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Abstract

Integrated and Heterogeneous Mobile Edge Caching (MEC) Networks

Zohreh Hajiakhondi Meybodi, Ph.D.

Concordia University, 2024

The recent phenomenal growth of the global mobile data traffic, mainly caused

by intelligent Internet of Things (IoTs), is the most significant challenge of wireless

networks within the foreseeable future. In this context, Mobile Edge Caching (MEC)

has been recognized as a promising solution to maintain low latency communication.

This, in turn, improves the Quality of Service (QoS) by storing the most popular

multimedia content close to the end-users. Despite extensive progress in MEC net-

works, however, there are still limitations that should be addressed. Through this

Ph.D. thesis, first, we perform a literature review on recent works on MEC networks

to identify challenges and potential opportunities for improvement. Then, by high-

lighting potential drawbacks of the reviewed works, we aim to not only enhance the

cache-hit-ratio, which is the metric to quantify the users’ QoS, but also to improve

the quality of experience of caching nodes. In this regard, we design and implement

a Deep Reinforcement Learning (DRL)-based connection scheduling framework [1]

to minimize users’ access delay by maintaining a trade-off between the energy con-

sumption of Unmanned Aerial Vehicles (UAVs) and the occurrence of handovers. We

also use D2D communication [2] to increase the network’s capacity without adding

any infrastructure. Another approach to effectively use the limited storage capacity

of caching nodes is to increase the content diversity by employing the coded caching

strategies in cluster-centric networks. Despite all the researches on the cluster-centric

cellular networks, there is no framework to determine how different segments can be

cached to increase the data availability in a UAV-aided cluster-centric cellular net-

work. Moreover, to date, limited research has been performed on UAV-aided cellular

networks to provide high QoS for users in both indoor and outdoor environments.

Through this thesis research, we aim to address these gaps [3,4]. In addition, another

goal of this thesis is to design real-time caching strategies [5–9] to predict the up-

coming most popular content to improve the users’ access delay. Last but not least,
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capitalizing on recent advancements of indoor localization frameworks [10–14], we

aim to develop a proactive caching strategy for an integrated indoor/outdoor MEC

network.
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Chapter 1

Overview of the Thesis

Mobile Edge Caching (MEC) in Fifth Generation (5G) networks has been evolved as

a promising solution to meet the phenomenal growth of the global mobile data traffic.

The main idea behind MEC networks is to bring multimedia data to the edge of the

network, i.e., close to User Equipments (UEs), to considerably reduce users’ access

delay while mitigating network congestion. More precisely, caching at the edge of the

network provides the opportunity to store the most popular content at the storage of

the caching nodes during the off-peak intervals. After requesting a content by a UE,

this request is directly served by a neighboring caching node, having the requested

content. In such scenarios, the cache-hit occurs; otherwise, it is known as a cache-miss

and the requested content is sent from the content server to the caching node to serve

the request. Although MEC network is positioned to provide seamless, secure, fast,

and uninterrupted communication services, several critical challenges arise, especially

in managing cache resources. The primary research questions in MEC networks are

where, how, and what to cache. Below, several special characteristics of the MEC

networks are introduced that might have significant influence on caching policies.

By highlighting the existing challenges associated with MEC networks, the targeted

research gaps and the main objectives of the thesis are then briefly described.

1.1 Main Challenges

In this section, an overall overview of the selected/targeted problems are provided by

highlighting the main characteristics of the MEC networks. The key question of why
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one needs to do more research in the domain of MEC networks is then answered by

emphasizing on existing and unsolved challenges. In particular, through this thesis

research, we aim to partially or fully address the following identified challenges:

• Caching Location: One of the main challenges with MEC networks is de-

termining where to cache the multimedia content, which refers to the selection

of caching locations. One way to reduce the user experienced delay and the

network’s servicing cost is to employ small-cell terrestrial architectures (e.g.,

femtocells), called Femto Access Points (FAPs) [17], where femto base stations

are equipped with the storage. In this case, network traffic can be handled

by short range links through the nearest FAP. Another approach is to use Un-

manned Aerial vehicles (UAVs) [20] as the aerial caching nodes to offload traffic

via wireless backhaul, improve the network’s coverage, and support a highly

reliable and low-latency transmission. It should be noted that the wide trans-

mission coverage of UAVs in comparison to FAPs, has brought several benefits,

including the ability to handle the majority of users’ requests and providing

services for inaccessible areas. UAVs, however, suffer from limited battery life,

particularly in situations where numerous active users in the network request

contents. On the other hand, considering a dynamic MEC network, where users

move consistently in the limited coverage area of FAPs, serving users’ requests

through FAPs leads to triggering frequent handovers. It is, therefore, critical

to develop an efficient connection scheduling scheme to assign an appropriate

caching node to UEs.

Moreover, with the emphasis on the limited number of users that can be sup-

ported by each terrestrial/aerial caching node, another approach to increase

the capacity of the network is to use direct communication between nearby

users’ devices, i.e., introducing the concept of Device-to-Device (D2D) commu-

nication. Consequently, these devices can be effectively employed as wireless

caching nodes, and the number of caching nodes is inherently concentrated at

those areas where the largest demands occur. Despite all the benefits that come

with D2D communication, there is still a key challenge ahead. In particular,

D2D communication leads to consuming the battery of mobile devices. Con-

sequently, the amount of requests handled through the D2D communication

should be managed.
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• Limited Storage: To benefit from the MEC embedded in UAV-aided cellular

networks, it is of significance importance to store the multimedia content at

the edge of the network, before being requested. The limited storage of edge

nodes, the large size of multimedia content, and the time varying behaviour of

popularity of content, make it impossible to store all multimedia content at the

edge nodes. Consequently, it is critical to efficiently and dynamically predict

the popularity of content to identify/store the most upcoming requested ones.

• UAVs’ Signal Attenuation: In MEC networks, incorporation of UAVs with

terrestrial cellular infrastructure results in enhanced connectivity for outdoor

users due to the high probability of establishing Line of Sight (LoS) links. Al-

though the enhanced connectivity that comes by using UAVs will improve the

Quality of Service (QoS) in outdoor areas, indoor penetration loss and deep

shadow fading caused by building walls significantly attenuate the UAV’s sig-

nals in indoor environments degrading the network’s overall QoS. The UAV’s

limited battery life and its signal attenuation in indoor areas, therefore, make

it inefficient to manage users’ requests in indoor environments through UAVs.

Consequently, it is essential to introduce an integrated MEC network to serve

ground users positioned in both indoor and outdoor environments.

• Small Coverage: The transmission range of caching nodes (i.e., terrestrial and

aerial caching nodes and Internet of Things (IoT) devices) is limited, therefore,

caching nodes can only serve UEs located in their local transmission area. Given

that users’ preferences are influenced by their geographical location and contex-

tual information, the optimal caching policy should take into account the UEs’

location-based demands. Global Positioning System (GPS) is primarily utilized

for tracking/monitoring UEs in outdoor environment, which is unable to offer

reliable location information for indoor users. Therefore, it is of paramount

importance to utilize an efficient indoor localization to identify UEs’ locations

and nearby caching nodes in indoor areas.

1.2 Targeted Research Gaps

Capitalizing on the identified challenges of MEC networks outlined in Section 1.1, in

this section, we further identify and motivate key research gaps and questions that

3



the thesis aims to tackle and address. In particular, the thesis focuses on the following

key research gaps:

• Network’s Capacity: One way to increase the network’s capacity without

adding any infrastructure is to use D2D communication. Due to the limited

battery of mobile devices, UEs’ limited transmission range, and security issues,

however, some UEs may be unwilling to participate in D2D communication.

Consequently, motivating users to initiate D2D communications has been an

active research field for some times with several innovative and intelligent solu-

tions being proposed regularly. Instead of employing a stand alone D2D-based

network and dealing with its challenges, our target is to integrate D2D com-

munication with aerial/terrestrial networks to reduce (manage) the number of

requests handled by the D2D communication.

• Heterogeneous Connections: To take advantage of both terrestrial and

aerial caching nodes, a heterogenous MEC network can be considered. Al-

though potential benefits come by considering a heterogenous MEC network,

several critical challenges arise, especially keeping a trade-off between multi-

ple and conflicting objectives of different access points. More precisely, in an

ultra-dense wireless network, where there are more than one possible caching

node to handle user’s request, UEs should be trained to determine the optimal

caching node to minimize users’ access delay by maintaining a trade-off between

the energy consumption of UAVs and the occurrence of handovers. As will be

discussed in the literature review section of the thesis, recent MEC scheduling

research works mainly focused on one of these issues. This motivates us to ad-

dress this lack of prior research studies on MEC scheduling to simultaneously

satisfy concerns of UEs, UAVs, and FAPs.

• Popularity Prediction: Due to the limited storage of caching nodes, it is

essential to identify/store the most popular content through the network to

increase the number of requests that can be served directly by caching nodes.

In the MEC networks, there are two types of caching strategies, i.e., reactive

caching and proactive caching. Conventional reactive caching schemes identify

the most popular content based on the underlying pattern of observed users’

requests. A critical drawback of reactive caching is that popular content can
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only be identified after being requested. As a consequence, they are not robust

to the dynamically changing behaviour of the content popularity. It is, there-

fore, crucial to use proactive caching, e.g., using Deep Neural Networks (DNN)

models to predict the Content Popularity (CP) from the request patterns. In

this context, popular content can be dynamically allocated in the storage of

caching nodes before being requested. The thesis aims to further advance this

emerging field.

• Content Diversity: Another way to effectively use the limited storage capac-

ity of caching nodes is to increase the content diversity by employing coded

caching strategies. In coded caching strategies, instead of storing a content

completely into the storage of caching nodes, only specific segments of the

content are stored. Early works on coded caching strategies considered ho-

mogeneous networks, where the same segments of the most popular multimedia

content are stored in different caching nodes. To further increase the diver-

sity of available content, it is beneficial to use the cluster-centric networks as a

heterogeneous infrastructure, which is a combination of coded/uncoded caching

schemes. Therefore, there should be an efficient placement strategy to deter-

mine: (i) How distinct segments of popular content should be distributed in

different caching nodes, and; (ii) What is the best portion of the cache capac-

ity, which is assigned to the coded/uncoded content placement in each caching

node, to increase content diversity while decreasing users’ access delay.

• Integrated Indoor/Outdoor MEC Network: The wide transmission range

of UAVs and the high probability of establishing LoS links provide several ad-

vantages, including the ability to manage the majority of ground users’ re-

quests, which leads to improved coverage in outdoor environments. On the

other hand, the transmitted signal by UAVs, propagating in residential areas,

becomes weaker due to the penetration loss and shadow fading effects. There-

fore, the requests that are handled by UAVs should be controlled. Another

challenge of heterogenous MEC networks is the handover phenomenon, which

can be frequently triggered by FAPs if the ground user moves rapidly and leaves

the current position. To date, limited research has been performed on UAV-

aided cellular networks to provide high QoS for ground users in both indoor

and outdoor environments, which is a targeted gap of the thesis research.
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• Indoor Localization: Several indoor localization strategies have been pro-

posed to monitor/track users in indoor MEC networks, where the key challenge

is susceptibility to the Non-Line-of-Sight (NLoS) error. In the presence of an

obstacle between the anchor node and the mobile device, the received signal

will be delayed, resulting in a positive bias and a significant degradation in

the positioning accuracy. Therefore, NLoS mitigation/identification in indoor

MEC networks is of paramount importance. Due to the complexity of analyt-

ical modelling of the multi-path and path- loss effects in indoor environments,

the focus has shifted to data-driven approaches such as those based on super-

vised DNN. By considering the effects of multi-path and path-loss on the train

dataset, therefore, one can eliminate the need for complex and precise analyt-

ical models. Despite all the benefits that come from using supervised models,

there are several key challenges ahead. On the one hand, supervised models

require labelled LoS/NLoS data, which is both costly and time-consuming lim-

iting general applicability of supervised models within this context. On the

other hand, even minor changes in the indoor environment would require up-

dating the training dataset. Reinforcement Learning (RL) models, however,

eliminate the necessity for labelling of channel conditions, therefore, allowing

generalization while saving time and precious resources.

1.3 Research Objectives

Capitalizing on the need for addressing the existing challenges associated with MEC

networks, through the Ph.D. thesis, we aim to achieve the following objectives:

(Obj1 ) Indoor D2D-enabled MEC Network: To take advantage of both D2D com-

munication and terrestrial infrastructure while coping with their limitations, our

goal is to introduce an integrated indoor D2D-based MEC network. With the

emphasize on the UE’s mobility, the main objective is to introduce a connec-

tion scheduling framework to reduce the UEs’ energy consumption and avoid

frequent terrestrial handovers. In this regard, the best caching node is selected

by considering the Received Signal Strength Indicator (RSSI) value and the

velocity of UEs as decision criteria to extend the time interval between two

consecutive handovers and increase the battery life of devices.
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(Obj2 ) Autonomous Connection Scheduling: In a heterogenous MEC networks,

there are multiple conflicting objectives, such as user’s access delay, UAVs’ en-

ergy consumption and flying time, and terrestrial handover, that must be si-

multaneously satisfied. Conventionally, the focus of cache-enabled UAV-aided

cellular networks was on deriving fixed mathematical/optimization models to

meet predefined metrics. Such static models, however, are impractical due to

the dynamic nature of wireless networks at hand such as unknown/varying

number of active users, and adverse environmental conditions. To efficiently

cope with the dynamic topology of heterogeneous networks and time-varying

behaviour of ground users, our objective is to develop an efficient RL-based con-

nection scheduling framework, where ground users are autonomously trained to

determine the optimal caching node, i.e., UAV or FAP.

(Obj3 ) Coded/Uncoded Content Placement: In conventional femtocaching schemes,

it is a common assumption that all caching nodes store the same most popular

contents. This assumption is acceptable in static femtocaching models, in which

users are stationary or move with a low velocity. With the focus on a dynamic

femtocaching network, in which users can move randomly, storing distinct con-

tent in neighboring FAPs leads to increasing the number of requests served by

caching nodes. Capitalizing on the Zipf law distribution for content popularity,

the users’ behaviour pattern for all content are not the same, i.e., while the

majority of contents are not popular, some contents are requested moderately.

In this context, the first objective of the thesis is to determine the best portion

of the storage that should be allocated to the coded and uncoded contents for

different content popularity profiles. The second objective is to determine how

to distribute different segments of coded content within the network.

(Obj4 ) Integrated Indoor/Outdoor MEC Network: Capitalizing on the UAV’s

signal attenuation in indoor environments, our goal is to consider two differ-

ent indoor and outdoor caching service scenarios. In this context and in line

with advancements of 5G networks, we focus on the transmission scheme of

indoor/outdoor users by defining a two phase clustering approach for FAPs’

formation and UAVs’ deployment. More precisely, the indoor area is covered by

FAPs, equipped with extra storage and supported by the Coordinated Multi-

Point (CoMP) technology. The outdoor area, however, is supported by coupled
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UAVs and FAPs depending on the movement speed of ground users.

(Obj5 ) Attention-based Popularity Prediction: Incorporation of caching at the

edge of the wireless networks significantly reduces the user’s latency by bring-

ing content closer to UEs. Due to the limited storage of edge nodes and the

time variant users’ preferences, it is essential to identify/store the most popular

content dynamically. Time-variant CP contains temporal and spatial correla-

tions of the targeted content. While spatial correlation reflects different users’

preferences, depending on the geographical area and users’ contextual informa-

tion, the temporal correlation represents the variation of content popularity over

time. Existing DNN models in this context suffer from long-term dependencies,

computation complexity, and unsuitability for parallel computing. The goal of

the thesis is to employ the Vision Transformer (ViT) architecture and design a

real-time caching strategy, which to the best of our knowledge, is being studied

for the first time.

(Obj6 ) Self-Supervised Popularity Prediction: Despite the various advantages of

existing DNN techniques, a significant limitation of most of these models is

their reliance on supervised learning. This means that these models require la-

beled samples to train, making it difficult to apply them to real-world problems

where large amounts of labeled data may not be readily available. In cases where

the dataset used for a study is unlabeled, manual labeling becomes necessary,

which can be time-consuming and expensive. This need for manual labeling

highlights one of the significant challenges of existing DNN-based popularity

prediction frameworks, emphasizing the importance of developing highly accu-

rate unsupervised/self-supervised learning models that can learn from unlabeled

data, making them more adaptable to real-world situations.

(Obj7 ) Mobility-Aware Indoor/Outdoor MEC Network: Developing efficient in-

door localization frameworks, to be integrated with the indoor/outdoor MEC

network is my last objective. In the first step, we focused on development of

DNN-based localization frameworks in different cutting-edge technologies such

as Bluetooth Low Energy (BLE) and Ultra-WideBand (UWB). Since each of

the indoor positioning technologies has its own benefits and limitations, we em-

ploy Angle of arrival (AoA) for BLE, and Time Difference of Arrival (TDoA)
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technique for UWB to meet their needs. My objective with the BLE-based

AoA localization strategy was to employ a supervised learning model to mon-

itor UE’s movement in a dense indoor environment where the BLE’s received

signal is impacted by Rayleigh fading channel and elevation angle. Then, we

introduced an RL-based UWB node selection framework to enhance the loca-

tion accuracy, while maintaining a balance between the remaining battery life

of UWB beacons.

1.4 Thesis Contributions

Below, the contributions of the thesis are briefly outlined:

• Chapter 3 [1,5–8]: Autonomous Connection Scheduling and Uncoded

Content Placement

– With focus on achieving Obj2, I developed the Convolutional Neural Net-

work (CNN) and Q-Network-based Connection Scheduling (CQN-CS)

framework [1]. The CQN-CS targets minimizing users’ access delay by

maintaining a trade-off between the energy consumption of UAVs and the

occurrence of handovers. More specifically, the first objective of the pro-

posed CQN-CS framework is allowing ground users to be autonomously

trained to select an optimal caching node, i.e., UAV and/or FAP. Moreover,

in contrary to existing research works, where only one criterion is optimized

to improve the QoS of the network, the proposed CQN-CS framework si-

multaneously considers optimization of three metrics, which are the energy

consumed by UAVs, the probability of FAP’s handover, and the users’ ac-

cess delay. This contribution has already been achieved and published in

IEEE Access [1].

– Regarding Obj5, I developed a Vision Transformer-based Edge (TEDGE)

caching framework as a real-time caching strategy with the application to

the MEC networks is associated with Obj5. More precisely, the TEDGE

caching scheme is a multi-label and time-series classification model with the

aim of minimizing the difference between the actual Top-K popular content

and the predicted ones. This contribution has already been achieved and

published in IEEE International Conference on Communications (ICC) [5].
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– While TEDGE caching scheme provided high classification accuracy, the

learning model was so complex. To reduce the number of parameters of

the network, I proposed the parallel Vision Transformers with Cross Atten-

tion (ViT-CAT) model, consisting of two parallel ViT networks, one for

collecting temporal correlation, and the other for capturing dependencies

between different contents. Followed by a Cross Attention (CA) module

as the Fusion Center (FC), the proposed ViT-CAT is capable of learn-

ing the mutual information between temporal and spatial correlations, as

well, resulting in improving the classification accuracy, and decreasing the

model’s complexity about 8 times. This contribution has already been

achieved and published in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) [6].

– Targeting Obj6, I introduced a self-supervised learning algorithm called

Contrastive learning Popularity (CoPo) prediction framework [7] to pre-

dict the dynamic content popularity in a MEC network. The frame-

work utilizes the distinguishing aspect of the Contrastive Learning (CL)

paradigm to recognize differences among input samples, including users’

contextual information and is based on the Long Short Term Memory

(LSTM) model to capture temporal information. This contribution has al-

ready been achieved and published in IEEE Digital Signal Processing [7].

Moreover, I extended this work by incorporating the CL framework with

the Survival Analysis model to predict the time-to-popularity distribution

of contents, which is accepted in IEEE Internet of Things Journal [8].

• Chapter 4 [3, 4, 9]: Coded/Uncoded Content Placement

– Targeting Obj3 and Obj4 and to increase the content diversity in MEC

networks, I proposed the Cluster-centric and Coded UAV-aided Femto-

caching (CCUF) framework [3, 4]. In this work [4], I took advantage of

the CoMP approach to further decrease the users’ access delay by simulta-

neously serving multimedia content via multiple caching nodes. Moreover,

I experimentally computed the number of coded contents to be stored in
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each caching node to increase the cache-hit-ratio, Signal-to-Interference-

plus-Noise Ratio (SINR), and cache diversity and decrease the users’ ac-

cess delay and cache redundancy for different content popularity profiles.

Finally, I introduced a novel transmission scheme to cover both indoor and

outdoor environments. This contribution has already been achieved and

published in IEEE Internet of Things Journal [4].

– In accordance with the content placement strategy introduced in [4], I

introduced a Transformer architecture to classify contents as either pop-

ular or unpopular in a coded/uncoded manner. It should be noted that

most existing data-driven popularity prediction models are not suitable

for the coded/uncoded content placement frameworks. On the one hand,

in coded/uncoded content placement, in addition to classifying contents

into two groups, i.e., popular and non-popular, the probability of con-

tent request is required to identify which content should be stored par-

tially/completely, where this information is not provided by existing data-

driven popularity prediction models. On the other hand, the assumption

that users’ preferences remain unchanged over a short horizon only works

for content with a smooth request pattern. To tackle these challenges, I de-

velop a Multiple-model (hybrid) Transformer-based Edge Caching (MTEC)

framework with higher generalization ability, suitable for various types of

content with different time-varying behavior, that can be adapted with

coded/uncoded content placement frameworks.This contribution is under

revision of IEEE Internet of Things Journal [9].

• Chapter 5 [2, 10–14]: Indoor D2D-enabled MEC Network

– Targeting Obj1, I proposed a novel Mobility-Aware Femtocaching scheme

based on Handover (MAFH) framework [2], where UEs are categorized

based on their velocity into two groups; low speed and high speed clients.

Since high speed users move and leave their current positions rapidly, D2D

communication is just established between low speed users in order to re-

duce the energy consumption of UEs, while, all UEs, regardless of their

speeds, allow to access their content through FAPs. Moreover, in order to

reduce the number of unnecessary handovers, the appropriate target FAP
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for handover is chosen in such a way that the time interval between suc-

cessive handover triggers will be extended, which consequently reduces the

number of handovers during a connection. This contribution has already

been achieved and published in IEEE Transactions on Vehicular Technol-

ogy [2].

– Targeting Obj7, I proposed three indoor localization frameworks [10–12]

with the application to the BLE technology. In [10], I proposed a set of sig-

nal processing and information fusion methods by integration of Nonlinear

Least Square (NLS) curve fitting, Kalman Filter (KF), and Gaussian Filter

(GF) to boost the accuracy rate of estimated angle. Moreover, in [11], I

first highlighted the wireless signal model in BLE standard and formulate

the transmitted signal, wireless channel model, and the signal received by

Linear Antenna Array (LAA), to introduce a novel fusion processing tech-

nique to eliminate the destructive impact of the wireless channel on the

received signal. Additionally, I developed an efficient CNN-based indoor

localization framework [12] within the BLE-based settings. I considered

an experimental indoor environment without presence of LoS links affected

by Additive White Gaussian Noise (AWGN) with different Signal to Noise

Ratios (SNRs) and Rayleigh fading channel. Moreover, by assuming a 3-D

indoor environment, the destructive effect of the elevation angle of the in-

cident signal is considered on the position estimation. These contributions

have already been achieved, where they are published in the International

Conference on Information Fusion, IEEE International Conference on Sys-

tems, Man, and Sybernetics (SMC), and IEEE International Conference

on Acoustics, Speech and Signal Processing [12]

– Furthermore, I introduced an efficient node selection framework to en-

hance the location accuracy without using complex NLoS mitigation meth-

ods, while maintaining a balance between the remaining battery life of

UWB beacons. Referred to as the Deep Q-Learning Energy-optimized

LoS/NLoS (DQLEL) UWB node selection framework, the mobile user is

autonomously trained to determine the optimal set of UWB beacons to

be localized based on the 2-D TDoA framework. This contribution has
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already been achieved and published IEEE Transactions on Signal Pro-

cessing (TSP) [13].

– Finally, I proposed the Jump-start RL-based Uwb NOde selection (JUNO)

framework [14], to accelerate the learning process of RL models. One of the

most important challenges of existing RL models [13], is that the optimal

policy should be learned by the interaction of the agent (mobile user) with

the environment (i.e., via trial and error), without any prior information,

especially when the model is just initialized. Consequently, it may take a

long time for the RL model to reach the optimal policy. Another challenge

is the generalization ability of the pre-trained RL model to be used in

a new and different environment, where the density/location of obstacles

is changing over the time/environment. To tackle these issues, we used

Jump-Start RL (JSRL) model, where the agent use a guide-policy instead

of a random one at the beginning of the learning process. Consequently,

the learning process is accelerated and the RL generalization ability is

highly improved. This contribution has already been achieved and pub-

lished IEEE Global Communications Conference (GLOBECOM) [14]. The

summary of contributions is presented in Table 1.1.

1.5 Organization of the Thesis

To provide the relevant context, the rest of the thesis is organized as follows.

• Chapter 2 provides the literature review of MEC networks.

• In Chapter 3, I concentrate on the autonomous connection scheduling frame-

work in cache-enabled UAV-aided cellular networks. Moreover, I introduce four

popularity prediction models adopted with uncoded content placement frame-

works.

• Chapter 4 focuses on development of an integrated indoor/outdoor MEC net-

work and coded/uncoded content placement, and designing of an attention-

based popularity prediction.

• In Chapter 5, I focus on integrating the D2D communication in the indoor
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MEC networks, as well as deploying indoor localization frameworks in presence

of Rayleigh fading channel.

• Chapter 6 concludes the thesis and future direction will be discussed.
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Chapter 2

Literature Review

In this chapter, the focus is on providing an overview of MEC networks from the

aspect of the caching location, connection scheduling, content placement, and

popularity prediction. In addition, an overview of different indoor localization

schemes is provided to find an efficient solution for indoor mobility-aware MEC

networks.

2.1 Connection Scheduling

Recently, several promising approaches have been developed to store the most

popular multimedia contents in local caching nodes, including femtocaching

architectures [17], Device-to-Device (D2D) communications [18], UAV-based

frameworks [19], and a combination of above schemes [20]. In this regard, using

UAVs over wireless networks helps FAPs to offload traffic via wireless backhaul,

improve the network’s coverage, and support a highly reliable and low-latency

transmission. With the emphasis on the features of high mobility and low-cost

manufacturing, the satisfactory rate of users will increase through the utiliza-

tion of UAVs as additional caching nodes for providing services to ground users.

Consequently, there has been recent widespread attention to UAVs due to their

impressive potentials in supporting a wide range of commercial and industrial
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applications. UAVs provide an adaptive platform, that can be altered by time-

varying states of the environment and the need of ground users. Recent de-

velopments on stand-alone UAV-based networks have brought several benefits,

including but not limited to wide coverage and low-cost services. Therefore,

several UAV-based small cell networks were introduced, such as the UAV clus-

tering scheme [22], where UAVs play the role of caching nodes to serve all

terrestrial users in the network. Reference [23], for instance, presented a wire-

less network architecture that employed cache-enabled UAVs with the goal of

achieving considerable improvements in the users’ Quality of Experience (QoE).

A UAV-based machine learning algorithm was employed in [24] to predict the

distribution of video content requested based on Echo State Networks.

The wide transmission range of UAVs and the high probability of establishing

LoS links provide several advantages, including the ability to manage the ma-

jority of ground users’ requests, which leads to improved coverage in outdoor

environments. Due to the limited battery life of UAVs, however, requests that

are handled by UAVs should be controlled. Another challenge is the handover

phenomenon, which can be frequently triggered by FAPs if the ground user

moves rapidly and leaves the current position [25]. To overcome these issues,

the UAV-aided cellular network is considered as a combination of UAVs and

FAPs to mitigate the traffic load on either of the two. In this case, the overload

on the backhaul link and the energy consumption of UAVs reduce significantly.

Although potential benefits come by coupling UAVs with FAPs for the devel-

opment of advanced femtocaching strategies, several critical challenges arise,

especially keeping a trade-off between the energy consumption of UAVs and

handover, occurring between FAPs. It is, therefore, critical to develop an ef-

ficient connection scheduling scheme to assign an appropriate caching node to

ground users.

Generally speaking, the overall objective of connection scheduling in UAV-aided

cellular networks is to improve the QoS of ground users, UAVs, and FAPs. In

this regard, there are several conflicting objectives such as users’ access delay, en-

ergy consumption of UAVs, and handover phenomena occurred between FAPs.

Recent connection scheduling research works, however, mainly focused on one of
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these issues. For instance, existing solutions [26–28] focused on the energy con-

sumption of UAVs. In Reference [26], a neural-blockchain-based UAV-caching

approach is designed to provide a high reliability communication in terms of

improvement in the energy consumption of UAVs, the maximum failure rate,

the probability of connectivity, and survivability. Authors in [27] proposed a

closed-form model for the energy consumption of rotary-wing UAVs with the

aim of optimizing UAVs’ trajectories and required communication times allo-

cated to handle user requests. In [28], a fixed altitude for UAV’s fly is assumed

and an Air-to-Ground (A2G) communication scheduling scheme is proposed to

optimize the trajectory, transmit power, and speed of UAVs, with the focus on

decreasing the UAV propulsion energy consumption. In summary, the focus of

these research works is on optimizing the energy consumption of UAVs, however,

without addressing challenges associated with additionally introduced delays in

the system that users experience when their requests are served through UAVs.

On the other hand, Athukoralage et al. [29] considered a connection scheduling

framework, where ground users are supported by UAV or WiFi APs. In this

work, the users’ link quality is utilized to balance the load between UAVs and

WiFi APs. Zhu et al. [30] proposed a game theory-based connection scheduling

scheme, where the probability of packet collision is used to select the optimal

AP among all possible UAVs and Base Stations (BSs). To the best of our knowl-

edge, there is no framework concerning the problem of autonomous connection

scheduling between FAPs and UAVs. Furthermore, to date, limited research

has been performed on UAV-aided cellular networks to provide high QoS for

ground users in both indoor and outdoor environments.

2.2 D2D-based Caching Frameworks

Recent developments in modern users’ devices provide a considerable storage ca-

pacity in smart phones. Consequently, these devices can be effectively employed

as wireless caching nodes introducing the concept of D2D communication [32].

One of the particularly highlighted advantages of D2D communication is that

the number of caching nodes is inherently concentrated at those areas where

the largest demands occur. In [33], the authors introduced the Multi-Agent
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Multi-Armed Bandit (MAMAB) scheme, in which MUs collaboratively cache

and share contents to alleviate the burden of main server. Authors in [34]

considered both self-caching and D2D communication in a clustering network

to attain a sufficient throughput and energy efficiency, even though these two

performance metrics are conflicting design objectives. A trade-off is, therefore,

needed to achieve a balanced performance. Despite all the benefits that come

with D2D communication, motivating users to establish D2D communications

has been an active research field for some times now with several innovative and

intelligent solutions (e.g., [35–37]) being proposed regularly. For example, the

authors in [35] introduced a social-monetary-aware incentive model focused on

the social links, transmission delay costs, and content fees to motivate all mobile

users (transmitter and receiver) to connect via D2D communication. As a coali-

tion forming method, the authors in [36] proposed an optimization problem to

stimulate the requirement for D2D communications through a simple model of

pricing in cellular networks. In this situation, consumer devices are encouraged

to collaborate by taking into account both the cost and the transmission delay

in decreasing their expenses. The authors in [37] presented a two-stage non-

cooperative game to analytically model a discount interference pricing scheme

for D2D communication.

Most of the previous caching proposals for wireless networks assumed fixed lo-

cations for users’ devices (e.g., [38]). Since user mobility is an intrinsic feature of

the next generation of wireless networks, in recent years, the focus has shifted to

mobility-aware caching methods to achieve the best possible performance [39].

Note that the user mobility offers both advantages and disadvantages in fem-

tocaching networks. Mobility provides more communication opportunities for

mobile users to contact with more users and access more segments of a requested

content. Therefore, the probability of failed file delivery in femtocaching net-

works will decrease. However, mobility of both users and caching users’ devices

over time, engenders fluid network topology. Furthermore, accessing to the his-

tory of users’ requests to predict the most popular files is not useful [40]. There

are some preliminary studies considering users’ mobility in wireless networks

based on the D2D communication. The authors in [41] showed the impact

of mobility on caching strategies with regard to providing storage on FAPs
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and mobile users. They proposed a mobility-aware cache placement method to

achieve a high cache hit ratio and minimize the energy consumption of clients.

The authors in [39] introduced the Mobility-Aware Femtocaching scheme based

on Markov Chain (MAFMC) pattern as an optimization problem to model user

motions and utilizing network coding to reduce the MBS load. However, similar

to most literature, the handover phenomenon in D2D-aided cellular networks,

occurred during the movement of users, is ignored [39,41].

2.3 Coded Content Placement

The main objective of UAV-aided cellular networks is to bring multimedia data

closer to ground users and simultaneously improve users’ QoS and the net-

work’s QoE. If the requested content can be found in the storage of one of the

available caching nodes, this request would be served directly and cache-hit

occurs; otherwise, it is known as a cache-miss. Due to the large size of multi-

media contents, however, it is not feasible to store all contents in the storage of

caching nodes. To increase content diversity, coded caching strategies [42, 43]

have received remarkable attention lately. In coded caching strategies, only spe-

cific segments of the most popular multimedia contents are stored in the caching

nodes. Early works on coded femtocaching such as Reference [44], however, con-

sidered homogeneous networks, where the same segments of the most popular

multimedia contents are stored in different caching nodes. Non cluster-centric

approaches [44], generally, ignore potentials of using the Joint Transmission

(JT) scheme, which if utilized can both improve the QoS of edge-users and in-

crease diversity of available contents for ground users. Therefore, the main focus

of recent researchers has been shifted to the cluster-centric networks [45] as a

heterogeneous infrastructure, where distinct segments are stored in neighboring

caching nodes.

Cluster-centric cellular networks provide several benefits, such as increased con-

tent/cache diversity, which in turn leads to an increase in the number of requests

managed by the caching nodes. However, this comes with the cost of experienc-

ing inter-cell interference, especially for cell-edge users. To mitigate the inter-cell

interference and improve the throughput of the cell-edge users, content caching
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in CoMP-integrated networks [45–50] has been studied in recent years. For in-

stance, Chen et al. [45] developed two transmission schemes, namely JT and

Parallel Transmission (PT), which are selected based on the popularity of the

requested content. Alternatively, Lin et al. [48] proposed a cluster-centric cel-

lular network applying the CoMP technique based on the users’ link quality,

where cell-core and cell-edge users are served through Single Transmission (ST)

and JT, respectively. Despite all the researches on the cluster-centric cellular

networks, there is no framework to determine how different segments can be

cached to increase the data availability in a UAV-aided cluster-centric cellular

network to increase content diversity.

2.4 Popularity Prediction

In the MEC networks, there are two types of caching strategies, i.e., Reactive

caching and proactive caching. Conventional reactive caching schemes [51], such

as First-In-First-Out (FIFO), Least Recently Used (LRU), and Least Frequently

Used (LFU) frameworks, identify the most popular content based on the un-

derlying pattern of observed users’ requests. A critical drawback of reactive

caching is that popular content can only be identified after being requested.

As a consequence, they are not robust to the dynamically changing behavior

of the content popularity. Therefore, the main focus of recent researches has

been shifted to use proactive caching, e.g., using DNN models to predict the CP

from the request patterns. In this context, popular content can be dynamically

allocated in the storage of hgNBs before being requested. The paper aims to

further advance this emerging field.

Generally speaking, both temporal and spatial correlations exist within the

time-variant request pattern of multimedia content. While spatial correla-

tion reflects different users’ preferences, depending on the geographical loca-

tion and users’ contextual information, the temporal correlation represents the

variation of content popularity over time. In this context, several DNN mod-

els [52–58,60,130] are introduced to capture the temporal and/or spatial features

of user preferences in proactive caching schemes. For instance, Yu et al. [61] used

an auto-encoder model to predict users’ preferences in the future by learning
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the latent representation of raw data in an unsupervised fashion. Auto-encoder

models, however, suffer from training complexity. Tsai et al. [62] used Convolu-

tional Neural Network (CNN) for predicting users’ interests based on sentence

analysis. Ndikumana et al. [63] introduced a DNN-based caching framework,

compromising of Multi-Layer Perceptron (MLP) and CNN models, where con-

textual information such as age, emotion, and gender are utilized for making

caching decisions. Although CNN-based proactive caching schemes have local

spatial feature awareness, they are inefficient for extracting temporal features

from the patterns of sequential requests. Furthermore, such models require

multi-source input such as regional information, and contextual information of

users to improve the cache performance. Therefore, they need an efficient data

pre-processing model to extract this information.

To deal with the time-varying behavior of request patterns, Recurrent Neural

Networks (RNNs), such as Long Short Term Memory (LSTM) [55,64], are intro-

duced to use historical information of the content. To extract both spatial and

temporal features of CP data, Ale et al. [53] used a combination of LSTM and

CNN models. LSTM-based caching frameworks, however, suffer from long-term

dependencies, computation complexity, and unsuitability for parallel comput-

ing. To address challenges associated with RNN architectures, the Transformer

neural network [65] has been designed to handle sequential input data, which

is purely reliant on attention mechanisms with no recurrence or convolutions.

One of the most important advantages of Transformers over RNN models is the

attention mechanism, which eliminates the need to analyze data in the same

order. Consequently, Transformers have higher parallelization capabilities than

RNNs, implying reduced training time.

2.5 BLE-based Indoor Localization

Recent developments and advancements in the Internet of Things (IoT), low

power wireless networks, and processing methodologies have resulted in the

emergence of several different and innovative indoor localization technologies,
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including Infrared (IR) systems [66], Ultrasonic (US) systems [67], and Optical-

based frameworks [68]. These systems share several common underlying prop-

erties, such as being sensitive to multipath effects, high costs and complexity

and in some cases, and not being readily available [69]. Consequently, the

main focus of researchers has been shifted to Radio Frequency (RF) indoor lo-

calization technologies, including Radio-Frequency IDentification (RFID) [70],

ZigBee [71], WiFi [72], BLE [73], and UWB [74]. There are several notable

factors that should be considered in developing an indoor localization system,

such as cost, accuracy, robustness, scalability, power requirements, reliability,

and coverage. Over the last few decades, there has been a significant surge

of interest for BLE-based technologies, as one of the most reliable RF-based

localization frameworks due to its availability (e.g., BLE is available on most

modern smart devices), low power consumption, and low cost [75].

BLE is a commonly used low-power wireless protocol for IoT applications. Blue-

tooth beacons are small radio transmitters that send signals within upto 100 m

radius. Bluetooth beacons, supported by many systems, are cost effective and

are able to accurately determine the location of user devices upto few meters.

There are numerous indoor location schemes that works on different aspects

of BLE received signal. For instance, Received Signal Strength (RSS)-based

methods [76] determine the location of user devices based on the strength of the

signal, received by BLE beacons, while AoA [77] and Time of Arrival (ToA) [78]

schemes evaluate the angle and the time of the incident signal, respectively.

AoA-based localization, as an active research field for several decades, is a non-

linear triangulation approach to measure the position of mobile agents based

on the direction of the incident radio frequency signal, received by an antenna

array such as Linear Antenna Array (LAA) [78]. Subspace-based angle estima-

tion algorithms [79], such as MUltiple Signal CLassification (MUSIC) and its

extensions, are among the early research efforts for AoA estimation. Despite

the benefits that can be obtained by using subspace-based angle estimation

techniques, such localization methods suffer from some drawbacks. A key limi-

tation is the unreliability of the subspace-based algorithms in the presence of the

multi-path effect, which is an unavoidable factor in indoor environments [80].

Multi-path fading channel in indoor environments is commonly modelled by
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statistical models mainly Rayleigh [81] and Rician [82]. By assuming that there

is a strong LoS path between the transmitter and the receiver, there are a wide

range of approaches to address the multi-path propagation, including channel

classification [83], Kalman filter-based techniques [84], and subsample interpo-

lation methods [85]. Presence of different objects within indoor environments,

however, leads to receiving the reflected, refracted, diffracted, and scattered

versions of the transmitted wireless signal. Consequently, the assumption of

existing a strong LoS path is not practical in most indoor localization scenar-

ios. On the other hand, due to the complexity of analytical modelling of the

multi-path and path-loss effects in indoor environments, the focus has shifted

to data-driven approaches such as those based on DNNs [86]. Therefore, by

considering the effects of multi-path and path-loss on the train dataset, one

can eliminate the need for complex and precise analytical models. Capitaliz-

ing on these advantages, for instance Reference [87] introduced a CNN-based

localization approach for the 2-D AoA estimation in the presence of noise. Au-

thors in [88] investigated the effect of noise in a 3-D environment on the angle

estimated by employing DNNs. Authors in [89, 90] proposed a DNN-based

localization framework, where the input of the DNN is the Channel Impulse

Response (CSI)-AoA images. CSI, however, is prone to the noise, shadowing,

and small scale fading, leading to a considerable localization error.

Despite all the research conducted in this field, research on data driven BLE-

based AoA localization is very limited [88] as only recently direction-finding

feature is introduced to the BLE specification. In particular, the challenge of

modelling the wireless channel as a combination of Rayleigh fading and noise

without presence of the LoS link between the transmitter and the receiver in

a 3-D indoor environment has not yet been considered. In such real indoor

environments, the mobile user and BLE beacons are not always located along

the same line, which in turn leads to elevation angle. Although the azimuth

angle of the incident signal is utilized for location estimation, the destructive

effect of elevation angle should be considered.
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2.6 UWB-based Indoor Localization

UWB technology has been emerged as a solution to meet the phenomenal growth

of the need for localizing users in indoor environments [93]. The use of a wide

radio spectrum in UWB technologies enables individual multi-path components

of the received signal to be efficiently resolved, resulting in high accuracy indoor

positioning [94]. To monitor/track users in indoor environment, several local-

ization techniques have been proposed such as RSSI, AoA, and TDoA [95, 96],

among which time-based solutions [95–97] are the most efficient ones. In such

scenarios, the time of the received signal from a set of available UWB beacons

is required, which can only be estimated accurately if the first arrival path

has been properly identified. In this context, one key challenge is susceptibil-

ity to the NLoS error. In presence of an obstacle between the UWB beacon

and the mobile device, the time of the received signal will be delayed, result-

ing in a positive bias and a significant degradation in the positioning accuracy.

Therefore, NLoS mitigation/identification in UWB-based indoor localization

is of paramount importance. Conventional indoor localization frameworks re-

duced such location error via parametric solutions [98], the accuracy of which

is dependent on implementation of complex pre-processing techniques adding

considerable latency. Furthermore, using a large number of UWB beacons for

localizing users is inefficient from the energy consumption perspective. In this

regard, Dai et al. [99] analytically proved that tracking users’ locations through

a subset of active beacons offers several benefits, including mitigating the energy

consumption of beacons, and improving the location accuracy. Consequently,

the main focus of recent researches [100–103] has been shifted to use anchor

node selection to achieve the best localization performance in terms of location

accuracy and resource management. The paper aims to further advance this

emerging field.

Anchor node selection in the context of indoor localization is utilized to improve

the network’s performance by setting a set of criteria for selecting a subset of

beacons with the highest utilities. One of the most important criteria in indoor

localization is to mitigate the location error, caused by NLoS connections. To-

wards this goal, LoS connections will be selected for monitoring/tracking users’
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locations instead of extracting location information from all available beacons.

Within the Wireless Sensor networks (WSNs) context, Zhu et al. [104] used

the Link Condition Indicator (LCI) as a metric to illustrate the link quality

(i.e., LoS/NLoS conditions) of anchor nodes. Dai et al. [99] proposed a near

optimal solution for identifying LoS/NLoS connections, which is used for power

allocation and anchor node selection in Wireless Network Localization (WNL).

Zhang et al. [105] introduced the topological unit, based on the topological

relationship between nodes, to mitigate the location error caused by NLoS con-

nections in an indoor environment.

With the application to the UWB-based indoor localization, Wang et al. [106]

calculated the CIR from all beacons to determine two LoS connections out of all

beacons to be involved in the localization. Albaidhani et al. [101] proposed an

UWB node selection based on the Mean Squared Error (MSE) metric, where

UWB beacons are clustered into different groups. Then, the group with the

lowest MSE is selected to be used for localization by using the Weighted Least

Square (WLS) method. Albaidhani et al. [103] introduced another evaluation

metric for selecting the best set of UWB beacons, named Geometric Dilution

of Precision (GDOP), and showed the superiority of the GDOP in comparison

to the MSE metric in terms of the location accuracy. Despite all the benefits

that come from using existing anchor node selection frameworks, there are still

critical challenges ahead. On the one hand, energy consumption efficiency is

compromised in scenarios where all the beacons require to transmit/receive

signals for LoS/NLoS identification. On the other hand, analytical anchor node

selection frameworks developed based on fixed mathematical models fail to cope

with the dynamic nature of indoor environments, such as unknown/varying

adverse environmental conditions.

29



Chapter 3

Autonomous Connection

Scheduling and Uncoded Content

Placement

In this Chapter, an ultra-dense MEC network consisting of FAPs and UAVs

is considered, where there are more than one possible caching node to han-

dle user’s request. To meet the dynamic nature of Heterogeneous Networks

(HetNets) such as unknown/varying number of active users, and adverse en-

vironmental conditions, the focus of recent research works have been shifted

to the RL approaches instead of using fixed mathematical models. Therefore,

ground users can be autonomously trained to determine the optimal caching

node, i.e., UAV or FAP. Generally speaking, the overall objective of connection

scheduling in HetNets is to improve the QoS of ground users, UAVs, and FAPs.

In this regard, there are several conflicting objectives such as users’ access de-

lay, energy consumption of UAVs, and handover phenomena occurred between

FAPs. Recent HetNet scheduling research works, however, mainly focused on

one of these issues. The main motivation behind this work is to address this

lack of prior research studies on HetNet scheduling to simultaneously satisfy

concerns of ground users, UAVs, and FAPs. To achieve these objectives, we

formulate a multi-objective optimization problem and propose the CNN and

Q-Network-based Connection Scheduling (CQN-CS) framework. More specifi-

cally, to solve the constructed multi-objective connection scheduling problem, a
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deep Q-Network model is developed as an efficient RL approach to train ground

users to handle their requests in an optimal and trustworthy fashion within the

coupled UAV-based femtocaching network. The effectiveness of the proposed

CQN-CS framework is evaluated in terms of the cache-hit ratio, user’s access de-

lay, energy consumption of UAVs, and FAP’s handover. Based on the simulation

results, the proposed CQN-CS framework illustrates significant performance im-

provements in companion to Q-learning and Deep Q-Network (DQN) schemes

across all the aforementioned aspects.

Although massive connectivity enabled by the autonomous connection schedul-

ing in MEC networks will significantly increase the quality of communications,

there are several key challenges ahead. The limited storage of edge nodes, the

large size of multimedia content, and the time-variant users’ preferences make it

critical to efficiently and dynamically predict the popularity of content to store

the most upcoming requested ones before being requested. Recent advance-

ments in DNNs have drawn much research attention to predict the content

popularity in proactive caching schemes. Existing DNN models in this context,

however, suffer from long-term dependencies, computational complexity, and

unsuitability for parallel computing. To tackle these challenges, we propose sev-

eral attention-based popularity prediction methods suitable for uncoded content

placement. Finally, we introduce a self-supervised popularity prediction model

to eliminate the need for manually lablelling available datasets.

3.1 Autonomous Connection Scheduling

The main novelty of this work is the design of an autonomous and decentral-

ized scheduling approach via simultaneous incorporation of three key objectives,

i.e., users’ access delay, energy consumption of UAVs, and handover phenom-

ena. In other words, the proposed CQN-CS framework allows ground users

to autonomously determine (via the RL-based component) an optimal caching

node to handle their requests without reliance on any central processing unit.
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Figure 3.1: A typical structure of the proposed UAV-based femtocaching model.

3.1.1 System Model and Problem Description

In this work, we consider a UAV-based femtocaching network consisting of a set

of ground mobile users, denoted by GUj, for (1 ≤ j ≤ Ng), Nf number of FAPs,

denoted by fi, for (1 ≤ i ≤ Nf ), Nu number of UAVs, as the flying caching

nodes, denoted by uk, for (1 ≤ k ≤ Nu), and a cloud server. As depicted in

Fig. 3.1, the transmission range of FAPs, denoted by Rf , is much more limited

than that of UAVs, denoted by Ru, where a UAV covers Nc number of FAPs

in a neighbourhood. Without loss of generality, it is assumed that similar to

FAPs that have the same storage of size Sf , UAVs are equipped with the cache

storage with an equal size of Su.

In this model, ground users request an equal-sized video file cl, for (1 ≤ l ≤
C), with the probability of pl, where pl is calculated based on the Zipf-like

distribution as follows [107]

pl =
l−γ

C∑

r=1

r−γ

, (1)

where C denotes the total number of video contents in the network, stored at

a cloud-based content server, known as the main server in the network, and γ

represents the popularity skewness. In a UAV-based femtocaching network, if
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a requested content exists in the caching nodes including FAPs and UAVs, the

cache-hit occurs, otherwise, it is known as a hit-miss and the requested content

is served by the main server. To decrease the video traffic load on the main

server, UAV-based femtocaching strategies increase the number of requests di-

rectly served by FAPs and/or UAVs [108]. However, due to the large size of

video files, it is not feasible to store all contents in the storage of caching nodes.

Additionally, taking into account the varying popularity of video contents over

time and the constraint of cache space in both UAVs and FAPs, caching nodes’

contents are periodically updated in the replacement phase according to the

Fairness Scheduling algorithm with an Adaptive Time Window (FS-ATW) pre-

sented in [67].

In this work, by focusing on the delivery phase, the main goal is to propose

a multi-objective UAV-based femtocaching strategy based on a real dense net-

work to determine how to select caching nodes by ground users in order to

enhance the QoS, in terms of user’s access delay, minimize the UAVs’ energy

consumption and handover phenomena. In what follows, we briefly introduce

some concepts required to develop the proposed CQN-CS framework. In this

work, it is assumed that all ground users randomly move in all directions with

a specific velocity, that will be introduced in “User Mobility Pattern”. Then,

we will fully describe four alternative ways to support users’ requests in “User

Access Pattern”. A summary of the notations used hereinafter is provided in

Table 3.1.

User Mobility Pattern

In this work, the Difference Correlated Random Walk (DCRW) is considered

to model the ground users’ movement pattern which is a common movement

pattern in MEC networks [31, 109], where the current position of GUj at time

slot t, denoted by Lj(t) = [xj(t), yj(t)]
T , depends on the movement’s velocity.

According to bivariate Stochastic Differential Equation (SDE), a ground user’s

velocity at time slot t, denoted by υj(t) = [υ
(x)
j (t), υ

(y)
j (t)]T , is calculated as [109]

dυj(t) = −
(

− log ς1 θ

−θ − log ς2

)

(υj(t)− µ)dt+ JdBt, (2)
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where ς1 and ς2 denote auto-correlation parameters in (x,y) coordinates, re-

spectively, J denotes a (2 × 2) lower triangular matrix with positive diagonal

components to determine the covariance of velocity shifts, and Bt represents a

(2× 1) vector to illustrate the standard Brownian motion at time slot t. In ad-

dition, µ and θ signify the mean velocity vector and the DCRW model’s mean

turning angle, respectively. Accordingly, the location of the ground user GUj

at time slot t is obtained as [109]

Lj(t) = Lj(t− 1) + υj(t− 1)∆t, (3)

where ∆t represents the time interval between two consecutive estimated loca-

tions. To determine the initial location of ground users, we utilize the Angle

of Arrival (AoA) scheme [10,11], which has been recognized as an efficient and

high accurate triangulation localization method among all the available schemes

(e.g., see [15, 16]). By assuming the known position of FAPs, the initial loca-

tion of ground user GUj at time t = 0, denoted by Lj(0) = [xj(0), yj(0)]
T , is

obtained as follows

xj(0) =
dn,i tan θi,j

tan θi,j − tan θn,j
, (4)

yj(0) =
dn,i tan θn,j tan θi,j
tan θi,j − tan θn,j

, (5)

where θi,j and θn,j represent the angle between x-axis and the line between

ground user GUj and FAPs fi and fn, respectively [11]. Moreover, dn,i denotes

the distance between ith and nth FAPs.

Users’ Access Pattern

Given the location of users, all available FAPs and UAVs in the vicinity of ground

users are determined. Therefore, by requesting content by ground user GUj, this

request must be served by one of the FAPs or UAVs in the neighborhood. In

some cases, however, the requested content cannot be found in the storage of

either available FAPs or UAVs, due to the limited embedded storage of caching

nodes. Consequently, they need to provide the corresponding content from the

cloud server. To serve users’ requests, there are four alternative approaches,

i.e., (i) FAP-ground user; (ii) UAV-ground user; (iii) Cloud-FAP-ground user,
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and; (iv) Cloud-UAV-ground user links. It should be noted that the last two

approaches would happen when the requested content does not exist in the

storage of either FAPs or UAVs.

This completes the description of the network’s model and the main assump-

tions required for the development of the proposed CQN-CS framework. Next,

we construct a multi-objective optimization problem over which the CQN-CS

framework is designed.

3.1.2 Multi-Objective Optimization Problem

In this subsection, we present users’ access delay, energy consumption of UAVs,

and handover of FAPs in order to formulate a multi-objective optimization

problem. The constructed optimization problem is associated with the selection

of an appropriate UAV and/or FAP among all candidate caching nodes to serve

users’ requests.

Users’ Access Delay

By considering the common consideration in the literature that all video files in

the network are of similar size [108,114], users’ access delay exclusively depends

on the connection type, i.e., the user’s request is served by the FAP or the

UAV. Note that this assumption is only used for notational convenience as

larger contents in caching-based networks could be broken into the same length

packets by packetization. Additionally, another key factor that has a great

impact on the user’s access delay is the availability of the requested content in

the storage of FAPs and/or UAVs. If the requested content can be found in the

cache of FAP and/or UAV, this request is directly handled by the caching node

and the cache-hit occurs, otherwise, the corresponding file must be provided by

the cloud server for FAP and/or UAV to manage the request, and in this case,

the ground user will experience much more delay. As will be described shortly,

the user’s access delay is expressed as a function of the distance between the

ground user and the target caching node, and the popularity of the requested

file.
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Users’ Access Delay Through UAV Connection: To provide content via

a UAV, an air-to-ground connection from the UAV to the ground user must be

formed. In such a case that the requested content is not accessible in the UAV

cache, in addition to the air-to-ground connection, a ground-to-air connection

requires to be established as well, which is the wireless fronthaul link between

the cloud server and the UAV. To determine the user’s access delay through

UAVs, due to the unavoidable obstacles throughout the network, we consider

both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) connections over the

Cloud-to-UAV and the UAV-to-Ground user links as follows:

• UAV-to-Ground User Link: The LoS and NLoS path loss models from

UAV uk to ground user GUj at time slot t are expressed as follows [110]

L(LoS)
k,j (t) = L0 + 10η(LoS) log(dk,j(t)) + χ(LoS)

σ , (6)

L(NLoS)
k,j (t) = L0 + 10η(NLoS) log(dk,j(t)) + χ(NLoS)

σ , (7)

where L0 = 20 log

(
4πfcd0
c

)

represents the path loss in reference dis-

tance d0, fc is the carrier frequency, and c denotes the light speed. In

addition, η(LoS) and η(NLoS) indicate the path loss exponents of LoS and

NLoS, respectively, and dk,j(t) is the Euclidean distance between UAV

uk and ground user GUj at time slot t. Moreover, χ
(LoS)
σ and χ

(NLoS)
σ ,

as the shadowing effects, denote zero-mean Gaussian-distributed random

variables with the standard deviation σ. Considering the fact that the

probability of LoS connection relies on the environment, the probability of

LoS link, denoted by p
(LoS)
k,j (t), is expressed as [111]

p
(LoS)
k,j (t) = (1 + ψ exp (−ζ[φk,j(t)− ψ]))−1 , (8)

where ψ and ζ are environmental constant parameters, and φk,j(t) =

sin−1

(
hk

dk,j(t)

)

represents the elevation angle, where hk is the altitude

of the UAV uk. In our optimization problem, we assume that each UAV

uk flies in a fixed altitude hk over the hovering time. As a result, the
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average path loss between UAV uk and ground user GUj is calculated as

Lk,j(t)=p
(LoS)
k,j (t)L(LoS)

k,j (t) + (1− p(LoS)k,j (t))L(NLoS)
k,j (t). (9)

• Cloud-to-UAV Link: Similarly, since the terrain knowledge is not available,

the link between UAV and the cloud cannot deterministically be identified

as LoS or NLoS. Therefore, we use probabilistic mean path loss with two

possible events (i.e., LoS or NLoS). The average path loss over the LoS and

NLoS conditions is then computed by considering p
(LoS)
c,k (t) denoting the

probability of having a LoS, and 1− p(LoS)c,k (t) representing the probability

of having a NLoS link as follows

Lc,k(t) = p
(LoS)
c,k (t)L(LoS)

c,k (t) + (1− p(LoS)c,k (t))L(NLoS)
c,k (t), (10)

where L(LoS)
c,k (t) = d−α

c,k (t) and L(NLoS)
c,k (t) = βL(LoS)

c,k (t), in which dc,k(t)

denotes the distance between the cloud server and UAV uk, and α and β

represent the path loss exponent and the additional path loss of the NLoS

connection, respectively [115].

To express the user’s access delay through UAVs, first we calculate the cache-hit

probability, i.e., the probability of serving a request by UAV uk at time slot t,

denoted by p
(h)
k (t), and cache-miss probability, denoted by p

(m)
k (t), as follows

p
(h)
k (t) =

∑

l∈Ck

pl(t) ≤ 1, (11)

p
(m)
k (t) = 1− p(h)k (t), (12)

where Ck denotes a set of contents stored in the cache of UAV uk. We use

the fact that the popularity of contents pl(t) in Eq. (11) is changing over time.

Following a similar concept used to form the average path loss in Eq. (10),

there are two possible events to define the user’s access delay through UAV,

i.e., the cache-hit event (which can happen with probability of p
(h)
k (t)) and the

cache-miss event (which occurs with probability of p
(m)
k (t)). Accordingly, we

have

Du(t) = p
(h)
k (t)D(h)

u (t) + p
(m)
k (t)D(m)

u (t), (13)
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where D(h)
u (t), known as the cache-hit delay through UAV, is expressed as

D(h)
u (t) =

Lc

Rk,j

= Lc log
−1

(

1 +
Pk10

Lk,j(t)/10

Ik(t,u−k) +N0

)

, (14)

with Lc, Rk,j, Pk, and N0 denoting the size of file cl, the data rate of the

transmission from UAV uk to GUj, the constant transmit power of UAV uk, and

the noise power, respectively. Moreover, Ik(t,u−k) indicates the interference

from other UAV-to-Ground user links except for the corresponding uk link.

Similarly, the cache-miss delay, denoted by D(m)
u (t), is calculated as

D(m)
u (t) = Lc log

−1

(

1 +
Pk10

Lc,k(t)/10

Ik(t,u−k) +N0

)

+ (15)

Lc log
−1

(

1 +
Pk10

Lk,j(t)/10

Ik(t,u−k) +N0

)

,

where the first term illustrates the user’s access delay associated with the Cloud-

to-UAV link, while the second term on the Right Hand Side (RHS) of Eq. (15)

is related to the UAV-to-Ground user link.

User’s Access Delay Through FAP Connection: Another promising

approach to provide the desired content for ground users is serving the request

by FAPs, which leads to a ground-to-ground connection type between FAPs

and users. Similarly, if the requested content cannot be found in the cache of

neighboring FAPs, the corresponding content is transmitted by the cloud server

to the FAP, and then it is sent to the ground user. Therefore, the user’s access

delay through the FAP connection is defined as follows

Df (t) = p
(h)
k (t)D(h)

f (t) + p
(m)
k (t)D(m)

f (t), (16)

where D(h)
f (t), as the cache-hit delay through FAPs, is expressed as

D(h)
f (t) = Lc log

−1

(

1 +
Pi|H̃i,j(t)|2
Ii(t, f−i) +N0

)

, (17)

where H̃i,j(t) =
hi,j(t)
√

Li,j(t)
illustrates the fading channel effect with path loss
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between FAP fi and ground user GUj at time slot t, where gi,j(t) = |hi,j(t)|2
represents the power gain of the short-term fading channel coefficient hi,j(t),

which is a complex zero-mean Gaussian random variable with the standard

deviation equals to one, and Li,j(t) denotes the corresponding path loss. In ad-

dition, Ik(t, f−i) represents the interference from other FAP-user links excluding

the corresponding fi link.

Energy Consumption of UAVs

The energy consumption of UAV uk, due to transmitting file cl with the size of

Lc to ground user GUj, is calculated as [112]

E(LoS)
uk

(t) = LcPT (t)τp + LcPR(t)τp + P
(LoS)
j (t)(τf − τp), (18)

E(NLoS)
uk

(t) = LcPT (t)τp + LcPR(t)τp + P
(NLoS)
j (t)(τf − τp), (19)

where τf and τp represent the flyby and the pause times of UAV uk, respectively.

Moreover, PT (t), PR(t), and Pj(t) denote the transmission and reception powers

of 1 Mb file sharing, and the received power at ground user GUj, respectively,

where P
(LoS)
j (t) and P

(NLoS)
j (t) are calculated as

P
(LoS)
j (t) = P

(LoS)
0 − 10η(LoS) log

(
dk,j(t)

d0

)

+ χ(LoS)
σ , (20)

P
(NLoS)
j (t) = P

(NLoS)
0 − 10η(NLoS) log

(
dk,j(t)

d0

)

+ χ(NLoS)
σ , (21)

where P
(LoS)
0 and P

(NLoS)
0 represent the received power at distance d0 in LoS

and NLoS models, respectively. Consequently, the average energy consumption

of UAV uk is

Eu(t) = p
(LoS)
k,j (t)E(LoS)

uk
(t) + (1− p(LoS)k,j (t))E(NLoS)

uk
(t). (22)

Handover of FAPs

Dynamic UAV-based femtocaching networks, consisting of massively dense FAPs

with small transmission ranges, are exposed to triggering frequent handovers
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during users’ movements. By considering RSSIi,j(t) as the received signal

strength by ground user GUj from FAP fi, we have

RSSIi,j(t) = RSSI0 + 10η log10
(di,j(t)

d0

)
+ χσ, (23)

where di,j(t) and d0 denote the distance between FAP fi and GUj, and the

reference distance equal to 1 m, respectively. Moreover, η represents the path

loss exponent, which is 10 dB or 20 dB, and χσ is a zero-mean Gaussian with the

standard deviation σ that represents the effect of shadowing in our femtocaching

scheme [113]. During movement of the ground user GUj, once RSSIi,j(t) drops

below the threshold level Pth, defined as the minimum signal strength that can

be detected by ground users, handover triggers, and GUj connects to another

neighboring FAP with the strongest signal. Since the received signal strength

depends on the distance between the ground user GUj and FAP fi, the low

value of RSSIi,j(t) indicates that GUj is far from FAP fi, leading to triggering

handover within the shortest possible time. Moreover, taking into account a

dynamic femtocaching network, where ground users move consistently in the

coverage area of FAPs, it is essential to consider that the ground user GUj is

becoming close to the corresponding FAP or moving farther away during its

movement. Hence, we define ∆i,j(t) as follows

∆i,j(t) = RSSIi,j(t)−RSSIi,j(t− 1), i = 1, . . . ,U (f)
j , (24)

where U (f)
j denotes a set of accessible FAPs for the ground user GUj. In this

case, ∆i,j(t) = 0, (1 ≤ i ≤ U (f)
j ), indicates that the ground user GUj is a

stationary user, therefore, it should be connected to the FAP with the highest

value of RSSI. ∆i,j(t) > 0 shows that the ground user GUj is becoming close

to FAP fi, while ∆i,j(t) < 0, which is the worst case scenario, shows that

GUj is moving far away from FAP fi. In order to decrease the number of

handovers, after requesting a content by the ground user GUj, the RSSI value

of all candidate FAPs in the vicinity of GUj is measured and the target FAP

fi, with the highest value of handover HOi,j(t) is selected to serve the user’s
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request, where HOi,j(t) is obtained as follows

HOi,j(t) = RSSIi,j(t) + ∆i,j(t). (25)

Problem Formulation

Based on the above derivations and considering the system model described

in Subsection 3.1.1, the goal here is to develop an efficient scheduling con-

nection to assign an appropriate caching node (i.e., UAV or FAP) to ground

users. To construct the optimization problem, we consider the following three

objectives: (i) User’s access delay; (ii) Energy consumption of UAVs, and; (iii)

Handover phenomena. On the other hand, to evaluate the efficiency of the pro-

posed CQN-CS framework, we use the following six performance metrics: (1)

Cache-hit ratio; (2) User’s access delay; (3) Energy consumption of UAVs; (4)

Handover; (5) Lifetime of the network, and; (6) Cumulative rewards. Toward

this goal, we formulate a multi-objective optimization problem with the aim

of minimizing the user’s access delay depending on whether the user is served

through FAPs or UAVs. Access delay experienced by the jth ground user, en-

ergy consumption of UAVs, and the occurrence of handovers are denoted by

Dl,j(t) ∈ {Dfi,j(t),Du,j(t)}, El,j(t), and HOl,j(t), respectively. Note that sub-

script l ∈ Uj = {uk, f1, . . . , fU(f)
j

} denotes all caching nodes in the vicinity of the

ground user GUj. By considering the system model in Fig. 3.1, our proposed

wireless network consists of some clusters, where each cluster is supported by

one UAV and several overlapped FAPs. Consequently, the ground user GUj

(for 1 ≤ j ≤ Ng) at time slot t can access one UAV uk, (for 1 ≤ k ≤ Nu),

and several FAPs fi, i = 1, . . . ,U (f)
j . Therefore, the cardinality of all caching

nodes (UAV and FAPs) supporting the ground user GUj at time slot t is given

by |Uj| = |U (f)
j | + 1. One of the most efficient methods to scalarize a set of

objectives into a single objective, is the Weighted Sum (WS) method, in which

normalized objectives are pre-multiplied by weights ωq, and are combined as
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follows

Fj(x) =
∑

l∈Uj

(
ω1xlDl,j(t) + ω2xlEl,j(t) (26)

− ω3xlHOl,j(t)
)
,

where Fj(x) denotes the cost function associated with the ground user GUj, and

x = [x1, . . . , xUj
] is an indicator vector, where xl would be 1 if lth caching node

serves the request of the ground user GUj, otherwise it equals to 0. Note that

x1 illustrates the connection between GUj and UAV uk. Moreover, the weight

coefficient ωq should be valued in such a way that the higher value of ωq indicates

the superiority of that parameter, where
3∑

q=1

ωq = 1. Since the dimension of these

three parameters is not the same, we assume normalized values, where the delay

associated with UAVs and FAPs are normalized by the maximum tolerable delay

of UAVs (D(max)
u ) and that of FAPs (D(max)

f ), respectively. Similarly, the energy

consumption of UAVs and the handover parameter are normalized by Emax and

Pth, respectively. More precisely, by considering the fact that ground users

will experience maximum latency in the boarder of transmission range of both

UAVs and FAPs, D(max)
u and D(max)

f can be determined according to Eqs. (13)

and (16), where dk,j(t) = Ru and di,j(t) = Rf , respectively. Similarly, Emax is

obtained according to Eq. (22), where dk,j(t) = Ru in Eqs. (20) and (21).

Our aim is to minimize the objective function Fj(x). Note that the minus sign

for the handover parameter in Eq. (26) is due to the fact that the RSSI value

linearly depends on the HOl,j(t) in Eq. (25). Therefore, connecting to the FAP

with the highest value of HOl,j(t) leads to decreasing the number of handovers.

In this case, we expand Dl,j(t) in Eq. (26) as

Dl,j(t) = Du,j(t) +
∑

l∈U
(f)
j

Dfl,j(t). (27)

43



Then, we can expand the objective function, including two terms; UAV connec-

tion, and FAP connection, as follows

Fj(x) = ω1x1Du,j(t) + ω2x1Eu,j(t)
︸ ︷︷ ︸

,CU−G

+ (28)

∑

l∈U
(f)
j

ω1xlDfl,j(t)− ω3xlHOl,j(t)

︸ ︷︷ ︸

,CF−G

,

where CU−G denotes the cost function associated with UAVs and the ground

users’ connections, and CF−G is the connection link between FAPs and the

ground users. Consequently, CU−G would be zero, if the ground user GUj

should be served by FAPs. Similarly, CF−G would be zero, when GUj is served

by UAV uk. To determine the time varying connection scheduling of ground

users, by considering the fact that there are Ng ground users in the network,

the proposed scalarized optimization problem is expressed as follows [118]

min
x

∑

j∈Ng

Fj(x) (29)

s.t. C1. xl ∈ {0, 1},

C2.

Uj∑

l=1

xl = 1,

C3. 0 ≤ Du,j(t) ≤ 1,

C4. 0 ≤ Dfl,j(t) ≤ 1,

C5. 0 ≤ Eu,j(t) ≤ 1,

C6. RSSIi,j(t) ≥ Pth.

For the above optimization problem, xl in constraint C1 is the indicator vari-

able. Constraint C2 represents that the request of each ground user is served

by one caching node. Constraints C3 ∼ C5 are utilized to illustrate all possible

caching nodes in the vicinity of the ground user GUj, where the normalized la-

tency associated with candidate UAVs and FAPs, and the energy consumption

constraints should be positive and less than or equal to one. Moreover, con-

straint C6 represents that the RSSI value should be equal to or greater than the
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threshold level of RSSI (Pth), otherwise handover occurs. Following a similar

argument as in [114], our minimization problem in Eq. (29) can be expressed

as a maximization problem, i.e.,

max
x

∑

j∈Ng

F ′
j(x) (30)

s.t. C1 ∼ C6,

where F ′
j(x) is defined as

F ′
j(x) = ω1x1

(

1−Du,j(t)
)

+ ω2x1

(

1− Eu,j(t)
)

(31)

+
∑

l∈U
(f)
j

ω1xl

(

1−Dfl,j(t)
)

+ ω3xlHOl,j(t).

This completes our formulation of a multi-objective optimization problem to

present the user’s access delay, energy consumption of UAVs, and the handover

of FAPs. Next, we develop the proposed CQN-CS scheduling architecture based

on the developed multi-objective optimization formulation.

3.1.3 The CQN-CS Scheduling Framework

In this Subsection, we present an optimum framework, the CQN-CS, to identify

how users access UAVs and/or FAPs based on the RL model, in order to solve the

optimization problem of Eq. (30). To be specific, we first briefly introduce the

required background on RL, then we present the proposed CQN-CS, which is an

efficient DQN model with an embedded CNN connection scheduling architecture

developed for a UAV-based femtocaching network.

RL Background

Generally speaking, RL algorithms consist of an agent, interacting with an

environment based on a set of given actions. The agent receives feedback, as a

reward or punishment, from the environment after each interaction, and updates

its states accordingly. Markov Decision Process (MDP) provides the rigorous

mathematical foundation for RL algorithms, and includes a set of A actions, a
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set of states S, a transition function T , and a reward function, denoted by R.

Each action at ∈ A at time slot t in any state st ∈ S results in a new state

st+1 ∈ S at time slot t + 1 based on the transition function T (st,at, st+1) and

a reward rt = R(st,at). The aim of MDP is to find the optimum policy π∗ to

achieve the maximum accumulated rewards obtained over an infinite number of

interactions [116], where π∗ is expressed as follows

π∗ = argmax
π

Eπ

{H−1∑

t=0

γtrt+1|s0 = s
}

, (32)

where H denotes the number of finite episodes in MDP and γ ∈ [0, 1] is the

discount factor. The low value of γ leads to maximizing short-term rewards,

while a high value of γ increases rewards over a longer period of time.

The Q-Network framework, as one of the most commonly used value-based and

model-free RL algorithms, can be considered as a function approximator, where

the value of Q(st,at) relies on action at and the state st of the agent at time

slot t, expressed as follows [116]

Q(st,at) = Eπ

{H−1∑

t=0

γtrt+1|s0 = s,a0 = a,at = π(st)
}

. (33)

In this regard, the value of Q(st,at) in each time slot is updated by the agent

as follows

Q(st,at)← (1− λ)Q(st,at) + λ(rt + γmaxQ(st+1,at+1)), (34)

where λ ∈ [0, 1] is the learning rate. If the number of states is finite, the Q-

learning approach performs efficiently to update the state-action value function

in each state. In scenarios, where the number of states is infinite, however,

it is not feasible to visit all the states, therefore, deep learning methods can

contribute to approximate the state-action value function. In deep Q-learning

approaches, a deep model is used for prediction and training, instead of building

a Q-table to look up and update values. In this work, we apply CNN, as one of

the most efficient deep learning methods, to estimate Q-values.
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Figure 3.2: The block diagram of our proposed CQN-CS framework.

The CQN-CS Architecture

Due to the dynamic behavior of the UAV-based femtocaching network, which

is a result of the mobility of ground users in the environment, we train our

CQN-CS model using QoS requirements, including users’ access delay, and the

QoE from UAV and FAP perspectives. Fig. 3.2 illustrates the block diagram

of our proposed CQN-CS framework. By considering a slotted structure, each

ground user learns how to access the UAV and/or FAP autonomously, where

each time slot t consists of the following four steps:

Step 1 (Localization): To determine the best caching node for serving a

request, we need to know all possible caching nodes in the vicinity of ground

users. Toward this goal and in the first stage, the location of ground users must

be estimated. According to the AoA localization technique, the location of each

user is calculated based on Eqs. (4) and (5).
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Step 2 (Caching Node Identification): In this phase and according to the

constraint C2 in Eq. (29), we need to determine all FAPs and UAVs in the

vicinity of the ground user GUj to build Uj = {uk, f1, . . . , fU(f)
j

}. Accordingly,

the distance between FAP fi and the ground user GUj is calculated as follows

√

(xj − xfi)2 + (yj − yfi)2 ≤ Rf , (35)

where (xj, yj) and (xfi , yfi) represent spatial coordinates of GUj and FAP fi,

respectively. Therefore, all ground users that are positioned in the transmission

range of FAP fj can be supported by the corresponding FAP. Similarly, to

calculate the distance between UAV uk and the ground user GUj, we have

√

(xj − xuk
)2 + (yj − yuk

)2 + h2uk
≤ Ru, (36)

where (xuk
, yuk

, huk
) is the spatial coordinate of UAV uk. Since the height of

ground users is much lower than the altitude of flying UAVs, the height of

ground users is negligible. Note that the above statements are equivalent to

constraints C3 ∼ C5. According to Eqs. (35) and (36), the set of available

candidate caching nodes for the ground user GUj, denoted by Uj, is built.

Step 3 (QoE Broadcasting): Given Uj, constructed from Step 2 above, all

FAPs and UAVs in the vicinity of the ground user GUj broadcast the energy

consumption and the probability of handover, calculated based on Eqs. (22)

and (25). Considering these decision criteria, consequently, results in the mini-

mization of the user’s access delay in the next time slots, obtained according to

Eqs. (13) and (16). Then, the cost of selecting FAPs and UAVs is calculated by

ground users based on the QoE, and air-to-air and air-to-ground channel path

loss models. Consequently, all parameters in Eq. (30) are known. In the next

stage, ground users will select the target caching node, either UAVs or FAPs,

in order to maximize Eq. (30). Accordingly, to satisfy constraints C1 and C2,

only xl associated with the target caching node would be 1.

Step 4 (Responding a Request): To solve Eq. (30), we propose a CNN-based

Q-learning approach in the context of the UAV-based femtocaching network.

Our CQN-CS framework, represented as a tuple {st,at, rt}, has the following
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components:

(i) CQN-CS Agents: In our proposed CQN-CS framework, ground users, as

the intelligent members of our problem, act as agents.

(ii) CQN-CS Action Space: The CQN-CS architecture has an action gen-

eration engine to find a globally optimized policy based on the previous states

to learn the most suitable action. Here, the action refers to the selection of

a suitable caching node to support ground users’ requests in various circum-

stances in terms of the location of ground users, the battery life of UAVs, chan-

nels’ condition, and the probability of handover. After requesting a content

by user GUj, this request should be served by one of the caching nodes in

the vicinity of GUj, denoted by l ∈ Uj = {u(j)k , f
(j)
1 , . . . , f

(j)

U
(f)
j

}, where super-

script (j) , j = 1, . . . Ng, indicates all ground users in the network. There-

fore, all UAVs and FAPs in this set can be an action for GUj, i.e., at =

[u
(1)
k , f

(1)
1 , . . . , f

(1)

U
(f)
1

, . . . , u
(Ng)
k , f

(Ng)
1 , . . . , f

(Ng)

U
(f)
Ng

]T , for (1 ≤ k ≤ Nu), which is

equivalent to x = [x
(1)
1 , . . . , x

(1)
U1
, . . . , x

(Ng)
1 , . . . , x

(Ng)
UNg

]T in Eq. (30). Therefore,

by selecting an action, the corresponding value of x
(j)
l would be 1, otherwise

it would be 0. Note that selecting the optimal action leads to maximizing the

reward of the network.

(iii) CQN-CS State: The action is selected based on the current system state

st at time slot t. In each time slot t, the value of user’s access delay via UAVs

and FAPs, energy consumption of UAVs, and handover represent states in our

proposed framework, i.e., st = [Lj(t),D′

u,j(t), E
′

u,j(t),D
′

fl,j
(t),HO′

l,j(t)]
T . More

specifically, st consists of the following five components:

• Lj(t): The location of ground user GUj at time slot t, which is determined

according to Eq. (3).

• D′

u,j(t): The total delay that the ground user GUj will experience if its

request is served by UAV uk until time slot t.

• E
′

u,j(t): The total energy consumed by UAV uk at time slot t for estab-

lishing a connection with the ground user GUj.

• D′

fl,j
(t): The total user’s access delay GUj due to the connection with FAP

49



fl.

• HO′

l,j(t): The handover indicator of FAP fl at the user side GUj.

Therefore, each ground user should build a Q-table, where rows denote all pos-

sible states, and columns indicate actions. However, since the number of states

is infinite, it is not possible to visit all the states. For this reason, we apply CNN

on the Q-Network to estimate Q-values. It should be noted that by serving a

request by FAPs, the energy consumption of UAVs has no change, therefore, the

state value of the energy consumption would be constant. Moreover, since we

assume that the handover phenomenon just occurs in FAPs and ground users’

connection, there is no change in the state value of handover when a request is

served by UAVs. In such a case that more than one ground user simultaneously

selects a specific caching node, the corresponding caching node will randomly

select one of them to support the request.

(iv) CQN-CS Reward: According to the optimization problem in Eq. (30),

any reduction in the involved metrics (i.e., user’s access delay via UAVs and

FAPs, energy consumption of UAVs, and handover) results in a higher reward.

When it comes to the problem of finding optimal action policies within the

Pareto optimal set in scenarios with multiple and conflicting objectives, differ-

ent multi-objective RL-based models [118,119,206] were considered in the litera-

ture. In this work, we employ the weighted-sum approach, where the underlying

set of objectives is converted into a single function by assigning a pre-defined

weight to each individual objective. More specifically, the reward function in our

multi-objective RL-based framework, denoted byR(st,at), is extended to a vec-

tor reward function, denoted by R(st,at) = [R1(st,at),R2(st,at),R3(st,at)],

where R1(st,at), R2(st,at), and R3(st,at) represent the reward function as-

sociated with the users’ access delay, energy consumption of UAVs, and FAPs’

handover, respectively, calculated as follows:

R1(st,at) =

{

1−Du,j(t), UAV Link,

1−Dfl,j(t), FAP Link.
, (37)

R2(st,at) = 1− Eu,j(t), (38)

and R3(st,at) = HOl,j(t). (39)
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In this case, the weighted-sum form of the Q-value is calculated as

Q(st,at) =
No=3∑

q=1

ωqQq(st,at), (40)

where No denotes the number of incorporated objectives. Finally, the action

associated with the largest Q(st,at) is selected by an agent [119]. Considering

the Pareto optimality, the trade-off is parameterized by the weight coefficients

ωq ∈ [0, 1], where
No∑

q=1

ωq = 1 [119]. In this case, higher values of ωq indicate the

superiority of that objective. In this work, we have three conflicting objectives,

i.e., users’ access delay, energy consumption of UAVs, and handover phenomena

occurred between FAPs. To maintain a balance between the QoS of ground users

and the QoE of FAPs and UAVs, the proposed connection scheduling framework

aims to simultaneously satisfy concerns of ground users, UAVs, and FAPs. For

this reason, we assign equal weights to the three underlying objectives. In this

case, the policy is said to be Pareto optimal if the value of π∗, obtained according

to Eq. (32), strictly dominates or is incomparable with the value functions of

other policies [119].

After selecting a caching node with the largestQ(st,at), the connection informa-

tion associated with the corresponding action, the location of the ground user,

the probability of handover, the energy consumption of UAVs, and the user’s

access delay are stored in the memory replay of the proposed CQN model. In

our proposed framework, for each state-action pair, CQN approximates the Q-

function by using CNN with tunable weight parameters, which is a non-linear

approximator. The CNN model, however, needs to be retrained due to the

mobility of ground users and the dynamic nature of UAVs (i.e., the battery

life). Therefore, a replay memory is used for past experienced state-action pairs

and the associated rewards. The weight of filters in each layer at time slot t

is denoted by ξt. The observed state sequence, including β state-action pairs

at time slot t, is denoted by φt = [st−β,at−β, . . . ,at−1, st], which is the input

of the CNN to estimate Q(φt,at|ξt). The experience memory pool is denoted

by D = {e1, . . . , et}, where et = (φt,at, rt,φt+1). The state sequence in replay

buffer em is selected randomly to update the weight parameter ξt according to

the Stochastic Gradient Descent (SGD) method. By choosing ξt, our goal is to
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minimize the loss function, denoted by L(ξt), which is the mean-squared error

of the target optimal Q-function with the minibatch updates, given by

L(ξt) = Eφt,at,rt,φt+1

[(
QT −Q(φt,at|ξt+1)

)2
]

, (41)

where QT is the target optimal Q-function, given by

QT = rt + γmax
a
′

t

Q(φt+1,a
′

t|ξt−1)). (42)

Eventually, the action at is chosen for the state st based on the ε-greedy algo-

rithm. With the probability of (1− ε), the best action a∗
t is chosen from the set

of Q-functions as follows

a∗
t = argmax

a
′

t

Q(φt,a
′

t). (43)

Then, the user’s request should be served by the corresponding caching node

with action a∗
t . Accordingly, the reward rt is calculated by agent, and the

new experience {φt,at, rt,φt+1} is stored in the replay memory by agent. The

pseudo-code of our proposed CQN-CS framework is outlined in Algorithm 1.

The rationale behind the design of Algorithm 1 is described in more details

based on the following steps:

• Initialization: In each epoch, all parameters are selected according to the

values shown in Table 3.2. Moreover, we reset all the parameters related

to the environment such as the replay buffer. These actions are equivalent

to Lines 1-5 of Algorithm 1.

There are Ng number of ground users who are agents in the proposed network

model. The following steps will be performed for all ground users in each

episode, denoted by t.

• Localization: To construct the action space of each agent, the current

location of ground users and the possible caching nodes in their vicinity are

gathered. After initializing the location of ground users in the environment,

the current location of ground users in each episode is determined according

to Lines 10 and 11 of Algorithm 1.
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• Caching Node Identification: After identifying the location of agents, all

available caching nodes in the vicinity of ground users should be deter-

mined. In this case, the action space is constructed for each agent, which

is equivalent to Lines 12 and 13 of Algorithm 1.

• QoE broadcasting: To update the state space of ground users, all UAVs

and FAPs in the vicinity of each ground user broadcast their energy con-

sumption and experienced handover, which is equivalent to Lines 14 and

15 of Algorithm 1.

• Responding to a Request: Considering the current state space, each agent

selects the best caching node in such a way that its Q-value is maximized.

If the value of the current episode is less than a pre-specified threshold β, a

random action with a probability of ε is selected (Lines 18 and 19); other-

wise, an optimal action is selected based on the ε-greedy policy (Lines

21-24). After taking an action, the state-space, the action-space, and

the reward vector are updated and stored in the memory of the CQN

model (Lines 25-32). For each state-action pair, CQN approximates the

Q-function using CNN with tunable weight parameters (Lines 33-37).

• Termination: At the end, weight parameters are selected in such a way

that the loss function, expressed in Eq. 41, is minimized. Consequently,

the optimal action, which leads to increasing the Q-value, is selected by

each agent at episode t.

Computational Complexity

As previously mentioned, due to the infinite number of states in the UAV-

based femtocaching framework, the size of the action-state space observed by

each ground user is relatively high. In such scenarios with a high number of

state-action pairs, the computational cost of conventional Q-learning algorithms

is significantly high. Therefore, Deep Q-Learning (DQN) models are typically

used where instead of storing expected rewards associated with each state-action

pair in a Q-table, a Deep Neural Network (DNN) model is used to select the

actions according to the agent’s current state [120]. In complex problems such

as the one at hand, several information sources (such as the position of agents,
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Algorithm 1 The CQN-CS Framework

1: Initialization:
2: Set all parameters according to Table 5.10.
3: Initialize state-action pairs β.
4: Initialize batch size B.
5: Reset replay memory size.
6: for j = 1, . . . , Ng do
7: for t = 1, 2, . . . do
8: Input:

9: s0 = [Lj(0),D′

u,j(0), E
′

u,j(0),D
′

fl,j
(0),HO′

l,j(0)]
10: Localization: Determine the location of ground
11: user GUj based on Eqs. (4) and (5).
12: Identification: Determine all possible caching
13: nodes in the vicinity of GUj.
14: QoE broadcasting: Calculate and broadcast the
15: energy consumption, handover, and delay.
16: Responding to a Request: Select the best
17: caching node according to the following steps
18: if t ≤ β then
19: Choose an action randomly at ∈ {1, . . . ,Uj}
20: else
21: Obtain CNN output Q(φt,at|ξt) with input
22: φt and weights ξt.
23: Choose at via ε-greedy algorithm
24: end if
25: Observe Lj(t),D′

u,j(t), E
′

u,j(t),D
′

fl,j
(t),HO′

l,j(t))
26: Estimate the Reward rt and obtain

27: st+1 = [Lj(t+ 1),D′

u,j(t+ 1), E
′

u,j(t+ 1),

28: D′

fl,j
(t+ 1),HO′

l,j(t+ 1))]
29: Create state, action, and reward vector:
30: φt+1 = [st−β+1,at−β+1, . . . ,at+1, st+1]

T

31: Add the new experience {φt,at, rt,φt+1}
32: to memory D
33: for d = 1, . . . , B do
34: Select randomly (φd,ad, rd, φd+1) from D
35: Train CNN for N iterations
36: Calculate QT using Eq. (42).
37: end for
38: Update the weight parameter ξt using Eq. (41).
39: end for
40: end for
41: Output: Optimal UAV/FAP connection scheduling with maximum rt.
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their movement directions, and available caching nodes) are simultaneously re-

quired to perform the action selection task. CNN architecture is an attractive

solution to extract the relevant features from this pool of information. CNN-

based architecture uses convolutional kernels to compress the state-space and

extract temporal correlations between the current state of a ground user and

previous state-action pairs. Within the CNN architecture, weights are shared

between the episodes, which leads to a considerable reduction in the computa-

tional complexity. To compute the computational complexity of the proposed

learning method, we follow the approach introduced in Reference [121] as CNN

constitutes the main component (computational wise) of the proposed CQN-

CS framework. The computational complexity of CNN depends on the number

of multiplications in each convolutional layer [121]. Generally speaking, CNN

models consist of Nl number of convolutional layers, where each layer includes

Fl filters with size W f
l × Lf

l , zero-padded by Pl number of padding layers, and

with stride size of Sl. Moreover, there are Nfc number of fully connected layers,

including Nr number of Rectified Linear Units (ReLUs) to estimate the Q-value

associated with each possible action. By considering the fact that the pooling

and fully connected layers take only 5 − 10% of the computational time [121],

the computational complexity of CNN can be expressed as follows

N =

Nl∑

l=1

Fl−1W
f
l L

f
l FlW

o
l L

o
l , (44)

where l is the index of the convolutional layer. Terms Fl−1 and Fl denote the

number of input channels and the number of filters of lth layer, respectively.

In addition, W o
l and Lo

l represent the width and the length of the output,

calculated as follows

W o
l =

W o
l−1 −W f

l + 2Pl

Sl

+ 1, (45)

and Lo
l =

Lo
l−1 − Lf

l + 2Pl

Sl

+ 1, (46)

where Sl and Pl are the size of stride and padding layers corresponding to

the lth layer, respectively. To calculate the computational complexity of the

learning process of the proposed CQN-CS according to Eqs. (44)-(46), the value
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of F0×W o
0 ×Lo

0 is equal to βlsU . In this case, β is the temporal memory depth,

ls is the length of the state space that is equal to 5, and U represents the number

of possible actions in each episode.

3.1.4 Simulation Results

In this Subsection, we evaluate the performance of our proposed CQN-CS UAV-

based femtocaching framework in terms of the cache-hit ratio, user’s access

delay, energy consumption of UAVs, handover, cumulative rewards, and the

lifetime of the network. For the scenarios under simulation, we investigate

how the CQN-based connection scheduling scheme affects the aforementioned

performance metrics.

Simulation Setup: We consider an ultra-dense network with the radius R =

5000 m, covered by a cloud server. In our proposed network, there are Nf = 240

FAPs with Rf = 30 m, uniformly distributed in the network, where each FAP

overlaps with neighboring FAPs. Additionally, by considering the restrictions

of the aviation regulations, we consider Nu = 10 UAVs flying horizontally at a

specific altitude hk = 100 m, for (k = 1, . . . , Nu) to cover a region of the network

with Ru = 500 m. The area of interest is divided into K clusters according to

the K-means algorithm, where Nc ∈ {20, 25, 30} neighboring FAPs are covered

by a UAV. Table 3.2 illustrates a list of parameters.

To consider the dynamic nature of the environment, we assume the Difference

Correlated Random Walk (DCRW) model for the mobility pattern of ground

users. By requesting a content by ground users, each UAV hovers at its location

or flies a distance to manage the request, which both of them are energy con-

suming. However, since these concepts have been well studied in the literature

of positioning management of UAVs, we only focus on the energy consumed by

stationary UAVs to handle a request, depending on the distance between the

UAV and the ground user, channel condition, and availability of the requested

content in the cache of UAV. The proposed CQN-CS framework is performed

for 100 epochs. By considering the fact that the battery life of UAVs is limited,

we assume that each epoch is terminated if the total energy consumption of

at least one UAV exceeds the UAV’s battery life. Our CNN model consists of
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Table 3.2: List of Parameters.

Notation Value Notation Value

Ng 500 η(LoS), η(NLoS) 2.5, 3 [21]
Nf 240 hk 100 m [161]
Nu 10 α, β 2, 20 [108]
Nc {20, 25, 30} Lc 37.5 MB [67]
Rf 30 m [124] τp 0− 5 s [21]
Ru 500 m Pk 15 dBm [108]

Sf 22.5 GB χ
(LoS)
σ , χ

(NLoS)
σ 3.5, 3 [21]

Su 22.5 GB Pth −67 dBm [25]
C 184670 N0 −94 dBm [108]

PT (t), PR(t) 0.5 , 0.25 W [21] γ 0.6 [123]

two 2-dimensional convolutional layers and two Fully Connected (FC) layers.

Convolutional layers consist of 256 filters, each with the size of 3 and stride 1.

We use max-pooling and ReLU as the activation function in each layer. The

first FC layer consists of 512 ReLU units and the second FC has 256 ReLU

units. To the best of our knowledge, there is no coupled UAV and femtocaching

framework, studied from the connection scheduling perspective, for comparison

purpose. Therefore, we introduce two baseline models for comparison:

• Q-Network Connection Scheduling (QN-CS) UAV-based Femto-

caching Scheme: In this algorithm, the best caching node to handle

users’ requests is selected as the result of a Q-learning framework. All

parameters of the RL approach, including actions, states, and rewards are

kept similar to our proposed scheme for a fair comparison.

• Deep Q-Network Connection Scheduling (DQN-CS) UAV-based

Femtocaching Scheme: Similar to the previous baseline, all the param-

eters are the same as our proposed framework, with the difference that in

this baseline, we use Multilayer Perceptron (MLP) instead of CNN with

two hidden layers, where each layer consists of 256 neurons.

Taking the above considerations into account, we illustrate the superiority of

our proposed CQN-CS framework compared with conventional schemes from

the aspect of the cache-hit ratio, user’s access delay, energy consumption of

UAVs, handover, cumulative rewards, and the lifetime of the network.
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Performance Evaluation

We first evaluate the effectiveness of the AoA scheme as an efficient local-

ization method to estimate the proximity of ground users, in order to deter-

mine possible caching nodes in their vicinity. Fig. 3.3 illustrates a typical

20 × 20 m2 area, where ground users are randomly distributed. By Assum-

ing (xj, yj) and (x̂j, ŷj) as the real and the estimated coordinates of user GUj,

respectively, the Root Mean Square Error (RMSE) is defined as RRMSE =
√

1

Ng

Ng∑

j=1

(x̂j − xj)2 + (ŷj − yj)2 to evaluate the accuracy of location estimation.

Taking into account the multipath and path loss effects, the RMSE of the AoA

method in our proposed network is about 0.4 m, which is acceptable in com-

parison to the transmission range of FAPs.

We evaluate the convergence of the proposed CQN-CS framework in Fig. 3.4.

More specifically, the convergence of the proposed CQN-CS framework is the

crucial property to obtain a policy, which maps states to the optimal actions.

According to Eq. 41, the main goal of the learning process is to minimize the

loss function, which is the mean-squared error of the target optimal Q-function

with the minibatch updates. Fig. 3.4 illustrates the convergence behavior of

the proposed CQN-CS scheme. According to the result shown in Fig. 3.4, the

CQN-CS framework converges after 80 epochs, which is an acceptable speed.

Cache-hit ratio is a metric used to express the number of requests served by

caching nodes, either FAPs or UAVs, in each episode. We assume a pre-specified

threshold for the battery life of UAVs, where reaching the energy consumption

of at least one UAV to the threshold level is known as the game over in our

RL network. The normalized cache-hit-ratio, denoted by CH(n), consists of two

terms, i.e., the satisfied requests served by FAPs, denoted by CHf , and the

satisfied requests managed by UAVs, denoted by CHu, given by

CH(n) =
CHf + CHu

CHmax

, (47)

where CHmax is the maximum value of CH in all episodes. Fig. 3.5 evaluates

the performance of our proposed scheme and other two baselines mentioned

above from the aspect of the cache-hit ratio in different epochs. According
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Figure 3.3: A typical location estimation result based on the AoA localization scheme.

to the results in Fig. 3.5, we can see that the area below the curve increases

as the number of epochs grows. This is due to the fact that by passing the

time, our network learns how to manage requests to expand the lifetime of

UAVs. Moreover, our proposed CQN-CS method experiences more cache-hit-

ratio, which indicates its superiority.

Fig. 3.6 illustrates the cumulative rewards of all caching nodes in each epoch

before the energy consumption of at least one UAV reaches the battery life of

the UAVs. According to the definition of rewards in our CQN-CS framework,

connecting to the nearest FAP instead of the far one leads to a remarkable

reduction in the user’s access delay and handover, followed by increasing the

reward value. UAV’s connection would be efficient in such cases where there

is no available FAPs, and/or when serving by UAVs leads to the lower experi-

enced latency than by FAPs. Fig. 3.6 illustrates the distribution of cumulative

rewards for different clusters in each epoch, where the number of clusters is
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Figure 3.4: The convergence of the proposed CQN-CS framework.

Figure 3.5: The normalized cache-hit ratio versus different epochs.

equal to the number of UAVs (i.e., 10). Then, we run the program for 10 it-

erations. As it can be seen from Fig. 3.6, the cumulative rewards variations

of the proposed CQN-CS framework is much less than the DQN-CS and the
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Figure 3.6: The variation of cumulative rewards versus different epochs.

Figure 3.7: Normalized lifetime of the network in each epoch.

QN-CS approaches, which means our proposed algorithm reaches the optimum
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Figure 3.8: The normalized average users’ access delay versus different epochs.

connection scheduling immediately.

Fig. 3.7 evaluates the performance of the proposed CQN-CS algorithm with

other schemes from the aspect of the network’s lifetime, depending on the en-

ergy consumption of UAVs. Note that there are three parameters which have a

great impact on the energy consumption of UAVs; (i) The number of requests

they served; (ii) The distance between the requested ground user and the UAV,

and; (iii) The probability of the existence of LoS link between them. By con-

sidering all these metrics in our proposed scheme, UAVs are involved in such

communications that consume less energy as much as possible, which leads to

expanding the network’s lifetime.

Fig. 3.8 compares the normalized average delay that all ground users in the

network experience through the proposed CQN-CS, the DQN-CS, and the QN-

CS frameworks. Note that the users’ access delay depends on the availability

of the requested content in the cache of the responsible FAP and/or UAV,

otherwise, the corresponding content must be provided by the cloud server,

leading to more delay. Taking into account that the location of the ground user

has a great impact on the distance between the responsible caching node and
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the ground user, followed by the channel condition, different ground users may

experience a wide range of latency. As it can be seen from Fig. 3.8, ground

users during their movement and by considering the unforeseen conditions of

the UAV-based femtocaching network, learn how to manage their requests by

optimal caching nodes to experience lower latency.

In Fig. 3.9, we evaluate the handover rate in the proposed CQN-CS framework

along with other baselines versus the number of epochs. Handover rate, denoted

by HR(t), indicates the probability of handover, occurring between FAP fi and

the ground user GUj at time slot t, which is obtained as

HR(t) = Pth

HOi,j(t)
, (48)

where the high value of HOi,j(t) means that the ground user connects to the

close FAP instead of the far one, leading to a decrease in the handover rate. In

a dynamic femtocaching network, however, ground users may become close or

farther away from the nearest FAP during their movements, which is considered

in our proposed CQN-CS framework, denoted by ∆i,j(t). To illustrate the han-

dover rate improvement of our proposed CQN-CS framework, we compare the

handover rate, with the case that ∆i,j(t) is disregarded, which is named CQN-

CS2 framework. Fig. 3.9 illustrates the superiority of our proposed CQN-CS

framework in terms of the average handover rate.

Finally, we compare the performance of the proposed CQN-CS framework with

the DQN-CS and QN-CS baselines from the aspect of the average energy con-

sumption of UAVs in Fig. 3.10. Using the fact that the coverage areas of UAVs

are much more expanded than FAPs, all users that have access FAPs can be

managed by UAVs, as well. Despite FAPs, that are unlimited energy caching

nodes, serving through UAVs inherently decreases the lifetime of UAVs’ battery.

Consequently, it is essential to manage ground users by FAPs, especially in such

cases that ground users have access to at least one FAP to extend the lifetime

of the network. As it can be seen from Fig. 3.10, the average normalized energy

consumption of UAVs in our proposed CQN-CS framework is lower than the

other schemes. In addition, the variation of the energy consumption of UAVs is

negligible in comparison to the two baselines.
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Figure 3.9: Handover rates versus different epochs.

Figure 3.10: The normalized average energy consumption of UAVs versus different epochs.
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Figure 3.11: Normalized network’s lifetime versus number of ground users.

Figure 3.12: Normalized network’s lifetime versus the number of FAPs in each cluster.

Moreover, we evaluate the effects of the number of ground users, the number

of FAPs in each cluster, and the total number of content in the network on the
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performance of the UAV-based femtocaching network in Figs. 3.11-3.13. Prior

research studies [114,123] considered a small-scale wireless network with a lim-

ited number of ground users and multimedia content and illustrated the impact

of the number of ground users and caching nodes on the network’s performance.

As it can be seen from [114, 123], considering a large number of ground users

and multimedia content in wireless networks lead to a considerable increase in

the number of distinct requests. In this case, providing high QoS and QoE

communication links through the network is more challenging in comparison

with a small-scale wireless network. Note that if a UAV-based femtocaching

framework can perform effectively in an ultra-dense wireless network, it will

definitely perform well in small-scale wireless networks. For this reason, we

consider a sufficiently large number of ground users and multimedia content.

According to the results shown in Fig. 3.11, increasing the number of ground

users leads to an increase in the number of requests in each time slot. Since

the network’s lifetime depends on the energy consumption of UAVs, managing

more requests by UAVs considerably reduces the network’s lifetime. Fig. 3.12

illustrates the impact of the number of FAPs in each cluster on the network’s

lifetime. Increasing the number of FAPs in each cluster decreases the distance

between FAPs and ground users. Therefore, ground users experience less delay

by connecting to FAPs instead of UAVs. Therefore, the majority of requests

will be managed through FAPs, which increases the network’s lifetime. Finally,

Fig. 3.13 evaluates the normalized network’s lifetime versus the total number of

content in the network. Note that increasing the number of content increases

the content diversity throughout the network. Consequently, the number of

requests that can directly be served through caching nodes decreases. There-

fore, the requested content should be provided by the cloud server, leading to

consuming more energy by UAVs.

Fig. 3.14 illustrates the robustness of the proposed CQN-CS method against the

Channel State Information (CSI) uncertainty. It should be noted that the state

space of the proposed deep Q-Network, including users’ access delay, handover,

and UAV’s energy consumption is prone to noise. Consequently, the CSI uncer-

tainty and RSSI measurement errors have potential negative impacts on both

the state and action spaces. To evaluate the noise robustness of the proposed
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Figure 3.13: Normalized network’s lifetime versus number of multimedia content.

CQN-CS, we have computed the cumulative reward (after a specific epoch where

the proposed CQN-CS framework is well trained) versus different values of the

noise power. By considering the fact that the common value of noise power

in UAV-based femtocaching networks is in the range of −174 ≤ N0 ≤ −94
dBm [108,161], our proposed CQN-CS framework is robust against CSI uncer-

tainty and RSSI measurement errors for a small value of noise (see Fig. 3.14). It

is worth mentioning that in the existing literature on UAV-based femtocaching,

commonly −174 dBm is used as the value of the noise power [112, 161]. It can

be observed from Fig. 3.14 that the proposed CQN-CS is robust in this vicin-

ity. On the other hand, to evaluate the performance of the proposed approach,

comparison studies are performed based on the worst-case scenario (−94 dBm)

and as can be seen in Figs. 3.5-3.13, our proposed method outperforms its

counterparts in the worst-case scenario. To further improve the robustness of

the proposed CQN-CS, robust RL models [125] can be incorporated within the

CQN-CS framework, which is the focus of our ongoing research.
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Figure 3.14: Normalized cumulative rewards versus different values of noise power (dBm).

3.2 Attention-based Popularity Prediction

In this Section, we introduce a Vision Transformer-based Edge (TEDGE) caching

framework with the application to the MEC networks. The proposed TEDGE

framework learns the real-time caching strategy from sequential requests of

multimedia content. The main objective of several recent time-series prediction

models that have been applied to the multimedia content caching is to pre-

dict the underlying patterns of the future multimedia content requests, i.e., the

number of content requests using historical information. Considering the fact

that the users’ preferences remain unchanged for a while [57], it is sufficient to

predict the potential Top-K popular content using the learned patterns from

historical requests. The main focus of this study, therefore, is to predict the

Top-K popular content using historical information instead of predicting the

number of upcoming requests. More precisely, the TEDGE caching framework

is a multi-label classification model with the aim of minimizing the difference

between the actual Top-K popular content and the predicted ones. To simul-

taneously analyze the sequential pattern of all content, the TEDGE caching

framework employs a Vision Transformer (ViT) architecture instead of using
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conventional Transformer models. The input of the ViT model is an image,

where each pixel indicates the number of requests of each content in a specific

time. In what follows, first we briefly present the MovieLens dataset, then we

introduce the TEDGE framework.

3.2.1 Dataset Pre-Processing

In this study, we use MovieLens Dataset [212], which is one of the well-known

movie recommendation services. In this dataset, movies with related informa-

tion such as movie titles, release date, and genre are provided. Each content is

requested by several users in different timestamps, where the contextual infor-

mation of users such as age, gender, occupation, and their ZIP codes are also

released. With the assumption that users leave a comment after watching a

movie [55, 214] and in order to extract the content request pattern, comment-

ing on a content is considered as a request. Moreover, to identify the users’

location in each timestamp, ZIP codes are converted to longitude and latitude

coordinates [55]. Considering the limited transmission range of caching nodes,

caching nodes’ locations, and users locations, the available caching nodes for

serving requests of all users will be determined. Our main goal in the TEDGE

caching framework is to monitor the historical requests pattern of each content

to predict the Top-K popular content in an upcoming time period. Therefore,

the preparation of the dataset is performed in the following four steps:

Step 1 (Request Matrix Formation): In the first step, the dataset is sorted

for each content cl, for (1 ≤ l ≤ Nc), in the ascending order of time. Therefore,

we form an (T × Nc) indicator request matrix for each hgNB, denoted by R,

where T and Nc represent the total number of timestamps and the total number

of distinct content, respectively. In the request matrix, rt,l = 1 illustrates that

content cl is requested at time t; otherwise, rt,l = 0.

Step 2 (Time Windowing): Considering the fact that the most popular

content should be cached at the storage of caching nodes during the off-peak

time [126], there is no need to predict the content popularity at each timestamp.
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We, therefore, define the updating time tu (i.e., the off-peak time), as the times-

tamp that the storage of caching nodes is updated by the new popular content.

In this case, we will have a time window with the length of W , where W is

associated to the time duration between two updating times, and the number

of time windows is represented by NW = T
W

. Therefore, we have a (NW × Nc)

window-based request matrix, denoted by R(W), where r
(w)
tu,l

=
tuW∑

t=(tu−1)W+1

rt,l

illustrates the total number of requests of content cl between updating time

tu − 1 and tu.

Step 3 (Data Segmentation): As mentioned previously, the main target

of the TEDGE caching framework is to use the historical information of con-

tent to predict the Top-K popular content in the next updating time. Given

the window-based request matrix R(W), the collected request pattern data

is segmented via an overlapping sliding window of length l. As it can be

seen from Fig. 3.15, the window-based request matrix R(W) is converted into

D = {(Xu,yu)}Mu=1, where M represents the total number of segments. More-

over, terms Xu ∈ R
l×Nc and yu ∈ R

Nc×1 represent the request pattern of all

content before updating time tu with the length of l, and its corresponding

label, respectively. Considering the fact that there are Nc number of content

through the network, and our objective is to predict the Top-K popular content,

the problem at hand is a multi-label classification, where yu is a vector with K

ones and yul = 1 illustrates that content cl would be popular at tu+1. Therefore,

cl should be stored at the storage of hgNB to increase the cache-hit-ratio.

Step 4 (Data Labeling): Due to the limited storage of caching nodes, it is

sufficient to identify the Top-K popular content, instead of predicting the pop-

ularity of all content at each updating time. According to the request pattern

of multimedia content, we calculate the probability of requesting content cl, for

(1 ≤ l ≤ Nc), which is obtained as follows

p
(t,b)
l =

r
(w)
tu,l

Nc∑

l=1

r
(w)
tu,l

. (49)

Note that, relying on the probability of content as a single criteria for identifying
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Figure 3.15: Left: Pipeline of the ViT Architecture, Right: Architecture of the Trans-
former Encoder.

the popularity of content has the following disadvantages: (i) Popular content

with a high number of requests will be identified as the Top-K popular content

for a long time, even if they are becoming unpopular, and; (ii) The popularity

of new/unknown coming content (first appearance) would be predicted with a

considerable delay, because the cumulative number of requests of such content

is less than other content that are existing for a long time. To tackle with this

issue, we use the skewness of the request pattern as another metric, which is

a widely used indicator in time-series forecasting models [127]. The skewness

of content cl is denoted by ζl, where ζl < 0 shows that the number of requests

of content cl increases over time. Finally, the Top-K content with the highest

probability and the negative skew will be labeled as the Top-K popular content.

This completes presentation of the data preparation for training the TEDGE

caching framework. Next, we present the ViT architecture.

3.2.2 TEDGE Caching Framework

In this Subsection, we present the TEDGE caching framework, which is de-

signed to predict the Top-K popular content. Generally speaking, the main

characteristics of Transformers are as follows: (i) Non-sequential: Unlike RNN,
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the Transformer’s attention mechanism makes it unnecessary to process data

in the same order. As a result, Transformer is more parallelization than RNNs,

which means it takes less time to train; (ii) Self Attention, indicating the simi-

larity scores between different elements of a sequential data, and; (iii) Positional

Embeddings: Since Transformers are non-sequential learning models, the order

of information in a sequential data is missing. Therefore, Positional embed-

dings is introduced for recovering position information. As it can be seen from

Fig. 3.15, the TEDGE caching framework consists of the following three mod-

ules: (a) Patch and Position Embeddings; (b) Transformer encoder, and; (c)

MLP head, which are described as follows:

Patch and Position Embeddings: As it can be seen from Fig. 3.15, the

segmented CP data Xu is split into N sequence of non-overlapping patches

with the fixed-size of (S × S), where the total number of patches is N = w/S2,

with w = l×Nc. After this step, each patch is flattened into a vector xp
u,j
∈ R

S2

for (1 ≤ j ≤ N). To embed vector x
p
u,j
∈ R

S2

into the model’s dimension d, a

linear projection E ∈ R
S2×d is used, which is shared among all patches, where

the output of this projection is referred to as the patch embeddings. We append

a learnable embedding token x
cls to the beginning of the sequence of embedded

patches [128]. Finally, the position embeddings Epos ∈ R
(N+1)×d, is added to

the patch embeddings to explicitly encode the order of the input sequence. The

output of the patch and position embeddings Z0 is given by

Z0 = [xcls;xp
u,1E;xp

u,2E; . . . ;xp
u,NE] +Epos. (50)

Transformer Encoder: Given the output of the linear projection, the se-

quence of vectors Z0 is fed to the transformer encoder [65]. As it can be seen

from Fig. 3.15, the transformer encoder consists of L layers, with two modules,

i.e., the Multihead Self-Attention (MSA) mechanism, and the MLP modules,

where MLP module consists of two linear layers with Gaussian Error Linear

Unit (GELU) activation function. The output of the MSA and MLP modules
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of layer l, for (1 ≤ l ≤ L) are given by

Z
′

l = MSA(LayerNorm(Zl−1)) + Zl−1, (51)

Zl = MLP (LayerNorm(Z
′

l )) + Z
′

l , (52)

where a layer-normalization is used to avoid the degradation problem [197].

Finally, the output of the Transformer is

ZL = [zL0; zL1; . . . ; zLN ], (53)

where zL0 is used for classification purposes, which is passed to a Linear Layer

(LL), i.e.,

y = LL(LayerNorm(zL0)). (54)

This completes the description of the Transformer autoencoder. Next, we

present the description of the SA and the MSA, respectively.

1. Self-Attention (SA): The SA module [65] is used in the Transformer

architecture to focus on significant parts of a given input by capturing the in-

teraction between different vectors in Z ∈ R
N×d, where Z consists of N vectors,

each with an embedding dimension of d. Towards this goal, three different ma-

trices are defined, named Queries Q, Keys K, and Values V , computed by a

linear transformation as follows

[Q,K,V ] = ZW
QKV , (55)

where W
QKV ∈ R

d×3dh represents the trainable weight matrix, and dh is the

dimension of Q, K, and V . The SA block measures the pairwise similarity

between each query and all keys. The output of the SA block SA(Z ) ∈ R
N×dh ,

which is the weighted sum over all values V , is given by

SA(Z ) = softmax(
QKT

√
dh

)V , (56)
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where term
QKT

√
dh

is the scaled dot-product of Q and K by
√
dh and softmax

is used to convert the scaled similarity to the probability.

2. Multihead Self-Attention (MSA): In the MSA, the SA block is per-

formed h times in parallel, which results in attending to information from dif-

ferent representation subspaces at different positions. More precisely, MSA

module consists of h heads with different trainable weight matrix for each head

{W QKV
i }hi=1. After applying the SA mechanism on input Z for each head

(Eqs. (55)-(56)), the outputs of h heads are concatenated into a single ma-

trix [SA1(Z );SA2(Z ); . . . ;SAh(Z )] ∈ R
N×h.dh . Finally, the output of the MSA

module is given by

MSA(Z ) = [SA1(Z );SA2(Z ); . . . ;SAh(Z )]W
MSA, (57)

where W
MSA ∈ R

hdh×d and dh is set to d/h.

3.2.3 Simulation Results

In this Subsection, we first evaluate different variants of the proposed TEDGE

caching framework to obtain the best architecture through the process of trial

and error. Considering the location of UE, which is obtained from the ZIP

code and followed by Reference [63], six caching nodes are employed in different

areas, where the classification accuracy is averaged over all caching nodes. In

all experiments, the one-dimensional time-series content’s request data is con-

verted to a sequential set of images, which is known as the Gramian Angular

Field (GAF) technique [129]. Utilizing GAF method, not only the temporal

characteristics of the data is preserved, but also the temporal correlations of

data are included. In Back Propagation (BP) training, Adam optimizer is em-

ployed, where the weight decay and betas are set to 0.001 and (0.9, 0.999).

The size of the input image, the size of input patches, and the batch size are

(25 × 25), (5 × 5), and 256, respectively. Finally, we use binary cross-entropy

as the loss function for our multi-label classification problem. According to the

results in Table 3.3, increasing the model dimension from 32 to 128 (Model 1

to Model 3), and also the number of MLP layers from 1 to 3 (Models 3, 5, and
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6) increase the classification accuracy, while increasing the number of trainable

parameters. Moreover, we evaluate the effect of MLP size on the classification

accuracy. As it can be seen from Table 3.3, increasing the MLP size from 256

to 512 (Model 3 and Model 9) decreases the classification accuracy. Similarly,

there is no improvement in the classification accuracy by increasing the number

of transformer layers (see Models 3 and 4). Furthermore, considering Model 6

to Model 8, the best number of heads in this architecture is equal to 8. Note

that we also evaluated the effect of window length on the classification accuracy,

while no improvement has been achieved by changing the window length.

Finally, we compare the performance of the proposed TEDGE caching frame-

work with five state-of-the-art caching schemes on the Movielens dataset, includ-

ing LRU, LFU, PopCaching [214], LSTM-C [55], and the TRansformer (TR)

caching, which is an upgraded version of the attention-based neural network in

Reference [215]. While the attention-based model in Reference [215] is used for

predicting the request pattern of online content, we adopt it to predict the Top-

K popular ones. Fig. 3.16 compares the performance of the proposed TEDGE

scheme with other baselines mentioned above from the aspect of the cache-hit

ratio, when the DNN models reach the steady state. In the content caching con-

text, cache-hit-ratio is a widely used metric, illustrating the ratio of requests

served by caching nodes versus total requests. Considering the Zipf distribu-

tion for the content popularity profile, we set the storage capacity of caching

nodes to 10% of the total content [131]. As shown in Fig. 3.16, the optimal

strategy [55] is a caching scheme, where all requests are served through caching

nodes, which cannot be obtained in reality. According to the results in Fig. 3.16,

the proposed TEDGE caching framework obtains the highest cache-hit-ratio in

comparison to its state-of-the-art counterparts.

3.3 ViT-CAT Architecture

Despite the fact that the TEDGE framework achieves a high level of classifica-

tion accuracy, it is intricate and demands a significant number of parameters

in order to achieve such accuracy. In this Section, we present a parallel Vision

Transformers with Cross Attention (ViT-CAT) Fusion architecture to predict
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Figure 3.16: A comparison with state-of-the-arts based on the cache-hit-ratio.

Figure 3.17: (a) Block diagram of the proposed ViT-CAT architecture, (b) Pipeline of the ViT
architecture, and the Transformer encoder.

the Top-K popular contents in MEC networks. As shown in Fig. 3.17(a), the

ViT-CAT architecture consists of two parallel paths, named Time-Series (TS)-

path and Multi-Content (MC)-path, performed based on self-attention mecha-

nism, followed by a Cross-Attention (CA) module as the fusion layer.

A. Patching

Generally speaking, the input of the Transformer encoder in the ViT network
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is a sequence of embedded patches, consisting of patch embedding and posi-

tional embedding. In this regard, the 2D input samples Xu is split into N

non-overlapping patches, denoted by Xu,p = {x(i)
u,p}Ni=1. As can be seen from

Fig. 3.17(a), we apply two following patching methods for TS-path and MC-

path:

i) Time-based Patching : To capture the temporal correlation of contents, we

use time-based patching for the TS-path, where the size of each patch is

S = L× 1. More precisely, time-based patching separately focuses on the

request pattern of each content for a time sequence with a length of L,

where the total number of patches is N = (L × Nc)/(L × 1) = Nc, which

is the total number of contents.

ii) Content and Time-based Patching : In the MC-path, the main objective

is to capture the dependency between all Nc contents for a short time

horizon Ts, therefore, we set the size of each patch to S = Ts ×Nc, where

the number of patches is N = (L×Nc)/(Ts ×Nc) = L/Ts, with Ts � L.

B. Embedding

Each patch is flattened into a vector xp
u,j
∈ R

1×S for (1 ≤ j ≤ N). Referred to as

the patch embedding, a linear projection E ∈ R
S×d is used to embed vector xp

u,j

into the model’s dimension d. Then, a learnable embedding token x
cls is added

to the beginning of the embedded patches. Finally, to encode the order of the

input sequences, the position embedding Epos ∈ R
(N+1)×d, is appended to the

patch embedding, where the final output of the patch and position embeddings,

denoted by Z0, is given by

Z0 = [xcls;xp
u,1E;xp

u,2E; . . . ;xp
u,NE] +Epos. (58)

C. Cross-Attention (CA)

The CA module is the same as the SA block, except that the Query Q, Key K,

and Value V are obtained from different input features as shown in Fig. 3.17(a).

More precisely, to learn the mutual information between TS and MC paths, the

Query Q comes from the output features of TS-path, while Key K, and Value

V are obtained from the output features of the MC-path. More precisely, the
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output of the one layer to the last of each path is given to the CA block. The

CA block has three inputs, which are key, query, and value, where query comes

from the output of the TS-path (one layer to the last of the TS-path), while key

and value are the same and are obtained from the layer before the last layer of

the CA-path. Finally, the output of the CA block is given to a fully connected

layer, where the size of the output layer is the same as the number of contents

and the activation function is Sigmoid as this is a multi-label classification. This

completes the description of the proposed ViT-CAT architecture.

3.3.1 Simulation Results

In this Subsection, we evaluate the performance of the proposed ViT-CAT archi-

tecture through a series of experiments. Given the users’ ZIP code in Movielens

dataset [63], we assume there are six caching nodes, where the classification

accuracy is averaged over all caching nodes. In all experiments, we use the

Adam optimizer, where the learning and weight decay are set to 0.001 and 0.01,

respectively, and binary cross-entropy is used as the loss function for the multi-

label classification task. In Transformers, the MLP layers’ activation function

is ReLU, whereas their output layer’s function is sigmoid.

Effectiveness of the ViT-CAT Architecture: Different variants of the pro-

posed ViT-CAT architecture are evaluated to find the best one through trial

and error. According to the results in Table 3.4, increasing the MLP size from

64 (Model 4) to 128 (Model 6), the model dimension from 25 to 50 (Model

1 to Model 2), the number of MLP layers from 1 to 2 (Models 4 and 5), the

number of heads from 4 to 5 (Models 2 and 3), and the number of Transformer

layers from 1 (Model 2) to 2 (Model 6) increase the classification accuracy while

increasing the number of parameters.

Effect of the Fusion Layer: In this experiment, we evaluate the effect of the

fusion layer in the proposed ViT-CAT architecture with other baselines, where

the parallel ViT architecture in all networks is the same (Model 2), i.e., the

TS and MC paths perform based on the SA mechanism. In this regard, we

consider two fusion layers, i.e., the Fully Connected (FC) and the SA layers.

According to the results in Table 3.5, the CA module outperforms the others,
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Table 3.5: Classification accuracy using different fusion networks.

Model CA FC SA

Accuracy 94.77% 92.58 % 79.93 %

Parameters 435,788 417,171 400,788

since it captures the mutual information between two parallel networks.

Performance Comparisons: Finally, we compare the performance of the

proposed ViT-CAT architecture in terms of the cache-hit ratio with other state-

of-the-art caching strategies, including LSTM-C [55], TRansformer (TR) [215],

ViT architecture [5], and some statistical approaches, such as Least Recently

Used (LRU), Least Frequently Used (LFU), PopCaching [214]. We consider two

versions of the ViT architecture with the lowest complexity, called ViT-LC, and

the highest accuracy (ViT-HA). With the assumption that the storage capacity

of caching nodes is 10% of total contents [131], a high cache-hit ratio illustrates

that a large number of users’ requests are managed through the caching nodes.

As shown in Fig. 3.18, the optimal strategy, which cannot be attained in a real

scenario, is one in which all requests are handled by caching nodes. The cache-

hit ratio of the ViT-CAT (0.815) is almost the same as the ViT-HA (0.807),

since the higher classification accuracy, results in a higher cache-hit ratio, while

the complexity of the ViT-CAT architecture is about 8 times lower than the

ViT-HA. More precisely, the highest accuracy of the ViT-CAT model is 94.84%

with 568, 185 number of parameters, while in a single ViT network, the best

performance occurs with 93.72% accuracy and 4, 044, 644 number of parameters.

3.4 Self-Supervised Popularity Prediction

A DNN-based popularity prediction model needs to have the ability to under-

stand the historical request patterns of content, including their temporal and

spatial correlations. Existing state-of-the-art time-series DNN models capture

the latter by simultaneously inputting the sequential request patterns of multi-

ple contents to the network, considerably increasing the size of the input sample.
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Figure 3.18: Comparison with state-of-the-arts based on the cache-hit ratio.

This motivates us to address this challenge by proposing a DNN-based popular-

ity prediction framework based on the idea of contrasting input samples against

each other, designed for the UAV-aided MEC networks. Referred to as the

Contrastive Learning-based Survival Analysis (CLSA), the proposed architec-

ture consists of a self-supervised Contrastive Learning (CL) model, where the

temporal information of sequential requests is learned using a Long Short Term

Memory (LSTM) network as the encoder of the CL architecture. Followed by a

Survival Analysis (SA) network, the output of the proposed CLSA architecture

is probabilities for each content’s future popularity, which are then sorted in

descending order to identify the Top-K popular contents.

3.4.1 Dataset Pre-Processing

MovieLens dataset [212], as one of the most well-known movie recommenda-

tion services that provide users’ contextual information, is used in this study

to evaluate the proposed CLSA architecture. MovieLens was generated on Oc-

tober 17, 2016, including the movie rates that 943 users gave to 1682 movies

between September 19, 1997, and April 22, 1998. As shown in Fig. 3.19(a),

u.user document provided in the MovieLens dataset, contains users’ contex-

tual information, including gender, age, occupation, and ZIP code. The ZIP

codes are converted to latitude and longitude coordinates to extract users’ lo-

cations during their requests. Another document provided in this dataset is
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u.data, including user ID, item ID (content ID), the rate the user gave to the

corresponding content, and the timestamp that the user watched and rated the

content. A summary of the notations used hereinafter is provided in Table 3.6.

As shown in Fig. 3.19, the following steps are performed to adopt the Movielens

dataset with the CLSA architecture: (i) The u.data and u.user documents are

concatenated on “user ID” (see Fig. 3.19(b)) and the ZIP code is dropped from

the concatenated dataset; (ii) The concatenated dataset in Fig. 3.19(b) is sorted

by “item ID”, and “timestamp”; (iii) The “user ID” and “item ID” are dropped

from the concatenated dataset, since these columns are not informative; (iv)

The categorical features including gender, age, and occupation are encoded

using a one-hot encoder; (v) The timestamp is discretized with a resolution of

one day since the storage of edge devices should be updated during the off-peak

times (i.e., midnight) [126]. Then, the discretized timestamp, named “day”, is

replaced with the timestamp column; and, (vi) Finally, a column named “label”

is added to the concatenated dataset, indicating the content popularity (popular

or unpopular), which will be described shortly.

We define an observational window for each content cm, for (1 ≤ m ≤ M)

having the length of Tm
τ at time τ , where the request pattern of contents within

this range are studied to predict their popularity in the future, i.e., the study

window, denoted by Ts. Following the Reference [201], we consider the same

number of requests No in the observational window for all the contents, where

zero padding is used for contents with less number of requests. Given the request

patterns of contents over the observational window at time τ , the popularity

of contents is predicted within the time window [τ, τ + Ts]. Without loss of

generality, since the storage capacity of edge devices should be updated each

day, we assume that the length of the study window is Ts = 1. Given M number

of multimedia contents and U number of users, the dataset D = {dmτ }Mm=1 is

created, where dmτ = {(xmk , tmk , ymk )}No

k=1 is the time-series observational data

for content cm. Term {xmk }No

k=1 includes the contextual information of users

requesting content cm and the rating that these users gave to content cm (see

Fig. 3.19(c)). Moreover, rating time is represented by {tmk }No

k=1. Finally, term

ymk ∈ {0, 1} is associated with the content popularity, which is 1 if content cm

gets popular during the study window Ts, otherwise, ymk = 0. Consequently,
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Figure 3.19: (a) A typical sample of the Movielens dataset, (b) the concatenated dataset, and (c)
the adopted version of the Movielens dataset used for the CLSA architecture.

given dmτ , the output of the proposed CLSA model predicts whether or not

content cm will be popular during the study window Ts.

To clarify the benefits of the proposed strategy, an illustrative example of con-

structing input samples and their labels is depicted in Fig. 3.20. In this il-

lustrative toy-example, it is assumed that there are 5 contents {cm}5m=1 across

the network, and the goal is to update the storage of edge devices at time

τ + Ts = 9 using the historical requests of contents up to time τ = 8 with

Ts = 1. For instance, the observational window {Tm
τ }5m=1 would be T 1

8 for con-

tent c1. Moreover, No = 4 number of requests for each content are investigated

during the observational window. As shown in Fig. 3.20(a), the following cases

can occur:

1. In the first case, content c1 is requested at time τ = 8. Ending at time

τ = 8, the observational window T 1
8 is determined in such a way that the
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Figure 3.20: (a) An illustrative example of request patterns of contents to construct input samples
and their labels. (b) Zero padding technique is used for contents with the number of requests less
than No.

number of requests during this observational window isNo = 4, where T 1
8 =

3. Therefore, the requests within T 1
8 = 3 ending at τ = 8 are considered

to evaluate the popularity of content c1 at time τ + Ts = 9. Consequently,

{x1k}4k=1 includes the contextual information of users requesting content c1

and their ratings. As shown in Fig. 3.20(a), since content c1 is requested

at time 9, its label is {y1k}4k=1 = 1.

2. In the second case (i.e., content c2), there is a request at time τ = 8 and

the observational window is T 2
8 = 6 for having No = 4 number of requests

within this range. However, since this content is not requested at time 9,

its label is {y2k}4k=1 = 0.

3. In the third case (i.e., content c3), the content is requested at τ = 8, but

the number of existing requests from the beginning to τ = 8 is less than

No = 4. Therefore, we use zero padding to create the same length of
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input samples, shown in Fig 3.20(b), where zero pad will be added at the

beginning of the observational window.

4. In the fourth case, content c4 is not requested at time τ = 8, but there

is at least No = 4 number of requests before τ = 8. Therefore, the last

No = 4 of requests within the observational window T 4
o are used as the

input sample.

5. In the fifth case, content c5 is not requested at time τ = 8, and the number

of requests from the beginning to time τ = 8 is less than No = 4. Similar to

the case 3, the zero padding technique is used to create the input sample.

6. Finally, if there is a content with zero requests up to time τ = 8, this

content will be removed from the study.

This completes the problem description and system modeling, next, we present

the proposed CLSA framework.

3.4.2 Proposed CLSA Framework

In this Subsection, we present the constituent components of the proposed

CLSA framework. As can be seen from Fig. 3.21, the CLSA architecture con-

sists of three modules, i.e., CL, RN, and SA models. The CA network is utilized

to capture the spatial and temporal correlations of input samples by converting

the longitudinal input data xmk ∈ {dmτ }Mm=1 to the latent representations. The

RN block is then used to decode the latent representation. Given a meaning-

ful latent representation, the SA model is used to predict the probability that

content cm will become popular. In the following, first, we briefly introduce the

CL block, then, we explain RN and the SA models.

Contrastive Learning (CL) Block

CL model, as one of the widely used self-supervised learning paradigms in com-

puter vision, has recently been applied to tabular and longitudinal datasets.

The fundamental principle of the CL model is to acquire the ability to differen-

tiate between pairs of examples that are similar, also known as positive pairs,
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Figure 3.21: The overall perspective of the CLSA architecture.

and those that are dissimilar, or negative pairs. To achieve the objective of

learning these representations effectively, it is essential to have both positive

and negative examples. Positive examples refer to pairs of data that share spe-

cific features or characteristics, which should be grouped together. Conversely,

negative examples denote pairs that do not possess those shared features and

should be separated. Without positive examples, the model would be unable

to learn the shared characteristics between pairs of data, which is necessary to

group them together. Similarly, without negative examples, the model would

be unable to learn the features that differentiate dissimilar pairs of data. Hence,

having both positive and negative examples allows the model to learn how to

distinguish between similar and dissimilar pairs of data. As shown in Fig. 3.21,

given a sample as the input of the learning model, called an anchor sample,

we need to select negative and positive samples for that. The negative samples
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consist of all the other samples within the batch, as they differ from the an-

chor sample. However, we must generate positive samples that are similar to

the anchor sample. In the proposed CLSA framework, we use the following two

augmentation methods to create positive samples, named shuffling and masking

techniques (in what follows, for simplicity, we drop subscript τ wherever there

is no ambiguity):

• Masking: Given the longitudinal data dm of content cm, several users’

information {xmk }No

k=1 is randomly masked to generate a positive sample for

content cm, denoted by d
(MA)
m . Other historical request patterns of contents

in the batch are represented by negative samples.

• Shuffling: In this type of data augmentation, the positive sample is gener-

ated by randomly shuffling the time order of users’ information requesting

content cm. The shuffled sample is denoted by d
(SH)
m .

It is important to note that the sample data is comprised of a series of No

requests that are sequential, and their order is significant as each request corre-

sponds to a row in the sample data. As depicted in Fig. 3.21, shuffling involves

randomly altering the order of requests, whereas masking removes an entire

row from the sequence. By utilizing these two methods, we can produce two

new samples that are similar to the original anchor sample. As an example,

we examine four requests (rows) in the anchor sample shown in Fig. 3.21, with

their order represented as 1, 2, 3, and 4. Fig. Fig. 3.21 illustrates the random

shuffling of the rows, resulting in the order 3, 4, 1, 2. Additionally, for random

masking, each row’s information is randomly obscured by zero values. As an

example, we have randomly selected row 2 to be masked with zero values. Fur-

thermore, in order to clarify the presence of multiple 0 and 1 in the illustrative

tables shown in Fig. Fig. 3.21, it is important to mention that we employed a

one-hot encoder for the age and occupation columns, which generates several

zeros and ones in the table. Additionally, we normalized the rating column,

ensuring that the final rating falls within the range of 0 to 1.

Given the augmented and negative samples, a shared encoder is utilized to con-

vert the longitudinal input data to a meaningful latent representation. This

representation places contents with similar request patterns closer together and
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dissimilar contents farther apart. To preserve the temporal correlation of re-

quest patterns, an LSTM architecture is used as the encoder, where the latent

representation of xmk at time tmk , denoted by hmk , is given by

hmk = LSTM(xmk , h
m
k−1), k = 1, . . . , No. (59)

In addition to the anchor sample dm, the shuffled and masked version of dm are

given as the input of the encoder to efficiently learn the latent representation of

dm. The shuffled and masked encoded samples are represented by h
m,(SH)
k , and

h
m,(MA)
k , respectively.

Finally, we utilize the masked and shuffled CL loss functions, denoted by L
(MA)
cl ,

and L
(SH)
cl , respectively, where the shuffled/masked learned representation is

considered the positive sample, and other representations in the batch are con-

sidered the negative ones, as follows

L
(MA)
cl = −

M∑

m=1

log
exp

(
hmNo

(h
m,(MA)
No

)T
)

M∑

j=1,j 6=m

exp
(
hmNo

(h
j,(MA)
No

)T
)
, (60)

L
(SH)
cl = −

M∑

m=1

log
exp

(
hmNo

(h
m,(SH)
No

)T
)

M∑

j=1,j 6=m

exp
(
hmNo

(h
j,(SH)
No

)T
)
, (61)

where (.)T is the transpose function, and the total CL loss is Lcl = L
(MA)
cl +

L
(SH)
cl . In general, the CL model is capable of distinguishing between different

samples by transforming them into a latent representation. This transformation

ensures that similar samples are grouped close to each other, while dissimilar

samples are placed further apart in the latent space. The key to achieving this

objective lies in the loss function used by the model, particularly in minimizing

the expressions defined in Eqs. (60) and (61). These loss functions have a crucial

role in guiding the model to minimize the distance or maximize the similarity

between positive pairs, which consist of similar samples (i.e., anchor and positive

samples). Conversely, the loss functions also aim to maximize the distance

or minimize the similarity between negative pairs, which consist of dissimilar

samples (i.e., anchor and negative samples). To minimize the loss function, it
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is important for the numerator to have a small value, while the denominator

should be large. Eqs (60) and (61) provide further insight into the loss functions.

The numerator in these equations indicates the similarity between the anchor

sample and the positive sample, i.e., hmNo
and h

m,(MA)
No

, respectively, in Eq. (60)

and hmNo
and h

m,(SH)
No

, respectively in Eq. (61), and minimizing this term helps to

achieve the desired similarity. On the other hand, the denominator represents

the similarity between the anchor sample hmNo
and the remaining masked samples

in the current batch, i.e., h
j,(MA)
No

, where j = {1, . . . , N} and j 6= m in Eq. (60)

and maximizing this term ensures that distinct values are assigned to different

samples in the latent representation. With the same argument, the denominator

of Eq. (61) attempts to maximize the distance between hmNo
and h

j,(SH)
No

where j =

{1, . . . , N} and j 6= m. This completes the presentation of the CL component

of the CLSA architecture. Next, we present the reconstruction network.

Reconstruction Network (RN) Block

To learn a better latent representation, the masked version of xmk is regenerated

from the encoded masked input sample. Following Reference [132] and to pre-

serve the temporal information of {xmk }No

k=1, the Time-LSTM2 is utilized as the

decoder, where the regenerated sample is given by

xmk = T ime− LSTM2(Hm
k ), (62)

where xmk is the decoded version of xmk , andHm
k = [(h

m,(MA)
1 , tm2 −tm1 ), (hm,(MA)

2 , tm3 −
tm2 ), . . . , (h

m,(MA)
k , tmk+1− tmk )] with k ∈ {1, . . . , No}. Term h

m,(MA)
k is the masked

encoded sample at time tmk , and tmk − tmk−1 is the time difference between two

consecutive requests of content m. By minimizing the difference between the

original input sample xmk and the decoded one xmk , our goal is to provide a better

latent representation. Therefore, the RN loss, denoted by Lre, is given by

Lrn =
No∑

k=1

||xmk − xmk ||2. (63)

Note that Time-LSTM2 [132] is an enhanced version of the LSTM architec-

ture that incorporates a temporal attention mechanism. In the proposed CLSA
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Figure 3.22: Time-LSTM2 architecture.

framework, we recognized that the time intervals between requests contain valu-

able temporal information regarding historical content patterns. As a result,

we employed the Time-LSTM2 model as the decoder for reconstructing the

masked positive sample, instead of using a simple LSTM network, to have a

more accurate latent representation. Fig. 3.22 illustrates the architecture of

Time-LSTM2, which consists of five gates: Input, Output, Forget, and two

Time gates. As shown in the Fig. 3.22, ik, ok, and fk correspond to the input,

output, and forget gates of the kth request, respectively. Additionally, xk, hk,

and ck represent the input feature, hidden output, and cell activation vectors,

respectively. Furthermore, T1,k and T2,k denote two time gates. T1,k controls

the influence of the previous request on the current popularity status, while

T2,k captures time intervals to account for users’ long-term interests in future

predictions. Lastly, ∆tk represents the time interval between two requests. For

more detailed information, please refer to Reference [132].

Survival Analysis (SA) Block

We utilize a SA model to capture a meaningful relationship between the lon-

gitudinal and contextual information of users requesting content cm and the
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probability of getting popular in the future. To this end, we use an MLP net-

work, where the input of this model is the latent representation {hmNo
}Mm=1, and

the output is the probability that content cm gets popular at time t, denoted

by pmt = P (t|hmNo
), during the total time window, denoted by Ttotal, where

Ttotal = Ts+ max
1≤m≤M

Tm
o . We use the Sigmoid function as the activation function

of the output layer of the MLP network to compute pmt . Consequently, the

estimated Cumulative Incidence Function (CIF) for content cm at time τ + Ts

is calculated as follows

F
m
(τ + Ts|hmNo

) =

∑

τ≤t≤τ+Ts

P (t|hmNo
)

1− ∑

t≤tm
No

P (t|hmNo
)
, (64)

where F
m
(τ +Ts|hmNo

) indicates the probability that content m has gained pop-

ularity up to time τ +Ts. Finally, the negative log-likelihood is used as the loss

function for the SA network, given by

Lsa = −
M∑

m=1

log
(
1− Fm

(τm|hmTm
)
)
. (65)

Finally, {pmt }Mm=1 are sorted in the descending order to identify the Top-K pop-

ular contents.

3.4.3 Simulation Results

Experimental Configurations

To investigate the effectiveness of the proposed CLSA architecture, a UAV-aided

MEC network, consisting of 4 terrestrial and 2 aerial caching nodes with 943

users and 1682 multimedia contents. Following the common assumption [131],

the size of the storage capacity of caching nodes is 10% of the total contents,

where the size of all multimedia contents is the same. Using the five-fold cross-

validation strategy, 80% and 20% samples are used as the training dataset and

the test dataset, respectively. Adam optimizer was employed to train the model,

where betas are (0.9, 0.999) and the weight decay is set to 1e − 7. Moreover,

the l2 regularization was set to 1e − 3 to avoid over-fitting. We trained the
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proposed CLSA architecture by minimizing the total loss function, denoted by

Ltotal, obtained as follows

Ltotal = ωclLcl + ωrnLrn + ωsaLsa, (66)

where ωcl, ωrn, and ωsa represent the weight of CL, RN, and SA blocks, respec-

tively, where the summation of them is one. In the following, the details of each

learning block are described:

• Encoder: An LSTM network is used as the encoder, with Rectified Linear

Unit (ReLU) activation and sigmoid as the recurrent activation function,

where the output size of this block is denoted by DE. Then, the output

is given to an MLP with three layers, with the size of αlDFI, where l ∈
{1, 2, 3}. Term DFI represents the feature dimension of the input sample,

which is 28 in this work, and the hyperparameter αl, with l ∈ {1, 2, 3} is

set to α1 = 1, α2 = 3, and α3 = 5.

• Decoder: There is a decoder in the RN block, performing based on the

Time-LSTM2, where the recurrent activation function is sigmoid and the

general activation is Tanh. The output size of the Time-LSTM2 network

is denoted by DD.

• MLP Network: Using batch-normalization technique, this network con-

sists of three dense layers with the same size of DM and the Exponential

Linear Unit (ELU) activation function. There are more 2 dense layers after

that, where the size of each layer is Ttotal. The activation function of the

last layer is softmax, while the rest is ReLU.

Effectiveness of the CLSA Architecture

To evaluate the performance of the proposed CLSA architecture, we first con-

sider different variants of the CLSA model by changing different hyperparame-

ters, such as the batch size, DE, DD, DM, and the learning rate, denoted by lr.

According to the information provided in Table 3.7, five different models are

defined. Moreover, we investigate the effect of the number of requests studied

in the observational window, denoted by No, on the classification accuracy. As
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it can be seen from Table 3.7, decreasing the batch size from 512 to 256 (Model

1 and 2) improves the classification accuracy over all folds with different No.

Comparing Models 2 and 3, it can be seen that reducing the encoder and decoder

dimensions from 64 to 32 decreases the classification accuracy. Similarly, reduc-

ing DM from 128 to 32 results in degrading the accuracy (Model 2 and Model

4). Finally, by comparing Model 1 and Model 5, it is evident that lr = 1e − 3

outperforms lr = 1e− 4.

Moreover, we investigate the effect of No on the classification accuracy over 5

models, where each fold is iteratively run with different random seed values.

According to the results provided in Table 3.8, increasing the number of re-

quests studied over an observational window provides more information about

the behavior of users’ interests in the past, improving the classification accu-

racy. Accordingly, from the aspect of classification accuracy, it can be seen that

Model 2 with No = 20 outperforms other variants. For this reason, we have

selected this model to conduct further research. Table 3.9 demonstrates the

precision, recall, and F1-score for Model 2 with No = 20 over 5 folds and their

average values. According to the information provided in Table 3.9, the high

value of the aforementioned parameters illustrates the effectiveness of the CLSA

architecture.

Fig. 3.23 represents the confusion matrix of the Model 2 with No = 20. It should

be noted that a challenging issue encountered in the Movielens dataset pertains

to imbalanced data, which arises due to a vast proportion of multimedia con-

tents being unpopular. To address this problem, we implemented the random

oversampling technique to increase the number of popular samples. As depicted

in Fig. 3.23, there is a misclassification rate of 2.84% for unpopular contents

(labeled as 0) being incorrectly classified as popular contents, which leads to

the wastage of storage capacity on edge devices. Similarly, a misclassification

rate of 2.06% for popular contents being classified as unpopular contents can

result in failure to place highly requested contents on edge devices.

It is important to note that oversampling [133, 134] is a widely accepted tech-

nique in machine learning to address class imbalance, where one class has signif-

icantly fewer samples compared to the other. In our case, the class representing

95



label 1 (popular contents) had considerably fewer samples than the class rep-

resenting label 0 (unpopular contents). The purpose of oversampling was to

mitigate this imbalance and improve the performance of the learning model by

providing more representative training data for the minority class. To clarify,

oversampling does not involve content-related data manipulation or resampling

of specific instances. It involves generating synthetic samples based on exist-

ing samples from the minority class. These synthetic samples are created by

Synthetic Minority Over-sampling Technique (SMOTE) [134] to generate new

synthetic samples that resemble the popular content. The detailed process of

the SMOTE method is as follows:

1. Identifying minority class instances: The first step of SMOTE is to identify

the popular contents. These are the samples that are less prevalent in the

dataset compared to the majority class.

2. Selecting nearest neighbors: For each popular content, SMOTE selects a

defined number of its nearest neighbors from the same class. The number

of neighbors is determined by the user-defined parameter k.

3. Creating synthetic samples: SMOTE then creates synthetic samples by

interpolating between the feature vectors of the specific popular content

and its selected neighbors. It does this by randomly selecting a neighbor

and computing the difference between their feature vectors.

4. Generating synthetic samples: Once the difference between the feature

vectors is calculated, SMOTE multiplies this difference by a random value

between 0 and 1. This scaling factor controls the amount of synthetic data

to be generated.

5. Adding synthetic samples: Finally, the synthetic samples are added to the

original dataset, resulting in an augmented dataset with a more balanced

class distribution. The process of selecting nearest neighbors, calculating

the feature differences, and generating synthetic samples is repeated until

the proposed CLSA framework receives sufficient exposure to the popular

content (minority class), preventing bias towards the unpopular content

(majority class).
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Table 3.7: Variants of the CLSA architecture.

Model ID Batch Size DE DD DM lr

1 512 64 64 128 1e− 3

2 256 64 64 128 1e− 3

3 256 32 32 128 1e− 3

4 256 64 64 32 1e− 3

5 256 64 64 128 1e− 4

Figure 3.23: Confusion matrix of the proposed CLSA architecture (Model 2, No = 20).

Moreover, we utilize the T-distributed Stochastic Neighbor Embedding (TSNE)

method [141] to evaluate the efficiency of the CL block in generating latent

representations for discriminating between popular and unpopular contents. For

instance, in Fig. 3.24, the latent representation of a test set from one of the 5

fold cross-validation experiments is employed to illustrate the embedded space

of popular and unpopular contents. As shown in Fig.3.24, the embedded space

of popular and unpopular contents are distinguishable, indicating that the CL

network has been effectively trained.
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Figure 3.24: The embedded space of the latent representation of popular/unpopular contents
using the TSNE technique.

Ablation Study

To further investigate the effectiveness of the proposed CLSA architecture, we

conduct an ablation study, where different variants of the CLSA model are

introduced in Table 3.10. We evaluate the significance of each block in the

CLSA architecture on classification accuracy by analyzing Models L1 to L7.

For instance, the results presented in Table 3.10 demonstrate that the CL block

alone (Model L1) achieves an accuracy of approximately 85%, underscoring the

importance of the other two blocks in attaining higher performance (Model L7

with about 95% accuracy). Consequently, it is evident that the presence of

all three blocks in the CLSA architecture is of paramount importance, where

the optimal loss weights of each block are represented in Model L7. It should

be noted that the block weights are determined using the grid search method,

where we define a grid of possible weight values for each block. Then, we train

and evaluate the network using each combination of weights from the grid. The

combination that yields the best performance, in terms of average accuracy, is

selected as the optimal set of weights. This allows the network to learn the

optimal combination of weights that maximizes the overall accuracy.

100



Table 3.10: The accuracy of the proposed CLSA architecture using different loss weights.

Model ID ωcl ωrn ωsa Average Accuracy ± STD

L1 1.0 0.0 0.0 0.851± 0.026

L2 0.0 1.0 0.0 0.850± 0.022

L3 0.0 0.0 1.0 0.903± 0.029

L4 0.5 0.5 0.0 0.859± 0.034

L5 0.0 0.5 0.5 0.888± 0.025

L6 0.5 0.0 0.5 0.936± 0.013

L7 0.3 0.2 0.5 0.951± 0.010

Comparison of Available Datasets

In what follows, the impact of the dataset on the classification accuracy of the

proposed CLSA framework is evaluated. The characteristics of recently available

datasets are compared in Table 3.11 based on the availability of certain infor-

mation, including (i) The timing of user requests, referring to information about

when users made their requests; (ii) Contextual details, i.e., users’ information

such as age, gender, and occupation, which provides additional context about

the users, and; (iii) Content ratings, indicating the users’ interest in specific

items, helping to understand their preferences. To the best of our knowledge,

the only dataset that contains all the necessary user contextual information is

the Movielens 100K dataset. Additionally, a newer version of Movielens, called

Movielens 1M, provides the same information. Movielens 1M covers a longer

time frame, specifically from 2000− 04− 25 to 2003− 02− 28, spanning a total

of 1, 039 days. For Movielens 1M dataset, we set the batch size as 256, and

DE = 64, DD = 64, DM = 128 with lr = 1e− 3. Moreover, the MLP used after

the encoder consists of one layer, with the size of DFI, and the size of the MLP

network used as the survival network is Ttotal. Considering the aforementioned

hyperparameters, the number of parameters of the proposed CLSA framework

is 165, 036 and the classification accuracy is 95.42%. Despite the fact that the
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classification accuracy is only slightly higher compared to Movilens 100K, there

is a significant reduction in the network’s complexity, approximately four times

less, which is a noteworthy improvement.

Performance Comparisons

We compare the performance of the proposed CLSA architecture with the fol-

lowing state-of-the-art:

• TEDGE Scheme [5], which is based on a simple ViT architecture acting

as a multi-label classification model with the aim of predicting the Top-K

popular contents in the upcoming time. To capture the spatial correla-

tion of contents, 2D images of historical requests pattern of contents were

created, where the number of columns and rows of this image were corre-

sponding to the number of contents and the number of historical requests

for each content, respectively. The size of the input sample, therefore,

significantly increases to capture as much spatial correlation as possible.

• Multiple-model Transformer-based Edge Caching (MTEC) [9] con-

sists of two parallel multi-channel Transformer networks with a dense layer

as the fusion layer. Similarly, the output of the model is Top-K popular

contents, while it first predicted the request patterns of contents in the

future. The input sample is 1D historical requests patterns of contents.

To capture the spatial correlation of contents, the multi-channel Trans-

former networks were employed, where the sequential request pattern of

each content is given to a channel of the Transformer model.

• ViT-CAT [6], consisting of two parallel ViT networks with different patch-

ing techniques, with a cross attention mechanism as the fusion layer. The

input and output of the network are similar to the TEDGE caching scheme.

• Self-supervised Contrastive Learning Popularity Prediction (CoPo) [7],

attempting to learn the latent representation of contents to classify them

as popular and unpopular contents without any labeling.

• Deep Learning-based Content Caching (DLCC) [142] used CNN to

predict the popularity of contents and used the RL model for the content

placement phase.
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We compare the proposed CLSA framework with the aforementioned baselines

from the classification accuracy perspective, learning efficiency, and complexity.

When assessing the learning efficiency and complexity of deep learning models,

the primary goal is to quantify the resources required for training and infer-

ence. Various metrics, such as time and memory usage, are commonly used

to measure learning efficiency. To evaluate the learning efficiency of the pro-

posed CLSA framework, we evaluate the train time, test time, and maximum

allocated memory. As shown in Table 3.12, the proposed CLSA architecture

outperforms other baselines, while there is no need to create large input samples

to capture the spatial correlation of contents, i.e., the size of the input sample

is 28× 20. Moreover, it is important to note that the classification accuracy is

equivalent to the popularity prediction error in our study. More precisely, in the

proposed CLSA framework, the output variable, denoted as ymk , represents the

popularity of content cm during the study window Ts. Specifically, ymk takes the

value of 1 if the content becomes popular, and 0 otherwise. This implies that

the popularity prediction error aligns with the classification accuracy. Further-

more, we conducted a comparison between the cache-hit-ratio of our proposed

CLSA framework and the ViT-CAT method, considering the number of epochs

and the cache capacity. Fig. 3.25 illustrates that the learning process of our

CLSA framework outperforms the ViT-CAT architecture in terms of speed. Af-

ter approximately 30 epochs, the CLSA framework is adequately trained, while

the ViT-CAT requires 50 epochs to reach a similar level of training. Addition-

ally, Fig. 3.26 demonstrates that increasing the cache capacity leads to a higher

cache-hit-ratio, with the CLSA framework achieving a superior performance in

this aspect.

Finally, we compare the performance of the proposed CLSA architecture with

other baselines in terms of the cache-hit ratio. Note that the cache-hit ratio is

commonly used in MEC networks to evaluate the effectiveness of the popularity

prediction framework. This metric shows the number of requests that are being

handled by caching nodes versus the overall number of requests made through-

out the network. As shown in Fig. 3.27, there are other baselines in addition to

the aforementioned schemes, including Least Recently Used (LRU) [51], Least

Frequently Used (LFU) [51], PopCaching [214], and LSTM-C [55]. As depicted
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Figure 3.25: A comparison of the cache-hit ratio versus number of epochs.

Figure 3.26: A comparison of the cache-hit ratio versus cache capacity.

in Fig. 3.27, the optimal approach [55] is a caching scheme where caching nodes

handle all requests throughout the network, which is not feasible in real-world

scenarios. Based on the results presented in Fig. 3.27, the proposed CLSA archi-

tecture achieves the highest cache-hit ratio when compared to other baselines.

It is important to highlight that while the cache-hit ratio of the proposed CLSA

framework is comparable to that of the ViT-CAT architecture, it surpasses the

ViT-CAT in terms of other metrics including learning speed, model size, run-

ning time, and memory usage. As a final note, we would like to elaborate the

reason that we used LSTM as the encoder of the proposed CLSA architecture.

While Transformers have several advantages, such as parallelization, and their
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Figure 3.27: Comparison with state-of-the-art based on the cache-hit ratio.

ability to capture long-term dependency, they have the following limitations in

comparison to the CLSA architecture:

(i) Transformers, typically, require large datasets for training in order to

achieve satisfactory generalization. LSTM models, on the other hand,

have shown better performance in scenarios with limited data availability.

(ii) Although Transformers excel in capturing long-term dependencies, a lengthy

sequential input is not necessary in the proposed CLSA. In other words,

achieving high accuracy is possible by utilizing only 20 timestamps.

(iii) By underscoring the importance of capturing spatial correlation in MEC

networks, it is essential to note that, conventional Transformers are inca-

pable of efficiently capturing the spatial correlation among distinct contents

in a one-dimensional signal input, where each element corresponds to the

number of requests per unit of time for a particular content. ViT can be

utilized instead to address this issue (i.e., capturing correlation between N

contents) by converting N sets of 1D historical request patterns for each

content into 2D images sized N × T . Fig. 3.28 is an example of the input

sample of the ViT network, where there are N = 4 contents, and the time

duration of requests is set to T = 5. More precisely, the first row represents

the number of requests for content c1 at time {t1, . . . , t5}. Since both the

request patterns for c1 and c2 are captured in a single input sample, it is
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Figure 3.28: An illustrative example to represent (a) the spatial correlation between different
contents in the proposed CLSA framework, and (b) The ViT network.

possible to extract the spatial correlation between different contents from

that single input. This eliminates the requirement of using separate input

samples to gather such information. If we, however, were to consider all

contents in a single input sample, the input size would become excessively

large. For example, with the Movielens Dataset consisting of 1, 682 con-

tents and 20 past requests per content, the input sample size using the

proposed CLSA would be 28 × 20, where 28 denotes the number of user

contextual information features. This is 60 times smaller than the input

size required by the ViT network, i.e., 1, 682 × 20, while providing the

same classification accuracy. More specifically, spatial correlation in ViT

networks is learned using the attention mechanism, for this reason, the

historical requests of all contents should be simultaneously fed to the ViT

network to attend to different parts of the input sample. This underscores

the superiority of the CLSA model in effectively capturing spatial relation-

ships without the need for additional data transformation processes.

3.5 Proposed CoPo Framework

Note that the self-supervised CoPo framework used for pre-training, is very

similar to the encoder/decoder part of the CLSA framework, where the shared

encoder is taught to map input samples into meaningful latent representations.
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Figure 3.29: The overall perspective of the CoPo architecture.

Following the training of the CL model, a supervised classifier is implemented

for fine-tuning. In Fig. 3.29, the encoder that has been trained during the

pre-training phase is employed to transform input samples into latent repre-

sentation. To demonstrate the efficiency of the proposed CoPo framework, a

logistic regression model is utilized during the fine-tuning process, where the

labels {ymk }Mm=1 are used as the true values.

3.5.1 Simulation Results

A UAV-aided MEC network was studied, comprising four ground-based caching

nodes and two aerial ones, and has a total of 943 users and 1682 multimedia

items. Based on the typical assumption, the storage capacity of each caching

node is 10% of the entire multimedia collection, with all items having identical

sizes. The model was trained using a five-fold cross-validation approach, with

80% of the samples being used for training and 20% for testing. The Adam

optimizer was employed during training, with betas set at (0.9, 0.999) and weight

decay at 1e − 7. To avoid overfitting, l2 regularization was set at 1e − 6. The
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Figure 3.30: A typical embedded space for the latent representation of popular and unpopular
content, using The TSNE method.

encoder in this case is implemented using an LSTM network, which utilizes a

Rectified Linear Unit (ReLU) and sigmoid activation functions. The output

size of this block is indicated by DE. Finally, the decoder performs based on

the Time-LSTM2, with an output size of DD, where the activation functions

are sigmoid and Tanh. By using a process of trial and error, the best version of

the CoPo framework was determined to have the following features: DE and DD

were both set to 512, the batch size, the learning rate, and No were established

at 1e−3, 128, and 20, respectively. Table 3.13 illustrates the accuracy, precision,

recall, and f1-score for different 5 folds.

Furthermore, we leverage the TSNE technique [141] to assess the effectiveness of

the CL block in producing latent representations that can discriminate between

popular and unpopular content. To demonstrate this, we present Fig. 3.30,

which illustrates the embedded space of a test set obtained from one of the

five-fold cross-validation experiments, which is clearly separable for popular

and unpopular contents. Finally, we compare the proposed CoPo framework in

terms of classification accuracy with several self-supervised, unsupervised, and

supervised learning models. As shown in Table 3.14, the proposed CoPo archi-

tecture outperforms other unsupervised baselines, i.e., Adaptive Genetic Neural
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Network (AGNN) [143] and Artificial Neural Network (ANN) with modified K-

Means [143], and Self-Supervised Contrastive Learning using Random Feature

Corruption (SCARF) [144]. Moreover, we compare the proposed CoPo frame-

work with several supervised learning models, such as Vision Transformer [5],

Multiple-model Transformer-based Edge Caching (MTEC) [9], Vision Trans-

formers with Cross Attention (ViT-CAT) [6], and Deep Learning-based Con-

tent Caching (DLCC) [142] frameworks. Table 3.14 demonstrates that the clas-

sification accuracy is comparable to that of supervised learning models while

eliminating the need for manual labeling of datasets, which saves time.

3.6 Conclusion

In this Chapter, we targeted the problem of autonomous connection schedul-

ing using RL-based architectures in Section 3.1 by introducing the CQN-CS

framework. Given an optimal connection scheduling framework, we focused on

data-driven popularity prediction models adapted with uncoded content place-

ment in MEC networks. We first proposed the attention-based TEDGE caching

framework in Section 3.2, which is based on ViT network. Despite the fact that

the TEDGE framework achieves a high level of classification accuracy, it was in-

tricate and demands a significant number of parameters in order to achieve such

accuracy. In Section 3.3, we presented a low-complex and parallel ViT-CAT fu-

sion architecture to predict the Top-K popular contents in MEC networks. One

significant limitation of supervised popularity prediction models is the require-

ment for manual labeling of contents as popular or unpopular by investigating

users’ past behavior, which can be a time-intensive task. Sections 3.4 and 3.29

proposed self-supervised learning algorithms called Contrastive to predict the

dynamic content popularity in a MEC network in a self-supervised manner.
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Chapter 4

Popularity Prediction and

Coded/Uncoded Content

Placement

Using the CQN-CS architecture, introduced in Chapter 3, we improved the net-

work’s coverage and provided a highly reliable and low-latency transmission for

outdoor users. Nevertheless, there is currently no effective infrastructure that

can also benefit indoor users. Referred to as the Cluster-centric and Coded

UAV-aided Femtocaching (CCUF) framework, the network’s coverage in both

indoor and outdoor environments increases by considering a two-phase cluster-

ing framework for FAPs’ formation and UAVs’ deployment. Due to the UAV’s

signal attenuation in indoor environments, we consider two different indoor and

outdoor caching service scenarios (see Fig. 4.1) for the proposed CCUF frame-

work. More precisely, the indoor area is covered by FAPs, equipped with extra

storage and supported by Coordinated Multi-Point (CoMP) technology. The

outdoor area, however, is supported by coupled UAVs and FAPs depending

on the movement speed of ground users. To access a large number of content

during the movement of ground users, a two-phase clustering approach is con-

sidered: (i) The whole network (both indoor and outdoor areas) is partitioned

into sub-networks called inter-clusters, which is defined for content placement in

FAPs. We show that based on this strategy, the ground users can acquire more

segments during their movements, and; (ii) For UAVs formation, the outdoor
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environment is partitioned into intra-clusters via K-means clustering scheme,

each covered by a UAV.

Another goal of the CCUF framework is to increase content diversity by using

a cluster-centric cellular network, where multimedia contents are classified into

three categories, including popular, mediocre, and non-popular contents. While

the popular contents are stored completely, distinct segments of mediocre ones

are determined according to the proposed framework to be stored in the storage

of neighboring FAPs. We also determine the best number of coded/uncoded

contents in each caching node to increase the cache-hit-ratio, SINR, and cache

diversity while decreasing users’ access delay and cache redundancy for different

popularity profiles.

Finally, we introduce a novel attention-based popularity prediction framework

adopted with the coded/uncoded content placement. More precisely, with the

assumption that users’ preferences remain unchanged over a short horizon, the

Top-K popular contents are identified as the output of the learning model.

Most existing data-driven popularity prediction models, however, are not suit-

able for the coded/uncoded content placement frameworks. On the one hand,

in coded/uncoded content placement, in addition to classifying contents into

two groups, i.e., popular and non-popular, the probability of content request is

required to identify which content should be stored partially/completely, where

this information is not provided by existing data-driven popularity prediction

models. On the other hand, the assumption that users’ preferences remain un-

changed over a short horizon only works for content with a smooth request

pattern. To tackle these challenges, we develop a Multiple-model (hybrid)

Transformer-based Edge Caching (MTEC) framework with higher generaliza-

tion ability, suitable for various types of content with different time-varying

behavior, that can be adapted with coded/uncoded content placement frame-

works.
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Figure 4.1: A typical structure of the proposed UAV-aided cellular network in (a) the indoor, and
(b) the outdoor environments.

4.1 Coded/Uncoded Content Placement

In this Section, we consider an integrated UAV-aided and cluster-centric cellular

network to serve ground users positioned in both indoor and outdoor environ-

ments. Our first objective is to increase the content diversity that can be ac-

cessed via caching nodes. The second goal is to introduce different transmission

schemes for indoor/outdoor users to improve the achievable QoS in terms of the

users’ access delay and decrease the energy consumption of UAVs. Referred to

as the Cluster-centric and Coded UAV-aided Femtocaching (CCUF) framework,

the network’s coverage in both indoor and outdoor environments increases by

considering a two-phase clustering approach for FAPs’ formation and UAVs’

deployment. In summary, this work makes the following key contributions:

• Due to the UAV’s signal attenuation in indoor environments, we consider

two different indoor and outdoor caching service scenarios for the proposed

CCUF framework. More precisely, the indoor area is covered by FAPs,

equipped with extra storage and supported by CoMP technology. The

outdoor area, however, is supported by coupled UAVs and FAPs depending

on the movement speed of ground users.

• To access a large number of content during the movement of ground users, a
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two-phase clustering approach is considered: (i) The whole network (both

indoor and outdoor areas) is partitioned into sub-networks called inter-

clusters, which is defined for content placement in FAPs. We show that

based on this strategy, the ground users can acquire more segments during

their movements, and; (ii) For UAVs formation, the outdoor environment

is partitioned into intra-clusters via a K-means clustering algorithm, each

covered by a UAV.

• To the best of our knowledge, despite all the research conducted in this

field, there is no placement strategy to determine how distinct segments of

popular content should be distributed in different caching nodes. Towards

this goal, we consider a cluster-centric cellular network, where multimedia

contents are classified into three categories, including popular, mediocre,

and non-popular contents. While the popular contents are stored com-

pletely, distinct segments of mediocre ones are determined according to

the proposed framework to be stored in the storage of neighboring FAPs.

We also determine the best number of coded/uncoded contents in each

caching node to increase the cache-hit-ratio, SINR, and cache diversity

while decreasing users’ access delay and cache redundancy for different

content popularity profiles.

4.1.1 System Model and Problem Description

We consider a UAV-aided cellular network in a residential area that supports

both indoor and outdoor environments (see Fig. 4.1). There exist Nf number of

FAPs, denoted by fi, for (1 ≤ i ≤ Nf ), each with the cache size of Cf and trans-

mission range of Rf . All FAPs are independently and randomly distributed in

the environment following Poisson Point Processes (PPPs) [45]. There are also

Nu number of UAVs, denoted by uk, for (1 ≤ k ≤ Nu), with equal transmission

range of Ru, and a main server that has access to the whole content and can

manage all caching nodes. There are Ng number of ground users, denoted by

GUj, for (1 ≤ j ≤ Ng), that move through the network with different velocities.

Term υj(t) denotes the speed of the ground user GUj at time slot t. When GUj

requests content cl from a library of C = {c1, . . . , cNc
}, in which Nc = |C| is the
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cardinality of multimedia data in the network, this request should be handled

by one of the nearest FAPs or UAVs having some segments of cl. In this work,

FAP fi, for (1 ≤ i ≤ Nf ), and UAV uk, for (1 ≤ k ≤ Nu), operate in an open

access mode, i.e., they can serve any ground user GUj, for (1 ≤ j ≤ Ng), lo-

cated in their transmission range. To completely download a requested content,

a finite time T is required. In the proposed CCUF framework, each content

cl is fragmented into Ns encoded segments, denoted by cls, for (1 ≤ s ≤ Ns).

Without loss of generality, it is assumed that the time T is discretized into Ns

time slots with time interval δt, i.e., T = Nsδt, where δt is large enough for

downloading one segment cls. A summary of the notations used hereinafter is

provided in Table 4.1.

As it can be seen from Fig. 4.1, we consider two different indoor and outdoor

caching service scenarios for the proposed CCUF framework to improve the

network’s coverage. As will be described in Subsection 4.1.3, the requests of

indoor users are handled through FAPs, while outdoor users are supported by

coupled UAVs and FAPs depending on their movement speed. In this regard, we

define two clustering approaches, called inter-clusters and intra-clusters, which

are used for content placement in FAPs and UAVs’ deployment, as discussed

below:

Inter-Clusters: As shown in Fig. 4.1, Nb < Nf number of neighboring FAPs in

both indoor and outdoor environments, form a cluster, referred to as the inter-

cluster. As it is stated in [45, 145], the main focus of cluster-centric content

placement is to place contents in the storage of FAPs, where all FAPs belonging

to an inter-cluster are used as an entity (despite conventional femtocaching

schemes where each FAP acts as single storage). Therefore, our goal is to

determine how different segments of popular files should be distributed in the

cache of FAPs belonging to an inter-cluster to increase the content diversity.

We construct the inter-clusters based on the following two rules: (i) As will

be described shortly in Subsection 4.1.2, all FAPs in the same inter-cluster

save different segments of mediocre contents, and; (ii) The cached contents

of different inter-clusters are the same. In addition, all FAPs use the CoMP

transmission approach (supporting ST and JT schemes) to mitigate the inter-

cell interference in edge areas and manage ground users’ requests.
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Intra-Clusters: Since the transmission range of FAPs is significantly less than

that of a UAV (see Fig. 4.1(b)), the outdoor area is also divided into several

intra-clusters (each intra-cluster is covered by a UAV) based on an unsupervised

learning algorithm. In what follows, we present the content popularity profile

and transmission schemes utilized to develop the proposed CCUF framework.

4.1.2 Content Popularity Profile

To account for user’s behavior pattern in multimedia services, the popularity of

video contents is determined based on the Zipf distribution [44,146], where the

probability of requesting the lth file, denoted by pl, is calculated as

pl =
l−γ

Nc∑

r=1

r−γ

, (67)

where γ and r represent the skewness of the file popularity, and the rank of the

file cl, respectively. For notational convenience, we assume that P [n] ≡ P (nδt)

denotes the probability of accessing a new segment in time slot n, with n ∈
{1, . . . , Ns}. Without loss of generality and to be practical, we investigate the

probability distribution of a real multimedia data set, i.e., the YouTube videos

trending statistics, following Zipf distribution, i.e., a small part of the contents

are requested with a high probability. The majority of contents are not popular,

and some contents, are requested moderately. Consequently, in the proposed

CCUF framework, we classify multimedia contents into three categories, i.e.,

popular, mediocre, and non-popular [45]. To improve content diversity, the

storage capacity of FAPs, denoted by Cf , is divided into two spaces, where

α portion of the storage is allocated to store complete popular contents, i.e.,

1 ≤ l ≤ bαCfc, where l = 1 indicates the most popular content. Additionally,

(1− α) portion of the cache is assigned to store different parts of the mediocre

contents, where bαCfc + 1 ≤ l ≤ Ns(Cf − bαCfc). The best value of α is

obtained experimentally. The proposed model for identifying different segments

to be cached in neighboring FAPs will be discussed later on in Subsection 4.1.4.
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4.1.3 Transmission Scheme

In this Subsection, we describe both the connection scheduling (serving by FAPs

or UAVs) and the transmission scheme depending on the presence of the ground

user in indoor or outdoor environments.

Indoor Environment

The transmitted signal by UAVs, propagating in residential areas, becomes

weaker due to the penetration loss and shadow fading effects. It is, there-

fore, assumed that ground users positioned in indoor areas are only supported

by FAPs. In the CoMP-integrated and cluster-centric cellular network and as

it can be seen from Fig. 4.1, there are two regions in each inter-cluster, named

cell-edge and cell-core, which are determined based on the long-term averaged

SINR values [57] to illustrate the quality of a wireless link. In such a case that

the ground user GUj is positioned in the vicinity of the FAP fi, the SINR from

fi to GUj, denoted by Si,j, is obtained as follows

Si,j(t) =
Pi|H̃i,j(t)|2
If

−i
(t) +N0

, (68)

where Pi denotes the transmitted signal power of FAP fi, and If
−i
(t) repre-

sents the interference power from other FAP-ground users, except for the cor-

responding fi link. Term N0 represents the noise power related to the additive

white Gaussian random variable. Moreover, the path loss and fading chan-

nel effects between FAP fi and ground user GUj at time slot t is denoted by

H̃i,j(t) =
hi,j(t)
√

Li,j(t)
. In this case, hi,j(t) denotes a complex zero-mean Gaussian

random variable with unit standard deviation and Li,j(t) represents the path

loss between FAP fi and ground user GUj at time slot t, obtained as follows

Li,j(t) = L0 + 10η log
(
di,j(t)

)
+ χσ, (69)

where η is the path loss exponent. Term χσ indicates the shadowing effect, which

is a zero-mean Gaussian-distributed random variable with standard deviation

σ. Additionally, di,j(t) represents the Euclidean distance between FAP fi and
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ground user GUj at time slot t. Furthermore, L0 = 20 log

(
4πfcd0
c

)

is the

path loss related to the reference distance d0 where fc and c = 3 × 108 denote

the carrier frequency and the light speed, respectively. Accordingly, the ground

user GUj is marked as the cell-core user connected to FAP fi, if S i,j(t) > Sth;
otherwise, GUj is marked as the cell-edge user, where Sth is the SINR threshold.

The transmission scheme in the proposed CoMP-integrated and cluster-centric

cellular network is determined based on two metrics; (i) The popularity of the

requested content, described in Subsection 4.1.2, and; (ii) The link quality of

the ground user in the cell, i.e., cell-core or cell-edge. The following two different

transmission schemes are utilized for the development of the proposed CCUF

framework:

• Single Transmission (ST): In this case, the requested file cl, for (1 ≤
l ≤ bαCfc), is a popular content, and the ground user GUj is marked as

the cell-core of FAP fi, i.e., S i,j(t) > Sth. It means that the content is

completely cached into the storage of FAP fi and the high-quality link

can be established between FAP fi and ground user GUj. Consequently,

this request is served only by the corresponding FAP fi. Moreover, if

the requested content belongs to the mediocre category, i.e., bαCfc+ 1 ≤
l ≤ Ns(Cf − bαCfc), this request is served according to the ST scheme

regardless of the user’s link quality since each FAP has a different segment

of the mediocre content.

• Joint Transmission (JT): In this transmission scheme, the requested file

cl is a popular content, i.e., 1 ≤ l ≤ bαCfc. Consequently, all FAPs have

the same complete file. The ground user GUj, however, is marked as the

cell-edge of FAP fi, i.e., S i,j(t) ≤ Sth. Therefore, the link quality between

FAP fi and the ground user GUj is not good enough. In order to improve

the reliability of content delivery, the corresponding content will be jointly

transmitted by several FAPs in its inter-cluster. As it can be seen from

Fig. 4.1, neighboring FAPs in an inter-cluster collaboratively serve cell-edge

ground users based on the JT scheme, which is shown by the red color.

Using such a specific indoor transmission scheme, we take the advantage

of the CoMP technology to further decrease the users’ access delay by
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simultaneously serving mediocre content via multiple caching nodes.

Outdoor Environment

As it can be seen from Fig. 4.1, outdoor areas are covered by both UAVs and

FAPs. Therefore, outdoor users are classified based on their velocity into the

following two categories:

• Low Speed Users (LSUs): If the speed of ground user GUj, denoted by

υj(t), is less than a predefined threshold υth, this user is managed by inter-

clusters (FAPs). Therefore, the transmission scheme of LSUs is completely

the same as the indoor users, described in Subsection 4.1.3.

• High Speed Users (HSUs): In this case, the speed of ground user GUj

is equal or more than υth. Therefore, this request should be served by a

UAV covering the corresponding intra-cluster.

This completes our discussion on the content popularity profile and transmission

schemes. Next, we develop the CCUF framework.

4.1.4 The CCUF Framework

In conventional femtocaching schemes, it is a common assumption that all

caching nodes store the same most popular contents [131, 147, 148]. This as-

sumption is acceptable in static femtocaching models, in which users are sta-

tionary or move with a low velocity. With the focus on a dynamic femtocaching

network, in which users can move based on the random walk model, storing

distinct content in neighboring FAPs leads to increasing the number of requests

served by caching nodes [149]. Despite recent researches on cluster-centric cellu-

lar networks, there is no framework to determine how different segments should

be stored to increase content diversity. Toward this goal, we propose the CCUF

framework, which is an efficient content placement strategy for the network

model introduced in Subsection 4.1.1. The proposed CCUF framework is im-

plemented based on the steps presented in the following.
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Content Caching for FAPs and UAVs

Identifying the best multimedia content to be stored in the storage of caching

nodes leads to a reduction in the users’ latency. It is commonly assumed [44,131]

that the total users’ access delay is determined according to the availability of

the required content in the nearby caching nodes. Based on this assumption, in

scenarios where the requested content can be served by caching nodes, the cache-

hit occurs and the ground user will experience no delay; otherwise, the request

is served by the main server resulting in a cache-miss. Inspired from [150],

we relax the above assumption and express the actual users’ access delay as

a function of the content popularity profile and link’s quality. In this regard,

we propose two optimization models for content placement in both FAPs and

UAVs to minimize the users’ latency, which are similar in nature. Toward this

goal, we first describe the delay that ground users experience when served by

FAPs and UAVs.

UAVs’ Content Placement: Serving requests via UAVs leads to establishing

air-to-ground links from UAVs to ground users. Due to the obstacles in outdoor

environments, the transmitted signal from UAVs is attenuated. To be practical,

we consider both LoS and Non-LoS (NLoS) path losses from UAV uk to ground

user GUj at time slot t as follows [170]

L(LoS)
k,j (t)= L0 + 10η(LoS) log(dk,j(t)) + χ(LoS)

σ , (70)

L(NLoS)
k,j (t)= L0 + 10η(NLoS) log(dk,j(t)) + χ(NLoS)

σ , (71)

where L0 = 20 log

(
4πfcd0
c

)

denotes the reference path loss in distance d0, and

dk,j(t) is the Euclidean distance between UAV uk and the ground user GUj at

time slot t. In addition, η(LoS), η(NLoS), χ
(LoS)
σ and χ

(NLoS)
σ indicate the LoS and

NLoS path loss exponents and the corresponding shadowing effects, respectively.

Consequently, the average path loss, denoted by Lk,j(t), is given by

Lk,j(t) = p
(LoS)
k,j (t)L(LoS)

k,j (t) + (1− p(LoS)k,j (t))L(NLoS)

k,j (t), (72)

where p
(LoS)
k,j (t) is the probability of establishing LoS link between UAV uk and
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ground user GUj at time slot t, obtained as [169]

p
(LoS)
k,j (t) = (1 + ϑ exp (−ζ[φk,j(t)− ϑ]))−1 , (73)

where ϑ and ζ are constant parameters, depending on the rural and urban

areas. Moreover, φk,j(t) = sin−1

(
hk

dk,j(t)

)

is the elevation angle between UAV

uk and the ground user GUj, and hk is the UAV’s altitude. Without loss of

generality, altitude hk is assumed to be a fixed value over the hovering time.

If the requested content cannot be found in the storage of UAVs, additional

ground-to-air connection is required to provide UAVs with the requested content

through the main server. Similarly, the average path loss of the main server-to-

UAV uk link is calculated as

Lm,k(t) = p
(LoS)
m,k (t)L(LoS)

m,k (t) + (1− p(LoS)m,k (t))L(NLoS)
m,k (t), (74)

where L(LoS)
m,k (t) = d−$

m,k(t) and L(NLoS)
m,k (t) = ψL(LoS)

m,k (t), in which dm,k(t) denotes

the distance between the main server and UAV uk. Furthermore, $ and ψ

denote the LoS and NLoS path loss exponents, respectively [170].

As stated previously, another parameter that has a great impact on the users’

access delay is the presence of the requested content in the caching node, de-

pending on the content popularity profile. Therefore, the cache-hit and the

cache-miss probability through serving by UAV uk at time slot t, denoted by

p
(h)
u (t) and p

(m)
u (t), respectively, are expressed as

p(h)u (t) =
∑

l∈Cu

pl(t) ≤ 1, (75)

p(m)
u (t) = 1− p(h)u (t), (76)

where Cu denotes the cache size of UAV uk, which is assumed to be the same

for all UAVs. Consequently, the users’ access delay through UAVs is expressed

as

Du(t) = p(h)u (t)D(h)
u (t) + p(m)

u (t)D(m)
u (t), (77)

where D(h)
u (t) and D(m)

u (t) represent the cache-hit and the cache-miss delays,
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respectively, calculated as follows [169]

D(h)
u (t) =

Lc

Rk,j

= Lc log
−1

(

1 +
Pk10

Lk,j(t)/10

Ik(t,u−k) +N0

)

, (78)

D(m)
u (t) = Lc log

−1

(

1 +
Pk10

Lm,k(t)/10

Ik(t,u−k) +N0

)

︸ ︷︷ ︸

,LMU

+

Lc log
−1

(

1 +
Pk10

Lk,j(t)/10

Ik(t,u−k) +N0

)

︸ ︷︷ ︸

,LUG

, (79)

where Lc and Rk,j represent the file size of cl and the transmission data rate

from UAV uk to GUj. Furthermore, Pk and Ik(t,u−k) denote the transmission

power of UAV uk and the interference power caused by other UAV-user links

for the transmission link between uk and GUj, respectively. Note that when the

cache-miss happens, the content should be first provided for the UAV by the

main server. Therefore, LMU and LUG in Eq. (79) represent the users’ access

delay related to the main server-UAV and UAV-ground user links, respectively.

Given users’ access delay through UAVs, the goal is to place contents in the

storage of UAVs to minimize the users’ access delay in Eq. (77). Due to the large

coverage area of UAVs, it is not feasible for ground users to move through areas

supported by different UAVs frequently. Therefore, we assume that contents

(either popular or mediocre ones) are cached completely in the storage of UAVs.

With the aim of minimizing users’ access delay, the cached contents are selected

as the solution of the following optimization problem:

min
xl

Nc∑

l=1

( Ng∑

j=1

p
(j)
l (t)D(j)

u (t)
)

xl (80)

s.t. C1. xl ∈ {0, 1},

C2.
Nc∑

l=1

(1− xl) ≤ Cu,

where p
(j)
l (t) denotes the probability of requesting content cl by the ground user

GUj at time slot t, which is obtained according to the request history of ground
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user GUj [131]. Furthermore, D(j)
u (t) is the delay that the ground user GUj may

experience, which is calculated based on Eq. (77). In the constraint C1, xl is

an indicator variable, which is equal to 0 when content cl exists in the cache of

UAV uk. Moreover, the constraint C2 represents that the total contents cached

in the storage of uk should not exceed its storage capacity of uk.

FAPs’ Content Placement: Serving requests by FAPs leads to a ground-to-

ground connection type between FAPs and ground users. Similarly, the users’

access delay through FAP connections is calculated as

Df (t) = p
(h)
k (t)D(h)

f (t) + p
(m)
k (t)D(m)

f (t), (81)

where D(h)
f (t), as the cache-hit delay, is expressed as

D(h)
f (t) =

Lc

Ri,j

= Lc log
−1

(

1 +
Pi|H̃i,j(t)|2
If

−i
(t) +N0

.

)

(82)

In this case, coded contents to be stored in the storage of FAPs are determined

according to the solution of the following optimization problem:

F(y, z) = min
yl,zl

Nc
∑

l=1

(

Ng
∑

j=1

p
(j)
l (t)D(j)

f (t)
)

yl (83)

+
Nc
∑

l=1

(

Ng
∑

j=1

p
(j)
l (t)D(j)

f (t)
)

zl,

s.t. C1. yl, zl ∈ {0, 1},

C2.
Nc
∑

l=1

(1− yl) ≤ bαCfc,

C3.
Nc
∑

l=1

(1− zl) ≤ Ns(Cf − bαCfc),

where F(y, z) is the cost function associated with users’ access delay, experi-

enced by serving the request through FAPs. By assuming that Np = bαCfc and

Na = Ns(Cf −bαCfc) are the cardinality of popular and mediocre contents, re-

spectively, y = [y1, . . . , yNp
]T is an indicator vector for popular contents, where

yl would be 0 if lth content is stored in the cache of FAPs, otherwise it equals
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Figure 4.2: A typical hexagonal cellular network, where seven FAPs form an inter-cluster.

to 1. Similarly, z = [z1, . . . , zNa
]T is an indicator variable for mediocre contents.

According to the optimization problem, different from popular contents that

are completely stored, just one segment of mediocre contents are cached. Sim-

ilarly, yl and zl in constraint C1 illustrate the availability of content cl in the

cache of FAP fi. Finally, constraints C2 and C3 indicate the portion of cache

allocated to popular and mediocre contents, respectively. Due to the large size

of video contents and the complexity of the content placement, it is essential

to update the storage of caching nodes in the off-peak period [151]. Therefore,

we use an adaptive time window for cache updating, introduced in our previous

work [131], to maintain a trade-off between the on-time popularity recognition

of contents and the network’s traffic.

Content Placement in Multiple Inter-Clusters

After identifying popular and mediocre contents, we need to determine how to

store different segments of mediocre contents within (i) An inter-cluster, and;

(ii) Multiple inter-clusters.

Single Inter-Cluster: The main idea behind the coded placement scheme in

our proposed CCUF framework comes from the frequency reusing technique in

cellular networks [211]. The distance between two cells with the same spec-

trum bandwidth is determined in such a way that the resource availability in-

creases and the inter-cell interference decreases [213]. With the same argument

in [211, 213], the same mediocre contents are stored in different inter-clusters,
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while different FAPs belonging to an inter-cluster store different segments of

the mediocre contents. Without loss of generality, we first consider a simple

hexagonal cellular network including Nb FAPs as one inter-cluster (Fig. 4.2).

Given the vector z = [z1, . . . , zNa
]T that determines the mediocre contents, in

this phase, we need to indicate which segment of the mediocre content cl, de-

noted by cls for (1 ≤ l ≤ Na) and (1 ≤ s ≤ Ns), should be cached in FAP fi for

(1 ≤ i ≤ Nb). In this regard, we form an (Na×Ns) indicator matrix of FAP fi,

denoted by Z(fi), where the lth row of Z(fi), denoted by z
(fi)
l = [0, 0, . . . , 1](1×Ns)

indicates segments of file cl stored in the cache of FAP fi. Note that z
(fi)
l is

a zeros vector with only one non-zero element, where z
(fi)
ls = 1 means that sth

segment of file cl is stored in the cache of FAP fi. To store different segments

of mediocre contents within an inter-cluster, the cached contents of FAP fj for

(1 ≤ j ≤ Nb, j 6= i) in the inter-cluster is determined as follows

z
(fi)
l z

(fj)
l

T
= 0, i = 1, . . . , Nb, j = 1, . . . , Nb, i 6= j. (84)

Multiple Inter-Clusters: After allocating mediocre contents to FAPs inside

an inter-cluster, the same content as FAP fi is stored in FAP fk in the neigh-

boring inter-cluster, where k is given by

Z(fk) = Z(fi) if k = w2 + wz + z2, (85)

where w and z represent the number of FAPs required to reach another FAP

storing similar contents, in two different directions [213] (see Fig. 4.2). More

precisely, first, it is required to move w cell along any direction from FAP fi,

then turn 60 degrees counter-clockwise and move z cells to reach FAP fk. For

example, in Fig. 4.2, Ns = 7, w = 2, and z = 1 for starting in a FAP including

c13 and reaching a similar FAP in a neighboring inter-cluster.

Remark 1: In a practical scenario, the coverage area of FAPs is influenced

by path loss and shadowing models (it is not a hexagonal shape). Location

p = (x, y) is placed within the transmission area of FAP fi, if the strength of

the received signal at point p, denoted by RSSIp, is higher than the threshold
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value RSSIth, where RSSIp is calculated as

RSSIp(dB) = RSSI(d0) + 10η log10(
d

d0
) +Xσ, (86)

with d and d0 denoting the distance between FAP and point p in the boundary of

transmission area of FAP, and the reference distance is set to 1 [m], respectively.

Moreover, η represents the path loss exponent, which is 10 [dB] or 20 [dB], and

Xσ is a zero-mean Gaussian with standard deviation σ that represents the effect

of multi-path fading in the CCUF scheme [154].

Success Probability in the Proposed CCUF Framework

To quantify the benefits of the proposed CCUF strategy, we define success

probability, which is defined as the probability of finding a new segment by user

GUj at time slot t under the following two scenarios: (i) Uncoded cluster-centric,

and; (ii) Coded cluster-centric UAV-aided femtocaching network, denoted by

puc, and pcc, respectively. Concerning the nature of mobile networks, ground

users move and leave their current positions. In this work, it is assumed that

low-speed ground users can obtain one segment in each contact, i.e., T = Nsδt

is required to completely download content cl. First, we consider a simple

mobility, where ground users are positioned in the transmission area of a new

FAP in each time slot t. Eventually, in T = Nsδt, the whole content cl will be

downloaded. Then, we generalize the mobility of ground users to the random

walk model, where ground users can return to their previous place.

Simple Movement Scenario: Regarding the uncoded cluster-centric UAV

aided femtocaching framework, content cl consisting of cls, for (1 ≤ s ≤ Ns)

segments, is stored completely in all FAPs. Consequently, the probability of

downloading n = Ns segments of content cl in T = Nsδt depends on the proba-

bility of requesting file cl, denoted by pl. Since the storage capacity of each FAP

is equal to Cf , the success probability, denoted by puc, is obtained as follows

puc[n = Ns, t = T ] =

Cf
∑

l=1

pl. (87)
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Algorithm 2 Proposed CCUF Strategy

1: Initialization: Set α, λ, Ns, and Cf .

2: Input: p
(j)
l (t).

3: Output: xl, yl, and zl.
4: Content Placement Phase:
5: for uk, k = 1, . . . , Nu, do

min
xl

Nc
∑

l=1

(

Ng
∑

j=1

p
(j)
l (t)D(j)

u (t)
)

xl

6: s.t. C1. and C2. in Eq. (80).
7: end for
8: for fi, i = 1, . . . , Nf , do

min
yl,zl

Nc
∑

l=1

(

Ng
∑

j=1

p
(j)
l (t)D

(j)
f (t)

)

yl+

Nc
∑

l=1

(

Ng
∑

j=1

p
(j)
l (t)D

(j)
f (t)

)

zl,

9: s.t. C1.-C3. in Eq. (83).
10: end for

11: z
(fi)
l z

(fj)
l

T
= 0, i = 1, . . . , Ns, j = 1, . . . , Ns, i 6= j,

12: Z(fk) = Z(fi) if k = w2 + wz + z2,
13: Transmission Phase:
14: for GUj, j = 1, . . . , Ng, do
15: if GUj is in indoor environment then
16: if GUj is an edge-user and requests
17: popular content then
18: The request should be handled according to the
19: JT scheme.
20: else
21: The request should be handled according to the
22: ST scheme.
23: end if
24: else
25: if υj(t) ≥ υth then
26:

27: The request is served by UAV uk.
28: else
29: Similar to lines 16 to 23.
30: end if
31: end if
32: end for
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On the other hand, the success probability of the CCUF framework is obtained

as

pcc[n = Ns, t = T ] =

Np
∑

l=1

pl +

Na+Np
∑

l=Np+1

pl. (88)

To illustrate the growth rate of the success probability in the coded one, we

rewrite puc in Eq. (87) as follows

puc[n = Ns, t = T ] =

Np
∑

l=1

pl +

Cf
∑

l=Np+1

pl. (89)

As it can be seen from Eqs. (88), and (89), the first term related to the popular

content is the same. The second term, however, illustrates that the number of

distinct contents that can be served through FAPs within an inter-cluster in the

coded cluster-centric network is κ times greater than the uncoded one, where

κ is given by

κ =
bαCfc+Ns(Cf − bαCfc)

Cf

. (90)

Accordingly, due to the allocation of different segments in the coded cluster-

centric network, more segments of the desired contents are accessible during the

users’ movement in the simple movement scenario. Therefore, more requests can

be served in comparison to the uncoded cluster-centric UAV-aided femtocaching

networks.

Generalizing to Random Walk Scenario: In contrary to the simple move-

ment scenario discussed above, the following two situations are possible where

the ground user GUj cannot find a new segment during its movement: (i) Re-

turning back to the previous coverage area of FAPs; and, (ii) Positioning in the

transmission area of a FAP, which stores the same segment of the content that

the ground user has already downloaded. Consequently, the success probability

of the coded cluster-centric will not be the same as the previous scenario. If

the requested content is the popular one, regardless of the link’s quality of the

ground user within an inter-cluster, the ground user can download one segment

of the required content with the probability of
Np
∑

l=1

pl at each contact. While

this part of the success probability is constant, the success probability of down-

loading a new segment of a mediocre content in each contact depends on the

132



current and previous locations of the ground user. Therefore, we first deter-

mine the success probability of achieving a new segment of a mediocre content,

denoted by pns(n = n0, t = n0δt), for (1 ≤ n0 ≤ Ns). Then, we calculate the

success probability of a coded cluster-centric network based on the random walk

movement.

As it can be seen from Fig. 4.2, regardless of the location of GUj, this user can

download one segment successfully in the first contact (i.e., n0 = 1). Therefore,

we have pns(n = 1, t = δt) = 1. Similarly, when n0 = 2, the ground user GUj can

download a new segment without considering the location of the ground user.

Therefore, the probability of downloading two segments after two contacts is

pns[n = 2, t = 2δt] = 1. More precisely, in the second contact, the ground user

can be positioned in the cell of (Ns− 1) number of FAPs, where the probability

of being in the cell of FAP fi is p(f = fi) =
1

(Ns − 1)
. Therefore, we have

pns[n = 2, t = 2δt] =
Ns−1
∑

i=1

pns[n = 2, t = 2δt|f = fi]p(f = fi)

(Ns − 1)× 1×
1

Ns − 1
+ 0×

1

Ns − 1
= 1. (91)

Accordingly, the probability of finding a new segment in the third contact is

obtained as follows

pns[n = 3, t = 3δt]=
Ns−1
∑

i=1

pns[n = 3, t = 3δt|f = fi]p(f = fi)

= (Ns − 2)
1

Ns − 1
× 1 +

1

Ns − 1
× 0 =

Ns − 2

Ns − 1
, (92)

where (Ns − 2) FAPs have different segments, whereas if GUj returns to the

FAP at t = δt, the ground user can find a similar segment. Similarly, it can be

proved that the probability of finding a new segment in n > 2 is given by

pns[n = n0, t = n0δt] =
Ns−1
∑

i=1

pns[n = n0, t = n0δt|f = fi]

×p(f = fi) =
(Ns − 2)n0−2

(Ns − 1)n0−2
, for n0 > 2. (93)
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Taking into account the unequal likelihood of finding new segments of mediocre

contents in different contacts, we recalculate pcc as follows

pcc[n = Ns, t = T ] =

Np
∑

l=1

pl

+
Ns
∑

n=1

(Ns − 2)n−2

(Ns − 1)n−2

(

Ns(Cf−bαCf c)
∑

l=Np+1

pl

)

. (94)

Remark 2: Regarding the users’ mobility pattern, the proposed CCUF frame-

work is not limited to the random mobility pattern, and is also effective for

vehicles moving at a constant speed. Intuitively speaking, we focus on human

mobility patterns, which can be more complex than that of the constant velocity

model. In other words, people can walk around in different directions, chang-

ing directions, and/or return back to a previously visited location. To account

for such scenarios, we consider the random mobility pattern that allows move-

ment in different directions. According to the success probability, expressed in

Eqs. (88) and (94), the proposed CCUF framework is efficient for both constant

velocity and random movement scenarios.

Remark 3: In such a case that the location of GUj in two consecutive time

slots is the same, it means that GUj is a fixed user. Therefore, the following

two scenarios can happen depending on the popularity of the requested content:

(i) Similar to the mobile users’ case, if the requested content cl is popular, the

whole segments of file cl are sent by neighboring FAP to GUj, and; (ii) If cl is a

mediocre content, each FAP within the inter-cluster transmits one segment of

file cl, which is known as the Parallel Transmission (PT) [45].

3-D Deployment of UAVs in Intra-clusters

To increase the resource availability for ground users, the outdoor environment

is partitioned based on an unsupervised learning algorithm, where each par-

tition is covered by a UAV. Considering a Gaussian mixture distribution for

ground users, we have a dense population of ground users in some areas. The

main goal is to deploy UAVs in such a way that ground users can experience

high QoS communications even in a dense area. Towards this goal, we obtain
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the 3-D UAV placement based on the following two phases. First, the alti-

tude of UAVs is determined according to Reference [155] to find the optimum

deployment height. Then, the K-means clustering algorithm, which has been

already employed in our proposed CCUF, is applied to determine the optimal

2-D position. Considering the relationship between the UAV’s altitude, their

transmission range, and the maximum allowable path-loss, the optimal height

of the UAV h(opt), is obtained as follows [155]

h(opt) = R(opt)
u tanφopt, (95)

where φopt represents the optimal elevation angle maximizing the coverage ra-

dius, which is a constant depending on the environment [156]. In [157], the

wireless network model is extended from a single UAV [155] to the multi-UAV

scenario, stating that the transmission coverage should be a fraction of the op-

timal value to avoid/reduce the interference between UAVs. Accordingly, the

optimal coverage range of UAVs R
(opt)
u,m in a multi-UAV scenario is expressed

as [157]

R(opt)
u,m = %R(opt)

u , (96)

where 0 < % ≤ 1 is a constant parameter [157] depending on the number of

UAVs in the network. The value of % decreases by increasing the number of

UAVs, therefore, the optimal value of UAVs’ height in multi-UAV scenarios is

calculated as

h(opt)u,m =
R

(opt)
u,m

tan (ΘB/2)
, (97)

where ΘB denotes the antenna beamwidth. After finding the optimal height of

the UAV, the goal is to partition Ng ground users into K intra-clusters, where

the sum of Euclidean distances between the ground user GUj, for (1 ≤ j ≤ Nk
g ),

and UAV uk is minimized. In this case, Nk
g is the cardinality of ground users

positioned in the intra-cluster related to the UAV uk. Therefore, the UAVs’

deployment is obtained according to the following optimization problem

min
lk(t)

Nu
∑

k=1

Nk
g
∑

j=1

||lj(t), lk(t)||, (98)
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where lk(t) denotes the location of the UAV uk at time slot t, defined as the mean

of the coordinates of all ground users inside the corresponding intra-cluster as

follows

lk(t) =

Nk
g
∑

j=1

lj(t)

Nk
g

, k = 1, . . . , Nu. (99)

To solve the above optimization problem, we utilize the K-Means clustering

algorithm [158], which is known as an efficient unsupervised learning framework.

In the first step, a set of points, denoted by P = {P1, . . . , PNu
}, is generated,

where Pk for (1 ≤ k ≤ Nu) should be within the pre-specified environment.

Then, the set of ground users in the vicinity of Pk is determined as follows

uj ∈ Nk
g if ||lj(t), Pk|| < ||lj(t), Pr||, ∀k 6= r. (100)

Given the set of ground users belonging to each intra-cluster, UAVs’ locations

are determined according to Eq. (99). In the second step, by moving ground

users from one intra-cluster to another, the Euclidean distances between ground

users and UAVs are calculated to update the location of UAVs according to

Eq. (98). The K-Means algorithm is terminated when there is no change in

the ground users belonging to an intra-cluster over several iterations. It should

be noted that it is common [159,170] to consider height optimization and hori-

zontal placement separately. The focus of our ongoing research is on joint 3-D

optimization, which is a fruitful direction for future research. This completes

our discussion on development of the CCUF scheme. The pseudo-code of the

proposed CCUF framework is summarized in Algorithm 2.

4.1.5 Simulation Results

To demonstrate the advantage of the proposed CCUF framework, we consider

a UAV-aided cellular network with R = 5000 [m], covered by the main server.

There are Nf = 175 FAPs, and Nu = 10 UAVs, where each inter-cluster com-

promises of Ns = 7 FAPs. Considering the fact that hovering posture consumes

less energy [160], within the context of UAV-aided cellular networks, it is a
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common assumption [161, 162] that UAVs remain hovering at their locations

while serving a request for data delivery. As quadcopters can easily change

their positions with the least amount of bending angle [163,164], and can hover

in their locations while serving a request, we consider quadcopters as the UAVs

in the proposed CCUF framework. Without loss of generality and for sim-

plicity, we consider a static clustering scheme where there are a fixed number

of FAPs in each inter-cluster to determine how different segments of popular

files should be distributed in an inter-cluster to increase the content diversity.

Therefore, the number of FAPs in each inter-cluster is considered to be the same

as the number of segments Ns. We consider the path loss threshold Lth = 100

[dB] [165] to guarantee a high level of QoS for ground users. Following Ref-

erence [165], the optimal elevation angle φopt in a dense urban area is 54.62◦.

Consequently, the optimal transmission range Ru and optimal height of the

UAV for a single-UAV scenario are computed as 430 [m] and 640 [m], respec-

tively [165]. In a multi-UAV scenario with Nu = 10 and ΘB = 100◦ [157],

the optimal coverage range R
(opt)
u,m = 0.261Ru and the optimal altitude are 112

[m] and 94 [m], respectively [157]. According to the restrictions of the aviation

regulations of different countries, UAVs can fly horizontally up-to a predefined

maximum height h(max). For example, in United States h(max) = 122 [m], and

in Australia h(max) = 120 [m] [166]. Therefore, the feasible optimal altitude

for UAV uk is equal to hk = min{h(max), h
(opt)
u,m } [167]. The general simulation

parameters are summarized in Table 5.9. As it is proved in [44,131] that the op-

timum content placement is an NP-hard problem, we use fmincon optimization

toolbox, implemented in MATLAB (R2020a), to solve Eqs. (80) and (83).

Fig. 4.3 depicts an integrated heterogeneous network, where yellow and red

areas determine indoor and outdoor environments, respectively. Fig. 4.3 also

shows the deployment of UAVs in the intra-clusters within the network, which

is generated by partitioning ground users according to the K-means clustering

algorithm. As a result of the Gaussian mixture distribution for clients, we

have a dense population in some areas, which can be changed over time by the

movement of ground users. Therefore, the location of Nu = 10 UAVs and the

formation of intra-clusters in this work is varying, depending on the user density

distribution. For the comparison purpose and in order to find the best value of
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Table 4.2: List of Parameters.

Notation Value Notation Value

Ng 500 η(LoS), η(NLoS) 2.5, 3
Nf 180 Pk 30 [dBm]
Nu 10 $, ψ 2, 20
Ns 7 Lc 37.5 [MB]
Nc 40724 τp 0− 5 [ms]

Rf 30 [m] χ
(LoS)
σ , χ

(NLoS)
σ 1.6, 23

PT (t), PR(t) 0.5 , 0.25 [W] N0 −94 [dBm]

α, three types of caching strategies are considered:

• Uncoded UAV-aided Femtocaching (UUF): This scheme is derived by mod-

ifying the Fairness Scheduling algorithm with an Adaptive Time Window

(FS-ATW) scheme [131], where the proposed content placement strategy

in [131] is used for both UAVs and FAPs. The popular contents in the

UUF model are stored completely into FAPs and UAVs without any cod-

ing and clustering schemes. Therefore, it is equivalent to our proposed

CCUF framework, where the value of α, which indicates the percentage of

contents stored completely, would be one (i.e., α = 1).

• Proposed Cluster-centric and Coded UAV-aided Femtocaching (CCUF): In

this case, the uncoded popular and the coded mediocre contents are stored

in the caching nodes, where 0 < α < 1. According to the simulation

results, the best value of α is obtained.

• The Conventional Cluster-centric and Coded UAV-aided Femtocaching (Con-

ventional CCUF): This scheme is an upgraded version of the FemtoCaching

scheme in [44], integrated with the CoMP technology. In this framework,

regardless of the content popularity profile, all contents are stored partially.

For simplicity, this scheme is shown by α = 0 in simulation results.

These three strategies are evaluated over the cache-hit-ratio, cache diversity,

cache redundancy, SINR, and users’ access delay to determine the best value of

α. Moreover, to illustrate the effect of considering a UAV-aided femtocaching

framework in an integrated network, we compare the users’ access delay and

energy consumption of UAVs, by serving users in both indoor and outdoor

areas.
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Figure 4.3: Deployment of UAVs in intra-clusters within an integrated network, where “yellow”
and “red” colors indicate indoor and outdoor environments, respectively.

Figure 4.4: The cache-hit-ratio versus the popularity parameter γ for different values of α.

Cache-Hit-Ratio: This metric illustrates the number of requests served by

caching nodes versus the total number of requests made across the network.

The high value of cache-hit-ratio shows the superiority of the framework. Since

we assume that ground users can download one segment in each contact, we eval-

uate the cache-hit-ratio in terms of the number of fragmented contents served

by caching nodes. Fig. 4.4 compares the cache-hit-ratio of the UUF (α = 1), the

proposed CCUF (0 < α < 1), and conventional CCUF (α = 0) frameworks ver-

sus the value of γ. As previously mentioned, parameter γ shows the skewness of
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Figure 4.5: The cache-hit-ratio versus the α percentage of contents that are stored completely.

the content popularity, where γ ∈ [0, 1]. Note that the large value of γ indicates

that a small number of contents has a high popularity, where a small value of

γ illustrates an almost uniform popularity distribution for the majority of con-

tents. As it can be seen from Fig. 4.4, depending on the popularity distribution

of contents, γ, the conventional CCUF framework results in a higher cache-hit-

ratio. The most important reason is that given a constant cache capacity, the

coded content placement of the conventional CCUF strategy leads to a remark-

able surge in the content diversity. In contrast, for a high value of γ, where

a small number of contents is widely requested, the UUF and the proposed

CCUF frameworks have better results compared to the conventional CCUF.

By considering the fact that the common value of γ is about 0.5 ≤ γ ≤ 0.6

(e.g., see [2,44]), we define CHRth as the threshold cache-hit-ratio, which is the

average of cache-hit-ratio of different values of α for a specific γ. As it can be

seen from Fig. 4.4, the proposed CCUF framework with 0 < α ≤ 0.4 and the

UUF scheme outperform other schemes from the aspect of cache-hit-ratio.

Fig. 4.5 shows the cache-hit-ratio versus different values of α when the popular-

ity parameter γ changes in the range of 0.5 to 1. Accordingly, for 0.5 ≤ γ ≤ 0.6,

by increasing the value of α, the cache-hit-ratio decreases drastically. In the

following, we also investigate the impact of α on the users’ access delay to

determine the best value of α.

Users’ Access Delay: Users’ access delay depends on three parameters, i.e., the
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Figure 4.6: The users’ access delay in the indoor environment versus different value of γ.

availability of the content in caching nodes, the distance between the ground

user and the corresponding caching node, and the channel quality, known as

the SINR. Figs. 4.6 and 4.7 compare the users’ access delay of the aforemen-

tioned frameworks, which is obtained according to Eq. (81). By utilizing the

CoMP technology in the proposed CCUF, serving edge-users according to the

JT scheme has a great impact on the SINR, where users’ access delay decrease

by increasing the SINR. As can be seen from Table 4.5, the SINR of edge-users

improves by increasing the value of α. Note that JT scheme can be performed if

the same contents are stored in the neighboring FAPs. Therefore, by increasing

the value of α, the users’ access delay will decrease. With the same argument,

we define Dth, which is the average of users’ access delay of different values

of α for a specific γ, shown in Fig. 4.6. Therefore, the best value of α would

be α ≥ 0.2. Consequently, the cache-hit-ratio and users’ access delay of the

proposed CCUF framework would be efficient if α ∈ [0.2, 0.4].

Cache Diversity: This metric illustrates the diversity of contents in an inter-

cluster, which is defined as the number of distinct segments of contents, ex-

pressed as follows

CD =
Na

NsCf

= 1−
bαCfc

Cf

. (101)

As stated previously, we have Na = Ns(Cf − bαCfc). As it can be seen from
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Figure 4.7: The users’ access delay in the indoor environment versus different values of α.

Table 4.3: The SINR experienced by edge-users for different values of α and γ.

γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1
α = 0 16.37 16.37 16.37 16.37 16.37 16.37
α = 0.1 17.55 18.12 18.89 19.84 20.88 21.88
α = 0.2 18.01 18.65 19.46 20.40 21.38 22.30
α = 0.4 18.62 19.30 20.11 21.00 21.90 22.70
α = 0.6 19.06 19.75 20.53 21.37 22.20 22.93
α = 0.8 19.42 20.09 20.85 21.64 22.42 23.08
α = 1 19.72 20.38 21.11 21.86 22.58 23.20

Fig. 4.8, the value of CD would be one, if α = 0, which means that all cached

contents are different. The cache diversity, however, linearly decreases by in-

creasing the value of α, and reaches the lowest value zero, when all contents are

cached completely (i.e., α = 1).

Cache Redundancy: This metric indicates the number of similar contents that

ground users meet during their random movements. As it can be seen from

Fig. 4.8, the cache redundancy increases by storing the entire contents. By con-

sidering the coded content placement, even in the proposed CCUF framework,

ground users that move randomly through the network, can meet a similar

coded contents during their movements.

Maximum Required Cache Capacity: Given a specific number of contents through

the network, denoted by Nc, the storage capacity of caching nodes is determined
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Figure 4.8: The percentage of the cache diversity and the cache redundancy versus different values
of α.

by Cf = βNc. In this case, parameter β indicates the percentage of contents

that can be stored in caching nodes. In the coded content placement, since only

one segment of the contents is cached, it is fairly likely that the total number

of possible segments that can be cached exceeds the total number of contents.

Therefore, the maximum required cache capacity, denoted by βmax, for different

values of α is obtained as

βmax ≤
Nc

NsNc − (Ns − 1)αNc

=
1

α(1−Ns) +Ns

, (102)

where the remainder of the storage would be occupied by redundant contents if

β > βmax. As it can be seen from Fig. 4.9, the maximum cache capacity βmax

increases by the value of α. Consequently, in smaller values of α, we need a

smaller cache capacity to have the maximum cache diversity.

Users’ Access Delay through UAVs and UAVs’ Energy Consumption: We eval-

uate the users’ access delay and the energy consumption of UAVs in Figs. 4.10

and 4.11 when the ground user is located in both indoor and outdoor environ-

ments. As can be seen from Fig. 4.11, serving requests through UAVs, especially

in such a case that ground users are located in the indoor environment, leads

to consuming the energy of UAVs, calculated as follows [26]

E(LoS)
uk

(t) = LcPT (t)τp + LcPR(t)τp + P
(LoS)
j (t)(τf − τp), (103)
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Figure 4.9: The maximum cache capacity, required to achieve the maximum cache diversity, versus
different values of α.

Figure 4.10: Normalized users’ access delay experienced through UAVs in both indoor and outdoor
versus different values of β.

E(NLoS)
uk

(t) = LcPT (t)τp + LcPR(t)τp + P
(NLoS)
j (t)(τf − τp), (104)

where PT (t) and PR(t) represent the power consumed for transmission and re-

ception powers of 1 [Mb] file, respectively. Moreover, Pj(t), τf , and τp denote

the received power at ground user GUj, and the flyby and the pause times of

UAV uk, respectively. On the other hand, it can be shown from Fig. 4.10 that

the indoor users being served through UAVs, experience higher delay in com-

parison with outdoor users. Consequently, it can be seen that serving indoor
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Figure 4.11: Normalized energy consumption of UAVs in both indoor and outdoor environments
in different time slots.

users by UAVs could not be efficient from the aspect of user’s access delay and

energy consumption of UAVs. For this reason, ground users in indoor areas are

served by FAPs in inter-clusters.

Finally, Figs. 4.12 and 4.13 illustrate the advantage of serving outdoor users with

both FAPs and UAVs in the CCUF framework. Fig. 4.12 compares the average

normalized UAVs’ energy consumption in different scenarios, where ψ illustrates

the ratio of requests served by UAVs to the whole outdoor users’ requests. For

instance, ψ = 1 means all requests in an outdoor environment are managed by

UAVs regardless of the user’s velocity, while in ψ = 0.7, it is assumed that 70% of

outdoor users are HSUs, who are supported by UAVs and 30% of users are LSUs,

managed by FAPs. As it can be seen from Fig. 4.12, serving LSUs’ requests

by FAPs leads to a reduction in UAVs’ energy consumption. Considering the

fact that UAVs are limited energy caching nodes, expanding UAVs’ lifetime is

of paramount importance. Moreover, Fig. 4.13 illustrates the effect of users’

velocity on the FAP’s handover probability, where ζ =
υ

υth
. For comparison

purposes, two scenarios are defined, where FAP Connection is associated with

a case that all outdoor users regardless of their velocities are supported by

FAPs, while in UAV Connection, LSUs and HSUs are supported by FAPs and

UAVs, respectively. In this case, handover is triggered if the ground user leaves

the current FAP’s coverage before completely downloading one segment. As it
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Figure 4.12: Normalized energy consumption of UAVs versus the number of outdoor users, where
ψ illustrates the ratio of requests served by UAVs to the whole outdoor users’ requests.

Figure 4.13: The FAPs’ handover probability versus different values of ζ =

υ

υth
.

can be seen from Fig. 4.13, serving HSUs (ζ > 1) leads to triggering frequent

handovers, where the handover probability is one for ζ > 2, while there would

not be any FAPs’ handover by serving HSUs by UAVs.
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4.2 Attention-based Coded/Uncoded Popularity

Predictoin

In this Section, we developed the Multiple-model (hybrid) Transformer-based

Edge Caching (MTEC) framework as a multi-content and time-series popularity

prediction model. The MTEC framework captures both temporal and spatial

correlation of multiple contents via multi-channel Transformer architectures,

where the sequential request patterns of each content are given to a channel of

the Transformer model. Our first objective for the development of the MTEC

framework is to introduce a data-driven popularity prediction model with higher

generalizability compared to existing works that predict the Top-K popular con-

tent relying on the historical request pattern. The second objective is to adapt

the data-driven prediction model within the coded/uncoded content placement

approaches. To achieve these objectives, the proposed MTEC framework is

built upon the Transformer architecture, consisting of two parallel paths, which

takes the historical request pattern of multiple contents as its input:

• The first path of the MTEC framework is a Transformer network, responsi-

ble for identifying the Top-K popular contents in the upcoming time, using

the historical request pattern of contents. This part of the architecture is

efficient for contents that their request patterns are smoothly changed over

a short horizon.

• The second path of the MTEC framework is introduced to boost the gen-

eralizability of the learning model. In this path, for applicability to var-

ious types of content with different time-varying behavior, we relax the

assumption of unchanged request patterns of content. Moreover, within

the context of coded/uncoded content placement, we take one step forward

and relax the assumption that the probability of content requests is known

a-priori (i.e., Zipf distribution) [4]. In this regard, the second path is com-

promised of two stages, where the first stage is a Transformer network

responsible for predicting the probability of requesting multiple contents

in the upcoming time. The estimated request probability as the output of

the first stage will be used for the coded/uncoded content placement to
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identify which content should be stored partially/completely in the storage

of caching nodes. Next, it will be concatenated with the historical request

pattern (input of the first stage), provided as the input to the second stage,

which analyzes the popularity of all contents simultaneously.

• The final output, which is the combination of the two parallel paths, is the

Top-K popular contents in the upcoming time, which is applicable to var-

ious types of content with different time-varying behavior. The effective-

ness of the proposed MTEC framework is evaluated through comprehen-

sive studies on the real-trace multimedia request pattern, in terms of the

classification accuracy, cache-hit ratio, and the transferred byte volume.

Simulation results corroborate the effectiveness of the proposed MTEC

framework in comparison to its counterparts over all the aforementioned

aspects.

4.2.1 Multiple-Model Transformer-based Edge Caching (MTEC)

Framework

The main goal of the proposed MTEC architecture is to predict the Top-K

popular content using the historical request pattern of the underlying contents.

In this context, we use MovieLens Dataset [212], where leaving a comment after

watching a movie is considered a request [55, 200,214].

In this Subsection, we present the constituent components of the proposed

MTEC framework, where the main architecture is developed based on the Trans-

formers (see Fig. 4.14). There are following drawbacks to the existing research

works that motivate us to develop the MTEC framework:

i) With the assumption that users’ preferences remain unchanged over a short

horizon, existing works [5, 62, 63] predicted the Top-K popular content in

the updating time tu+1, where the input of the learning model was the

request pattern of all contents in a time window with the length of L, end-

ing at the updating time of tu. This assumption works for content whose

request pattern smoothly changes over time. It is, therefore, essential to
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Figure 4.14: Block diagram of the proposed MTEC architecture.

develop a popularity prediction model with higher generalization ability,

suitable for various types of content with different time-varying behavior.

ii) In a coded/uncoded content placement, the request probability of content

in an upcoming time is also required to classify the Top-K popular content

into two groups, i.e., popular and mediocre, while existing classification

frameworks [5, 61,63,64] classified content as popular/non-popular.

To tackle the aforementioned challenges, we propose the MTEC framework, con-

sisting of two parallel paths, where the first path is a Transformer-based Clas-

sification (TC) model, and the second path includes two series of Transformer-

based blocks, named Transformer-based Regression and Classification (TRC)

network. These are followed by a fully connected layer, as a fusion center com-

bining the output of the two parallel paths to estimate the Top-K popular

content. It should be noted that although the output of these two paths is sim-

ilar in nature, simulation results illustrate that considering such an architecture

improves the popularity prediction. Next, we introduce each of these blocks.

TC Path: This path is a multi-label classification model based on the Trans-

former model, where the input is the historical request pattern of multiple con-

tents at time tu and the output is the Top-K popular content at time tu+1. The
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Transformer is a type of Machine Learning (ML) model suitable for learning

from sequential and time series data. Generally speaking, Transformers out-

perform the LSTM models because: (i) Although LSTM models are capable

of learning long-term dependencies, they suffer from short-term memory over

long sequences. Transformers, however, capture the connection/dependency be-

tween sequential components that are far from one another, resulting in higher

accuracy; (ii) Due to the Multi-head Self-Attention (MSA) mechanism, Trans-

formers can process data in parallel, reducing the training time; and, (iii) The

attention mechanism of the Transformer eliminates the need to analyze data

in the same order. Consequently, positional embedding is used to preserve the

position information of an entity in sequential data.

Although this block is capable of capturing the request pattern of content

with predictable behavior, i.e., with smooth changes over time in uncoded con-

tent placement, it would not be effective for content with sudden changes in a

coded/uncoded manner. For these reasons, the second path is required.

TRC Path: The second path consists of the following two blocks:

i) Request Probability Prediction Block: The first block of the second

path is used to predict the request probability of content at time tu+1

using the historical request pattern of content at time tu (input data is the

same as the first path). The output of this block will be used to classify

the Top-K popular content (the final output of the MTEC framework)

as the popular/mediocre one in the coded/uncoded content placement.

Then, the Top-K popular content will be sorted in descending order, where

Np = bαCfc and Na = Ns(Cf − bαCfc) are the cardinality of popular

and mediocre content, respectively. Following our prior work [4], vector

z = [z1, . . . , zNa
]T represents mediocre contents, where Na denotes the

cardinality of mediocre content. To identify which segments of mediocre

content cl, denoted by cls for (1 ≤ l ≤ Na) and (1 ≤ s ≤ Ns), is cached in

each FAP fi for (1 ≤ i ≤ Nb) belonging to an inter-cluster, an indicator

matrix Z(fi) associated with FAP fi is formed, where the lth row of Z(fi),

represented by z
(fi)
l = [0, . . . , 0, 1](1×Ns) is corresponding to the segments

of file cl cached in FAP fi. Note that,
Ns
∑

s=1

z
(fi)
ls = 1, where z

(fi)
ls = 1, if
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the sth segment of file cl is cached in FAP fi, otherwise, it would be zero.

Therefore, the mediocre content of other FAPs fj, for (1 ≤ j ≤ Nb, j 6= i),

belonging to an inter-cluster, is given by

z
(fi)
l z

(fj)
l

T
= 0, i = 1, . . . , Nb, j = 1, . . . , Nb, i 6= j. (105)

Following the above discussion, different segments of mediocre content will

be stored in an inter-cluster. Next, the same content as FAP fi in one inter-

cluster, is allocated to FAP fk in the nearby inter-cluster, where k is given

by

Z(fk) = Z(fi) if k = w2 + wz + z2, (106)

where w is the number of FAPs required to move from FAP fi in any

direction, after which z number of FAPs should be moved by turning 60

degrees counterclockwise to reach FAP fk [4] (see Fig. 4.2). Finally, the

estimated request probability is appended to the original input samples to

generate the input of the next block, which is used for the classification,

i.e., identifying the Top-K popular content.

ii) Classification Block: In comparison to the CT block in the first path,

the input of this block is both the historical request pattern of content at

time tu and the estimated one at tu+1, resulting in higher classification ac-

curacy for such content with sharp changes in their request pattern. Then,

the output features of both paths are added, which are used as the input

of the fusion layer (dense layer). The output of the dense layer is a vector

yu ∈ R
Nc , with K ones, where 1

′

s indicates the Top-K popular content

(i.e., popular/mediocre one) and 0
′

s are non-popular content. Finally, the

estimated Top-K popular contents are categorized into popular/mediocre

one according to the output of the request probability prediction block.

Finally, we use Mean Squared Error (MSE) for the request probability predic-

tion block, and binary cross-entropy as the loss function for the CT path, the

classification block in the second path, and the fusion path. The overall loss

function L of the proposed MTEC is given by

L = w1LRPP + w2LCI
+ w3LCII

+ w4LF , (107)
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where LRPP , LCI
, LCII

, and LF represent the loss function associated with the

request probability prediction block, CT block, the classification in the second

path, and the fusion path, respectively, and wi, i = {1, . . . , 4} is the loss weight

of each block.

4.2.2 Simulation Results

To evaluate the performance of the proposed MTEC framework, we consider a

cluster-centric UAV-aided cellular network with 138, 493 GUs and 27, 278 num-

ber of distinct contents. Following the common assumption [131], we consider

the scenario that the storage capacity of caching nodes is 10% of the total con-

tent, where the size of all multimedia contents is the same. Considering the

GUs’ location, determined based on their ZIP code [63], it is assumed that

there are 21, and 3 terrestrial, and areal caching nodes, respectively, where each

inter-cluster consists of Ns = 7 number of FAPs. Note that the classification

accuracy is averaged over all caching nodes. To determine the best architecture

of the multiple-model Transformer-based architecture, we first evaluate differ-

ent versions of the proposed MTEC popularity prediction framework through

trial and error. Moreover, the performance of a single classification model, i.e.,

Path 1 or Path 2, is evaluated, when they are trained independently. In all the

experiments, the Adam optimizer is employed with learning rate of 0.0001 and

weight decay of 0.00001. The activation function of the MLP layers in all Trans-

former models is ReLU, while it is sigmoid as the output layer. In classification

blocks, the multi-content time-series request pattern data is converted to a se-

quential set of images, using the Gramian Angular Field (GAF) technique [129]

to preserve the temporal correlations of the input data.

Effectiveness of the MTEC Architecture

This subsection evaluates the performance of the proposed MTEC architecture.

Considering different hyperparameters, such as the number of heads, number

of transformer layers, model dimension, and MLP size, we compare different

variants of the proposed MTEC architecture in terms of accuracy and the num-

ber of parameters (complexity). As it can be seen in Table 4.4, increasing the
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Table 4.5: The accuracy of the Top-K popular content using different window size (9, 49,
and 99 days) for different variants of the proposed MTEC framework.

Model ID Accuracy

9 Days 49 Days 99 Days

1 81.09 % 84.32 % 85.14 %

2 86.09 % 88.15 % 88.86 %

3 85.94 % 88.23 % 89.21 %

4 89.45 % 92.78 % 93.03 %

5 87.54 % 90.01 % 90.98 %

6 92.87 % 94.13 % 94.54 %

Table 4.6: The accuracy of the Top-K popular content using different loss weights.

Model ID w1 w2 w3 w4 Accuracy

L1 0.2 0.4 0.1 0.3 94.13 %

L2 0.3 0.2 0.1 0.4 93.08 %

L3 0.0 0.0 0.0 1.0 90.54 %

number of heads from 8 to 16 (Models 1 and 2) and model dimension from 32 to

64 (Models 1 and 3) increase the accuracy of the proposed MTEC framework,

while increasing the complexity of the learning model. Similarly, the classifica-

tion accuracy is improved by increasing the number of transformer layers from

1 to 2 (see Models 1 and 4) and the MLP size from 256 to 512 (Models 3 and 5).

According to the information provided in Table 5.9, the best architecture for

the proposed MTEC framework is Model 6. It should be noted that although

the number of parameters in Model 6 is higher than the others, the classification

accuracy is higher as well. For that reason, we choose this model to compare it

with other state-of-the-art.

We also evaluate the effect of window size, which is used for data segmentation
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Figure 4.15: The convergence of the proposed MTEC framework.

during the dataset pre-processing phase. According to Table 4.5, we consider

different window sizes (9, 49, and 99 days) to build the input samples D =

{(Xu,yu)}
M
u=1. For instance, when the window size is 9, it means that we use

the historical request pattern of content over the past 9 days to predict the

popularity of content in the upcoming time. As shown in Table 4.5, extending

the window length from 9 to 49 increases the classification accuracy, while there

is no significant improvement considering very large window size, i.e, 99, due to

the degradation in dependency of the number of requests with time.

We evaluate the effect of different loss functions on classification accuracy. Ac-

cording to Eq. (107), we consider different values for loss weight of each block,

denoted by wi, i = {1, . . . , 4}, to illustrate the effect of loss weight on the overall

classification accuracy, shown in Table 4.6. Moreover, the convergence of the

proposed MTEC framework is illustrated in Fig. 4.15. As shown in Fig. 4.15,

increasing the number of epochs decreases the model loss, which shows that the

model is well trained.

Moreover, to illustrate the superiority of the proposed MTEC architecture in

comparison to a single Transformer, we compare it with different Transformer-

based networks, such as the single TC model, corresponding to the first path

of the MTEC model, the TRC network associated with the second path, the

ViT model [5], and the MTEC-AT, which is the proposed MTEC architecture
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with a self-attention layer as the fusion layer instead of the fully connected

one. According to Table 4.7, although the complexity of the proposed MTEC

network is higher than other architectures, it provides higher accuracy.

Performance Comparisons

For comparison purposes, we applied seven state-of-the-art caching schemes

to the Movielens dataset, including Least Recently Used (LRU) [51], Least

Frequently Used (LFU) [51], PopCaching [214], LSTM-C [55], the TC scheme,

the RCT scheme, and the TEDGE caching scheme [5], which is based on the

ViT architecture. Fig. 4.16 compares the performance of the proposed uncoded

MTEC scheme with other baselines listed above in terms of the cache-hit ratio,

known as one of the widely used metrics in MEC networks. This metric indicates

the number of requests managed by caching nodes versus the total requests made

across the network. Note that, the proposed MTEC scheme can be used for both

coded/uncoded content placement and the conventional uncoded one. Other

baselines, however, are based on uncoded content placement, which is one of

the main drawbacks of the existing data-driven caching schemes. In such a case

that the multimedia content is partially stored in the storage of caching nodes,

the cache-hit ratio would not be an accurate metric for the coded/uncoded

content placement framework. For this reason and to be compatible with other

state-of-the-arts, we first evaluate the performance of the proposed uncoded

MTEC scheme in terms of the cache-hit ratio. Then, we define another metric

suitable for the coded/uncoded content placement, known as the transferred

byte volume, illustrating the ratio of the data volume, transmitted by caching

nodes versus the total volume of the requested contents managed by caching

nodes. As shown in Fig. 4.16, the optimal strategy [55] is defined as a caching

scheme, where all requests through the network are served by caching nodes,

which cannot be obtained in reality. According to the results in Fig. 4.16,

the proposed MTEC caching framework achieves the highest cache-hit ratio in

comparison to other state-of-the-art counterparts.

In terms of the transferred byte volume, it is assumed that α = 30 percent of

the storage of FAPs is associated with the popular contents, stored completely,
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Figure 4.16: A comparison with state-of-the-arts based on the cache-hit ratio.

and 70% of the storage is assigned to mediocre content, stored partially ac-

cording to the content placement strategy described in Section 5.5.1. As shown

in Fig. 4.17, the byte volume transferred by caching nodes in the proposed

MTEC framework is higher than other counterparts. In comparison to the

Cluster-centric and Coded UAV-aided Femtocaching (CCUF) [4] framework,

the coded/uncoded content placement in the CCUF is performed based on the

historical request probability of content, while the proposed MTEC and RCT

frameworks use the predicted one. Moreover, since the classification accuracy

of the RCT model is lower than the proposed MTEC architecture, the MTEC

framework outperforms in terms of the transferred byte volume.

4.3 Conclusion

In this Chapter, we developed the CCUF framework in Section 4.1 for an in-

tegrated and dynamic cellular network to maximize the number of requests

served by caching nodes. To increase the cache diversity and to store distinct

segments of contents in neighboring FAPs, we employed a two-phase clustering

technique for FAPs’ formation and UAVs’ deployment. In this case, we formu-

lated the success probability of the proposed CCUF framework. Moreover, in

the cluster-centric cellular network, multimedia contents were coded based on
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Figure 4.17: A comparison with state-of-the-arts based on the transferred byte vol-
ume.

their popularity profiles. In order to benefit the CoMP technology and to im-

prove the inter-cell interference, we determined the best value of the number of

contents that should be stored completely. According to the simulation results

and by considering the best value of α, the proposed CCUF framework results in

an increase in the cache-hit-ratio, SINR, and cache diversity and decrease users’

access delay and cache redundancy. Going forward, several directions deserve

further investigation. First, it is of interest to introduce a RL-based method

for outdoor environment, where ground users can be autonomously served by

UAVs or FAPs, based on the dynamic population of their current locations and

their speeds. Second, the optimum number of ground users to be served by a

UAV in the proposed network needs to be analyzed.

Moreover, in Section 4.2, we presented an efficient multi-content time-series pop-

ularity prediction model referred to as MTEC framework with the application to

the cluster-centric MEC networks. Due to the lack of predicted request proba-

bility, existing data-driven caching strategies were inefficient for coded/uncoded

content placement. To tackle this issue, we developed a multiple-model Transformer-

based architecture to not only predict the upcoming Top-K popular content but

also estimate the request pattern of multiple contents simultaneously, which was

used to determine which contents should be stored partially or completely. Sim-

ulation results showed that the proposed MTEC caching scheme improves the
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cache-hit ratio and the transferred byte volume when compared to its state-of-

the-art counterparts.
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Chapter 5

Indoor D2D-enabled MEC

Network

With the focus on the integrated indoor/outdoor transmission schemes, intro-

duced by the CCUF framework in the previous Chapter, it is required to have

an efficient indoor caching strategy. In this chapter, an indoor macro cellular

network is considered consisting of FAPs, which are equipped with extended

storage, and Mobile Users (MUs) that are capable of communicating with each

other via D2D communication. In such a network with a femtocell infrastruc-

ture, we have unlimited-energy caching nodes, while we benefit from the D2D

communication through increasing the coverage of the network. Within this

context, our goal is to overcome the following two key challenges:

(i) In a dynamic femtocaching network where users move consistently in the

coverage area of the caching nodes, it is not possible to download com-

pletely a requested content in one contact. Therefore, it is supposed that

all contents are partially saved into the storage of caching nodes, and;

(ii) Deployment of massively dense FAPs with small transmission ranges in an

enterprise wireless network leads to frequent handovers, particularly for

high speed users, since they connect to a specific FAP for a short time.

To address the aforementioned challenges, in summary, we propose an indoor

femtocaching scheme referred to as the Mobility-Aware Femtocaching algorithm
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based on Handover (MAFH), in which, the best caching node is selected accord-

ing to the RSSI value and the velocity of users as decision criteria. In order

to reduce the number of unnecessary handovers, the appropriate target FAP

for handover is chosen in such a way that the time interval between successive

handover triggers will be extended, which consequently reduces the number of

handovers during a connection.

Focusing on the indoor caching strategy, we need to have an indoor localization

framework to precisely localize users within indoor areas to determine which

access point should manage the MUs’ requests. Therefore, in this Chapter

we propose two indoor localization frameworks to be used in the indoor D2D-

enabled MEC networks. More precisely, the unreliability of indoor localization

frameworks in the presence of the multi-path effect, is a key limitation which

is an unavoidable factor. By considering the effects of multi-path and path-

loss on the train dataset, the need for complex and precise analytical models

can be eliminated. For this reason, we then proposed an efficient CNN-based

BLE indoor localization framework, where AoA information is used as the input

of the CNN. We considered indoor environments without presence of LoS links

affected by AWGN with different SNRs and Rayleigh fading channel. Moreover,

by assuming a 3D indoor environment, the destructive effect of the elevation

angle of the incident signal is considered on the position estimation.

Moreover, UWB technology is another potential candidate for providing reliable,

accurate, and energy-efficient indoor navigation/localization systems. Although

UWB technology can enhance the accuracy of indoor positioning due to the use

of a wide-frequency spectrum, there are key challenges ahead for its efficient

implementation. On the one hand, achieving high precision in positioning relies

on the identification/mitigation NLoS links, leading to a significant increase in

the complexity of the localization framework. On the other hand, UWB bea-

cons have a limited battery life, which is especially problematic in practical

circumstances with certain beacons located in strategic positions. To address

these challenges, we, then, introduced an efficient node selection framework to

enhance the location accuracy without using complex NLoS mitigation meth-

ods, while maintaining a balance between the remaining battery life of UWB

beacons. Referred to as the Deep Q-Learning Energy-optimized LoS/NLoS
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Figure 5.1: The map of one typical enterprise femtocell network consisting of a Macro
Base Station (MBS), Femto Access Points (FAPs), and some Mobile Users (MUs).

(DQLEL) UWB node selection framework, the mobile user is autonomously

trained to determine the optimal pair of UWB beacons to be localized based

on the 2D TDoA framework.

5.1 Connection Scheduling in MAFH Framework

In this Section, we introduce the Mobility-Aware Femtocaching algorithm based

on Handover (MAFH) framework, in which, the best caching node is selected

according to the RSSI value and the velocity of users as decision criteria. We

consider a practical macro cellular network is considered consisting of FAPs,

which are equipped with extended storage, and Mobile Users (MUs) that are

capable of communicating with each other via D2D communication. In such

a network with a femtocell infrastructure, we have unlimited-energy caching

nodes, while we benefit from the D2D communication through increasing the

coverage of the network.

5.1.1 Problem Description and Assumptions

We consider an enterprise femtocell network, as shown in Fig. 5.1, consisting of

a macro base station, denoted by MBS, located at the center of market with the

communication range R and N FAPs, denoted by fi, i = 1, . . . , N , with equal
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cache size, denoted by Cf , and an equal transmission range rf . We assume

multiple MUs in the network, denoted by uj, j = 1, ..., S, moving based on the

random walk model as described shortly. Furthermore, all MUs are equipped

with the storage of fixed sizes Cu such as those available on modern smart

phones, and a fixed transmission range ru. The storage capacity of mobile users

Cu is much more limited than the amount of Cf . The MUs request for a file from

a library of M contents C = {c1, . . . , cM}, where the video file ck has the size

sck . It should be noted that the MBS can completely cover the enterprise area

and serve all S MUs in the network. Nevertheless, after requesting a content

by a mobile user, this request is immediately served by FAPs or nearby clients

in order to reduce the traffic load on the MBS.

In this work, we assume that each FAP fi operates in the open access mode, in

which any MU uj, existing in the transmission range of fi is allowed to access to

the femtocell. Therefore, we utilize the TDoA localization method to estimate

the current location of MUs in the vicinity of each FAP. Also, it is supposed

that mobile users are able to establish D2D communication, which is controlled

by the MBS. As a result, a central control unit is aware of the cached contents

of all users.

Taking the above considerations into account, the main objective of this work

is to propose a mobility-aware femtocaching strategy based on a real dense net-

work, including FAPs and user devices, supported by D2D communications.

Therefore, when a user requests a content, there are different alternative ways

to serve this request, which will be fully described in “User Access Pattern"

Subsubsection. To be more practical, it is also assumed that users with dif-

ferent velocities move in all directions in the network leading to occurrence of

handover during a request, that will be introduced in “User Mobility Pattern”

and “Handover Phenomenon” Subsubsections, respectively. Moreover, trans-

mission of large-sized video contents in one contact is not feasible, especially

in such a case that mobile users move across the transmission range of differ-

ent FAPs rapidly. Therefore, all contents are segmented based on the Linear

Random Fountain Code method that will be introduced in “Rateless Code” Sub-

subsection. To handle this problem, we propose a mobility-aware femtocaching

strategy based on handover to select the best caching node to manage users’
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requests. Toward this goal, we briefly introduce some concepts required for the

proposed strategy as follows:

User Mobility Pattern

In this work, we assume that mobile users are able to move in all directions

instead of just moving forward along a straight line in corridors as well as inside

offices of the market place. To illustrate this movement pattern, the Difference

Correlated Random Walk (DCRW) model is considered. A random walk is

defined as a random process where the current position of mobile user uj at time

t, denoted by Lt
j, depends on the velocity of movement. There are numerous

indoor speed estimation methods, including E-eyes [171], and CSI-based human

Activity Recognition and Monitoring (CARM) [172] that utilize some prominent

features of Channel State Information (CSI) for speed recognition. In this work,

the velocity of user uj at time t in two dimensions, denoted by υt
j, is calculated

by solving bivariate Stochastic Differential Equation (SDE) as follows [173]:

dυt
j = −

(

− log γ1 θ

−θ − log γ2

)

(υt
j − µ)dt+ JdBt, (108)

where γ1 and γ2 represent auto-correlation parameters in the first and second

coordinates, µ and θ denote the vector of mean velocity and the mean turning

angle of the DCRW model, respectively. Moreover, J is an 2×2 lower triangular

matrix with positive diagonal elements, which determines the covariance of the

changes in velocity, and Bt, as 2× 1 vector, denotes standard Brownian motion

at time t. By discretizing the SDE, the location Lt
j of user uj is obtained as

follows [173]:

Lt
j = Lt−1

j + υt−1
j ∆t, (109)

where ∆t denotes the time interval between two estimated locations at time t

and t− 1. As seen in Fig. 5.2, all offices in the market place are equipped with

a FAP, and the distribution of FAPs is dense enough to overlap with each other.

Therefore, when a mobile user requests a specific content and moves straight

along the corridor with a constant velocity at the same time, it passes through
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Figure 5.2: A typical structure of the enterprise femtocell network consisting of 12
shops located at both sides of the corridor.

the coverage area of various femtocells and experiences several consecutive han-

dovers during a request. In this regard, mobile users are categorized, according

to their speeds, into two distinguished groups as follows:

• Low Speed Users: The mobile users in this category have no apparent

motion in their places, e.g., user uj who works with a device that is in the

same location for many hours, or just move slightly in the coverage area

of a particular FAP fi with speed υtj, where υtj is less than a predefined

threshold υth.

• High Speed Users: In this category of clients, the user’s speed υtj is more

than or equal to υth.

Rateless Code

In a dynamic femtocaching system where MUs move across the coverage area

of caching nodes during a specific request, it is fairly unlikely that the user’s

request is served by a particular caching node in one contact. For instance, let

us consider an illustrative example consisting of a small wireless network where

some MUs move within the coverage area of two distinct FAPs f1 and f2. We

also suppose that there are two equally popular files c1 and c2, and the optimal

caching policy would store a complete copy of either file c1 or file c2 in the cache

of f1 and f2. As long as file c1 is stored in the cache of two FAPs, all users can

successfully download this file by the two encountered FAPs; i.e., half unit of
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data can be received by each FAP. However, all the requests for file c2 will be

managed by the MBS. Whilst, for this case, where users move and access pairs

of FAPs, the optimal caching policy changes to store the half unit of each file in

the cache of FAPs f1 and f2. In this case, each FAP stores parts of the file that

can be combined by the client to reconstruct the requested file. Hence, none of

the requests will be redirected to the MBS. This example shows the inefficiency

of caching schemes that neglect the user mobility and contact duration limits

(e.g., [174]). For this reason, we assume that contents are saved partially as a

result of the Fountain code which is inherently a rateless code.

In this work, we deploy an efficient two-phased encoder, named Linear Random

Fountain Code (LRFC), in which each video file ck with the size sck fragments

into T input symbols and consists of ck,l encoded segments with the same size

sck , in which k ∈ {1, . . . ,M} and l ∈ {1, . . . , T} [175]. In the placement phase,

each FAP stores δck of output symbols from file ck. It should be noted that

the same number of output symbols of file ck is stored in the storage of FAPs,

however, the sets of ck,l, l ∈ {1, . . . , T}, which is cached in the storage of various

FAPs are different. Moreover, since clients are equipped with a storage, in which

Cu is much more limited than the amount of Cf , after complete downloading

of content ck, requesting user stores σck of output symbols from file ck, where

the value of σck is less than δck . Accordingly, during the delivery phase, file ck

can be recovered by collecting Kck encoded segments, where the value of Kck

depends on the size of file ck. We also assume that the duration of each contact

between user uj and caching node, denoted by nq, including uj′ and FAP fi,

is tcj,q time slots, and the transmission rate from caching node nq to uj is rj,q

bps. As a result, the Bj,q = b
tcj,qrj,q

sck,l
c segments can be transmitted during one

contact from nq to uj, where bc denotes the floor operator. The LRFC encoder

generates a sequence of output symbols ck = {ck,l, . . . , ck,ε}, where ε represents

the number of outputs symbols. In this case, mth output symbol of file ck is

obtained as follows:

ck,m =
T
∑

a=1

ga,mck,a, (110)

where ga,m represents an independent coefficient, which is generated randomly
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with uniform distribution. For fixed ε, parameter ck can be obtained as follows:

ck = ckG, (111)

where ck and G are the vector of input symbols and T × ε matrix, respectively.

It should be noted that when a MU requests content ck, it is necessary to collect

a set of Kck output symbols y = (y1, . . . , yKck
) to decode a file completely, in

which y is expressed as follows:

y = ckG̃, (112)

where G̃ indicates a matrix corresponding to the Kck columns of G, associated

with the collected output symbols. Totally, if G̃ is full rank, the decoding pro-

cess would be performed successfully after recovering ck, otherwise, the receiver

needs more additional output symbols.

User Access Pattern

Generally, the highlighted aim of a femtocaching-based network is to reduce the

number of satisfied requests served by the MBS. Due to the mobility of users, we

define the delay constraint, denoted by Td, as the time that users are allowed

to collect segments of required contents through one of the caching nodes as

described shortly, otherwise, this request will be managed by the MBS. In this

regard, when the file ck ∈ C is requested by user uj, this request can be served

through the following four methods:

• Local Cache: Firstly, if requested content ck exists in the cache of own

user uj, this user would obtain the required content ck from the local cache,

otherwise, user uj downloads the required content through a D2D cache or

FAP cache existed in the transmission range of user uj within the deadline

Td.

• FAP Cache: When the file ck is requested by user uj exited in the com-

munication range of FAP fi, regardless the speed of user, this request is

handled by fi immediately. In the first case, if ck is found in the cache of fi,

it is directly sent to the client by FAP and the cache hit occurs, otherwise,

168



this request is managed by the MBS, and the cache miss happens. In such

a case that multiple MUs with the same velocity are located in the trans-

mission range of FAP fi and request different files simultaneously, where

all contents exist in the cache of the corresponding FAP, these users are

ranked as follows [131]:

el =
Nl

Tl
, l = 1, . . . , Si, (113)

where Nl and Tl represent the number of satisfied requests of user ul,

managed by caching nodes and the total number of user’s requests ul,

respectively. Moreover, Si denotes the number of users with the same

velocity that should be served by FAP fi. A small value of el indicates the

minority of user’s requests served by FAP. Therefore, the priority of this

user is more to be managed by FAP in order to experience less latency.

• D2D Cache: According to the user’s speed, if uj is a low speed user

and another mobile device, storing the requested content in the cache,

exists within the transmission range ru, the D2D communication will be

established between two users. It should be noted that since high speed

users move rapidly through corridors, deploying the D2D communication

is not feasible for this type of users.

• MBS: Eventually, if the user cannot access at least Kck different encoded

segments of file ck through one of the above-mentioned methods within

the deadline Td, this request will be managed by the MBS to obtain the

remaining segments. Moreover, in such a case that uj locates in the trans-

mission range of FAP fi or there are other MUs in the vicinity of uj to

establish D2D communication, but file ck cannot be found in their stor-

age, uj must be served by the MBS. In this work, we assume that the

D2D communication and the FAP communication do not interfere with

the communication between the MBS and users. This assumption is justi-

fied if the D2D and femtocell communications occur in separate frequency

bands (e.g., WiFi). In addition, it is assumed that the MBS assigns dif-

ferent frequency sub-channels to D2D users and FAPs by employing an

efficient resource scheduler to avoid the co-channel interference [40].
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Handover Phenomenon

By considering the fact that clients existed in the proposed network can move

in corridors and shops and due to the small transmission range of FAPs, mobile

users with a high velocity presumably experience unnecessary handovers during

a request. To tackle this problem, we first define the pathloss between FAP fi

and client uj denoted by PLi,j(dB) as [176]:

PLi,j(dB) = max

{

38.46 + 20 log10(di,j) + Low +Xσ

15.3 + 37.6 log10(di,j) + Low +Xσ

}

, (114)

where di,j denotes the distance between FAP fi and mobile user uj, and Low

represents the exterior wall penetration loss of shops in the network area, which

is 10 dB or 20 dB. Moreover, Xσ is a zero-mean Gaussian-distributed random

variable with standard deviation σ that represents the effect of multi-path fading

in our femtocaching network [176]. For the above pathloss description, the

strength of the signal received from FAP fi by user uj, denoted by RSSIi,j, is

obtained as

RSSIi,j = Pi − PLi,j, (115)

where Pi is the transmission power of FAP fi. We also define the threshold

level Pth as the minimum signal strength that one MU can receive with a high

quality. In traditional handover algorithms (e.g., [177]), when the mobile user

uj is moving away from the area covered by FAP fi, once RSSIi,j drops below

the threshold level Pth, handover is occurred, and then uj starts to find the

strongest signal among neighboring candidate FAPs as a target for handover

which satisfies the following condition:

RSSIi′,j = RSSIi,j + hm, (116)

where RSSIi′,j and hm represent the RSSI from the target FAP fi′ and the hys-

teresis margin, respectively, which is a commonly used parameter for avoiding

frequent handovers. Since the transmission ranges of FAPs are small, during

movement of a MU, the RSSI drops below the threshold level Pth again in a

short time interval and another handover is occurred. As a result, the number
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of handovers in the network increases dramatically, especially, when a client

moves rapidly among femtocells. To tackle this problem, in the next Subsec-

tion, we propose an efficient mobility-aware femtocaching strategy to minimize

the number of unnecessary handovers.

5.1.2 Proposed MAFH Framework

The users’ mobility across the wireless network leads to the handover phe-

nomenon, when a contact is in progress between ul and fi and ul leaves the

coverage area of fi. As a result, user ul explores another FAP existed surround-

ing to connect and download the remaining parts of the content. Therefore, a

large number of handovers is expected to occur during one contact, especially

when MUs move with a high velocity between femtocells. This issue moti-

vates us to propose an efficient strategy, namely Mobility-Aware Femtocaching

scheme based on Handover (MAFH) for the network’s model introduced in Sub-

section 5.1.1. In the proposed system model, the caching nodes’ deployment,

including FAPs and other mobile devices equipped with the storage, is dense

enough, therefore, when a user requests a content, there are more than one

candidate to connect. For this reason, it is crucial to prioritize caching nodes

in order to improve the connecting time, handover occurrence, and the energy

consumption. In the next subsection, we introduce some common performance

metrics to evaluate the proposed MAFH scheme.

Performance Metrics

Cache Hit Ratio: This is a common performance metric in caching topic

which is defined as the ratio of all users’ requests served by caching nodes

versus total requests. After requesting content ck by user ul, if at least one

caching node in the vicinity of user ul includes file ck, this request would be

immediately served by the corresponding caching node. In this case, the cache

hit occurs, otherwise, this request would be served by the MBS and the cache
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miss happens. The cache hit ratio, denoted by CH, is calculated as follow:

CH =
nT − nMBS

nT

, (117)

where nT and nMBS denote the total number of requested segments in the

network, and the number of unsatisfied requests, directly managed by the MBS.

Transferred Byte Volume: This metric is used to express the amount of data

flowing directly from the MBS in order to satisfy users’ requests. Without loss of

generality, it is assumed that the size of all contents are the same. Therefore, the

total volume of contents requested in the network, would be expressed as ST =

nT sck,l . Similarly, the volume of contents served by MBS is SMBS = nMBSsck,l

. In this case, the transferred byte volume, denoted by T B, is obtained as

T B =
SMBS

ST

. (118)

Note that an efficient cache policy that maximizes the number of cache hits,

leads to a higher cache hit ratio, lower transferred byte volume, and better

resource utilization.

Connecting Time: This metric is defined as the time interval that mobile

user uj can stay connected to the current caching node nq, denoted by τj,q, for

downloading the segment ck,l, calculated as follow:

τj,q =
∆xj
υtj

, (119)

where ∆xj represents the distance that user uj moves during τj,q while it con-

nects to caching node nq, and υtj denotes the velocity of movement of MU uj.

In this case, the normalized connecting time, denoted by CT is given by

CT =
τj,q
tcj,q

, (120)

where tcj,q denotes the required time duration of contact between user uj and

caching node nq to completely download ck,l.

Handover Rate: This metric indicates the number of handovers per minutes.
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Handover frequency is typically increased by increasing the speed of mobile

users, and the number of FAPs, installed in the network. In this context, the

most effective femtocaching strategy is that mobile users connect to the further

FAP instead of close to one in order to reduce the handover rate.

Energy Consumption: The energy consumption of user uq in the transmission

mode in D2D communication when this user transmits segment ck,l to user uj

is calculated as follow [178]:

Eq,j(cls) =
Pq,tsck,l
Rq,j

, (121)

where Pq,t denotes the power consumption of user uq in the transmitter state,

and Rq,j represents the channel capacity, given by

Rq,j = Wq log2(1 +
KPq,t

N0Wqd2q,j
), (122)

where Wq and K represent the transmission bandwidth, and pathloss factor,

respectively. Moreover, N0 and dq,j denote the noise power spectral density,

and the distance between users uq and uj.

Delivery Time: This metric illustrates the time duration Td that takes to

download one segment ck,l of the required content by user uj from caching node

nq. Td is calculated as follow:

Td =
sck,l
rq,j

+
dq,j
c
, (123)

where c = 3× 108 denotes the speed of light.

Methodology

To implement a dynamic mobile network, in which users are moving in all direc-

tions, we assume the random walk model to describe how users move through

the network. In this regard, all the following steps are performed for the MAFH

scheme:

Step 1: Caching Nodes Identification: After requesting a content, this
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Figure 5.3: MU’s location estimation based on the TDoA method.

request must be served by one of the neighboring caching nodes. Therefore, in

the first step, all users need to scan nearby caching nodes, including FAPs and

other mobile devices. For an enterprise femtocell network like the market place

shown in Fig 5.1, and to recognize the exact location of users for service, we need

to deploy an efficient indoor localization method. Among various signal metrics

for indoor localization, including RSSI, Channel State Information (CSI), and

TDoA, we measure the distance between different caching nodes by computing

TDoA. Since wireless signals become weaker in proportion to the distance, path-

loss model is used to estimate the location of nodes. As a result of indoor

obstacles, such as walls and human beings, a transmitted signal can be reflected,

refracted and diffracted, and a number of phase delayed and power attenuated

versions of the same signal is received by users. Therefore, it is essential to

deploy a highly accurate, easily implemented, and cost-effective localization

method, which is robust against multipath fading and indoor noise. As shown

in Fig. 5.3, in the TDoA method, the time difference of received signals from

at least three FAPs is required to estimate the exact location of MUs. Toward

this goal, it is assumed that Ll
u,t = [xlu,t, y

l
u,t]

T and Li
f = [xif , y

i
f ]

T denote the

location of user ul at time t and FAP fi, respectively. Based on the assumption

that the first FAP is the reference node, the TDoA measurement between FAP

1 and FAP i is obtained as follows:
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ti,1 = t
′

i,1 +∆ti,1, i = 2, . . . , N, (124)

where ∆t = [∆t2,1, ...,∆tN,1]
T represents an error vector containing zero-mean

Gaussian random variables, and t
′

i,1 denotes the real time difference of received

signals. By considering the signal propagation speed, denoted by c, the TDoA

measurement is related to the Range Difference of Arrival (RDoA) as follows:

r
′

i,1 = ct
′

i,1, i = 2, . . . , N, (125)

where r
′

i,1 represents the actual distance between FAP 1 and FAP i, and ri,1 is

obtained as follows:

ri,1 = r
′

i,1 + c∆ti,1, i = 2, . . . , N. (126)

Moreover, to calculate r
′

i,1, we have:

r
′

i,1 = r
′

i − r
′

1 = ‖Ll
u,t − Li

f‖ − ‖Ll
u,t − L1

f‖, (127)

where r
′

i = ‖Ll
u,t − Li

f‖ denotes the true distance between user ul and FAP fi.

Consequently, the exact location of MUs are determined.

Step 2: Speed Estimation: Since the velocity of MUs is the key factor in

selecting the best type of connection, the SDE method, described in Subsection

5.1.1, is deployed to track continuously the unstable velocity of users.

Step 3: Connection Type: Regarding the users’ speed, the best caching node

to serve users’ requests is determined as the result of one of the following cases:

Case 1 (High Speed Users): In the case of high speed users, it is not benefi-

cial to establish the D2D communication because the connection between mobile

devices cannot sustain long enough to avoid frequent handover to other devices.

Therefore, high speed users should only connect with FAPs that is a challenge

for fast moving users. In our proposed algorithm, the distance between mobile

device and FAP is used as a metric to select the candidate FAP. More specif-

ically, we select a farther FAP with remaining file segments in its storage for

handover to achieve long uninterrupted connection instead of near FAP. At the

time of handover decision, the RSSI from a farther FAP is less than the RSSI
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from a nearby FAP. However, in a short range communication model, as the

MU moves straight between femtocells, the distance between the MU and the

target FAP decreases, consequently, the RSSI from the target FAP increases.

Thus, by choosing such a farther femtocell as the target, the MU can stay con-

nected with that FAP for a longer time, which extends the time between two

consecutive handovers. To attain this goal, the RSSI from all available FAPs in

the vicinity of a user along with FAPs’ IDs are recorded in Neighbor Femtocells

List (NFL). This list is updated every time the user requests a content, such as

NFL = {fj, j = 1, . . . , n|RSSIj,l > Pth}, (128)

where RSSIj,l indicates the RSSI level of FAP fj at the user ul which is greater

than or equal to Pth, and n < N is a random variable denoting the number of

available FAPs surrounding the user ul. It is possible that the case j = 0 occurs

when there is no available FAP for the subsequent handover. The NFL is used

to determine which femtocell has been visited by user ul moving through the

corridor before occurring handover. When a handover process is invoked, a new

set of RSSI values from the available femtocells along with the FAPs’ IDs are

recorded in a Candidate List (CL), such as

CL = {fj′ , j
′

= 1, ..., n
′

|RSSIj′ ,l > Pth}, (129)

where RSSIj′ ,l 6= RSSIj,l and n
′

< N is a random variable denoting the number

of candidate femtocells for handover. It is possible that the NFL set may be

empty, while the cardinality of the CL set is at least one, as the CL is typically

formed sometime after the NFL.

To clarify the beneficial of the proposed strategy, a typical femtocell network

is depicted in Fig. 5.4. We assume that mobile user ul, connecting to the FAP

fi located at point A, is requesting file ck and moving out of the corresponding

coverage area and approaching to FAPs fi+1 and fi+2. At the border of the

current FAP fi (point B in Fig. 5.4), when RSSIi,l < Pth, handover becomes

imminent. Then, the mobile user discovers two candidate neighboring FAPs for

handover, for which RSSIi+1,l, RSSIi+2,l > Pth. The RSSI values of both FAPs

fi+1 and fi+2 exceed the threshold due to their coverage overlap. The proposed
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Figure 5.4: The main idea behind the proposed Mobility-Aware Femtocaching scheme
based on Handover.

MAFH algorithm chooses FAP fi+2 instead of FAP fi+1 for downloading the

remaining segments of video file ck to avoid unnecessary handover. The benefit

of long connection time between mobile users and FAPs is that it enables mobile

users to download more encoded segments before next handover.

The main goals of our algorithm are to reduce the number of handover and

increase the connection time between user ul and FAP fi+2. As can be seen in

Fig. 5.4, during the movement of user ul between points A and B, the RSSI

from available femtocells, including fi and fi+1, are measured frequently to form

the NFL = {fi, fi+1}. When user ul is located at point B, handover is triggered

and CL = {fi, fi+1, fi+2} is formed. Finally, the FAP with the minimum RSSI

from the CL would be selected as the target. It is possible to select FAP fi that

user ul has been already connected to because it shows minimum RSSI. This

selection is perfectly legit since it shows user ul is moving backward. In general,

based on the presence of each FAP in NFL and/or CL and the corresponding

value of RSSI, one of the following scenarios occurs to trigger handover:

Scenario 1: If the minimum RSSI is associated with a FAP, such as fi+2, which

is not in NFL, then the FAP is selected as the target for user ul to connect to

fi+2 and download remaining segments of file ck.

Scenario 2: If the minimum RSSI is associated with a FAP, such as fi, which is

in NFL, the RSSI from FAP fi in NFL is compared with its RSSI value in CL.

If the RSSI in NFL is less than that in CL, it means user ul is approaching to
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fi, therefore, the selected FAP fi is the target and the communication between

user ul and FAP fi is established.

Scenario 3: In contrast to scenario 2, if the RSSI from a specific FAP, such as

fi, in CL is less than of its RSSI in NFL, it indicates that ul is moving away

from the FAP; hence, that FAP is not an appropriate candidate for handover.

In this case, FAP fi will be removed from the CL and another FAP with the

minimum RSSI is chosen.

To reduce the number of unnecessary handovers in our proposed MAFH algo-

rithm, we classify handover decisions into two categories, named prompt han-

dovers, and long handovers, as follows:

Prompt Handover: This would happen in a massive network, if the user con-

nects to the nearest FAP with RSSI’s highest value after triggering a handover.

In this respect, if the user moves at high speed, there will be another early

handover, as this user leaves FAP’s current range of transmission.

Long Handover: In this case, the user connects to the further FAP with the

lowest RSSI value, leading to expanding the connecting time between MU and

the caching node.

In order to illustrate the reduction of handovers in our proposed scheme, we

apply an optimization problem to the cost function, denoted by Ch, based on

our algorithm, defined as follows [179]:

Ch(w) = wphNph + wlhNlh, (130)

where Nph and Nlh represent the number of prompt and long handover, respec-

tively, and w = [wph, wlh] is the vector of weight factor that should be optimized.

By considering the Taylor series expansion at optimum vector w∗ to minimize

the cost function with respect to w, we have:

Ch(w
∗) ≈ Ch(w) + (w∗ − w)C

′

h(w) +
(w∗ − w)2

2
C

′′

h(w), (131)

where w∗ denotes the optimum vector, minimized Ch function, and C
′

h and C
′′

h

represent the first, and the second derivatives of Ch, respectively. In this case,

178



the optimized value of w∗ is obtained as follows:

w∗ = w − C
′

h(w)

C
′′

h(w)
. (132)

where w∗
ph and w∗

lh in the simulation result in α and β values.

Case 2 (Low Speed Users): In this case, user ul that requests a content is

either anchored at its place or moves slowly with the speed υtl ≤ υth within the

transmission range of a particular FAP. Therefore, user ul does not experience

any handover during a request. For this reason, low speed users have two options

to access their contents; the first is to connect to a local FAP listed in NFL,

and the second is to establish a connection with other nearby mobile devices

that are anchored or move with a slow speed. Furthermore, they can access

more segments of the required file if they connect to both FAPs and mobile

devices. However, if a same segment of the requested content is available in both

D2D and FAP caches, user ul is served by the FAP to avoid consuming energy

of another user by establishing D2D communication. To connect with FAPs,

unlike previous case, low speed user ul selects a FAP with the highest value of

RSSI in CL. This allows user ul to access the requested content from the target

FAP fi+1 within the shortest possible time due to the short distance between

ul and fi+1. For D2D communication, we need to consider the situations that

MUs become close to each other or move farther away. Hence, we define the

difference vector ∆l = [Λl,1, . . . ,Λl,Nl
], where Λl,j is obtained as follows:

Λl,j = RSSIl,j(t+ 1)−RSSIl,j(t), j = 1, . . . , Nl, (133)

where Nl indicates the number of candidate mobile devices in the vicinity of user

ul. Moreover, RSSIl,j(t) and RSSIl,j(t+ 1) are the strength of received signal

from user uj in two consecutive time slots [182]. A large value of Λl,j shows

MUs uj and ul become closer that will increase the connection time. Therefore,

a D2D communication can be established between uj and ul. The pseudo-code

of our proposed MAFH scheme is outlined in Algorithm 3.
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Algorithm 3 Proposed MAFH Scheme

1: Initialization: Set Pth = −67 dBm and υth = 3600 m/h.
2: while ul requests content ck do
3: Step 1 (Caching Nodes Identification):
4: Estimate the location of ul according to (17)-(20).
5: Step 2 (Speed Estimation): Estimate υtl according to

dυt
l = −

(

− log γ1 θ
−θ − log γ2

)

(υt
l − µ)dt+ JdBt,

6: for j = 1, . . . N do
RSSIj,l = Pj − PLj,l,

7: end for
8: Step 3 (Type of Connection):
9: if RSSIj,l < Pth then

10: if υtl ≥ υth then
11: Update NFL and CL

NFL = {fj, j = 1, ..., n|RSSIj,l > Pth},

CL = {fj′ , j
′

= 1, ..., n
′ |RSSIj′ ,l > Pth},

12: Select fm ∈ {CL|RSSICL(fm) = min(RSSICL(fi)), ∀fi ∈ CL}
13: if fm ∈ NFL then
14: if RSSINFL(fm) < RSSICL(fm) then
15: Select fm.
16: else
17: Remove fm from the CL and
18: choose FAP with the minimum RSSI.
19: end if
20: else
21: Select fm.
22: end if
23: else
24: Select fm ∈ {CL|RSSICL(fm) = max(RSSICL(fi)), ∀fi ∈ CL}
25: Connect to user uk with the highest value of
26: Λl,k, in which Λl,k is obtained as follows:

Λl,k = RSSIl,k(t+ 1)−RSSIl,k(t), k = 1, . . . , Nl,

27: end if
28: end if
29: end while
30: Output: The type of communication between MU ul and caching nodes is de-

termined.
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5.1.3 Simulation Results

In this Subsection, we evaluate the effectiveness of the proposed algorithm in

terms of the cache hit ratio, transferred byte volume, connecting time, content

delivery time, and the number of handovers particularly for high speed users,

as well as the energy consumption for low speed clients. Moreover, we assume

the random walk model to present the users mobility pattern for the system

model in Fig. 5.1. For the scenarios under simulation, we investigate how the

connection type and mobility pattern affect the aforementioned performance

metrics.

Simulation Setup: We consider an enterprise femtocell network consisting

of 250 small stores which all of them are deployed with FAP and 1500 MUs

distributed uniformly inside the area covered by the MBS with the radius R =

500 m. The MBS located in the center of enterprise, based on the 4G LTE

standard. It is assumed that the transmission range of each FAP is rf = 10

m, therefore, all FAPs are overlapped with each other. There exist M = 6000

distinct contents in the network, with the size of sck = 300 MB. In addition, the

storage capacity of FAPs Cf is approximately 180 GB, which is equal to 10% the

whole of network’s content. Moreover, each file is fragmented into T = 10 input

symbols, based on the Fountain Code, where the size of each segment is about

sck,l = 30 MB. It is supposed that user ul at time t moves through the corridors

and shops with a velocity υtl based on the random walk model in Subsection

5.1.1 and request contents, while the probability of requesting content ck follows

the Zipf distribution with parameter λ = 0.56 [109]. To be more practical and

regarding to the coverage area of FAPs, i.e., rf = 10 m, we assume υth = 3600

m/h, which is equivalent to υth = 1 m/s. All users are capable of establishing

D2D connection in the range of ru = 2 m. The storage capacity of users involved

in D2D communication is equal to the size of 100 contents, i.e., Cu = 30 GB.

The general simulation parameters are summarized in Table I. In the proposed

network model, we compare the performance of the following four methods with

two existing caching schemes, namely, MAMAB [180] and MAFMC [181]:

Traditional Mobility-Aware Femtocaching Scheme with Forward Move-

ment (MAFF): Without considering the velocity of users, the requesting client
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Table 5.1: Simulation parameters settings

Frequency 2GHz
Macrocell TX Power 46 dBm
Femtocell TX Power 20 dBm

N 250
S 1500
M 6000
R 500 m
rf 10 m
ru 2 m
sck 300 MB
sck,l 30 MB
T 10
Cf 180 GB
Cu 30 GB
Low 20 dB
hm 4 dB
Pth -67 dBm
υth 3600 m/h
λ 0.56
Wq 1.4 MHz
K 0.07
N0 -174 dBm/Hz
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will be connected to the nearest caching node, either FAP or another MU. In

this case, clients just move forward through the corridors and shops.

Traditional Mobility-Aware Femtocaching Scheme with Random Walk

Model (MAFR): In this case, we assume that the distance between request-

ing user and caching nodes is the only deterministic factor to prioritize caching

nodes. However, by emphasizing on the implementation of a practical model,

the movement pattern of clients is defined based on the random walk theory

described in Subsection 5.1.1.

Mobility-Aware Femtocaching Scheme based on Handover with For-

ward Movement (MAFHF): This method was completely described in Sub-

section 5.1.2, with the difference that users just move straight forward through

the corridors.

Mobility-Aware Femtocaching Scheme based on Handover with Ran-

dom Walk Model (MAFH): This scheme is our proposed strategy, described

in Algorithm 3, with focus on the random walk mobility pattern and handover

phenomenon.

Taking the above considerations into account, we first investigate the accuracy

rate of the TDoA scheme, as the efficient indoor localization method, employed

in the proposed MAFH algorithm to determine the exact location of clients.

Then, we illustrate the superiority of the proposed MAFH framework com-

pared with the existing conventional schemes from the aspect of cache hit ratio,

connecting time, the number of handovers, delivery time, and the energy con-

sumption of clients in D2D communication.

TDoA Indoor Localization: The dense deployment of caching nodes in the

enterprise network provides many opportunities for MUs to download the re-

quired content. Therefore, after requesting a content, it is essential to determine

neighbor caching nodes, including FAPs and MUs, in the vicinity of requested

user. In this scenario, we first evaluate the effectiveness of the TDoA scheme

as an indoor localization method to estimate the exact location of clients in

Fig. 5.5, in which clients are randomly distributed in 20 × 20 m2 area of the

enterprise network. The accuracy of the TDoA estimation depends on some pa-

rameters, such as sampling rate, signal bandwidth, and the existence of Line of
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Figure 5.5: Location estimation results based on the TDoA indoor localization
method.

Sight (LoS) signal between nodes. According to the results in Fig. 5.5, the esti-

mated location of MUs are consistent and close to the real positions. Note that

the positioning error is small, where the LoS signal between caching nodes and

clients exists. To evaluate the accuracy of the TDoA scheme, the Root Mean

Square Error (RMSE) is defined as RRMSE =

√

1

n

∑S
l=1(x̂l − xl)2 + (ŷl − yl)2,

where (xl, yl), and (x̂l, ŷl) are the true and the estimated coordinates of user ul,

respectively. By considering this fact, the RMSE of the TDoA method in our

proposed network is about 0.47 m, with 4.7% estimation error.

Cache Hit Ratio: We evaluate the effect of different values of user’s velocity

υtl on the performance of our proposed MAFH scheme and other three strategies

mentioned above and compare the results with that of the MAMAB [180] and

MAFMC [181] methods from the aspect of the cache hit ratio and transferred

byte volume in Fig. 5.6. According to the results in Fig. 5.6a, since movement

of low speed users is negligible, the mobility pattern and handover phenomena

have not a remarkable effect on the cache hit ratio, therefore, the cache hit

ratio for the values of υtl < υth follows a similar trend in all schemes. The most

significant reason why the cache hit ratio decreases continuously for the values

of υtl ≥ 1.7υth in MAMAB, MAFR, and MAFF schemes is that for the constant

value of contact duration tcl,q, the growth of user’s speed leads to decreasing

the time that users can be connected to the current caching node to download

the segment of the required content. As a result, requesting user achieves less
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Figure 5.6: a) The cache hit ratio versus different values of ζ = υtl/υth, and b) the
transferred byte volume versus different values of ζ = υtl/υth.

segments in one contact. By contrast, in the MAFHF and the proposed MAFH

schemes based on handover, connection of high speed clients to the further

FAPs leads to expanding the connecting time and downloading more segments.

Furthermore, Fig. 5.6a illustrates the impact of the mobility pattern on the

cache hit ratio. In the case that high speed users move according to the random

walk theory in MAFH strategy and Markov chain in MAFMC algorithm, it is

more fairly likely that users remain in the transmission range of the current

caching node to increase the connecting time and attain more segments, while

forward high speed users definitely leave the current caching node in a small

time duration.

We also evaluate the performance of our proposed MAFH algorithm with other

schemes from the aspect of transferred byte volume in Fig. 5.6b. Since the
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Figure 5.7: The number of handovers versus the number of deployed FAPs.

Table 5.2: The average length of the normalized connecting time of users in 100
requests.

MAMAB [20] MAFMC [26] MAFF MAFR MAFHF MAFH
0.76 0.91 0.74 0.85 0.92 0.97

amount of data, which is downloaded from the MBS, is inversely proportional

to the cache hit ratio, with the same reason as above, the proposed algorithm

experiences better performance compared to other strategies.

Connecting Time: In this scenario, we evaluate the performance of the pro-

posed MAFH algorithm with other schemes from the aspect of the average

length of the normalized connecting time in 100 consecutive requests. As previ-

ously mentioned, connecting time is the time interval that mobile users can stay

connected to the current caching node for downloading one segment of content,

and that depends on the velocity of users. In the case of low speed users, they

are capable of connecting to the current caching node as long as all available

segments of the required content are completely downloaded. Therefore, there

is no serious challenge for this type of clients. High speed clients, however,

move and leave the transmission area of current FAP, and it is fairly likely that

the possible connecting time is much less than the required time of contact for

downloading a complete segment. According to the results in Table 5.2, due

to the connection between high speed clients and further FAP, instead of near

FAP, the proposed MAFH scheme has the best performance in terms of the
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Figure 5.8: The content delivery time versus the number of deployed FAPs.

connecting time, which illustrates the extension of the average time that users

connect to the current FAP. On the other hand, D2D connection in our pro-

posed scheme is limited to low speed clients, staying in their current positions

for a long time that leads to increasing the connecting time. Moreover, the

random movement of clients in the proposed scheme increases the probability

of staying in the transmission range of the current FAP to attain all available

segments of the desired content.

Handover: In this part, we evaluate the number of handovers in the proposed

MAFH scheme along with other traditional algorithms versus the number of de-

ployed FAPs. It is obvious from Fig. 5.7 that increasing FAPs leads to growing

the number of handovers. Nevertheless, the proposed MAFH algorithm post-

pones significantly the handover phenomenon by considering the random walk

model for the mobility of clients and connecting to further FAP instead of near

FAPs. Due to the random location and mobility of users in each run, the num-

ber of handovers in our proposed MAFH scheme is determined based on the

optimum values of w∗
ph and w∗

lh across 1000 repeated simulations for a specific

number of FAPs. It is evident that connecting to further FAP instead of near

FAPs in the proposed MAFH strategy results in the reduction of the number

of prompt handovers, followed by a remarkable decrease in the total number of

handovers. Simulation results have shown almost 56% and 39% improvement

in the number of handovers for the proposed MAFH algorithm when compared

to the MAMAB and MAFMC methods, respectively.
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Figure 5.9: The energy consumption of clients during D2D communication.

Delivery Time: In this scenario, we demonstrate the effect of increasing the

number of FAPs on the content delivery time in Fig. 5.8, which is expressed

as the average time duration in order to download one segment of the required

content. It is observed from Fig. 8 that increasing the number of deployed FAPs

in all strategies leads to enhancing the content delivery time. In the proposed

MAFH scheme, users connect to the further FAP, which leads to increasing

the distance between clients and FAPs. Since the delay is directly related to

the distance between transmitter and receiver nodes, the content delivery time

raises slightly in handover femtocaching methods. However, as it can be seen

from Fig. 5.8, the proposed algorithm displays almost the same behavior as the

traditional mobility-aware femtocaching schemes, where the number of FAPs is

more than 180 in the network.

Energy Consumption: Finally, we evaluate the performance of the proposed

MAFH algorithm with other traditional schemes from the aspect of the energy

consumption of clients during D2D communication in Fig. 5.9. The D2D com-

munication reduces significantly the number of requests served by the MBS.

However, this type of connection inherently decreases the life-time of users’

battery. By considering this fact, it is essential to ignore the D2D communi-

cation, especially for high speed users that disconnect with other clients in a

short time. As can be seen from Fig. 5.9, the proposed strategy has the best

performance in terms of the energy consumption of clients. Numerical results

have shown almost 21% and 13% improvement in the energy consumption of

clients for the proposed MAFH algorithm when compared to the MAMAB [180]
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Figure 5.10: The 2.4 GHz frequency band shared by BLE and WiFi. Red channels
are the advertisement and the blue ones are data channels used by BLE.

and MAFMC [181] methods, respectively.

5.2 Fusion Pre-Processing Techniques for BLE-

based Indoor Localization

With expected widespread implementation of 5G networks and 5G Internet of

Things (IoT), indoor localization is expected to become of even further impor-

tance. Although Global Positioning System (GPS) ensures efficient outdoor

localization, generally speaking, indoor localization systems fail to provide the

same level of efficiency. In this regard, there has been recent widespread atten-

tion to Angle of Arrival (AoA) with the application on Linear Antenna Array

(LAA), as an efficient indoor localization method due to its potential in de-

termining location with low estimation error. The AoA, however, suffers from

several issues including being sensitive to multipath effects, noise, fluctuations

of received signal, and frequency/phase shifts. To tackle these issues, this Sec-

tion proposes a set of signal processing and information fusion methods by

integration of Nonlinear Least Square (NLS) curve fitting, Kalman Filter (KF),

and Gaussian Filter (GF) to boost the accuracy rate of estimated angle. The

proposed fusion framework is evaluated based on a real Bluetooth Low Energy

(BLE) dataset and results illustrate significant potentials in terms of improv-

ing overall BLE-based achievable accuracy in angle detection. In following, we,

first introduce BLE wireless signal model, including BLE Transmitter, wireless

channel, and BLE receiver.
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5.2.1 BLE Wireless Signal Model

One of the noticeable challenges of wireless technologies for IoT applications is

high power consumption. BLE as one of the prominent Wireless Personal Area

Network (WPAN) standards has paved the way for emergence of IoT appli-

cations. BLE employs Gaussian Frequency Shift Keynig (GFSK) modulation,

with the transmission power of −20 to +20 dBm. It operates in 2.4 to 2.48

GHz frequency range, which is the same spectrum as WiFi. It is designed to

operate at a distance of 10 to 100 m, though typically at 10 m or less. It uses 40

channels, including 37 data channels and 3 advertisement channels with 2 MHz

bandwidth. From the channel perspective, as it can be seen in Fig. 5.10, the

spectrum of WiFi and BLE overlap with each other in several channels. There-

fore, to obtain an accurate angle, it is essential to consider the interference

of WiFi on BLE. By considering the distribution of interference and noise in

different BLE channels, we can find the most reliable angles. Moreover, BLE’s

operation mode come with Frequency Hopping (FH) method, allowing the mod-

ules to jump on data channels to avoid interference within BLE channels.

There are two different modes for data transmission on BLEs, including broad-

cast mode and connected mode. Devices use the broadcast mode to advertise

their presence, including some information about the device type, manufac-

turer, operating on advertisement channels. Once one of the advertised beacons

has been received on the broadcast bands, another device (master) initiates a

connection to this device (slave). The master and the slave devices agree on

several connection parameters during the connection establishment process, one

of which is the frequency hop distance, denoted by fhop. In order to send each

packet, master and slave devices hop through the 37 data channels by fhop

bands. Because the total number of channels is prime 37, the transmissions

jump through all accessible bands before repeating a channel that was previ-

ously used [183]. Fig. 5.11 illustrates a typical structure of a BLE-based GFSK

transceiver, including transmitter, wireless channel model, and receiver.
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Figure 5.11: Structure of the transmitter, wireless channel model, and receiver in the BLE
standard.

BLE Transmitter

The transmitted BLE signal is represented as

s(t) =

√

2E

T
cos (2πfct+ φ(t) + φ0) , (134)

where E, T , and fc denote the energy and period of the transmitted symbol,

and the carrier frequency, respectively. Since the GFSK modulation only affects

the phase of the signal, the amplitude of s(t), denoted by
√

2E/T would be

constant. Term φ0 represents the initial phase of the incident signal. Moreover,

the phase deviation φ(t) is obtained as

φ(t) =
πh

T

∫ t

−∞

+∞
∑

n=−∞

x[n]p(τ − nT )dτ, (135)

where h denotes the modulation index, defined as the ratio of the peak to

peak frequency deviation to bit rates. Note that the bandwidth of the signal

depends on the value of h, where the greater the value results in the wider

bandwidth. It is commonly assumed in BLE standard that h is between 0.45

to 0.55. Additionally, x[n] is the original baseband pulse sequence, which could

be +1 and −1. The Gaussian Filter (GF) p[k] is implemented in discrete-time

domain with a sample period of Ts on the baseband pulse sequence x[n], where

the symbol period is T . In this case, p[k] = p(Tsk) is obtained as follows

p(t) =
hTs

2σ
√
2π
e

−t2
2σ2 ~ rect(T, t), (136)
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where ~ is the convolution operator. Term σ is 0.13T/(BT ), where B is the 3

dB bandwidth of the GF (in BLE standard BT = 0.5). Additionally, rect(T, t)

is obtained as follows

rect(T, t) =







1

T
,

−T
2

6 t 6
T

2
0, otherwise

. (137)

Note that s(t) = Re{sb(t)ej2πfct}, where sb(t) represents the baseband version

of the transmitted signal, is obtained as

sb(t) = sbi(t) + jsbq(t)

=

√

2E

T

{

cos(φ(t) + φ0) + j sin(φ(t) + φ0)
}

. (138)

Then, we have s(t) = Re{sb(t)ej2πfct} = sbi(t)cos(2πfct) − sbq(t)sin(2πfct) =

sI(t)− sQ(t), where

sI(t) =

√

2E

T
{cos(2πfct)cos(φ(t) + φ0)} = (139)

√

E

2T
{cos(2πfct+ φ(t) + φ0) + cos(2πfct− φ(t)− φ0)},

and

sQ(t) =

√

2E

T
{sin(2πfct)sin(φ(t) + φ0)} = (140)

√

E

2T
{cos(2πfct− φ(t)− φ0)− cos(2πfct+ φ(t) + φ0)},

Wireless Channel

The transmitted wireless signal propagating in indoor environment gets re-

flected, refracted, diffracted, and scattered due to encountering different ob-

jects. Consequently, wireless signals become weaker in relation to the distance

they travel, known as the path loss effect. Moreover, receiver collects a vari-

ety of diverse phase delayed and power attenuated versions of the transmitted
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Figure 5.12: Structure of a typical Linear Antenna Array (LAA).

signal. Complex Finite Impulse Response (FIR) filter, denoted by h(t, τ) is im-

plemented to model and simulate the wireless multipath fading channel. In this

regard, the baseband channel impulse response, denoted by hb(t, τ) is calculated

as follows

hb(t, τ) =

N(t)
∑

k=1

ρk(t, τ)e
−jθk(t)δ(t− τk(t)), (141)

where N(t) is the number of resolvable multipath components and ρk(t, τ) de-

notes the attenuation of the kth path. Moreover, τk(t) and θk(t) = 2πfcτk(t)

represent the delay of the kth path and its associated phase shift, respectively.

BLE Receiver

The data being transmitted is modulated on the radio frequency carrier, so that

at the receiver it can be extracted accurately. As can be seen from Fig. 5.12,

there are Ne number of elements, aligned with the same distance d0 in a LAA

as the receiver. Once an MSA send data to BLE beacons, the incident signal is

received by different elements in the LAA. As stated previously, there are many

different interrupting factors that have a destructive impact on the transmitted

signal, including CFO, ISI, noise, and phase shifting. CFO occurs when the

receiver’s local down-conversion oscillator, denoted by fr, fails to synchronise

with the carrier frequency in the transmitted end fc. Occurrence of CFO is

expected as the incident signal in the BLE standard transmits between 2.4 and

2.48 GHz over one of the 37 data channels while the receiver oscillator is tuned

to a pre-defined frequency. As a result, the angle of the oscillator signal shifts
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around the expected instantaneous phase. In addition, noise strongly affects the

efficiency of the wireless communication systems, which is modelled as Additive

White Gaussian Noise (AWGN), n ∼ N (0, σ2). By considering all these effects,

the baseband received signal, denoted by rb(t) is obtained as

rb(t) =
(

sb(t) ∗ hb(t, τ)
)1

2
ej2π(fc−fr)t+φc(t) + n(t), (142)

where φc(t) denotes the phase shift. In the frequency flat channel, the delay

spread is small compared to the symbol duration. Therefore, it can be assumed

that s(t − τk(t)) = s(t). To characterize the channel, we define α(t) based on

Eqs. (141) and (142) as follows

α(t) =

N(t)
∑

k=1

ρk(t, τ)e
−jθk(t)+j2πfct+φc(t) = x(t) + jy(t). (143)

The received signal, therefore, can be expressed as follows

r(t) = α(t)s(t) + n(t). (144)

If the carrier frequency of the transmitter and the receiver is exactly the same,

the value of the in-phase and the quadrature part of the received signal should be

a constant. However, because of the oscillator manufacturing process there will

be a frequency gap. Therefore, the real r
(b)
i (t) and imaginary r

(b)
q (t) components

of the baseband received signal are expressed as

r
(b)
i (t) = r(t) cos(2πfrt) = α(t)s(t) cos(2πfrt) + ni(t) (145)

=

√

E

2T
α(t)

{

cos(2π(fc − fr)t+ φ(t) + φ0) +

cos(2π(fc + fr)t+ φ(t) + φ0)
}

+ ni(t),

r(b)q (t) = rq(t) sin(2πfrt) = α(t)s(t) sin(2πfrt) + ni(t) (146)

=

√

E

2T
α(t)

{

sin(2π(fc + fr)t+ φ(t) + φ0))−

sin(2π(fc − fr)t+ φ(t) + φ0)
}

+ nq(t).
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After passing through a Low-Pass (LP) filter and Analog to Digital Converter

(ADC), the discrete received signals by different elements are expressed as

R =









r1,1 · · · r1,Ne

...
. . .

...

rN,1 · · · rN,Ne









, (147)

where rl,k = rIl,k + jrQl,k
. Terms N and Ne represent the number of samples

per signal and the number of elements in LAA, respectively. Additionally, kth

column of R indicates samples received by element ek. To calculate the phase

difference between different elements, the magnitude/phase representation is

utilized. In this regard, R is converted into X, where xl,k = rAl,k
ejrφl,k with rφl,k

and rAl,k
are computed as

rφl,k
= arctan (

rQl,k

rIl,k
), (148)

rAl,k
= (r2Il,k + r2Ql,k

)
1

2 . (149)

Consequently, samples gathered by element ei, denoted by xi = [x1,i, . . . , xN,i)]
T ,

is multiplied by the complex conjugate of samples from element ej, denoted by

xj, where xi and xj are the ith and jth columns of matrix X. The resulting

phase difference is given by

∆Φ(i,j) = xi × x∗
j (150)

where ∆Φ
(i,j)
l,1 = rAl,i

rAl,j
ej(rφl,i−rφl,j ). Therefore, the angle of incident signal can

be calculated as

θ(i,j) = arcsin
λ∆Φ(i,j)

2πdi,j
, (151)

where λ = c/fc and fc denote the wave length and the carrier frequency of

signal, respectively. Moreover, c is the speed of light, about 3 × 108m/s, and

di,j = |j − i|d0.

To calculate the location of MSAs, the AoA scheme uses triangulation theory.
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Figure 5.13: Location estimation based on the AoA method.

Use of at least two BLE beacons with known positions in this approach con-

tributes to continuous tracking. It is assumed that the incident signal from

MSAn with the coordinate of (xn, yn) is received by B BLE beacons with the

coordinate of (xb, yb), for (1 6 b 6 B). As it can be seen from Fig. 5.13, θb,n,

which is obtained according to Eq. (151), indicates the angle between x-axis

and the line between MSA and BLE beacon. Location of the MSA is estimated

as

xn =
Dk,l tan θl,n

tan θl,n − tan θk,n
, (152)

yn =
Dk,l tan θk,n tan θl,n
tan θl,n − tan θk,n

, (153)

where Dk,l is the distance between the lth and kth BLE beacons. This completes

presentation of the BLE wireless signal model. Next, we present our proposed

BLE processing fusion framework.

5.2.2 Proposed Wireless Signal Processing/Fusion Frame-

work

Our system model consists of user devices that are required to be found (lo-

calized), and known location BLEs embedded with LAA. Once a user device

send data to the BLE, the incident signal is received by different elements in

LAA. It is assumed that incident signal consists of different packets, where each

packet has a length of Np samples, and N samples are received by one ele-

ment before switching to the next element. After sending packet pi through

the data channel with the frequency fj, the next packet pi+1 would be sent
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through fj+1 = fj + fhop. The wireless signal received at the BLE beacon, how-

ever, is the distorted version of the transmitted signal due to the deregulation

of transmitter and receiver and the multipath and pathloss effects. Obtaining

phase difference based on the raw data, therefore, leads to a noticeable error in

angle estimation. For this reason, the first step towards angle detection is data

processing, including phase compensation.

Noise Robustness

Owing to the existence of reflective obstacles, walls and movement of people,

indoor environments suffer from multipath, shadowing, and pathloss effects.

Therefore, BLEs receive a sum of different transmitted signal versions, where

the interference of a large number of signals can cause either signal amplification

or attenuation. For this reason, we eliminate this effect by applying Nonlinear

Least Squares (NLS) curve fitting on the raw data. Given a function f(t) of a

variable t, a received packet pi with Np samples, including I/Q samples can be

represented by

fI(t;AI , fc, φI,0) = AI sin (2πfct+ φI,0) (154)

and fQ(t;AQ, fc, φQ,0) = AQ sin (2πfct+ φQ,0). (155)

Our goal is to solve Eqs. (154) and (155) to obtain the best value of γI ≡
(AI , fc, φI,0) and γQ ≡ (AQ, fc, φQ,0) to diminish the effect of noise on the re-

ceived signal. Toward this goal, first we pick an initial guess for γI and γQ, and

define

dβI , rI(t)− fI(t;AI , fc, φI,0), (156)

and dβQ , rQ(t)− fQ(t;AQ, fc, φQ,0). (157)

To obtain a linearized estimate for the changes of γI and γQ, it is essential to

achieve dβI = 0 and dβQ = 0. In this regard, we have dβ = Adγ, where A
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denotes a (2× 3) matrix is defined as

A =









∂fI
∂AI

|γI
∂fI
∂fc

|γI
∂fI
∂φI,0

|γI
∂fQ
∂AQ

|γQ
∂fQ
∂fc

|γQ
∂fQ
∂φQ,0

|γQ









. (158)

By applying the transpose of A to both sides, we have

ATdβ = (ATA)dγ. (159)

Eq. (159) can be solved by applying standard matrix techniques such as Gaus-

sian elimination. The best value of γ is obtained by using this method iteratively

until dγ is smaller than a pre-defined threshold.

Eliminating Switching Error

As mentioned previously, we calculate the angle of incident signal based on

the phase difference obtained from different elements. However, due to the

phase shift of oscillator in both transmitter and receiver sides and also switching

of elements, the value of ∆Φ(i,j) for different i, j is not the same, leading to

different values of θ(i,j). To solve this problem, we apply Kalman Filter (KF)

on the phase difference obtained in different snapshots. To formulate the KF,

an intermediate state vector ∆Φ̂(i,j) is defined, modeling the smoothed phase

difference as the state-model given by

∆Φ̂(i,j)(k) = ∆Φ̂(i,j)(k − 1) + ρ(k). (160)

On the other hand, the observation model is defined by ∆Φ(i,j) = ∆Φ̂(i,j)(k) +

τ (k), where the measured phase difference ∆Φ(i,j) is used as the input obser-

vation to the KF. Terms ρ(k) and τ (k) are Gaussian zero-mean variables used

in the smoothing model with their second-order statistics (Q and R) being

obtained through an initial calibration phase.
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Elimination of Frequency Error

There are 37 BLE channels to transmit data packets. However, it is evident

that the angle obtained from different channels are different. One of the most

important reason for that would be the interference of WiFi channels with

BLEs. Therefore, it is essential to consider the impact of BLE’s channel on

the accurate angle. Toward this goal, after the calculation of phase difference

based on Eq. (160), and calculating θ(i,j) in Eq. (139), the compensation vector

χ is defined to add to the estimated θ(i,j) to compensate the impact of BLE’s

channel. In this regard, we divide −90◦ ≤ θ ≤ 90◦ into 36 intervals, where

θk = 5k− 90◦, k ∈ {0, . . . , 36}. For −90◦ ≤ θ ≤ 90◦ we obtain θestimate in all 37

channels in l iterations, and calculate the Mean Square Error (MSE) as

ωk,ch =
1

l

l
∑

q=1

(θk − θestimate
ch,q )2, (161)

where ch = 0, . . . , 36, and k = 0, . . . , 36. In this case, we have a (Na × Nch)

coefficient matrix, denoted by ω, where Na and Nch denote the number of tested

angles and the number of data channels in BLE technology, respectively. In this

case, lth column of matrix ω denotes the MSE of angle θk in different channels.

To obtain χch associated with the compensation vector χ, we apply a Gaussian

Filter (GF), denoted by N (µch, σch) on lth column of matrix ω. Then, we obtain

the final phase difference θfinalch as follows

θfinalch = θestimate
ch + χch. (162)

5.2.3 Experimental Results

The proposed wireless signal processing methods are applied on a real dataset

consisting of I/Q samples collected by SimpleLink Angle of Arrival Booster

Pack. As shown in Fig. 5.14, this package includes RTLS master, RTLS slave,

and RTLS Passive consisting of two linear antenna arrays with three elements.

Due to availability of two linear antenna arrays, RTLS Passive can support
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Figure 5.14: The structure of RTLS Device, including RTLS Passive, Slave, and
Master devices [210].

an area with −180◦ ≤ θ ≤ 180◦. Without loss of generality, we analyze the

data obtained from one antenna array to support an area within −90◦ ≤ θ ≤
90◦. Fig. 5.15 illustrates all data, we have from a transmission signal. The

carrier frequency and space distance between each elements d0 are 2.4 GHz and

3.5 cm, respectively. The sample frequency is 250 kHz. At the beginning of

the connection, the RTLS master shares some connection parameters with the

computer. The RTLS slave is a device that we want to find its location, and

RTLS passive receives packets from the slave device in terms of I/Q samples.

Each data packet consists of 511 I/Q samples, where each N = 16 samples

received by one element, before switching to another one. We eliminate the last

31 samples in each packet, since there is no switching in transmission of these

samples. It is assumed that the first packet is sent randomly on one of the

BLE’s channel, however, other packets are sent on the channels, selected based

on the FH method with fhop = 6. After transmitting a packet completely, i.e.,

N = 511 samples, the received I/Q samples are fitted to sinusoidal signals based

on the NLS curve fitting to eliminate the effect of noise on the data. Fig. 5.16

illustrates the real Inphase data and curve fitted signal.

To obtain the angle of arrival, we need to calculate the phase difference between

signals received by different elements. In our case of study, the number of

elements in an array antenna in the LAA is equal to 3. Therefore, we have

3 phase differences in each snapshot, including ∆Φ(1,2), ∆Φ(2,3), and ∆Φ(1,3),
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Figure 5.15: The raw received data sent from slave nodes received by LAA in passive
RTLS.

Figure 5.16: Curve fitting for Inphase samples of a packet with the length of 511.

where ∆Φ(1,2) = ∆Φ(2,3) =
1

2
∆Φ(1,3), since d1,3 = 2d1,2 = 2d2,3.

As it can be seen from Fig. 5.17, there are specific phase differences between

signals received by different elements. However, the value of phase difference

is not equal for all samples in a particular packet. In addition, the value of

∆Φ(i,j) for different i, j is not the same, leading to a remarkable error in the

angle detection. This problem is tackled in our work by applying the KF on the

phase difference obtained from different elements. To illustrate the performance

of our processing method, we select 3 snapshots among m = 10 snapshots

collected during one packet, including the first, the middle and the last one, to

investigate the phase difference between different elements. According to the

results shown in Tables 5.3 and 5.4, by applying NLS curve fitting and KF on

raw data, the phase difference obtained from different samples and different
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Figure 5.17: Phase difference between signals received by different elements in LAA.

elements are the same, resulting in a low error in angle detection.

Table 5.3: Phase differences obtained from different elements before applying KF,
where θreal = −4 degree, and the real value of phase differences should be equal to
∆Φ(1,2) = −8, ∆Φ(2,3) = −8, and ∆Φ(1,3) = −16 degree.

Type 1st snapshot 5th snapshot 10th snapshot

∆Φ(1,2) −3.9423 −15.3012 −10.2659

∆Φ(2,3) −11.3190 −12.9405 3.5454

∆Φ(1,3) −15.2613 −28.2418 −6.7205

Considering the fact that there are 37 data channels for transmitting signal, each

packet is being sent on different frequency, in which fc = 2.4× 109 + (κ+ 2)×
2× 106 for (0 ≤ κ ≤ 10), and fc = 2.4× 109 + (2κ+3)× 106 for (11 ≤ κ ≤ 36).

Due to the same frequency bandwidth between WiFi and BLE technologies,

BLE technology suffers from interference with WiFi. As a result, the value

of θ needs to be compensated after the AoA is measured due to variability in

results through frequency. Therefore, a constant offset χ, which is calculated

based on the GF is applied on different frequencies to boost performance of the

BLE-based AoA estimation. Table 5.5 shows the compensation values used for

each frequency.

Fig. 5.18 compares the angle estimation error of our proposed processing method

with such a case where there is no processing techniques on raw data. Accord-

ingly, our proposed framework significantly reduces the AoA error and displays
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Table 5.4: Phase differences obtained from different elements after applying KF,
where θreal = −4 degree, and the real value of phase differences should be equal to
∆Φ(1,2) = −8, ∆Φ(2,3) = −8, and ∆Φ(1,3) = −16 degree.

Type 1st snapshot 5th snapshot 10th snapshot

∆Φ(1,2) −8.1851 −8.1813 −8.2438

∆Φ(2,3) −8.1704 −8.1824 −8.2539

∆Φ(1,3) −16.3555 −16.3909 −16.5578

Table 5.5: Frequency compensation χ over all BLE channels.

Channel 37 0 1 2 3
χch 0 −2 −4 7 15

Channel 4 5 6 7 8
χch 18 14 8 6 5

Channel 9 10 38 11 12
χch 1 1 0 3 5

Channel 13 14 15 16 17
χch 8 9 10 13 11

Channel 18 19 20 21 22
χch −5 −3 −2 1 0

Channel 23 24 25 26 27
χch 3 5 8 12 15

Channel 28 29 30 31 32
χch 15 −7 5 8 4

Channel 33 34 35 36 39
χch 2 3 1 −4 0

errors of less than 10◦ on most frequencies from −60◦ to 60◦. It is worth men-

tioning that when the signal propagation direction is near parallel to the antenna

array, the phase difference are almost random. Therefore, there exists a consid-

erable error from −60◦ to −90◦ and 60◦ to 90◦ for most frequencies, due to the

hardware setup of our device.
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Figure 5.18: Compensated AoA after applying NLS curve fitting, KF, and GF.

5.3 Fusion Pre-Processing in Presence of Rayleigh

Fading Channel

In this Section, we seek to investigate the main challenges of indoor environment,

including Carrier Frequency Offset (CFO), Inter-Symbol Interference (ISI), mul-

tipath effect, noise, and phase shifting faced by the AoA. By considering the

fact that there are a large number of obstacles in the indoor environment, it is

fairly unlikely that there would be a Line of Sight (LoS) propagation between

a mobile smart agent and BLE beacons. For the first time in the literature, to

the best of our knowledge, we simulate the wireless channel of the BLE-based

indoor environment by Rayleigh fading channel accompanied by Gaussian Fre-

quency Shift Keying (GFSK) modulation. The BLE interface employs GFSK

modulation technique, which is a spectrally efficient modulation form for digital

communication. GFSK modulator is almost the same with FSK modulator, in

which different carrier frequencies are assigned depending on the transmitted

bit, with a difference that a Gaussian Filter (GF) is applied on the square-wave

signal before modulation. Despite all the benefits that come with GFSK, in-

cluding sideband power reduction resulting in low interference with neighboring

BLEs’ channels, the GFSK modulation suffers from the ISI issue. Towards this

goal, we employ fusion processing techniques on raw data prior to utilization.
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The proposed processing techniques consists of the following three phases:

• NLS Curve Fitting, which is applied on the received signal to eliminate the

impact of noise.

• Zero Forcing (ZF) Equalizer, which is introduced to compensate the effect

of Rayleigh channel fading.

• Fast Fourier Transform (FFT)-based Phase Measurement, which is applied

on the received signal, before measuring the phase difference, as the trans-

mitter frequency is not exactly known.

The effectiveness of our proposed processing method is evaluated via an exper-

imental testbed, where In-phase and Quadrature (I/Q) samples, modulated by

GFSK, are collected by BLE beacons. Additionally, there are Vicon cameras in

our testbed to provide ground truth. With the knowledge of the precise location

of MSAs during their movement, we consider the effect of noise and Rayleigh

fading channel on the transmitted signal. By employing our proposed fusion

processing techniques, we track MSAs with high accuracy.

To obtain the AoA based on the phase difference, it is essential to eliminate the

impact of noise and fading channel on the received signal. Towards this goal,

we propose a fusion framework consisting of the following three phases:

5.3.1 Noise Robustness

We apply NLS curve fitting on the raw received data to eliminate the effect of

noice, which is described in the previous Subsection.

5.3.2 Zero Forcing Equalization

Equalizer is used to minimise the ISI and counteract the distortion caused by

a signal transmitted through the fading channel. Since it is assumed that the

multipath fading channel in this work is FIR, i.e., different delayed-versions of

a same signal are received, we can use the ZF equalizer as the Infinite Impulse

Response (IIR) filter. In this case, the effect of the estimated channel, denoted
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by α(t), on the received signal is compensated by the transfer function of the

equalizer, i.e.,

Heq(jw) =
1

| H(jw) |e
−j∠H(jw), | w |6 Ws (163)

where H(jw) is the transfer function of the channel, and Ws is the signal band-

width [184].

5.3.3 Phase Compensation

After eliminating the effects of noise and fading channel on the received signal,

we need to calculate the phase difference between two signals received by differ-

ent elements. In this regard, first the DC offset of the compensated signals are

removed. Then, by applying FFT on each signal and taking the complex point

in each FFT, the phase difference between two points is calculated according to

Eq. (150).

5.3.4 Simulation Results

To evaluate the proposed fusion framework, we used an experimental testbed

consisting of four BLE beacons, located at the corner of a (4.5× 4.5) m2 rect-

angular indoor environment, and four Vicon cameras to provide ground truth.

As a proof of concept experiment, we focus on tracking a single Mobile Smart

Agent (MSA) moving in our environment based on the phase difference between

I/Q samples collected by LAA. Extensions to the scenario with several MSAs

moving in the environment possibly in presence of adversarial agents and/or

cyber attacks (such as Denial of Service (DOS) attacks to disrupt cooperation

within the MSAs) is the focus of our ongoing research.

There are three elements in each LAA, where the distance between two el-

ements is λ/2. With the knowledge of precise location of the MSA during

its movement, I/Q samples are generated according to the GFSK modulation.

We evaluate the effectiveness of our proposed processing method in three dif-

ferent channel models: (i) AWGN model, where SNR is equal to 10 dB; (ii)
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Rayleigh fading channel, which is run in the MATLAB software (R2018a) by the

comm.RayleighChannel function. In this function, it is assumed that our chan-

nel model is flat fading with [0, 1e−4, 2.1e−4] path delay, and filtered Gaussian

noise is utilized as the fading technique. Moreover, to consider the effect of the

mobility of the MSA on the channel model, we assume a flat Doppler spectrum,

and; (iii) A combination of AWGN and Rayleigh fading channel. To illustrate

the superiority of our fusion processing method, we first transmit a signal by the

MSA from five different angles, where θactual ∈ {10◦, 30◦, 50◦, 70◦, 90◦}. Then,

we evaluate the effect of channel model on the angle of the incident signal,

obtained based on Eq. (151), and compare the performance of our proposed

processing method with MUSIC [185] and Capon [108] algorithms.

Table 5.6 illustrates the impact of AWGN channel model on the AoA estimation

framework and compares the efficiency of our proposed processing method with

MUSIC and Capon algorithms. The results in Table 5.6 demonstrate the need

for processing techniques in order to obtain the accurate angle of arrival. The

gap between our processing method, MUSIC, and Capon is, however, negligible

as noise is only considered in this scenario. It is worth mentioning that the

proposed processing scheme performs significantly better when multipath fading

channel is considered in addition to noise, which is an unavoidable consideration

in indoor environments.

We investigate the effect of Rayleigh fading channel on the AoA estimation ap-

proach in Table 5.7. As it is seen, the proposed processing framework exhibits a

higher accuracy when compared with MUSIC and Capon algorithms. This can

be explained by noting that the destructive impact of fading channel on the re-

ceived signal is eliminated by employing ZF Equalizer in our processing method.

Moreover, we compare the performance of our proposed processing method with

MUSIC and Capon algorithms, where the wireless channel is modelled by the

combination of AWGN and Rayleigh fading. With the same arguments as ear-

lier, Table 5.8 illustrates the unreliability of MUSIC and Capon methods against

multipath fading while the proposed fusion approach performs reliably.

Figs. 5.19 and 5.20 illustrate rectangular and random trajectories, which are

generated by the movement of an MSA in our indoor environment. In this

scenario, the wireless channel is modelled by a combination of AWGN and
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Table 5.6: Estimated angle of incident signal in AWGN channel model, obtained without
processing, by employing the proposed fusion framework, MUSIC and Capon algorithms.

Actual Angle 10◦ 30◦ 50◦ 70◦ 90◦

Without Processing 21.3 59.2 52.2 58.4 82.7
With Processing 11.8 31.0 50.2 71.9 89.3

MUSIC 8.9 30.4 50.1 70.9 89.1
Capon 10.4 30.9 49.1 70.4 90.6

Table 5.7: Similar to Table 5.6 but with Rayleigh Fading channel model.

Actual Angle 10◦ 30◦ 50◦ 70◦ 90◦

Without Processing 0.6 22.1 37.6 57.4 99.5
With Processing 9.7 29.7 49.7 69.7 89.7

MUSIC 20.2 37.7 45.4 63.9 94.3
Capon 42.6 66.3 29.2 22.8 42.6

Table 5.8: Similar to Table 5.6 but with AWGN and Rayleigh Fading channel model.

Actual Angle 10◦ 30◦ 50◦ 70◦ 90◦

Without Processing 22.2 55.1 91.8 45.2 118.9
With Processing 8.6 32.1 48.4 83.1 91.3

MUSIC 14.3 19.8 49.3 76.1 106.8
Capon 41.2 45.6 32.4 29.9 32.5

Rayleigh fading channel. As it can be seen from Figs. 5.19 and 5.20, true flight

position, which is shown with “blue color”, is obtained by Vicon cameras, and

“orange color” illustrates the estimated path according to our proposed fusion

framework. To illustrate the impact of noise, we consider two scenarios with

the same condition, while in the fist one, depicted in Figs. 5.19(a) and 5.20(a),

SNR= 15 dB, and in the second one (Figs. 5.19(b) and 5.20(b)) SNR is set

equal to 20 dB. The fluctuation of the estimated paths in Figs. 5.19(a) and

5.20(a) are higher than those obtained in Figs. 5.19(b) and 5.20(b) due to the

high level of noise. In both scenarios, however, the estimated paths in the most

points are approximately the same with the true flight positions.
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(a) (b)

Figure 5.19: Estimated rectangular trajectory based on the true flight position and our
proposed processing method for the combination of Rayleigh fading and noise with (a)
SNR=15 dB, (b) SNR=20 dB.

(a) (b)

Figure 5.20: Similar to Fig. 5.19 but with random trajectory.

5.4 CNN-based AoA localization

In this Section, we propose an efficient Convolutional Neural Network (CNN)-

based indoor localization framework to tackle the aforementioned issues specific

to BLE-based settings. We consider indoor environments without presence of

Line of Sight (LoS) links affected by Additive White Gaussian Noise (AWGN)

with different Signal to Noise Ratios (SNRs) and Rayleigh fading channel. In

such real indoor environments, mobile agents and BLE beacons are not always

located along the same line, which in turn leads to elevation angle. Although
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Figure 5.21: Block diagram of the BLE transceiver, wireless channel model, and the proposed
CNN-based AoA localization framework.

the azimuth angle of the incident signal is utilized for location estimation, the

destructive effect of elevation angle should be considered. Therefore, we gen-

erate AoA measurements in a 3-D indoor environment based on the subspace-

based angle estimation framework. The raw AoA measurement data, which

is obtained in the previous phase, is directly used by the CNN. The input of

the CNN architecture is an angle image, where each pixel indicates the spatial

spectrum of the AoA measurement.

The proposed CNN-based AoA framework is performed in two phases, i.e., AoA

measurement in a 3-D indoor environment, and location estimation based on

the CNN algorithm, described below.

5.4.1 AoA measurement in a 3-D Indoor Environment

We consider a subspace-based angle estimation in a 3-D environment, where the

incident signal has both azimuth θ and elevation φ angles. There areNe elements

in the LAA, receiving the same signal with different phases. By assuming

λ = c
fc

, where c = 3× 108 m/s is the speed of light, the discrete received signal

by element e, which is sampled at the discrete time slot m, denoted by re[m],

is obtained as follows

re[m] = s
′

[m]Θ(θ, φ)[m] + n[m], (164)
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where Θ(θ, φ) denotes the array vector, defined as follows

Θ(θ, φ) =

[

exp(−j 2πd
λ

cos θ cosφ),

exp(−j 2πd
λ

sin θ cosφ), exp(−j 2πd
λ

sinφ)

]T

, (165)

where d indicates the space between two consecutive elements of the LAA, which

is equal to λ
2
. By assuming M samples in each received signal, we have

r = [r1[m] . . . rNe
[m]]T , (166)

and s
′

= [s
′

1[m] . . . s
′

Ne
[m]]T . (167)

Therefore, we can express the received signal in a compact form as

r = Θs
′

+ n. (168)

The spatial spectrum function, denoted by P (θ, φ), is defined as

P(θ, φ) =
1

ΘH(θ, φ)ENEH
NΘ(θ, φ)

, (169)

where EN indicates the noise eigenvectors of the covariance matrix R = E[r, rH ].

Consequently, the minimum peak of P(θ, φ) illustrates the direction of the inci-

dent signal. Given the angle of the signal from at least two BLE beacons with

known positions, the location of the mobile agent can be calculated. The coor-

dinate of the BLE beacon b is denoted by (xb, yb), and θb,n indicates the angle

between x-axis and the line between the BLE beacon and the mobile agent.

Then, the estimated location of the mobile agent, denoted by L̂n(t) = (xn, yn),

can be estimated using Eq. (152) and (153).

5.4.2 CNN-based Location Estimation

Given the angle of the incident signal, a data-driven approach, which is a combi-

nation of a CNN architecture and a subspace-based angle estimation algorithm,
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Figure 5.22: (a) Experimental data collection of the CNN-based AoA localization framework. (b)
An angle image, used as the input of the CNN-based framework.

is designed to track mobile agents during their movements. The proposed archi-

tecture, as shown in Fig. 5.21, consists of a series of convolutional layers, pool-

ing layers, fully connected layers, and normalization layers. Each convolutional

layer, which applies a convolution operation to the input to extract spatial fea-

tures, is followed by a pooling layer to down-sample the data to reduce the spa-

tial dimension and the computation time. In each time slot/location, an angle

image is provided as the input to the CNN, which is generated by feature matri-

ces constructed based on Eq. (169), i.e., P(θ, φ, t) = [P1(θ, φ, t), . . . ,P4(θ, φ, t)].

Term Pi(θ, φ, t), for (i ∈ {1, . . . , 4}) indicates the spatial spectrum of the re-

ceived signal by the ith BLE beacon. This spatial spectrum is reshaped to be

an square angle image (see Fig. 5.21). Each angle image is then labeled by the

respective ground truth position Ln(t) = (xn, yn). By considering the fact that

the angle of the incident signal θ could be valued between 0◦ and 180◦, there are

181 samples in Pi(θ, φ, t), where Pi(θ, φ, t) peak in the corresponding θ. Due to

the effects of noise, multi-path, and elevation angle, however, the peak of the

spatial spectrum is likely to mismatch the real value θ. Therefore, the goal is

to use CNN as a function approximation to estimate the location of the mobile

agent from the angle image captured in each time slot. The overall structure

of the proposed CNN-based AoA framework is shown in Fig. 5.21. To train the

CNN-based AoA framework, the Mean-Squared Error (MSE) is used as the loss
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Figure 5.23: Accuracy and loss of the proposed CNN-based AoA scheme.

function L(t) calculated as

L(t) = 1

2

(

Ln(t)− L̂n(t)
)2

, (170)

where the estimated location of the mobile agent L̂n(t) is defined in Eqs. (152)

and (153).

Figure 5.24: Estimated rectangular and random trajectories in a 3-D indoor environment with
the presence of Rayleigh fading and noise.
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5.4.3 Simulation Results

To evaluate the proposed data driven and BLE-based AoA localization, we used

a real experimental testbed consisting of four BLE beacons and Vicon cameras,

positioned at the corner of a rectangular indoor area (5 × 5) m2 to track a

mobile agent and provide ground truth, respectively (see Fig. 5.22(a)). We

generated a dataset in three different channel models: (i) AWGN model, where

SNR is altered between 10 dB and 20 dB; (ii) Rayleigh fading channel, which

is implemented in MATLAB (R2020a) by the comm.RayleighChannel function,

and; (iii) A combination of AWGN and Rayleigh fading channel in a 3-D indoor

environment, divided into 81 square zones with dimension of (0.5 × 0.5) m2.

Although elevation angle is not considered for location estimation, it has a

destructive impact on the special spectrum of the AoA measurement, leading

to a specific error in the users’ tracking. For this reason, it is assumed that the

incident signal is received by different elevation angles. In the training phase,

76, 545 (angle image, location) training points are utilized corresponding to 81

random locations within the area. As it can be seen from Fig. 5.22(b), angle

images contain 724 sets of AoA measurements generated by the subspace-based

algorithm. This original angle image is of size 4 × 181 and is reshaped to be

an square angle image of size 28 × 28 (zero padding is performed to fit the

CNN model preventing data loss). In the next phase, we use 15, 309 images as

the validation set and 10, 206 for our test set, which are all previously unseen

and randomly chosen. For the CNN model, we feed our data to three 2-D

convolution layers, each with 196 filters with 4 kernel size. We added maximum

pooling layer and utilized sigmoid as an activation function. Finally, within the

dense layers, we used linear function as the activation function.

Fig. 5.23 illustrates the accuracy and the loss of the proposed CNN-based AoA

framework, respectively. As it can be seen from Fig. 5.23, increasing the number

of epoches increases the model accuracy and decreases the model loss, which

shows that the model is well trained. The proposed CNN-based AoA framework

estimates/tracks mobile agents with 87% accuracy in the presence of noise,

Rayleigh fading, and elevation angle. Fig. 5.24 compares the rectangular and

random trajectories, estimated by our proposed CNN-based AoA framework,

the 3-D MUSIC and the true flight position, obtained by Vicon cameras. In
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both scenarios, the estimated paths by the proposed CNN-based AoA framework

in the most points closely follows that of the true flight positions.

5.5 Deep Q-Learning-based Energy-optimized LoS/NLoS

Connection

In this Section, we aim to address the unbalanced energy consumption issue, the

location error caused by the NLoS connections, and the time varying behavior

of indoor environments. In this context, we investigate an autonomous and

homogeneous indoor localization framework including fixed and known location

UWB beacons covering the area of interest. The goal is to monitor/track user’s

movement with high accuracy in the presence of NLoS condition. Due to the

limited battery life of UWB beacons and the computational complexity of the

localization phase, it is essential to minimize the number of cooperating nodes

for localization. The novel approach we are taking here is to train the mobile

user to be localized through the optimal UWB beacons with LoS links, while

maintaining a balance between the remaining battery life of all beacons. In

summary, this work makes the following key contributions:

• Due to the reflective obstacles such as walls and human body, indoor envi-

ronments suffer from NLoS connections, which degrade the location accu-

racy exponentially. Without applying complex NLoS mitigation methods,

we introduce an autonomous localization framework, where the mobile user

is trained to be localized by UWB beacons with LoS conditions at each

time/location.

• In such a scenario that a set of UWB beacons with LoS condition mostly

contribute to localization, their batteries would be fully drained in a short

period of time. It is, therefore, imperative to consider the remaining bat-

tery life of beacons as a selection criteria. Analytical anchor node selection

frameworks are unable to cope with the dynamic nature and time-varying

behavior of indoor environments. We, therefore, target development of

an adaptive anchor selection framework efficiently copes with the dynamic

nature of indoor environments. Despite the surging interest in the anchor
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node selection frameworks, there is no Reinforcement Learning (RL)-based

framework concerning a trade-off between the remaining battery life of

UWBs and localization accuracy. The proposed DQLEL framework ad-

dresses this gap via a RL-based formulization with the goal of maintaining

a balance between the location error by selecting UWB beacons with the

LoS condition and the remaining battery life of UWB beacons.

The effectiveness of the proposed DQLEL framework is evaluated through com-

prehensive simulation studies in terms of the location error, the mean deviation

of UWB’s remaining battery life, the link condition, and the cumulative rewards.

Simulation results illustrate the efficiency of the proposed DQLEL scheme in

comparison to its state-of-the-art counterparts over all the aforementioned as-

pects.

5.5.1 System Model and Problem Description

Our research scenario is a corridor inside a building (e.g., an office or a hotel

building), consisting of N rooms where each room is equipped with a synchro-

nized UWB beacon as the receiver node, denoted by UWBi, i = 1, . . . , N . We

also consider a mobile user as the transmitter node, who randomly moves within

the corridor. The reception range (assumed to be equal) and the battery life of

UWB beacons at time slot t are denoted by Ri and Bi,t, for (1 ≤ i ≤ N), respec-

tively. Due to the existence of reflective obstacles such as walls and movement

of other users, such indoor environments suffer from multipath, shadowing, and

pathloss effects, which are known by NLoS links. Therefore, the transmission

link between UWB beacons and the user at each location can be either LoS

or NLoS. Despite the ToA approach, where a strict synchronization is required

between the transmitter and the receiver, only synchronization between UWB

beacons is required in the TDoA. By relaxing the assumption that all UWB

beacons are synchronized, our objective is to train the user to be localized

through an optimal set of UWB beacons with LoS links, without draining the

battery of certain UWB beacons. In this Subsection, we present the wireless

signal model of the IR-UWB standard and formulate the transmitted signal,

wireless channel, and the received signal to extract the user’s location through
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the time information. Afterwards, the energy consumption model of the UWB

beacons as the receiver nodes will be introduced. A summary of the notations

used hereinafter is provided in Tables 5.9.

IR-UWB Wireless Signal Model

In the IR-UWB technology, sequences of short time-domain impulses transmit

over a high-bandwidth radio spectrum resulting in an improvement in data

rate and localization accuracy for short-range communication. We utilize the

Time Hopping (TH) technique as one of the efficient Code Division Multiple

Access (CDMA) schemes that guarantees the optimal pair of codes with high

probability by increasing the number of chips per symbol. Considering the Pulse

Amplitude Modulation (PAM) method, the transmission signal from mobile user

u is given by

su(t) =
∞∑

n=−∞

pu(n)
Nc−1∑

s=0

cu(s)w(t− nTs − sTc − θu) (171)

where Ts denotes the symbol time, when there are Nc chips with duration of Tc

in each symbol. Terms w(t) and θu represent the normalized impulse and the

time asynchronism which has a uniform distribution within [0, Ts], respectively.

Finally, terms pu(n) ∈ {−1, 1} and cu(s) ∈ {0, 1} are the Independent and

Identically Distributed (IID) information symbols, and the multiple access code

of the mobile user u, respectively. In indoor environments, UWB beacons, typ-

ically, receive a number of phase delayed and power attenuated versions of the

transmitted UWB signal from different users, affected by Additive White Gaus-

sian Noise (AWGN). The received signal by UWBi, denoted by ri(t), therefore,

can be expressed as

ri(t) =
Nu∑

u=1

√

Pu

N(t)
∑

k=1

ρu,k(t, τ)su(t− τu,k(t)− τi) + n(t), (172)

where N(t) represents the number of detachable paths, and Nu is the number of

users in the experimental indoor environment. Terms ρu,k(t, τ) = βu,k(t, τ) exp (jΦu,k(t, τ))

and τu,k(t) denote the attenuation and the delay of the kth path, where βu,k(t, τ)
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and Φu,k(t, τ) represent the path amplitude and phase, respectively. Term τi

represents the ideal time information, which is equal to τi = di/c, where di is

the distance between mobile user u and UWBi, and c is the speed of light,

about 3 × 108 m/s. Term n(t) represents the AWGN channel, which is mod-

elled by n(t) ∼ N (0, σ2). Finally, term Pu denotes the information of random

captured powers. Note that, βu,k(t, τ) is the Nakagami-m random variable as

the small-scale channel coefficient of the link between the user and the UWB

beacon, where m indicates the degree of fading severity. By assuming that

there is a strong LoS path between the transmitter and the receiver, the radio

propagation is modelled by Rician fading channel model, otherwise, it would be

Rayleigh fading. More specifically, m = 1 represents the Rayleigh fading, while

m > 1 is for Rician channel model. Under the Nakagami-m fading assumption,

the small-scale channel gain denoting by |ζk|2 ∼ Γ(m, 1/m) is a normalized

independent and identically distributed (i.i.d.) Gamma random variable. The

Probability Density Function (PDF) of the power fading is expressed as

f|ζk|2(x) =
mm

Γ(m)
xm−1e−mx, x > 0 (173)

where Γ(·) is the Gamma function. In an UWB positioning system, the user’s

location can be obtained from the estimated CIR, which is expressed as

h(t, τ) =
Nu∑

u=1

N(t)
∑

k=1

ρu,k(t, τ)δ(t− τu,k(t)− τi), (174)

where the first maximum peak of the estimated CIR in the LoS condition is as-

sociated with the delay of the first path. TDoA scheme determines the location

of users by calculating the time difference between the transmitted signal from

the user and the signals received by at least two UWB beacons in a 2-D indoor

environment. In such a scenario that the corresponding user is located in the

reception range of UWBi and UWBj, the TDoA information, denoted by Tij,
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is given by

Tij = τi − τj =
√
(
xt − xi

)2
+
(
yt − yi

)2 −
√

(
xt − xj

)2
+
(
yt − yj

)2

c
, (175)

where τi and τj represent the first peak of the estimated CIR of UWBi and

UWBj. In addition, (xt, yt), (xi, yi), and (xj, yj) denote the locations of the

corresponding user at time slot t, UWBi, and UWBj, respectively. This com-

pletes the description of the UWB wireless signal model. Next, we introduce

the RL background.

IR-UWB Energy Consumption Model

Due to the limited battery life of UWB beacons as the receiver nodes, it is

crucial to extend the lifetime of beacons. Toward this goal, first we present

the energy consumption of UWB beacons [187]. The power consumption of an

IR-UWB receiver Pr is expressed as

Pr = Pd + Pn, (176)

where Pd and Pn represent the circuit components’ power consumption associ-

ated with the detection scheme, and the rest of the components, respectively.

In such a case, Pd and Pn are calculated as follows

Pd = MPCOR + ρcPADC + PLNA + PV GA, (177)

and Pn = ρr(PGEN + PSY N + PEST ). (178)

where PCOR, PADC , PLNA, and PV GA denote the power consumption of the

correlator branch including a mixer and an integrator, the Analog-to-Digital

Converter (ADC), the Low Noise Amplifier (LNA), and the Variable Gain Am-

plifier (VGA), respectively. Term M denotes the number of RAKE fingers at

the receiver side, which is assumed to be 1. Symbol repetition scheme, including

Hard Decision (HD) combining and Soft Decision (SD) combining is denoted
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Figure 5.25: Energy consumption of UWB beacons during one packet reception.

by ρc, where ρc = 1 is used for SD and ρc = 0 is for HD combining. In addi-

tion, PGEN , PSY N , and PEST represent the power consumption associated with

the pulse generator, the synchronizer, and the channel estimator, respectively.

Finally, ρr is an structural parameter, where ρr = 1 is related to the coherent

demodulation while ρr = 0 is for noncoherent demodulation.

The IR-UWB data packet is constructed by: (i) Synchronization Preamble (SP);

(ii) PHY-Header (PHR), and; (iii) Payload components. Therefore, the energy

consumption of receiving one data packet consists of the energy consumed on the

payload, denoted by EL, and the energy consumption associated with delivering

the SP and PHR, denoted by EO, where EO is expressed as

EO = Pr

(
TSP + TPHR

)
= Pr

(LSP +
LPHR

Rc

)

Rbase
︸ ︷︷ ︸

TO

, (179)

with the assumption that there are LSP symbols in the SP, and LPHR bits in the

PHR, respectively. The time duration of the PHR, and the SP are represented

by TPHR, and TSP , respectively. Term Rc = 1/Np is the coding rate, where

Np is the coding parameter, which must be an odd number. Finally, Rbase is

the fixed base data rate. The energy consumption for receiving the payload,

containing LL information bits, denoted by EL, is expressed as

EL = ρt(MPCOR + ρcPADC + PLNA + PV GA)TonL

+ ρr(PGEN + PSY N + PEST )TonL, (180)

where ρt represents the pulse coefficient, and TonL denotes the time duration of

the payload. The energy consumption to receive one packet within time Ton is
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ERX = EO + EL, which can be expressed as

Ton = TSP + TPHR + TonL =
(LSP +

LPHR

Rc

)

Rbase

+
LL

RbRc

, (181)

where Rb denotes the bit rate. Since our focus is to manage the energy con-

sumption of UWB beacons, the amount of energy consumed by users as the

transmitter is not modeled. As it can be seen from Fig. 5.25, the total en-

ergy consumed by UWB beacons during each packet reception session can be

expressed as

E = 2Etr + ERX + 2EIPS + EACK , (182)

where EIPS = ρrPSY NTIPS and Etr = ρrPSY NTtr. In this case, Ttr represents

the time that the UWB beacon switches from the sleep state to an active state

for receiving a data packet, and TIPS denotes the inter packet space time du-

ration. Note that the energy consumption E only represents the UWB energy

consumption for a single packet reception session [187], which does not include

the energy consumed by the UWB beacon for processing the received signal to

extract the desired information, i.e., LoS/NLoS connection. Furthermore, we

would like to note that there is no need for checking channel condition of UWB

beacons in the vicinity of the mobile device. Moreover, EACK is calculated as

EACK = (LSP +
LPHR

Rc

)Ep + PSY NTACK , (183)

where TACK = TO is the time duration when the UWB beacon listens for an

ACK acknowledgement from the corresponding user. This completes the de-

scription of the UWB power consumption model. Next, we introduce our pro-

posed DQLEL UWB node selection framework.

5.5.2 DQLEL UWB Node Selection

DQLEL Framework

As stated previously, extracting time information from NLoS links leads to an

increase in the location error. At the same time, extracting time information
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Figure 5.26: The block diagram of the proposed DQLEL framework.

from all beacons is inefficient from energy consumption perspective. The pro-

posed DQLEL framework capitalizes on these facts aiming to autonomously

train the mobile user to find energy-optimized UWB beacons with LoS links

at each location. Considering the fact that applying a complex RL model is

energy consuming, it is commonly assumed that UWB beacons transmit their

sensory data to the central server [186] to perform the DQLEL framework. As

it can be seen from Fig. 5.26, the DQLEL framework consists of the following

main components:

(i) Agent: The mobile user acts as the agent within the DQLEL framework and

interacts with the environment based on a set of given actions defined below.

(ii) Action-Space: The action space in the DQLEL framework refers to the

selection of a set of UWB beacons to determine the location of the mobile user.

Therefore, the cardinality of the action space Na is defined as follows

Na =
Nu!

(Nu −Nb)! Nb!
, (184)

where Nu and Nb denote the total number of UWB beacons in the vicinity of
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the user, and the number of active beacons required for the localization pur-

poses, respectively. Note that the main goal of our work is to use the minimum

number of active UWB beacons among all available ones to not only improve

the localization accuracy, but also mitigate excessive energy consumption of

transmitting/receiving beacons. The minimum number of required active UWB

beacons varies between 2 and 4, depending on the type of the time estimation

algorithm such as ToA or TDoA, and the dimension of the proposed environ-

ment, i.e., 2D and 3D. For instance, in 2D and 3D positioning, ToA uses at

least three and four UWB beacons and requires three and four measurements

of distances from one node to another to localize a mobile device, respectively.

On the other hand, the number of UWB beacons required for TDoA is one less

than that of the ToA scheme, therefore, the location of a mobile device can be

determined by the intersection of two and three hyperbolas in 2D and 3D posi-

tioning, respectively. Utilization of three UWB beacons provides higher location

accuracy for the 2-D TDoA approach, especially in some specific configurations

where the localization accuracy of two UWB nodes may not meet the desired

accuracy. However, in such configurations where the DRL model should be able

to localize the mobile device by 2 or 3 beacons, an adaptive DRL model with

two different modes is required, i.e., one action-space associate with a set of 2

UWB beacons, and another one related to the set of 3 UWB beacons, which

in turn significantly increases the cardinality of the action-space. By increasing

the action-space, the learning time of the DQLEL framework, which is required

for converging to the optimal policy will be extended. As the first step towards

development of a fully autonomous agent for UWB-based indoor localization,

therefore, we considered one action-space mode, where the number of UWB

beacons in each action is Nb = 2. The selected action is a vector, denoted by

a = [ai, aj], where ai and aj represent UWBi and UWBj, respectively. One

fruitful direction for future research is development of an adaptive DRL local-

ization framework capable of increasing the number of active UWB beacons in

some specific configurations, e.g., when the localization accuracy of two UWB

nodes fails to meet the desired accuracy.

(iii) State-Space: The action is selected based on the current state of the

system st at time slot t. Each state consists of the user’s location (xt, yt), and
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the UWB beacons’ battery life Bt. More specifically, st consists of the following

components:

• (xt, yt): Location of the user. To evaluate performance of the DQLEL

framework in terms of the location error, it is assumed that a priori

knowledge of the exact user’s location is available, which is a common

assumption in Machine Learning (ML)-based indoor localization frame-

works [188, 189]. Following Reference [216], the indoor environment is

discretized into Nl = Nx × Ny points, where xt and yt at time slot t are

obtained as

xt = xt−1 + xm, 0 ≤ xt ≤ Nx (185)

and yt = yt−1 + ym, 0 ≤ yt ≤ Ny. (186)

where (xt−1, yt−1) denotes the user’s location at time slot t−1, and xm, ym ∈
{−1, 0, 1} indicate the user’s movement [216] and are selected randomly.

• Bt: Vector Bt = [B1,t, . . . , BNu,t] illustrates the battery life of UWBi, for

(1 ≤ i ≤ Nu). By taking the action a, the battery life of two involving

beacons are updated as

Bi,t = Bi,t−1 − E, (187)

where E denotes the energy consumption of UWB beacon in the reception

session, obtained by Eq. (182), will be described shortly in Appendix-A.

(iv) Reward: The reward function in the proposed DQLEL framework is de-

fined in such a way that the user selects UWB beacons results in higher location

accuracy, while maintaining the load balance between UWB beacons. There are

several key parameters affecting the location accuracy, which can generally be

categorized into two groups, i.e., (i) Infrastructure-based factors such as UWB

beacons installation, and the number of active UWB beacons in the vicinity of

a mobile user, and; (ii) Beacon-based factors [190, 191]. Despite the fact that

infrastructure-based factors have a substantial impact on the location accuracy,

most existing research studies [192, 216] assumed a pre-installed indoor setting

with a pre-determined number of beacons. The second group, the beacon-based

factors, include channel condition (the LoS/NLoS connection), data rate, and
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signal modulation to name a few. Data rate is the number of transmission

data from a mobile user to the UWB beacon to estimate the current location.

Although a higher data rate improves the location accuracy, it consumes more

energy, therefore, a trade-off between these two metrics should be considered to

determine the optimal data rate. Moreover, signal modulation has a significant

impact on the quality of the UWB transmitting signal, which can be resulted

in higher location accuracy in the presence of noise and interference. To better

understand the influence of the channel condition on the location accuracy, we

consider a pre-defined data rate and signal modulation, which is a common as-

sumption in indoor localization studies [101,103,192,216]. By taking an action,

the estimated location of the user is calculated. Then, the location error at time

slot t, denoted by ERt, is calculated as

ERt =

√

(xt − x
(i,j)
es,t )

2 + (yt − y
(i,j)
es,t )

2, (188)

where (xt, yt) is the exact user’s location at time slot t and (x
(i,j)
es,t , y

(i,j)
es,t ) denotes

the estimated user’s location, which is obtained by UWBi and UWBj. Note

that selecting UWB beacons with LoS links leads to a remarkable reduction in

the value of ERt.

To provide a fairness UWB connection scheduling, the mean deviation of UWB

energy consumption is introduced as the load balance metric. In this regard,

the deviation of remaining battery of UWB beacons at time slot t, denoted by

MDt, is the distance between the battery of all beacons at time slot t and the

average one, given by

MDt =

√
√
√
√ 1

Nu − 1

Nu∑

i=1

(Bi,t − Bt)
2

B
2

t

, (189)

where Bt represents the average UWB battery life at time slot t. The reward

function R(st,at) is defined as

R(st,at)=







1

MDtERt

, MDt ≤ MDth, ERt ≤ ERth,

−MDtERt, o.w.
, (190)
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where MDt denotes the deviation of remaining battery of UWB beacons at time

slot t, ERt denotes the location error at time slot t, and term Eth is a pre-defined

threshold value for the maximum acceptable location error [192]. After selecting

two UWB beacons with the largest reward function R(st,at), the connection

information associated with the corresponding action and state are stored in

the memory replay of the proposed DQLEL model. Due to the infinite state-

action space, we use the CNN architecture as a non-linear approximator in the

Q-learning model to approximate the Q-value of each state-action pair.

In such scenarios with a high number of state-action pairs, the computational

cost of conventional Q-learning algorithms is significantly high. Therefore, Deep

Q Learning (DQN) models are, typically, used where instead of storing expected

rewards associated with each state-action pair in a Q-table, a Deep Neural Net-

work (DNN) model is used to select the actions according to the agent’s current

state [193]. In complex problems such as the one at hand, several information

sources (such as position of the mobile user, the set of available UWB beacons,

and their battery life at each time slot/location) are simultaneously required to

perform the action selection task. CNN architecture [194] is an attractive solu-

tion to extract the relevant features from this pool of information. CNN-based

architecture uses convolutional kernels to compress the state-space and extract

temporal correlations between the current state of a mobile user and previ-

ous state-action pairs. Within the incorporated CNN architecture, weights are

shared between the episodes, which leads to a considerable reduction in the

computational complexity. Since the state space is a vector, the CNN module

used in the DQLEL framework consists of 1-dimensional convolutional layers.

More precisely, there are two 1-dimensional convolutional layers with 128 fil-

ters, each with the size of 3 and with the ReLU activation function. There are

also two Fully Connected (FC) layers, where the first one consists of 128 ReLU

units and the latter has 64 ReLU units. The state of the DRL model is used as

the input of the CNN, consisting of the user’s location (xt, yt), and the UWB

beacons’ battery life Bt, where the number of UWB beacons are Nu. The input

size, therefore, is equal to the size of the state-space, which is equal to (2+Nu),

where 2 is associated with the user’s location (xt, yt). Considering the fact that

the main goal of the DQLEL framework is to determine the optimal set of UWB
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beacons for localization in each time stamp/location, the output size of the CNN

is equal to the size of the action space Na. Moreover, the activation function

of the output layer is softmax. To maintain a trade-off between the exploration

and the exploitation of the DQLEL framework, a variable ε is assumed for the

ε-greedy action selection policy. The maximum value of ε, denoted by εmax, is

equal to 1, gradually decreasing with time by ∆ε =
εmax − εmin

Nepoch

until a steady

state is reached, where εmin = 0.01, and Nepoch is the total number of epochs,

equal to 500 in this work. In such a scenario, the random action at is selected

at time slot t with the probability of ε.

A replay memory is used to retrain the CNN model for previously observed

state-action pairs and their corresponding rewards. Therefore, β number of

state-action pairs at time slot t, denoted by φt = [st−β,at−β, . . . ,at−1, st], are

used as the input of the CNN to estimate Q(φt,at|ξt), where ξt denotes the

filter weight at time slot t. The experience memory pool is denoted by D =

{e1, . . . , et}, where et = (φt,at, rt,φt+1). To update the weight parameter ξt

using the Stochastic Gradient Descent (SGD) method, the state sequence in

replay buffer em is selected at random. Given the value of ξt, the goal is to

obtain the optimal action in each time slot, which is obtained by minimizing

the following loss function

L(ξt) = Eφt
,at, rt,φt+1

[(
QT −Q(φt,at|ξt+1)

)2
]

, (191)

where QT is the target optimal Q-function, expressed as

QT = rt + γmax
a
′

t

Q(φt+1,a
′

t|ξt−1). (192)

According to the ε-greedy algorithm, the best action a∗
t for the state st is chosen

from the set of Q-functions with the probability of (1− ε) as follows

a∗
t = argmax

a
′

t

Q(φt,a
′

t). (193)

Given the action a∗
t , two UWB beacons associated with action a∗

t are involved

to track the user’s location at time slot t. Eventually, the new experience

{φt,at, rt,φt−1} is stored in the replay memory by the agent.
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Table 5.10: List of Parameters.

Notation Unit Value Notation Unit Value
LSP symbols 1024 PSY N mW 30.6
LPHR symbols 16 PADC mW 2.2
Np - {1, 3, 5, . . . , 15} PGEN mW 2.8
Ep pJ/pulse 4.5 PLNA mW 9.4
Rbase Mbps 1 PEST mW 10.08
PCOR mW 10.08 PV GA mW 22

Computational Complexity

We compute the computational complexity of the CNN as the learning method

of the proposed DQLEL framework. Generally speaking, the computational

complexity of a CNN model with Nl number of convolutional layers, where

each layer includes Fl filters with size W f
l × Lf

l , is

N =

Nl∑

l=1

Fl−1W
f
l L

f
l FlW

o
l L

o
l , (194)

where Fl−1 and Fl represent the number of input channels and filters correspond-

ing to the lth layer, respectively. In addition, W o
l and Lo

l denote the width and

the length of the output, calculated as follows

W o
l =

W o
l−1 −W f

l + 2Pl

Sl

+ 1, (195)

and Lo
l =

Lo
l−1 − Lf

l + 2Pl

Sl

+ 1, (196)

where Sl and Pl represent the size of stride and padding layers of the lth layer,

respectively. Moreover, there are Nfc number of fully connected layers for esti-

mating the Q-value associated with each action. Considering that the pooling

and fully connected layers only take up 5−10% of the computational time [194],

their impact on the computational complexity of the CNN can be negligible.

Accordingly, the value of F0×W o
0 ×Lo

0 is equal to βls in the DQLEL framework,

where β is the temporal memory depth, and ls represents the length of the state

that is equal to (2 +Nu).
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Figure 5.27: A typical sub-area in an experimental indoor environment consisting of 6 UWB
beacons for UWB node selection.

5.5.3 Evaluations and Simulation Results

To evaluate the effectiveness of the proposed DQLEL scheme, we consider an

experimental indoor testbed with the size of (60×50) m2. Indoor environments,

such as hotels and office buildings, can be divided into several non-overlapping

sub-areas [106,216], where the mobile user is localized in each sub-area through

all that sub-area’s UWB beacons. Due to the limited transmission area of UWB

beacons, after transmitting an UWB signal by the user at each location, the

transmitted signal can be received by Nu number of UWB beacons. Without

loss of generality, we assume a rectangular configuration for each sub-area in

the indoor testbed, which is a common experimental set-up in pre-installed

indoor localization applications [195, 196]. Fig. 5.27 illustrates a typical sub-

area consisting of six UWB beacons, located at a (6× 5) m2 rectangular indoor

environment. Following Reference [216], the sub-area is divided into (5 × 4)

square zones with dimension of (1×1)m2. Although the location resolution, i.e.,

the number of discretized points in the indoor environment Nl, is proportional

to the location accuracy, it also results in higher state-space, complexity, and

the respond-time. Therefore, there should be a trade-off between the location

resolution and the respond-time of the learning model. Despite the recent DRL-

based localization works [192,216], where the environment is divided into a grid

of (5 × 5) m2 and (3 × 3) m2 cells, respectively, we assume higher resolution
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of (1 × 1) m2 to improve the location accuracy. Furthermore, we use CNN as

the learning model in the DQLEL framework instead of Multi Layer Perceptron

(MLP) [192, 216] to avoid sacrificing the respond-time of the learning model,

resulting in the faster convergence. For convergence of the DQLEL model, i.e.,

minimizing the loss function, we assumed that the DRL model is performed

over 500 epochs (each epoch consists of several measurements), in which each

epoch ends when the battery life of at least one UWB beacon is completely

drained, known as the game over in our DRL network.

The mobile user moves across the environment in 8 directions according to

Eqs. (185) and (186) based on the random walk model [216]. At each time

slot, the mobile user is located at the center of each zone [216], shown by a

blue point in Fig. 5.27. The channel condition of the received signal depends

on the LoS/NLoS of the signal. To consider effects of obstacles on the received

signal, the channel condition of UWBi, for (1 ≤ i ≤ Nu), at each location is

determined randomly. Two out of Nu beacons will be selected for localization.

Table 5.10 illustrates the list of other parameters [187] used for running the

experiments. Following Reference [187], the optimum packet length and the

minimum UWB energy consumption depend on the distance between the mobile

user and UWB beacons. Considering the fact that the optimal packet length

is approximately 1, 500 Kbit for the transmission range of upto 10 m [187],

the energy consumption E in the DQLEL framework is constant. Please refer

to Appendix A for a complete discussion on the IR-UWB energy consumption

model.

Effectiveness of the DQLEL Framework

To model the LoS/NLoS communications in this work, it is assumed that there

are several obstacles in the experimental indoor environment. Initially, the ex-

perimental indoor testbed is set up by considering a variety of random obstacles

across the environment, resulting in at least two NLoS connections being estab-

lished at each point in each sub-area. Because this study is conducted using

simulations, obstacles are considered to be distributed randomly throughout

the environment, resulting in the designation of some communications as LoS
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Figure 5.28: The convergence of the DQLEL framework in single and multi user environments.

and others as NLoS at random. More specifically, after creating an environ-

ment with random obstacles, the mobile user’s beginning position is chosen at

random. We use randomly generated environments to construct a robust agent

that can perform effectively in new settings. To be more realistic and to deal

with a multi-user indoor environment, we consider several moving obstacles in

addition to the fixed obstacles in the this case study. Following Reference [198],

we use an increasingly complex indoor environment to simulate a multi-user

scenario. In this case study, random obstacles are considered throughout the

environment as the mobile devices. As the first step towards development of

a fully autonomous agent for UWB-based indoor localization, we considered a

DRL model with one agent that should be localized in the environment, and

other mobile devices are treated as mobile obstacles. We, therefore, assumed

No mobile devices (mobile obstacles) in our testbed, with at least one mobile

obstacle in each sub-area in addition to the agent. It is assumed that mobile

obstacles randomly move through the environment, where their location will be

changed in each epoch. Fig. 5.28 illustrates that although a multi-user envi-

ronment takes much more time to learn the optimal policy, the loss function

converges, illustrating that the model is well-trained.
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Furthermore, we consider a numerical reward function, where the reward func-

tion is based on the link condition instead of the location error, as follows

R(st,at)=







10, C1. MDt ≤ MDth, ci,t = 1,cj,t = 1,

5, C2. MDt >MDth, ci,t = 1,cj,t = 1,

−5, C3. MDt ≤ MDth, ci,t = 0,cj,t ∈ {0, 1},
−10, C4. MDt >MDth, ci,t = 0,cj,t ∈ {0, 1}.

, (197)

where ci,t and cj,t indicate the links’ condition associated with the given action

a. In DQLEL, we define a (Nu × Nl) link condition matrix, denoted by C,

where the tth column illustrates the link condition established between the user

at point (xt, yt) and all UWB beacons. Then, ci,t = 1 if the link between the

user at location (xt, yt) and the ith UWB beacon is LoS, otherwise ci,t = 0.

According to Eq. (197), both location accuracy and the balanced energy con-

sumption of beacons are considered as the reward function, where the former

is stated in terms of the link condition ci,t and cj,t and the latter one is ex-

pressed as MDt. More precisely, the reward function in Eq. (197) illustrates

the following four connection types for the selected pair of UWB beacons: (C1.)

Energy-optimized with LoS links; (C2.) Non energy-optimized with LoS links;

(C3.) Energy-optimized with NLoS links, and; (C4.) Non energy-optimized

with NLoS links. An energy-optimized link is referred to the action where the

battery life deviation of all UWBs is less than a pre-determined threshold MDth;

otherwise, it is called a non energy-optimized connection. Moreover, ci,t = 0,

cj,t ∈ {0, 1} means that at least one link of the selected pair of UWB beacons is

NLoS, leading to a remarkable location error. Therefore, to achieve a high lo-

cation accuracy, both UWB beacons should be LoS, i.e., ci,t = 1, cj,t = 1. Note

that, in the worst-case scenario, the selected pair are non energy-optimized with

NLoS links. Our goal is to increase the energy-optimized with LoS connection

type, while reducing the non energy-optimized with NLoS connections.

Convergence of the proposed DQLEL framework with the numerical reward

function is evaluated in Fig. 5.29. According to Eq. (191), the learning process

is performed by minimizing the loss function, which is the mean-squared error of

the target optimal Q-function with the minibatch updates. Fig. 5.29 illustrates

that the proposed DQLEL framework converges after 350 epochs. Moreover,
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(a) (b)

Figure 5.29: The convergence of the proposed DQLEL framework for (a) Nu = 4, and (b) Nu = 6.

(a) Nu = 4 (b) Nu = 6

Figure 5.30: Number of paired energy-optimized with LoS Links (a) Nu = 4, and (b) Nu = 6.

Figs. 5.30-5.33 illustrate the number of connections of each type in different

epochs. We also investigate the effect of the number of UWB beacons in each

sub-area in Figs. 5.30-5.33.

Fig. 5.30 illustrates the number of paired energy-optimized with LoS links in the

proposed DQLEL framework for Nu = 4 and Nu = 6. It is worth mentioning

that given the limited transmission range of the UWB beacons, it is common

to have a small number of beacons in each sub-area, typically, 4 beacons are

considered. To evaluate the effects the number of beacons on the DQLEL

framework, we consider the common scenario with 4 beacons together with a

second scenario with 6 UWB beacons. The environment for both scenarios is
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(a) (b)

Figure 5.31: Number of paired non energy-optimized with LoS links for (a) Nu = 4, and (b)
Nu = 6.

considered to be similar, therefore, the number of NLoS links in both cases

would be the same, while the number of possible actions in Nu = 4 and Nu = 6

are 6 and 15, respectively. Under the assumption that in each location, at

least one link is NLoS, then the probability of establishing LoS connections for

Nu = 4 and Nu = 6 are 50% and 66%, respectively. Intuitively speaking, this

means that when the action space is small (e.g., 6 actions when there are 4

beacons compared to 15 actions when we have two extra beacons), it is less

likely to have paired LoS links. According to the results in Fig. 5.30, it can be

observed that the number of energy-optimized with LoS connections increases

as the number of epochs grows and converges after about 330 epochs to 75%

and 85% for Nu = 4 and Nu = 6, respectively.

Fig. 5.31 illustrates the number of paired LoS links that make the deviation

of remaining battery life of UWB beacons become greater than MDth. As it

can be seen from Figs. 5.30 and 5.31, most LoS links at the earlier epochs are

non energy-optimized. By increasing the epochs, however, the number of non

energy-optimized LoS links decreases resulting in more energy-optimized LoS

connections. According to the results in Fig. 5.31, the number of non energy-

optimized links converges to zero after about 350 epochs in both Nu = 4 and

Nu = 6.

The number of energy-optimized and non energy-optimized NLoS connections

are depicted in Figs. 5.32 and 5.33, respectively. By a similar argument, non
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(a) Nu = 4 (b) Nu = 6

Figure 5.32: Number of paired energy-optimized with NLoS links for (a) Nu = 4, and (b) Nu = 6.

(a) Nu = 4 (b) Nu = 6

Figure 5.33: Number of paired non energy-optimized with NLoS links for (a) Nu = 4, and (b)
Nu = 6.

energy-optimized NLoS links in Fig. 5.33 experience a remarkable reduction,

eventually converging to zero after 350 epochs, which results in a slight in-

crease in the energy-optimized NLoS connections. By considering the fact that

the proposed DQLEL framework needs to maintain a trade-off between two

objectives, i.e., the link condition and energy consumption of UWB beacons,

the small growth in number of energy-optimized NLoS connections in Fig. 5.32

is acceptable. Fig. 5.34 illustrates the normalized cumulative rewards of the

agent in each epoch. According to the reward definition in Eq. (190), energy-

optimized LoS connections result in a considerable increase in the cumulative
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rewards. According to the results in Fig. 5.34, increasing the number of epochs

increases the cumulative rewards, showing that the model is well-trained.

(a) Nu = 4 (b) Nu = 6

Figure 5.34: The variation of normalized cumulative rewards versus different epochs for (a)Nu = 4,
and (b) Nu = 6.

(a) Nu = 4 (b) Nu = 6

Figure 5.35: Deviation of UWB beacons battery life versus different epochs for (a) Nu = 4, and
(b) Nu = 6.

Fig. 5.35 evaluates the deviation of the UWB beacons’ battery life, obtained by

Eq. (189), versus different epochs for (a) Nu = 4, and (b) Nu = 6. Note that,

larger value of batteries’ deviation indicates that certain UWB beacons are

involved in localization more than others. In this model, we assume that each

epoch is terminated if the current time reaches a pre-determined time value,

or the battery of at least one UWB beacon is completely drained before the
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time threshold. Without considering the UWB beacon’s energy consumption,

the agent identifies a pair of UWB beacons with LoS links, draining the battery

of those corresponding beacons by being repeatedly selected. The main goal

of the proposed DQLEL framework is to select UWB beacons with LoS links

while minimizing the deviation of UWB beacons’ battery lives. As it can be seen

from Fig. 5.35, the deviation of UWB beacons’ battery lives decreases as the

number of epochs grows and converges after about 350 epochs to 2.4 and 3.8 for

Nu = 4 and Nu = 6, respectively. In addition, Fig. 5.36 illustrates the location

error versus different epochs, which is obtained by Eq. (188). As it can be seen

from Fig. 5.36, the location error slightly increases by increasing the number

of epochs, which is negligible. The main reason behind this is that there is a

trade-off between the number of LoS links (accuracy) and the deviation of UWB

beacons battery life. This completes the evaluation of the DQLEL framework.

(a) Nu = 4 (b) Nu = 6

Figure 5.36: Location error (m) versus different epochs for (a) Nu = 4, and (b) Nu = 6.

Performance Comparisons

To the best of our knowledge, there is no RL-based UWB node selection frame-

work that studied both LoS/NLoS and energy perspectives, for comparison

purposes. Therefore, we introduce three baseline models for comparisons:

• Non Energy-Optimized DRL (NE-DRL) LoS/NLoS UWB Node
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(a) (b) (c) (c)

Figure 5.37: Ground truth and estimated random trajectories by using (a) NN-NS, (b) RNS, (c)
NE-DRL, and (d) DQLEL frameworks.

(a) (b) (c) (c)

Figure 5.38: The percentage of remaining battery life of UWB beacons in one sub-area after 50
iterations by using (a) NN-NS, (b) RNS, (c) NE-DRL, and (d) DQLEL frameworks.

Selection: Similar to the proposed DQLEL framework, i.e., all the pa-

rameters are the same, with the difference that in this baseline model,

we just consider the link condition as the reward function. For an action

that both UWB links are LoS connections, the reward rt is set equal to 1,

otherwise, it equals −1.

• Random UWB Node Selection (RNS): In this framework, a pair of

UWB beacons are randomly selected for localization without considering

the remaining battery life of UWB beacons and channel conditions.

• Nearest Neighbor UWB Node Selection (NN-NS): Similar to the

previous one, without considering the remaining battery life of UWB bea-

cons and channel conditions, two nearest UWB beacons are selected for

localization.

For comparison purposes, we consider a (24 × 15) m2 rectangular indoor envi-

ronment. Fig. 5.37 illustrates the estimated random trajectory of the mobile

user by using NN-NS, RNS, NE-DRL, and DQLEL frameworks. Since the mo-

bile user in the NE-DRL and DQLEL frameworks is trained to be localized by

LoS beacons, the estimated trajectory is almost the same as the ground truth
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(see Fig. 5.37). Similarly, Fig. 5.38 compares the remaining battery life of UWB

beacons after 50 iterations. According to the results in Fig. 5.38, the battery

of certain UWB beacons are completely drained without applying the DQLEL

framework, while the remaining battery of UWB beacons are almost the same

in the DQLEL framework, leading to a remarkable increase in the life time of

the infrastructure.

(a) (b) (c)

Figure 5.39: (a) A comparison of different node selection methods based on (a) Deviation of
UWBs’ battery life; (b) Number of NLoS links; (c) Location error.

It should be noted that although the mobile user uniformly moves across the

environment in 8 directions given a starting location, the initial user’s location

as well as the user’s mobility pattern are changed in each epoch. Fig. 5.38 in

the revised manuscript is included to illustrate random (non-uniform) nature of

the user’s trajectory in the experimental testbed. According to the user’s ran-

dom trajectory shown in Fig. 5.38, it is evident that all locations are not being

explored equally. Moreover, regarding the popularity of some specific spots, we

will have the following two scenarios: (i) Popular sub-area: It should be noted

that the main goal of the DQLEL framework is to maintain a balance between

the remaining battery life of UWB beacons located in one sub-area. Due to the

limited transmission range of UWB beacons, only beacons in a specific sub-area

are involved for localizing the mobile user. Therefore, when a specific sub-area

in the experimental indoor environment is more popular than other areas, it

is expected that the corresponding beacons’ batteries drain sooner than oth-

ers. To address this issue practically, such sub-areas should be identified and

treated differently and possibly non-battery powered beacons should be utilized

instead. (ii) Popular location in one sub-area: In this case, the mobile user
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Figure 5.40: A comparison with state-of-the-arts based on the location error ECDF.

visits a given spot in one sub-area more frequently. To illustrate the superi-

ority of the proposed DQLEL framework in handling such scenarios, we com-

pare DQLEL’s performance with the Non Energy-Optimized DRL (NE-DRL)

LoS/NLoS UWB node selection, where there is no consideration for preserving a

balance between beacons’ energy consumption. According to the results shown

in Fig. 5.39(c) and Fig. 5.39(d), in comparison to the NE-DRL framework that

the learnt behavior drains out batteries in popular spots, the remaining battery

of beacons will remain almost the same in the DQLEL framework because of

our multi-objective reward function. We can, therefore, state that in sub-areas

with specific popular spots, the DQLEL framework efficiently attempts to learn

the policy that minimizes the deviation of UWBs’ battery lives.

Fig. 5.39(a) compares the performance of the proposed DQLEL framework with

NE-DRL, RNS, and NN-NS schemes in terms of the deviation of UWBs’ bat-

tery life. Due to the random movement of the mobile user and the random

UWB node selection approach of the RNS framework, the remaining battery

life of the UWB beacons are almost the same. Therefore, the mean deviation of

UWBs’ battery life is almost zero. In other words, the RNS approach performs

reasonably well in terms of energy distribution, however, fails to accurately lo-

calize the target. In contrary to the RNS method, the mean deviation of UWBs’

battery life of the NN-NS and NE-DRL is considerably high. The main reason

behind this high mean deviation of UWBs’ battery life is that the NN-NS and

NE-DRL frameworks select the nearest beacons and the beacons with LoS links
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for localization, respectively, without taking into account energy considerations.

As a result, the battery of certain UWB beacons are completely drained leading

to a high deviation of UWBs’ battery life. The proposed DQLEL framework,

however, provides a low battery life deviation, while enhancing the location ac-

curacy by choosing UWB beacons with LoS links. Fig. 5.39(b) illustrates the

number of NLoS links established by different node selection methods. Note

that, using less number of NLoS links provides the higher location accuracy. As

it can be seen from Fig. 5.39(b), the proposed DQLEL framework and NE-DRL

experience lower number of NLoS links. RNS method, however, results in the

highest number of NLoS connections since there is no link condition criteria.

By considering the fact that the nearest UWB beacons provide LoS links with

a higher probability, the possibility of selecting UWB beacons with NLoS links

in the NN-NS scheme is lower than the RNS method. Fig. 5.39(c) compares the

performance of the proposed DQLEL framework with NE-DRL, RNS, and NN-

NS schemes from the aspect of the location error. By a similar argument, which

is used for the number of NLoS links, localization by applying RNS method leads

to the highest location error. The proposed DQLEL and NE-DRL frameworks

have the lowest position error since they both select LoS connections. Finally,

to demonstrate the superiority of the proposed DQLEL framework in compari-

son to its state-of-the-art counterparts, we calculate the Empirical Cumulative

Distribution Function (ECDF) of the WLS [101], GDOP [103], NE-DRL (which

itself is a simplified version of the DQLEL framework), RNS, and NN-NS an-

chor selection schemes. According to the results shown in Fig. 5.40, the location

error of the DQLEL framework is lower than other methods.

5.5.4 Reasonability of the Reward Function

Intuitively speaking, our goal is to keep a trade-off between the remaining bat-

tery life of beacons and localization accuracy, i.e., jointly minimizing location

error and the battery life deviation. For this reason, we considered a multi-

objective DRL model, where multiplicative scalarization function [199] is used

to convert the problem at hand into its single objective counterpart. To analyt-

ically illustrate the reasonability of the reward function, it is required to show
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that if the agent takes an action (i.e., a set of UWB beacons) resulting in lower

battery life deviation of beacons and location error, this should result in higher

reward value by using the reward function in Eq. (190). Without loss of gen-

erality, we consider a scenario where the user has two possible actions at time

t to follow (denoted by a1 and a2) each of which consisting of a set of selected

UWB beacons. In such a scenario, the following possible cases can happen:

Case 1 (MDt,1 < MDt,2 ≤ MDth and ERt,1 < ERt,2 ≤ Eth): Assume that

the location error and the battery life deviation of action set a1 is lower than that

of a2 (i.e., MDt,1 < MDt,2 and ERt,1 < ERt,2). The following shows that in

such a scenario as expected (wanted) the reward value of action a1, denoted by

R1, is greater than R2, associated with action a2. In such scenario, the reward

value associate with both actions is defined as
1

MDt,1ERt,1

and
1

MDt,2ERt,2

,

therefore, we have

R(st, at,1)−R(st, at,2) =
1

MDt,1ERt,1

− 1

MDt,2ERt,2

=
MDt,2ERt,2 −MDt,1ERt,1

MDt,1ERt,1MDt,2ERt,2

> 0. (198)

Since MDt,1 < MDt,2 and ERt,1 < ERt,2, therefore, we can see that term

R(st, at,1) − R(st, at,2) is positive, which means an action with lower location

error and battery life deviation of beacons results in higher reward value.

Case 2 (MDth < MDt,1 < MDt,2 and/or ERth < ERt,1 < ERt,2): In this

case, the reward value associate with both actions is defined as −MDt,1ERt,1

and −MDt,2ERt,2, therefore, we have

R(st, at,1)−R(st, at,2) = −MDt,1ERt,1 − (−MDt,2ERt,2)

= −MDt,1Et,1 +MDt,2Et,2 > 0. (199)

Therefore, we showed that in this case, the reward of action a1 is greater than

action a2, which means the lower location error and battery life deviation of

beacons results in higher reward value.

Case 3 (MDt,1 < MDt,2 ≤ MDth and ERt,1 ≤ ERth < ERt,2): In this case,

the reward value of action a1 is calculated by
1

MDt,1ERt,1

, while R(st, at,2) =
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−MDt,2ERt,2, so we have

R(st, at,1)−R(st, at,2) =
1

MDt,1ERt,1

− (−MDt,2ERt,2)

=
1 +MDt,2Et,2MDt,1Et,1

MDt,1Et,1
> 0, (200)

which is always positive confirming the expected result.

Case 4 ( MDth <MDt,1 <MDt,2 and ERt,1 < ERth < ERt,2): In this case,

the reward value associate with both actions is defined as −MDt,1ERt,1 and

−MDt,2ERt,2, therefore, we have

R(st, at,1)−R(st, at,2) = −MDt,1ERt,1 − (−MDt,2ERt,2)

= −MDt,1Et,1 +MDt,2Et,2 > 0. (201)

which is always positive, again confirming that lower location error and battery

life deviation of beacons results in higher reward value.

Case 5 ( MDt,1 ≤ MDth < MDt,2 and ERt,1 ≤ ERt,2 < ERth): Similar

to Case 3, the reward value of action a1 is calculated by
1

MDt,1ERt,1

, while

R(st, at,2) = −MDt,2ERt,2, so we have

R(st, at,1)−R(st, at,2) =
1

MDt,1ERt,1

− (−MDt,2ERt,2)

=
1 +MDt,2Et,2MDt,1Et,1

MDt,1Et,1
> 0. (202)

Case 6 ( MDt,1 ≤ MDth < MDt,2 and ERth < ERt,1 < ERt,2): Similar to

Case 4, the reward value associate with both actions is defined as −MDt,1ERt,1

and −MDt,2ERt,2, therefore, we have

R(st, at,1)−R(st, at,2) = −MDt,1ERt,1 − (−MDt,2ERt,2)

= −MDt,1Et,1 +MDt,2Et,2 > 0. (203)
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Case 7 ( MDt,2 < MDt,1 ≤ MDth and Et,1 < Et,2 ≤ Eth): In such scenar-

ios that an action cannot satisfy both metrics (lower location error and lower

battery deviation), a trade-off between these metrics will be achieved by this

reward function. For instance, in such a case that Et,1 < Et,2 ≤ Eth, while

MDt,2 < MDt,1 ≤ MDth, the reward value associate with both actions is

defined as
1

MDt,1ERt,1

and
1

MDt,2ERt,2

, therefore, we have

R(st, at,1)−R(st, at,2) =
1

MDt,1ERt,1

− 1

MDt,2ERt,2

=
MDt,2ERt,2 −MDt,1ERt,1

MDt,1ERt,1MDt,2ERt,2

, (204)

where the reward value associated with action a1 would be greater than a2 (i.e.,

R(st, at,1)−R(st, at,2) > 0) if MDt,1 <
Et,1
Et,2

MDt,2, otherwise, action a2 results

in higher reward.

Case 8 ( MDth < MDt,2 < MDt,1 and Et,1 < Et,2 < Eth): In this case,

the reward value associate with both actions is defined as −MDt,1ERt,1 and

−MDt,2ERt,2, therefore, we have

R(st, at,1)−R(st, at,2) = −MDt,1ERt,1 − (−MDt,2ERt,2)

= −MDt,1Et,1 +MDt,2Et,2 > 0. (205)

where the reward value associated with action a1 would be greater than a2 (i.e.,

R(st, at,1)−R(st, at,2) > 0) if MDt,1 <
Et,2
Et,1

MDt,2, otherwise, action a2 results

in higher reward. Other cases, such as case MDth < MDt,2 < MDt,1 and

Eth < Et,1 < Et,2), case MDt,2 < MDt,1 < MDth and Eth < Et,1 < Et,2, case

MDth < MDt,2 < MDt,1 and Et,1 < Eth < Et,2, case MDt,2 < MDth < MDt,1

and Et,1 < Eth < Et,2, and case MDt,2 < MDth < MDt,1 and Eth < Et,1 < Et,2,
where the reward value associate with both actions is defined as −MDt,1ERt,1

and −MDt,2ERt,2 are exactly the same as Case 8.
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5.6 Accelerating Learning Process of RL Frame-

work

In our previous work [13], the mobile user is autonomously trained via an RL

model to be localized by a set of UWB beacons with LoS connections. The main

objective of the RL model within the indoor localization domain is to learn an

optimal or near-optimal policy that maximizes the location accuracy. One of

the most important challenges of existing RL models [13], however, is that the

optimal policy should be learned by the interaction of the agent (mobile user)

with the environment (i.e., via trial and error), without any prior information,

especially when the model is just initialized. Consequently, it may take a long

time for the RL model to reach the optimal policy. Another challenge is the

generalization ability of the pre-trained RL model to be used in a new and

different environment, where the density/location of obstacles is changing over

the time/environment. To tackle these issues, Uchendu et al. [202] proposed the

Jump-Start RL (JSRL) model, where the agent use a guide-policy instead of a

random one at the beginning of the learning process. Consequently, the learning

process is accelerated and the RL generalization ability is highly improved.

Motivated by the above discussion, we introduce the Jump-start RL-based Uwb

NOde selection (JUNO) framework with the application to indoor localization.

The main novelty of this work is the design of an autonomous and real-time

anchor node selection, where the key objective is to accelerate the location ac-

curacy improvement. Towards this goal, a combination of the guide and explo-

ration policies is used, where the guide-policy significantly speeds up the early

learning phase of the RL model to converge to the optimal location accuracy.

Furthermore, since any random guide-policy can be used in the JUNO frame-

work, the generalization ability of the pre-trained RL frameworks improves.

Simulation results illustrate that the proposed JUNO framework outperforms

its state-of-the-art counterparts in terms of the cumulative rewards and location

error even in an ultra-dense indoor environment. In following, we first introduce

the JSRL model, and then present details of the proposed JUNO framework.
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Figure 5.41: The block diagram of the proposed JUNO anchor selection framework.

5.6.1 JSRL model

Conventionally, an RL-based agent selects a random action at at the beginning

of the learning process, where there is no prior information resulting in a long

time to reach the optimal policy π. The main difference between the conven-

tional RL and JSRL model [202] is that the agent in the JSRL framework has

access to two policies, called guide-policy πg(a|s), and the exploration policy

πe(a|s). While the exploration policy is the same policy used in conventional

RL models, which will be updated during the training, the guide-policy is a

fixed prior policy, learned via an RL model or manually/randomly constructed.

Since the Q-table is initialized with zeros, the agent of the JSRL model follows

πg(a|s) instead of randomly selecting an action at based on the untrained pol-

icy πe(a|s). Considering the fact that the distribution of the data under policy

πg(a|s) is not exactly the same as the policy πe(a|s), the state space of the pol-

icy πe(a|s) would be different. Therefore, it is essential to gradually transit the

data collection from the policy πg(a|s) to policy πe(a|s). Consequently, given

an RL model with horizon H, we define guide-step h ≤ H as the number of
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steps where the agent uses policy πg(a|s), initialized with H and gradually de-

creases over the course of training. More precisely, the action is selected based

on πg(a|s) for h steps at the initial stage of each training episode, continuing

with πe(a|s) for remaining (H − h) steps.

5.6.2 JUNO Anchor Selection

Following Reference [202], we use the JSRL model in our proposed JUNO frame-

work to accelerate the learning process. Due to the dynamic nature of indoor

venues, caused by varying environmental conditions, the proposed JUNO frame-

work seeks to train the mobile user to autonomously find the optimal LoS con-

nections at any given time and place. The proposed JUNO framework consists

of the following main components:

(i) Agent: In the proposed JUNO framework, the mobile user operates as the

agent, interacting with the environment via a set of actions.

(ii) State-Space: The state st ∈ S is defined as the user’s location (xt, yt)

at time slot t. Following Reference [206], we discretize the indoor environment

into Nl = Nx ×Ny points, where xt and yt are obtained as

xt = xt−1 + ζx, 0 ≤ xt ≤ Nx (206)

and yt = yt−1 + ζy, 0 ≤ yt ≤ Ny. (207)

where ζx, ζy ∈ {−1, 0, 1} are random numbers, indicating the user’s movement

in x-axis and y-axis [206], respectively. It should be noted that although RL

models with a continuous and high-dimensional state-space [204] provide higher

resolution and precise localization, they suffer from high complexity, making

them inefficient for real-time applications requiring low latencies. The bene-

fits of the discrete RL models in the context of indoor localization [203, 206],

therefore, make us to choose discrete RL over its continuous counterpart.

(iii) Action-Space: The action space is defined as a set of nearby UWB bea-

cons, where the user’s location can be determined by extracting the time infor-

mation from the received signal of the corresponding beacons. The cardinality
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of the action space, denote by Na, is given by

Na =
Nu!

(Nu −Nr)! Nr!
, (208)

where Nr represents the number of required beacons for localization, depend-

ing on some parameters, such as the indoor localization framework (i.e., ToA,

TDoA, and Two Way Ranging (TWR)), and the dimension of the experimen-

tal environment, i.e., 2D or 3D area. Considering the fact that at least two

UWB beacons are required for the TDoA-based localization scheme in a 2D

environment, the selected action is a vector, denoted by a = [ai, aj], where ai,

aj represent UWBi and UWBj, respectively.

(iv) Reward: As stated previously, the main objective of the proposed JUNO

framework is to minimize the location error caused by UWB beacons with NLoS

connections. Therefore, after taking action at, the estimated user’s location

(x
(i,j)
es,t , y

(i,j)
es,t ) is calculated, where the superscript (i, j) indicates that the esti-

mated location is obtained by the received signals of UWBi and UWBj. Con-

sidering the fact that even if one of these two connections is NLoS, we will face

with a remarkable location error, the combination of UWBi and UWBj at any

location/time is of paramount importance. For this reason, the reward function

R(st, at) is defined as

R(st, at)=







1

Et
, Et ≤ Eth,

−Et, o.w.
, (209)

where Eth is a pre-defined threshold value for the maximum acceptable location

error [203], and Et denotes the location error at time slot t, calculated as

Et =
√

(xt − x
(i,j)
es,t )

2 + (yt − y
(i,j)
es,t )

2. (210)

This completes presentation of the proposed JUMP anchor selection framework,

next, we will describe our testbed and simulation results.
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(a) (b) (c)

Figure 5.42: Investigating the effect of (a) Guide-policy on the location error; (b) Learning rate
α on the cumulative rewards, and; (c) Learning rate α on the location error.

(a) (b) (c)

Figure 5.43: Investigating the effect of (a) ε on the location error; (b) hmax on the location error,
and; (c) ECDF on the location error.

(a) (b) (c)

Figure 5.44: Ground truth and estimated random trajectories by using: (a) Nearest neighbor; (b)
Random, and; (c) JUNO frameworks.

5.6.3 Simulation Results

To evaluate the performance of the proposed JUNO framework, we consider an

experimental indoor area such as an office building with the size of (60×50) m2,

which is compromised of several non-overlapping sub-areas [106,206]. Following
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Reference [206], each sub-area is discretized into several square zones, where

the dimension of each zone is (1× 1) m2. Although the location resolution, i.e.,

the number of discretized points in the indoor environment Nl, is proportional

to the location accuracy, it also results in higher state-space, complexity, and

the respond-time. Therefore, there should be a trade-off between the location

resolution and the respond-time of the learning model. Despite the recent RL-

based localization works [203,206], where the environment is divided into a grid

of (5× 5) m2 and (3× 3) m2 cells, respectively, we assume higher resolution of

(1 × 1) m2 to improve the location accuracy. It is assumed that there is one

mobile user, randomly moving through the network in 8 directions based on

Eqs. (206) and (207), where the mobile user is placed at zones’ center [206]. At

each location, the transmitted signal by the mobile user are received by a set

of nearby UWB beacons. Due to the obstacles in the environment, the received

signal would be LoS or NLoS connections, where it is assumed that the channel

condition of UWBi, for (1 ≤ i ≤ Nu), is determined randomly at each zone to

initialize the environment.

Fig. 5.42(a) illustrates the effect of the guide-policy on the proposed JUNO

framework. As shown in Fig. 5.42(a), using a random Q-table or the one ob-

tained by an RL model as the guide-policy outperforms the conventional RL

approach, accelerating the learning process of the JUNO framework, improving

the location accuracy, and increasing the RL’s generalization capabilities. We

also investigate the effect of learning rate α on the proposed JUNO framework

to obtain the best value of α. As shown in Figs. 5.42(b)-(c), increasing the

number of epochs decreases the location error and increases the cumulative re-

wards, illustrating that the model is well-trained. Moreover, it is evident that

the learning rate has not a great impact on the location accuracy.

Fig. 5.43(a) shows the effect of ε on the JUNO framework, as a parameter to

maintain a trade-off between exploration and exploitation, where the random

action at is chosen with the probability of ε. Note that ε = [1, 0.1] means that

ε is initialized with 1, gradually decreasing with time by ∆ε =
εmax − εmin

Nepoch

to

0.1, with Nepoch = 100, which is the best strategy according to the results of

Fig. 5.43(a). Moreover, Fig. 5.43(b) illustrates the maximum step hmax that

the guide-policy is initially used, where hmax = 0 represents the conventional

251



RL model with no guide-policy. As shown in Fig. 5.43(b), larger hmax results

in the lower location error.

To illustrate the effectiveness of the proposed framework, we compare it with

four baseline models: (i) Weighted Least Square (WLS) anchor selection [101];

(ii) Geometric Dilution of Precision (GDOP) anchor selection [103]; (iii) Near-

est Neighbor Node Selection (NN-NS), where the mobile user is localized by Nr

number of nearest beacons, and; (iv) Random Node Selection (RNS), where a set

of UWB beacons are randomly selected for localization. Fig. 5.43(c) compares

the Empirical Cumulative Distribution Function (ECDF) of different frame-

works. According to the results shown in Fig. 5.43(c), the location error caused

by the proposed JUNO framework is considerably lower than that of its coun-

terparts. Finally, in Fig. 5.44 we consider a random trajectory in a (24×15) m2

rectangular indoor environment, and compare the ground truth with the esti-

mated trajectories by our proposed JUNO framework and two other baselines.

As shown in Fig. 5.44, the estimated path by our proposed framework in the

most points closely follows that of the ground truth.

Finally, we use the Root Mean Squared Error (RMSE), which is a generally

used performance metric within the localization domain, calculated as follows

RMSE =

√

√

√

√

√

N
∑

t=1

(Lt − Lest,t)
2

N
, (211)

where Lt = (xt, yt) and Lest,t = (xes,t, yes,t) represent the exact and the estimated

location of the user at time t, and N denotes the total number of steps once

the proposed JUNO framework reaches the steady state. The proposed JUNO

framework achieves the localization error of 0.32 m, while the CNN [207] and

LSTM-based [208] localization frameworks track a mobile user with 0.58, 0.48

location errors, respectively.
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5.7 Conclusion

In this Chapter, we targeted the problem of connection scheduling in indoor

environment consisting of FAPs, operating in the open access mode, and mo-

bile users with the ability of establishing D2D communication. We showed that

the proposed MAFH scheme in Section 5.1 reduces the energy consumption of

users by limiting high speed clients to download desired contents through FAPs

instead of serving through the D2D communication. Moreover, the connecting

time in low speed clients is expanded by establishing D2D connection between

only users who are approaching together. Concerning high speed clients, the

proposed scheme selects the most appropriate target FAP among all candidates

by considering the RSSI to extend the time interval between two consecutive

handovers. Given an optimal indoor connection scheduling framework, we fo-

cused on localization techniques to track users in indoor venues. By focusing on

BLE technology, we introduced two analytical solutions in Section 5.2 and 5.3 to

increase the location accuracy using the phase difference of the received signal.

In Section 5.4, a CNN-based AoA estimation was proposed where the MUSIC

algorithm was deployed to extract angle of the BLE signal. Then, our focus was

shifted to UWB technology, where in Section 5.5, we developed a DRL-based

anchor selection framework to provide high location accuracy, while maintaining

a balance between the remained battery of UWB beacons. Finally, Section 5.6

introduced an JSRL model to accelerate the learning process.
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Chapter 6

Conclusion and Future Direction

To establish an efficient communication system with high availability and mini-

mal latency, there is a need to overcome limitations in MEC networks. Despite

considerable advancements in MEC, there are still challenges posed by the rapid

and remarkable increase in global mobile data traffic. This growth is primar-

ily driven by intelligent IoT devices and edge devices, presenting a significant

obstacle for wireless networks in the foreseeable future. MEC has emerged

as a promising solution to mitigate this challenge by facilitating low-latency

communication and reducing network traffic over the backhaul. By storing

popular multimedia content in close proximity to end-users, MEC aims to im-

prove the QoS. The main focus throughout this Ph.D. thesis was on integrated

and heterogenous MEC networks. We first presented an review of different

caching strategies, popularity prediction models, and indoor localization tech-

niques. Then we focused on three important research objectives associated with

MEC networks; i.e., connection scheduling, coded/unncoded content placement

schemes, and developing mobility-aware indoor/outdoor MEC networks. In the

following, we first summarize the thesis contributions, and then discuss potential

directions for future research.

6.1 Summary of Contributions

The thesis contributions can be summarized as follows:
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• Autonomous Connection Scheduling and Uncoded Content Place-

ment: In chapter 3, we targeted the problem of autonomous connec-

tion scheduling using RL-based architectures by introducing the CQN-CS

framework. Given an optimal connection scheduling framework, we fo-

cused on data-driven popularity prediction models adapted with uncoded

content placement in MEC networks. We first proposed the attention-

based TEDGE caching framework, which is based on ViT network. Despite

the fact that the TEDGE framework achieves a high level of classification

accuracy, it was intricate and demands a significant number of parame-

ters in order to achieve such accuracy. Then, we presented a low-complex

and parallel ViT-CAT fusion architecture to predict the Top-K popular

contents in MEC networks. One significant limitation of supervised popu-

larity prediction models is the requirement for manual labeling of contents

as popular or unpopular by investigating users’ past behavior, which can

be a time-intensive task. Therefore, we proposed two self-supervised learn-

ing algorithms, i.e., CLSA and CoPo frameworks, to predict the dynamic

content popularity in a MEC network in a self-supervised manner.

• Popularity Prediction and Coded/Uncoded Content Placement:

In chapter 4, we introduced the CCUF framework, which aims to optimize

an integrated and dynamic cellular network by maximizing the number of

requests served through caching nodes. To enhance cache diversity and

enable the storage of different content segments in neighboring FAPs, we

utilized a two-phase clustering technique for FAP formation and UAVs de-

ployment. We formulated the success probability of the CCUF framework

and employed a cluster-centric approach where multimedia contents were

encoded based on their popularity profiles. We also determined the optimal

number of fully stored contents to leverage CoMP technology and improve

inter-cell interference. Through simulations and by considering the best

value of α, the proposed CCUF framework demonstrated increased cache-

hit ratio, SINR, and cache diversity, while reducing users’ access delay and

cache redundancy.

Additionally, we presented the MTEC framework, which is an efficient
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multi-content time-series popularity prediction model designed for cluster-

centric MEC networks. Existing data-driven caching strategies were not

effective for coded/uncoded content placement due to the lack of pre-

dicted request probabilities. To address this challenge, we developed a

Transformer-based architecture with multiple models. This architecture

not only predicts the upcoming Top-K popular content but also estimates

the request patterns for multiple contents simultaneously. This informa-

tion is then used to determine which contents should be stored partially

or completely. Simulation results demonstrated that the proposed MTEC

caching scheme outperformed state-of-the-art approaches in terms of cache-

hit ratio and transferred byte volume.

• Indoor D2D-enabled MEC Network: In chapter 5, our objective was

to address the issue of connection scheduling in indoor environments that

consist of FAPs operating in open access mode, as well as mobile users

capable of establishing D2D communication. We presented a solution

called MAFH, which aims to reduce energy consumption for users. This

is achieved by restricting high-speed clients from utilizing D2D communi-

cation and instead encouraging them to download content through FAPs.

For low-speed clients, we extend their connection time by establishing D2D

connections only between users who are in close proximity. In the case of

high-speed clients, our scheme selects the most suitable FAP based on RSSI

to increase the interval between consecutive handovers.

After addressing the optimal indoor connection scheduling framework, we

shifted our focus to localization techniques for tracking users within in-

door venues. Specifically, we explored the use of BLE technology and

introduced two analytical solutions that leverage the phase difference of

received signals to improve location accuracy. Additionally, we proposed

a CNN-based AoA estimation method, which utilized the MUSIC algo-

rithm to extract the angle of the BLE signal. Subsequently, we turned our

attention to UWB technology and developed a DRL-based framework for

selecting anchors. This framework aimed to achieve high location accuracy

while considering the remaining battery levels of UWB beacons. Finally,

we introduced a JSRL model, which helped expedite the learning process.
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6.2 Future Direction

Our future directions are as follows:

• A fruitful direction for future research is to find the optimum and time-

varying height for each UAV as a function of the remaining battery life

of UAVs and the number of users that are served in their transmission

coverage.

• It is worth mentioning that wind disturbances can have destructive im-

pacts on the flying path, flying speed, and/or position of UAVs in the low

attitude environment [217–219]. The wind effect on UAVs can be viewed

as an energy transfer process, changing the flight states of UAVs [223].

Given the complexities involved in the design of cache-enabled UAV-aided

cellular networks, however, the effects of wind on flight states of UAVs

have not yet been considered within this context [220–222]. This could

be another direction for future research to investigate the effect of wind

on the placement and path trajectory of cache-enabled UAV-aided cellular

networks.

• In DQLEL framework, as the first step towards development of a fully

autonomous agent for UWB-based indoor localization, we considered one

active user in each time slot. With the emphasis on the multiple access

technologies, our future research involves the deployment of a DRL-based

localization framework capable of localizing multiple users in each time

slot.

• Another future direction is to investigate the security factor and the effect

of mobility patterns on the performance of the indoor D2D-enabled MEC

networks.

• Furthermore, as the primary focus of the CLSA framework was to introduce

an innovative framework for predicting popularity and enhancing content

placement, significant emphasis has been placed on this aspect. However,

our fruitful direction for future research lies in integrating the proposed

CLSA popularity prediction framework with our recent research [4] to ex-

plore the collaboration among nearby edge devices for storing distinct con-

tent, with a problem formulation that encompasses various performance
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factors, including UAVs’ energy consumption and user latency within the

network. This integration holds promise for advancing the field and ad-

dressing broader challenges related to content caching and network opti-

mization.

• Graph Neural Networks (GNNs) have shown promise in the context of

MEC networks for content prediction. GNNs are a type of neural network

architecture specifically designed to operate on graph-structured data,

making them suitable for modeling and predicting relationships between

various entities in a network. In the context of MEC networks, GNNs can

be used to capture the complex relationships between different content

items, users, and caching nodes in the network. By representing the net-

work as a graph, where nodes represent content items, users, and caching

nodes, and edges represent relationships or interactions between them,

GNNs can learn to extract meaningful features and patterns from this

graph structure.
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