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Abstract 

 

Building Reliable Frameworks for 3D Object Classification 

Based on Bayesian and Deep Learning Approaches  

Ahmed Yasser Eita 

 
 

In the past decade, 3D objects have gained remarkable importance in 

everyday applications, and the ability to recognize them has therefore became a 

vital task in numerous fields. Ever since the emergence of 3D object 

recognition, there have been certain drawbacks that each newly invented model 

is striving to overcome. Among those shortcomings are; the ability to capture all 

critical features of the object, lack of spatial attributes consideration, insufficient 

visual relationships between semantic features, the necessity for expensive 

resources, and slow manipulation consequently. Computer Vision researchers 

have accomplished an excellent performance with multiple models, however, 

there is still an area for improvement. In this thesis, we are proposing two 

different novel 3D multi-view object classification methodologies inspired by 

Natural Language Processing (NLP) well-known approaches. The reason for 

this motivation is due to the NLP models’ impressive capability in capturing the 

underlying characteristics in texts and the semantic feature relationships from 

sequential data types. The first model is a statistical approach, named F-GDA, 

which deploys Generalized Dirichlet (GD) distribution in all its priors to 

compose a fully flexible framework and the later one, named VAeViT, 

incorporates the reputed deep learning architectures; Variational Autoencoder 

(VAE) and Vision Transformer (ViT) to form a comprehensive structure. Each 

model has been innovatively invented to resolve some major limitations 

confronted by the model’s methodology. Both models were evaluated on 

benchmark datasets and have proven reliably effective in classifying 3D multi-

view objects and outperformed the state-of-the-art methodologies in the field. 
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Chapter 1 

 
Introduction 

 
1.1 Advancements in 3D Object Recognition 

In the ever-evolving landscape of computer vision, 3D object recognition 

stands as a pivotal frontier. The capacity to accurately identify and classify 3D 

objects is increasingly becoming integral to numerous fields, including robotics 

[1], autonomous navigation [2], medical imaging [3], bioinformatics [4], and 

scene monitoring [5]. This interdisciplinary effort combines progress in deep 

learning, neural networks, and sensor technology to understand complex spatial 

structures in the real world. It positions 3D object recognition as a vital link 

between digital and physical realms, poised to revolutionize industries, enhance 

human-machine interaction, and advance artificial intelligence. 

 

1.1.1 Challenges in 3D Object Recognition Models 

As 3D object recognition models continue to emerge, there are certain 

drawbacks that have always been obstructive from accomplishing a 

comprehensive model that would practically be sufficient when applied to real-

world applications. These shortcomings include: 

- The emergence of big data and large data collection require a highly efficient 

methodology that is capable of capturing the semantic structures in an 

unsupervised way, which would be otherwise impractical to annotate 

manually. 

- Many widely utilized architectures in spite of handling the data manipulation 

effectively, suffer from a limited memory that would potentially miss critical 

features in the data with increasing the data-sequence length such as 

Recurrent Neural Network (RNN) [6], and Long Short-Term Memory 

(LSTM) [7]. 
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- Independent analysis of points/views of the 3D object without spatial 

consideration yielding to only a local-precepting model that is incapable of 

recognizing the object from unseen angles rather than a comprehensive 

conceptive. 

- Lack of grasping the relationships between visual features in objects which 

cause the model to fail in constructing a robust classification performance 

when exposed to changes in viewpoints, context, and occlusion. 

- The necessity for expensive resources; huge amounts of data, high-quality 

inputs, and powerful processors that will certainly cause slow or/and costly 

outcomes which is definitely impractical in applications that require swift 

and high-quality results. 

There are several models that excelled in overcoming some of those limitations 

via various methodologies, however, they must have lacked performance in one 

or a few of them as mentioned in sections 3.2 and 2.2, which is why we have 

committed to crafting models that can address all these limitations. 

 

1.1.2 Diverse 3D Representation Types 

The domain of 3D object representation is multifaceted, encompassing diverse 

methodologies tailored to capture spatial intricacies from varying perspectives. 

These methodologies have given rise to three prominent representation types: 

multi-view, voxel-based, and point cloud. Multi-view approaches provide a 

comprehensive 3D representation by utilizing multiple 2D views from various 

angles. This interpretable technique leverages multiple vantage points to 

construct a holistic understanding of an object's spatial attributes. Models like 

MVT [8], View-GCN [9], CAR-Net [10], RotationNet [11], and MVCNN [12] 

excel in this category. Voxel-based representations, conversely, decompose 

objects into volumetric grids, affording fine-grained 3D information. While 

computationally intensive, they provide a detailed structural view. Notable 

models in this domain include VRN Ensemble [13], LP-3DCNN [14], and 

3DShapeNets [15]. Point cloud representations rely on spatially scattered points 

to encapsulate object surfaces, making them particularly apt for tasks like 

LIDAR-based perception. Pioneering models such as RS-CNN [16], LDGCNN 

[17], and PointNet++ [18] have made significant strides in this arena. Each 

approach has distinct strengths and limitations, with multi-view methods often 

excelling due to their interpretability and ability to capture object nuances from 

different angles while utilizing the least possible resource and generally 

outperforming all other paradigms. In light of all these factors, we chose to 

customize our novel models to be applied to the 3D multi-view representation. 
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1.1.3 Methodologies in 3D Object Classification 

 In the realm of 3D object classification, a diverse array of methodologies 

provides the scaffolding for these classification approaches. Each methodology 

brings its own unique strengths and perspectives, besides its common 

weaknesses. Convolutional Neural Network (CNN)-based models are the most 

obvious framework since it has gained remarkable success in image 

understanding in the past decade [19] and have been employed widely 

dominating the field of Computer Vision. Many 3D multi-view object 

recognition methodologies have therefore been motivated by that and attempted 

to deploy CNN in 3D object classification models [12][20][21] which achieved 

excellent performance with each approach seeking to address distinct challenges 

however, they suffer from some limitations as explained in section 3.2. 

On a different realm, NLP methods have excelled in the tasks of acquiring the 

underlying characteristics of texts and grasping the relationships in sequential 

data types which is why they were an inspiration for 3D object classification 

methodologies and especially the multi-view representation type. Topic 

modeling methods are particularly effective in capturing the semantic structure 

of large data collections in an unsupervised manner due to their probabilistic 

nature and ability to discern the underlying by identifying latent topics based on 

the co-occurrence patterns of words within the data. This capability makes topic 

modeling highly adaptable to various types of data, ranging from text documents 

to images and more. Furthermore, topic models excel at handling the high 

dimensionality of large datasets. They employ techniques like dimensionality 

reduction to represent complex data in a more manageable form. This not only 

aids in visualization and interpretation but also facilitates downstream tasks such 

as clustering, classification, and recommendation systems. Therefore, utilizing 

the combination of Topic Modeling and Bag of Visual Words (BoVWs) [22], 

which is a feature extraction and image classification technique that is an 

adaptation of the Bag of Words model from Natural Language Processing as 

well, has been proven to be one of the most effective approaches for efficiently 

recognizing and classifying large visual data collections in an unsupervised way, 

which would be otherwise impractical to annotate manually [23]. 

Another very important NLP framework that has revolutionized the field 

recently and was the cornerstone of modern NLP models like BERT, GPT-3, 

and T5 is Transformers [24]. Transformers consist of an encoder block that 

processes the input to create a set of rich and contextually informed 

representations, and a decoder that uses these representations along with its own 

autoregressive context to generate an output sequence. They employ self-

attention mechanisms to analyze contextual relationships within a text, enabling 

them to capture intricate linguistic nuances. Besides, the Positional Encoder 
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layer plays a vital role in the preprocessing stage by adding positional 

information to the input which allows the model to recognize the spatial location 

of each data token and generate a well-ordered output. A Computer Vision 

model that is inspired by Transformers was subsequently developed which is the 

Vision Transformers (ViT) [25] model and it is currently the state-of-the-art 

framework in the field. ViT is known for its exceptional ability to capture the 

most critical features in the image without losing any important information 

because of short-term memory as the case in earlier models like RNN [6] and 

LSTM [7] by deploying the self-attention mechanism as in the conventional 

Transformer model. Also, the ability of the positional encoder layer to add 

positional information of image patches to draw a complete perception about the 

image, all have contributed to why ViT became the dominant framework. 

In accordance with the above mentioned two NLP-inspired frameworks, 

we have developed two novel models for 3D multi-view object 

classification; F-GDA and VAeViT which are based on Bayesian and Deep 

Learning frameworks respectively. Each model was designed with careful 

consideration to overcome the major persisting obstructions faced by the 

methodology. Both models employ probability distribution in some phase as 

they provide a flexible framework for modeling complex relationships between 

features, able to model uncertainty which allows for more reliable and robust 

representations, can accommodate data of different scales, facilitates Bayesian 

inference as may be seen in section 2.4.2, and allow for the development of 

Bayesian neural networks in deep learning, which can provide better-calibrated 

uncertainty estimates as illustrated in section 3.3.1. 

 

1.2 Contributions 

Based on the constraints illustrated in section 1.1.1 and motivated by the 

NLP methodologies, we have contributed to this thesis with two novel 

models that are exclusively customized for the classification of 3D multi-

view object type. The detailed impacts of each are demonstrated as follows: 

• Bayesian Fully Generalized Dirichlet Allocation Model: 

We propose an efficient unsupervised probabilistic topic model, named 

F-GDA, which assumes a complete generative process by leveraging 

the Generalized Dirichlet (GD) distribution over all the priors, 

enabling a fully flexible model that generates more discriminative 

representations of objects while retaining an easy-to-understand and a 

simple-to-infer model by utilizing the Gibbs Sampling technique so 

that it can be applied to any large-scale application such as 3D object 

recognition. This model is focused more on the core generative process 
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to resolve the complications encountered by other relevant topic 

models such as the topic correlation modeling issue and overfitting. 

Although this model is purely NLP-based in nature, we have preceded 

it with the BoVWs technique in order to tailor it for the classification 

of 3D multi-view objects. For a fair comparison, we initially executed 

an ablation study on a well-known gray-scale natural scene images 

dataset, N15 [26][27], to examine the competitiveness of our model’s 

performance against other baseline models that have been evaluated on 

the same dataset. We then conducted extensive experiments on a 

benchmark 3D Multi-views dataset of real-world objects called ETH80 

[28] to assess the performance of F-GDA in terms of accuracy, 

tolerance to topic correlation, descriptiveness, and scalability. The 

results of both datasets demonstrate the superiority of our proposed F-

GDA model compared to the state-of-the-art Bayesian approaches. 

• Enhanced Vision Transformer Model with a Preceded Variational 
Autoencoder: 

We present an enhanced Vision Transformer (ViT) model preceded by 

a Variational Autoencoder (VAE) model, named VAeViT, that is 

customized for the classification of 3D multi-view objects. This 

architectural refinement draws upon the established reliability of 

VAEs within the field of feature representation and further leverages 

the leading position of ViT in capturing semantic features from 

sequential data types. The VAeViT sequential model is designed to 

learn different levels or representations separately; VAE represents 

each 2D view in a low dimension latent vector whereas ViT utilizes 

those vectors to learn the deep feature representations of all the views 

and combine them with the added positional embedding information to 

draw a global perception of the 3D object. The idea of augmenting 

those two architecture allows the complete model to conquer the 

conventional ViT model's major limitation of necessitating a huge 

dataset and expensive resources in order to perform well. We also 

notice that the nature architecture of both models are ideal for 

mitigating the major deficiencies encountered by the 3D object 

recognition methods as illustrated in sections 3.1.1 and 3.1.2. 

Extensive experiments were conducted on two benchmark 3D multi-

view datasets to prove the outperformance of VAeViT over the state-

of-the-art models and the effect of critical attributes on the model's 

performance. 
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1.3 Thesis Overview 

This thesis is structured as follows: 
 

• In chapter 1, we introduce the 3D object recognition realm and discuss 

recent applications of the field and their significance. In subsections, we 

show the limitations encountered by most methodologies, various 3D 

object representation types, most common 3D object classification 

frameworks, and present our contributions to this thesis. 

• In chapter 2, we describe the background of topic modeling, 

pioneering models in the field, the BoVWs preprocessing technique, 

inference methodologies, and propose our 3D-customized Bayesian 

approach. We also demonstrate a detailed inference of the derivation 

of our generative model and how this unique addition contributes to 

resolving the drawbacks of  the topic modeling methodology. We 

lastly, conduct an ablation study to compare our designed framework 

with baseline models and investigate its performance on an RGB 3D 

multi-view dataset. 

• In chapter 3, we focus on Deep Learning methodologies and develop 

our second novel architecture by adapting two pioneering structures of 

those, after we have explored the most dominant methodologies in the 

field and their main defects. A comprehensive explanation of the 

innovative model’s architecture, its components and the process flow 

are then demonstrated. Extensive assessments on two 3D multi-view 

object datasets are subsequently presented to show the effectiveness of 

our model and that it has outperformed the state-of-the-art methods. 

• In chapter 4, we briefly summarize our contributions, provide concluding 
remarks, and demonstrate some potential future work directions. 
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Chapter 2 

 
Bayesian Fully Generalized Dirichlet 
Allocation Model 

 
2.1 Background 

Topic modeling is a vital technique in NLP that serves as a powerful tool for 

uncovering latent thematic structures within large collections of textual data. By 

employing sophisticated algorithms, topic modeling extracts underlying patterns 

and identifies coherent topics that are prevalent across diverse documents. This 

capability aids in the organization and summarization of extensive datasets [29] 

and makes topic modeling highly adaptable to various data types, such as 

images, videos and more. This unsupervised learning approach has found 

extensive applications in diverse fields [30]; including data clustering [31], 

anomaly detection for videos [32], and image spam filtering [33]. 

One of the most common topic modeling approaches is Latent Dirichlet 

Allocation (LDA) [34], which derives its priors from the Dirichlet distribution 

and has shown promising results for different downstream tasks. However, LDA 

suffers from topic correlation issues due to the inflexibility of its priors, induced 

by the Dirichlet distribution. To overcome these limitations, several approaches 

that integrate more flexible priors have been introduced. Examples of those 

models include Pachinko Allocation Model (PAM) [35], Correlated topic model 

(CTM) [36], Generalized Dirichlet LDA (GD-LDA) [37], Latent Generalized 

Dirichlet Allocation (LGDA) [38], and Collapsed Variational Bayes Latent 

Generalized Dirichlet Allocation (CVB-LGDA) [39] in which only a few of 

them have been successful in identifying and capturing semantic relationships 

among topics. Nevertheless, many others either suffer from incomplete 

generative processes that adversely affect the efficiency of parameter inference 

or result in low performance due to the complexity of the model and the high 

number of learning parameters. 
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Topic models are probabilistic models that seek to uncover the latent topics 

that generate the observed documents. However, it is often intractable to directly 

calculate the exact distribution of these latent variables given the data due to the 

complexity of the models. Therefore, the utilization of an inference method 

when deriving topic models is crucial because they enable us to estimate the 

underlying structure of the data. Variational Inference [31], MCMC (Markov 

Chain Monte Carlo) [40], and HMM (hidden Markov model) [32] are the 

prominent inference techniques, each offering distinct advantages. Variational 

Inference approximates complex probability distributions with simpler, 

parameterized ones. While computationally efficient, it may sometimes lead to 

biased estimates. HMMs can struggle with capturing long-range dependencies, 

potentially leading to oversimplification or overfitting. On the other hand, Gibbs 

Sampling is an MCMC method that iteratively samples from conditional 

distributions. It provides unbiased estimates, but can be computationally 

expensive. In practice, Gibbs Sampling tends to be more robust and reliable, 

especially when dealing with complex, high-dimensional data. 

Since we are committed to tailor our novel model for 3D multi-view object 

representation type which basically consists of images captured from multiple 

angels, there has to be a preprocessing methodology that can refine those 2D 

views into the same input form that topic models would accept which is in a Bag 

of Words (BoWs) arrangement as per the case for textual data types. The Bag of 

Visual Words (BoVWs) is an adaptation of BoWs that revolutionized the way 

we analyze and understand visual data. It operates on the premise that an image 

can be represented by a histogram of visual words. This technique involves 

breaking down an image into smaller, discernible components, extracting their 

features, and quantizing them into a predefined visual vocabulary. BoVW has 

proven to be immensely useful in tasks like object recognition, image 

categorization, and scene understanding. By converting complex visual 

information into a structured, quantitative format, BoVW serves as a 

cornerstone in the development of robust and efficient computer vision systems. 

 

2.2 Related Work 

LDA [34] paved the way for precise new document predictions, and research 

in topic modeling has since been focused on developing variants and extensions 

of LDA to overcome its limitations. Models such as PAM [35], GD-LDA [37], 

VarInGDM [33], and CVB-LGDA [39] have been proposed to improve upon 

LDA, with the aim of capturing topic correlation and avoiding overfitting. 

Researchers have been trying to explore other distributions to tolerate the topic 

correlation issue ever since, such as the logistic normal distribution which CTM 

[36] and IFTM [41] models are derived from but the distribution was not 
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conjugate to the multinomial distribution. As a result, these two models and 

PAM [35] have proven to be complex to implement due to the incompatibility 

and proneness to overfitting, while models such as CVB-LDA [42], S-LDA 

[43], and all GD derived models have shown better performance in scenarios 

where topic size increases due to the additional integrated features, collapsed 

space of latent variables in the first, and the spatial information in the second to 

be precise. The generative process of CVB-LDA [42] and S-LDA [43] are 

mainly considering the Dirichlet distribution for the model priors. As a result, 

the models have a limited ability to take topic correlation into account. Another 

major gap in these approaches is the lack of robustness to ensure good 

performance for large-scale data, given the vocabulary size and the average 

word length per document. 

The introduction of the Generalized Dirichlet distribution has presented 

another approach for topic analysis to address the issue of topic correlation. GD-

derived models such as GD-LDA [37] and LGDA [38] are efficient in 

preventing overfitting when the number of topics is increasing, but suffer from 

an incomplete generative process. GD-LDA [37] has developed a Gibbs 

sampling inference scheme using GD as a prior to LDA, but has only done so 

for the topics parameter which is inefficient in the case of a large vocabulary 

size within the BoVW framework. On the other hand, CVB-LGDA [39] 

dominates a complete generative process that is derived from the GD 

distribution however it is computationally expensive due to the complexity of 

the model and the high number of parameters to be learned during the training. 

Gibbs sampling as compared to other learning algorithms for LDA such as 

variational EM and Expectation-Propagation has been demonstrated to be more 

efficient in [44]. This efficiency can be attributed to LDA's inherent property of 

conjugacy between the Dirichlet prior and the multinomial one. As a result, 

Gibbs sampling algorithms have been developed for many models that extend 

LDA, including [37][23][40]. Given its suitability for sampling from complex 

distributions, we chose Gibbs sampling as the inference method for our 

approach. 

In this chapter, we introduce F-GDA, a novel Bayesian Fully Generalized 

Dirichlet Allocation Model for 3D objects classification. Unlike existing 

models, F-GDA aims to capture topic correlation and avoids overfitting while 

assuming a complete probabilistic process that draws both the documents-topics 

and the topics-words distributions from a Generalized Dirichlet distribution to 

guarantee a completely priors-flexible model. As for the model parameters 

inference, we develop an efficient Markov Chain Monte Carlo (MCMC)-based 

sampling approach that approximates the model latent parameters. Our sampling 

method is proven to be less complex, more tolerant to local optima, and does not 
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suffer from large biases so that the model can be applied to any large-scale 3D 

objects data type such as the 3D-Multi-views objects. 

 

2.3 Generalized Dirichlet Distribution 

The Generalized Dirichlet (GD) distribution was developed as a response to 

the limitations of the Dirichlet distribution since it has a more general 

covariance structure making it more practical and useful in capturing data 

covariances [40]. Dirichlet distribution affects the resilience of the model when 

the probability of a sample is changed since all the entries of a random vector of 

proportions in this distribution must share a common variance and must sum up 

to one. In addition, it has a limited degree of freedom when used as a prior for 

Multinomial distribution. Hence, the ability to sample each entry of the 

proportions vector from independent Beta distributions is the key property of the 

GD distribution as it provides more flexibility from this perspective. The GD 

distribution of the topics parameter can be defined as: 

𝑝(𝜃|𝛼, 𝛽) =∏
𝛤(𝛼𝑗 + 𝛽𝑗)

𝛤(𝛼𝑗)𝛤(𝛽𝑗)
𝜃
𝑗

𝛼𝑗−1
𝐾−1

𝑗=1

(1 − 𝜃1 −⋯𝜃𝑗)
𝜂𝑗 

 

(2.1) 

where 𝜃1 + 𝜃2 +⋯+ 𝜃𝐾−1 + 𝜃𝐾 = 1, 𝜂𝑗 = 𝛽𝑗 − 𝛼𝑗+1 − 𝛽𝑗+1 for 

 1 ≤ 𝑗 ≤ 𝐾 − 2 and 𝜂𝐾−1 = 𝛽𝐾−1 − 1. 

Similar to the Dirichlet distribution, the Generalized Dirichlet distribution is a 

conjugate prior distribution to the Multinomial distribution as illustrated in 

detail in [45]. Thus, we can integrate the parameter of the Multinomial 

distribution to obtain: 

𝑝(𝑇|𝛼, 𝛽) = ∫𝑝(𝑇|𝜃)𝑝(𝜃), 𝑑𝜃 =∏
𝛤(𝛼𝑘 + 𝛽𝑘)

𝛤(𝛼𝑘)𝛤(𝛽𝑘)

𝐾−1

𝑘=1

∏
𝛤(𝛼𝑘

′ )𝛤(𝛽𝑘
′ )

𝛤(𝛼𝑘
′ + 𝛽𝑘

′ )

𝐾−1

𝑘=1

 

 

(2.2) 

where T is a discrete random variable derived from Multinomial distribution 

with parameter 𝜃1…𝜃𝐾 and 𝛼𝑘
′ = 𝛼𝑘 + 𝑇𝑘, 𝛽𝑘

′ = 𝛽𝑘 + 𝑇𝑘+1 +⋯+ 𝑇𝐾. Since 

this integral cannot be computed analytically in a closed form, we utilize Gibbs 

sampling in our approach to approximate the hidden parameters of the model as 

shown in section 2.4.2. Another key property of the GD distribution is that it 

facilitates data dimensionality reduction within its cascaded tree-based structure. 

For example, if 𝛽𝑘 is too small compared to 𝛼𝑘, we could dispose of the lower-

level topics in the structure making the model more robust and effective in 

reducing the dimensionality of topics. 
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2.4 Proposed Model 

In this section, we introduce first the generative process of our proposed 

model in detail, and then we present our Gibbs sampling-based method for 

learning the F-GDA model's hidden parameters. The mathematical notations 

used in our model are all summarized in the table below. 

Table 2. 1: Summary of Mathematical Notations. 

Notation Meaning 

𝐷 number of documents 

𝐾 number of topics 

𝑉 vocabulary size 

𝑗 index of a document in the collection 

𝑘 a specific topic 

𝑖 index of a word in the vocabulary 

𝑤 specific observed word 

𝑧 topics assignments 

𝑧𝑤,𝑗 topic assignment of word 𝑤 at the document index 𝑗 

𝑁𝑗 number of words in the document at index 𝑗 

𝑁𝑘,𝑖 frequency of the word at index 𝑖 that is assigned to topic 𝑘 

𝑁𝑗,𝑘 the frequency of topic 𝑘 in the document at index 𝑗 

𝑥−𝑤𝑗 a quantity without accounting the word 𝑤 in document 𝑗 

𝜃 mixture probabilities of 𝐾 topics 

𝜙 mixture probabilities of 𝑉 words 

𝛼, 𝛽 GD hyperparameters of the document-topics parameter 

𝜆, 𝜂 GD hyperparameters of the topic-words parameter 

𝐺𝑒𝑛𝐷𝑖𝑟(𝑥) Generalized Dirichlet distribution 

𝑀𝑢𝑙𝑡(𝑥) Multinominal distribution 

 

2.4.1 Generative Process 

The generative process of the F-GDA topic model is grounded on fully 

probabilistic foundations. Instead of drawing the prior of the document-topic 

proportions and topic-word vectors from a Dirichlet distribution, we draw these 

priors from a Generalized Dirichlet distribution to better handle the issue of 

correlation between topics and allow for more flexible information sharing 

between the model components.  
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Figure 2.1: F-GDA Graphical Model Representation. 

 

The graphical model representation of F-GDA is illustrated in Figure 2.1, and 

its complete generative model is outlined in Algorithm 1. From the generative 

process of F-GDA, we can see that it allows for sampling from a richer family 

of distributions, namely, the GD distribution, which can help generate more 

discriminative representations of objects, and capture the semantic structure of 

large data collections.  

 

Algorithm 1 F-GDA Generative Model 

for topic 𝑘 ⃪ 1 to 𝐾 do 

      draw 𝜙𝑘 ~ 𝐺𝑒𝑛𝐷𝑖𝑟(𝜆, 𝜂) 
end for 

for document 𝑗 ⃪ 1 to 𝐷 do 

      draw 𝜃𝑗  ~ 𝐺𝑒𝑛𝐷𝑖𝑟(𝛼, 𝛽) 

      for word 𝑤 ⃪ 1 to 𝑁𝑗 do 

            draw 𝑧𝑤,𝑗 ~ 𝑀𝑢𝑙𝑡(𝜃𝑗) 

            draw 𝑤|𝑧𝑤,𝑗 ~ 𝑀𝑢𝑙𝑡(𝜙𝑧𝑤,𝑗) 

      end for 

end for 
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2.4.2 Model Fitting 

From the graphical model in Figure 2.1, we can see the F-GDA model has 

three unobserved parameters 𝜃, 𝜙, 𝑧 and four priors hyperparameters 𝜆, 𝜂, 𝛼, 𝛽. 

Our objective is to approximate the values of the model's hidden parameters, 

mainly the topic's assignments vector given the observed ones. To do so, we 

develop an efficient Gibbs sampling method to approximate the hidden topic 

assignment 𝑧𝑤,𝑗. In this work, we have assumed the hyperparameter vectors to 

be of fixed values in order to avoid overfitting from learning too many 

parameters and for the sake of simplifying the model and reducing the 

computation cost. Formally, the joint probability associated with the F-GDA 

probabilistic model is defined as: 

𝑝(𝑤, 𝑧|𝛼, 𝛽, 𝜆, 𝜂) = 𝑝(𝑤|𝑧, 𝜆, 𝜂)𝑝(𝑧|𝛼, 𝛽) 

 

(2.3) 

The joint probability consists of two probabilities where the first one describes 

the distribution of words while the second one is for topics distribution. Starting 

first with the document-topics parameter 𝜃, we split the probability into two 

separate probabilities for simplification in which, we derive the first one from a 

Multinomial distribution and the other one from a GD distribution: 

𝑝(𝑧|𝛼, 𝛽) = ∫𝑝(𝑧|𝜃)𝑝(𝜃|𝛼, 𝛽) 𝑑𝜃
 

𝜃

 

 

(2.4) 

𝑝(𝑧|𝛼, 𝛽) =∏𝑝(𝑇|𝜃)𝑝(𝜃|𝛼, 𝛽)

𝐷

𝑑=1

 

 

(2.5) 

By substituting equation (2.2) and the GD distribution (2.1), we obtain: 

𝑝(𝑧|𝛼, 𝛽) =∏ 

𝐷

𝑗=1

∏
𝛤(𝛼𝑘 + 𝛽𝑘)

𝛤(𝛼𝑘)𝛤(𝛽𝑘)

𝐾−1

𝑘=1

 ∏
𝛤(𝛼𝑘

𝑗
)𝛤(𝛽𝑘

𝑗
)

𝛤(𝛼𝑘
𝑗
+ 𝛽𝑘

𝑗
)

𝐾−1

𝑘=1

 

 

(2.6) 

Similarly for the topic-words parameter 𝜙: 

𝑝(𝑤|𝑧, 𝜆, 𝜂) = ∫𝑝(𝑤|𝑧, 𝜙)𝑝(𝜙|𝜆, 𝜂) 𝑑𝜙
 

𝜙

 
 

(2.7) 

𝑝(𝑤|𝑧, 𝜆, 𝜂) =∏𝑝(𝑇|𝜙)𝑝(𝜙|𝜆, 𝜂)

𝐾

𝑘=1

 

 

(2.8) 
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Then to substitute the GD distribution (2.1) and the expression in (2.2) while 

applying them on the words parameter ϕ instead, along with its hyperparameters 

λ and η, we get: 

𝑝(𝑤|𝑧, 𝜆, 𝜂) =∏ 

𝐾

𝑘=1

∏
𝛤(𝜆𝑖 + 𝜂𝑖)

𝛤(𝜆𝑖)𝛤(𝜂𝑖)

𝑉−1

𝑖=1

 ∏
𝛤(𝜆𝑖

𝑘)𝛤(𝜂𝑖
𝑘)

𝛤(𝜆𝑖
𝑘 + 𝜂𝑖

𝑘)

𝑉−1

𝑖=1

 

 

(2.9) 

Now, we define Gibbs sampling in order to infer latent topic assignments 𝑧: 

𝑝(𝑧𝑤𝑗 = 𝑘|𝑧
−𝑤𝑗, 𝛼, 𝛽, 𝜆, 𝜂) =

𝑝(𝑤|𝑧, 𝜆, 𝜂)𝑝(𝑧|𝛼, 𝛽)

𝑝(𝑤|𝑧−𝑤𝑗, 𝜆, 𝜂)𝑝(𝑧−𝑤𝑗|𝛼, 𝛽)
 

 

(2.10) 

where 𝑧𝑤𝑗 represents the topic assignment for the word 𝑤 at document index 𝑗 

while 𝑧−𝑤𝑗 represents the topic assignments for all the other words except the 

current word 𝑤 at index 𝑗. By integrating out the parameters, the Gibbs 

sampling equations for words and topics are obtained as: 

𝑝(𝑤|𝑧, 𝜆, 𝜂)

𝑝(𝑤|𝑧−𝑤𝑗, 𝜆, 𝜂)

=

{
 
 
 
 

 
 
 
 

𝜆𝑖 + 𝑁
𝑘,𝑖
−𝑤𝑗

𝜆𝑖 + 𝜂𝑖 + ∑ 𝑁𝑘,𝑥
−𝑤𝑗𝑉

𝑥=1

,                                                𝑖 = 1

𝜆𝑖 + 𝑁
𝑘,𝑖
−𝑤𝑗

𝜆𝑖 + 𝜂𝑖 + ∑ 𝑁
𝑘,𝑥

−𝑤𝑗𝑉
𝑥=𝑖

∏
𝜂𝑦 + ∑ 𝑁𝑘,𝑥

−𝑤𝑗𝑉
𝑥=𝑦+1

𝜆𝑦 + 𝜂𝑦 + ∑ 𝑁
𝑘,𝑥

−𝑤𝑗𝑉
𝑥=𝑦

,   1 < 𝑖 < 𝑉

𝑖−1

𝑦=1

∏
𝜂𝑦 + ∑ 𝑁𝑘,𝑥

−𝑤𝑗𝑉
𝑥=𝑦+1

𝜆𝑦 + 𝜂𝑦 + ∑ 𝑁
𝑘,𝑥

−𝑤𝑗𝑉
𝑥=𝑦

,                                      𝑖 = 𝑉

𝑉−1

𝑦=1

 

 

 

 

 

 

 
 

 

 

 

 

(2.11) 

𝑝(𝑧|𝛼, 𝛽)

𝑝(𝑧−𝑤𝑗|𝛼, 𝛽)

=

{
 
 
 
 

 
 
 
 

𝛼𝑘 + 𝑁𝑗,𝑘
−𝑤𝑗

𝛼𝑘 + 𝛽𝑘 + ∑ 𝑁
𝑘,𝑙

−𝑤𝑗𝐾
𝑙=1

,                                                       𝑘 = 1

𝛼𝑘 + 𝑁𝑗,𝑘
−𝑤𝑗

𝛼𝑘 + 𝛽𝑘 + ∑ 𝑁
𝑗,𝑙

−𝑤𝑗𝐾
𝑙=𝑘

∏
𝛽𝑚 + ∑ 𝑁𝑗,𝑙

−𝑤𝑗𝐾
𝑙=𝑚+1

𝛼𝑚 + 𝛽𝑚 + ∑ 𝑁
𝑗,𝑙

−𝑤𝑗𝐾
𝑙=𝑚

,   1 < 𝑘 < 𝐾

𝑘−1

𝑚=1

∏
𝛽𝑚 + ∑ 𝑁𝑗,𝑙

−𝑤𝑗𝐾
𝑙=𝑚+1

𝛼𝑚 + 𝛽𝑚 + ∑ 𝑁
𝑗,𝑙

−𝑤𝑗𝐾
𝑙=𝑚

,                                         𝑖 < 𝑉

𝐾−1

𝑚=1

 

 

 

 

 

 

 

(2.12) 
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Equations (2.11) and (2.12) are used to estimate the topic-words and 

document-topics parameters respectively and by replacing them in equation 

(2.10), we obtain the inference of the topic assignment of a word. It is worth 

noting that with the use of the product in equations (2.11) and (2.12), new 

samples assigned to a topic 𝑘 will affect all the other topics, and the impact of 

this assignment is dependent on both hyperparameters of the GD prior, in 

contrast to LDA which has no effect on the sampling distribution of other topics 

and that is also dependent on only one hyperparameter. 

 

2.5 Experimental Results 

In this section, we empirically evaluate the effectiveness of our F-GDA model 

on two datasets to determine the ability of our model to better recognize 3D 

objects and classify images. 

 

2.5.1 Datasets 

• N15 [26][27]: is a gray-scale natural scenes images dataset, which 

consists of 15 categories. This images dataset is only utilized as an 

ablation study (section 2.5.4) to compare our model with the baseline 

approaches. For a fair comparison, we followed the same settings in [39] 

during the evaluation of this dataset, by randomly choosing 9 categories 

which are office, mountain, forest, store, street, suburb, coast, highway, 

and living room. 

• ETH80 [28]: is a real-world 3D multi-views objects dataset comprising 

80 objects, divided into 8 classes, with each class containing 10 objects. 

Additionally, there are 41 uniformly spaced views of each object over 

the upper viewing hemisphere. For the evaluation of this dataset, the 

whole dataset is considered with 80% for training and 20% for testing. 

 

2.5.2 Feature Representation 

Setting up the dataset in the correct format for training carries huge 

importance within the process flow as it can directly affect the results if they are 

misrepresented. Also, an efficient and robust model requires well-represented 

data in the feature space where key features in the object or image are assured to 

be the core of the representation and in a compact way as well. Our F-GDA 

model can be applied to any large-scale dataset such as 3D objects, images, as 

well as textual data. However, the following steps describe the setup phase for 

visual data types, represented in the form of BoVWs. 
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1. Features Extraction 

Feature extraction is the first step in our framework that aims to find the most 

unique features in objects/images such as corners or blobs. Choosing an 

appropriate feature detection technique is a critical step to maximize the 

discriminative property in each image or object. According to the dataset types, 

there is a wide range of descriptors to choose from such as SIFT (Scale 

Invariant Feature Transform) [46], KAZE [47], and ORB (Oriented FAST and 

Rotated BRIEF) [48]. SIFT is the most commonly used technique by researchers 

due to its ability to be invariant to affine transformations and occlusions which 

is why it was chosen by most works and too for ours to elaborate on the exact 

effect of our proposed model as compared with other baselines, but not to 

neglect the high performance of the other methods. With the SIFT descriptor, 

each local feature is represented by a 128-dimensional descriptor which is a 

vector of numerical values that describes the feature's surroundings. 

 

2. Codeword Standardization 

At this stage, each image or object is represented as a collection of features. In 

order to enable the representation and recognition of each object in a distinct 

manner, standardization of all the unique features for the whole dataset is 

essential which is done by using the K-means clustering algorithm to group 

similar patches together where the center, depicts the standard mean feature of 

this cluster. The number of clusters chosen will correspond to the number of 

standardized centers that will later be defined as what we call the number of 

words/clusters or dataset vocabulary size. 

 

3. Dictionary Formation 

The features dictionary is formed by quantizing each vector of features of an 

object in the dataset against the standardized codeword. By doing so, each 

object will only be expressed by the same set of known features (with different 

frequencies) so that they can be understood by the model. Lastly, we append all 

those obtained quantized objects together to finally form the dictionary. 

 

 

 

 



17 

2.5.3 Experiments Setup 

For both datasets, it is important to note that the whole data is preprocessed 

and fed to F-GDA whereas the training-testing split only comes after 

representing the objects as mixtures of topics before evaluating the model using 

the SVM classifier. The reason for not splitting the data from the beginning is 

that there is a significant amount of randomness involved in the preprocessing 

and the topic modeling stages. If the same randomness is not used for individual 

splits, the results will be erroneous, which could mislead the learning model. 

 

2.5.4 Ablation Study 

In this section, we evaluate F-GDA on the N15 dataset and compare its 

performance with other baseline models as an ablation study before assessing it 

on the 3D object dataset since not many previous topic models have adapted 3D 

object classification. We selected the N15 dataset because grayscale datasets 

tend to reduce computational complexity and improve processing speed, in 

addition to having been evaluated by most of the baseline models we are 

comparing our model to. Similar to [39], we assume the number of words and 

topics to be 900 and 90, respectively. We report in Table 2.2 the performance 

comparison of our proposed model versus state-of-the-art models in terms of 

classification accuracy. 

 
Table 2.2: F-GDA accuracy comparison with baseline model on N15. 

Model LDA 

[34] 

CVB-LDA 

[42] 

LGDA 

[38] 

GD-LDA 

[37] 

CVB-LGDA 

[39] 

F-GDA 

Accuracy % 54.1 60 65.69 68.69 72.78 72.50 

 

It can be seen that F-GDA achieves promising and competitive results 

compared to the baselines with a high accuracy of 72.50%. Although this is 

slightly lower than the accuracy CVB-LGDA [39], F-GDA outperforms in the 

overall performance as it is simpler to integrate, has fewer learning parameters, 

and requires less computational power.  

We also assess the performance of the classifier using the ROC curve for each 

category against the rest and illustrate the results in Figure 2.2 along with the 

confusion matrix in Figure 2.3 which measures the dependency between each 

two categories in this classification problem. 
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Figure 2.2: ROC curves of the F-GDA model on N15. 

 

 

Figure 2.3: Confusion matrix of the F-GDA model on N15. 
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2.5.5 Results and Discussion 

As for the 3D multi-view objects dataset, ETH80, we conducted extensive 

experiments to compare our F-GDA model's performance majorly with LDA to 

truly showcase the potential of the GD distribution over the Dirichlet 

distribution. In addition, we performed parameter searches to obtain the optimal 

model settings and compared it with state-of-the-art models that were evaluated 

on the same dataset. Figure 2.4 shows the topic search for both LDA and          

F-GDA. During the parameters search, we observed that F-GDA outperformed 

other models when the topic number is higher than 60, with the highest accuracy 

achieved with 90 topics. Figure 2.5 shows the performance of LDA and F-GDA 

in terms of various metrics using the optimal number of topics from Figure 2.4. 

 

 
Figure 2.4: Topics search analysis of LDA and F-GDA on ETH80. 

 

 
Figure 2.5: Performance comparison between LDA and F-GDA using different  

metrics on ETH80. 
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Since F-GDA has shown promising results, further parameter searches were 

carried out. Figure 2.6 shows a cluster search experiment to identify the highest-

performance cluster number. The figure shows that the best number of clusters 

that captures the key features when using F-GDA on the ETH80 dataset is 2,500 

clusters as visual words start to be redundant after that, resulting in lower 

accuracy. We conducted another search for topics to find the most optimal 

combination of parameters for the model. We report in Table 2.3 the best 

combination of these settings for F-LDA evaluated with different metrics. In 

addition, the ROC curve for each class versus the rest and the confusion matrix 

of the most optimum model are illustrated in Figure 2.7 and Figure 2.8, 

respectively, to show the interdependence between each two classes. 

 

 

Figure 2.6: Clusters search analysis of the F-GDA model on ETH80. 

 

Table 2.3: F-GDA performance with optimal settings on ETH80. 

Optimal setting 2500 clusters – 100 topics – 160 iterations 

Metric Accuracy Recall Precision F1 AUC 

Performance % 79.42 79.42 79.34 79.09 96.82 
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Figure 2.7: ROC curves of the F-GDA model on ETH80. 

 

 

Figure 2.8: Confusion matrix of F-GDA on ETH80. 
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Finally, Figure 2.9 provides the precision versus recall curve for the most 

optimal F-GDA model and is fitted against LDA, S-LDA and other baseline 

models in [43] that were evaluated on ETH80. This further confirms that our 

model has surpassed all of them in terms of precision-recall performance. 

 

 

Figure 2.9: Precision-Recall performance of F-GDA and all the baseline models on 

ETH80. 
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Chapter 3 

 
Enhanced Vision Transformer Model 
with a Preceded Variational 
Autoencoder 

 
3.1 Background 

In this section, we present a background study on major components of 

our model; Variational Autoencoder (VAE) and Vision Transformer (ViT) 

in which we present their architectural flow and major components since we 

will be utilizing them in our novel architecture. 

 

3.1.1 Variational Autoencoder 

 

Figure 3.1: Variational Autoencoder architecture. 

 

The Variational Autoencoder (VAE) [49][50] plays a pivotal role in 

feature extraction within the realm of deep learning. VAE structure consists 

of two major components; an encoder, denoted as 𝑞𝜙(𝑧|𝑥), and a decoder, 

denoted as 𝑝𝜃(𝑥|𝑧). The encoder approximates the function that maps the 
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input image 𝑋 from its original form into a lower meaningful dimension 

after it has been structured. The decoder then attempts to recreate the 

original input using the output from the encoder, generating output image 𝑋′. 
Instead of mapping the output of the encoder to a fixed latent vector as the 

case in Autoencoders, we map it to a probability distribution. The encoder 

outputs two parameters which are typically the mean 𝑍𝜇, and standard 

deviation 𝑍𝜎 for each dimension of the latent space. Subsequently, these 

parameters are utilized to define a probability distribution (often Gaussian) 

from which we can sample to obtain the latent vector 𝑍 in the bottleneck 

layer. This allows the model to capture more nuanced information about the 

image and represent it in a more expressive and powerful manner as the 

ensures that neighboring data points are likely to have similar latent 

representations in the continuous latent space. 

Since the gradient cannot be pushed through a sampling node during the 

backpropagation process of the training, a technique called 

reparameterization trick is applied. In the reparameterization trick, the 

sampling equation being employed is as below: 

𝑍 = 𝜇 + (𝜎 ⊙ 𝜀) (3.1) 

where 𝜀 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1). From the above equations, it can be noticed that 𝜀 

is the only stochastic node and it is fixed, therefore, the training can be run 

through 𝜇 and 𝜎 normally. 

During the training, the VAE model aims to minimize two losses; 

reconstruction loss in equation (3.2) which intends to minimize the 

reconstruction error between the original image and the generated image, 

and KL-divergence loss in equation (3.3) which forces the distribution to be 

as close as possible to the standard normal distribution that is centered 

around 0. Doing so will provide continuous data or a range of data in the 

latent space so that we are able to access the targeted distribution correctly 

and construct meaningful output. The overall loss function of the VAE 

model is therefore the summation of both losses (equation (3.4)). 

𝐿(𝑋, 𝑋′) = −𝐸𝑧 ~ 𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑃𝜃(𝑥|𝑧)] 
 

(3.2) 

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧|𝑥)) = −
1

2
∑(1+ 𝑙𝑜𝑔(𝜎2) − 𝜇2 − 𝜎2) 

 

(3.3) 
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        𝐿𝑉𝐴𝐸(𝜃, 𝜙; 𝑥) = 

1

2
∑(𝜇2 + 𝜎2 − 𝑙𝑜𝑔(𝜎2) − 1) − 𝐸𝑧 ~ 𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑃𝜃(𝑥|𝑧)] 

 
(3.4) 

By learning a probabilistic mapping from the data space to the latent 

space, VAE effectively capture the underlying structure of the input images 

and thus is able to represent them in a lower dimension while preserving the 

essential characteristics. This capability makes VAEs invaluable for tasks 

such as feature extraction and data compression [51], anomaly detection 

[52], and generation [53], where they excel at disentangling and representing 

complex features. Through probabilistic modeling and encoding, VAE 

contribute significantly to unsupervised learning and feature extraction, 

which is why it is a perfect fit in our model to precede ViT in order to 

embed the object views in a lower meaningful dimension. 

 

3.1.2 Vision Transformer 

 

Figure 3.2: Vision Transformer architecture. 
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Vision Transformers (ViT) [25] have emerged as a pioneering paradigm in 

computer vision, representing a departure from traditional Convolutional 

Neural Networks (CNNs). ViT replaces the grid-based operations of CNNs 

with self-attention mechanisms presented in [24], enabling a more flexible 

and holistic understanding of visual data. This architectural refinement 

draws upon the established reliability of Transformers within the field of 

natural language processing or sequential data types to be specific. However, 

the major difference in architecture between Transformers and Vision 

Transformers is that the ViT does not have a decoder since we are not 

interested in generating data but, the primary goal is to extract meaningful 

features and to understand the spatial relationships in the image so the 

encoder only in the ViT performs this task. 

ViT models have demonstrated exceptional capabilities across various 

computer vision tasks, including image classification [25], object detection 

[54], and semantic segmentation [55]. Their hierarchical self-attention 

mechanism allows for capturing long-range dependencies and global 

context, making them particularly well-suited for tasks requiring holistic 

scene understanding. The encoder views the encoded input representation as 

a set of key 𝐾, value 𝑉, and query 𝑄 vectors of the same size as the input, 

and then, the Transformer adopts the scaled dot-product attention to generate 

an output that is the weighted sum of the value vectors, where the weight 

assigned to each value slot is determined by the dot-product of the query and 

its corresponding key: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

 

(3.5) 

where 𝑑𝑘 is the dimension of key vectors. Self-attention mechanism is 

deployed in the multi-head attention layer which consists of ℎ number of 

cascaded heads where each of them works independently and then they all 

get concatenated to construct an output that is able to attend to information 

from different representation subspaces at various positions. 

A pivotal component of ViT's success is the integration of positional 

encoding, where each patch of an image is supported by positional 

information enabling the model to understand not just the content of the 

image but also its spatial arrangement.  

Layer Normalization, usually referred to as the Norm block, is a type of 

normalization that is fatal to the model to improve the training and 

generalization of the model, which is unlike the batch normalization, it 

applies the normalization to each feature in the layer independently. This 
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means that for each feature 𝑥 in the input embedded vector 𝑋 = [𝑥1, … , 𝑥𝐷] 
where 𝐷 is the vector size, the mean 𝜇 and standard deviation 𝜎 are 

computed as follow and used to normalize the feature values. 

𝜇 =
1

𝐷
∑𝑥𝑖

𝐷

𝑖=1

 

 

(3.6) 

𝜎 = √
1

𝐷
∑(𝑥𝑖 − 𝜇)2
𝐷

𝑖=1

 

 

 

(3.7) 

After the mean 𝜇 and standard deviation 𝜎 are computed, a linear 

operation is conducted on each element of 𝑥 as below: 

𝑥𝑖
′ = 𝛼

𝑥𝑖 − 𝜇

𝜎
+ 𝛽 

 

(3.8) 

where 𝛼 and 𝛽 are learnable parameters for affine transform. 

Apart from the number of attention heads in the multi-head attention layer, 

the Transformer encoder itself is also constructed by an 𝑙 number of stacked 

layers then they all get concatenated to further enhance the capability of the 

model in capturing the useful features. Figure 3.2 displays the architecture of 

the Vision Transformer where 𝑁 is the number of patches per image, 𝐻 × is 

the number of cascaded self-attention heads, and 𝐿 × is the number of 

stacked Transformer layers. By pre-training on huge-scale datasets, ViT has 

achieved comparable accuracy compared with its CNN counterparts. 

The innovative structure of ViT was an inspiration within the computer 

vision community to enhance existing models to overcome certain 

limitations. For instance, these works [56]–[58] incorporated the 

Transformer encoder within the VAE architecture for anomaly detection and 

accompaniment generation in music due to the ViT capabilities of capturing 

sequential information while acquiring the most important features of the 

data. These hybrid models are, however, computationally expensive, require 

a huge amount of data to be trained, and are very hard to fine-tune because 

of the complexity of the model. 

In this work, we are proposing VAeViT, a hybrid Transformer-VAE 

model for 3D multi-view object classification, to overcome the limitations of 

ViT such as the necessity for huge datasets that require expensive resources, 

and the inadequate feature representation by the embedding layer. 
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3.2 Related Work 

Many successful CNN-based 3D multi-view object classification methods 

have been introduced in the past several years. MVCNN [12] and MVCNN-

MultiRes [59] utilize max-pooling with the conventional 2D CNN, retaining 

the maximal activations from only a specific view while discarding non-

maximal elements which potentially leads to loss of vital visual information. 

Alternatives like sum-pooling have been explored but have not proven more 

effective. Subsequent works, such as RCPCNN [21] and GVCNN [20] 

presented innovative strategies for view feature aggregation, organizing 

views into sets, and conducting pooling within each set. Additionally, 

Seqviews2seqlabels [60] and 3D2SeqViews [61] introduced RNNs to model 

view order. However, they are still sensitive to viewpoint variations. While 

MHBN [62] and MVLADN [63] recognized limitations in view-based 

pooling, shifting towards set-to-set matching with patch-level pooling. 

Nevertheless, both view-based and patch-based pooling primarily fuse visual 

features from different views in the final pooling layer, lacking interactions 

between visual features from different views in preceding layers. Notably, 

View-GCN [9] employed Graph Convolution Networks (GCNs) to capture 

view-based relations and has achieved great results. Yet, constructing an 

effective graph that represents view-based relations can be challenging since 

determining which views should be connected in the graph and how to 

weigh them requires careful consideration and domain knowledge. 

On the other hand, RotationNet [11] considers the discrete variance of 

rotation by taking multi-view images of a 3D object as input and jointly 

estimates its pose, and the object category. Nonetheless, RotationNet has the 

limitation that each image should be observed from one of the pre-defined 

viewpoints. In contrast, Relation Network [64] enhanced each patch feature 

by considering patches from all views, yielding superior performance 

compared to prior view-based and patch-based pooling methods but it may 

struggle to generalize well to new objects or unseen scenes and may be 

sensitive to variations in the viewpoint, or object appearance. Another very 

promising new method is CAR-Net [10] which explicitly identifies 

prospective intra-view and cross-view correspondences through kNN search 

within the semantic space. The model then integrates shape features from 

these correspondences through acquired transformations. However, selecting 

the appropriate k-value in the kNN search is critical, as an improper choice 

can introduce noisy or irrelevant correspondences, impacting the 

performance. Although the kNN search scores excellent outcomes towards 

the intended use, it can be computationally intensive within the semantic 

space, especially with a large number of views or complex scenes. 
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 MVT [8], the current state-of-the-art, adapts the ViT model for 3D multi-

view object representation. It divides each 2D view into multiple patches, 

performs a low-level computation via the local Transformer layers, and then 

merges the patches' features from all views in a set and feeds that into a 

stack of Transformer layers to create a global representation of the object. 

While MVT has achieved competitive results, there is still room for 

improvement, especially regarding its dependence on pre-training on large 

datasets. In this chapter, we introduce VAeViT, an enhanced ViT model that 

incorporates a preceding VAE. Our model leverages VAE's expertise in 

feature representation, along with ViT's ability to capture deep features and 

positional information from multi-views, to comprehensively represent 3D 

objects. 

 

3.3 Model Architecture 

 

Figure 3.3: VAeViT architecture. 
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In this section, we introduce the flow and major components of the 

VAeViT structure illustrated in Figure 3.3. As may be seen, the architecture 

of VAeViT incorporates the structure of VAE, extracts the learning 

component of interest as an output, and adapts it to fit in the ViT's input via 

some tweaks in the interconnection layer. The model takes input 𝑋 ∈ 𝑅𝑉×𝑁  

where 𝑋 denotes a 2D view from a specific view, 𝑉 is the number of views 

per object, and 𝑁 is the number of objects in the dataset and passes it to the 

VAE to be condensed into a low-dimension feature representation so that 

this output gets aggregated with the spatial information in the positional 

embedding interconnection layer and then gets advanced to the last layer 

which is ViT where further processing on the data will occur before each 

object gets classified by the last layers of ViT. The next three subsections 

will illustrate in detail the methodology of each of those components and its 

role in constructing a comprehensive 3D object recognition model. 

 

3.3.1 Views Latent Feature Embedding 

The first component of the VAeViT model that the input is fed to is a 

latent feature embedding module which is mainly based on a VAE model. 

The probabilistic encoder 𝑞𝜙(𝑧|𝑥) accepts the input views and processes 

them through all its blocks and outputs two variables which are the mean 𝑍𝜇 

and the standard deviation 𝑍𝜎. The reparameterization trick illustrated in 

equation (3.1) is then deployed to sample the latent vector 𝑍. Subsequently, 

the probabilistic decoder 𝑝𝜃(𝑥|𝑧) takes the sampled vector 𝑍, processes it 

through its blocks, and tries to reconstruct the original object view. With 

each iteration, the model learns new weights, enabling it to generate an 

output 𝑋′, that closely approximates the original input to the best of the 

model's ability. The model keeps on backpropagating aiming to minimize 

the 2 losses in equation (3.4) until optimum results are reached. 

Since the VAE model is utilized in this framework to represent the 2D 

object views in a lower dimension, we are only interested in the sampled 

vector of each view 𝑋 from the last epoch. This obtained output represents 

the embeddings 𝑍 ∈ 𝑅𝑉×𝑁 that will be combined together with the positional 

embeddings in the next phase to represent a global perception of the 3D 

object before it is fed to the ViT model. 

 

3.3.2 Views Positional Embedding 

Positional embeddings as illustrated in Figure 3.2 are basically the spatial 

information added to the embedded 2D object views to give insights about 
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the order of the views. We use learnable embeddings instead of fixed 

embeddings as in [24], where we have a number of embeddings as the 

number of views per object (12 or 20 in our case) in which each number 

represents the location of a 2D view. These positional embeddings are 

mapped into an embedding table where each discrete number representing 

the view order is transformed into a vector of the same size as the latent 

vectors 𝑍. Each view embedding and its corresponding position embedding 

are summed up together to form the complete input 𝐺 ∈ 𝑅𝑉×𝑁 which carries 

both spatial and semantic features. Positional embeddings play a crucial role 

by offering contextual information about the input segment being processed. 

This aids the model in determining not only the object's class but also its 

pose from any angle. 

 

3.3.3 3D Objects Global Feature Learning 

Finally, in order to effectively capture global context information and 

account for long-range dependencies within complex 3D object views, we 

integrate Vision Transformers (ViTs) into our approach. Specifically, the 

Vision Transformer takes the input 𝐺, partitions all the views for each object 

together, and feeds the Transformer encoder with an input of the format 

[[𝐺] × 𝑉] × 𝑁. 

The first block of the Transformer encoder is the layer normalization 

which is a widely used component in Transformer-based architecture for 

training stability and reducing the training time necessary. The output 

vectors are fed to the multi-head attention layer to capture the deep semantic 

representations. The output of the multi-head attention layer is added to the 

original input [[𝐺] × 𝑉] via a residual connection that helps the network in 

training by allowing gradients to flow through the networks directly. The 

output of that goes to another normalization layer for further optimization. 

The normalized residual output gets fed into a Multi-layer perceptron (MLP) 

layer that takes input tokens separately and applies a linear transformation to 

them where embeddings get multiplied by a learned weight matrix and get 

added to the learned bias vector. A non-linear activation function (GELU in 

our case) is employed subsequently to allow more complex pattern learning. 

Adding a dropout layer was proved to improve the performance by as much 

as 4\% on recognition by propagating representations across layers. Another 

residual connection is employed and the constructed output of class scores is 

utilized for classification through a SoftMax function which converts those 

raw scores into probabilities, indicating the likelihood of each input 

belonging to which class. 
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3.4 Experimental Results 

In this section, we conduct extensive ablation experiments to learn about 

the effect of the model's attributes on the overall performance and 

investigate the effectiveness of the VAeViT model as compared with other 

state-of-the-art models in recognizing and classifying 3D objects. 

 

3.4.1 Datasets 

To assess our model's efficacy, we conducted a series of experiments 

using VAeViT on two 3D multi-view benchmark datasets, each with two 

variants based on the object count and the number of captured views. We 

also examined smaller subsets to evaluate the model's performance on 

smaller datasets. 

• ModelNet40 [15] is a 3D CAD models dataset that originally 

contains 12,311 objects from 40 categories. Below are the two 

assessed variants: 

o 12 views of 3,200 objects resulting in 38,400 images. 

o 20 views of 9,843 objects resulting in 196,860 images. 

• ModelNet10 [15] is a subset of ModelNet40 that contains 4,899 

objects from only 10 categories. The two assessed variants are: 

o 12 views of 800 objects resulting in 9,600 images. 

o 20 views of 4,899 objects resulting in 97,980 images. 

Gray-scale style is deployed in both datasets to lower the computation cost 

and speed up the testing. We have followed a split of 80% for training and 

20% for testing all through the experiments. In the next 3 subsections, we 

will only be utilizing the first variant of ModelNet10 since it is the smallest 

in size and will ease the computation process. 

 

3.4.2 The influence of VAE number of epochs 

Table 3.1: Accuracy comparison across different numbers of VAE epochs. 

Model variant 50 epochs VAE 100 epochs VAE 

VAE 78.0 77.0 

VAeViT try1 96.25 98.12 

VAeViT try2 98.75 98.12 

VAeViT try3 95.0 97.5 

VAeViT avg. 96.67 97.91 



33 

As mentioned previously in section 3.3, VAeViT trains VAE and ViT 

independently and sequentially. The component that utilizes the most 

computation resources is the VAE model which is why it is crucial to 

examine the effect of epochs' number on the overall performance in terms of 

accuracy and consistency. Table 3.1 shows that both 50 epochs and 100 

epochs models have represented the dataset quite similar (from the VAE 

accuracy). However, when these latent vectors are fed to the ViT model, it 

can be clearly seen that the 50 epochs model demonstrates an accuracy range 

of 3.75%, spanning from its lower to upper limits which is quite wide for 

such a small dataset while the 100 epochs model is much more consistent, 

and has a higher average accuracy. 

 

3.4.3 Latent Vector dimension effect 

Latent vectors are the only common element in both models and they are 

the only component we are interested in after the VAE training because they 

will serve the ViT's input. The dimension of latent vectors plays a vital role 

in the performance as well as the comprehensiveness of the representation. 

Table 3.2 demonstrates the effect of various vector dimensions on the overall 

accuracy and illuminates the level of complexity that each model possesses. 

Based on the experiments, the dimension of 512 is proven the most practical 

dimension, and it is noticeable that reducing the dimension 𝑑𝑘 hurts model 

quality while increasing it too much makes the training process more 

sophisticated and consumes more power. 

Table 3.2: Comparison of accuracy for different latent dimension 𝑑𝑘. 

Model variant 256 𝑑𝑘 384 𝑑𝑘 512 𝒅𝒌 768 𝑑𝑘 

VAE 75.36 74.4 77.0 75.36 

VAeViT 97.5 88.13 98.12 92.5 

 

3.4.4 ViT model architecture influence 

Models' architecture has always been an open area for innovation where 

developers respond to the application requirements with the most adequate 

corresponding structure. As for the Vision Transformer, there are a few 

parameters that can be adjusted which can potentially lead an enhanced 

accuracy such as; the number of self-attention heads, number of Transformer 

layers, and MLP size. In this section, we will investigate the effect of each 

on the overall accuracy, expressiveness, and computation power. 
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Table 3.3 and Table 3.4 describe the effect of the number of heads, and 

Transformer layers, respectively, on the model's overall accuracy. For both 

experiments, we used the same number of ViT epochs. In Table 3.3, we 

fixed the number of transformer layers to 4 layers and varied the number of 

attention heads. The lowest obtained accuracy out of all the attention head 

variations is for the 12 heads model which is simply because the model 

becomes too condensed and needs an unnecessarily high number of epochs 

which consumes high power. On the other hand, lowering the number of 

heads too much as per the case in the 2 heads model, had a low accuracy too 

but that is because the model has a smaller space of expressiveness. The 4 

heads model scored the most optimum results. 

Table 3.3: Accuracy comparison of ViT with varying numbers of attention heads. 

Model Variant 2 heads 4 heads 6 heads 12 heads 

VAeViT 95.0 98.12 97.5 93.9 

Subsequently, we fixed the number of attention heads to 4, as it scored the 

highest, and experimented with varying the number of transformer layers as 

shown in Table 3.4. Following the same principle, the 12 layers model 

scored extremely low accuracy since the model becomes too complicated. 

The highest performance recorded was for the model of 6 layers. 

Table 3.4: Accuracy comparison of ViT with varying numbers of transformer layers. 

Model Variant 2 layers 6 layers 8 layers 12 layers 

VAeViT 95.83 98.12 94.79 81.25 

Also, Table 3.5 illustrates the effect of the MLP size on the classification 

accuracy where it is shown that having a large MLP size (as per the case in 

the 3072 model), is not a good idea since it will confuse the model because it 

adds on unnecessary nodes to the layer. Although the low number of 

perception models performed adequately in this case, they might not be 

sufficient with other applications. That is why having multiple consecutive 

layers was proven to be more reliable and produce consistent results. The 

most reasonable size as of our implementation is the 2048,1024 layers model 

since it has scored the highest. 

 

Table 3.5: Accuracy comparison of ViT with varied MLP sizes.. 

Model variant 1024 2048 3072 2048,1024 3072,2048,1024 

VAeViT 97.5 97.5 94.38 98.12 97.5 
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3.4.5 ViT epochs number influence on views number 

VAE significantly streamlines the ViT's task by condensing 2D images 

into lower-dimensional latent vectors. However, for extensive datasets with 

numerous categories, VAE may not perform optimally, as it requires more 

time to discern the semantic features for each class. Since VAE takes a much 

longer time to train than ViT, it's advisable to allocate more epochs to ViT, 

especially for larger datasets. See Table 3.6 for the impact of ViT's number 

of epochs on each dataset variant (refer to section 3.4.1), and the influence 

of increasing the number of views and dataset size on the overall accuracy. 

Table 3.6: VAeViT epochs accuracy comparison. 

 

Model variant 
ModelNet10 ModelNet40 

12v 20v 12v 20v 

VAE 77.0 95.9 67.0 50.36 

VAeViT 100 ViT epochs 98.12 99.0 90.31 93.71 

VAeViT 200 ViT epochs 98.12 99.67 94.22 96.1 

VAeViT 300 ViT epochs - - 96.88 98.02 

 

As for the number of views, it can be asserted that the 20-view dataset 

variants are generally better than the 12-views because they have more 

information about the object. However, more epochs are required to fully 

grasp the diverse characteristics of each category in extensive datasets. Also, 

from the model's perspective, a good size of datasets is 𝑉 × any other 3D 

multi-view object classification model's average dataset size simply because 

our model sees a 9,600 3D multi-view images dataset of 12 views as 

9,600 ÷ 12 = 800 objects. Of those 800 objects, only 80% are for training 

which means that VAeViT perceives this 9,600-image dataset as 640 of 

[[𝑑𝑘 × 12]] vectors for training. 

The least well-represented variant is the largest dataset, which is 

ModelNet40 of 20 views, but it may be observed that the model's 

performance is consistently advancing by increasing the number of ViT 

epochs before it reached a tremendously high accuracy for ModelNet40 of 

98.02%. On the other hand, with the ViT epochs increase for ModelNet10 of 

12 views, the model suffered from overfitting and resulted in a lower 

accuracy. In short, the larger the dataset and/or higher the number of views, 

the more ViT epochs the model will require to achieve good results but the 

more consistent and higher in accuracy it will be. 
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3.5 Model Settings 

Table 3.7: Settings of the optimum VAeViT model. 

 
 

VAeViT-small 

VAE enc blocks 

5 

VAE dec blocks 

5 

VAE epochs 

100 

Latent vector dimension 

512 

ViT heads 

4 

ViT layers 

6 

ViT MLP size 

2048,1024 

ViT epochs 

100-300 

As stated previously, there is a wide space of adjustments in the model 

according to the dataset's characteristics and the application requirements. 

Based on demonstrated experiments, the state-of-the-art VAeViT settings 

are expressed in Table 3.7. Figure 3.4 and Figure 3.5 represent a sample of the 

generated images and the confusion matrix respectively after the VAE 

training only on ModelNet10 of the 12-views variant based on the settings 

stated in the first row of Table 3.7 which yielded an accuracy of 77.0%. The 

bar plot in Figure 3.6 illustrates the accuracy enhancement of all the dataset 

variants when using VAE only and if VAeViT was instead employed. 

 

Figure 3.4: Reconstructed sample of ModelNet10 12 views after VAE training only. 
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Figure 3.5: Confusion matrix of ModelNet10 12 views after VAE training only. 

 

 

Figure 3.6: Comparison of accuracy between VAE-only and VAE-ViT across all  

dataset variants. 
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3.6 Comparison with State-Of-The-Art methods 

We conducted a comprehensive comparison between VAeViT and leading 

models for each 3D object representation type, as detailed in section 3.2 and 

summarized in Table 3.8.  

Table 3.8: 3D object classification accuracy comparison with state-of-the-art models. 

Model Input Modality ModelNet10 ModelNet40 

3DShapeNets [15]  

 

Voxel-based 

83.5 77.0 

LightNet [65] 93.94 88.93 

3D-A-Nets [66] - 90.5 

LP-3DCNN [14] 94.4 92.1 

VRN Ensemble [13] 97.14 95.5 

PointNet++ [18]  

 

Point cloud 

- 91.9 

Kd-Networks [67] 94.0 91.8 

DeepCCFV [68] - 92.5 

LDGCNN [17] - 92.9 

RS-CNN [16] - 93.6 

MVCNN [12] 12 views - 89.0 

MVCNN [12] 80 views - 90.1 

MVCNN-MultiRes [59] 20 views - 91.4 

GVCNN [20] 3 views - 93.1 

GVCNN [20] 12 views - 92.6 

RCPCNN [21] 12 views - 93.8 

3D2SeqViews [61] 12 views 94.7 93.4 

SeqViews2SeqLabels [60] 12 views 94.8 93.4 

MHBN [62] 6 views 95.0 94.7 

MHBN [62] 12 views - 93.4 

MVLADN [63] 6 views 94.9 94.6 

RotationNet [11] 12 views 94.0 91.0 

RotationNet [11] 20 views 98.5 97.4 

Relation Network [64] 12 views 95.3 94.3 

CAR-Net [10] 12 views 95.8 95.2 

CAR-Net [10] 20 views 99.0 97.7 

MVT [8] 12 views 95.3 94.4 

MVT [8] 20 views 99.3 97.5 

View-GCN [9] 20 views - 97.6 

VAeViT (Ours) 12 views 98.12 96.88 

VAeViT (Ours) 20 views 99.67 98.02 
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Voxel-based models generally exhibit lower recognition accuracy 

compared to their multi-view counterparts, as observed in the first section of 

the table. While VRN Ensemble [13] outperformed some multi-view 

methods, this exceptional performance can be attributed to its ensemble 

approach and the incorporation of a more advanced base model. The second 

part shows point-based methods, which demonstrate comparable 

performance to voxel-based models. Most recent approaches that are based 

on voxels and point clouds tend to achieve similar accuracies, typically 

falling within the range of 90%-93%. This convergence may be attributed to 

the inherent complexity or computational demands of these representations. 

As for the 3D multi-view types, we have assessed our model against all 

the pioneering methods in the field where each has its own advantages but 

suffers from some limitations. Each model utilizes a specific number of 

views that they excel at according to the approach's methodology. We notice 

from models such as GVCNN [20] and MHBN [62] that the higher number 

of views does not always yield a better performance. However, it could be 

perceived from the state-of-the-art models; RotationNet [11], CAR-Net [10], 

MVT [8], and View-GCN [9] that 20 view models always perform the 

highest. Although some of these methods have been pioneering for a few 

years, VAeViT has the potential to dominate the field after it has 

demonstrated a competitive performance of 99.67% and 98.02% on the two 

most well-known datasets; ModelNet10 and ModelNet40 respectively. 
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Chapter 4 

 
Conclusion 

 
In this thesis, we have introduced two novel 3D multi-view object 

classification models that are inspired by the NLP methods’ significance in 

extracting the inherent traits within texts and discerning the semantic 

relationships among sequential data types. The thesis started by 

demonstrating the advancements of 3D objects in our daily lives and the 

remarkable limitations encountered by most 3D object recognition methods. 

Furthermore, we elaborated on the types of 3D object representation and the 

most utilized methodologies in the field that most models are built based 

upon. 

In chapter 2, we discussed the background of topic models, their working 

principles, and the most remarkable models in the domain before we 

introduce our newly designed approach. F-GDA, short for Fully Generalized 

Dirichlet Allocation model, is a novel Bayesian model that derives all its 

priors from a Generalized Dirichlet distribution to assure a completely 

flexible model that is capable of generalizing well. The model is also distinct 

from other models of a complete generative process that it is simple-to-infer 

and compatible with multiple applications due to the Gibbs Sampling’s 

unbiased estimates capabilities and its robustness and reliability, especially 

when dealing with complex, high-dimensional data. A detailed derivation of the 

core model is demonstrated in section 2.4.2. In further sections of the chapter, 

we illustrated the preprocessing phases of shaping 3D multi-view objects in 

the model’s compatible input form which is the Bag of Visual Words 

(BoVWs) format. We proved the robustness of F-GDA and its 

outperformance against baseline topic models in an ablation study on the 

N15 images dataset, and showed its capabilities with 3D object classification 

on the 3D mutli-views dataset, ETH80 where it scored promising results as 

compared to baseline methods. 
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In chapter 3, we deviated towards Deep Learning where we presented the 

working principle of two of the most dominant structures in the field; 

Variational Autoencoder (VAE) and Vision Transformer (ViT), that is also 

inspired from the famous NLP architecture, the Transformers. After that we 

presented the strengths and weaknesses of the current leading paradigms and 

sequentially VAeViT to overcome those limitations. VAeViT is a pure VAE 

architecture preceding ViT sequentially where each of them work 

independently to achieve a certain task. This architectural enhancement 

builds on the proven effectiveness of VAEs in feature representation and 

additionally capitalizes on ViT's prominent capability in capturing semantic 

features from sequential data types. By doing so, we have enhanced the 

classification of 3D objects by augmenting all the 2D views together via the 

utilization of the positional embeddings preceding the ViT input and have 

eliminated the conventional ViT’s limitation of necessitating very large 

dataset in order to perform better by the incorporation of VAE. We 

conducted extensive amount of experiments on two benchmark 3D multi-

view datasets to learn the influence of the model’s attributes on the overall 

performance and illustrated the tremendously high performance of our 

model against the state-of-the-art models and that is has the potential to 

dominate the realm of Computer Vision. 

For future work, we are planning to incorporate additional flexible priors 

into our Bayesian model that would allow for a more accurate representation 

of the underlying data while utilizing less computation time. Also, we would 

attempt to develop an online learning algorithm to allow our model to handle 

and learn from continuous data streams in real-time as in [29] which will 

enhance the performance of the learned model as new data is observed. As 

for the Deep Learning model, we plan to investigate the effect of our 

framework on other 3D object representation types such as the point cloud.
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