
Performance Evaluation of the Object Detection
Algorithms on Embedded Devices

Kasra Aminiyeganeh

A Thesis in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the

Requirements for the Degree of Master of Science

at Concordia University

Montreal, Quebec, Canada

August 2023

© Kasra Aminiyeganeh, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis

prepared By: Kasra Aminiyeganeh

Entitled: Performance Evaluation of the Object Detection Algorithms on

Embedded Devices

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Yan Liu

External Examiner
Dr. Jamal Bentahar

Internal Examiner
Dr. Yan Liu

Supervisor
Dr. Rodolfo Coutinho

Approved by
Dr. M. Zahangir Kabir, Graduate Program Director

October 15, 2023
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Sci-
ence

iii

Abstract

Performance Evaluation of the Object Detection Algorithms on
Embedded Devices

Kasra Aminiyeganeh

Edge computing has seen a dramatic rise in demand, driven by the necessity

for real-time, low-latency applications across various domains from autonomous

vehicles to surveillance systems. Among these, real-time object detection stands as

a crucial technology. However, the inherent constraints of edge devices, including

limited computational power, present significant challenges.

This thesis provides a comprehensive evaluation of several Convolutional Neu-

ral Networks based object detection models when deployed on resource-constrained

edge devices, specifically Raspberry Pi and Google’s Coral TPU. The models exam-

ined include EfficientDet, YOLO, and variants of the MobileNet family combined

with SSD for object detection tasks.

We developed a novel benchmarking framework that allowed the evaluation

of these models under different configurations, enabling an accurate assessment of

their performance characteristics. The benchmarking framework and the metrics

used for evaluation can provide a foundation for future work, focusing on the de-

sign and deployment of efficient real-time object detection models on edge devices.

The performance of these models was scrutinized based on an exhaustive set of

metrics including processing speed (frames per second), model accuracy (F1 score),

energy consumption, CPU utilization, memory footprint, and device temperature.

A novel benchmarking framework was developed to evaluate these models under

diverse configurations, providing a precise assessment of their respective perfor-

mance characteristics.

iv

This benchmarking framework, along with the evaluation metrics, sets the foun-

dation for future research concentrating on the design and deployment of efficient

real-time object detection models on edge devices. The findings of this study under-

score the fact that no single model is a universal solution for all edge applications;

instead, the choice of model is heavily dependent on the specific requirements and

constraints of the given application.

By offering a detailed overview of the performance traits of each model, we aim

to guide practitioners in making informed decisions when deploying object detec-

tion models in edge computing environments. This work sets the stage for future

exploration in the development of more efficient and effective models for real-time

object detection on edge devices.

v

Acknowledgements

First and foremost, I wish to express my profound gratitude to my supervisor, Prof.

Rodolfo Coutinho, whose guidance, support, and expertise have been invaluable

throughout the course of this research. His unwavering commitment to academic

excellence and his insights have been instrumental in shaping this thesis.

I would also like to extend my deepest appreciation to my partner, who has pro-

vided me with unlimited support, encouragement, and understanding, allowing me

to focus on my research and overcome the many challenges along the way. Thank

you Sevda!

Special acknowledgment is reserved for my beloved mother, who, despite being

abroad, went through tremendous hassles to provide for me. Her sacrifices ensured

that I could remain focused on my studies.

I also wish to honor the memory of my late father, who remains a guiding light

in my heart. His hard work and legacy have paved the way for my journey, and it

is upon the foundation he laid that I stand today. His influence and love continue to

inspire and drive me forward.

vi

Contents

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Research Challenges . 4

1.2 Thesis Statement . 6

1.3 Thesis Outline . 7

2 Background 8

2.1 Introduction . 8

2.2 Embedded Devices . 10

2.2.1 Raspberry Pi: A Key Player in the World of Embedded Devices 11

2.2.2 Comparing Raspberry Pi and Jetson Nano: Two Powerhouses

of the Embedded World . 12

2.3 Deep Learning and Convolutional Neural Networks 13

2.3.1 Object Detection: Classifications, Bounding Boxes, and CNN-

Based Detectors . 14

2.3.2 Classification of CNN Detectors 16

2.3.3 Model Compression Techniques for CNN-based Object Detec-

tion on Embedded Devices . 18

2.4 Tensor Processing Units and Edge Accelerators 20

2.4.1 Edge Accelerators . 20

vii

2.4.2 TPUs . 21

3 Literature Review 22

3.1 Introduction . 22

3.2 Efficient CNN-Based Models for Embedded Devices 23

3.3 Model Benchmarking Literature . 26

3.4 Conclusion . 31

4 A Compendium of Cutting-edge CNN Models 33

4.1 Introduction . 33

4.2 Object Detection Models Analysis . 34

4.2.1 Criteria for Model Selection . 34

4.2.2 MobileNet . 35

4.2.3 SSD . 38

4.2.4 MobileNet-SSD . 39

4.2.5 EfficientDet . 40

4.2.6 YOLO . 43

4.2.7 MobileObjectLocalizer . 45

4.3 Conclusion . 45

5 Methodology 47

5.1 Introduction . 47

5.2 Tools and Framework . 48

5.2.1 Embedded Platform . 48

5.2.2 Software Platform . 54

5.3 Dataset . 57

5.3.1 COCO Pre-Trained Models and Considerations for Accuracy

Enhancement . 58

5.4 Data Pipeline . 59

5.5 Experiments . 61

viii

5.5.1 Metrics . 62

5.5.2 Pi Configuration . 64

5.5.3 Google Coral Config . 65

5.6 Conclusion . 65

6 Evaluation and Results 67

6.1 Introduction . 67

6.2 Processing rate . 68

6.2.1 Evaluation . 68

6.2.2 Real-Time Processing of Live Camera Feed 72

6.3 Accuracy . 73

6.3.1 Evaluation . 74

6.4 Energy Consumption . 76

6.4.1 Evaluation . 77

6.5 CPU utilization and memory footprint 79

6.5.1 Evaluation . 80

6.6 Device’s temperature . 82

6.6.1 Evaluation . 83

6.7 Evaluating Trade-offs in Object Detection Systems 84

6.7.1 FPS - Energy - Temperature Trade-off 84

6.7.2 Accuracy - Memory - CPU - Temperature Trade-off 85

6.7.3 Conclusion . 86

6.8 Conclusion . 87

7 Conclusion and Future Work 89

7.1 Conclusion . 89

7.2 Future Works . 91

Bibliography 93

ix

List of Figures

2.1 Various object detectors [41] . 16

3.1 Sqeeznet model architecture. (A) illustrates the macroarchitecture

and (B) shows the fire module [51]. 24

3.2 Simplistic architecture of a typical Tiny Yolo model. 25

3.3 Simplistic architecture of ShuffleNetV2 with type 1 shuffle unit. . . . 25

4.1 Comparative Architectures of Studied Models. 37

5.1 Model Conversion from TensorFlow to Edge TPU [73] 56

5.2 Data Pipeline for Object Detection . 60

6.1 Processing rate in terms of frames per second: A) 1 CPU core. B) 2

CPU cores. C) 3 CPU cores. D) 4 CPU cores. 70

6.2 FPS of the models running on Google USB-CORAL 70

6.3 Box Plot of the Processing Rates on: A) 1 CPU core. B) 2 CPU cores.

C) 3 CPU cores. D) 4 CPU cores. 71

6.4 Box Plot of the Processing Rates of the models running on Google

USB-CORAL . 72

6.5 Energy consumption. 77

6.6 CPU utilization. 80

6.7 Gauging temperature of Coral and Pi. 82

6.8 Processor’s temperature. 83

6.9 FPS - Energy - Temperature Trade-off Triangle. 85

6.10 Accuracy - Memory - CPU - Temperature Trade-off Triangle. 86

x

List of Tables

3.1 Comparison of Literature Reviews on Embedded Deep Learning . . 30

6.1 Models F1 Score (%) . 74

6.2 RAM usage (in MB) . 81

6.3 Guideline for Model Selection Based on Various Criteria 88

xi

List of Abbreviations

IoT Internet of Things

CNN Convolutional Neural Networks

MEC Multi-access Edge Computing

HOG Histogram of Oriented Gradients

YOLO You Only Look Once

ROI Regions of Interest

RPN Region Proposal Network

ASICs Application-Specific Integrated Circuits

SGD Stochastic Gradient Descent

mAP mean Average Precision

SoC System-on-a-Chip

CPU Central Processing Unit

GPU Graphics Processing Unit

VGGNet Very Deep Convolutional Networks for LargeScale Image Recognition

SSD Single Shot MultiBox Detector

FPN Feature Pyramid Network

TPUs Tensor Processing Units

FPS Frames-Per-Second

IOU Intersection over Union

SBC Single Board Computers

NCS2 Neural Compute Stick 2

DNN Deep Neural Network

NAS Neural Architecture Search

xii

BiFPN Bi-directional Feature Pyramid Network

MOL MobileObjectLocalizer

TFLite TensorFlow Lite

1

Chapter 1

Introduction

The advancement of technology has brought about a new dawn of potent embed-

ded devices, thus triggering the inception of an era marked by the Internet of Things

(IoT) systems. These devices are increasingly sophisticated, offering users enriched

experiences and unprecedented levels of interaction. They are designed with em-

bedded video cameras and microphones, enabling gesture and voice-based user in-

teractions with intelligent environments. This novel approach opens up possibilities

for hands-free control of appliances in smart homes, machinery within industry 4.0

applications, and immersive interaction in IoT-based entertainment applications.

The implications of this technological evolution are profound, shaping the land-

scape of IoT video-based applications, including transportation systems and smart

surveillance.

IoT cameras, acting as the eyes of these systems, offload video frames to be pro-

cessed on cloud computing facilities [1]. Convolutional Neural Networks (CNNs)

are then utilized to learn spatial features from these images, thereby detecting, iden-

tifying, and tracking objects of interest from the received IoT video frames [2]. CNNs,

with their capacity for high-level feature extraction, have proven to be indispensable

for object detection tasks, leading to a revolutionary shift in the field. However, the

latency and overhead incurred in IoT communication with distant cloud servers of-

ten make real-time IoT video analytics applications unfeasible, thus necessitating a

shift in approach. Recently, multi-access edge computing (MEC) [3] has emerged as

Chapter 1. Introduction 2

a promising solution for time-sensitive IoT applications. MEC aims to deploy com-

putation, storage, and computation resources at the network’s edge, closer to the

IoT devices. The idea is to allow machine learning models for object detection, iden-

tification, and tracking to be deployed at edge servers, with IoT devices offloading

video frames to these servers for processing. While this approach reduces latency

compared to cloud-based processing, it still does not guarantee a high frame pro-

cessing rate due to the limited resources of edge servers and the latency incurred

in communication. Several studies have proposed selective or partial offloading of

IoT video frames to reduce latency and improve the frame processing rate [4]–[6].

Other studies have suggested distributed and collaborative edge servers to support

IoT video analytics applications [7]–[9]. However, these solutions may not be suffi-

cient to address the inherent challenges of real-time object detection in IoT systems.

Amidst these challenges, the concept of leveraging idle resources at IoT devices

for performing computation-intensive tasks such as object detection and recognition

has emerged as a promising approach. By performing a portion of the computations

locally at the IoT device [10], [11], only part of the video frames need to be offloaded

to edge and cloud servers. This approach can significantly reduce the overall la-

tency and increase the frame processing rate. However, this approach comes with

its own set of challenges. Specifically, the use of low-resolution video frames, often

employed to reduce the resource demand at the embedded IoT device, can lead to

decreased accuracy. Furthermore, the intensive computations can deplete the en-

ergy of energy-constrained IoT devices. Given these trade-offs, there is a pressing

need for a comprehensive performance evaluation of CNN-based models on em-

bedded devices. In this thesis, we propose a rigorous and practical methodology to

benchmark CNN models on embedded devices, addressing this critical gap in the

current understanding. We focus on the performance of six state-of-the-art object de-

tection models on embedded devices, namely, Raspberry Pi and Google USB-Coral

accelerator, providing a comprehensive evaluation of their performance.

Our attention is particularly directed towards the performance of CNN-based

Chapter 1. Introduction 3

object detection models in traffic surveillance applications. This focus is chosen con-

sidering the immense practical value and societal implications of such applications,

which can significantly contribute to the design and deployment of such models in

real-world applications. We evaluate the performance and trade-offs of the CNN

models under varying conditions of frame resolution and video features, including

day and night time, on the considered embedded devices. This thesis will estab-

lish a benchmarking system and framework to evaluate CNN-based models on em-

bedded devices, catering specifically to real-life applications. Our comprehensive

study considers the idiosyncrasies of embedded devices, which operate under sub-

stantial constraints in comparison to their high-powered counterparts. Their limita-

tions include, but are not limited to, processing power, memory capacity, and energy

consumption. Consequently, the effective deployment of complex object detection

models on these devices presents a significant challenge. Therefore, our research

places particular emphasis on these constraints, evaluating the trade-offs between

accuracy, speed, and computational resources.

Another critical aspect our study encompasses is the role of video resolution

in object detection. The use of low-resolution video frames is a common strategy

to mitigate the resource demand on embedded IoT devices, but it can potentially

compromise the detection accuracy. Our investigation delves into this conundrum,

exploring the relationship between video resolution and detection performance.

Moreover, our research scrutinizes the influence of different video features, such

as day and night time conditions, on the performance of object detection models.

Environmental factors can significantly impact the effectiveness of these models,

and our research aims to illuminate these dependencies. Given the diversity of

available CNN architectures and their respective strengths and weaknesses, our

study also undertakes a comparative analysis of multiple state-of-the-art object de-

tection models. We implement and evaluate these models on embedded devices,

thereby providing an extensive performance comparison that can guide future re-

search and development efforts in this field.

Chapter 1. Introduction 4

The energy consumption of embedded devices is another crucial factor that our

research takes into account. Given that many IoT devices operate on battery power,

the energy efficiency of object detection models becomes a critical consideration.

Our study assesses the power efficiency of the evaluated models, providing insights

into their suitability for deployment on energy-constrained devices.

In summary, this thesis aims to provide a thorough, in-depth analysis of the per-

formance of CNN-based object detection models on embedded devices. By navigat-

ing through the complexities and constraints inherent to these devices, this thesis

offers a comprehensive guide for developers, researchers, and practitioners in the

fields of computer vision and embedded systems. Our goal is to contribute to the

ongoing effort to make intelligent applications on embedded devices more efficient,

practical, and responsive, ultimately paving the way for a more interconnected and

intelligent world.

1.1 Research Challenges

While the potential of CNN based object detection models on embedded devices

is immense, this rapidly evolving field also faces a number of significant challenges

that need to be addressed to fully realize its transformative potential. The challenges

include [10], [12], [13]:

• Limited Processing Power: Embedded devices, due to their compact nature,

often have limited processing power compared to full-fledged servers. Run-

ning complex CNN models on such devices can be computationally intensive

and may exceed their processing capabilities. This may cause delays in object

detection and recognition tasks, impacting the real-time performance of the

system.

Chapter 1. Introduction 5

• Energy Consumption: Another critical challenge is the high energy consump-

tion associated with running CNN models. Many embedded devices are battery-

powered and have limited energy resources. The energy-intensive nature of

CNNs could quickly deplete these resources, hindering the device’s operation

and limiting its practical deployment in various applications.

• Model Accuracy: The use of low-resolution video frames, often necessitated

by the resource constraints of embedded devices, may result in decreased de-

tection accuracy. While this strategy reduces the computational demand, it

compromises the model’s ability to accurately detect and identify objects, es-

pecially smaller or less distinguishable ones.

• Data Privacy: As embedded devices often process data locally, they could po-

tentially handle sensitive data, especially in applications like smart surveil-

lance and healthcare monitoring. Ensuring data privacy and security in these

devices is a significant challenge that needs to be addressed.

• Environmental Factors: CNN models’ performance can be affected by various

environmental factors such as lighting conditions, weather, or camera angles.

Designing models that are robust to these factors is a complex task, partic-

ularly when deploying them on embedded devices with limited processing

capabilities.

• Hardware-Software Co-Design: Creating an effective hardware-software co-

design can be challenging but is crucial for optimizing the performance of

CNN models on embedded devices. The hardware configuration should be

compatible with the software requirements of the CNN model to ensure effi-

cient object detection and recognition tasks.

• Lack of Standard Benchmarks: Currently, there is a lack of standard bench-

marks for evaluating the performance of CNN-based object detection models

on embedded devices. Developing rigorous and comprehensive benchmarks

Chapter 1. Introduction 6

that consider various aspects such as detection accuracy, processing speed,

energy consumption, and robustness to environmental factors is necessary to

guide future research and development efforts in this field.

Addressing these challenges is crucial to harnessing the full potential of CNN-

based object detection models on embedded devices. It requires a concerted ef-

fort from researchers, developers, and practitioners, spanning various disciplines

including computer vision, embedded systems, machine learning, and data privacy.

As we continue to make strides in this direction, we move closer to realizing a future

where embedded devices with CNNs can effectively and efficiently enable intelli-

gent, data-driven applications across various sectors.

1.2 Thesis Statement

This thesis proposes a methodology to benchmark CNN models on embedded de-

vices. We provide a rigorous and practical framework for evaluating object detec-

tion models on embedded devices. We implement and evaluate the performance

of six state-of-the-art object detection models on embedded devices, i.e., Raspberry

Pi and Google USB-Coral accelerator. We focus on the performance of CNN-based

object detection models in traffic surveillance, which can assist in guiding the de-

sign and deployment of such models in realworld applications. The performance

and trade-offs of the CNN models are evaluated under different conditions of frame

resolution and video features, i.e., day and night time, on the considered embedded

devices. We believe that our evaluation framework can serve as a valuable resource

for researchers and practitioners working in the fields of computer vision and em-

bedded systems.

• The research outcomes presented in this thesis have been reviewed and ac-

cepted for presentation at the 13th ACM Symposium on Design and Analysis of

Intelligent Vehicular Networks and Applications (DIVANet’23).

Chapter 1. Introduction 7

• Further findings from this research will be submitted to the esteemed journal,

Internet of Things; Engineering Cyber Physical Human Systems, and are currently

under review.

1.3 Thesis Outline

The organization of this thesis, set into six main chapters. The initial chapter serves

as an introduction, presenting the purpose and significance of this research, while

also offering an overview of the problem statement. Subsequently, in Chapter 2, an

exhaustive review of the current literature is conducted, surveying the landscape

of advancements, contributions, and challenges in the realm of object detection us-

ing CNNs. This foundation paves the way for Chapter 3, which offers an in-depth

examination of six state-of-the-art CNN models, dissecting their respective archi-

tectures, operations, and unique benefits. Following this, Chapter 4 outlines the

methodologies used for benchmarking these models, detailing the implementation

process on embedded devices, the nature of data employed for training and testing,

as well as measures adopted to ensure the accuracy and reliability of our findings.

The penultimate chapter, Chapter 5, delivers a comprehensive performance analysis

of the models based on predefined metrics, allowing a comparison and appraisal of

efficiency, accuracy, and practicality when running these models on embedded de-

vices. Finally, Chapter 6 concludes the thesis by summarizing the research findings,

highlighting potential avenues for future research and development. This system-

atic structure aims to present an exhaustive exploration of the topic and contribute

valuable insights to the existing body of knowledge.

8

Chapter 2

Background

2.1 Introduction

In the current technological landscape, the application of CNN based object detec-

tion models on embedded devices has transformative potential across a myriad of

fields. By enabling real-time processing and decision making at the edge, these mod-

els can significantly enhance the efficiency, responsiveness, and functionality of var-

ious systems. This section delves into five key application areas where embedded

devices running CNNs can bring substantial value, transforming traditional oper-

ations into intelligent, data-driven processes [14]. These applications span across

smart surveillance systems, autonomous vehicles, healthcare monitoring, industrial

automation, and wildlife monitoring. Each of these applications underscores the

significance of integrating powerful CNN models with compact, efficient embed-

ded devices, highlighting the transformative potential of this technology:

1. Smart Surveillance Systems: The application of CNN-based object detection

models on embedded devices revolutionizes the domain of surveillance. Secu-

rity cameras in smart homes, businesses, or public spaces could identify and

track objects of interest in real-time, enhancing security measures. Traditional

surveillance systems suffer from the latency associated with sending video

frames to distant servers for processing. However, by leveraging the power of

embedded devices, object detection can occur locally, greatly reducing latency

Chapter 2. Background 9

and allowing real-time response. Moreover, the use of CNNs enables these

devices to distinguish between different types of objects, providing a more

nuanced understanding of the observed environment [15]–[17].

2. Autonomous Vehicles: Autonomous vehicles require real-time object detec-

tion to navigate safely through their environments. Embedded devices equipped

with CNNs can detect, identify, and track other vehicles, pedestrians, traffic

signs, and various other objects. The necessity for real-time analytics in this

scenario is paramount as the safety of the vehicle and its surroundings de-

pends on it. The use of CNN-based object detection models on embedded de-

vices in these vehicles can provide the necessary speed and accuracy, allowing

for safe, efficient autonomous navigation [18], [19].

3. Healthcare Monitoring: Embedded devices equipped with CNNs can also

play a crucial role in healthcare monitoring systems. For instance, in elderly

care, these devices can help monitor the patient’s activities, detect any irregu-

lar behavior, or identify potential risks, such as falls. The real-time detection

and rapid response facilitated by these devices could be critical in emergency

situations. Furthermore, these devices can be used for remote patient monitor-

ing, allowing healthcare providers to keep track of patients’ health in real-time

[20]–[22].

4. Industrial Automation: In the era of Industry 4.0, automated systems are inte-

gral to many manufacturing and assembly lines. Embedded devices running

CNN-based object detection models can identify and sort different parts on a

conveyor belt, detect defective products, or guide robotic arms. The accuracy

and speed provided by these models allow for a high degree of precision and

efficiency, which are paramount in industrial settings. The ability to process

data locally on the device reduces latency, enabling real-time decision making,

which can significantly enhance the overall productivity [23], [24].

Chapter 2. Background 10

5. Wildlife Monitoring: Embedded devices equipped with CNNs can be used in

wildlife monitoring systems to track and study animal behavior without hu-

man intervention. Cameras placed in natural habitats can detect and identify

different species, track their movements, and even monitor their behaviors.

This allows researchers to gather data with minimal disturbance to the ani-

mals. The use of embedded devices ensures that the data can be processed

locally, reducing the need for large data transmissions and lowering the en-

ergy consumption, which is crucial in remote or inaccessible locations [25]–

[27].

In all these applications, the significance of embedded devices and CNNs is

paramount. These devices provide the computational platform for CNNs to per-

form complex object detection tasks right at the edge, where the data is generated.

This eliminates the need to transmit large amounts of data to distant servers, thus re-

ducing latency and enabling real-time analytics. At the same time, the use of CNNs

ensures high detection accuracy, which is crucial in all these applications. Therefore,

the combination of embedded devices and CNNs promises to revolutionize various

sectors, paving the way for smarter, more efficient, and responsive systems.

2.2 Embedded Devices

Embedded devices are specialized computing systems designed to perform dedi-

cated functions within larger systems. They range from everyday devices such as

smartphones and smartwatches to specialized equipment like IoT sensors and au-

tonomous vehicles’ onboard computers. These devices, due to their compact size,

portability, low cost, and low power consumption, are increasingly being used for

object detection tasks.

Implementing object detection models on embedded devices brings the power

of deep learning to the edge [10], enabling real-time analytics and decision-making.

However, this also presents a unique set of challenges. Embedded devices, due

Chapter 2. Background 11

to their small size, have limited computational resources and memory. Running

complex CNN models on such devices requires careful consideration of these con-

straints, necessitating efficient model design and optimization techniques.

The synthesis of deep learning, particularly CNNs, and embedded devices in the

realm of object detection is a dynamic and promising field. Despite the challenges,

the successful integration of these technologies holds the potential to revolutionize

a host of sectors, making them smarter, more efficient, and responsive.

2.2.1 Raspberry Pi: A Key Player in the World of Embedded De-

vices

The Raspberry Pi is a series of small single-board computers developed in the United

Kingdom by the Raspberry Pi Foundation. Since its inception in 2012, it has become

a significant player in the field of embedded devices due to its affordable price, low

power consumption, and good computational capabilities [28].

• Architecture and Performance:

The Raspberry Pi boasts a Broadcom system on a chip (SoC) with an integrated

ARM compatible central processing unit (CPU) and on-chip graphics process-

ing unit (GPU). The latest models, such as the Raspberry Pi 4 Model B, offer

even more power, with a quad-core CPU, up to 8GB of RAM, and full gigabit

Ethernet, making them capable of running a variety of complex tasks, includ-

ing machine learning algorithms.

• Applications of Raspberry Pi in Object Detection:

In the context of IoT, Raspberry Pi devices are used for smart traffic surveil-

lance, enabling real-time vehicle and pedestrian detection, which can greatly

contribute to traffic safety and management. Furthermore, with the right ob-

ject detection models, Raspberry Pi can also find its application in autonomous

Chapter 2. Background 12

robotics and drones, helping these devices navigate their environment and in-

teract with objects around them.

In industry applications, Raspberry Pi is used for quality control and fault de-

tection. By implementing object detection algorithms, these devices can iden-

tify defective products or anomalies in a production line in real-time, thus re-

ducing costs and improving efficiency.

• Raspberry Pi and CNN-based Object Detection:

With the appropriate software libraries and tools, a Raspberry Pi can run var-

ious CNN-based object detection models. While these models may need to be

optimized or compressed to run effectively on a Raspberry Pi due to its re-

source constraints, the availability of hardware accelerators and software tools

such as TensorFlow Lite can further facilitate this process.

In conclusion, the Raspberry Pi, with its balance of cost, power, and size,

presents a compelling platform for deploying CNN-based object detection mod-

els in embedded devices, contributing significantly to the growth and prolif-

eration of edge computing and IoT systems.

2.2.2 Comparing Raspberry Pi and Jetson Nano: Two Powerhouses

of the Embedded World

While Raspberry Pi has been a long-standing favorite in the realm of single-board

computers, NVIDIA’s Jetson Nano is a newer player that has made a significant

impact, especially in the world of AI and edge computing. These two platforms

are often compared due to their shared market segment, but they cater to different

needs and use cases due to their unique capabilities [29].

Chapter 2. Background 13

• Architecture and Performance:

Jetson Nano, similar to Raspberry Pi, is a single-board computer, but it is

specifically designed for AI and edge computing. It is equipped with a quad-

core ARM A57 CPU, a 128-core NVIDIA Maxwell GPU, and 4GB of LPDDR4

RAM. In terms of raw performance, the Jetson Nano outpaces the Raspberry

Pi, especially when it comes to tasks that can leverage the GPU, such as run-

ning deep learning models.

• AI and Deep Learning Capabilities:

While both Raspberry Pi and Jetson Nano can run CNN-based object detec-

tion models, the Jetson Nano stands out with its superior deep learning capa-

bilities. The Nano’s GPU allows it to execute computationally intensive deep

learning tasks much more efficiently than the Raspberry Pi. Moreover, it comes

with the CUDA architecture, which enables parallel computing on the GPU.

It also has native support for the NVIDIA’s deep learning stack, including li-

braries and tools such as CUDA, cuDNN, and TensorRT.

• Power Consumption and Cost:

The Raspberry Pi’s main advantage over the Jetson Nano lies in its lower

power consumption and cost. Raspberry Pi is more energy-efficient and can

run on a smaller power supply. It is also significantly cheaper, making it a

better option for applications where cost is a key consideration. However, for

use-cases where AI and deep learning performance is critical, the Jetson Nano,

despite its higher cost and power consumption, would be the preferred choice

due to its superior computational capabilities.

2.3 Deep Learning and Convolutional Neural Networks

Deep learning [30], a subset of machine learning, is inspired by the structure and

function of the human brain. It uses artificial neural networks with multiple layers

Chapter 2. Background 14

(hence the term ’deep’) to model and understand complex patterns in data. Among

various deep learning architectures, CNNs have become synonymous with image

processing tasks due to their unique design tailored to handle grid-like data, includ-

ing images.

A CNN [31] is composed of several layers, each playing a specific role in the

transformation and extraction of features from the input data. The key components

of a CNN include convolutional layers, pooling layers, and fully connected layers.

Convolutional layers apply a series of filters to the input data, allowing the network

to learn spatial hierarchies of features. Pooling layers, on the other hand, reduce

the spatial size of the representation, controlling overfitting and reducing computa-

tional complexity. Finally, the fully connected layers perform high-level reasoning

on the extracted features and make the final prediction.

2.3.1 Object Detection: Classifications, Bounding Boxes, and CNN-

Based Detectors

The fundamental goal of object detection is to classify and spatially locate multiple

objects belonging to different classes within an image simultaneously. The output

of object detection typically includes class categories and a set of bounding boxes

(Bboxes) that denote the object locations. This dual requirement of classification and

localization makes object detection a more complex task than image classification.

CNN-based detectors have emerged as a powerful tool for object detection. These

detectors generally comprise two major components: the feature extraction net-

work, often referred to as the backbone, and the detection head [32].

Feature Extraction Backbone

The backbone of a CNN-based detector consists of stacked convolutional layers and

pooling layers. The role of the backbone is to process the input image and extract

Chapter 2. Background 15

a series of feature maps. These feature maps capture the spatial hierarchies of fea-

tures, with early layers capturing low-level features such as edges and textures, and

deeper layers capturing high-level semantic features.

Several architectures have been proposed for the backbone, each with its own

strengths and trade-offs. For instance, Very Deep Convolutional Networks for Large-

Scale Image Recognition (VGGNet) [33], known for its simplicity and depth, was

among the earliest backbones used in CNN-based detectors. However, due to its

computational intensity, later models such as ResNet [34], with its innovative resid-

ual connections, and MobileNet [35], designed specifically for mobile and embed-

ded vision applications, have been adopted. These backbones offer a balance be-

tween computational efficiency and detection performance, making them suitable

for embedded devices.

Detection Framework and Detection Head

The detection framework includes the usage of the backbone and the process of ma-

nipulating feature maps before and within the detection head. The detection head

takes the feature maps produced by the backbone and generates the final bounding

boxes for object detection.

Early detection frameworks, such as R-CNN [36] and its successors Fast R-CNN

[37] and Faster R-CNN [38], introduced the concept of region proposals. These

methods first proposed potential object locations and then used a CNN to classify

these regions and refine their bounding boxes. However, these methods were com-

putationally intensive and relatively slow.

To address these limitations, single-stage detectors like YOLO (You Only Look

Once) [39] and SSD (Single Shot MultiBox Detector) [40] were proposed. These

methods eliminated the need for region proposals and directly predicted the class

and bounding box coordinates from the feature maps, significantly improving the

speed of detection.

Chapter 2. Background 16

The evolution of both the backbone and the detection framework has led to im-

provements in object detection performance. Despite these advancements, object

detection on embedded devices remains challenging due to their limited computa-

tional resources. Therefore, the quest for more efficient and accurate object detection

models continues, with research focusing on creating compact yet powerful models

suitable for deployment on embedded devices.

FIGURE 2.1: Various object detectors [41]

2.3.2 Classification of CNN Detectors

CNN-based detectors can be classified based on the number of stages in the detec-

tion process and the usage of anchors, a mechanism for predicting regions of interest

(ROI) in the image [32], [42].

Number of Stages

• Two-Stage Detectors: The most classic and representative two-stage detectors

include the R-CNN family [36]–[38]: R-CNN, Fast R-CNN, and Faster R-CNN.

In the first stage, these detectors search for the ROI in the image.

In the second stage, they perform classification and localization based on the

results from the first stage. While these two-stage detectors demonstrate promis-

ing accuracy, they are slow in inference speed due to the two-step process.

Chapter 2. Background 17

• One-Stage Detectors: To improve the inference speed, one-stage detectors like

YOLO were proposed [39]. These detectors predict the class and location si-

multaneously, eliminating the need to search for ROIs first.

While the first version of YOLO achieved real-time detection, it suffered from

lower accuracy due to the overwhelming negative samples. To achieve a bal-

ance between accuracy and speed, methods like RetinaNet were introduced,

which incorporated the Feature Pyramid Network (FPN) and a novel loss

function called Focal Loss to alleviate the class imbalance problem. Fig 2.1

illustrates various models.

Anchor Usage

• Anchor-Based Detectors: The concept of ’anchor’ was introduced in the Re-

gion Proposal Network (RPN) of Faster R-CNN [38]. Anchors are pre-defined

boxes with specific scales and aspect ratios that are used as references for pre-

dicting ROIs. Since its introduction, the anchor mechanism has been widely

used in two-stage detectors like Faster R-CNN and Mask R-CNN [43], as well

as in one-stage detectors like SSD and YOLO-v2.

• Anchor-Free Detectors: However, there are also detectors that avoid the use

of anchors. For instance, YOLO-v1 [39] divided the image into grids to gen-

erate predictions, creating an anchor-free detection pipeline. Similarly, DeNet

[44] predicted the four key points of the target to avoid the use of the anchor

mechanism.

This classification of CNN-based detectors based on the number of stages and an-

chor usage provides a structured understanding of the various approaches taken

in object detection. Each method has its strengths and trade-offs, and the choice

of method depends on the specific requirements of the application, including the

need for real-time detection, the acceptable level of accuracy, and the computational

resources available, especially in the context of embedded devices.

Chapter 2. Background 18

2.3.3 Model Compression Techniques for CNN-based Object De-

tection on Embedded Devices

Integer Quantization

Integer quantization [45] is a technique that reduces the precision of weights and

biases in the neural network to integer values. The significant advantage of integer

quantization is the reduction in the model size and memory footprint, as well as

faster inference times. It helps mitigate the memory and computational constraints

of embedded devices while retaining high detection accuracy.

One downside of integer quantization is that it may slightly degrade the model’s

accuracy because of the reduced precision. In terms of implementation, it requires

careful scaling to ensure the values fit within the new integer range without signifi-

cant information loss.

In many use cases, the benefits of integer quantization outweigh the marginal ac-

curacy loss. For example, in real-time object detection on embedded devices where

low latency and high processing speed are crucial, integer quantization is highly

beneficial. Furthermore, the lower memory footprint allows for deployment on de-

vices with limited memory resources.

Pruning

Pruning is another technique for compressing CNN models [46]. It involves the re-

moval of certain parts of a neural network, such as neurons, layers, or weights, that

contribute little to the model’s output. This process reduces the model’s complexity

and size.

Pruning’s advantage lies in its ability to significantly reduce the model’s size

without drastically affecting the model’s accuracy. However, the disadvantage is

that it might lead to irregular memory access patterns, which could negate the com-

putational benefits.

Chapter 2. Background 19

Knowledge Distillation

Knowledge distillation [47] involves training a smaller, student model to mimic the

behavior of a larger, teacher model. The student model learns to approximate the

function learned by the teacher model, thereby compressing the model while main-

taining similar performance.

The primary advantage of knowledge distillation is that it can achieve a high

degree of compression with minimal impact on model performance. However, the

process can be computationally expensive and time-consuming as it involves train-

ing two models.

Weight Sharing

Weight sharing [48] is a technique that groups weights with similar values and as-

signs them a common value, reducing the number of unique weight values and

hence the model’s size. Weight sharing can significantly reduce the model’s size,

but it may lead to performance degradation due to the loss of unique weight values.

Comparison and Choice for this Thesis

Each of these techniques has its strengths and trade-offs. Integer quantization and

pruning reduce model size and improve inference speed, but may slightly degrade

accuracy. Knowledge distillation maintains performance but can be computation-

ally expensive. Weight sharing reduces model size but might lead to performance

degradation.

Given the specific requirements of this thesis, which include real-time object de-

tection on embedded devices with limited computational resources and memory, in-

teger quantization is the chosen compression technique. It offers the optimal trade-

off between model size, computational efficiency, and detection accuracy. Moreover,

the slight degradation in accuracy due to integer quantization is often acceptable in

real-world applications where speed and efficiency are paramount.

Chapter 2. Background 20

2.4 Tensor Processing Units and Edge Accelerators

In the context of object detection on embedded devices, TPUs (Tensor Processing

Units) and edge accelerators play a pivotal role. With their ability to perform high-

speed, low-precision computations, TPUs can significantly accelerate the execution

of CNN-based object detection models, enabling real-time object detection. On the

other hand, edge accelerators enable the deployment of these models on embedded

devices at the edge of the network. By performing computations locally, they not

only reduce latency but also help conserve bandwidth, which is often a critical re-

source in IoT systems. Additionally, they help address privacy concerns by keeping

data on the device instead of transmitting it to the cloud.

In conclusion, TPUs and edge accelerators provide the computational power and

efficiency needed to run CNN-based object detection models on embedded devices,

making them indispensable tools in the advancement of edge AI and IoT applica-

tions.

2.4.1 Edge Accelerators

Edge accelerators [49] are specialized hardware devices designed to accelerate ma-

chine learning tasks at the edge of the network, i.e., closer to the data source. These

devices, which include Google’s Edge TPU, Intel’s Movidius Neural Compute Stick,

NVIDIA’s Jetson series, and others, are designed to process AI algorithms on-device,

enabling real-time data processing without the need for constant connectivity.

Edge accelerators are critical for applications where low latency is crucial, such

as autonomous vehicles, real-time video analytics, and robotics. By performing

computation on the device, they eliminate the need to send data to the cloud for

processing, thereby reducing latency and preserving user privacy. The primary ad-

vantage of edge accelerators is their ability to perform real-time, on-device AI pro-

cessing while using minimal power, making them ideal for use in battery-powered

Chapter 2. Background 21

or energy-constrained devices. However, like TPUs, they are application-specific

and may require specialized knowledge to program effectively.

2.4.2 TPUs

TPUs are Application-Specific Integrated Circuits (ASICs) developed by Google [50]

specifically for accelerating machine learning tasks. They are designed to boost the

speed and efficiency of tensor operations, which are fundamental to running deep

learning models, including CNNs.

TPUs are highly optimized for high-volume, low-precision computation, offer-

ing a significant speedup for machine learning models while maintaining accuracy.

They are capable of processing a large amount of data in parallel, making them

highly efficient for large-scale machine learning applications.

There are two key advantages of TPUs. First, they provide high computational

throughput, enabling faster training and inference times for machine learning mod-

els. Second, they are highly power-efficient, providing more computations per watt

compared to traditional CPUs or GPUs.

However, TPUs are not without limitations. They are specialized hardware,

meaning they are not as versatile as CPUs or GPUs. Furthermore, they can be chal-

lenging to program and may not be compatible with all machine learning frame-

works.

22

Chapter 3

Literature Review

3.1 Introduction

The performance evaluation of CNN models on embedded devices has garnered

significant research attention. As embedded platforms become increasingly preva-

lent, understanding the capabilities and limitations of deploying deep learning al-

gorithms on resource-constrained devices is crucial. This literature review section

aims to examine key studies that have investigated the performance of CNN mod-

els on various embedded systems, such as the Jetson TK1, Raspberry Pi 3, Jetson

TX2, Jetson Nano, and Jetson Xavier NX. These studies shed light on the challenges

encountered and explore optimization strategies to enhance the efficiency and accu-

racy of CNN models on embedded devices. By synthesizing the findings from these

studies, this section aims to provide a comprehensive understanding of the perfor-

mance evaluation of CNN models in the context of embedded devices, facilitating

informed decision-making for future deployments.

Furthermore, we will also analyze several lightweight models that are preva-

lently employed in current times. However, it is essential to note that we will ded-

icate the subsequent chapter to a comprehensive discussion of the models that we

have personally utilized in our study and that are deemed as state-of-the-art within

this dynamic field.

Chapter 3. Literature Review 23

3.2 Efficient CNN-Based Models for Embedded Devices

As the scope and application of deep learning expand, the need for efficient mod-

els that can perform on devices with limited computational resources becomes in-

creasingly critical. Embedded devices, while powerful and versatile, often lack the

computing power and memory of more traditional computing systems. This ne-

cessitates the use of streamlined, efficient models that maintain a high level of per-

formance while minimizing their computational footprint. Models like SqueezeNet

and Tiny YOLO are particularly noteworthy in this context.

• SqueezeNet: SqueezeNet [51] is an innovative CNN architecture that was de-

signed with the explicit goal of reducing model size while maintaining the

level of accuracy achieved by traditional models like AlexNet [52]. The SqueezeNet

architecture introduced the ’Fire Module’ - a microarchitecture comprising of

’squeeze’ and ’expand’ layers. The squeeze layers, which consist of 1x1 filters,

reduce the number of input data channels, and thus computational complex-

ity. The expand layers use a mix of 1x1 and 3x3 filters to increase the channel

depth, allowing SqueezeNet to maintain the representational capacity of the

network.

The compactness of SqueezeNet makes it particularly suitable for deployment

on embedded devices where memory is often limited. With the use of deep

compression techniques such as pruning, quantization, and Huffman coding,

SqueezeNet can be compressed to a size less than 0.5MB, making it a very

efficient choice for edge computing.

• Tiny YOLO: YOLO is a popular real-time object detection system that treats

object detection as a single regression problem, making it faster than the two-

stage approach used by other methods like R-CNN. Tiny YOLO [53] is a smaller

version of the YOLO model, designed for systems with less computational

power.

Chapter 3. Literature Review 24

(A)

(B)

FIGURE 3.1: Sqeeznet model architecture. (A) illustrates the macroar-
chitecture and (B) shows the fire module [51].

The Tiny YOLO architecture uses fewer layers and less convolutional filters

than the full YOLO model. Specifically, it consists of a few convolutional lay-

ers with leaky ReLU activations and Max-Pooling layers and a final output

layer as illustrated in Fig 3.2. Despite its reduced complexity, Tiny YOLO still

achieves remarkable results in real-time object detection.

Tiny YOLO is particularly suited for embedded devices due to its small size

and fast inference time. While it may not achieve the same level of accuracy

as larger models, it provides an excellent trade-off between size, speed, and

accuracy, making it highly efficient for real-time applications on embedded

devices.

Chapter 3. Literature Review 25

FIGURE 3.2: Simplistic architecture of a typical Tiny Yolo model.

• ShuffleNet: ShuffleNet [54] utilizes pointwise group convolutions and chan-

nel shuffling to greatly reduce computational cost while maintaining accuracy

comparable to larger models. The use of group convolutions reduces the num-

ber of parameters, making the model smaller and more efficient.

FIGURE 3.3: Simplistic architecture of ShuffleNetV2 with type 1 shuffle
unit.

In conclusion, these streamlined and efficient models are pushing the boundaries of

what is achievable with embedded devices, allowing for sophisticated deep learning

applications in memory and compute-constrained environments.

Chapter 3. Literature Review 26

3.3 Model Benchmarking Literature

A considerable body of research has been dedicated to the development of embed-

ded platforms and the implementation of deep learning algorithms on these devices.

One such notable study was conducted by Mao et al. [55], in which the authors suc-

cessfully executed the Fast R-CNN algorithm on the Jetson TK1 platform. To accom-

modate the specific requirements of the TK1 platform, the Fast R-CNN algorithm

underwent several alterations. Despite these modifications, the detection speed re-

mained relatively low, achieving a rate of merely 1.85 Frames Per Second (FPS). This

highlights the challenges and potential limitations of implementing complex deep

learning algorithms on embedded devices.

Vidya et al. [56] investigated the performance of the EfficientDet family of CNNs

on resource-constrained devices, specifically the Raspberry Pi 3. They found that in-

teger quantization reduced the size of the model but came at the cost of decreased

accuracy. Their analysis demonstrated that EfficientDet0 and EfficientDet1 were the

most suitable models for deployment on a Raspberry Pi. When comparing the per-

formance of the Stochastic Gradient Descent (SGD) and Adam optimizers, Efficient-

Det1 performed better with the SGD optimizer, while EfficientDet0 performed better

with the Adam optimizer. The authors concluded that selecting EfficientDet1 with a

moving average decay of 0.95 and the SGD optimizer is recommended when speed

is not a critical factor. In contrast, when speed is essential, EfficientDet0 with a 0.9

moving average decay and the Adam optimizer is the optimal choice. The ideal

Intersection over Union (IOU) threshold value for these models ranges from 0.5 to

0.95, depending on the specific application requirements. It is important to note that

the findings of this study are limited to the Raspberry Pi 3 and may differ on other

resource-constrained devices, such as mobile phones.

Süzen et al. [57] assessed the performance of CNNs for classifying traditional

2D images on three embedded platforms: Jetson TX2, Jetson Nano, and Raspberry

Chapter 3. Literature Review 27

Pi. Utilizing the DeepFashion2 dataset, which contains 13 popular clothing cate-

gories and 45,000 images, the authors created five different sized data clusters to

compare the performance of the CNN model on both GPU and CPU. Their results

indicated that the Jetson TX2, despite having higher power consumption and cost,

provided superior performance in terms of accuracy, shorter execution time, and

handling larger datasets. The Raspberry Pi, although the most cost-effective option,

was deemed unsuitable for deep learning applications due to its lack of NVIDIA

GPU support and longer processing times. The authors concluded that selecting

hardware with higher capabilities provides an advantage in accuracy and perfor-

mance for deep learning applications but comes at a higher cost.

Zhu et al. [58] analyzed the performance of YOLO models, PPYOLO and YOLOv3,

on embedded devices Jetson Nano and Jetson Xavier NX. PPYOLO showed bet-

ter inference speed than YOLOv3 on both devices, with a slight advantage on the

Xavier NX. CPU usage was higher for faster models, while memory usage varied

with model input size on the Nano. Energy consumption was lower on the Xavier

NX due to faster task completion. The lightweight versions, PPYOLO-tiny and

YOLOv3-tiny, were about 4x faster and reduced power usage by around 20% on

the Nano. The use of TensorRT for inference acceleration significantly improved

performance on Jetson devices.

Liberatori et al. [59] studied the YOLOv4-Tiny based model for detecting face

masks in images, optimized for low-end devices such as the Raspberry Pi 4. The

model was trained on a publicly available "Mask-Detection-Dataset" with images

manipulated to mimic low-fidelity environments. Techniques such as pruning and

quantization were used to reduce the computational requirements of the model. A

model pruned with a one-shot 60% pruning rate and statically quantized delivered

the best performance, achieving a trade-off between mean Average Precision (mAP)

of 0.574 and an increased frame rate of 1.97 FPS. The study’s objective was to bal-

ance detection accuracy and inference speed, making it viable for real-world appli-

cations in resource-constrained environments. The study’s results are comparable

Chapter 3. Literature Review 28

with other models using YOLOv3 and YOLOv4 in terms of mAP, demonstrating its

effectiveness despite its lighter footprint.

Feng et al. [60] analyzed the performance of accelerator-based Single Board

Computers (SBCs) in running YOLO models for object detection, using different

video frame sizes and two versions of the YOLO model. Their metrics include FPS,

memory and CPU usage, and energy consumption. They find that more complex

models and larger data sizes slow inference and increase memory and CPU usage,

with GPU-based SBCs using significantly more memory than ASIC-based SBCs. De-

spite this, Jetson Xavier NX consistently outperforms other SBCs in terms of FPS,

regardless of data size or YOLO model used, while Jetson Nano shows the worst

performance. However, the mean confidence (average accuracy) of YOLOv3-tiny

on the Raspberry Pi with Neural Compute Stick 2 (NCS2) is 0%, compared to 57.9%

on the Jetson devices, suggesting the need for model adaptation to the SBC’s archi-

tecture. Energy consumption mainly depends on the SBC itself; Jetson Xavier NX

consumes the least energy due to its high performance and short inference time,

despite its high average power usage. The authors conclude that ASIC accelerators

allow low-performance SBCs to run high-performance CNN models while using

minimal resources, but model adaptation is crucial. They also highlight the need for

careful model selection on GPU-based SBCs to balance accuracy and speed.

Anggraini et al. [61] evaluated the performance of SSDLite MobileNetV2 and

MobileNetV3 models for face mask detection on Raspberry Pi 4. Results show that

the SSDLite MobileNetV2 model with fine-tuning performs best, detecting all inputs

accurately. However, without fine-tuning, these models struggled to identify incor-

rectly used masks. The SSDLite MobileNetV3 Small model achieved the highest FPS

equal to 10, indicating a faster detection speed than a two-stage mask detection sys-

tem. Power consumption was found to be relatively consistent across models. In

terms of accuracy, the SSDLite MobileNetV3 Small model achieved a 70% score, but

struggled with detecting incorrect mask use and working under inadequate light-

ing conditions. Despite these limitations, the model had higher detection speed

Chapter 3. Literature Review 29

and slightly lower power consumption compared to other models. Future research

could explore different datasets, training model configurations, and camera types.

Sha et al. [42] used the CityPersons and ETH datasets to evaluate a variety of

CNN-based pedestrian detectors, including FPN, RetinaNet, Faster R-CNN, FCOS,

ALFNet, CSP, and BCNet, under the same computational environment. These datasets

were chosen due to their diversity in image resolution, people density, and street

view diversity, thus offering a comprehensive test of the detectors’ generalization

abilities. Experiments were conducted on a Nvidia GeForce GTX 1080 Ti GPU,

without pre-training the models on any other datasets. Results indicated that the

feature extraction capability of the detector’s backbone, whether it be ResNet-50 or

HRNet, significantly impacts accuracy. Reduced image resolution, while allowing

compatibility with GPU memory, slightly decreased model accuracy. Furthermore,

the study found a need to balance between hyper-parameter settings and network

architectures to manage model complexity within GPU constraints. Despite some

success, the study identified the generalization ability as an ongoing challenge in

pedestrian detection, suggesting that future work should focus on improving this

through increased dataset diversity.

Velasco et al. [62] evaluated the efficiency and effectiveness of several deep

neural network (DNN) models specifically designed for embedded devices. These

models included: Network in Network: This model significantly reduced the num-

ber of parameters compared to previous models like AlexNet, through the use of

micro neural networks with 1x1 convolution kernels and global average pooling.

GoogLeNet (Inception-v1): Winning the 2014 ImageNet Large Scale Visual Recog-

nition Challenge, this model further reduced the number of parameters through the

introduction of the Inception module, which used parallel convolutions with vary-

ing filter sizes. SqueezeNet: This model aimed to maintain the accuracy of AlexNet

while drastically reducing network parameters. It achieved this through the Fire

module, which used a squeeze convolution layer and an expand layer with 1x1 and

Chapter 3. Literature Review 30

3x3 convolution filters. MobileNet: Designed for mobile and embedded vision ap-

plications, this model used depth-wise and point-wise convolutions to significantly

reduce computational model parameters. It also incorporated a width multiplier

and a resolution multiplier to further reduce computational cost. The performance

of these models was evaluated on a Raspberry Pi, with metrics including accuracy,

throughput, power consumption, and a composite Figure of Merit. The findings

indicated that, while each model had its strengths, SqueezeNet provided the best

balance between accuracy and efficiency with FPS of 4 and power usage of 4W.

TABLE 3.1: Comparison of Literature Reviews on Embedded Deep
Learning

Authors Devices Tested Models Key Findings Metrics

Mao et al. [55] Jetson TK1 Fast R-CNN Successful execution on Jetson

TK1 with alterations to Fast R-

CNN

mAP, FPS, RAM Us-

age

Vidya et al. [56] Raspberry Pi 3 EfficientDet family Identified suitable models for

Raspberry Pi 3. Recommenda-

tions for optimizer choice based

on speed.

Input Size, AP

Süzen et al. [57] Jetson TX2,

Jetson Nano,

Raspberry Pi

CNN (DeepFashion2

dataset)

Jetson TX2 showed superior

performance in accuracy and

execution time. Raspberry Pi

deemed unsuitable due to long

processing times.

AP, FPS, CPU/GPU

Power, RAM

Zhu et al. [58] Jetson Nano,

Jetson Xavier

NX

YOLO models (PPY-

OLO, YOLOv3)

PPYOLO showed better infer-

ence speed. Use of TensorRT im-

proved performance on Jetson

devices.

Power, Energy,

Inference Time,

CPU/RAM Usage

Liberatori et al. [59] Raspberry Pi 4 YOLOv4-Tiny Developed model for face mask

detection in low-fidelity envi-

ronments. Used pruning and

quantization to reduce compu-

tational needs.

mAP, FPS

Feng et al. [60] Various SBCs YOLO models Jetson Xavier NX outperformed

others in FPS. Importance of

model adaptation to SBC’s ar-

chitecture highlighted.

FPS, Mean confi-

dence, CPU/RAM

Usage, Power, Time

Continued on next page

Chapter 3. Literature Review 31

Table 3.1 – continued from previous page

Authors Devices Tested Models Key Findings Metrics

Anggraini et al. [61] Raspberry Pi 4 SSDLite MobileNetV2,

MobileNetV3

Identified model with best per-

formance for face mask detec-

tion. Noted challenges with de-

tecting incorrect mask use.

Min/MAx FPS,

Power, Fine Tuning,

Accuracy

Sha et al. [42] Nvidia GeForce

GTX 1080 Ti

GPU

Various CNN-based

pedestrian detectors

Evaluated generalization abili-

ties of several detectors. Empha-

sized the importance of feature

extraction capability of the de-

tector’s backbone.

Miss Rate, Resolu-

tion, BackBones

Velasco et al. [62] Raspberry Pi Network in Net-

work, GoogLeNet,

SqueezeNet, MobileNet

SqueezeNet provided the best

balance between accuracy and

efficiency.

FPS, Power

This Work Raspberry Pi

4, Google USB

Coral Accelera-

tor

MobileNetSSDv1, Mo-

bileNetSSDv2, Efficient-

Detv0, EfficientDetv2,

YOLOv5, MOL

Established a through frame-

work with five distinct metrics

tailored for embedded devices.

Accuracy, FPS,

Power Consump-

tion, Temperature,

CPU/RAM Usage

3.4 Conclusion

In conclusion, the performance evaluation of CNN models on embedded devices is

a crucial topic in deep learning. The studies reviewed provide insights into imple-

menting complex CNN algorithms on resource-constrained platforms, emphasiz-

ing the trade-offs between accuracy, speed, power consumption, and cost. Further-

more, hardware capabilities must be carefully considered when selecting embed-

ded devices, and optimization techniques such as model quantization, input size,

and inference acceleration play significant roles in achieving efficient and accurate

inference.

The studies also highlight the potential of optimizing models for low-end de-

vices, demonstrating the effectiveness of techniques like pruning, quantization, and

model adaptation. The selection of hardware and careful model selection on GPU-

based SBCs is important to balance accuracy and speed.

Evaluation of different CNN models, including specialized models like SqueezeNet,

Chapter 3. Literature Review 32

sheds light on the impact of model architecture, feature extraction, and hyper-parameter

settings on performance. Model complexity must be managed within GPU con-

straints, and generalization abilities remain a challenge.

The insights gained from these studies contribute to the advancement of embed-

ded deep learning applications, providing valuable guidance for researchers and

practitioners. Further research is needed to explore additional optimization strate-

gies, evaluate emerging embedded systems, and address evolving challenges. The

findings pave the way for future advancements in embedded deep learning.

33

Chapter 4

A Compendium of Cutting-edge CNN

Models

4.1 Introduction

This chapter explores six distinct models that form the core of our investigation (i.e.

MobileNetSSD V1, V2, EfficientDet V0, V2, MobileObjectLocalizer, and YOLOv5s).

This next section, in essence, serves as an academic canvas where we elucidate the

intricate details of each of these models, delving into their structure, functionality,

and unique attributes. These models have been specifically chosen due to their no-

table presence in the domain of object detection, and their potential applicability

within the constraints of embedded devices. We aim to provide a comprehensive

understanding of these models before benchmarking their performance, a process

that will be undertaken in the ensuing chapters. This structured and meticulous ap-

proach allows us to lay a solid foundation for the empirical analysis that is to follow,

thereby providing a coherent and well-rounded narrative to our study.

Chapter 4. A Compendium of Cutting-edge CNN Models 34

4.2 Object Detection Models Analysis

4.2.1 Criteria for Model Selection

The process of selecting appropriate models for embedded object detection involves

a multifaceted analysis of several key criteria. These criteria aim to ensure that the

models not only offer high detection accuracy but are also computationally effi-

cient, enabling their deployment in real-time applications on resource-constrained

devices. Below, we outline and discuss the principal criteria that have informed our

selection of the six models for this study.

Computational Efficiency

Computational efficiency is paramount, especially for embedded systems with lim-

ited processing capabilities. We evaluate the models based on model size, and infer-

ence speed. A model that offers high accuracy but is computationally intensive may

not be suitable for real-time applications on embedded devices.

Detection Accuracy

Accuracy in detecting and classifying objects is another critical factor. It is measured

using metrics like mean Average Precision (mAP) at various Intersection over Union

(IoU) thresholds. While computational efficiency is essential, it should not come

at a significant compromise to detection accuracy, as this would limit the model’s

practical applicability.

Versatility and Flexibility

The selected models should be versatile and flexible, capable of detecting a wide

range of objects in various environmental conditions. This includes the ability to

handle different lighting conditions, object orientations, and occlusions. The model’s

Chapter 4. A Compendium of Cutting-edge CNN Models 35

adaptability to different application domains and scenarios is also a vital considera-

tion.

Scalability

Scalability refers to the model’s ability to maintain performance when scaled down

to fit the constraints of embedded devices or scaled up to improve accuracy for more

complex tasks. This involves analyzing how changes in model size, complexity, and

computational requirements affect its detection performance.

Robustness

Robustness is the model’s ability to maintain high performance in real-world sce-

narios, including noisy and dynamic environments. It also involves the model’s

resilience to adversarial attacks and its performance stability under various condi-

tions.

Ease of Implementation

Practical implementation aspects, including the availability of pre-trained models,

training data requirements, and ease of fine-tuning, are also crucial. Models that

are easier to implement and adapt to specific tasks can expedite the development

process and facilitate their deployment in real-world applications.

4.2.2 MobileNet

The MobileNet family of detectors, a well-regarded and widely implemented series

of CNN models, are famed for their focus on providing high-performance object

detection capabilities with reduced computational complexity, ideal for deployment

on resource-constrained devices. These models, developed by Google researchers,

have seen several iterations with the release of MobileNetV1, MobileNetV2, and

Chapter 4. A Compendium of Cutting-edge CNN Models 36

MobileNetV3, each improving upon the last in various aspects, particularly compu-

tational efficiency, accuracy, and speed.

MobileNetV1

The primary architecture of MobileNetV1 [35] is characterized by the introduction of

depthwise separable convolutions as illustrated in Fig. 4.1a, a significant departure

from the traditional convolution operation used in most CNNs. This innovative

design choice breaks down the standard convolution into two parts: a depthwise

convolution and a pointwise convolution. The depthwise convolution applies a sin-

gle filter per input channel, while the pointwise convolution uses a 1x1 convolution

to build new features through computing combinations of input channels. This fac-

torization into simpler operations significantly reduces the computational load, en-

abling the deployment of the model on devices with limited computational power

while maintaining reasonable accuracy levels.

MobileNetV2

Building upon the architecture of MobileNetV1, MobileNetV2 [63] introduces two

significant architectural elements – the inverted residual structure and the linear bot-

tleneck as illustrated in Fig. 4.1b. The inverted residual structure essentially inverts

the traditional residual block design, where the input undergoes a 1x1 expansion

convolution to increase the number of channels, followed by a 3x3 depthwise con-

volution, and finally a 1x1 projection convolution to reduce the channel dimensions

back down. The linear bottleneck, on the other hand, serves to preserve the infor-

mation throughout the network. The authors argued that non-linearities in the final

layers could destroy some critical information, hence a linear activation function

was used instead. These two features lead to a substantial increase in efficiency and

performance over MobileNetV1.

Chapter 4. A Compendium of Cutting-edge CNN Models 37

(A) MobileNetV1 Architecture.

(B) MobileNetV2 Architecture.

(C) SSD Architecture.

(D) MobileNetSSD Architecture.

(E) YOLO Architecture.

(F) EfficientDet Architecture.

FIGURE 4.1: Comparative Architectures of Studied Models.

Chapter 4. A Compendium of Cutting-edge CNN Models 38

4.2.3 SSD

SSD [40] is an object detection model that combines the advantages of both re-

gion proposal-based (two-stage) methods and regression/classification-based (one-

stage) methods. Its structure includes a base network followed by several convolu-

tional layers, making it one of the prominent single-shot object detectors.

Due to its balance between speed and accuracy, SSD has a wide range of use

cases, including surveillance systems, autonomous vehicles, robotics, and any ap-

plication requiring real-time object detection.

While SSD is not as lightweight as MobileNet or SqueezeNet, it still offers a

reasonable compromise between accuracy and computational efficiency, making it

suitable for deployment on resource-constrained devices, such as the Raspberry Pi.

Furthermore, SSD can be combined with lightweight models (e.g., MobileNet) as the

base network to form variants such as MobileNet-SSD, which can further optimize

its performance on such devices.

Even on a Raspberry Pi, an SSD model can offer real-time object detection per-

formance, although the exact frame rate may vary depending on the specific SSD

variant and the complexity of the task at hand. Quantization and other model com-

pression techniques can also be applied to the SSD model to improve its efficiency

on resource-constrained devices further.

In conclusion, while SSD may not be as efficient as some other lightweight mod-

els, its balance of speed and accuracy, coupled with the potential for further op-

timizations, makes it a robust choice for object detection on resource-constrained

devices.

Architecture

SSD employs a VGG16 model pretrained on ImageNet as its base network [40]. As

illustrated in Fig. 4.1c it modifies the VGG16 architecture by removing some of the

Chapter 4. A Compendium of Cutting-edge CNN Models 39

fully connected layers, replacing them with a series of convolutional layers of de-

creasing sizes, thus forming a multi-scale feature map. The multi-scale feature maps

at the top of the network predict the offsets to default boxes of different scales and

aspect ratios and their associated confidences. This enables SSD to handle objects of

various sizes and shapes, a significant advantage over models such as YOLO that

use a fixed grid for detection.

Furthermore, SSD introduces the concept of default boxes (or anchor boxes),

which are pre-computed boxes of various aspect ratios. During training, SSD deter-

mines the offsets and confidences for these default boxes. The application of these

default boxes across multiple feature maps of different resolutions allows the detec-

tion of objects at various scales.

4.2.4 MobileNet-SSD

MobileNet-SSD is a highly efficient, single-shot object detection model that is a com-

bination of MobileNet and SSD [64]. As the name suggests, it leverages the Mo-

bileNet architecture as a feature extractor (backbone) and the SSD framework as the

object detection mechanism (detection head).

MobileNet-SSD combines the best of both worlds, where MobileNet provides

a compact and efficient base network, and SSD offers a powerful detection mech-

anism. The resulting model is a fast and accurate object detector with a signifi-

cantly reduced computational footprint. This makes MobileNet-SSD particularly

well suited for real-time applications on resource-constrained devices such as the

Raspberry Pi.

The model can deliver impressive performance even on these devices, manag-

ing to run object detection tasks in real-time while maintaining reasonable accuracy

levels. Moreover, it can also be further optimized using techniques like quantiza-

tion and pruning to reduce the memory and computation requirements, thereby

improving the speed and efficiency without sacrificing much accuracy.

Chapter 4. A Compendium of Cutting-edge CNN Models 40

In conclusion, MobileNet-SSD is an excellent choice for object detection appli-

cations on resource-constrained devices due to its efficient architecture and strong

performance. It is a practical solution for scenarios where both speed and accuracy

are crucial, and computational resources are limited.

Architecture

The architecture of MobileNet-SSD combines the strengths of both models as illus-

trated in Fig. 4.1d. The MobileNet component is responsible for the extraction of

high-level features from the input image [64]. It utilizes depthwise separable convo-

lutions, significantly reducing the computational requirements while still delivering

robust feature extraction capabilities. This makes MobileNet particularly useful for

environments where computational resources are limited.

The SSD component is responsible for predicting the class and location of ob-

jects in the input image. It uses multiple feature maps from different layers of the

network to detect objects at different scales. Each feature map cell gives predictions

for a set of default boxes of different aspect ratios. This multi-scale, multi-aspect-

ratio approach makes SSD highly effective for detecting objects of various sizes and

shapes.

4.2.5 EfficientDet

EfficientDet, developed by Tan et al. [65], is a family of object detectors recognized

for their excellent balance of accuracy and computational efficiency that come in dif-

ferent sizes, denoted by a scaling parameter d. The larger the value of d, the more

complex and accurate the model is. They represent the next phase in the evolution of

object detection models, incorporating novel architectural and methodological tech-

niques. At the core of the EfficientDet family are EfficientDet-D0 and EfficientDet-

D2, each reflecting an advancement over the preceding version.

Chapter 4. A Compendium of Cutting-edge CNN Models 41

The EfficientDet family of object detectors are designed to balance accuracy with

computational efficiency, Fig. 4.1f shows a basic general architecture, making them

attractive options for deployment on resource-constrained devices. However, their

application in such scenarios demands thoughtful consideration. While these mod-

els are more efficient than many other object detectors of similar or higher accuracy,

they are still computationally more intensive than lightweight models such as Mo-

bileNets or SqueezeNet.

EfficientDet-D0 and D2, despite being more streamlined than other detectors of

comparable performance, may still be too resource-intensive for devices with strin-

gent computational and power limitations. For instance, deploying these models

on low-cost embedded devices such as Raspberry Pi may result in slower inference

times and greater power consumption, compared to deploying lightweight models.

However, for higher-end edge devices such as Google’s Edge TPU or NVIDIA’s

Jetson series, which possess more substantial computational resources while still

maintaining a small footprint, EfficientDet models can deliver robust object detec-

tion performance with acceptable efficiency. Furthermore, the use of techniques

such as model quantization or pruning could potentially optimize these models fur-

ther for deployment on resource-constrained devices.

In summary, while EfficientDet models represent a significant stride towards

creating efficient, high-performing object detectors, their deployment on resource-

constrained devices requires careful consideration of the device’s computational ca-

pabilities and the specific requirements of the task at hand. It underscores the ne-

cessity of detailed performance benchmarking across various devices and models,

to facilitate informed decisions when choosing the most suitable model for deploy-

ment.

EfficientDet-D0

The EfficientDet-D0 model builds on the EfficientNet backbone, a CNN architec-

ture optimized using compound scaling, which simultaneously scales up network

Chapter 4. A Compendium of Cutting-edge CNN Models 42

depth, width, and resolution. The principal innovation in EfficientDet-D0 lies in the

introduction of a bi-directional feature pyramid network (BiFPN), a significant im-

provement over the single-directional FPN used in earlier models. BiFPN allows for

multi-scale feature fusion, enabling the model to process information at different

scales and resolutions, thereby providing a more robust representation of objects.

Another significant contribution is the weighted feature fusion, which enables the

model to assign weights to different features based on their importance, enhancing

the model’s ability to focus on more relevant features. It achieves similar accuracy

as YOLOv3 with 28x fewer FLOPs

EfficientDet-D2

The EfficientDet-D2 model furthers the architectural developments of D1 by increas-

ing the number of layers in the BiFPN and employing a more substantial Efficient-

Net backbone. The scaling up of the architecture leads to improved performance

due to the increased capacity of the model. Further, EfficientDet-D2 includes a com-

pound scaling method, which uniquely scales up the resolution, depth, and width

of the network based on a fixed resource budget. This comprehensive scaling strat-

egy results in improved model performance without exponentially increasing the

computational complexity.

The EfficientDet family showcases a remarkable interplay of several novel tech-

niques, including compound scaling, BiFPN, and weighted feature fusion, resulting

in highly accurate and computationally efficient models. As with the MobileNet

family, the choice between EfficientDet-D1 and EfficientDet-D2 would depend on

the specific task at hand and the resource constraints of the device in use. The im-

portance of thorough performance benchmarking, therefore, cannot be overstated in

determining the optimal model for a given task. It achieves state-of-the-art accuracy

on COCO test-dev dataset among single-model detectors, with 48.5 mAP.

Chapter 4. A Compendium of Cutting-edge CNN Models 43

4.2.6 YOLO

YOLO [66] is a real-time object detection system that has revolutionized the field

of computer vision due to its superior speed and accuracy. Unlike the two-stage

approach taken by other models such as R-CNN, YOLO frames object detection as

a regression problem to spatially separated bounding boxes and associated class

probabilities. A single pass through the network is enough to make predictions,

making YOLO an exceptionally fast and efficient model.

YOLOv5s

YOLOv5s is a more compact variant of the YOLOv5 model [67]. Designed with edge

devices in mind, its aim was to strike a balance between model size and detection

performance while keeping computational constraints into consideration. How-

ever, real-world benchmarks, such as those in this thesis, show that while YOLOv5s

exhibits commendable accuracy, its inference speed, especially on devices like the

Raspberry Pi, might not always align with real-time expectations.

By employing a smaller backbone and fewer filters in the detection head, YOLOv5s

boasts a reduced architecture and a smaller set of parameters. This results in less

computational load in theory, suggesting its applicability in real-time scenarios, es-

pecially on devices with restricted computational capabilities and memory.

The YOLO series, and in particular YOLOv5s, have been proposed for applica-

tions necessitating real-time object detection, ranging from surveillance systems to

autonomous vehicles and drones.

However, when deployed on truly resource-constrained platforms like the Rasp-

berry Pi, while YOLOv5s exhibits a notable accuracy in object detection, it may not

always meet the desired real-time speeds. This is a testament to the challenges of

deploying complex models in constrained environments. Yet, its impressive accu-

racy does highlight its potential in applications where precision might be prioritized

over pure speed.

Chapter 4. A Compendium of Cutting-edge CNN Models 44

In summary, while YOLO and its lightweight counterpart, YOLOv5s, are ground-

breaking in their approach to object detection, practical implementations underscore

the importance of holistic testing. Specifically, in real-world scenarios, there’s a

delicate balance to strike between speed, accuracy, and performance, especially on

resource-limited devices.

Architecture

YOLO uses a single convolutional network to predict multiple bounding boxes and

class probabilities for those boxes as illustrated in Fig. 4.1e. The model divides the

input image into an SxS grid, and for each grid cell, it predicts B bounding boxes,

confidence for those boxes, and C class probabilities. Each bounding box also has

an associated confidence score indicating the probability that the box contains an

object.

However, it should be noted that YOLOv5 was not released by the original

YOLO authors but by a different group of researchers. The exact architecture of

YOLOv5 may vary as it evolves, but the general structure and workflow based on

the information available on their Github page, YOLOv5 is designed with the same

basic principles as earlier versions of YOLO. The general workflow is as follows:

• Image Input:

The input image is taken and resized to a square image of a size that’s a mul-

tiple of 32 (like 320x320, 416x416, 608x608 pixels), as this is the requirement of

the model to function properly.

• Backbone / Feature Extraction:

The resized image is passed through a series of convolutional layers to gener-

ate a feature map. In the case of YOLOv5, the backbone network is a custom

architecture that starts with a Focus layer, which is essentially a type of convo-

lution layer that reduces the spatial dimensions of the image and increases the

channel dimensions to extract features.

Chapter 4. A Compendium of Cutting-edge CNN Models 45

• Neck / Additional Feature Extraction and Pyramid Scaling:

The feature map is then passed through several more layers. These layers

include feature pyramid scaling to detect objects of different sizes and some

additional convolutional layers to refine the features.

• Head / Detection:

The final stage involves a detection head which outputs bounding box coordi-

nates, class predictions, and objectness scores (how likely the predicted bound-

ing box actually encloses an object). This is typically done using three different

scales (small, medium, large objects) to capture objects of different sizes.

4.2.7 MobileObjectLocalizer

MobileObjectLocalizer (MOL), a lightweight object detection model developed by

Google [68], can be deployed for recognizing a vast array of objects. Unlike models

such as YOLO, which categorizes objects into 80 classes based on the COCO dataset,

MOL refrains from assigning specific labels to the objects it identifies. Although its

precision might not be top-notch, MOL is capable of identifying any object’s bound-

ing box without the need for learning. MOL employs MobileNetV2 and SSD-Lite,

accepts input with a resolution of 192px × 192px, and can produce up to 100 bound-

ing boxes.

4.3 Conclusion

In conclusion, We have selected these six state-of-the-art models – MobileNetSSD

V1, V2, EfficientDet V0, V2, MobileObjectLocalizer, and YOLOv5s – for this study

after careful consideration of their unique attributes, which make them well-suited

for resource-constrained embedded devices and real-world applications.

Chapter 4. A Compendium of Cutting-edge CNN Models 46

The EfficientDet models, while larger, demonstrate remarkable accuracy and can

be scaled down to operate effectively on embedded devices, making them appealing

for applications where accuracy is paramount.

The SSD and MobileNet-SSD models demonstrate impressive speed in detect-

ing objects, making them well-suited for real-time applications. Furthermore, their

lightweight nature allows them to perform efficiently on devices with limited com-

putational resources.

We have included YOLOv5s in our selection despite it being slightly heavier than

the other models. The reason behind this is to demonstrate its robust capabilities in

real-time object detection. Its architecture makes it suitable for applications where

accuracy is of utmost importance. Furthermore, YOLOv5s has been optimized to

work effectively on resource-constrained devices, and we aim to shed light on its

limitations as well as its strengths.

We have chosen the MOL model for our use cases primarily because of its speed

and lightweight architecture. Although its accuracy may not be at the highest level

compared to other models, its strength lies in its efficiency and versatility. MOL is

fast and lightweight, making it suitable for real-time applications and deployment

on devices with limited computational resources. This model’s ability to detect a

broad range of objects without assigning specific labels further showcases its flexi-

bility and wide applicability across various scenarios.

47

Chapter 5

Methodology

5.1 Introduction

In the forthcoming section of this thesis we will undertake a comprehensive assess-

ment of methodology and tools that were used for selected CNN models operating

on an embedded device, specifically, a Raspberry Pi 4 Model B with a quad-core

64-bit architecture and 8GB RAM, paired with the Google USB-Coral accelerator, a

custom-made ASIC Edge TPU designed for AI edge computing. This setup is rep-

resentative of many IoT gateways utilized in various applications.

The models chosen for this investigation include the Mobilenet series combined

with SSD, EfficientDet series, YOLOv5, and MOL models. All these models were

pre-trained on the COCO dataset [69] using TensorFlow Hub [70], then converted

into TFLite and edgetpu formats through TensorFlow Lite Model Maker library

APIs, enabling their execution on the Raspberry Pi with the CORAL accelerator.

An additional step involved the application of a quantization technique to optimize

the models for deployment on resource-limited devices.

For effective performance evaluation, a dataset of public traffic videos compiled

by Xiao et al. [71] is employed, consisting of over 30 minutes of diverse traffic

surveillance footage, previously annotated using the full SSDv2 trained on the COCO

dataset. Original videos were shot in a range of conditions and from various sources,

captured in high resolution (1280px × 720px at 30 frames per second). In order to es-

tablish a comparative benchmark between high-resolution and low-resolution data,

Chapter 5. Methodology 48

the video quality was reduced by 70%.

While this study particularly targets the performance of these models for traffic

and pedestrian surveillance, the insights and conclusions drawn from the evaluation

can have implications for other fields as well, underscoring the versatility and broad

relevance of our findings.

The selected models are extensively evaluated over different video qualities (i.e.,

high quality of 1280px × 720px and low quality with a 70% reduction in quality) and

conditions (daytime or night time). Performance metrics used to assess the models

include F1 Score, frames per second, CPU and RAM usage, energy consumption,

and temperature.

5.2 Tools and Framework

This section aims to do an exhaustive exploration and evaluation of the specific

tools and theoretical frameworks employed throughout the course of this research.

This will encompass a detailed analysis and comprehensive review of each, eluci-

dating their unique features and capabilities that were instrumental in supporting

this study. Additionally, an elaborate discussion will be presented, outlining the

rationale behind the selection of these particular tools and frameworks. This will

include a justification for their adoption, focused on how these choices have been

strategically tailored to the objectives and requirements of this study, thereby en-

hancing the precision, efficiency, and overall validity of the research findings.

5.2.1 Embedded Platform

Raspberry Pi 4

The Raspberry Pi 4 Model B [72], outfitted with a quad-core 64-bit architecture and

8GB of RAM, serves as a widely adopted and potent representative within the broad

Chapter 5. Methodology 49

sphere of edge devices. Owing to its widespread use and versatility, this particu-

lar model offers a realistic and representative platform for investigating the perfor-

mance of the CNN models selected for this study.

Several factors contribute to the suitability of the Raspberry Pi 4 Model B for

this research. Primarily, its quad-core processor presents significant computational

power, which is necessary for executing complex tasks like image processing, ma-

chine learning, and other computationally demanding operations. These calcula-

tions, it should be noted, are CPU-based, providing a standardized baseline for our

tests.

The 64-bit architecture of the Raspberry Pi 4 Model B broadens the data path,

facilitating swifter data processing—an essential attribute for managing data-heavy

operations such as video streaming. Its generous 8GB of RAM enables the handling

of larger datasets in memory, improving the efficacy of machine learning model

execution.

The compact dimensions, low power requirements, and cost-effectiveness of the

Raspberry Pi 4 Model B render it a preferred choice for edge computing applica-

tions, which include IoT gateways, home automation, and edge servers. Its capa-

bility to operate under these constraints without compromising on performance is

emblematic of the prerequisites of genuine edge devices.

The robust and active community surrounding the Raspberry Pi platform fur-

nishes an abundance of resources, support, and pre-compiled software, all of which

ease the implementation and deployment of complex applications and machine

learning models.

The Raspberry Pi series encompasses multiple models, each varying in perfor-

mance capabilities and pricing, to cater to an extensive array of applications. The

portfolio ranges from the lower-end Raspberry Pi Zero models, ideal for simpler

control tasks, to the high-performance Raspberry Pi 4 Model B, capable of man-

aging advanced computational tasks. This spectrum of solutions accommodates a

diverse set of edge computing requirements.

Chapter 5. Methodology 50

Alternatives

While the Raspberry Pi 4 Model B serves as a representative example of general-

purpose edge devices, there are also numerous SBCs specifically tailored for par-

ticular tasks. For instance, the NVIDIA Jetson series, such as the Jetson Nano, are

purpose-built for machine learning and AI applications with powerful GPU accel-

eration capabilities. Similarly, the Google Coral Dev Board is specifically designed

for fast on-device inferencing with its Edge TPU coprocessor.

Other notable SBCs include the BeagleBone Black, known for its extensive I/O

capabilities, making it an excellent choice for robotics applications, and the Odroid

series, which offers a range of high-performance boards with more robust CPU and

GPU capabilities than many of their counterparts.

Motives

Despite these alternatives, we opted not to select these task-specific boards for sev-

eral reasons. Firstly, while these boards offer improved performance for specific

tasks, they are also significantly more expensive than the Raspberry Pi 4 Model B.

Given the goal of this study is to assess the performance of selected CNN models on

resource-constrained devices, cost-effectiveness is a critical consideration.

Secondly, the widespread adoption and popularity of the Raspberry Pi platform

make it a representative example of edge devices in numerous real-world appli-

cations. Results obtained from Raspberry Pi 4 Model B will thus be more readily

applicable and understandable to a wider audience.

Lastly, while some of the task-specific boards might offer superior performance

for machine learning tasks, their specific hardware architectures may not be repre-

sentative of the wide range of devices found at the network edge. By focusing on

the Raspberry Pi 4 Model B, we aim to present insights that are broadly relevant

across a variety of edge computing contexts.

Chapter 5. Methodology 51

Pi and Traffic Object Detection

In the context of traffic object detection, the Raspberry Pi presents an opportunity

to implement low-cost, compact, and effective solutions that can be deployed in a

wide range of scenarios. Here are some examples:

• Ad-hoc Surveillance with Drones: In situations where there is a need for tem-

porary or flexible surveillance, such as monitoring traffic flow during major

events, handling emergency situations, or managing temporary construction

sites, drones equipped with Raspberry Pi can be deployed. These drones can

perform real-time traffic object detection to provide valuable insights, enhanc-

ing situational awareness and decision-making. The small form factor and low

power consumption of the Raspberry Pi make it an excellent choice for such

battery-powered, mobile platforms.

• Assisting Visually Impaired Individuals: There’s a significant potential for

Raspberry Pi-based object detection systems in assistive technology for visu-

ally impaired individuals. A Raspberry Pi, paired with a camera, can be used

to develop a wearable device that provides real-time object detection. Such a

device can alert the user about nearby vehicles, potential obstacles, or other

important environmental factors, increasing their confidence and safety while

navigating urban environments.

• Smart Traffic Management Systems: In smart city applications, Raspberry

Pi-based systems can be installed at intersections to monitor real-time traffic

and detect vehicles, pedestrians, cyclists, and so on. This data can feed into a

centralized traffic management system to adjust signal timings, detect traffic

congestion, and generally optimize traffic flow in the city.

Chapter 5. Methodology 52

Peripherals for enhancement

Moreover, it is also worth acknowledging that these devices, like many general-

purpose edge devices, may struggle with the high computational demands of run-

ning complex CNN models. To mitigate this performance issue, our study also in-

corporates the use of the Google Coral USB Accelerator, a device specifically de-

signed to enhance machine learning inference on edge devices.

The Google Coral USB Accelerator integrates the Edge TPU, a small ASIC chip

designed by Google to run TensorFlow Lite ML models at high speed, while still

maintaining a low power draw. By pairing the Raspberry Pi with this accelerator, we

can effectively demonstrate a common real-world scenario where a general-purpose

edge device is augmented with dedicated machine learning hardware to handle the

computational heavy lifting of advanced AI models.

Details about the exact role and benefits of the Coral USB Accelerator in our

experimental setup, as well as its interaction with the selected CNN models, will be

presented and discussed in the following sections of this thesis.

In conclusion, the Raspberry Pi 4 Model B was selected for this study owing to its

computational capabilities, representative nature for edge devices, cost-effectiveness,

and broad applicability. Moreover, to augment the computational performance, we

employ different acceleration techniques, which will be elaborated on in subsequent

sections. This investigation into its performance in the given context offers valuable

insight into the viability and implications of deploying the selected CNN models on

comparable edge devices.

Google Coral TPU

The Google Coral USB Accelerator [73] is a critical component in our study that sig-

nificantly enhances the computational capabilities of the Raspberry Pi. As a special-

ized device for accelerating machine learning tasks, it allows us to perform complex

Chapter 5. Methodology 53

calculations more efficiently, speeding up the processing time of our selected CNN

models significantly.

The Coral Accelerator is powered by the Edge TPU, a purpose-built ASIC de-

signed to run AI at the edge. It is compatible with TensorFlow Lite, the lightweight

solution of TensorFlow designed for mobile and embedded devices. The Edge TPU

can execute state-of-the-art mobile vision models such as MobileNet v2 at 20+ FPS,

in a power-efficient manner. This high-speed processing capability is particularly

crucial for our study, where real-time video processing is needed.

One of the key advantages of using the Coral USB Accelerator is that it offloads

the computational burden from the Raspberry Pi’s CPU. This allows us to use the

CPU for other tasks, while the Coral device takes care of the heavy lifting of the

machine learning computations. This is particularly important in edge computing

scenarios where resources are often limited.

When we consider real-world applications, the addition of a Coral USB Acceler-

ator to a Raspberry Pi can turn a low-power edge device into a potent AI inference

machine. This combination can be deployed in various contexts, from intelligent

surveillance systems and autonomous robots to smart home applications. It offers a

cost-effective way to implement AI applications on edge devices without needing a

connection to the cloud.

It is worth noting, while the Edge TPU and GPUs both serve the purpose of

accelerating machine learning tasks, they differ fundamentally in their design and

best use scenarios.

A GPU, or Graphics Processing Unit, is a powerful and versatile piece of hard-

ware capable of handling a wide variety of tasks. Its design, featuring hundreds to

thousands of cores, enables it to perform large-scale parallel computations, making

it ideal for training large and complex machine learning models. The downside,

however, is that GPUs are often energy-intensive and may not be suitable for de-

vices with strict power constraints.

On the other hand, the Edge TPU in the Coral USB Accelerator is an Application

Chapter 5. Methodology 54

Specific Integrated Circuit (ASIC) specifically designed for inference tasks of neu-

ral networks. It’s much more energy-efficient than a typical GPU, making it more

suitable for edge devices like the Raspberry Pi. Although its capabilities are not as

wide-ranging as a GPU, the Edge TPU is highly optimized for the tasks it’s designed

for, delivering high performance at a fraction of the power usage.

In scenarios where power efficiency and footprint are of utmost concern, such

as in embedded devices or mobile applications, the Edge TPU is a superior choice.

However, for tasks that demand large-scale parallel computations or for the training

phase of machine learning models, GPUs continue to be the more effective option.

Hence, the choice between a GPU and an Edge TPU depends on the specific

requirements of the use case. In our case, the Edge TPU’s high efficiency, compact

form factor, and impressive inference speed make it an ideal choice for running our

selected CNN models on a Raspberry Pi in edge computing scenarios.

In conclusion, the Google Coral USB Accelerator was incorporated into our study

due to its ability to significantly enhance the performance of machine learning mod-

els on edge devices. Its compatibility with TensorFlow Lite, high processing speed,

and power efficiency make it an excellent addition to the Raspberry Pi. Its inte-

gration into our research setup mirrors the trend of enhancing edge devices with

specialized hardware accelerators to meet the growing computational demands of

advanced AI models.

5.2.2 Software Platform

TensorFlow

TensorFlow is an open-source library developed by the Google Brain team that pro-

vides a platform for developing and running machine learning and deep learning

models. It is popular for its flexible architecture, allowing users to deploy computa-

tions across multiple CPUs, GPUs, and even TPUs with a single API. This flexibility

Chapter 5. Methodology 55

extends to several platforms including desktops, servers, mobile and edge devices,

and even cloud-based systems.

A significant feature of TensorFlow is its use of data flow graphs, where nodes

represent mathematical operations and edges represent multidimensional data ar-

rays or tensors. This approach allows for highly efficient and parallel computations,

which is essential for training complex deep learning models.

Furthermore, TensorFlow comes with a suite of visualization tools known as Ten-

sorBoard, which allows users to interactively visualize their model’s computational

graphs, monitor training progress, and evaluate metrics.

TensorFlow Lite

While TensorFlow is comprehensive and powerful, its capabilities may be overkill

for some applications, particularly for edge devices where resources are constrained.

Here, TensorFlow Lite (TFLite) [74] comes into play.

TensorFlow Lite is a set of tools provided by TensorFlow to help developers run

TensorFlow models on mobile, embedded, and IoT devices. It is designed to be

lightweight and to provide fast performance with a small binary size.

TFLite works by converting full TensorFlow models into a simpler format which

removes unnecessary information and optimizes the model for speed and size. It

also supports hardware acceleration with the Android Neural Networks API and

Apple’s Core ML.

One key feature of TensorFlow Lite is the support for post-training quantization.

This reduces the model size and increases inference speed while maintaining a high

level of accuracy.

In our study, we used TensorFlow Lite for its suitability for resource-constrained

edge devices like the Raspberry Pi. By converting our selected CNN models to the

TensorFlow Lite format, we could maintain a high level of performance while reduc-

ing memory usage and power consumption. Moreover, TensorFlow Lite provides a

Chapter 5. Methodology 56

smooth path for deploying our models on the Edge TPU accelerator via the Coral

USB Accelerator, enhancing their performance significantly.

To summarize, the combination of TensorFlow’s robust capabilities for develop-

ing and training models and TensorFlow Lite’s optimization for edge devices forms

an ideal solution for our research.

Edge TPU

The Google Coral USB Accelerator is a device that houses the Edge TPU in a USB

stick form factor. It can be used to add machine learning acceleration to existing

systems by simply plugging into a USB port. This makes it a convenient tool for

enhancing the machine learning capabilities of devices such as the Raspberry Pi.

FIGURE 5.1: Model Conversion from TensorFlow to Edge TPU [73]

To use the Edge TPU, TensorFlow Lite models need to be converted to a specific

format that the Edge TPU can understand based on Figure 5.1. This conversion

process is facilitated by the Edge TPU Compiler, a tool provided by Google. The

Edge TPU Compiler takes a TensorFlow Lite model as input and outputs a new

TensorFlow Lite model that is compatible with the Edge TPU.

The conversion process primarily involves the mapping of certain operations in

the TensorFlow Lite model to equivalent operations that can be run on the Edge

TPU. Some operations that are not supported by the Edge TPU are left to run on the

Chapter 5. Methodology 57

CPU. This allows for a seamless execution of the model, leveraging the strengths of

both the Edge TPU and the CPU.

In conclusion, the use of Edge TPU and Coral USB Accelerator in our research

allows us to run state-of-the-art CNN models at high speeds, thereby making real-

time object detection on resource-constrained devices like the Raspberry Pi a reality.

5.3 Dataset

A crucial component of our methodology was the selection of an appropriate dataset

to conduct an effective and realistic performance evaluation of the selected models.

In our research, we utilized the public traffic video dataset compiled by Xiao et al.

This dataset is curated and consists of over 30 minutes of traffic surveillance data,

offering a rich variety of scenarios and conditions which is highly representative of

real-world applications.

The public traffic videos dataset was initially annotated using the full SSDv2

model trained on the COCO dataset, compiled by Xiao et al.[71]. This is notewor-

thy as finding a manually annotated dataset that closely mirrors real-world condi-

tions can be quite challenging. A manually annotated dataset requires a significant

amount of time and resources, which may not always be feasible. Therefore, it is

common in such research to resort to using a dataset annotated by a fully trained

model, despite the potential for some inherent bias towards the model used for an-

notation. It is essential to bear in mind that this procedure might introduce some de-

gree of bias favoring the SSDv2 model. However, this approach is widely accepted

in the research community due to the practical constraints of manual annotation.

The original videos were shot at a high resolution of 1280px × 720px, with a rate

of 30 frames per second, from a multitude of sources including both moving and

stationary traffic cameras. This variety is invaluable in offering a wide range of en-

vironmental and situational conditions, such as daytime or nighttime and crowded

or vacant scenarios, across different weather conditions like sunny or cloudy.

Chapter 5. Methodology 58

To conduct a benchmarking comparison and evaluate the performance of models

with both low-resolution data and high-resolution data, we manipulated the video

quality by reducing it by 70%. Therefore, our research includes an extensive evalu-

ation of the selected models over varying video qualities (high quality of 1280px ×

720px and a lower quality representing a reduction of 70%) and different conditions

(daytime or nighttime).

In summary, the use of this traffic video dataset allows us to evaluate the selected

models under a range of conditions and resolutions that reflect real-world traffic

surveillance scenarios, thereby providing a robust and practical assessment of their

performance.

5.3.1 COCO Pre-Trained Models and Considerations for Accuracy

Enhancement

In this study, we opted for using models pre-trained on the COCO dataset due to its

widespread adoption in the research community and the robustness of the models

trained on this large, diverse dataset. However, this choice is primarily guided by

our objective of creating a benchmarking framework to evaluate the performance of

object detection models running on resource-constrained environments, such as a

Raspberry Pi.

Our primary focus is not necessarily on achieving the highest possible accuracy,

but rather on gaining insights into the performance trade-offs associated with dif-

ferent models in real-world, low-resource scenarios. By utilizing COCO pre-trained

models, we provide a consistent baseline for comparing different models, which is

essential for an effective benchmarking framework.

That said, if increased accuracy is the primary goal, there are other methodolo-

gies that could be adopted. For instance, the application of transfer learning tech-

niques could potentially enhance the performance of these models. A model pre-

trained on COCO could be fine-tuned to identify a subset of objects under different

Chapter 5. Methodology 59

conditions (such as snow, rain, night-time, etc.), or to better detect objects in specific

contexts (like posters or billboards).

Further, if there are objects of interest that are not covered by the COCO dataset,

transfer learning can also be applied by fine-tuning the pre-trained models on an-

other dataset that includes these objects. This can often yield better performance for

these specific object detection tasks.

Another approach to improve accuracy would be to train a model from scratch

on a completely different dataset more relevant to the specific use-case. However,

this can be computationally intensive and may not be feasible for edge devices like

the Raspberry Pi.

After such training, the models would then have to be converted into the Tensor-

Flow Lite (TFLite) format for efficient execution on the Raspberry Pi. This adds an

additional step to the process, but allows the deployment of the model in a format

optimized for edge devices.

It is important to note that all these alternatives, while potentially leading to

improved accuracy, would require additional computational resources, expertise,

and time, and would shift the focus away from our main goal of understanding

the performance trade-offs associated with different models in a real-world, edge

computing scenario. As such, these considerations may form part of future works

building upon this research.

5.4 Data Pipeline

The object detection system used in this study was realized through a carefully de-

signed data pipeline, as visualized in Figure 5.2. This pipeline served as a sequence

of processing steps to extract relevant information from our input data, prepare it

for model inference, and then log and analyze the results. It’s worth noting that this

data pipeline is just one of many possible configurations and the exact design can

be altered based on the specific needs and constraints of a given application.

Chapter 5. Methodology 60

FIGURE 5.2: Data Pipeline for Object Detection

• Input Data: This study utilized pre-recorded video footage, but the source of

input data could also be a live camera feed, a database of images, or even a

stream of data from other sensors. The input data is the raw material for the

object detection system and can come in various formats and from different

sources.

• Data Preprocessing: The next step in the pipeline is preprocessing the input

data. This could involve data manipulations such as resolution reduction,

frame selection, or data augmentation techniques. These tasks could be per-

formed on edge devices or in the cloud, depending on the system design and

application requirements. This stage is crucial as it can significantly impact

the performance of the system, especially in real-time scenarios where efficient

processing techniques such as queue management or frame dropping may be

required.

• Model Inference: Once the data is prepared, it’s fed into the selected object

detection model for processing. In this study, the Raspberry Pi device was

set up with the TensorFlow Lite environment and one of the studied models,

ready to perform inference on the preprocessed input data.

Chapter 5. Methodology 61

• Logging and Result Processing: Following the inference stage, two parallel

tasks are performed: the device conditions (e.g., temperature, CPU usage,

memory usage, and FPS) are logged for further analysis, and the object de-

tection results are processed and saved. The processed results could be in the

form of bounding box coordinates or visual representations of detected objects.

• Result Analysis: Finally, the logged data and detection results are analyzed.

This could involve comparing the model’s predictions with ground truth la-

bels to calculate performance metrics such as the F1 score, which are then also

logged.

In conclusion, the data pipeline used in this study represents a comprehensive

workflow from raw data to result analysis. However, it should be seen as a foun-

dation upon which additional modifications or improvements can be made, de-

pending on the requirements of specific applications and system constraints. Our

methodology is intended to serve as a flexible framework for evaluating different

object detection models under various conditions, helping researchers and develop-

ers make informed decisions when designing and implementing their systems.

5.5 Experiments

In the ensuing section, we delve into the analytical process employed to evaluate

the performance metrics of the selected CNN models. We have developed a sys-

tematic benchmarking protocol, constructed to not only assess the functioning of

these models but also to provide a comparative framework to gauge their perfor-

mance. The comprehensive assessment of our selected models is achieved through

a series of meticulously conducted experiments using a variety of evaluation met-

rics, each designed to provide specific insights into the models’ performance. The

aim is to provide a holistic and unbiased evaluation, thus aiding future research

and practical applications in the deployment of such models on edge devices. This

Chapter 5. Methodology 62

protocol incorporates measurements of various computational parameters and en-

vironmental variables, thereby ensuring that the results obtained are representative

of a real-world scenario.

5.5.1 Metrics

To ensure a comprehensive evaluation of the selected models running on the em-

bedded devices, we relied on a set of metrics encompassing both the performance

of the models and the resource utilization of the devices. These metrics have been

chosen carefully to provide a holistic view of the performance and efficiency of the

models.

• F1 Score: The F1 score [75] is a well-established measure used in statistics

and machine learning for evaluating the performance of binary classification

models. It is especially useful when dealing with imbalanced datasets. The

F1 score is the harmonic mean of precision and recall, both of which are cru-

cial metrics in model evaluation. Precision gauges the proportion of correctly

identified positive instances out of all instances labeled as positive, while re-

call (also known as sensitivity or true positive rate) assesses the proportion of

correctly identified positive instances out of all actual positive instances. The

F1 score, computed as

F1 =
2 ⇥ (precision ⇥ recall)

precision + recall
, (5.1)

offers a single, unified measure of a model’s performance, balancing the trade-

off between precision and recall.

In evaluating the performance of our object detection models, it’s important to

note that we opted to use the F1 score rather than the commonly used metric,

the mAP.

Chapter 5. Methodology 63

The decision to utilize F1 score over mAP was driven by several considera-

tions. First, the F1 score provides a simple, yet robust, performance measure

for binary classification tasks. It balances the trade-off between precision and

recall, both of which are critical in our context where both false positives and

false negatives have significant implications.

Furthermore, the F1 score is particularly useful when dealing with imbalanced

datasets, which is often the case in object detection scenarios where the num-

ber of ’no object’ instances vastly outnumber the ’object’ instances. This char-

acteristic of the F1 score can provide a more realistic performance assessment

in our specific use case.

On the other hand, mAP, while offering a comprehensive measure of model

performance across different recall levels, can be complex to calculate and in-

terpret. This is especially true in our case where we aim to benchmark models

on resource-constrained devices like Raspberry Pi, and the added computa-

tional complexity of calculating mAP could impact the overall evaluation pro-

cess.

Therefore, for the reasons of simplicity, computational efficiency, and the specifics

of our use case, we have chosen the F1 score as our primary performance met-

ric. This does not diminish the usefulness of mAP for other scenarios and it

remains a key metric in the broader field of object detection.

• Frames per Second (FPS): The frame rate, measured in frames per second,

provides an indicator of the smoothness of the video processed by the model.

The higher the frame rate, the smoother the video will appear. For our models,

the FPS was calculated by averaging the time it took to infer 1000 frames. A

frame’s inference time was determined by measuring CPU time before and

after it was processed. This allows us to assess the real-time capability of the

models

Chapter 5. Methodology 64

• CPU and RAM Usage: These metrics measure the resource utilization of the

Raspberry Pi when running the ML models. The CPU utilization and RAM

footprint were calculated by averaging the usage of the CPU in percentile, and

RAM in megabytes, over 30 minutes of surveillance footage. These metrics are

vital in assessing the efficiency and practicality of deploying these models on

resource-constrained devices.

• Energy Consumption: We also calculated the energy consumption of the mod-

els running on the Raspberry Pi. Using a multimeter, we determined the cur-

rent and voltage of the device, and then calculated the power consumption by

multiplying the current and voltage. This gives an idea of the power efficiency

of the models, an important consideration for edge devices.

• Temperature: Lastly, using a thermal camera, we measured the temperature

of the Raspberry Pi’s CPU to assess the amount of heat it may generate when

running a model. The temperature was calculated by averaging the readings

in degrees Celsius taken every minute over 30 minutes of surveillance footage.

This measurement provides insight into the thermal impact of running the

models, a critical factor considering the compact size and lack of advanced

cooling systems in many edge devices.

By considering these metrics, we can provide a thorough evaluation of the models’

performance and their suitability for use on edge devices such as the Raspberry Pi.

5.5.2 Pi Configuration

In the course of our research, we configured and operated the Raspberry Pi 4 Model

B under varying conditions to effectively simulate the broad range of scenarios that

such edge devices might encounter in real-world applications. Our benchmarking

protocol was designed to elucidate the performance characteristics of the selected

CNN models under diverse load conditions on the Raspberry Pi platform.

Chapter 5. Methodology 65

One of the key configuration variables we considered was the utilization of the

quad-core CPU available in the Raspberry Pi 4 Model B. We progressively engaged

more cores to the task of executing the CNN models, starting from a single-core

configuration, moving to dual and tri-core setups, and finally, utilizing all four cores

in the quad-core setup. This staged approach allowed us to evaluate the impact of

increased computational power on the performance of the CNN models, thereby

providing valuable insights into the scalability and parallel processing capability of

these models on multi-core platforms.

5.5.3 Google Coral Config

Simultaneously, we also explored the performance benefits of offloading the AI pro-

cessing task to an external accelerator, specifically, the Google Coral USB accelerator.

This scenario involved the Raspberry Pi functioning primarily as a task manager,

handling lighter tasks such as input/output operations and system management,

while the computationally heavy task of model inference was offloaded to the Coral

TPU. This configuration served to demonstrate the performance benefits of task-

specific accelerators in conjunction with general-purpose computing platforms, par-

ticularly in the context of executing resource-intensive AI models.

These experiments were designed to provide a holistic understanding of the per-

formance capabilities and limitations of CNN models when deployed on resource-

constrained edge devices. The insights derived from these different configuration

scenarios inform us of how to effectively balance system resources to achieve opti-

mal performance in diverse application settings.

5.6 Conclusion

In conclusion, the methodology chapter has laid the groundwork for the perfor-

mance evaluation of our selected CNN models on embedded devices. We have

established a comprehensive protocol for benchmarking, which includes a variety

Chapter 5. Methodology 66

of metrics encompassing model accuracy, computational resource utilization, en-

ergy consumption, and operational temperature. This range of parameters provides

a holistic view of the model performance, particularly in the context of resource-

constrained environments.

By choosing the Raspberry Pi 4 Model B and Google Coral USB accelerator as

our test platforms, we aim to represent real-world scenarios, given these devices’

prevalence in edge computing applications. Our choice of TensorFlow Lite and Edge

TPU optimization aligns with the need for model compression and optimization for

performance enhancement on such devices.

The use of a traffic surveillance dataset provides a real-world application setting,

acknowledging the increasing relevance of AI in such applications. Despite the po-

tential bias in the data annotation, the comprehensive nature of the data, encompass-

ing various traffic conditions and video qualities, makes for a robust performance

evaluation.

By employing these methodologies, we strive to provide a reliable, representa-

tive, and informative performance assessment of the selected CNN models on edge

devices. The findings from our study will serve as a reference for researchers and

developers in choosing the appropriate models for their specific applications.

In the next chapter, we will present and discuss the results obtained from the ex-

ecution of our benchmarking protocol, highlighting the performance of each model

under various operational conditions.

67

Chapter 6

Evaluation and Results

6.1 Introduction

As we move forward in this study, we now present an in-depth discussion of the

results obtained from our methodological approach, as detailed in the preceding

sections. This part of the research aims to provide a comprehensive understanding

of the performance characteristics of the chosen CNN models under varied condi-

tions on the Raspberry Pi 4 Model B platform, and when paired with the Google

Coral USB accelerator.

Our evaluation primarily hinges on the metrics previously discussed, namely,

the F1 Score, FPS, CPU and RAM usage, Energy Consumption, and Temperature.

These metrics, used collectively, give a broad-based perspective on the efficacy and

efficiency of the models, shedding light not only on their computational perfor-

mance but also on their practical implications in terms of resource consumption

and thermal management.

It is noteworthy to mention that all our results have been analysed with a confi-

dence interval of 95%, where applicable. This means that the performance outcomes

we present are statistically significant, and we can be 95% confident that the actual

value lies within this specified range.

Through this evaluation and result analysis, we aim to illuminate the practical

performance capabilities of these models in real-world edge device applications.

This analysis will also provide crucial insights into how different factors such as

Chapter 6. Evaluation and Results 68

model choice, device configuration, and task distribution between CPU and TPU

can impact overall performance in varied edge computing scenarios.

6.2 Processing rate

In this section, we focus our attention on the processing rate as measured by the

FPS metric. The Frames per Second metric is critical in our study as it quantifies the

processing rate of the selected CNN models when deployed on the Raspberry Pi 4

Model B platform and in conjunction with the Google Coral USB accelerator.

FPS is particularly pertinent in video processing tasks, where the capability to

analyze a high number of frames per second can often directly correlate with the

model’s efficacy. A higher FPS indicates a higher processing speed, which in real-

world surveillance applications translates into a smoother video feed and poten-

tially more accurate object detection, particularly for fast-moving objects.

For our analysis, the FPS of the models is calculated based on the time it takes to

infer 1000 frames. Given that FPS is the inverse of inference time, a frame’s inference

time is effectively measured by determining the CPU time before and after each

frame is processed. This inverse relationship highlights the importance of quick

inference times in achieving higher FPS. By using this measurement methodology,

we aim to accurately gauge the real-world processing capabilities of our selected

models under the varied conditions set for the experiments. This evaluation will

directly inform us about the models’ processing speed, which is a crucial aspect of

real-time applications.

6.2.1 Evaluation

Figure 6.1 illustrates the processing rate, measured in FPS, for the evaluated CNN

models under varied frame resolution conditions and differing numbers of CPU

cores. As can be observed, the frame processing rate is generally low when the CPU

Chapter 6. Evaluation and Results 69

of the Raspberry Pi is utilized for running the models. This outcome can be at-

tributed to the relatively limited computational resources of the Raspberry Pi com-

pared to high-performance desktop CPUs.

Among the models studied, the MOL model consistently outperformed the oth-

ers in terms of processing rate across all experiments. This might be due to the

efficient design of the MOL model, which aims at maximizing performance under

constrained computational resources.

In terms of comparison within the SSD and EfficientDet families, we noticed that

SSDv1 outpaced both SSDv2 and the EfficientDet series, demonstrating its superior

speed efficiency. Interestingly, SSDv2 and EfficientDetv0 showed similar processing

rates, while EfficientDetv2 lagged behind. This could be attributed to the increas-

ing complexity in the design of newer versions, which although offers improved

accuracy, comes at the expense of processing speed.

The processing rate showed variation with the number of cores utilized. Gener-

ally, the lowest FPS was achieved when running on a single core, and the highest

when two cores were used. Some models, like MOL and SSDv1, performed better

with three cores as compared to four. Conversely, models like SSDv2 and Efficient-

Det exhibited better performance with four cores. This may be attributed to the

models’ individual designs, with some being better suited for multi-threading than

others.

When we shifted the processing from the Raspberry Pi’s CPU to the Google

Coral accelerator (as illustrated in Figure 6.2), we observed a significant increase

in the processing rate. In particular, SSDv1 and SSDv2 achieved high processing

rates, especially with low-resolution frames. The processing rates exceeded 40 FPS,

demonstrating the potential for near real-time object detection on edge devices. This

significant increase in performance underscores the effectiveness of the Coral accel-

erator in improving the processing speed of CNN models on resource-constrained

edge devices.

While speed in processing is a significant factor in the performance evaluation of

Chapter 6. Evaluation and Results 70

0

2

4

6

8

10

12

14

16

18

D
ay

 &
 H

i R
es

D
ay

 &
 L

o
R

es

N
ig

ht
 &

 H
i R

es

N
ig

ht
 &

 L
o

R
es

FP
S

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

(A)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

D
ay

 &
 H

i R
es

D
ay

 &
 L

o
R

es

N
ig

ht
 &

 H
i R

es

N
ig

ht
 &

 L
o

R
es

FP
S

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

(B)

0
2
4
6
8

10
12
14
16
18
20
22
24
26

D
ay

 &
 H

i R
es

D
ay

 &
 L

o
R

es

N
ig

ht
 &

 H
i R

es

N
ig

ht
 &

 L
o

R
es

FP
S

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

(C)

0

2

4

6

8

10

12

14

16

18

20

D
ay

 &
 H

i R
es

D
ay

 &
 L

o
R

es

N
ig

ht
 &

 H
i R

es

N
ig

ht
 &

 L
o

R
es

FP
S

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

(D)

FIGURE 6.1: Processing rate in terms of frames per second: A) 1 CPU
core. B) 2 CPU cores. C) 3 CPU cores. D) 4 CPU cores.

the models, it’s worth noting that a higher processing rate (FPS) does not automati-

cally equate to better overall model performance. A model that processes frames at

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

D
ay

 &
 H

i R
es

D
ay

 &
 L

o
R

es

N
ig

ht
 &

 H
i R

es

N
ig

ht
 &

 L
o

R
es

FP
S

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

FIGURE 6.2: FPS of the models running on Google USB-CORAL

Chapter 6. Evaluation and Results 71

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

EfficientDetv0 EfficientDetv2 MobileLocalizer SSDv1 SSDv2
Models

Pr
oc

es
si

ng
 T

im
e

Pe
r F

ra
m

e
(m

s)

(A)

0

50

100

150

200

250

300

350

400

450

500

EfficientDetv0 EfficientDetv2 MobileLocalizer SSDv1 SSDv2
Models

Pr
oc

es
si

ng
 T

im
e

Pe
r F

ra
m

e
(m

s)

(B)

0

50

100

150

200

250

300

350

400

450

EfficientDetv0 EfficientDetv2 MobileLocalizer SSDv1 SSDv2
Models

Pr
oc

es
si

ng
 T

im
e

Pe
r F

ra
m

e
(m

s)

(C)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

EfficientDetv0 EfficientDetv2 MobileLocalizer SSDv1 SSDv2 YOLOv5
Models

Pr
oc

es
si

ng
 T

im
e

Pe
r F

ra
m

e
(m

s)

(D)

FIGURE 6.3: Box Plot of the Processing Rates on: A) 1 CPU core. B) 2
CPU cores. C) 3 CPU cores. D) 4 CPU cores.

a higher speed may not necessarily be more accurate in its detections or predictions.

Accuracy is another vital aspect to consider when evaluating the performance of a

model, and in some use cases, it may be even more critical than speed.

Therefore, while the observed faster frame processing of some models like MOL,

SSDv1, and SSDv2 might initially seem advantageous, these models’ real-world ef-

fectiveness would depend on their ability to accurately detect and predict objects

within the frames they process. This highlights the importance of evaluating these

models on multiple performance metrics, such as the F1 score and the model’s re-

source utilization (CPU, RAM usage, energy consumption, and temperature), and

not just their processing speed.

As part of the comprehensive evaluation of the studied object detection models,

we have compiled the Frames Per Second (FPS) data for each model when run on

varying number of CPU cores on Raspberry Pi and Google’s Coral TPU. This data

Chapter 6. Evaluation and Results 72

0

50

100

150

200

250

300

350

EfficientDetv0 EfficientDetv2 MobileLocalizer SSDv1 SSDv2 YOLOv5
Models

Pr
oc

es
si

ng
 T

im
e

Pe
r F

ra
m

e
(m

s)

FIGURE 6.4: Box Plot of the Processing Rates of the models running on
Google USB-CORAL

is depicted in a series of box plots for further analysis, as seen in Figure 6.3 and 6.4.

The box plots illustrate the spread and skewness of the FPS values for each con-

figuration of cores or hardware accelerator, providing a graphical representation of

the central tendency and variability of these measurements. Each box plot repre-

sents the FPS of a particular model running on 1, 2, 3, or 4 cores, and the Coral

TPU.

From these plots, developers and researchers can discern not only the median

FPS for each configuration but also any potential outliers, the range of FPS values,

and any trends or patterns in the data. This provides additional depth to the analysis

of the performance of these models in various configurations, aiding in the holistic

understanding of their real-world applicability and efficiency.

6.2.2 Real-Time Processing of Live Camera Feed

In this study, we focused on the FPS metric as a measure of the processing rate of

each model, using pre-recorded video footage for our evaluations. The pre-recorded

video allowed us to maintain a consistent benchmark across all models, as each

Chapter 6. Evaluation and Results 73

model was evaluated against the exact same dataset. This, however, does not per-

fectly represent the complexities and challenges of real-time object detection sys-

tems which rely on live camera feeds.

In real-world applications, object detection is typically performed on a contin-

uous stream of live video data. This introduces an additional layer of complexity

because the video feed needs to be captured, preprocessed, and fed into the model

in real-time. Furthermore, these systems must be designed to handle variations in

the incoming frame rate, lighting conditions, and scene dynamics, among other fac-

tors.

Designing a real-time object detection system entails not just model selection but

also the development of a robust data pipeline. This pipeline would need to handle

tasks such as frame capture, preprocessing, model inference, post-processing, and

potentially, action initiation based on detection results. This might involve strate-

gies such as queuing mechanisms to buffer incoming frames, or frame dropping

techniques to ensure the system can keep pace with the incoming video stream un-

der limited computational resources.

Consequently, while our benchmarking framework and results provide valuable

insights into the relative performance and limitations of various object detection

models on embedded devices, they represent only one aspect of the overall system

design. Practical application of these results should take into account the broader

system requirements and constraints, such as how to handle real-time camera feeds.

We hope our work can be a foundation for future works, helping researchers and

developers make informed decisions when designing real-time object detection sys-

tems for edge devices.

6.3 Accuracy

In the forthcoming analysis, our primary focus is on evaluating the accuracy of the

selected Convolutional Neural Network models using the F1 score as the primary

Chapter 6. Evaluation and Results 74

metric.

By leveraging this evaluation metric, we aim to understand the true accuracy of

our chosen models in object detection tasks under various experimental conditions.

It’s crucial to remember that a higher F1 score indicates better performance in terms

of precision and recall, thus implying a more accurate model.

Let’s proceed to examine the F1 score outcomes for our selected models, bearing

in mind that while accuracy is a pivotal criterion in model evaluation, it is not the

sole factor determining a model’s overall efficacy, particularly in edge computing

scenarios where computational resources and efficiency play an equally significant

role.

TABLE 6.1: Models F1 Score (%)

Objects SSDv1 SSDv2 Efficient Detv0 Efficient Detv2 YOLOv5 Mobile Localizer
Vehicle 48 67 47 55 60 20

Motorcycle 35 45 40 43 30 20
Person 20 48 22 30 33 20

6.3.1 Evaluation

Table 6.1 provides a detailed comparison of the F1 scores achieved by the various

models evaluated on the Raspberry Pi, which serves as an indication of their accu-

racy. In our study, we grouped the detection accuracies of cars, buses, and trucks

under a single ’vehicle’ category to facilitate a more coherent comparison.

In terms of F1 scores, SSDv2 yielded the highest accuracy, followed closely by

YOLOv5, while the MOL model reported the lowest accuracy. Interestingly, the

evaluation showed little difference in accuracy between low-resolution and high-

resolution footage. This suggests that reducing the resolution could be a practical

approach to boosting processing rates (as substantiated by Figure 1) without com-

promising the accuracy of detections significantly.

However, it’s important to highlight that these models underwent modifications

and transformations to the Tensorflow Lite version, which might have affected their

Chapter 6. Evaluation and Results 75

performance. The accuracy results were obtained by averaging the F1 scores over

10,000 frames.

Despite SSDv2 achieving the highest F1 score, it’s worth noting that the ground

truth was labeled using a full model of SSDv2, which may have introduced some

bias in the results. Therefore, while SSDv2 ranked first in terms of accuracy, fol-

lowed by YOLOv5, EfficientDetv2, SSDv1, EfficientDetv0, and MOL, these rankings

should be understood within the context of potential biases and transformational

impacts on the models.

The ranking of model accuracy is quite intriguing, given the variety of architec-

tures and the specific strengths each model brings.

SSDv2 emerging as the most accurate model can be attributed to several factors.

First, the ground truth labels were generated using a full SSDv2 model, which could

inherently favor SSDv2 due to potential similarities in the learning and detection

patterns. Beyond this, SSDv2 represents a refined version of the original SSD model,

with improvements aimed at better handling of object scales and aspect ratios. This

could potentially give it an advantage in a traffic surveillance scenario where objects

(vehicles) vary greatly in size depending on their distance from the camera.

YOLOv5’s high ranking is particularly noteworthy. Despite being a new and

relatively unproven model in the research community as of my knowledge cut-off

in September 2021, YOLOv5 is designed to be a lean and efficient model that offers a

good balance between speed and accuracy. Its architecture is optimized for real-time

object detection tasks, and it has proven quite effective in handling various object

scales and classes, which can explain its strong performance in this study.

EfficientDetv2, the third-ranking model, is a part of the EfficientDet series, which

is known for its compound scaling method that jointly scales the resolution, depth,

and width for all backbone, feature network, and box/class prediction networks.

This holistic scaling approach could help it maintain a competitive balance between

accuracy and computational resources, even after conversion to Tensorflow Lite for-

mat.

Chapter 6. Evaluation and Results 76

SSDv1’s higher ranking compared to EfficientDetv0 might seem surprising, given

that EfficientDet models are theoretically more efficient and powerful. However,

it’s worth noting that the conversion of these complex models to Tensorflow Lite

might impact their performance, with some features or optimizations potentially

not translating well. Furthermore, the SSD architecture, while older, is robust and

well-tested, particularly in scenarios involving multiple object classes and varying

scales, which could explain its higher ranking.

Lastly, the MOL model ranking at the bottom could be due to its simplicity and

minimalistic design, which might limit its ability to accurately detect and classify

objects, particularly in complex or variable environments like traffic surveillance.

In conclusion, while these rankings provide useful insights, the overall perfor-

mance of a model in a given task will depend on a multitude of factors, including

the specifics of the task, the quality and nature of the training data, and the compu-

tational resources available for model deployment.

6.4 Energy Consumption

In the forthcoming section, we will be diving into an essential aspect of our research,

gauging the energy consumption associated with running our machine learning

models on the Raspberry Pi and Google Coral TPU. We understand that in real-

world applications, especially for edge devices, energy efficiency is a paramount

factor that can significantly influence the overall effectiveness and feasibility of a

solution. Thus, our focus will not only be on the performance metrics of these

models, like processing rate and accuracy, but also on their energy requirements.

This detailed analysis will assist us in identifying the most sustainable and resource-

friendly models and configurations for our study’s context.

Chapter 6. Evaluation and Results 77

0

1

2

3

4

5

6

7

1C
or

e

2C
or

es

3C
or

es

4C
or

es

C
O

R
AL

Po
we

r (
W

)

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

FIGURE 6.5: Energy consumption.

6.4.1 Evaluation

The results portrayed in Figure 6.5 provide us with a comprehensive understanding

of the energy consumption of our chosen models when deployed on the Raspberry

Pi under varying conditions of CPU core utilization and the usage of Google Coral

accelerator. As predicted, the energy usage rises with an increase in the number of

CPU cores engaged, which aligns with our understanding of the power consump-

tion characteristics of multi-core processors.

Interestingly, when using the Coral accelerator, the energy consumption is roughly

equivalent to the usage when three CPU cores of the Raspberry Pi are active. This

balance reflects the efficiency of Coral’s Edge TPU in performing computations while

maintaining a lower power profile, allowing for energy-efficient, high-speed ma-

chine learning inference.

It’s also noteworthy that a slight but distinct difference in energy consumption is

observed when running models on one core versus four cores, particularly evident

with SSDv1 and SSDv2. This variance could be due to the different complexity levels

of these models, or the fact that running on four cores involves higher operational

overheads and coordination, increasing power consumption.

Among all the models, YOLOv5, when run purely on the Raspberry Pi CPU,

Chapter 6. Evaluation and Results 78

appears to be the most energy-intensive. This may be because of its architecture,

which, while being capable of high performance, is not optimized for energy effi-

ciency on low-power devices like the Raspberry Pi.

An essential observation from these results is that when deployed on the Coral

accelerator, the energy costs of all the models appear to be roughly the same. This

can be attributed to the Coral accelerator’s design, which is optimized for low-

power, high-performance computations, thus maintaining a consistent energy foot-

print regardless of the model complexity.

Consequently, these findings offer valuable insights for engineers and practition-

ers planning to deploy CNN models on edge devices. The trade-off between speed

and accuracy becomes a crucial factor in model selection, especially considering that

the energy cost of running these models on an accelerator is almost uniform. Hence,

a model can be chosen based on its speed and accuracy characteristics rather than

its energy consumption when deployed with the Coral accelerator.

In our analysis of the energy consumption of various machine learning models,

we took meticulous measures to ensure accuracy in our results. Using a precise

USB-C volt meter, we monitored the power consumption of the Raspberry Pi while

it processed the inferencing tasks for different models. Each reading represents the

average power usage over a span of 10 minutes of continuous inference.

The power consumption is reported in watts, a standard unit for power mea-

surement, which provides a straightforward way to compare the energy efficiency

of different models and configurations. An important note in this context is that the

idle power consumption of the Raspberry Pi, with no significant computation tasks

running, stands around 2 watts. This is a vital baseline to consider when assessing

the energy costs added by each model during operation.

This rigorous and methodical approach to capturing and analyzing energy con-

sumption ensures that our findings are robust, reliable, and reflective of real-world

scenarios, thereby offering valuable insights for designing and deploying energy-

efficient AI solutions on edge devices such as the Raspberry Pi.

Chapter 6. Evaluation and Results 79

6.5 CPU utilization and memory footprint

In the upcoming section, we will be expanding our evaluation of the models by ex-

amining two critical operational metrics - CPU utilization and memory footprint. As

the computational resources available on edge devices are often constrained, under-

standing how our selected machine learning models perform under such constraints

is fundamental to our study.

To further detail our measurement methodology for CPU utilization and mem-

ory footprint, we recorded and averaged these metrics over the course of processing

10,000 frames for each model. This extensive frame processing was employed to

ensure a broad and representative sample for the evaluation of our models. For the

collection of the Raspberry Pi’s performance metrics, we leveraged built-in Rasp-

berry Pi commands that provide real-time and accurate data on CPU utilization and

memory usage. This approach allowed us to observe and capture the evolving sys-

tem resource usage as the models were actively inferring across the large sample of

frames.

CPU utilization will allow us to understand the computational demand each

model imposes on the Raspberry Pi. A model with high CPU utilization might

provide good performance, but it could also limit the device’s ability to handle other

tasks simultaneously.

Similarly, the memory footprint of each model will shed light on the model’s

efficiency in using the available memory. Given the limited RAM capacity of de-

vices like Raspberry Pi, a model with a lower memory footprint is likely to be more

suitable for deployment.

Together, these metrics will provide valuable insights into the efficiency and

practicability of deploying these models on devices with limited computational re-

sources. By understanding these aspects, we can further refine our selection of the

most appropriate models for edge computing applications.

Chapter 6. Evaluation and Results 80

6.5.1 Evaluation

CPU utilization

The computational resources demanded by machine learning models during execu-

tion can significantly vary based on their architecture, complexity, and the number

of parameters they encompass. This variation can be observed in the CPU utiliza-

tion and memory footprint results.

0

10

20

30

40

50

60

70

80

90

1C
or

e

2C
or

es

3C
or

es

4C
or

es

C
O

R
AL

U
til

iz
at

io
n

(%
)

Models

EfficientDetv0
EfficientDetv2
MobileLocalizer
SSDv1
SSDv2
YOLOv5

FIGURE 6.6: CPU utilization.

As depicted in Figure 6.6, YOLOv5’s CPU utilization is noticeably higher than

the other models. This higher utilization could be attributed to YOLOv5’s more

complex architecture and larger number of parameters compared to the other mod-

els. The model’s higher computational needs consequently lead to a higher demand

on the Raspberry Pi’s CPU. This also explains why YOLOv5 can only run efficiently

when all cores are utilized. If lesser cores are employed, the performance of YOLOv5

significantly degrades, rendering it impractical for use.

In contrast, the CPU utilization for other models does not display a stark dispar-

ity across varying core usage scenarios. All models experience an approximate 15%

increase in CPU utilization as the number of cores is incremented. This similarity

in CPU utilization across different core configurations suggests that the models are

Chapter 6. Evaluation and Results 81

almost equally efficient in their computational requirements under similar condi-

tions. They are capable of maintaining a consistent performance output even when

fewer cores are utilized, which underscores their efficiency and adaptability in di-

verse hardware settings.

RAM usage

As we shift our focus to memory footprint, shown in Table 6.2, it’s evident that

employing a Google Coral accelerator substantially reduces the RAM usage of all

models by about 180 MB. The reasoning behind this is that the Coral accelerator

offloads a portion of the computational workload from the Raspberry Pi, leading to

lower memory demands.

TABLE 6.2: RAM usage (in MB)

Models Raspberry Pi Google CORAL
SSDv1 490 323
SSDv2 510 324
EfficientDetv0 504 335
EfficientDetv2 520 365
YOLOv5 610 507
MobileLocalizer 490 317

Among all the models, YOLOv5 has the highest RAM usage. This is consistent

with the previously observed higher CPU utilization, indicating that YOLOv5 is

more resource-intensive overall.

The MobileNet and EfficientDet series, however, have approximately equal RAM

usage. This suggests that these models, despite differences in their architectures,

have comparable efficiency in memory usage. This could be attributed to their sim-

ilar design philosophy of balancing efficiency and performance, which leads to op-

timized memory utilization.

It’s important to consider that the size of the models, the training procedures,

and the number of parameters involved can all heavily influence the memory us-

age. Nevertheless, these results provide a valuable overview of the computational

Chapter 6. Evaluation and Results 82

efficiency and practicality of deploying these models on resource-constrained de-

vices like the Raspberry Pi.

6.6 Device’s temperature

As part of our comprehensive evaluation methodology, the following section will

present our approach to gauge the operating temperature of our Raspberry Pi and

Google Coral accelerator devices under different experiment conditions. Consider-

ing that excessive heat can be detrimental to both the performance and lifespan of

these devices, understanding the thermal behavior under load is a crucial aspect of

edge-based deep learning applications. Therefore, we will be discussing the tem-

perature measurements taken during the model inference and explain the possible

reasons and impacts behind the variations observed.

FIGURE 6.7: Gauging temperature of Coral and Pi.

To measure the operating temperature, we utilized a thermal camera as previ-

ously discussed like in Figure 6.7. Prior to each model inference, we allowed the

Raspberry Pi and the Google Coral accelerator to reach their idle temperature, en-

suring a fair and consistent starting point for each test. In order to capture a reliable

indication of the temperature under sustained load, we didn’t initiate the temper-

ature measurements immediately after starting the model inferences. Instead, we

allowed each model to run for at least 10 minutes before beginning the temperature

Chapter 6. Evaluation and Results 83

data collection. This approach was designed to bypass the initial thermal ramp-up

period and capture more consistent measurements, representative of long-term op-

eration. Our temperature readings are the average values over the aforementioned

duration of running the models. This approach provides a realistic and represen-

tative understanding of how these models affect the operating temperature of edge

devices over prolonged periods of use.

6.6.1 Evaluation

Figure 6.8b presents the thermal temperature measurements obtained during the

execution of various models across different configurations of Raspberry Pi CPU

cores and the CORAL accelerator. From these findings, it is evident that the mod-

els’ inherent characteristics did not substantially influence the device temperature.

Instead, the temperature seemed to be dictated more by the number of active CPU

cores.

0

10

20

30

40

50

60

70

1C
or

e

2C
or

es

3C
or

es

4C
or

es

C
O

R
AL

Te
m

pe
ra

tu
re

 (°
C

)

FIGURE 6.8: Processor’s temperature.

This behavior can be attributed to the CPU’s role in executing computational

tasks. A higher number of active cores means more concurrent operations, and thus

Chapter 6. Evaluation and Results 84

more heat is generated due to increased CPU activity. This finding provides valu-

able insight into system management; to maintain a cooler operating temperature,

one might consider employing fewer cores where performance permits.

Interestingly, when the detection tasks were offloaded to the CORAL accelerator,

the CPU’s temperature response resembled that of a two-core operation. This simi-

larity may be due to the supporting role the CPU plays in managing and interfacing

with the accelerator, even when the primary computational task is offloaded. In

other words, although the detection task is delegated to the CORAL accelerator, the

CPU still undertakes auxiliary activities such as data routing, which may account

for the comparable heat generation.

However, it’s worth noting that the exact thermal response will depend on vari-

ous factors such as the model architecture, workload characteristics, and the thermal

design of the particular edge device. Thus, these observations should be interpreted

in the context of this specific experimental setup. Nonetheless, these results provide

valuable insights into the thermal management strategies that could be employed

during the deployment of ML models on edge devices.

6.7 Evaluating Trade-offs in Object Detection Systems

In the process of evaluating object detection models on edge devices, it becomes

evident that system performance is subject to several trade-offs. As illustrated in

Figure 6.9, these trade-offs form a triangle between frames per second (FPS), energy

consumption, and temperature.

6.7.1 FPS - Energy - Temperature Trade-off

• If a high FPS and low temperature are desired, this typically results in in-

creased energy consumption. This might be acceptable in scenarios where

there is a reliable power source and the priority is on real-time detection and

maintaining the device’s longevity.

Chapter 6. Evaluation and Results 85

FIGURE 6.9: FPS - Energy - Temperature Trade-off Triangle.

• Conversely, if the objective is to achieve high FPS and conserve energy, the sys-

tem will likely operate at higher temperatures. This could be a concern in sce-

narios where the device’s temperature can impact its performance, longevity,

or the safety of its surroundings.

• Lastly, if conserving energy and keeping the device cool are priorities, this will

generally result in lower FPS. This trade-off might be acceptable in non-real-

time applications or when the device operates under tight energy constraints.

6.7.2 Accuracy - Memory - CPU - Temperature Trade-off

Accuracy, while not directly in the FPS-Energy-Temperature trade-off triangle, is in-

volved in another trade-off triangle of its own with memory usage, CPU utilization,

and temperature Figure 6.10.

• Higher accuracy typically requires more complex models which tend to con-

sume more memory and CPU, leading to increased temperature.

• If keeping the device cool is a priority, it might be necessary to use less complex

models that are less accurate but have lower memory and CPU requirements.

Chapter 6. Evaluation and Results 86

FIGURE 6.10: Accuracy - Memory - CPU - Temperature Trade-off Tri-
angle.

• And if accuracy is the priority, one should be prepared for higher memory

usage, increased CPU utilization, and possibly higher device temperatures.

Notably, we found that the trade-off between video resolution and accuracy was

not a significant concern in our tests, as accuracy was not substantially impacted

until video resolution was reduced by 70%. This observation suggests that resolu-

tion reduction can be a viable strategy for improving real-time performance without

significant loss of accuracy.

6.7.3 Conclusion

In conclusion, the choice of the most suitable object detection model and system

configuration will depend on the specific requirements of the application and the

constraints of the operating environment. For instance, if the end product is a wear-

able device designed to assist visually impaired individuals with real-time object

detection, high FPS and low temperature would likely be the primary concerns to

ensure user comfort and instant feedback. This would mean developers should an-

ticipate higher energy consumption and select components accordingly.

Our results provide valuable insights into these trade-offs, enabling developers

to make informed decisions when designing their real-time object detection systems.

Chapter 6. Evaluation and Results 87

These considerations are vital in the development of practical, effective, and efficient

solutions, like the aforementioned wearable, for real-world challenges.

6.8 Conclusion

As we conclude this evaluation chapter, we have observed that each of the ma-

chine learning models—MOL, SSDv1, SSDv2, EfficientDetv0, EfficientDetv2, and

YOLOv5—brings its unique set of strengths and weaknesses when deployed on the

Raspberry Pi and Google Coral accelerator platform. Our analysis was focused on

key performance indicators such as frames per second, F1 score, energy consump-

tion, CPU and RAM utilization, and temperature under different operating condi-

tions.

The results revealed a range of performance characteristics, reflecting the diver-

sity of model designs. In terms of frame processing rate (FPS), the MOL model

exhibited the highest performance across all experimental conditions. On the other

hand, SSDv2 scored highest in terms of accuracy (F1 score), closely followed by

YOLOv5. As for energy consumption and CPU utilization, these metrics showed a

general trend of increasing as more CPU cores were used, but with YOLOv5 con-

suming more power and CPU resources than the other models. Lastly, in terms

of temperature, our results indicated that the number of active cores was the most

influential factor, rather than the model’s inherent characteristics.

However, it is essential to note that these metrics cannot be considered in iso-

lation when deciding on the "best" model. The choice will depend on the spe-

cific needs of the application, the constraints of the operating environment, and the

trade-offs one is willing to make between speed, accuracy, power consumption, re-

source utilization, and thermal constraints. A unified metric, incorporating all these

factors, could provide a more holistic measure of a model’s suitability for a given

scenario. That being said, defining such a metric is beyond the scope of this current

study but offers a fascinating avenue for future exploration.

Chapter 6. Evaluation and Results 88

TABLE 6.3: Guideline for Model Selection Based on Various Criteria

Criteria Recommended

Model

Justification Considerations for Application

Accuracy SSDv2 Achieved the highest F1

score

Ideal for applications where de-

tection accuracy is paramount

Speed SSDv1 Balance between speed

and accuracy

Suitable for real-time applica-

tions where quick responses are

essential

Energy Efficiency EfficientDet Lower energy con-

sumption

Beneficial for battery-operated

devices or where power usage is

a constraint

Low Temperature Models with

Coral TPU

Lower operational tem-

perature

Crucial for wearable technolo-

gies and prolonging device lifes-

pan

Memory Efficiency MOL Lower RAM usage Preferred in scenarios where

memory resources are limited

Each selection should consider the specific requirements and constraints of the

intended application, ensuring that the chosen model aligns with the operational,

environmental, and performance needs. Also, remember that real-world deploy-

ment might require further optimizations and customizations to achieve the desired

performance and efficiency.

With this comprehensive evaluation of our chosen models complete, we are near-

ing the end of our experimental journey. In the following chapter, we will discuss

potential future work that could build upon these findings, and provide a conclud-

ing summary of our research, articulating the implications and applications of our

study.

89

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The primary motivation for our study was the ever-growing need for efficient and

effective machine learning models suitable for edge computing devices, particularly

for object detection tasks. Our journey in this field was driven by the understanding

that the use of smaller, low-power devices such as the Raspberry Pi and Google

Coral accelerator could offer substantial benefits in terms of cost, portability, privacy,

and latency for many applications.

Our research began with an exploration of the theoretical underpinnings and

historical evolution of CNNs in the background study. We investigated how these

technologies have grown and evolved over time, delving into the principles behind

CNNs, transfer learning, object detection, and edge computing.

In the literature review chapter, we provided a comprehensive examination of

existing studies and technologies related to object detection on edge devices. The

literature revealed a wide array of approaches and models, but it also highlighted

the need for comparative studies that directly assess the trade-offs between different

models when deployed on edge computing platforms.

To address this research gap, we embarked on an evaluation of six prominent

CNN-based models: MOL, SSDv1, SSDv2, EfficientDetv0, EfficientDetv2, and YOLOv5.

Chapter 7. Conclusion and Future Work 90

In the models’ overview chapter, we provided a detailed description of the architec-

ture and functioning of these models, enabling a clear understanding of the method-

ologies used in each case.

Subsequently, in the methodology chapter, we described our experimental de-

sign, detailing how we adapted and optimized these models for deployment on a

Raspberry Pi and Google Coral accelerator. We also elaborated on our metric se-

lection, explaining why we chose the FPS, F1 score, energy consumption, CPU and

RAM utilization, and temperature as our evaluation metrics.

In the evaluation results chapter, we presented our findings from the various

experiments conducted under different operating conditions. Our study revealed

the unique performance characteristics of each model across the chosen metrics. It

underscored that while some models excel in certain aspects like processing speed

(MOL) or accuracy (SSDv2), they might not be as proficient in others, such as energy

consumption or resource utilization.

The results of our research, however, are not intended to provide a definitive

"best" model, but rather to offer comprehensive insights into the strengths and weak-

nesses of each model under a variety of conditions. Our primary emphasis was to

design and implement a systematic benchmarking framework that allows for thor-

ough evaluation and comparison of these models. The framework, we believe, is a

critical component to this study as it provides a structured methodology to evalu-

ate the trade-offs between accuracy, speed, resource consumption, and other factors

crucial in an edge computing context.

The most suitable model ultimately depends largely on the specific requirements

of a given application and the constraints of the operating environment. By consid-

ering the detailed insights from our benchmarking framework, practitioners can

make more informed decisions tailored to their specific needs.

Chapter 7. Conclusion and Future Work 91

7.2 Future Works

This research, although extensive, opens up a multitude of avenues for future ex-

plorations. Some potential directions for future work are as follows:

• Unified Evaluation Metric: Throughout our research, we evaluated various

performance metrics independently. A possible improvement could involve

the development of a unified evaluation metric that holistically combines ac-

curacy, processing speed, energy consumption, CPU utilization, memory foot-

print, and device temperature. Such a metric would allow for a more compre-

hensive comparison of models, providing a singular measure that balances the

trade-offs among the various factors.

• Expanding Model Evaluation: We focused on specific CNN models in our

study, but the landscape of object detection models is vast and continuously

evolving. Future work could incorporate a wider variety of models, including

newer versions of existing models or entirely different architectures. This ex-

pansion would provide a more complete picture of the performance spectrum

of object detection models.

• Exploring Different Accelerators: This study focused on the use of Google’s

Coral TPU. However, there are other accelerators available, such as NVIDIA’s

Jetson series or Intel’s Movidius series, which offer different performance char-

acteristics. Future research could explore the effects of these accelerators on the

performance of object detection models.

• Custom Model Training: We used pre-trained models for our study. For more

targeted applications, models could be trained to detect specific objects of in-

terest. This customization might improve the performance of the models due

to the reduced complexity of the detection task.

Chapter 7. Conclusion and Future Work 92

• Hybrid Cloud-Edge Computing: In our work, we focused entirely on edge

computing. However, hybrid models that leverage both edge and cloud com-

puting could be explored. In such a setup, some frames could be processed

on the edge device, while others are offloaded to the cloud, depending on fac-

tors like network availability and the complexity of the scene. This approach

could balance the strengths of edge and cloud computing, potentially leading

to even more efficient real-time object detection systems.

By following these directions, future work could continue to advance the field of

real-time object detection on edge devices, providing increasingly effective solutions

for a wide range of applications.

93

Bibliography

[1] A. Anjum, T. Abdullah, M. Tariq, Y. Baltaci, and N. Antonopoulos, “Video

stream analysis in clouds: An object detection and classification framework

for high performance video analytics,” IEEE Transactions on Cloud Computing,

vol. 7, pp. 1–1, Jan. 2016. DOI: 10.1109/TCC.2016.2517653.

[2] A. R. Pathak, M. Pandey, and S. Rautaray, “Application of deep learning for

object detection,” Procedia Computer Science, vol. 132, pp. 1706–1717, 2018, In-

ternational Conference on Computational Intelligence and Data Science, ISSN:

1877-0509. DOI: https://doi.org/10.1016/j.procs.2018.05.144. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S1877050918308767.

[3] S. Shahzadi, M. Iqbal, T. Dagiuklas, and Z. U. Qayyum, “Multi-access edge

computing: Open issues, challenges and future perspectives,” Journal of Cloud

Computing, vol. 6, no. 1, p. 30, 2017, ISSN: 2192-113X. DOI: 10.1186/s13677-

017-0097-9. [Online]. Available: https://doi.org/10.1186/s13677-017-

0097-9.

[4] J. Ren, G. Yu, Y. Cai, Y. He, and F. Qu, “Partial offloading for latency minimiza-

tion in mobile-edge computing,” Dec. 2017, pp. 1–6. DOI: 10.1109/GLOCOM.

2017.8254550.

[5] Y. Li et al., “Reducto: On-camera filtering for resource-efficient real-time video

analytics,” in Proc. of the ACM SIGCOMM, 2020, 359–376.

https://doi.org/10.1109/TCC.2016.2517653
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.144
https://www.sciencedirect.com/science/article/pii/S1877050918308767
https://www.sciencedirect.com/science/article/pii/S1877050918308767
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1109/GLOCOM.2017.8254550
https://doi.org/10.1109/GLOCOM.2017.8254550

Bibliography 94

[6] W. Qian and R. W. L. Coutinho, “On the design of edge-assisted mobile iot

augmented and mixed reality applications,” in Proc. of the 17th ACM Q2SWinet,

2021, 131–136.

[7] Q. Liu et al., “An edge network orchestrator for mobile augmented reality,” in

Proc. of the IEEE INFOCOM, 2018, pp. 756–764.

[8] P. P. Shahrbabaki et al., “A novel sdn-enabled edge computing load balanc-

ing scheme for iot video analytics,” in Proc. of the IEEE GLOBECOM, 2022,

pp. 5025–5030.

[9] W. Qian and R. W. L. Coutinho, “Performance evaluation of edge computing-

aided iot augmented reality systems,” in Proc. of the 18th ACM Q2SWinet, 2022,

79–86.

[10] E. Saeed and R. W. L. Coutinho, “Performance evaluation of edge computing

models for internet of things,” in Proc. of the 12th ACM DIVANet, 2022, 63–69.

[11] R. W. L. Coutinho and A. Boukerche, “Modeling and performance evaluation

of collaborative IoT cross-camera video analytics,” in Proc. of the IEEE Int’l

Conf. on Communications (ICC), 2023, pp. 1–6.

[12] S. Hijazi, R. Kumar, C. Rowen, et al., “Using convolutional neural networks

for image recognition,” Cadence Design Systems Inc.: San Jose, CA, USA, vol. 9,

p. 1, 2015.

[13] Y. Wang, L. Xia, T. Tang, et al., “Low power convolutional neural networks on

a chip,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS),

IEEE, 2016, pp. 129–132.

[14] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep learn-

ing on mobile and embedded devices: State-of-the-art, challenges, and future

directions,” ACM Comput. Surv., vol. 53, no. 4, 2020, ISSN: 0360-0300. DOI: 10.

1145/3398209. [Online]. Available: https://doi.org/10.1145/3398209.

https://doi.org/10.1145/3398209
https://doi.org/10.1145/3398209
https://doi.org/10.1145/3398209

Bibliography 95

[15] S. Saponara, A. Elhanashi, and A. Gagliardi, “Real-time video fire/smoke de-

tection based on cnn in antifire surveillance systems,” Journal of Real-Time Im-

age Processing, vol. 18, pp. 889–900, 2021.

[16] A. C. Cob-Parro, C. Losada-Gutiérrez, M. Marrón-Romera, A. Gardel-Vicente,

and I. Bravo-Muñoz, “Smart video surveillance system based on edge com-

puting,” Sensors, vol. 21, no. 9, p. 2958, 2021.

[17] A. B. Khudhair and R. F. Ghani, “Iot based smart video surveillance system us-

ing convolutional neural network,” in 2020 6th International Engineering Con-

ference “Sustainable Technology and Development"(IEC), IEEE, 2020, pp. 163–168.

[18] L. Chen, S. Lin, X. Lu, et al., “Deep neural network based vehicle and pedes-

trian detection for autonomous driving: A survey,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 22, no. 6, pp. 3234–3246, 2021.

[19] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, “Deeppicar: A low-cost

deep neural network-based autonomous car,” in 2018 IEEE 24th international

conference on embedded and real-time computing systems and applications (RTCSA),

IEEE, 2018, pp. 11–21.

[20] A. Burger, C. Qian, G. Schiele, and D. Helms, “An embedded cnn implementa-

tion for on-device ecg analysis,” in 2020 IEEE International Conference on Perva-

sive Computing and Communications Workshops (PerCom Workshops), IEEE, 2020,

pp. 1–6.

[21] S Vimal, Y. H. Robinson, S. Kadry, H. V. Long, and Y. Nam, “Iot based smart

health monitoring with cnn using edge computing,” Journal of Internet Technol-

ogy, vol. 22, no. 1, pp. 173–185, 2021.

[22] W. Caesarendra, T. A. Hishamuddin, D. T. C. Lai, et al., “An embedded system

using convolutional neural network model for online and real-time ecg signal

classification and prediction,” Diagnostics, vol. 12, no. 4, p. 795, 2022.

Bibliography 96

[23] Y. Wang, M. Liu, P. Zheng, H. Yang, and J. Zou, “A smart surface inspection

system using faster r-cnn in cloud-edge computing environment,” Advanced

Engineering Informatics, vol. 43, p. 101 037, 2020.

[24] S. Han, F. Yang, G. Yang, B. Gao, N. Zhang, and D. Wang, “Electrical equip-

ment identification in infrared images based on roi-selected cnn method,”

Electric Power Systems Research, vol. 188, p. 106 534, 2020.

[25] I. Zualkernan, J. Judas, T. Mahbub, A. Bhagwagar, and P. Chand, “A tiny

cnn architecture for identifying bat species from echolocation calls,” in 2020

IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), IEEE,

2020, pp. 81–86.

[26] X. Liu, Z. Jia, X. Hou, M. Fu, L. Ma, and Q. Sun, “Real-time marine animal

images classification by embedded system based on mobilenet and transfer

learning,” in OCEANS 2019-Marseille, IEEE, 2019, pp. 1–5.

[27] S. CK et al., “Automated wildlife monitoring using deep learning,” in proceed-

ings of the International Conference on Systems, Energy & Environment (ICSEE),

2019.

[28] W. Gay, Raspberry Pi Hardware Reference. Jan. 2014, ISBN: 978-1-4842-0800-7.

DOI: 10.1007/978-1-4842-0799-4.

[29] A. A. Süzen, B. Duman, and B. Şen, “Benchmark analysis of jetson tx2, jet-

son nano and raspberry pi using deep-cnn,” in 2020 International Congress

on Human-Computer Interaction, Optimization and Robotic Applications (HORA),

2020, pp. 1–5. DOI: 10.1109/HORA49412.2020.9152915.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[31] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”

ArXiv e-prints, Nov. 2015.

https://doi.org/10.1007/978-1-4842-0799-4
https://doi.org/10.1109/HORA49412.2020.9152915

Bibliography 97

[32] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A

survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, 2023. DOI: 10.

1109/JPROC.2023.3238524.

[33] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale

image recognition, 2015. arXiv: 1409.1556 [cs.CV].

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

[35] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. arXiv: 1704 .

04861.

[36] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 580–587. DOI: 10.1109/

CVPR.2014.81.

[37] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017. DOI: 10.1109/

TPAMI.2016.2577031.

[39] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.

[40] W. Liu, D. Anguelov, D. Erhan, et al., “Ssd: Single shot multibox detector,”

in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,

https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/JPROC.2023.3238524
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.91

Bibliography 98

Eds., Cham: Springer International Publishing, 2016, pp. 21–37, ISBN: 978-3-

319-46448-0.

[41] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and

accuracy of object detection,” ArXiv, vol. abs/2004.10934, 2020. [Online]. Avail-

able: https://api.semanticscholar.org/CorpusID:216080778.

[42] M. Sha and A. Boukerche, “Performance evaluation of cnn-based pedestrian

detectors for autonomous vehicles,” Ad Hoc Networks, vol. 128, p. 102 784,

2022, ISSN: 1570-8705. DOI: https://doi.org/10.1016/j.adhoc.2022.102784.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S157087052200004X.

[43] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE

International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988. DOI:

10.1109/ICCV.2017.322.

[44] L. Tychsen-Smith and L. Petersson, “Denet: Scalable real-time object detection

with directed sparse sampling,” in 2017 IEEE International Conference on Com-

puter Vision (ICCV), 2017, pp. 428–436. DOI: 10.1109/ICCV.2017.54.

[45] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, Integer quantization

for deep learning inference: Principles and empirical evaluation, 2020. arXiv: 2004.

09602 [cs.LG].

[46] Z. Wang, C. Li, and X. Wang, “Convolutional neural network pruning with

structural redundancy reduction,” in 2021 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2021, pp. 14 908–14 917. DOI: 10.1109/

CVPR46437.2021.01467.

[47] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network,

2015. arXiv: 1503.02531 [stat.ML].

[48] L. Alzubaidi et al., “Review of deep learning: Concepts, cnn architectures,

challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1,

https://api.semanticscholar.org/CorpusID:216080778
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.102784
https://www.sciencedirect.com/science/article/pii/S157087052200004X
https://www.sciencedirect.com/science/article/pii/S157087052200004X
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.54
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://doi.org/10.1109/CVPR46437.2021.01467
https://doi.org/10.1109/CVPR46437.2021.01467
https://arxiv.org/abs/1503.02531

Bibliography 99

p. 53, 2021, ISSN: 2196-1115. DOI: 10.1186/s40537-021-00444-8. [Online].

Available: https://doi.org/10.1186/s40537-021-00444-8.

[49] W. Li and M. Liewig, “A survey of ai accelerators for edge environment,”

in Trends and Innovations in Information Systems and Technologies, Á. Rocha, H.

Adeli, L. P. Reis, S. Costanzo, I. Orovic, and F. Moreira, Eds., Cham: Springer

International Publishing, 2020, pp. 35–44, ISBN: 978-3-030-45691-7.

[50] K. Sato, An in-depth look at google’s first tensor processing unit (tpu) | google cloud

blog. [Online]. Available: https://cloud.google.com/blog/products/ai-

machine - learning / an - in - depth - look - at - googles - first - tensor -

processing-unit-tpu.

[51] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model

size, 2016. arXiv: 1602.07360 [cs.CV].

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25,

Curran Associates, Inc., 2012. [Online]. Available: https : / / proceedings .

neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

[53] P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection and recog-

nition using one stage improved model,” in 2020 6th International Conference on

Advanced Computing and Communication Systems (ICACCS), 2020, pp. 687–694.

DOI: 10.1109/ICACCS48705.2020.9074315.

[54] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient

convolutional neural network for mobile devices,” Jun. 2018, pp. 6848–6856.

DOI: 10.1109/CVPR.2018.00716.

https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://arxiv.org/abs/1602.07360
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/ICACCS48705.2020.9074315
https://doi.org/10.1109/CVPR.2018.00716

Bibliography 100

[55] H. Mao, S. Yao, T. Tang, B. Li, J. Yao, and Y. Wang, “Towards real-time ob-

ject detection on embedded systems,” IEEE Transactions on Emerging Topics in

Computing, vol. 6, no. 3, pp. 417–431, 2018. DOI: 10.1109/TETC.2016.2593643.

[56] “Performance analysis of the pretrained efficientdet for real-time object detec-

tion on raspberry pi,” English, in 2021 International Conference on Circuits, Con-

trols and Communications, CCUBE 2021, ser. 2021 International Conference on

Circuits, Controls and Communications, CCUBE 2021, United States: Institute

of Electrical and Electronics Engineers Inc., 2021. DOI: 10.1109/CCUBE53681.

2021.9702741.

[57] A. A. Süzen, B. Duman, and B. Şen, “Benchmark analysis of jetson tx2, jet-

son nano and raspberry pi using deep-cnn,” in 2020 International Congress

on Human-Computer Interaction, Optimization and Robotic Applications (HORA),

2020, pp. 1–5. DOI: 10.1109/HORA49412.2020.9152915.

[58] J. Zhu, H. Feng, S. Zhong, and T. Yuan, “Performance analysis of real-time

object detection on jetson device,” in 2022 IEEE/ACIS 22nd International Con-

ference on Computer and Information Science (ICIS), 2022, pp. 156–161. DOI: 10.

1109/ICIS54925.2022.9882480.

[59] B. Liberatori, C. A. Mami, G. Santacatterina, M. Zullich, and F. A. Pellegrino,

“Yolo-based face mask detection on low-end devices using pruning and quan-

tization,” in 2022 45th Jubilee International Convention on Information, Commu-

nication and Electronic Technology (MIPRO), 2022, pp. 900–905. DOI: 10.23919/

MIPRO55190.2022.9803406.

[60] H. Feng, G. Mu, S. Zhong, P. Zhang, and T. Yuan, “Benchmark analysis of yolo

performance on edge intelligence devices,” in 2021 Cross Strait Radio Science

and Wireless Technology Conference (CSRSWTC), 2021, pp. 319–321. DOI: 10 .

1109/CSRSWTC52801.2021.9631594.

[61] N. Anggraini, S. H. Ramadhani, L. K. Wardhani, N. Hakiem, I. M. Shofi, and

M. T. Rosyadi, “Development of face mask detection using ssdlite mobilenetv3

https://doi.org/10.1109/TETC.2016.2593643
https://doi.org/10.1109/CCUBE53681.2021.9702741
https://doi.org/10.1109/CCUBE53681.2021.9702741
https://doi.org/10.1109/HORA49412.2020.9152915
https://doi.org/10.1109/ICIS54925.2022.9882480
https://doi.org/10.1109/ICIS54925.2022.9882480
https://doi.org/10.23919/MIPRO55190.2022.9803406
https://doi.org/10.23919/MIPRO55190.2022.9803406
https://doi.org/10.1109/CSRSWTC52801.2021.9631594
https://doi.org/10.1109/CSRSWTC52801.2021.9631594

Bibliography 101

small on raspberry pi 4,” in 2022 5th International Conference of Computer and

Informatics Engineering (IC2IE), 2022, pp. 209–214. DOI: 10.1109/IC2IE56416.

2022.9970078.

[62] D. Velasco-Montero, J. Fernández-Berni, R. Carmona-Galan, and Rodríguez-

Vázquez, “Performance analysis of real-time dnn inference on raspberry pi,”

May 2018, p. 14. DOI: 10.1117/12.2309763.

[63] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 4510–4520.

[64] Y.-C. Chiu, C.-Y. Tsai, M.-D. Ruan, G.-Y. Shen, and T.-T. Lee, “Mobilenet-ssdv2:

An improved object detection model for embedded systems,” in 2020 Interna-

tional conference on system science and engineering (ICSSE), IEEE, 2020, pp. 1–

5.

[65] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object de-

tection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 10 781–10 790.

[66] J. Redmon et al., “You only look once: Unified, real-time object detection,” in

Proc. of the IEEE CVPR, 2016, pp. 779–788.

[67] J. Glenn, Ultralytics/yolov5, Accessed on 3/11/2023, 2020. [Online]. Available:

https://github.com/ultralytics/yolov5.

[68] Google, A class-agnostic mobile object detector, Accessed on 3/11/2023, 2021.

[Online]. Available: https://tfhub.dev/google/object_detection/mobile\

_object_localizer_v1/1.

[69] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in Computer Vi-

sion – ECCV 2014, Springer International Publishing, 2014, pp. 740–755.

[70] Google, Tensorflow hub. [Online]. Available: https://www.tensorflow.org/

hub.

https://doi.org/10.1109/IC2IE56416.2022.9970078
https://doi.org/10.1109/IC2IE56416.2022.9970078
https://doi.org/10.1117/12.2309763
https://github.com/ultralytics/yolov5
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub

Bibliography 102

[71] Z. Xiao et al., “Towards performance clarity of edge video analytics,” in Proc.

of the IEEE/ACM Symposium on Edge Computing (SEC), 2021, pp. 148–164.

[72] R. P. Foundation, Raspberry pi 4 model b. [Online]. Available: https://www.

raspberrypi.com/products/raspberry-pi-4-model-b/?variant=raspberry-

pi-4-model-b-8gb.

[73] Google, Tensorflow models on the edge tpu. [Online]. Available: https://coral.

ai/docs/edgetpu/models-intro/.

[74] Google, Tensorflowlite. [Online]. Available: https://www.tensorflow.org/

lite.

[75] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, f-score and

roc: A family of discriminant measures for performance evaluation,” vol. Vol.

4304, Jan. 2006, pp. 1015–1021.

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/?variant=raspberry-pi-4-model-b-8gb
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/?variant=raspberry-pi-4-model-b-8gb
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/?variant=raspberry-pi-4-model-b-8gb
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research Challenges
	1.2 Thesis Statement
	1.3 Thesis Outline

	2 Background
	2.1 Introduction
	2.2 Embedded Devices
	2.2.1 Raspberry Pi: A Key Player in the World of Embedded Devices
	2.2.2 Comparing Raspberry Pi and Jetson Nano: Two Powerhouses of the Embedded World

	2.3 Deep Learning and Convolutional Neural Networks
	2.3.1 Object Detection: Classifications, Bounding Boxes, and CNN-Based Detectors
	2.3.2 Classification of CNN Detectors
	2.3.3 Model Compression Techniques for CNN-based Object Detection on Embedded Devices

	2.4 Tensor Processing Units and Edge Accelerators
	2.4.1 Edge Accelerators
	2.4.2 TPUs

	3 Literature Review
	3.1 Introduction
	3.2 Efficient CNN-Based Models for Embedded Devices
	3.3 Model Benchmarking Literature
	3.4 Conclusion

	4 A Compendium of Cutting-edge CNN Models
	4.1 Introduction
	4.2 Object Detection Models Analysis
	4.2.1 Criteria for Model Selection
	4.2.2 MobileNet
	4.2.3 SSD
	4.2.4 MobileNet-SSD
	4.2.5 EfficientDet
	4.2.6 YOLO
	4.2.7 MobileObjectLocalizer

	4.3 Conclusion

	5 Methodology
	5.1 Introduction
	5.2 Tools and Framework
	5.2.1 Embedded Platform
	5.2.2 Software Platform

	5.3 Dataset
	5.3.1 COCO Pre-Trained Models and Considerations for Accuracy Enhancement

	5.4 Data Pipeline
	5.5 Experiments
	5.5.1 Metrics
	5.5.2 Pi Configuration
	5.5.3 Google Coral Config

	5.6 Conclusion

	6 Evaluation and Results
	6.1 Introduction
	6.2 Processing rate
	6.2.1 Evaluation
	6.2.2 Real-Time Processing of Live Camera Feed

	6.3 Accuracy
	6.3.1 Evaluation

	6.4 Energy Consumption
	6.4.1 Evaluation

	6.5 CPU utilization and memory footprint
	6.5.1 Evaluation

	6.6 Device's temperature
	6.6.1 Evaluation

	6.7 Evaluating Trade-offs in Object Detection Systems
	6.7.1 FPS - Energy - Temperature Trade-off
	6.7.2 Accuracy - Memory - CPU - Temperature Trade-off
	6.7.3 Conclusion

	6.8 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Works

	Bibliography

