 7−→ (a⊗ b)d(1⊗ β)

and
ψ̃2 : d(a⊗ b) 7−→ (1⊗ b)⊗ da

By direct computations

φ̃2 ◦ ψ̃1((a⊗ b)⊗ dβ) = φ̃2((a⊗ b)d(1⊗ β)) = (a⊗ b)(1⊗ 1)⊗ dβ = (a⊗ b)⊗ dβ;
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and, on the other hand,

ψ̃2 ◦ φ̃1((a⊗ b)⊗ dα) = ψ̃2((a⊗ b)d(α⊗ 1)) = (a⊗ b)(1⊗ 1)⊗ dα = (a⊗ b)⊗ dα.

Therefore the sequences split.
Now, by the functoriality of the exterior power and by the linearity of the
pull-back

dimX+dimY∧
ΩX×Y = π∗

1

dimX∧
ΩX ⊗ π∗

2

dimY∧
ΩY = π∗

1ωX ⊗ π∗
2ωY .

Hence, for every m ∈ N

H0(X × Y, ω⊗m
X×Y ) = H0(X,ω⊗m

X )⊗H0(Y, ω⊗m
Y );

therefore
h0(X × Y, ω⊗m

X×Y ) = h0(X,ω⊗m
X ) · h0(Y, ω⊗m

Y )

and by the logarithmic definition of the Kodaira dimension we deduce the
formula.

3.3 Fibre Spaces over Curves

In this section we focus the attention on fibrations over curves; more precisely
we will prove Cn,1 in the case of a curve of general type as base space and the
additional hypothesis that the geometric genus of the general fibre is positive.
The main reference is [18]. Later we will also analize the case of C2,1 for
which Markus Wessler’s presented a proof that completely uses methods from
Algebraic Geometry in [32].

3.3.1 Curves of General Type

A variety is said of general type if its Kodaira dimension and its topological
dimension coincide.
In this section we will omit the cases of the base space being an elliptic curve
and the case of the general fibre having zero global sections for the canonical
bundle.
Notice that, by the computation of the Kodaira dimension for curves that
κ(P1) = −∞, so if we are studying a fibration

f : X → P1,
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then the Iitaka Conjecture is trivially satisfied.

Theorem 3.3.1. In the setting of Fujita Theorem (Theorem 2.3.2), assume
that C is of general type and the general fibre F of the fibration has positive
geometric genus pg(F ) = h0(F, ωF ). Then

κ(X) = κ(F ) + 1.

Proof. By the Easy Addition Formula, one has

κ(X) ≤ κ(F ) + dimC = κ(F ) + 1

for every general fibre F . Fix one. By the assumption of positive geometric
genus for F , we have that ωX/C ̸= 0 and as C is of general type, ωC is ample.
Observe that

f∗ωX/C = f∗(ωX ⊗ f ∗ω∨
C) = f∗ωX ⊗ ω∨

C

=⇒ f∗ωX = f∗ωX/C ⊗ ωC .

By Fujita Theorem, f∗ωX/C is nef, thus f∗ωX is ample.
Fix a very ample divisor H on C, then by the characterization of ample vector
bundles, for all m sufficiently large

Smf∗ωX ⊗OC(−H)

is globally generated, fix such an m. Moreover notice that

H0(X,ω⊗m
X ⊗f ∗OC(−H)) = H0(C, f∗(ω

⊗m
X ⊗f ∗OC(−H))) = H0(C, f∗ω

⊗m
X ⊗OC(−H)).

As Smf∗ωX can be realized as a subsheaf of f∗ω
⊗m
X the same holds for

Smf∗ωX ⊗ OC(−H) with respect to f∗ω
⊗m
X ⊗ OC(−H). As the first one

is globally generated its global sections have positive dimension and therefore

H0(C, f∗ω
⊗m
X ⊗OC(−H)) ̸= 0.

Take a global section of ω⊗m
X ⊗ f ∗OC(−H), then it induces an injective map

α : H0(X, f ∗OC(H)) → H0(X,ω⊗m
X )

But,
H0(X, f ∗OC(H)) = H0(C,OC(H)) = H0(X,OX(f

∗H)).
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Hence, H0(X,OX(f
∗H)) is a subspace of H0(X,ω⊗m

X ).
Now we check that κ(X) > 0. By definition

κ(X) = max
n≥m

dimφn(X)

where φn is the rational map canonically induced by the linear system
∣∣ω⊗n

X

∣∣.
Notice that even though the usual definition is without the lower bound m, by
what we proved in Lemma 1.2.12, there are infinitely many n’s that realize the
Kodaira dimension, thus taking only n ≥ m does not change the definition.
By contraddiction assume κ(X) = 0, then, φn is a constant map for every
n ∈ N. On the other hand, though, for all n ≥ m

0 ̸= H0(C,OC(H)) = H0(X,OC(f
∗H)) ⊆ H0(X,ω⊗n

X ).

Hence
C ⊆ P(H0(X,ω⊗n

X ))

So there exists an n ∈ N such that φn is non-constant. This is a contraddiction.
We deduce that κ(X) is positive. We can therefore apply the Iitaka Fibration
Theorem. Let

X∞ → V

be the Iitaka fibration, but as X is birationally equivalent to X∞ we can
consider the Iitaka Fibration as a morphism

ρ : X → V

Consider then the factorization of f

X → V C

The fact that the fibration f factorizes through the Iitaka Fibration is obvious
by the construction in the Theorem of the Iitaka Fibration.
Take v ∈ V a general point such that v is not in the indeterminacy locus of
the rational map

φ : V C

and let G = ρ−1(v), c = φ(v), F = φ−1(c).
Let x ∈ G, then φ(ρ(x)) = c; by the factorization above

f = φ ◦ ρ,
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so x ∈ f−1(c) = F . We showed that every general fibre of the Iitaka fibration
is contained in a general fibre of f . Therefore, by the Iitaka Fibration Theorem

κ(G,ωF|G
) = κ(G,ωX|F|G

) = κ(G,ωX|G
) = 0.

As ρ is the Iitaka Fibration, dimV = κ(X) and

κ(X)− 1 = dimV − dimC

is the topological dimension of the general fibre of φ. On the other hand we
also have that

dimF = dimX − 1, dimG = dimX − κ(X).

Substracting the second from the first we find that

dimF − dimG = κ(X)− 1.

By denoting W = ρ(F ) we have a commutative triangle where the morphisms
are trivially fibre spaces:

F W

{c}

ρ

f φ

And by applying the Preliminary Result to the Easy Addition Formula to

F → W

we have that

κ(F ) ≤ κ(G,ωF|G
) + dimW = 0 + (κ(X)− 1) = κ(X)− 1.

By reordering one finds the inequality we sought.
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3.3.2 The Case of a Surface

In the case of a fibration
f : S → C

where S is a smooth projective surface and C is a smooth projective curve, one
can prove the Iitaka inequality using only methods from Algebraic Geometry:
indeed the proof we presented uses either Fujita Theorem whose proof deeply
relies on Analytic methods or, even in the case of a smooth fibration, Kollár
Vanishing Theorem that is also proved via analytic means.
The special case of C2,1, instead, due to the classical knowledge of the birational
geometry of the surfaces and thanks to the developments by Viehweg and
Mumford can be therefore proved via only methods from Algebraic Geometry.
This was shown by Wessler in [32]. We present here the main ideas citing the
references for the most classical statements.
Before going into detail with Wessler’s paper, we need to recall a definition
and a result form [1].

Discriminant of a morphism and Branched Covering Trick

In order to give the definition of the discriminant of a finite locally free
morphism, we need to work in the setting of schemes.
Let π : X → Y be a finite locally free morphism of schemes and consider the
canonical OY -linear trace map

Trπ : π∗OX → OY

sending a local section f of π∗OX to the trace of the multiplication by f on
π∗OX . The composition

OY → π∗OX → OY

is the multiplication by the degree of π, which is a locally constant map on
Y . Therefore one can define a trace pairing

Qπ : π∗OX × π∗OX → OY

associating to every couple (f, g) the trace map of the product. One can
think Qπ as a map from π∗OX to its dual. These two sheaves have equal rank
r. Therefore, we have a determinant

detQπ :
r∧
π∗OX →

r∧
(π∗OX)

∨.
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We can consider detQπ as a global section of
∧r(π∗OX)

⊗−2. The discriminant
of π is the divisor cut out by this section.

Theorem 3.3.2. Let p : B → X be an holomorphic P1-bundle over the
smooth complex variety X. If S is an irreducible divisor on B meeting the
general fibre in n points, then there exists a smooth complex variety Y , a
generically finite surjective morphism f : Y → X and n effective divisors
S1, . . . , Sn on B′ = B ×X Y all meeting the general fibre in one point, such
that

g∗S = S1 + · · ·+ Sn

where g : B′ → B is the projection.

Proof. Omitted. See [1] Chapter I, Theorem 18.2.

Wessler’s proof

We introduce some notations: let S be a smooth projective surface and C a
smooth projective curve both defined over C. Let

f : S → C

be an algebraic fibre space; let g be the genus of the general fibre and let δ
be the number of singular fibres.
If g = 0, then the inequality is trivially verified, so we can assume that g > 0.
Furthermore we may assume, up to blow-down all the (−1)-curves (curves
of self intersection equals to −1) in the fibres, that f is a relatively minimal
model.
We can also assume that C has positive genus otherwise the inequality is,
again, trivial.

Definition 3.3.3. A fibraton is said to be isotrivial if all the general fibres
are isomorphic.

Theorem 3.3.4. In the notation above, if f is isotrivial with general fibre
isomorphic to a curve A, then there exisits a smooth curve B and a finite
group G acting algebraically and faithfully on A and B such that the following
diagram commutes
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S A
G
× B

G

C B
G

∼

f

∼

the horizontal maps are birational and the projection

B →
B

G

is étale.

Proof. Omitted. See [26].

Consider now the base change

S ′ = S ×B
G
B.

The second projection gives a fibration and the first projection is étale: it is
a fibre product along two smooth morphisms, thus it is smooth and as B is
finite over B

G
so is S ′ over S. Furthermore,

S ′ ∼= A× B;

therefore,

κ(S) = κ(S ′) = κ(A) + κ(B) = κ(A) + κ(
B

G
) = κ(A) + κ(C);

where we used Theorem 3.2.5 and the following:

Proposition 3.3.5. Let f : X → Y be a generically finite surjective morphism
between smooth projective varieties. Then

i κ(Y ) ≤ κ(X);

ii if f is étale, then we have an equality.

Proof. Omitted. See [25] Example 1.3.9.
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Thus we may also assume that f is non-isotrivial.
By Theorem 2.3.7 we know that the direct image of the relative canonical
bundle is weakly-positive. This notion, on a curve, coincides with the nefness.
It holds the following

Corollary 3.3.6. In the same notations as above, the relative canonical
bundle ωS/C is nef and is such that c1(ωS/C)

2 ≥ 0.

Proof. Let A ⊆ S be an irreducible curve. If A is a fibre, then by the fact
that f is relatively minimal

c1(ωS/C) · A ≥ 0.

Otherwise, the natural map

f ∗f∗ωS/C → ωS/C

is surjective when restricted to C. Hence, ωS/C , when restricted to C, is
quotient of the pull-back of a nef line bundle. Thus

c1(ωS/C) · A ≥ 0

and therefore is nef and the relation c1(ωS/C)
2 ≥ 0 is obviously satisfied.

What we want to prove is that under some further assumptions, it has
positive degree. We will also treat the cases excluded by the assumptions.

Definition 3.3.7. A morphism

f : X → Y

between a smooth surface and a smooth curve is said to be a semi-stable
model if for all varieties V ⊆ W all the irreducible components of f−1(V )
are reduced and smooth and if P is in the intersection of some of these
components Y1, . . . , Yr with local equations f1, . . . , fr respectively, then the
images of the fi’s are linearly independent in mP

m2
P

. Such a divisor in X is called

normal crossing divisor.
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We want to prove that we can assume that f is a semi-stable model. Up
to consider a finite covering

τ = C ′ → C,

and taking the base change

f ′ : S ′ = S ×C C ′ → C ′,

and a resolution of singularities

d : S ′′ → S ′,

we have a semi-stable morphism. Notice that the existence of such a resolution
is guaranteed by the following

Theorem 3.3.8. Let Y be any curve on the surface X. Then there exists a
finite sequence of blow-ups at a point

X ′ = Xn → · · · → X0 = X

such that f−1(Y ) is a normal crossing divisor.

Proof. Omitted. See [12] Chapter V, Theorem 3.9.

Consider now the trace map

d∗ωS′′ → ωS′ :

this map is defined as follows (with abuse of notation we confuse the bundles
and their associated sheaves): at first, we have a canonical map

d∗d
−1ωS′ → ωS′

On the other hand, for U ⊆ S ′′ sufficiently small, both U and d(U) are in
some open subsets of S ′′ and S ′ that trivialize ωS′′ and ωS′ simultaneously.
Therefore for each these U ’s we have a canonical map

ωS′′
|U

= OU → d−1OS′
|d(U)

= (d−1ωS′)U .

We can obviuosly glue these morphisms and the U ’s we’ve considered deter-
mine an open covering of S ′′, hence we have a canonically defined map

ωS′′ → d−1ωS′
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and therefore the trace map is the composition

d∗ωS′′ → d∗d
−1ωS′ → ωS′ .

Moreover, as d is, on an open dense subset of S an isomorphism, on the
stalks at the points of such an open, the trace map is injective. It induces an
injective map

d∗ωS′′/C′ → ωS′/C′ = τ ′∗ωS/C .

By flat base change (Theorem 2.3.3) we have an injective map

f ′′
∗ωS′′/C′ = f ′

∗d∗ωS′′/C′ → f ′
∗τ

′∗ωS/C = τ ∗f∗ωS/C .

Thus, if f ′′
∗ωS′′/C′ has positive degree, then also f∗ωS/C does.

This shows that we can consider f to be semi-stable.

Lemma 3.3.9. Under the assumptions above and in the same notations, if
λn is the degree of

f∗ω
⊗n
S/C

for every n ≥ 1, then if g > 1 we have that

λn =

(
n

2

)
(12λ1 − δ) + λ1 =

(
n

2

)
c1(ωS/C)

2 + λ1

and for g = 1
12λn = nδ = 12nλ1.

Proof. Omitted. See [22] Theorem 5.10.

By Mumford Lemma, we have that

12λ1 − δ ≥ 0 ⇐⇒ 12λ1 ≥ δ

If δ > 0 we have proved the claim on the positivity of λ1. For the case of a
smooth fibration things can be solved relatively esaily.
Moreover, for δ = 0 and g > 1, we have that λ1 > 0 if and only if λn > 0 for
every n ∈ N if and only if λn > 0 for some n ∈ N. Thus, in order to prove
λ1 > 0, it suffice to show λn > 0 for some n ∈ N.
If the general fibre is an elliptic curve (g = 1) then, consider the map

c 7−→ j(f−1(c)) :
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this defines, by the properties of the j-invariant a morphism

j : C → A1(C).

But C is projective, hence complete and A1(C) is affine. Therefore j is a
constant morphism and the fibration is isotrivial.

Definition 3.3.10. A curve X is called hyperelliptic if g ≥ 2 and there exists
a finite morphism of degree 2

X → P1

Notice that, as any morphism to a curve is either constant or dominant,
any hyperelliptic curve is a double covering of P1. We have that

Lemma 3.3.11. In the notations and assumptions as above, if all the fibres
are hyperelliptic curves, the fibration is isotrivial

Proof. Consider the projective bundle

π : P(f∗ωS/C) → C

and the morphism induced by the canonical surjection

f ∗f∗ωS/C → ωS/C .

Denote this morphism with

φ : S → P(f∗ωS/C).

As, by definition, we have that

f = π ◦ φ

and all the fibres of f are smooth hyperelliptic, also all fibres of φ are smooth
hyperelliptic, hence, they are double coverings of P1. So if P is the image of
φ, then P is a ruled surface.
Let ∆ be the discriminant of φ. Then ∆ intersects the general fibre in
degφ = 2g+2 points. By the Branched Covering Trick (Theorem 3.3.2) there
exists an étale covering

γ : C ′ → C

such that, if
P′ = P×C C ′,
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then the pull-back of ∆ to P′ has 2+2g disjoint components. These components
correspond to 2 + 2g disjoint global sections of P′, thus a linear combination
of these sections yields a never-vanishing global section of P′. Therefore it is
trivial.
As the fibration f ′ factors through a trivial fibre bundle, it is isotrivial.
Therefore f itself is isotrivial.

From now on, assume that not all fibres are hyperelliptic.
Furthermore, we recall

Proposition 3.3.12. Let X be a curve of genus g ≥ 2. Then |ωX | is very
ample if and only if X is non-hyperelliptic.

Proof. Omitted. See [12] Chapter IIII, Proposition 5.2.

Lemma 3.3.13. In the same notations and assumptions, for n ∈ N suffi-
ciently large, the multiplication map

µn : Snf∗ωS/C → f∗ω
⊗n
S/C

is surjective outside the hyperelliptic fibres.

Proof. Let Sc be a non-hyperelliptic fibre of f , thus ωSc
is very ample. Con-

sider the closed embedding
Sc → Pg−1

given by the global sections of ωSc
.

We can identify these sections with those of H0(Pg−1,OPg−1(1)) and therefore
there is an isomorphism

SnH0(Sc, ωSc
) → H0(Pg−1,OPg−1(n))

for every n ∈ N. Let Ic be the sheaf of ideals associated to Sc, then we have
a short exact sequence

0 Ic OPg−1(1) ωSc 0

Twist by n−1. Now, remember that, through the closed immersion canonically
associated to ωSc

, namely λ, it holds that

ωSc
= λ∗OP g−1(1);



75

therefore

ωSc
⊗OP g−1(n− 1) = ωSc

⊗ λ∗OP g−1(n− 1) = ω⊗n
Sc

and thus, for n sufficiently large, by Serre’s Vanishing Theorem, the map

H0(Pg−1,OP g−1(n)) → H0(Sc, ωSc
)

is surjective. Thus the composition

SnH0(Sc, ωSc
) → H0(Pg−1,OPg−1(n)) → H0(Sc, ωSc

)

is surjective for n sufficiently large. By base change we conclude.

At this point, if some of the fibres are hyperelliptic, then consider, for
n ∈ N sufficiently large, the image of µn: as f∗ωS/C is weakly-positive, then
also Snf∗ωS/C is weakly-positive, then it has non-negative degree as well as
its image, via µn. Furthermore, this image is a proper subsheaf of f∗ω

⊗n
S/C ,

thus
λn > deg µn(S

nf∗ωS/C) ≥ 0

hence, λ1 > 0.
We now prove the following.

Theorem 3.3.14. Let S be a smooth projective complex surface and C a
smooth projective complex curve. Moreover let f : S → C be an algebraic fibre
space such that: f is a relatively minimal semi-stable model, it is non-isotrivial
and all the fibres are smooth non-hyperelliptic curves of general type. Then
λn > 0 for some n ∈ N.

Proof. At first we will describe the so-called ”method of the universal basis”
introduced by Viehweg.
Let E be a locally free sheaf of rank m over C and let

π : P → C

be the projective bundle associated to (E∨)⊕m. Then we canonically have a
surjective map

π∗(E∨)⊕m → OP(1),

and by dualizing we obtain an injective map

OP(−1) → π∗E⊕m
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defined on each local section by

ℓ 7−→ (s1, . . . , sm).

This induces another (injective) map

s : OP(−1)⊕m → π∗E

(f1ℓ, . . . , fmℓ) 7−→
m∑

i=1

fisi.

This map is called the universal basis of E .
Consider s the universal basis of f∗ωS/C

OP(−1)⊕m → π∗f∗ωS/C

where P is the projective bundle of (f∗ω
∨
S/C)

⊕m. Taking the n-th symmetric
power we have a map

SnOP(−1)⊕m → Snπ∗f∗ωS/C = π∗Snf∗ωS/C .

On the other hand by pull-back (which preserves surjections) we also have a
morphism

π∗Snf∗ωS/C → π∗f∗ω
⊗n
S/C .

Then, composing we get another morphism

SnOP(−1)⊕m → π∗f∗ω
⊗n
S/C

that is surjective outside of D the zero divisor of det s for n sufficiently large.
Let B be the image sheaf of such morphism.
Consider a blow-up

τ : P′ → P

with center D. We may assume that B′ = τ ∗B is, modulo torsion, locally free.
Moreover denote OP′(k) = τ ∗OP(k) for every integer k and

π′ : P′ → C

the composed morphism. By pulling-back we obtain a surjection

SnOP′(−1)⊕m → B′.
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Let now G be the Grassmanian manifold parametrizing the r-dimensional
quotients of SnCm where r is the rank of f∗ω

⊗n
S/C and let V =

∧r SnCm. By
the properties of the projective bundle, the induced quotient map

V ⊗OP′ =
r∧
SnO⊕m

‘P ′ →
r∧
(B′ ⊗OP′(n)) =

r∧
B′ ⊗OP′(nr),

where V is the sheaf of locally constant continuous V -functions on P′, corre-
sponds to a morphism of varieties

Φ′ : P′ → P(V )

that factors through G.
Take P ∈ P′ − τ ∗D. Then P identifies uniquely a fibre Sc of f and a basis of
H0(Sc, ωSc

) up to multiplication by a non zero scalar. Of course the fibre we
refer is the fbre of π′(P ) through f and the basis is given by the fact that the
map

SnOP(−1)⊕m → π∗f∗ω
⊗n
S/C

is, by definition, non-zero on P and by reverse engineering the proof of Lemma
3.3.13.
The choice of P , therefore, determines an isomorphism

Pg−1 ∼= P(H0(Sc, ωSc
))

and consequently, as ωSc
is very ample, an embedding of Sc into Pg−1.

But if Φ′(P ) ∈ G is then given by the quotient map

µn : SnH0(Sc, ωSc
) → H0(Sc, ω

⊗n
Sc

)

that is the multiplication map. By Lemma 3.3.13, for n sufficiently large its
kernel determines both Sc and its embedding in the suitable projective space.
As the genus of Sc is at least 2, by a Hurwitz’s result, its automorphism group
is finite. Thus the subgroup of PGLg(C) that leaves Sc ⊆ Pg−1 invariant has
to be finite.
So, if A ⊆ P′ − τ ∗D is a curve mapping to a point in G, we obtain that A
cannot be contained in a fibre of π′. Thus the restriction map

A → C
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is surjective. This implies that for every point in A the kernel of the associated
multiplication map is the same, otherwise it would not be mapped into a
point of G. Thus

X ×C A

is trivial, but this contraddicts the non-isotriviality of f . Thus there cannot
be curves in the fibres of Φ′

|
P′−τ∗D

.

As a consequence,
detB ⊗OP′(nr) = Φ′∗OP(V )(1)

is ample and the inclusion

detB ⊗OP′(nr) ⊆ π′∗ det f∗ω
⊗n
S/C ⊗OP′(nr) = L

implies that L is big.
Take now F a general fibre of π′, for every h ∈ N, consider the short exact
sequence

0 L⊗h(−F ) L⊗h L⊗h
|F 0

As L is big, for h sufficiently large, there exists a non-trivial section.
For P in general position, the projection formula implies

OC → Λ⊗h
n ⊗OP′(hnr) = Λ⊗h

n ⊗ (Shnrf∗ω
⊕m
S/C)

∨

where Λn = det f∗ω
⊗n
S/C and the last equality holds by the properties of the

projective bundle. Dualizing we obtain a non trivial map

Shnrf∗ω
⊕m
S/C → Λ⊗h

n (−P )

Since f∗ωS/C is weakly-positive, the degree of Λ⊗h
n (−P ) is non negative, hence

λn > 0.

We now conclude the proof with this result.

Theorem 3.3.15. In the same assumptions and notations as above

κ(S) ≥ κ(C) + κ(Sc)
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Proof. By the previous discussion we may assume that the general fibre is of
general type and the base curve is not a rational curve.
By the previous Theorem we have that the line bundle

f∗ωS/C

has positive degree on C, therefore it is ample. In particular

f∗ωS = f∗ωS/C ⊗ ωC

is ample because, by the assumption on C, ωC is, at least, nef and the tensor
product of a nef line bundle with an ample one is ample.
Moreover, by the observation we made right after stating Mumford Lemma,
all the tensor powers of f∗ωS/C have positive degree.
Thus, for every m ∈ N, n ̸= 0

h0(S, ω⊗m
S ) = h0(C, f∗ω

⊗m
S ) > 1.

This implies that the κ(X) ≥ 1. If C is an elliptic curve there is nothing else
to prove.
So assume C is of general type. By the relative minimality of f , and the fact
that the Kodaira dimension is positive then ωS is nef. In particular, for a
canonical divisor KS,

K2
S ≥ 0.

If the inequality is strict, in particular, K2
S is ample and the Kodaira dimension

of X is maximal, hence the Iitaka inequality is verified as an equality.
If the square is 0, then, ω⊗2

S = OS and therefore

f∗ω
⊗2
S/C = f∗(ω

⊗2
S ⊗ (f ∗ω∨

C)
⊗2) = f∗(OS ⊗ (f ∗ω∨

C)
⊗2) = (ω∨

C)
⊗2

which is not nef. This is a contraddiction, so if both Sc and C are of general
type, so must be S.

Remark 3.3.16. We specialized this proof in the case of C, but it actually holds
over every algebraically closed field k. Therefore substituting everywhere C

with k, yields a proof of C2,1 over any field.
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3.4 Fibres Spaces over Abelian Varieties

In this last section, we conclude by presenting the main ideas in the expository
paper by Hacon-Popa-Schnell [10] about the proof that Cao and Păun gave
of the Iitaka Conjecture in the case of the base space being an abelian variety
in their paper [5].
The main theorem they proved is the Iitaka inequality in the case of a variety
of maximal Albanese dimension. Anyway, this case follows quite easily from
the assumption that the domain of the fibration has Kodaira dimension 0
and the base space being an abelian variety.
We intend to present the main ideas, therefore most of the proofs will be
omitted. Anyway, after stating all the necessary results we will prove the
inequality in the restricted case and then in the general case. All proofs can
be found in [10] unless otherwise stated.

3.4.1 Preliminaries

In this subsection we will assume to always be (unless otherwise stated) in
the following situation:

f : X → A

is an algebraic fibre space of smooth projective varieties such that κ(X) = 0
and A is an abelian variety. Furthermore let m ∈ N be such that Pm(X) = 1
and consider the following sheaf

Fm = f∗ω
⊗m
X .

This is a torsion-free coherent sheaf over A whose rank is equal to Pm(F ) at
each point.

Abelian Varieties and Albanese Variety

Fix A a smooth projective abelian variety over C of dimension n and let e be
its identity element. Consider the Zariski tangent space of A at e, namely, if
me ⊆ OA,e are the maximal ideal and the local ring of A at e

TeA =
me

m2
e

As e is smooth in A, this is an n-dimensional C-vector space. Moreover,
the action of the group via translations, give isomorphisms between all the
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tangent spaces. This implies, by the biholomorphicity of the translations,
that the tangent bundle of A, needs to be free. In particular its dual is free
as well, and therefore the canonical bundle is trivial.
This implies that in order to prove Iitaka inequality, we just need to show
that for the general fibre F , κ(F ) = 0 and therefore it suffices to show that
the rank of Fm is at each point 1 for at least one m.

Definition 3.4.1. Let V be a smooth projective variety. The Albanese
variety of V is an abelian variety A together with a morphism

α : V → A

such that for every abelian variety B and every morphism

β : V → B

there exists a unique
f : A → B

such that β = f ◦ α.

Theorem 3.4.2. Let V a smooth projective variety. Then there exists an
Albanese variety (A,α) for V . A is uniquely determined up to a birational
isomorphism and f is uniquely determined up to a translation.

Proof. Omitted. See [17], Chapter II, Section 3, Theorem 11.

Generic Vanishing and Unipotency

Consider the following

V 0(A,Fm) = {P ∈ Pic0(A) : H0(A,Fm ⊗ P ) ̸= 0} =

= {P ∈ Pic0(A) : H0(X,ω⊗m
X ⊗ f ∗P ) ̸= 0} ⊆ Pic0(A).

We have that

Theorem 3.4.3. Let X be a smooth projective variety. Then, for every
m ∈ N the locus

{P ∈ Pic0(X) : H0(X,ω⊗m
X ⊗ P ) ̸= 0} ⊆ Pic0(X)

is a finite union of abelian subvarieties translated by points of finite order.
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Remark 3.4.4. Theorem 3.4.3 implies that also V 0(A,Fm) is also a finite
union of abelian subvarieties translated by points of finite order. Indeed, by
Example 1.2.17, as f is an algebraic fibre space,

f ∗ : Pic0(A) → Pic0(X)

is injective.
More precisely we can prove that

V 0(A,Fm) = {OA}.

Indeed, as we assume Pm(X) = 1, then OA ∈ V 0(A,Fm). Take s0 ∈
H0(X,ω⊗m

X ) any non-zero section and let P ∈ V 0(A,Fm) a non-trivial line
bundle. By the previous Theorem we can assume P has finite order d ̸= 1.
Take

s1 ∈ H0(A,Fm ⊗ P ) = H0(X,ω⊗m
X ⊗ f ∗P ) ̸= 0.

Then, s⊗d
0 , s⊗d

1 are linearly independent global sections of ω⊗dm
X . This con-

traddicts the fact that Pdm(X) ≤ 1.

Definition 3.4.5. A coherent sheaf F on A is called a GV-sheaf if for every
i ∈ N

V i(A,F) = {P ∈ Pic0(A) : H i(A,F ⊗ P ) ̸= 0}

is such that codimV i(A,F) ≥ i.

Theorem 3.4.6. Let f : X → A be an algebraic fibre space from a smooth
projective variety to an abelian variety. Then for every m ∈ N, the sheaf Fm

is a GV-sheaf.

Lemma 3.4.7. Let X be a smooth projective variety and F a GV-sheaf on
X. Then F is zero if and only if V 0(X,F) = ∅.

Definition 3.4.8. A vector bundle E on A is called unipotent if it has a
filtration

0 = E0 ⊆ · · · ⊆ En = E

such that Ei

Ei−1

∼= OA for every 1 ≤ i ≤ n. It is called homogeneous if it has a

filtration
0 = E0 ⊆ · · · ⊆ En = E

such that Ei

Ei−1
∈ Pic0(A). Is decomposable if there are vector bundles E1, E2

on A such that
E ∼= E1 ⊕ E2

indecomposable if it is not decomposable.
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Theorem 3.4.9. It holds that:

i if Fm ≠ 0 for some m ∈ N, then it is homogeneous and indecomposable.

ii if H0(X,ω⊗m
X ) ̸= 0 for some m ∈ N, then Fm is indecomposable and

unipotent.

Singular Hermitian Metrics on Pushforwards of Pluricanonical
Bundles

We now state the main analytic results that are necessary to conclude the
proof. We assume all the basic definitions.

Definition 3.4.10. Given a singular hermitian metric h on a line bundle
L, its multiplier ideal sheaf is the sheaf of the functions that are locally
square-integrable with respect to h and it is denoted as I(h).

Theorem 3.4.11. Let f : X → Y be a projective morphism of smooth
varieties, and let (L, h) be a line bundle on X together with a singular
Hermitian metric of semi-positive curvature. Then the torsion-free sheaf
f∗(ωX/Y ⊗ L⊗ I(h)) has a canonical singular Hermitian metric with semi-
positive curvature.

Theorem 3.4.12. Let f : X → Y be a surjective morphism of smooth
projective varieties. Let (L, h) be a line bundle on X with a singular Hermitian
metric with semi-positive curvature and define F = f∗(ωX/Y ⊗ L ⊗ I(h)).
Then

i if c1(detF) = 0 ∈ H2(Y,R) then the torsion-free sheaf F is locally free
and the singular Hermitian metric of Theorem 3.4.11 is smooth and
flat.

ii Every non-zero morphism
F → OY

is split surjective.

Now, in the setting of an algebraic fibre space these results are particularly
interesting. Let f : X → Y be an algebraic fibre space and F be a general
fibre of the fibration. Then, for every m ∈ N such that Pm(F ) ̸= 0, the
space of m-canonical forms on the smooth fibres of f induce in a canonical



84

way a singular hermitian metric with semi-positive curvature on ωX/Y , called
the m-th Narashiman-Simha metric. Denote with h the singular Hermitian
metric induced on L = ω⊗m

X/Y . By construction, the inclusion

f∗(ωX/Y ⊗ L⊗ I(h)) ⊆ f∗(ωX/Y ⊗ L) = f∗ω
⊗m
X/Y

is generically an isomorphism, so we can apply the Theorems 3.4.11 and
3.4.12.

Corollary 3.4.13. Let f : X → Y an algebraic fibre space.

i For any m ∈ N, the torsion-free sheaf f∗ω
⊗m
X/Y has a canonical singular

Hermitian metric with semi-positive curvature.

ii If c1(det f∗ω
⊗m
X/Y ) = 0 ∈ H2(Y,R), then f∗ω

⊗m
X/Y is locally-free and the

singular Hermitian metric is smooth and flat.

iii Every non-zero morphism

f∗ω
⊗m
X/Y → OY

is split surjective.

3.4.2 Kawamata’s Results

In this subsection we present, mainly without proofs, some results shown by
Yujiro Kawamata in [15] that will be crucial in the proof of the general case.
The main reference is [15].

Theorem 3.4.14. Let f : X → A be a finite morphism from a smooth
projective variety to an abelian variety. Then κ(X) ≥ 0 and there are an

abelian subvariety B of A, étale coverings X̃, B̃ of X and B respectively and
a smooth projective variety Ỹ such that

i Ỹ is finite over A
B
.

ii X̃ is isomorphic to B̃ × Ỹ .

iii κ(Ỹ ) = dim Ỹ = κ(X).

Proof. Omitted. See [15] Theorem 13.
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Theorem 3.4.15. Let f : X → Y an algebraic fibre space such that κ(X) ≥ 0
and Y is of general type. Then

κ(X) = κ(Y ) + κ(F )

where F is a general fibre of f .

Proof. Omitted. See [15] Theorem 3.

Theorem 3.4.16. Let X be a smooth projective variety such that κ(X) = 0.
Then the Albanese map of X

α : X → A(X)

is an algebraic fibre space.

Proof. Let Z be the image of the Albanese map, and let

X → Y → Z

be its Stein factorization. Thus the following diagram is commutative

X Z A(X)

Y

α

f

i

g

By Theorem 3.4.14 there exists an étale covering Ỹ of Y such that

Ỹ = B ×W

where B is an abelian variety and W is a variety of general type. Consider
X̃ = X ×Y Ỹ . As also the projection

X̃ → X

is étale, by Proposition 3.3.5 we conclude that κ(X̃) = κ(X) = 0.
Obviously the projections

Ỹ → W, X̃ → Ỹ



86

are algebraic fibre spaces, so is their composition. By Theorem 3.4.15 the
following relations hold

0 = κ(X̃) = κ(F ) + κ(W ) ≥ κ(W ) = dimW ≥ 0

where F is a general fibre of the composition. The above inequalities show
that W is a point, therefore Ỹ is an abelian variety. Thus Y itself is abelian.
By the Universal Property of the Albanese map, f factors through A(X),
thus there exists

φ : A(X) → Y

such that
φ ◦ α = f.

Consider then C another abelian variety, and

γ : X → C

a morphism. The morphism γ factors through α, so we have a commutative
diagram

X Z A(X)

Y

C

α

f

γ

i

φ

ψ

g

But now, the map ψ ◦ i ◦ g = η. Then

γ = η ◦ f

hence f is an Albanese map for X. This implies that Y and A(X) are
isomorphic. As f is a fibre space, so is α.
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3.4.3 The Main Theorems

Theorem 3.4.17. Let f : X → A be an algebraic fibre space with A an
abelian variety and κ(X) = 0. Then

Fm = f∗ω
⊗m
X

∼= OA

for every m ∈ N such that Pm(X) ̸= 0.

Proof. By Theorem 3.4.9 Fm is an indecomposable unipotent vector bundle
on A. In particular its determinant is trivial.
By Corollary 3.4.13 it also has a smooth and flat singular Hermitian metric.
All of this implies that Fm is a successive extension of the trivial bundle OA

and can be split into direct summands through the metric. Thus

Fm
∼= O⊕r

A

where r ≥ 1 is the rank of Fm, but by indecomposability, r = 1.

Definition 3.4.18. A variety Y is said to have maximal Albanese dimension
if its Albanese map is generically finite.

Theorem 3.4.19. Let f : X → Y be an algebraic fibre space such that Y has
maximal Albanese dimension. Then

κ(X) ≥ κ(Y ) + κ(F )

where F is a general fibre of the fibration.

Proof. Assume that κ(X) = −∞. If, by contraddiction κ(F ) ̸= −∞, there
exists m > 0 such that Pm(F ) > 0 and therefore, f∗ω

⊗m
X ̸= 0.

Let Y → A be the Albanese map of Y and let g : X → A the composed
morphism. As, F is an irreducible component of the general fibre of g, it also
holds that g∗ω

⊗m
X ̸= 0.

By Theorem 3.4.6 this is a GV-sheaf and by Lemma 3.4.7 the set

V 0(A, g∗ω
⊗m
X ) = {P ∈ Pic0(A) : H0(A, g∗ω

⊗m
X ⊗ P ) ̸= 0}

is non-empty.
By Theorem 3.4.3 and Remark 3.4.4 there exists a torsion point P ∈
V 0(A, g∗ω

⊗m
X ). Fix such a point P of order k. In particular

h0(A, g∗ω
⊗m
X ) = h0(A, g∗ω

⊗m
X ⊗ P ) ̸= 0;
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thus

h0(X,ω⊗km
X ) = h0(X, (ω⊗m

X ⊗ g∗P )⊗k) = h0(A, (g∗ω
⊗m
X ⊗ P )⊗k) ̸= 0

and this contraddicts the fact that κ(X) = −∞.
Now assume κ(X) ≥ 0 and κ(Y ) = 0. By Theorem 3.4.16, since Y is of
maximal Albanese dimension, it is birational to its Albanese variety. So,
birationally, we can assume that Y is abelian.
Consider now

h : X → Z

the Iitaka fibration associated to ωX . We may assume that Z is smooth.
Take G a general fibre of h; then κ(G) = 0 and again by Theorem 3.4.16, the
Albanese map of G is surjective. This implies that f(B) is an abelian variety
as well. Indeed, if αG is an Albanese map for G, then the restriction of f
factors through αG, hence there exists a morphism of varieties

φ : A(G) → f(B)

such that
f|G = φ ◦ αG

By a known fact about abelian varieties, φ is, up to a translation, a group
homomorphism as well. Thus, up to choose another Albanese map, we may
assume that φ is also a group homomorphism and therefore, f(B) is an
abelian subvariety of Y .
Take the Stein factorization

G → B′ → B

of the restriction of f . As
B′ → B

is étale over B, B′ is abelian as well. So the fibre space

G → B′

is onto an abelian variety and κ(G) = 0. Its general fibre is H = F ∩ G:
indeed it is contained in both G and F and the converse inclusion is as well
trivial. By Theorem 3.4.17 κ(H) = 0.
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On the other hand, H is also a connected component of the general fibre of
the restriction of h to F . Then, by the Easy Addition Formula

κ(F ) = κ(H) + dimh(F ) = dimh|F (F ) ≤ dimZ = κ(X).

Notice that in order to apply the Easy Addition Formula we need to assume
that h(F ) is smooth, but up to a desingularization (which is a birational map)
we can make this assumption.
In the end consider the general case. Since Y has maximal Albanese dimension,
its Albanese map is a generically finite morphism. Up to consider the finite
part of the Stein Factorization of such map, we can assume that it is already
finite.
By Theorem 3.4.14 there exists an étale covering Ỹ of Y , an abelian subvariety
K of A(Y ), an étale covering K̃ of K and a general type variety Z such that

Ỹ = Z × K̃.

So, up to consider this étale covering (that does not change the Kodaira
dimension of any of the involved varieties), and for X a desingularization of
the fibre product that this étale covering would induce, we can assume that
Y = Z ×K for a general type variety Z and an abelian variety K.
It holds that

κ(Y ) = κ(Z ×K) = κ(Z) + κ(K) = κ(Z) = dimZ.

The first projection induces a morphism

X → Z.

Let E be a general fibre of such morphism, then there exists an induced
morphism

E → K.

The general fibre of this last morphism is F , indeed, for k ∈ K general, the
fibre in E is sent through f to a fixed general point, thus the fibre is F .
By the case κ(Y ) = 0, we have κ(E) ≥ κ(F ), thus

κ(X) = κ(E) + κ(Z) ≥ κ(F ) + κ(Z) = κ(F ) + κ(Y ).

And the first equality comes from Theorem 3.4.15.
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Conclusion

As of today, thanks to Mori, the main approach to the classification problem
relies on the Minimal Model Program.
The main ideas in MMP can be summarized as follows: fix X a projective
variety. Then we distinguish two cases.
If the Kodaira dimension of X is negative, then we want to find projective
varieties X ′, Y with X ′ birational to X, and a fibration

f : X ′ → Y

such that, if F is a general fibre of f , the anticanonical bundle of F is ample.
This means that F is a Fano variety.
Otherwise if the Kodaira dimension of X is non-negative, we look for a
projective variety X ′ that is birational to X and has nef canonical bundle. If
such X ′ exists, is said to be a minimal model for X.
In [20] Mori proved, under some additional hypotheses, the existence of
minimal models for 3-folds. In general, the existence of minimal models is
still a widely open problem. In particular, there are many conjectures that
are still open about these objects.
One of the most important is the Generalized Abundance Conjecture (for
a reference, see [7] Conjecture 2.3.59). Still in [7], it also proved that, the
Generalized Abundance Conjecture implies the Iitaka Conjecture (Theorem
1.2.3 of [7]).
Therefore, it is very natural, in order to solve Iitaka Conjecture, to study
the Generalized Abundance Conjecture and the Minimal Model Program.
Nowadays, in fact, this is one of the most successful approaches to Cn,m; a
good instance of this is Birkar’s paper [2].
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