
PurityChecker: A Tool for Detecting Purity of

Method-level Refactoring Operations

Pedram Nouri

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

November 2023

© Pedram Nouri, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Pedram Nouri

Entitled: PurityChecker: A Tool for Detecting Purity of Method-level Refactoring

Operations

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Shin Hwei Tan

Examiner
Dr. Jinqiu Yang

Examiner
Dr. Shin Hwei Tan

Supervisor
Dr. Nikolaos Tsantalis

Approved by
Dr. Leila Kosseim, Chair
Department of Computer Science and Software Engineering

2023
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

PurityChecker: A Tool for Detecting Purity of Method-level Refactoring Operations

Pedram Nouri

Software refactoring is a vital practice in software engineering, aiming to improve code qual-

ity and maintainability. However, different refactoring instances serve different purposes. Some

are purely intended to enhance code health by preserving program behavior, while others serve to

eliminate defects and enable new functionality. Determining the purity of a refactoring instance,

whether it is behavior-preserving (a.k.a. “pure”) or not, is an essential but often challenging task.

This research introduces PurityChecker, a novel tool designed to automatically detect the purity of

method-level refactoring instances in Java code through static source code analysis.

The contributions of this thesis are twofold. First, a tool has been created to assess the purity

of refactoring instances, enabling the investigation of refactoring purity at a large scale. Extensive

evaluations based on manually validated oracles demonstrated PurityChecker’s effectiveness, with

precision and recall exceeding 90% in most cases. Second, a large-scale empirical study was con-

ducted, resulting in two meticulously validated oracles, providing invaluable resources for research

in software refactoring.

PurityChecker opens up new avenues for research and development. Its potential applications

range from improving code reviewing processes and code quality maintenance to enabling empirical

studies that leverage the concept of refactoring purity. This work is not only an important contri-

bution to the field of software evolution analysis, but also a stepping stone for future research into

refining and expanding refactoring assessment techniques.

iii

Acknowledgments

I would like to express my heartfelt appreciation and deep gratitude to my supervisor, Prof.

Nikolaos Tsantalis. It was an absolute delight to work alongside him in a collaborative and highly

productive manner. His invaluable mentorship and unwavering support played a pivotal role in

helping me overcome the challenges I encountered during my research.

Furthermore, I would like to express my thanks to my colleagues, Pourya Alikhani Fard, Mosab-

bir Khan Shiblu, and Mohammad Sadegh Alizadeh. Their generosity in sharing their invaluable

experiences and their constant support throughout my research journey have been instrumental in

shaping the outcome of this thesis.

Finally, I would like to extend my sincere appreciation to my family for their unwavering support

during the challenging times. Their constant encouragement and belief in me have been invaluable,

and I am deeply grateful for their presence in my life.

Thank you.

Pedram Nouri

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 3

1.1.1 Code Reviewer Perspective . 3

1.1.2 Developer Perspective . 4

1.1.3 Researcher Perspective . 6

1.1.4 Application in Regression Testing . 7

1.1.5 Limitation of Existing Tools . 7

1.2 Objectives and Contributions . 8

1.3 Outline . 9

2 Literature Review 10

2.1 Refactoring Mining Tools . 11

2.2 Refactoring Purity . 14

2.3 Limitation of the Existing Approaches . 17

2.4 PurityChecker Improvements over Existing Approaches 19

3 Approach 20

3.1 Refactoring Purity Definition . 20

3.2 Automatic Refactoring Purity Detection . 21

v

3.3 Step 1: Replacement Analysis . 21

3.4 Step 2: Non-mapped Statement Analysis . 52

3.5 PurityChecker Structure and Functionality . 62

4 Evaluation and Experimental Results 64

4.1 Oracle Creation . 65

4.1.1 Dataset and Commit Selection . 65

4.1.2 Refactoring Purity Manual Validation . 66

4.2 Results and Discussion . 69

4.2.1 RQ1: Purity Detection Accuracy . 69

4.2.2 RQ2: PurityChecker Inaccuracies . 71

4.2.3 RQ3: Distribution of Pure and Impure Refactorings 74

4.2.4 RQ4: Frequency of Overlapped Refactorings Causing Pure Refactoring Op-

erations - Most Popular Overlapping Refactoring Types 75

5 Threats to Validity 78

5.1 Internal Validity . 78

5.2 Construct Validity . 79

5.3 External Validity . 79

6 Conclusion and Future Works 80

Bibliography 82

vi

List of Figures

Figure 1.1 An Example of Overlapping Refactorings Caused a Pure Code Modification 4

Figure 1.2 Parameterization mistake in manually applied EXTRACT METHOD refactoring. 5

Figure 1.3 Commit correcting manually applied EXTRACT METHOD refactoring. . . . 6

Figure 3.1 Refactoring Purity Detection Process . 22

Figure 3.2 Extract Method with a Pure Replacement Caused by Refactoring Mechanics 26

Figure 3.3 Extract Method with a Pure Replacement Caused by a Modification in this

Keyword . 28

Figure 3.4 Extract Method with a Pure Replacement Caused by Supplier Pattern Ex-

traction . 33

Figure 3.5 Inline Method with Pure Replacements Caused by Two Overlapping Inline

Variable Refactorings . 34

Figure 3.6 Extract Method with Pure Replacements Caused by Two Overlapping Ex-

tract Variable Refactorings . 36

Figure 3.7 Extract Method with Pure Replacements Caused by Overlapping Parameter-

ize Attribute Refactoring . 39

Figure 3.8 Extract Method with Pure Replacements Caused by Overlapping Add Pa-

rameter Refactoring . 41

Figure 3.9 Extract Method with Pure Replacements Caused by Overlapping Encapsu-

late Attribute Refactoring . 42

Figure 3.10 Move and Rename Method with Pure Replacements Caused by Overlapping

Move Attribute Refactoring . 44

vii

Figure 3.11 Extract Method with Pure Replacements Caused by Overlapping Merge Vari-

able Refactoring . 46

Figure 3.12 Extract Method with Pure Replacements Caused by Overlapping Rename

Method Refactoring . 47

Figure 3.13 Move Method with Pure Replacements Caused by Overlapping Move Method

Refactoring . 49

Figure 3.14 Move Method with Pure Replacements Caused by Overlapping Pull Up

Method Refactoring . 50

Figure 3.15 Pure Extract Method Refactoring In Presence of Non-mapped Statements . 55

Figure 3.16 Pure Move Method Refactoring In Presence of Non-mapped Statements

Caused by Overlapping Extract Variable . 56

Figure 3.17 Pure Move Method Refactoring In Presence of Non-mapped Statements

Caused by Overlapping Localize Parameter Refactoring 58

Figure 3.18 Pure EXTRACT METHOD Refactoring In Presence of Non-mapped State-

ment Caused by Overlapping SPLIT CONDITIONAL Refactoring 59

Figure 3.19 Pure Move Method Refactoring In Presence of Non-mapped Statements

Caused by Overlapping Extract Method Refactoring 61

Figure 4.1 Pure MOVE AND RENAME METHOD Refactoring Mistakenly Reported as

Impure by PurityChecker . 72

Figure 4.2 Pure EXTRACT AND MOVE METHOD Refactoring Mistakenly Reported as

Impure by PurityChecker . 73

viii

List of Tables

Table 3.1 Correlation between Refactoring Categories and Their Unique Mechanic In-

duced Alterations . 25

Table 4.1 Number of Validated Refactoring per Refactoring Type 67

Table 4.2 Evaluation Metrics per Supported Refactoring Types for Training and Testing

Oracles . 69

Table 4.3 Weighted Average of Evaluation Metrics According to the Number of Each

Refactoring Type . 70

Table 4.4 Number of Actual Pure and Impure Refactoring Operation Instances 74

Table 4.5 Frequency of Overlapping Refactorings within Method-level Refactorings . . 75

ix

Chapter 1

Introduction

Refactoring is a widely adopted technique among software developers that aims to enhance the

overall design quality of the source code while preserving the original program behavior. It is a fre-

quently utilized along with other software maintenance activities, such as eliminating faults, bugs,

and defects within the software. As a result, the system becomes more comprehensible and man-

ageable, leading to reduced costs and efforts during the maintenance phase (Agnihotri & Chug,

2020, 2022). As numerous studies suggested, software refactoring is one of the most important

parts of software evolution as it can improve the cohesion, maintainability (Kolb, Muthig, Patzke,

& Yamauchi, 2005), evolvability (Ratzinger, Fischer, & Gall, 2005), and reusability (Moser, Sillitti,

Abrahamsson, & Succi, 2006) of existing software systems. In a close-to industrial, agile devel-

opment environment, refactoring is a key practice and allows for the progression of software with

limited initial design (Sillitti & Succi, n.d.).

In the literature, two refactoring strategies have been observed, known as “floss refactoring” and

“root canal refactoring”, which serve to describe the objectives behind the application of refactoring

operations. The floss refactoring involves making additional program modifications, such as fixing

bugs, adding new features or modifying existing ones, alongside the refactoring process. It is com-

monly used to maintain the overall health and quality of the code. On the other hand, developers

apply root canal refactoring with a specific focus on enhancing the source code quality and main-

tainability. Root canal refactoring refers to the type of refactoring that is performed on software

once it has become unhealthy or difficult to maintain (E. Murphy-Hill & Black, 2007, 2008).

1

Each refactoring type involves specific mechanics that help developers safely modify code while

preserving program behavior (Fowler, 2018). Following these mechanics ensures that the refac-

toring is correct and does not introduce bugs or unintended changes. However, there are certain

modifications that may occur during a refactoring process that are not directly related to the me-

chanics of that specific refactoring type. Despite this, the overall refactoring can still be considered

behavior-preserving as long as the intended behavior of the code remains unchanged. For example,

during a complex refactoring like PULL UP METHOD, there might be other smaller changes like an

EXTRACT VARIABLE refactoring within it. Although the change caused by the EXTRACT VARI-

ABLE refactoring is not directly part of the mechanics of PULL UP METHOD, the entire process is

still considered behavior-preserving as long as the final behavior of the code remains consistent.

There is an abundance of research and practical tools available that can effectively detect refac-

torings between two versions of code. However, the number of tools that can determine whether a

refactoring instance is pure or not is quite limited. Determining whether a refactoring is pure or not

is crucial in various scenarios and studies, such as manual refactoring validation (X. G. E. Murphy-

Hill, n.d.), refactoring-aware code review tools (Alves, Song, & Kim, 2014), empirical studies in-

vestigating the usage of automated refactoring tools (Black & Murphy-Hill, 2007), and assessing

the impact of refactoring on the internal quality of code (Chávez, Ferreira, Fernandes, Cedrim, &

Garcia, 2017).

In this study, our objective is to define and automatically assess Refactoring Purity. A refactor-

ing is considered pure if it does not include any modifications that alter the behavior of the refactored

code. It is essential to note that a single refactoring operation can have an impact on multiple pro-

gram elements simultaneously. Therefore, when assessing refactoring purity, we refer to the set of

elements directly affected by the specific refactoring operation.

We have created a tool named PurityChecker that can automatically determine whether a refac-

toring is pure or not. This tool relies heavily on RefactoringMiner by Tsantalis et al. (Tsantalis,

Ketkar, & Dig, 2020), which is the state-of-the-art refactoring detection tool. To make this determi-

nation, PurityChecker utilizes statement mapping information and the list of refactorings happened

in the two code revisions provided by RefactoringMiner and analyzes the replacements that occur

between the mapped statements through static source code analysis. This process allows us to infer

2

whether a refactoring meets the criteria for being classified as pure or impure.

1.1 Motivation

1.1.1 Code Reviewer Perspective

Code and change understanding is the key aspect of code reviewing (Bacchelli & Bird, 2013). The

ability to determine whether a refactoring is pure or impure can significantly benefit code reviewers

in comprehending the code modifications. Specifically, as purity indicates whether a refactoring

preserves the behavior of the code or not, having this knowledge during the code review process

is undoubtedly advantageous. Having this insight empowers code reviewers to better grasp the

implications and consequences of the code changes being made, thereby enhancing the overall

review process.

In this section, we present an illustrative scenario that underlines the significance of refactoring

purity in aiding the reviewer’s comprehension of code changes. The scenario is depicted in Figure

1.1, which showcases an actual example from the ratpack project1, slightly modified for the sake

of simplicity. The code revision involves two distinct refactorings that account for the code trans-

formation. Firstly, an EXTRACT METHOD refactoring (indicated by the black arrow) is observed,

wherein lines 7 to 13 are extracted into a new method named foo. Secondly, an INLINE VARI-

ABLE refactoring (indicated by the red arrow) takes place, leading to the inlining of the lConFut

variable, and the deletion of the variable declaration (line 8) in the next version.

Upon the validation of this case, it becomes evident that there are no alterations to the function-

ality of this code, although the changes might not seem behavior-preserving in the first sight. It is

vital to discern and analyze these changes in behavior to gain a comprehensive understanding of the

code alterations. The ability to identify and classify such refactorings as “pure” becomes invaluable

in this context, as it assures the reviewer that the code changes are behavior-preserving despite the

apparent changes involved.

The INLINE VARIABLE refactoring occurs within the EXTRACT METHOD refactoring. Notably,
1GitHub commit link

3

https://github.com/ratpack/ratpack/commit/da6167af3bdbf7663af6c20fb603aba27dd5e174

Figure 1.1: An Example of Overlapping Refactorings Caused a Pure Code Modification

this combination of refactorings does not alter the program behavior, given that, concerning the IN-

LINE VARIABLE refactoring, the variable initializer in the previous version remains the same after

the inlining process. Additionally, the EXTRACT METHOD refactoring itself introduces no changes

that affect the program behavior in the extracted statements. The only potentially concerning as-

pect lies in the alterations to the statement mapping between line 10 and 13 in the parent and child

versions, respectively. By leveraging information from these two refactorings, alongside the state-

ment mapping and replacement data provided by RefactoringMiner, our objective is to develop a

tool capable of identifying and classifying the aforementioned EXTRACT METHOD refactoring as

a pure instance. This will provide reassurance to reviewers that the code modification is behavior-

preserving.

Undoubtedly, the provided example is simplistic and merely serves as a motivating scenario. It

may be contended that for a proficient code reviewer, recognizing such a pure refactoring would be

straightforward, rendering an automated tool unnecessary. However, we have encountered countless

intricate scenarios where comprehending code changes necessitates the aid of an automated tool.

These situations have reinforced the need for a supporting tool that can automatically detect the

purity of refactoring, as it can greatly enhance our understanding of the code changes being made.

1.1.2 Developer Perspective

Recent research has indicated that many software developers prefer manual code refactoring over

automated tools (Negara, Chen, Vakilian, Johnson, & Dig, 2013; Vakilian et al., 2012). However,

manual refactorings are prone to errors. A study by Kim, Zimmermann, and Nagappan (2012) shows

4

Figure 1.2: Parameterization mistake in manually applied EXTRACT METHOD refactoring.

that developers often struggle to perform manual refactorings accurately. Additionally, Weißgerber

and Diehl (2006) highlight that incorrect refactorings can lead to various types of bugs. Purity-

Checker can serve as a tool that informs developers about unintentional mistakes done during man-

ual refactoring efforts that change program behavior.

For instance, in commit2, the developer extracts many instances of duplicated code concerning

different sorting algorithms into runTest() in class SortsTiming. The refactoring essen-

tially parameterizes the sorting algorithm with the Testable parameter. However, because the

refactoring is done manually, the developer makes a mistake. She does not replace the algorithm

“InsertionSort” with parameter “testable” in all places in the extracted method.

In Figure 1.2, the orange-highlighted references to the sorting algorithms InsertionSort,

BubbleSort should have been parameterized in the extracted method runTest(). Unfortu-

nately, during this code transformation, the developer overlooked replacing the red-highlighted ref-

erences, which resulted in a non-behavior-preserving EXTRACT METHOD refactoring.

The incorrect manual refactoring is fixed in a later commit3, with the commit message “Fixed a

small mis-type in sort timing code” by replacing “InsertionSort” with parameter “testable”.

In Figure 1.3, we can see the corrective commit made by the developer. Upon realizing the mistake,

the developer replaced the references highlighted in red with the ones highlighted in green. Puri-

tyChecker would be able to warn the developer about non-behavior-preserving manual refactoring
2GitHub commit link
3GitHub commit link

5

https://github.com/phishman3579/java-algorithms-implementation/commit/51a577c758f97d1e8c53c667cc5dbcbbe0256e99
https://github.com/phishman3579/java-algorithms-implementation/commit/0c976622df4bd27094778e6b92558720ad8f4895

Figure 1.3: Commit correcting manually applied EXTRACT METHOD refactoring.

before committing the refactoring to the repository.

The main motivation for developing tools to assess the purity of refactorings is to validate man-

ual refactoring efforts. Some existing tools attempt to assess the correctness of refactorings by

identifying non-behavioral code changes, but their definition of purity is incomplete. In this thesis,

our goal is to expand the definition of purity to encompass a wider range of genuinely behavior-

preserving refactoring operations. It is crucial to emphasize that the research tools we have encoun-

tered so far would inaccurately classify the EXTRACT METHOD refactoring, illustrated in Figure

1.1, as impure. Detailed explanations of these tools are provided in Section 2.2.

1.1.3 Researcher Perspective

The presence of a tool capable of reporting the purity of refactorings opens up a multitude of re-

search avenues. The tool’s ability to assess the purity of refactorings becomes particularly relevant

as it aligns closely with the concept of floss vs. root canal refactoring operations. As a result, re-

searchers are incentivized to conduct various empirical studies that leverage the notion of refactoring

purity, exploring its implications and applications in diverse contexts within software development.

Although several refactoring detection tools have been developed and tested using different

refactoring oracles, none of these oracles provide any information regarding the purity of the refac-

torings. To address this gap and further advance refactoring research, we created two refactoring

datasets with instances found in open source projects. For each refactoring instance we manually

validated and documented its purity. These datasets were used to compute the precision and recall

of our tool.

6

1.1.4 Application in Regression Testing

Regression testing ensures that recent modifications to a project do not disrupt previously function-

ing features. While crucial, it becomes expensive when changes occur frequently. Regression test

selection (RTS) addresses this by selectively executing tests whose outcomes could be impacted by

a given change.

Numerous studies propose diverse approaches for Regression Test Selection (RTS). Having a

tool capable of determining whether a refactoring is pure or not can significantly benefit this field.

Predicting a refactoring as pure enables the skipping of tests related to the changes influenced by

these refactorings. This practice can profoundly impact regression testing by substantially reduc-

ing the number of tests that need to be executed. Since pure refactorings preserve the program’s

behavior, changes related to them do not require retesting.

In a study by Wang et al. (Wang et al., 2018), the authors introduced refactoring-aware regres-

sion test selection. They argue that changes associated with refactorings are behavior-preserving,

and tests covering these changes can be skipped. While this holds true for refactorings deemed

behavior-preserving, it may not always be the case. Impure refactorings modify the program’s

behavior, necessitating testing for changes within this category during regression testing. Purity-

Checker can greatly assist this work by focusing their study on pure refactoring operations, aiding

in the selection of tests to be excluded from regression testing.

1.1.5 Limitation of Existing Tools

As previously mentioned, the current tools and methods available are unable to recognize the

straightforward example illustrated in Figure 1.1 as a pure refactoring operation. Several factors

contribute to this limitation, which we summarize as follows:

• Inability to handle changes resulting from overlapping refactorings: Existing approaches

struggle to effectively deal with situations where multiple refactorings overlap, leading to

challenges in accurately assessing the purity of the refactoring.

• Lack of accurate statement mapping and AST node replacement information: The exist-

ing approaches use inadequate methods for obtaining a fine-grained and accurate source code

7

diff. As a result, they fail to assess numerous behavior-preserving refactorings as pure ones.

This limitation hinders the proper recognition of genuinely behavior-preserving transforma-

tions, leading to missed opportunities for classifying such refactorings correctly.

PurityChecker’s primary objective is to overcome the aforementioned limitations and introduce

novel techniques to effectively and precisely identify pure refactoring cases, even in complex sce-

narios. By addressing these existing shortcomings and incorporating innovative approaches, Purity-

Checker aims to offer a more comprehensive and accurate assessment of refactorings, ensuring that

behavior-preserving transformations are correctly identified and categorized, even in challenging

situations. In contrast to previous tools, our objective is to introduce an extended refactoring purity

catalog that incorporates a broader spectrum of refactorings recognized as pure cases.

1.2 Objectives and Contributions

In this thesis, we introduce a tool called PurityChecker, which is designed to assess whether a

refactoring operation is pure or not. To make this determination, the tool analyzes information about

refactorings that occurred in a specific code revision. It relies on information from RefactoringMiner

2.0 (Tsantalis et al., 2020), which provides details about statement mapping and replacements during

the refactoring process. PurityChecker not only considers the information about the refactorings but

also takes into account the changes caused by the mechanics of each specific refactoring type. By

performing static source code analysis, PurityChecker can infer whether a refactoring preserves the

behavior of the code or not. Moreover, PurityChecker generates a concise report explaining the

reasons behind its purity assessment.

This thesis makes the following primary contributions:

• It introduces a novel tool capable of identifying pure and impure refactoring operations in

Java code through static source code analysis. This tool is the first of its kind to offer such

functionality.

• To validate the tool’s effectiveness, the thesis conducts a manual analysis of two separate

oracles—one for training and one for testing. These oracles consist of a total of 700 commits.

8

The training oracle is sourced from RefactoringMiner 2.0 (Tsantalis et al., 2020) dataset,

while the testing oracle is sourced from a different study conducted by Pantiuchina et al.

(Pantiuchina et al., 2020).

• The thesis presents and discusses the empirical results obtained from the manual analysis of

the commits. These results shed light on the tool’s performance and the characteristics of

refactoring operations in real-world scenarios.

1.3 Outline

The remaining sections of this thesis are structured as follows. Chapter 2 provides a comprehensive

overview of related tools and studies that have explored the concept of code modification purity.

Chapter 3 outlines the methodology used to develop PurityChecker, the novel tool for detecting pure

and impure refactoring operations, explaining its design and implementation. Chapter 4 presents the

outcomes of a large-scale study conducted using PurityChecker, including the tool’s performance

evaluation and the results obtained from the manual analysis. Chapter 5 addresses the threats to

both internal and external validity in the study, highlighting potential challenges or limitations in

the research. Finally, Chapter 6 concludes the thesis by summarizing the key findings, discussing

their implications, and proposing potential avenues for future research in this area.

9

Chapter 2

Literature Review

In this chapter, we begin with a broad perspective by investigating various research areas that are rel-

evant to software refactoring. Subsequently, we delve into a more detailed examination of research

studies and tools that focus on the concept of refactoring purity.

The term refactoring was initially introduced in (Opdyke, 1990), where it was defined as any

transformation applied to the source code with the aim of improving codebase reusability and under-

standability, and potentially being automated. Since then, numerous other research endeavors have

explored different facets of refactoring activity. These include researches in the refactoring process

itself, how developers refactor (E. Murphy-Hill, Parnin, & Black, 2011), the usage of refactoring

tools (E. Murphy-Hill et al., 2011; Negara et al., 2013), the motivations driving refactoring (Kim

et al., 2012; Kim, Zimmermann, & Nagappan, 2014; Pantiuchina et al., 2020; Silva, Tsantalis, &

Valente, 2016), the risks of refactoring (Bavota et al., 2012; Kim, Cai, & Kim, 2011; Kim et al.,

2012, 2014; Weißgerber & Diehl, 2006), the impact of refactoring on code quality metrics (Chávez

et al., 2017; Vashisht, Bharadwaj, & Sharma, 2018), and various other related aspects.

Kaya, Conley, Othman, and Varol (2018) examine situations in which refactoring becomes nec-

essary to ensure the maintainability and cleanliness of the codebase. Additionally, they highlight

the importance of integrating refactoring information into third-party tools, particularly code visu-

alization tools.

The impact of refactoring activity on software internal quality attributes have been studied by

Chávez et al. (2017). This study differentiates between two types of refactoring tactics, namely

10

root canal and floss refactoring, based on the varying emphasis on code structural quality for each

refactoring tactic. The authors of the study focused on five distinct internal quality attributes that

are closely associated with the specific refactoring types under investigation. It can also lead to

enhancements in external software quality attributes, which are indirectly evaluated through code

metrics such as maintainability and understandability (Vashisht et al., 2018).

Ouni et al. (2017) address the under-utilization of automated refactoring tools and present a

novel automated approach called MORE for the refactoring recommendation task. The primary

objectives of their approach are threefold: (1) to enhance design quality based on software quality

metrics, (2) to fix code smells, and (3) to incorporate design patterns.

2.1 Refactoring Mining Tools

Refactoring operations can be performed either manually or with assistance from automated tools

available within Integrated Development Environments (IDEs) or external software. Automatically

detecting the refactorings that occurred between two program versions is a significant research chal-

lenge. This is crucial because identifying these refactorings can aid developers in comprehending

the changes made by other developers. Furthermore, refactorng detection can be utilized to update

client applications that may have been affected by refactorings performed in library components,

helping to address potential issues and maintain software compatibility (Dig, Comertoglu, Marinov,

& Johnson, 2006; Henkel & Diwan, 2005; Xing & Stroulia, 2007). Numerous researchers have de-

veloped refactoring detection tools capable of automatically detecting various refactoring types in

the change history of software systems. These tools employ various algorithms and methodologies

to achieve high precision and recall in their detection capabilities. In this section, we provide a

concise overview of the most recent and successful refactoring detection tools.

RefactoringCrawler, developed by (Dig et al., 2006), utilized the approach of record-and-

replay of refactorings. This tool aimed to help refactoring engines to re-apply previously detected

refactorings to newer versions more efficiently. Their refactoring detection algorithm employs a

11

two-step approach, incorporating a rapid syntactic analysis to identify potential refactoring candi-

dates and a more complex and expensive semantic analysis to further refine and validate the re-

sults. Their syntactic analysis utilizes Shingles encoding, a technique from Information Retrieval,

to swiftly identify similar fragments in text files. By applying shingles to source files, the algorithm

efficiently detects refactorings that involve repartitioning of the source code, leading to similar text

fragments across different versions of a component. On the other hand, their semantic analysis

relies on reference graphs, which represent the connections between source-level entities, such as

method calls. This analysis takes into account the semantic relationship between candidate entities

to determine whether they constitute a refactoring.

In REF-FINDER (Prete, Rachatasumrit, Sudan, & Kim, 2010), the authors tried to address the

main limitations found in previous refactoring detection tools, which can be summarized into the

difficulties in automatically identifying certain types of refactorings that involve changes to pro-

gram structure, method implementations, and combinations of multiple refactorings. These chal-

lenges may require manual intervention or more sophisticated analysis techniques to be properly

detected and applied. Inspired by the concept of logic-based program representation, the authors

utilized template logic rules and encoded dependencies among refactoring types to define structural

constraints before and after applying refactorings to a program. They developed a fact extractor to

gather information about code elements, structural dependencies, and code content, represented as

a database of logic facts. The tool then inferred specific refactoring instances by converting tem-

plate logic rules into logic queries and executing them on the database. Essentially, they used a

logic-based approach to identify refactorings automatically based on the extracted facts from the

program’s abstract syntax tree.

RefDiff (Silva & Valente, 2017) utilizes a blend of heuristics based on static analysis and code

similarity to identify refactorings between two versions of a system. The tool takes two system

revisions as input and generates a list of detected refactorings as output. At its core, RefDiff treats

code fragments as a collection of tokens using a modified version of the TF-IDF approach, seeking

out similar code elements by applying a similarity threshold. The detection algorithm comprises

two main phases: Source Code Analysis and Relationship Analysis. In the first phase, the algorithm

parses and examines the system’s source code, creating models to represent high-level source code

12

entities such as types, methods, and fields before and after the changes. To optimize efficiency, only

the code entities from modified source files are analyzed. In the second phase, the algorithm focuses

on establishing relationships between the source code entities before and after the changes. This is

accomplished by constructing a bipartite graph with two sets of vertices representing code entities

before and after the changes, with the graph’s edges symbolizing the relationships between these

entities. In a subsequent work by (Silva, da Silva, Santos, Terra, & Valente, 2020), ReffDiff 2.0 was

introduced, which shares similarities with its predecessor at its core. This is the first multi-language

refactoring detection tool, which supports JavaScript and C programming languages, in addition to

Java.

(Tsantalis, Mansouri, Eshkevari, Mazinanian, & Dig, 2018) developed, implemented, and eval-

uated RMiner, a tool that addresses two key limitations observed in many existing refactoring

detection tools. Firstly, RMiner overcomes the need for a predefined similarity threshold, which

can be challenging to determine in different scenarios. Secondly, unlike other tools, RMiner does

not require two fully built versions of a software system for refactoring detection. Instead, it ac-

cepts two code revisions, typically a commit and its parent from the commit history in git-based

version control repositories, and then produces a list of refactorings that occurred between these re-

visions. To achieve this, RMiner utilizes two major techniques: Abstraction and Argumentization.

Abstraction handles changes in Abstract Syntax Tree (AST) types caused by refactorings, while

Argumentization deals with changes in sub-expressions within statements due to parameterization.

By employing an AST-based algorithm for statement matching along with these novel techniques,

RMiner successfully identifies 14 high-level refactoring types with relatively high precision and

recall rates.

In a more recent work (Tsantalis et al., 2020), RMiner has been extended to RefactoringMiner

2.0
1. The primary enhancement in this new version, as highlighted by the authors, lies in its match-

ing function, which incorporates additional replacement types and heuristics. To assess the tool’s

performance, the authors conducted an evaluation by comparing it with existing tools, including its

predecessor RMiner and RefDiff 2.0. They utilized a dataset comprising 7,226 confirmed instances

of 40 distinct refactoring types, all validated by experts. The results demonstrated the superiority
1https://github.com/tsantalis/RefactoringMiner

13

of the updated RefactoringMiner 2.0, as it achieved the highest precision (99.6%) and recall (94%)

among all the evaluated tools. These findings emphasize the effectiveness of the new version in

accurately detecting and identifying various refactoring operations in software code.

2.2 Refactoring Purity

As previously mentioned, determining whether a refactoring is pure or not holds significant advan-

tages in various scenarios. This information provides valuable insights to code reviewers, helping

them understand the nature and impact of the applied refactorings. Additionally, the ability to iden-

tify pure refactorings has numerous applications in empirical studies, enabling researchers to gain

deeper understanding and make informed assessments about the applied refactorings on the code-

base.

While the literature on different aspects of refactoring activity encompasses numerous research

papers and tools, there is a limited number of studies that specifically focus on the detection of pure

and impure refactorings. In this section, we conduct a thorough analysis of these few studies to gain

a deeper understanding of this particular field of research. By examining these works in detail, we

aim to explore the advancements and challenges associated with identifying whether refactorings

are behavior-preserving or not, thus contributing to the existing knowledge in this specialized area.

In the study by (Kawrykow & Robillard, 2011), a novel term, “non-essential modification” is

introduced and defined. The authors have developed a tool specifically designed to identify in-

stances of non-essential code differences present within the version histories of software systems.

These differences encompass a range of changes, including local variable refactorings and textual

disparities resulting from rename refactorings. Although the primary focus of their investigation

is not on changes occurring within refactorings, it holds a substantial connection to the concept of

purity. Their intention is rooted in the aim of achieving a more meaningful representation of code

changes, with the goal of discerning and highlighting modifications that may not significantly affect

the overall behavior of the software.

14

Initially, they established distinct criteria that outline non-essential modifications in code revi-

sions, encompassing five primary categories: (1) Trivial Type Updates, (2) Rename-Induced Modi-

fications, (3) Trivial Keyword Modifications, (4) Local Variable Renames, and (5) Whitespace and

Documentation-Related Updates. As their research is not dependant on any existing refactoring de-

tection tool that offers information about changes occurring within statements and expressions, the

authors developed their proprietary change analysis tool, termed DIFFCAT. DIFFCAT processes

a set of committed source files obtained from a software repository (a change set) and provides a

detailed account of the diverse structural modifications present in that particular change set. Their

detection method utilizes an AST-based Partial Program Analysis to facilitate type resolution, en-

abling more accurate identification and categorization of structural changes that are deemed non-

essential. During the validation phase, they assessed the precision of their technique and discovered

that 98.8% of the method updates identified as non-essential were correctly classified. While DIFF-

CAT is accessible online, we refrained from comparing it to PurityChecker due to the distinct scopes

of these tools, rendering them incomparable. A detailed explanation of this decision is provided in

Section 4.1.2.

In (Alves et al., 2014), the authors introduced a specialized tool named RefDistiller, designed

explicitly for validating manual refactoring activities during code reviews. Unlike general code

review tools, RefDistiller is tailored to identify potential behavioral changes introduced by man-

ual refactoring edits. Notably, this paper includes the first mention of the concept of “purity” in

the context of refactoring operations. RefDistiller is specifically focused on six of the most preva-

lent method-related refactoring types, which include move method, extract method, inline method,

rename method, pull up method, and push down method.

The fundamental approach of RefDistiller centers around recognizing discrepancies between a

manually refactored code and its corresponding pure refactoring counterpart. The tool comprises

three core components:

• RefFinder: This refactoring detection component takes an original version and a manually

refactored version as inputs, deducing potential refactoring types and their locations automat-

ically. Note that a detailed description of this particular refactoring detection tool is provided

in section 2.1.

15

• RefChecker: For each identified refactoring edit, RefChecker examines a set of essential

code modifications. It validates the preservation of method or field reference bindings using

predefined template rules. These rules mainly consider the validation of bindings and missing

components (statements and methods) and rename-induced changes. If expected changes are

absent in the actual edits, these omissions are highlighted as deviations from pure refactoring,

raising concerns about potential behavior changes.

• RefSeparator: This module applies an equivalent pure refactoring using a modified version

of the Eclipse refactoring engine to generate a pure refactoring version. This version is then

compared to the manually refactored one using ChangeDistiller’s syntactic differencing tech-

nique (Fluri, Wursch, PInzger, & Gall, 2007). If discrepancies arise between the versions,

RefSeparator pinpoints the locations of additional edits, which are again flagged as potential

alterations to the program’s behavior.

According to their evaluation, RefDistiller can correctly identify 97% of the erroneous refactor-

ing edits. We made the decision to access the tool in order to conduct a more thorough evaluation

of its strengths and weaknesses. Unfortunately, the tool is not available through the links referenced

in the paper or on GitHub.

In their work (X. G. E. Murphy-Hill, n.d.), a novel technique named GhostFactor is proposed.

It introduces an innovative static analysis approach that identifies and validates manually performed

refactorings. The tool is specifically designed to address a limited set of refactoring types, namely

Extract Method, Change Method Signature, and Inline Method. The study’s main motivation arises

from the significant under-utilization of automated refactoring tools, which often results from de-

velopers’ lack of trust in their reliability and potential to introduce errors. GhostFactor comprises

distinct components, namely history preservation, refactoring detection, condition assessment, and

refactoring warning functionality.

The history preservation component is responsible for monitoring and storing the alteration his-

tory of various files. The refactoring detection module identifies refactorings carried out manually

by developers. It takes a snapshot list of a source file as input, dynamically loading available refac-

toring detectors and applying them to the snapshot list. Developers can specify these refactoring

16

detectors. The condition assessment component dynamically incorporates condition checkers re-

lated to the specific refactoring type. These checkers assess both pre-conditions and post-conditions

for the given refactoring, as proposed by Opdyke (Opdyke, 1992). Lastly, the refactoring warning

element tracks identified condition violations and reports them to the user.

Of particular interest is the condition assessment component, which closely aligns with the con-

cept of refactoring purity. This component determines whether a manually-detected refactoring

maintains the behavior of the transformed code or not. It examines whether a particular manual

refactoring adheres to a predefined set of conditions. GhostFactor dynamically integrates condi-

tion checkers during runtime, allowing developers to easily incorporate new custom checkers. The

study outlines four primary conditions that need to be fulfilled to classify a refactoring as behavior-

preserving: (1) Return Value Checker, (2) Parameter Checker, (3) Stale Invocation Checker, and (4)

Modified Variable Checker.

In their assessment, the tool evaluated through a human study involving eight expert software

developers. The results indicated that GhostFactor enhanced the accuracy of manual refactorings

by 67%. Even though the tool is intended for validating manual refactorings carried out in the C#

programming language, we opted to examine it more closely to analyze the tool’s features and study

their approach. Unfortunately, the tool is not available for installation either as Visual Studio plugins

or on GitHub.

2.3 Limitation of the Existing Approaches

In this section, we highlight several notable constraints within reviewed methodologies and studies,

which we aim to address in our proposed approach.

Reliance on Predefined Purity Rules without further statement mapping and replacement

analysis: A significant limitation encountered in several tools, whether their primary objective is to

identify pure refactorings or this task is part of their intent, is their dependence on predefined condi-

tions without extensive analysis of different scenarios in which the rules can be refined. Developers

often undergo shifts in their programming decisions and ideas. Establishing fixed rules for these

situations is challenging, unless a thorough analysis of extensive datasets and oracles is conducted.

17

However, without such extensive analysis, these conditions and predefined rules lack universality

and may not be applicable to every conceivable refactoring scenario due to the varied and some-

times unpredictable refactoring practices adopted by developers during the evolution of software

systems. Relying solely on these predefined strict rules, without incorporating comprehensive state-

ment mapping and replacement analysis, leads to a substantial number of false negative predictions.

In these cases, refactoring operations are erroneously flagged as impure, even though they genuinely

preserve the software’s behavior.

Inability to Address Overlapping Refactoring Scenarios: A notable limitation within many

existing tools and methodologies is their incapacity to handle scenarios involving overlapping refac-

toring activities. Many instances of refactoring involve the stacking of two or more refactorings on

top of each other. Regrettably, the majority of the tools mentioned earlier do not adequately consider

the potential changes introduced by overlapping refactoring operations. In various instances, such

overlapping refactorings result in behavior-preserving alterations to the codebase. Given the vast

array of possible refactoring combinations, rule-based refactoring purity detection tools would need

an impractical number of rules and conditions to encompass the effects of overlapping refactorings.

As exemplified earlier in Figure 1.1, a code modification features two refactorings occurring on

top of one another. Almost all the tools and approaches aimed at identifying pure refactorings are

likely to miss scenarios like this one, where overlapping refactorings take place. As a consequence,

they would mistakenly fail to correctly identify such cases as examples of pure refactoring.

Under-utilization of Statement Mapping and Replacement Analysis: Most of the tools and

techniques for detecting purity do not harness the valuable insights offered by statement mapping

and replacement analysis. Given that a multitude of changes occur at the statement and expression

level, neglecting to incorporate this critical analysis leads to a significant loss of valuable infor-

mation. This omission can hinder the ability to effectively rationalize various modifications made

within the codebase.

Poor refactoring detection tools: A fundamental prerequisite for accurately identifying pure

refactorings is the precise detection of refactorings themselves. Regrettably, most current method-

ologies suffer from the relatively low precision and recall rates of their refactoring detection com-

ponents, which affects negatively the purity detection process.

18

2.4 PurityChecker Improvements over Existing Approaches

PurityChecker stands out as an advancement over existing tools like RefDistiller and GhostFactor

by broadening the scope of accepted changes within the statement mappings of method-level refac-

torings. Unlike its counterparts, PurityChecker goes beyond supporting only trivial changes within

the method body, offering a more comprehensive approach.

While RefDistiller and GhostFactor are limited to handling straightforward alterations in the

body of method-level refactorings, PurityChecker’s strength lies in its extensive manual validation

and specific design for purity detection. This enables PurityChecker to establish robust and general

rules that cover a wide range of changes within method bodies. For instance, GhostFactor can handle

changes resulting from a RENAME METHOD refactoring but lacks the ability to justify modifications

in a statement mapping affected by multiple RENAME METHOD refactorings in a single commit

due to the absence of fine-grained AST-based replacement information. As we know, there could be

more than one method invocation within an statement mapping that have been affected by several

RENAME METHOD refactorings in a commit.

Furthermore, both tools overlook changes occurring within printing and logging statements, dis-

regarding them as behavior-preserving modifications. PurityChecker, on the other hand, considers

these changes, recognizing that they do not impact the program’s behavior.

A critical distinction lies in the handling of overlapping refactoring analysis. PurityChecker

tolerates code modifications resulting from the application of overlapping refactorings, acknowl-

edging that they do not alter the behavior of the refactored code—a feature absent in RefDistiller

and GhostFactor, as detailed in Section 3.3.

19

Chapter 3

Approach

In this chapter, we outline the fundamental process for automatic detection of refactoring purity.

Subsequently, we delve into an in-depth exploration of each section of the process, elaborating on

every step in a comprehensive manner. As each method-related refactoring type possesses unique

characteristics, we provide a detailed explanation specific to each refactoring type towards the end

of the chapter. This procedural framework has been implemented within an open-source tool called

PurityChecker, built on top of RefactoringMiner 2.0 (Tsantalis et al., 2020). The tool’s code is

publicly accessible on GitHub (Nouri, 2023).

3.1 Refactoring Purity Definition

As previously mentioned, a refactoring may involve several overlapping changes, such as bug fixes

or feature implementations, which makes the refactoring non-behavior preserving. A refactoring is

labeled as pure if it does not involve alterations that modify the behavior of the refactored code. This

thesis concentrates on method-related refactoring operations, as we posit that purity can be clearly

defined within this context.

Three primary categories of behavior-preserving code modifications are pertinent to the concept

of refactoring purity: (1) Changes justified by the specific mechanics of a refactoring type, (2)

Non-essential adjustments or changes within statement mappings, and (3) Alterations stemming

from overlapping refactoring activities. By leveraging information about statement mappings and

20

the replacements within them, we assess whether code changes in a refactoring align with these

categories, ultimately determining its purity.

Our definition of purity remains open-ended to underscore that the genuine “purity” of code

changes is contingent on the specific contexts of their examination. As earlier indicated, our focus

lies on method-related refactorings and the delineation of three key categories of justifiable changes.

This approach allows us to contend that these changes are less likely to yield behavior-changing

modifications into the developmental effort behind each alteration.

3.2 Automatic Refactoring Purity Detection

PurityChecker performs automatic assessment of refactoring purity for a set of 10 method-related

refactorings. These refactorings include EXTRACT METHOD, EXTRACT AND MOVE METHOD,

INLINE METHOD, MOVE METHOD, MOVE AND RENAME METHOD, MOVE AND INLINE METHOD,

PULL UP METHOD, PUSH DOWN METHOD, SPLIT METHOD, and MERGE METHOD. We illus-

trate the core process for automated refactoring purity detection in Figure 3.1. The initial stage,

marked as 0 in Figure 3.1, involves executing RefactoringMiner 2.0 on a specific commit. This

step provides us with a list of all refactorings carried out in the commit, accompanied by statement

mapping and replacement details. In the subsequent step, labeled as 1 in the diagram, Purity-

Checker examines the replacements made during a given refactoring, determining whether these re-

placements adhere to purity criteria. Finally, the last stage, denoted as 2 , involves PurityChecker’s

analysis of non-mapped statements within the refactoring to ascertain whether these statements have

the potential to be neglected according to the refactoring’s purity.

In the upcoming sections, we will delve into the mentioned stages and provide a more compre-

hensive explanation of the process for automatically assessing refactoring purity.

3.3 Step 1: Replacement Analysis

Replacements refer to the specific changes or alterations made to individual code statements during

the process of refactoring. These replacements are crucial for tracking the modifications applied

21

Figure 3.1: Refactoring Purity Detection Process

22

to the code as part of the refactoring operation. There are different replacement types further ex-

plaining the change that happened within a statement. Different types of replacements are required

because refactoring operations can encompass a wide array of modifications, such as variable re-

naming, method extraction, parameter changes, and more. By categorizing these changes into dif-

ferent replacement types, the system can effectively represent and interpret the nuanced alterations

introduced by the refactoring process. According to the RefactoringMiner 2.0, there are a total of

about 80 different replacement types.

As previously mentioned, RefactoringMiner 2.0 supplies PurityChecker with replacement in-

formation (labeled as 0.1). By utilizing the replacement type in conjunction with the replacement

details stored in each statement mapping instance, PurityChecker determines if a provided replace-

ment is justifiable in terms of purity. This decision-making process occurs in three distinct stages,

each addressing various scenarios in which a replacement can be deemed justified. Initially, Puri-

tyChecker employs a process where it attempts to decide whether replacement alterations are pure,

considering the specific refactoring type and its corresponding mechanics (denoted as 1.1). Sub-

sequently, PurityChecker evaluates if a given replacement change qualifies as a pure alteration,

considering certain admissible code modifications that do not affect program’s behavior (denoted as

1.2). Lastly, due to the potential for overlapping refactorings to yield pure code changes, Purity-

Checker analyzes the list of refactorings within a specific commit to identify replacement changes

as instances of pure code modifications (denoted as 1.3).

To optimize computation time and resource usage, PurityChecker includes a check at the end

of stages 1.1 and 1.2 . If the set of replacements is empty, it bypasses the subsequent stages and

proceeds directly to the analysis of non-mapped statements. This approach prevents unnecessary

processing and resource consumption.

In the following sections, we will delve into a more detailed explanation of these stages.

Stage 1.1: Justifying Replacements Regarding Refactoring Mechanics

Refactoring mechanics refer to the specific techniques, steps, or practices used to carry out refactor-

ing in a systematic and controlled way. These mechanics guide the developer through the process,

ensuring that the restructuring of the code by the means of refactoring does not alter its external

23

behavior. Each refactoring type has its own set of mechanics that dictate how code is transformed

to achieve a desired result while preserving or improving its quality and maintainability.

Many of the method-related refactorings involve specific mechanics that result in introducing

code changes that preserve behavior, making them pure. We conducted a thorough analysis of these

mechanics and identified the specific replacement changes that fall into this category. Consequently,

we designed PurityChecker to recognize these mechanic-induced pure replacements and classify

them as such in the code modifications.

Tsantalis et al. (2020) introduced two innovative techniques: Abstraction and Argumentization.

These techniques enhance RefactoringMiner’s capability to map statements effectively. They are

closely linked to the concept of code changes induced by refactoring mechanics. Abstraction

refers to deletion or addition of a return statement in case of a certain refactoring operations,

such as EXTRACT METHOD and INLINE METHOD. For instance, when you extract an expression

from a method, it becomes a return statement in the newly created method. Argumentization refers

to replacement of expressions with parameters and vice versa, in case of some certain refactoring

operations. For example, in case of an EXTRACT METHOD refactoring, when you extract duplicated

code into a common method, the distinct expressions within the duplicated code become parameters

in the new extracted method. The duplicated code is then replaced with calls to this new method,

passing each distinct expression as an argument. Argumentization describes the pure replacement

change between these parameters and arguments in such cases. Argumentization can be also applied

in case of MOVE METHOD and INLINE METHOD refactorings. In case of a MOVE METHOD

refactoring, when you relocate an instance method to a different class, there can be two types of

changes: (1) removal of target type parameter; you might remove a parameter (or access to a field

of the target class) from the original method. This parameter would be of the same type as the target

class. (2) addition of source type parameter; you could add a parameter to the original method, and

this parameter would be of the same type as the source class.

PurityChecker employs the mentioned techniques, in addition to further analyzing other pure

replacement changes induced by refactoring mechanics, which help the tool to label these replace-

ments as behavior-preserving changes in the context of refactoring purity. Table 3.1 provides a

breakdown of which refactoring types are linked to specific mechanic-based replacement changes

24

Table 3.1: Correlation between Refactoring Categories and Their Unique Mechanic Induced
Alterations

Refactoring Probable Mechanic-induced Pure Replacement

Extract Method
-Abstraction of Expression(s) in a return Statement Change (Addition)

-Parameter to Argument Change

Extract and Move Method

-Abstraction of Expression(s) in a return Statement Change (Addition)

-Parameter to Argument Change

-Adding Parameters (Induced by Move Method)

-Removing Parameters (Induced by Move Method)

-Modifications in how a method or field is accessed (Induced by Move Method)

Inline Method
-Abstraction of Expression(s) in a return Statement Change (Deletion)

-Parameter to Argument Change

Move Method

Move and Rename Method

Move and Inline Method

Pull Up Method

Push Down Method

-Adding Parameters

-Removing Parameters

-Modifications in how a method or field is accessed

that render the replacement as pure.

To exemplify such instances of pure replacement changes and outline the approach Purity-

Checker employs to justify them, we have chosen a real-world case which is shown in Figure 3.2.

This specific commit1 is derived from the VoltDB project2.

In this code alteration, the developer extracted writeResponseToConnection method

from the source method in the parent version. As indicated in the figure, there is only one state-

ment mapping that involves a change labelled as 6 . When RefactoringMiner 2.0 is executed on

this commit, it provides PurityChecker with information about the statement mapping and replace-

ments occurring within the EXTRACT METHOD refactoring. As previously mentioned, there is

just a single replacement here, characterized by the “VARIABLE NAME” type, transitioning from
1Visit the GitHub commit link
2https://github.com/VoltDB/voltdb

25

https://github.com/VoltDB/voltdb/commit/669e0722324965e3c99f29685517ac24d4ff2848
https://github.com/VoltDB/voltdb

Figure 3.2: Extract Method with a Pure Replacement Caused by Refactoring Mechanics

errorResponse to response. Notably, these represent the extracted method’s argument and

parameter, respectively. According to the Table 3.1, a replacement involving a parameter and ar-

gument of an EXTRACT METHOD is a type of pure code modification. PurityChecker utilizes this

information, considering the replacement values and their types, to conclude that this replacement

is pure.

Stage 1.2: Justifying Replacements Regarding Tolerable, Behavior-preserving Changes in

Statement Mappings

Numerous code modifications occurring at both the statement and expression levels are inherently

behavior-preserving. These changes are thus classified as pure code modifications. Employing

static source code analysis, we harnessed the data from statement mapping and the replacements

themselves to formulate multiple rules for identifying such pure replacements. In our quest to de-

velop and fine-tune these rules, we initially conducted an extensive review of existing literature to

gain insights. For instance, a study by Kawrykow et al. (Kawrykow & Robillard, 2011) categorized

several non-essential code modifications, suggesting that these alterations preserved the code’s be-

havior. While this study was not comprehensive, it did provide valuable ideas for crafting our own

purity rules.

26

Subsequently, through the meticulous process of manually validating our oracle, which is thor-

oughly explained in Chapter 4, we systematically devised various purity rules and continually re-

fined them. PurityChecker is designed to recognize such replacements and label them as pure code

modifications during its refactoring purity detection procedure. In the following, we will extensively

clarify our purity rules and the thinking that guided their development along with one example for

each .

Modification of Visibility, Modifiability, and this Keywords: During our analysis of Java code

history, we came across situations where developers repetitively added or removed instances of the

this keyword. In Java programming, adding the this keyword to a program element has an

impact on the program’s behavior in only a few specific scenarios. Modifications that include alter-

ations related to the this keyword could enhance the code’s readability to some extent. However,

it is crucial to note that, in the majority of situations, these changes can be deemed pure and do not

substantially affect the code’s fundamental functionality.

In the context of PurityChecker’s operation, which operates at the granularity of statements

and expressions within methods, we do not take into consideration Java keywords that pertain to

the visibility and modifiability of methods or classes. These keywords, like public, private,

protected, and others, are related to the overall access and modifiability of methods or classes,

which are not within the scope of PurityChecker’s analysis.

However, when it comes to keywords that might be applied to individual statements within

methods, such as final, volatile, and others, we do consider changes involving these key-

words as pure code modifications. This decision is based on our analysis of Java code history and

our definition of purity, which suggests that in most instances, changes related to these keywords

within statements are non-essential and do not significantly impact the behavior of the program.

While there may be scenarios where altering a statement’s keyword could affect program func-

tionality, our analysis suggests that these cases are generally rare, and such changes are considered

behavior-preserving according to our definition of purity.

27

Figure 3.3: Extract Method with a Pure Replacement Caused by a Modification in this Keyword

To provide an example of such instances of pure replacement changes and outline the Pu-

rityChecker’s approach to justify them, we have chosen a real-world commit3 from Signal An-

droid project4, which is shown in Figure 3.3. Our focus is on the mapping labeled as 4 . In

this specific mapping, we observe a replacement involving two terms: this.emojiToggle and

emojiToggle. It is important to note that this replacement is classified as a pure modification.

The rationale behind this classification lies in the fact that both terms essentially refer to the same

entity, specifically the emojiToggle attribute belonging to the EmojiToggle class.

As previously mentioned, the introduction or removal of the this keyword, as seen in this

replacement, can be interpreted as an attempt to enhance the code’s readability. In essence, this

change does not fundamentally alter the behavior of the code; rather, it serves to make the code

more comprehensible to developers.

Modification of Primitive Types: The replacement or modification of primitive types, such as

changing an int to a long or vice versa, within the Java language can be classified as a behavior-

preserving, pure change. This assertion can be substantiated by understanding how these data type

conversions operate in the context of Java programming language.

In Java, primitive types are categorized based on their size and the values they can hold. For

example, int is a 32-bit signed integer type, whereas long is a 64-bit signed integer type. When

a developer decides to replace an int with a long, they are essentially widening the data type.
3Visit the GitHub commit link
4https://github.com/signalapp/Signal-Android

28

https://github.com/signalapp/Signal-Android/commit/fa62b9bde224341e0c2d43c0694fc10c4df7336f
https://github.com/signalapp/Signal-Android

In this process, the new long data type can accommodate the values that the previous int could

hold. This implies that any integer value that was held by the int variable can be easily stored

within the long variable without any loss of data or precision. The code will continue to compile

successfully, and the runtime behavior will remain consistent, as long as the widened range of the

long type does not introduce unintended consequences due to numeric overflow.

Moreover, Java features automatic type conversion for widening primitive type conversions.

This means that when an int value is assigned to a long variable, Java automatically handles the

type conversion behind the scenes. The conversion process does not involve any additional logic

or operations that could affect the program’s behavior. Therefore, the code remains functionally

equivalent before and after the replacement, as it continues to produce the same results for the same

inputs. In essence, this replacement constitutes a pure change because it does not alter the code’s

functionality; it merely adjusts the data type to accommodate a broader range of values without

introducing any behavioral changes.

This principle can be broadened to encompass additional legitimate substitutions of primitive

types. For instance, it applies to situations where byte is substituted with short or int, float

is swapped with double, or when smaller numeric types are replaced with BigInteger.

Modification of Printing and Logging Statements: Printing and logging statements in Java serve

various purposes, primarily facilitating debugging, monitoring, or providing feedback to developers

and end-users. These statements are designed to display information on the console or log files.

When substitutions like switching from System.out.println to System.err.println

or from log.info to log.warn are made, they essentially adjust the output level or destination

while retaining the original intent of conveying information. Importantly, these changes only af-

fect the manner in which messages are displayed or logged, not the program’s underlying logic or

functionality.

PurityChecker’s assessment of these replacements as pure aligns with the principle of main-

taining the essential purpose of the print or log statement. Whether transitioning between different

output levels or adjusting the output destination, the core functionality of the program remains un-

altered. The same reasoning extends to similar pairs of changes, such as transitioning between

29

different log levels, where the modifications pertain to the level of importance attributed to a mes-

sage without affecting the program’s fundamental functionality.

PurityChecker’s classification of replacements within printing and logging statements in Java

as pure is firmly grounded in their behavior-preserving nature. These modifications focus solely

on adjusting the display, logging level, or output mechanism, leaving the program’s logic entirely

untouched. This alignment with the fundamental intent of the mentioned statements serves as a

compelling rationale for their categorization as pure replacements within the context of this thesis.

Modification of Printing, Logging, and Exception Messages: PurityChecker’s discerning evalu-

ation of code replacements extends beyond statements to encompass replacements within the mes-

sages logged or printed by a program. We argue that alterations within these messages should be

classified as pure. This perspective is underpinned by a set of compelling reasons that highlight that

these changes do not affect the program’s core behavior.

• Semantic Consistency: In the realm of logging and printing messages, the primary objective

is to communicate information clearly and effectively. When we replace one message with

another, it can be viewed as a pure modification. For example, changing a log message from

File not found to File does not exist preserves the underlying issue being reported, which is

the absence of a file. PurityChecker recognizes that these changes, while altering the wording,

do not alter the fundamental behavior of the program.

• Clarity and Readability: Code maintainability and readability are paramount in software de-

velopment. Occasionally, replacements within messages are driven by a desire for improved

clarity or adherence to coding standards. For instance, substituting an abbreviation like “IO”

with “Input/Output” enhances the comprehensibility of the message. These changes enhance

the human understanding of the code without affecting the program’s functionality. Puri-

tyChecker assesses these alterations as pure, as they contribute positively to code quality

without introducing behavioral shifts.

• Message Enrichment: One of the common practices in software development is to en-

hance the context and detail of messages by incorporating explanatory variables. This in-

volves replacing static or hard-coded message parts with placeholders that can be dynamically

30

filled with relevant information during runtime. For instance, substituting a generic mes-

sage like log.warn(‘‘Error occurred in assignment") with a message like

log.warn(

‘‘Error occurred in assignment of variable %d", x) provides a more

informative and context-rich log. PurityChecker recognizes that these changes improve the

comprehensibility of messages without altering the program’s fundamental behavior. They

enhance the ability to diagnose issues and facilitate troubleshooting, making them valid can-

didates for pure replacements.

Supplier-get Pattern Extraction Modification: During the manual validation of our oracle, we

encountered instances where developers replaced direct method invocations with a Supplier

functional interface wrapping the invocation, followed by invoking .get() on the Supplier

variable. This particular type of replacement caught our attention and prompted us to conduct a

more thorough analysis. Such replacements can serve several purposes and often relates to control

over when and how the method is executed. Here are some common reasons why developers might

choose to make this kind of transformation:

• Lazy Evaluation: One of the primary motivations is to enable lazy evaluation of a method.

When you directly call a method, it executes immediately. However, by using a Supplier,

you can defer the execution of the method until it is actually needed. This can be beneficial for

expensive or time-consuming operations that you want to delay until the result is genuinely

required. It is a way to optimize performance by avoiding unnecessary computations.

• Memoization: Memoization is a technique where the results of a method call are cached

for future use. By using a Supplier, you can implement memoization more easily. The

method is only executed when necessary, and its result can be cached for subsequent calls.

This is particularly helpful for functions that have expensive computations or frequently used

results.

• Conditional Execution: Using a Supplier and .get() allows you to conditionally ex-

ecute the method. You can wrap the method call in a condition, and the method will only

31

execute if the condition is met. This provides fine-grained control over when the operation

takes place, which can be useful for scenarios where you want to execute the method under

specific conditions or criteria. It is important to note that PurityChecker evaluates the ratio-

nale for adding conditions separately, which could potentially introduce impurity to the code

transformation.

• Concurrency: In multi-threaded environments, using a Supplier can help manage thread

safety. Since the Supplier is evaluated only when you call .get(), you can control access

to potentially shared resources or mutable state more effectively, reducing the likelihood of

race conditions and other concurrency issues.

It is important to note that, according to our analysis, when this replacement pattern is applied

in isolation, without additional impure code changes, it qualifies as a behavior-preserving, pure

replacement. In essence, it effectively maintains the program’s original functionality. However, it

is crucial to consider that if other impure code modifications are layered on top of this pattern, it

can compromise the purity of the replacement. For instance, if the method being invoked within the

Supplier is itself subject to impure changes, this specific replacement would be impure.

To illustrate this specific type of replacement and our rationale for categorizing it as pure, we

have selected a real-world commit5 from the infinispan6 project, which is illustrated in Figure 3.4. In

this commit, the pOpReAwareOperation method was extracted from the remoteIterator

method. While most statement mappings remained unchanged, there was a seemingly substantial

alteration in one particular mapping, labeled as 7 in our illustration. At first glance, the modifica-

tion in variable assignment might raise concerns of impurity due to its apparent difference between

the parent and child versions.

However, upon closer inspection and partial source code analysis using PurityChecker, after sub-

stituting the parameter-argument pairs, we found that the change in the statement mapping boiled

down to a transformation from ch.getPrimarySegmentsForOwner(localAddress) to

() -> ch.getPrimarySegmentsForOwner(localAddress).get(). PurityChecker
5Visit the GitHub commit link
6https://github.com/infinispan/infinispan

32

https://github.com/infinispan/infinispan/commit/043030723632627b0908dca6b24dae91d3dfd938
https://github.com/infinispan/infinispan

Figure 3.4: Extract Method with a Pure Replacement Caused by Supplier Pattern Extraction

identify this as a pure code modification through a meticulous string analysis process. This classifi-

cation aligns with the Supplier pattern extraction, illustrating how even seemingly intricate changes

can, in fact, preserve the program’s behavior when scrutinized comprehensively.

Stage 1.3: Justifying Replacements Regarding the Changes Caused by Overlapping Refactor-

ing Operations

During our manual validation of numerous commits within numerous projects, we learnt that over-

lapping refactorings can indeed lead to pure changes in code. This occurs when the combined effect

of multiple refactorings maintains the original behavior of the code while improving its structure,

readability, or maintainability. The key to achieving pure changes through overlapping refactorings

lies in careful planning and understanding of the interactions between the refactorings involved, and

the mechanics of each refactoring type.

Before we dive into the specifics of this stage, it is essential to provide further clarification

regarding our rationale. We assert that if a code modification occurring within a method-related

refactoring can be directly attributed to another refactoring within the same code commit, we cate-

gorize that change as a pure code modification. This classification remains consistent regardless of

whether the overlapped refactoring is deemed pure or impure.

For instance, consider an EXTRACT METHOD refactoring. If a code change within the refactor-

ing is directly triggered by a MOVE METHOD refactoring within the same commit, we categorize

33

Figure 3.5: Inline Method with Pure Replacements Caused by Two Overlapping Inline Variable
Refactorings

this code modification as pure, without regard to whether the MOVE METHOD refactoring itself is

pure or impure.

This principle stems from our approach to evaluating the purity of method-related refactorings.

As we discussed in Chapter 1, we focus exclusively on the portion of the code that is directly

impacted by the particular refactoring in question. To put it simply, when we assess the purity of a

refactoring, we consider only the elements of the code that are directly influenced by that specific

refactoring operation. Therefore, in the scenario mentioned earlier, the purity classification of the

MOVE METHOD refactoring does not affect how we evaluate the purity of the EXTRACT METHOD

refactoring.

In the following, we will explore various situations where overlapping refactoring operations can

lead to instances of pure replacements. Real-world project examples will be presented to illustrate

these scenarios. It is crucial to emphasize that the rules and explanations presented here apply to

all ten method related refactorings supported by PurityChecker. Towards the end of this section, we

will also explore particular details that are unique to particular types of refactorings.

Inline Variable as an Overlapping Refactoring:

In the context of method-related refactoring operations, the INLINE VARIABLE refactoring has the

potential to yield pure replacements, when it is applied as an overlapping refactoring on top of

method-related refactorings. To shed light on this concept, this occurs when, within a statement

mapping, the substitution of a variable’s initializer with the variable itself takes place, which is the

definition of INLINE VARIABLE refactoring. Despite the change being an replacement within the

34

statement mapping, it maintains the code’s behavior, rendering it a pure and behavior-preserving

replacement.

As an example, if a developer initially performed an INLINE METHOD refactoring to replace a

method call with its body and then subsequently applied an INLINE VARIABLE to remove a variable

that was introduced during the INLINE METHOD refactoring, this would be a pure replacement. It

essentially reverses the effect of the earlier INLINE METHOD operation, restoring the code to its

previous state without changing the program’s behavior.

To offer a more concrete demonstration of the methodology employed by PurityChecker to

justify the replacements arising from overlapping INLINE VARIABLE refactorings, we present a

real-world case from the processing project7. The actual example is accessible via the provided

GitHub commit link8, visualized in Figure 3.5. Please note that we made minor adjustments to the

code to facilitate its presentation as a demonstrative example.

As illustrated in the figure, the setFrameCentered method in the parent version has been

inlined into the placeWindow method in the child version. On top of this code transformation,

which is an instance of INLINE METHOD refactoring operation, the two variables w and h has been

inlined as well. The impact of these two INLINE VARIABLE refactorings becomes evident through

the replacements within the statement mapping marked as 5 in the figure. According to the output

from RefactoringMiner 2.0, within this specific statement mapping, the w and h variables in the

parent version has been replaced with sketchWidth and sketchHeight, respectively.

To classify such replacements as pure, PurityChecker leverages the RefactoringMiner 2.0 out-

put, cross-referencing it with the initializers of the inlined variables, which is provided within the

output of RefactoringMiner 2.0. This cross-reference ensures that the change indeed results from

the INLINE VARIABLE refactoring and that no alterations in functionality are introduced. This

methodology provides a robust means of confirming the purity of these replacements.

It is crucial to emphasize that categorizing an INLINE METHOD refactoring as a pure refactoring

instance demands a more comprehensive analysis. This involves examining non-mapped statements,

a topic we delve into in Section 3.4. In this section, our focus has been on elucidating scenarios
7https://github.com/processing/processing
8Visit the GitHub commit link

35

https://github.com/processing/processing
https://github.com/processing/processing/commit/8707194f003444a9fb8e00bffa2893ef0c2492c6

Figure 3.6: Extract Method with Pure Replacements Caused by Two Overlapping Extract Variable
Refactorings

where we classify specific replacements as either pure or impure.

Extract Variable as an Overlapping Refactoring:

When the EXTRACT VARIABLE refactoring is employed in conjunction with method-level refac-

toring operations, it has the potential to yield pure, behavior-preserving code modifications. This

process bears similarities to the one observed with overlapping INLINE VARIABLE refactoring, al-

beit in an inverse manner. In essence, if, within a statement mapping, an expression in the parent

version is substituted with an extracted variable that retains the expression without further alter-

ations, this results in a pure code modification.

To clarify, consider a scenario where a developer first performs a method-level refactoring, such

as the EXTRACT METHOD operation, to encapsulate a block of code within a distinct method.

Subsequently, if the EXTRACT VARIABLE refactoring is applied to generate a variable containing

a segment of the previously extracted code, this typically constitutes a pure replacement, and the

code’s original behavior remains intact. However, it is crucial to note that if the expression being

extracted to a variable undergoes impure modifications or if disparities emerge between the extracted

variable’s initializer and the expression itself, the replacement would then be deemed impure.

To illustrate the methodology employed by PurityChecker in identifying pure replacements re-

sulting from overlapping EXTRACT VARIABLE refactorings, we provide a real-world example ex-

tracted from the K-9 Mail project9. The actual illustration is accessible through the provided GitHub

commit link10, which is depicted in Figure 3.6. It is worth noting that we made slight modifications
9https://github.com/thundernest/k-9

10Visit the GitHub commit link

36

https://github.com/thundernest/k-9
https://github.com/thundernest/k-9/commit/9d44f0e06232661259681d64002dd53c7c43099d

to the code to enhance its suitability for demonstration purposes.

In the depicted example, the notSyncMailFailed method from the child version of the

code extracted from the sendPendingMessagesSynchronous method in the parent version.

Furthermore, two variables, folderName and errorMessage, are also extracted, as denoted by

6 in the figure. Notably, the initializers of these extracted variables are identical to the expressions

from which they were extracted. Within the statement mapping designated as 7 in the figure, the

developer opts to replace these expressions with the extracted variables. It is important to highlight

that there is another pure replacement, where e is substituted with exception. This alteration

stems from the mechanics of the EXTRACT METHOD refactoring. We have specifically discussed

this process earlier in Section 3.3.

To assess these replacements stemming from overlapping EXTRACT VARIABLE refactorings,

PurityChecker relies on the output from RefactoringMiner 2.0, analyzing statement mappings and

replacements. The justification for these replacements is grounded in the fact that the initializer

of the extracted variables in the child version is purely identical to the expressions in the parent

version. It is worth noting that in the case of the errorMessage extracted variable, the initializer

of the extracted variable is not exact similar to its corresponding expression on the parent version

(getRootCMess(e) to getRootCMess(exception)). However, there is no functionality

change involved due to the fact that the modification introduced by the EXTRACT METHOD refac-

toring mechanics. As a result, PurityChecker eliminates this refactoring mechanic-induced replace-

ment as the replacements went thorough stage 3.3. Afterwards, the remaining replacements are

justifiable according to our rule about identifying replacements caused by overlapping EXTRACT

VARIABLE refactoring.

This specific example vividly demonstrates how various replacements can layer on top of each

other while preserving the original behavior of the code.

Rename Variable as an Overlapping Refactoring:

RENAME VARIABLE and similar refactorings related to variable-like renaming are frequently em-

ployed in conjunction with method-level refactoring operations. These renaming refactorings, in-

cluding RENAME PARAMETER, RENAME ATTRIBUTE, and their counterparts, often result in pure

replacements when applied alongside or on top of method-level refactorings like EXTRACT METHOD

37

or INLINE METHOD refactoring.

Renaming a variable, parameter, or attribute entails a modification solely in the identifier used

to reference a specific element within the code. Notably, this alteration does not introduce changes

to the fundamental behavior or functionality of the code. Instead, it pertains to the syntactic aspects

of code representation. Renaming a variable or parameter, often utilized to enhance code clarity

and consistency. The renamed element retains its designated role and purpose within the method or

class.

RENAME VARIABLE and similar refactorings primarily focus on improving code readability

and maintainability by changing how elements are named, while method-level refactorings deal

with the structure of code. As long as the behavior of the code remains unaltered after renaming,

these changes are considered pure replacements within statement mappings, and this alignment is

typically maintained when combined with method-level refactorings.

It is worth noting that several rename refactorings share common characteristics in terms of the

replacements they introduce when applied as overlapping refactorings with method-level refactor-

ings. For example, PARAMETERIZE ATTRIBUTE refactoring can result in similar replacements as

RENAME VARIABLE when applied on top of a PULL UP METHOD refactoring. Therefore, Puri-

tyChecker treats RENAME VARIABLE, RENAME PARAMETER, PARAMETERIZE ATTRIBUTE, PA-

RAMETERIZE VARIABLE, REPLACE VARIABLE WITH ATTRIBUTE, REPLACE ATTRIBUTE WITH

VARIABLE, LOCALIZE PARAMETER, and RENAME ATTRIBUTE refactoring operations as largely

equivalent when assessing the purity of introduced replacements when applied on top of method-

level refactorings. This categorization is based on the logic used by RefactoringMiner 2.0, where

these refactorings, except for RENAME ATTRIBUTE, are grouped under the same RenameVariab-

-leRefactoring object.

To illustrate how PurityChecker justifies replacements resulting from overlapping rename-related

refactorings, we offer a practical example sourced from the IntelliJ IDEA Community Edition

project11. The actual code can be accessed via the provided GitHub link12, as visualized in Fig-

ure 3.7. It is worth mentioning that we have made minor modifications to the code to ensure its
11https://github.com/JetBrains/intellij-community
12Visit the GitHub commit link

38

https://github.com/JetBrains/intellij-community
https://github.com/JetBrains/intellij-community/commit/619a6012da868d0d42d9628460f2264effe9bdba

Figure 3.7: Extract Method with Pure Replacements Caused by Overlapping Parameterize
Attribute Refactoring

suitability for illustrative purposes.

As shown in the Figure, the fillWithScopeExpansionmethod in the child version, which

is labeled as 2 , has been extracted from the computeInReadAction method in the parent ver-

sion. On top of this refactoring, a decision is made to pass one of the class’s attributes, myPattern,

as an argument to the newly created fillWithScopeExpansionmethod. This particular trans-

formation aligns with the concept of PARAMETERIZE ATTRIBUTE refactoring, a technique that re-

sembles RENAME VARIABLE or RENAME PARAMETER refactoring when it comes to evaluating

the replacements generated by overlapping refactorings.

Within the statement mapping instance which is labeled as 6 in Figure 3.7, the reported re-

placement from RefactoringMiner 2.0 is the replacement of myPattern attribute with pattern

variable. Considering the overlapped PARAMETERIZE ATTRIBUTE refactoring, PurityChecker cat-

egorizes this replacement as a pure code modification. It is essential to emphasize that the replace-

ments resulting from all the aforementioned rename-related refactoring operations share a common

nature and impact on the program. As an example, consider the scenario depicted in Figure 3.7,

where, hypothetically, a developer chose to perform a RENAME ATTRIBUTE refactoring instead of

the PARAMETERIZE ATTRIBUTE refactoring from myPattern to pattern. Interestingly, de-

spite the difference in the refactoring operation applied, the resulting replacements would remain

identical.

39

It is important to acknowledge that within the EXTRACT METHOD refactoring scenario pre-

sented here, there exist multiple non-mapped statements. The intricacies of analyzing non-mapped

statements across different refactoring operations are discussed in a subsequent section.

Add and Remove Parameter as Overlapping Refactorings:

ADD PARAMETER and REMOVE PARAMETER refactoring operations have the potential to induce

pure replacements within statement mappings when they are executed in conjunction with or on top

of method-level refactorings. Specifically, these refactorings may result in a change in the number

of arguments passed within a statement mapping that includes a method call. Such alterations can

be attributed to the ADD PARAMETER or REMOVE PARAMETER refactoring operations occurring

simultaneously with method-level refactorings.

As mentioned previously, when evaluating the purity of refactorings, our focus is primarily on

the portion of code directly impacted by the specific refactoring operation, as well as the list of

other refactorings performed within a commit. In this context, consider a scenario where an ADD

PARAMETER refactoring is applied to method A, causing a modification in the number of arguments

within one of the statement mappings of EXTRACT METHOD refactoring applied on method B.

In such cases, our assessment of the purity of EXTRACT METHOD applied on method B is not

influenced by the purity of ADD PARAMETER applied in method A. In essence, when analyzing

the purity of the EXTRACT METHOD, while investigating statement mappings with replacements,

PurityChecker exclusively references the list of other refactorings that occurred in the commit to

justify replacements, irrespective of their individual purity states.

A pure replacement caused by an ADD PARAMETER or REMOVE PARAMETER refactoring has

certain characteristics. First, the method name should remain the same within the code transforma-

tion, except for the cases of RENAME METHOD refactorings involved. Second, the sequence of the

passed arguments should remain intact, with respect to the added or removed parameter.

ADD PARAMETER and REMOVE PARAMETER refactorings are not exclusive to regular meth-

ods; they can also be applied to constructors in Java. In an ADD PARAMETER refactoring within a

constructor, a new parameter is introduced to the constructor’s signature. This parameter serves as

an additional piece of information required when creating an instance of the class.

40

Figure 3.8: Extract Method with Pure Replacements Caused by Overlapping Add Parameter
Refactoring

It is worth noting that we have designed PurityChecker to consider scenarios where ADD PA-

RAMETER or REMOVE PARAMETER is applied to constructors as well. While the replacement type

reported by RefactoringMiner 2.0 may differ in such cases, the fundamental mechanics underlying

the application of Add Parameter or Remove Parameter as overlapping refactorings remain consis-

tent.

Moreover, when PARAMETERIZE VARIABLE and PARAMETERIZE ATTRIBUTE refactorings

are employed as overlapping refactorings, they can yield a similar impact in terms of replacements

justification as that observed with ADD PARAMETER or REMOVE PARAMETER refactorings.

For an illustration of how PurityChecker justifies replacements arising from overlapping ADD

PARAMETER or REMOVE PARAMETER refactoring operations, we present a real-world example13

from the Lealone project14.

In Figure 3.8, we observe a code transformation where the setSaltAndHash method is

extracted from the update method. In the course of this transformation, the statement map-

ping identified as 6 within the figure experiences a replacement: an argument is added to the

getByteArray method call. Meanwhile, RefactoringMiner 2.0 reports an ADD PARAMETER

refactoring in the getByteArray method, accounting for the addition of the mentioned added

argument in the statement mapping. Consequently, it is reasonable to justify this particular replace-

ment as an outcome of the concurrent Add Parameter refactoring.

Encapsulate Attribute as an Overlapping Refactoring:

13Visit the GitHub commit link
14https://github.com/lealone/Lealone

41

https://github.com/lealone/Lealone/commit/7a2e0ae5f6172cbe34f9bc4a5cde666314ff75dd
https://github.com/lealone/Lealone

Figure 3.9: Extract Method with Pure Replacements Caused by Overlapping Encapsulate Attribute
Refactoring

ENCAPSULATE ATTRIBUTE refactoring, when applied on top of or alongside method-level refac-

torings such as EXTRACT METHOD, can lead to pure replacements within the code. The ENCAP-

SULATE ATTRIBUTE refactoring involves wrapping an attribute within getter and setter methods.

The attribute is typically made private, ensuring that it is not directly accessible from external code.

When the ENCAPSULATE ATTRIBUTE refactoring applied alongside method-level refactorings,

such as Extract Method, it does not inherently change the behavior of the code. The pure replace-

ments occur when the developer replaces direct access to the attribute with calls to the newly created

getter and setter methods.

These replacements are typically pure because the encapsulation maintains the original behavior

of the code. The encapsulation ensures that the attribute’s value is accessed or modified through

controlled methods, just as it was before the encapsulation.

To illustrate how PurityChecker justifies replacements caused by an overlapping ENCAPSULATE

ATTRIBUTE refactoring, we present a real-world example from the rest.li project15. The actual code

can be accessed via the provided GitHub link16, as visualized in Figure 3.9. It is important to

note that we made slight adjustments to the code to ensure its appropriateness for the purpose of

demonstration.

In the depicted scenario, the shouldCompressRequest method has been relocated from

the CompressionConfig class to the ClientCompressionFilter class. An additional

change occurred within the CompressionConfig class, where the compressionThreshold

attribute was encapsulated into the getCompressionThreshold getter method, identified as
15https://github.com/linkedin/rest.li
16Visit the GitHub commit link

42

https://github.com/linkedin/rest.li
https://github.com/linkedin/rest.li/commit/54fa890a6af4ccf564fb481d3e1b6ad4d084de9e

an ENCAPSULATE ATTRIBUTE refactoring by RefactoringMiner 2.0. Simultaneously, in the state-

ment mapping marked as 5 in the figure, there is a replacement that transforms the direct access

to compressionThreshold into a method call to getCompressionThreshold. Essen-

tially, this replacement swaps attribute access with its corresponding getter method. As previously

mentioned, PurityChecker, armed with the knowledge of the associated Encapsulate Attribute refac-

toring reported by RefactoringMiner 2.0, labeled this replacement as a pure one resulting from the

overlapped application of Encapsulate Attribute and Move Method refactorings.

Replace Accessor Call with Direct Field Access as an Overlapping Code Transformation (Refac-

toring):

When ENCAPSULATE ATTRIBUTE refactoring is applied on top of method-level refactorings, the

standard outcome is that direct attribute access is replaced by calls to the getter method. This is

done to enhance code maintainability and encapsulation.

On the flip side, in some cases, developers may decide to revert this change. They switch from

using the getter method back to directly accessing the attribute. This reversal, too, can lead to pure

replacements.

So, when ENCAPSULATE ATTRIBUTE is applied, it is common to see direct access replaced by

the getter method. Conversely, when a developer reverts the change, pure replacements can also

occur as direct access replaces calls to the getter method. These scenarios highlight the flexibility

and context-specific nature of refactorings.

Since the aforementioned process is not classified as a refactoring operation by Refactoring-

Miner 2.0 yet, PurityChecker identifies these pure replacements through static string analysis, and

accurately reports them as pure replacements. This analysis along with analysis of overlapping

ENCAPSULATE ATTRIBUTE refactoring helps ensure that the tool recognizes and appropriately cat-

egorizes changes related to getter methods and attribute access in method-level refactorings.

Move Attribute as an Overlapping Refactoring:

MOVE ATTRIBUTE refactoring, when applied on top of or alongside method-level refactorings, can

lead to pure replacements, primarily concerning various ways of accessing the moved attribute.

Similar to the mentioned mechanic-induced code modification mentioned in Section 3.3, MOVE

43

Figure 3.10: Move and Rename Method with Pure Replacements Caused by Overlapping Move
Attribute Refactoring

ATTRIBUTE refactoring can cause pure code modifications regarding how an attribute can be ac-

cessed.

MOVE ATTRIBUTE refactoring entails transferring an attribute from one class to another. This

action redefines the attribute’s location within the codebase. When MOVE ATTRIBUTE is applied

alongside or on top of method-level refactorings like EXTRACT METHOD or MOVE METHOD, it

can alter how the attribute is accessed from different classes. For instance, if attribute a in class B is

moved to class C, any attempt to access attribute a in class D will now involve calling C.a instead

of B.a.

The replacements that arise due to this change in attribute access are typically pure. They do

not modify the underlying behavior of the code; they merely establish new pathways for accessing

the attribute. The primary purpose is to define how to access the attribute in its new location. This

ensures that the code continues to function as intended, albeit with a change in access patterns.

To demonstrate the functionality of PurityChecker in the context of handling replacements re-

sulting from the overlapping MOVE ATTRIBUTE refactoring, we have included a real-world exam-

ple17 extracted from the neo4j project18, which is illustrated in Figure 3.10. It is important to note

that we have made slight adjustments to the code to ensure it aligns with our specific objectives

while preserving the essence of the original example.

As depicted in Figure 3.10, there has been a code modification involving the moving and renam-

ing of method nodeGetLabels. This method was originally part of the StateHandlingStat-
17Visit the GitHub commit link
18https://github.com/neo4j/neo4j

44

https://github.com/neo4j/neo4j/commit/021d17c8234904dcb1d54596662352395927fe7b
https://github.com/neo4j/neo4j

-ementOperations class, but has been moved to the NodeItem.NodeItemHelper class,

where it is now called getLabels. This specific change has been recognized as a Move and

Rename Method refactoring by RefactoringMiner 2.0.

In addition to this alteration, there has been another adjustment in this commit. The GET LABEL

attribute, previously residing in the LabelItem class, has been moved to the NodeItem class, de-

tected as a MOVE ATTRIBUTE refactoring by RefactoringMiner 2.0. One of the effects of this code

change is evident in the statement mapping marked as 5 in the figure, where LabelItem.GET-

- LABEL has been replaced with GET LABEL.

Before this change, if a developer wanted to access the GET LABEL attribute from any other

class except for LabelItem, they had to specify the class of the attribute followed by the attribute

name. However, post-transformation, if a developer needs to access the GET LABEL attribute within

the specific class to which it has been relocated, which is the NodeItem and NodeItemHelper

classes, they can omit specifying the class name. This is consistent with Java’s behavior, where

attributes can be accessed from within their own class without mentioning the class name. It is

worth noting that the GET LABEL attribute can also be accessed from the NodeItemHelper

class as an inner class without mentioning the class name.

Considering the details of the MOVE ATTRIBUTE refactoring and the adjustments within the

statement mapping, PurityChecker utilizes a meticulous string analysis to deduce that the replace-

ment in the mentioned statement mapping is purely a change in the way the attribute is accessed.

As a result, PurityChecker allows for the elimination of the LabelItem in the statement mapping

and designates the replacement as a pure code modification.

Merge Variable and Split Variable as Overlapping Refactoring:

MERGE VARIABLE and MERGE ATTRIBUTE refactorings are typically performed when developers

realize that several variables or attributes serve similar purposes or can be logically grouped into

one. They simplify the code by reducing redundancy. Both of these refactorings involve consoli-

dating multiple variables (in the case of MERGE VARIABLE) or attributes (in the case of MERGE

ATTRIBUTE) into a single variable or attribute.

In contrast to the MERGE VARIABLE and MERGE ATTRIBUTE refactorings, SPLIT VARIABLE

and SPLIT ATTRIBUTE refactorings are performed when developers encounter a single variable or

45

Figure 3.11: Extract Method with Pure Replacements Caused by Overlapping Merge Variable
Refactoring

attribute that encompasses multiple, distinct purposes or characteristics. These refactorings aim

to enhance code clarity and maintainability by segmenting a complex, multifaceted variable (in the

case of SPLIT VARIABLE) or attribute (in the case of SPLIT ATTRIBUTE) into separate, well-defined

components.

These refactorings can result in pure replacements when applied alongside or on top of method-

level refactorings. The key is that the consolidation or separation of variables or attributes does

not change the fundamental behavior of the code. It merely alters how the existing behavior is

implemented. These refactorings often introduce cosmetic changes in the code. The behavior of

the code, in terms of input-output relationships, remains unaltered. The changes are limited to how

variables or attributes are accessed or structured.

We have provided an illustrative example to elucidate the scenarios in which a MERGE VARI-

ABLE refactoring, when applied on top of method-level refactorings, results in pure replacements.

Additionally, we have highlighted how PurityChecker responds when encountering these situations.

This real-world example19, as shown in Figure 3.11, is sourced from the bitcoinj project20.

In the presented example, two significant code changes occurred. Firstly, the parseTransac-

-tionsEx method was extracted from the parseTransactions method. Secondly, the two
19Visit the GitHub commit link
20https://github.com/bitcoinj/bitcoinj

46

https://github.com/bitcoinj/bitcoinj/commit/12602650ce99f34cb530fc24266c23e39733b0bb
https://github.com/bitcoinj/bitcoinj

Figure 3.12: Extract Method with Pure Replacements Caused by Overlapping Rename Method
Refactoring

parameters, parseLazy and parseRetain, were merged into a single parameter called seria-

-lizer, a refactoring identified as MERGE PARAMETER by RefactoringMiner 2.0. It is impor-

tant to note that additional contextual information in the commit reinforces the correctness of this

MERGE PARAMETER refactoring report.

In the statement mapping denoted as 6 in Figure 3.11, the replacement (parseLazy, pars-

-eRetain) with serializer occurs. By considering the information about the MERGE PA-

RAMETER refactoring and the replacement within the aforementioned statement mapping, Purity-

Checker classifies this replacement as a pure code modification.

Rename Method as an Overlapping Refactoring:

RENAME METHOD refactoring is a common practice in software development and aims to enhance

code clarity and adherence to naming conventions. When a developer undertakes this refactoring,

the core objective is to change a method’s name, often to a more descriptive or convention-compliant

identifier. This change focuses solely on the method’s naming, leaving its underlying functionality

and behavior intact. Therefore, this refactoring can result in pure replacements within the statement

mapping when applied on top of alongside method-level refactoring.

The renaming process is relatively straightforward. Suppose we have a method, say methodA,

and the developer decides to rename it to renamedMethodA. Consequently, every instance where

methodA is called within the codebase gets replaced with renamedMethodA. These replace-

ments occur within statement mappings that contain calls to methodA. The crucial aspect here is

47

that this replacement is purely a substitution of one method name for another. Consequently, such

replacements will be considered as pure code modification by PurityChecker.

To exemplify situations where the application of RENAME METHOD refactoring on top of

method-level refactorings yields pure replacements, we present a real-world code snippet21 sourced

from the Helios project22, which is depicted in Figure 3.12. It is worth noting that we made slight

adjustments to the original code sample to ensure its suitability for illustrative purposes.

As depicted in the figure, the extraction of the getDeploymentGroupEx method from the

getDeploymentGroupmethod is evident. Additionally, a renaming of the configDeployme-

-ntGroups method to configDeploymentGroup has occurred. Notably, within the state-

ment mapping denoted as 6 in the figure, a call to the originally named method has been replaced

with the new name. PurityChecker combines data pertaining to the RENAME METHOD refactoring

and the replacement within the specified statement mapping. It consequently determines that the

replacement is entirely justifiable, being a direct outcome of the RENAME METHOD refactoring

within the commit.

Move Method as an Overlapping Refactoring:

Similar to the scenario involving MOVE ATTRIBUTE refactoring, MOVE METHOD refactoring can

also generate pure replacements within statement mappings when applied atop method-level refac-

torings. This phenomenon occurs when a method is relocated from one class to another, causing

changes in how the method is accessed across different classes. As a result, calls to the moved

method from other classes need to be adjusted to reflect the new location.

For instance, in case of a static method m, if m originally resided in class A but is moved to class

B, references to m within class C must change from A.m to B.m. These changes primarily concern

the mechanics of method access, rather than modifying the core behavior of the code.

It is important to note that these replacements within statement mappings are typically regarded

as pure, given that they pertain to how the method is invoked in various parts of the code, and

the fundamental behavior of the code remains unaltered. PurityChecker’s analysis considers these

changes in access patterns and categorizes them as pure replacements.
21Visit the GitHub commit link
22https://github.com/spotify/helios

48

https://github.com/spotify/helios/commit/dd8753cfb0f67db4dde6c5254e2df3104b635dae
https://github.com/spotify/helios

Figure 3.13: Move Method with Pure Replacements Caused by Overlapping Move Method
Refactoring

To elucidate the concept of MOVE METHOD refactoring giving rise to pure replacements when

performed overlapping with method-level refactorings, we have included a real-world example23

from the undertow project24, depicted in Figure 3.13. It is important to mention that minor adjust-

ments were made to the code to optimize it for our illustrative purposes.

In the provided illustration, the coerceToTypemethod has been relocated from the Predic-

-ateParser class to the PredicatedHandlersParser class. Simultaneously, the error

static method was moved from the PredicateTokeniser class to the PredicatedHandler-

-sParser class. When scrutinizing the statement mapping denoted as 5 in the figure, we can

observe a replacement from PredicateTokeniser.error(...) to error(...). Puri-

tyChecker justifies this replacement as pure. It argues that this modification results directly from

the transfer of the static method error from the PredicateTokeniser class to its new home,

PredicatedHandlersParser class. Hence, the removal of the class prefix in the replace-

ment is considered pure, attributing this code transformation to the overlapping MOVE METHOD

refactoring.

Pull Up and Push Down Method as Overlapping Refactorings:

PULL UP METHOD and PUSH DOWN METHOD refactorings can lead to pure replacements when

applied on top of method-level refactorings, similar to MOVE METHOD refactoring, as their under-

lying mechanics are similar. These refactorings often change how methods are accessed in different
23Visit the GitHub commit link
24https://github.com/undertow-io/undertow

49

https://github.com/undertow-io/undertow/commit/d5b2bb8cd1393f1c5a5bb623e3d8906cd57e53c4
https://github.com/undertow-io/undertow

Figure 3.14: Move Method with Pure Replacements Caused by Overlapping Pull Up Method
Refactoring

classes, thus impacting statement mappings which involve calls to the pulled up and pushed down

methods.

When a developer performs a PULL UP METHOD refactoring, the method is moved from a

subclass to a superclass. In the superclass, this method becomes accessible to all the subclasses as

well. Conversely, with PUSH DOWN METHOD, a developer is moving a method from a superclass

to one or more subclasses. This allows the subclasses to access the method directly. In the subclass

that gains the method, there may be replacements needed to accommodate the new method call.

These refactorings are similar to MOVE METHOD refactoring in terms of introducing probable

pure replacements, because they mainly affect how methods are accessed. PurityChecker identifies

such changes as behavior-preserving, resulting in pure replacements.

To better illustrate how pure replacements can arise from applying PULL UP METHOD and

PUSH DOWN METHOD on top of method-level refactoring, we have provided a real-world exam-

ple25 sourcing from the zookeeper project26, which is illustrated in Figure 3.14. Please note that we

made slight code adjustments to enhance clarity and suitability for illustration.

In the provided illustration, the run method was moved from the CommandThread class

to the AbstractFourLetterCommand class. Additionally, the cleanupWriterSocket

25Visit the GitHub commit link
26https://github.com/apache/zookeeper

50

https://github.com/apache/zookeeper/commit/3fd77b419673ce6ec41e06cdc27558b1d8f4ca06
https://github.com/apache/zookeeper

method was moved from the NIOServerCnxn class to its superclass, ServerCnxn, and this

action was detected as a PULL UP METHOD refactoring by RefactoringMiner 2.0. Within the state-

ment mapping denoted as 5 , we observe a replacement from cleanupWriterSocket(pw)

to serverCnxn.cleanupWriterSocket(pw). This change signifies the shift from directly

accessing the cleanupWriterSocketmethod to using the serverCnxn field to access it after

the PULL UP METHOD refactoring.

PurityChecker analyzes this replacement by considering the type of the class field serverCnxn

with the type ServerCnxn, the replacement itself, and the PULL UP METHOD refactoring. Based

on these factors, it concludes that this replacement is indeed pure. It is crucial to note that the me-

chanics behind introducing pure replacements when applying MOVE METHOD, PULL UP METHOD,

and PUSH DOWN METHOD refactorings as overlapping operations are essentially the same.

Rename Class and Move Class as Overlapping Refactorings:

Renaming or moving a class can result in pure replacements when applied on top of method-level

refactorings. By applying a RENAME CLASS refactoring, all class instantiations of the original class

name within statement mappings are substituted with the new class name, essentially constituting

pure replacements. If the renaming also involves moving the class to a different package, any

references to the previous package name are likewise updated within the statement mappings to

align with the new package structure.

Furthermore, when the class name is referenced using its fully qualified name, encompassing

both the class name and the package name, these references undergo modifications to mirror the

new class name and its location within the package structure.

In this context, PurityChecker leverages information about RENAME CLASS and MOVE CLASS

refactorings to assess the replacements occurring within statement mappings. These replacements

often manifest in changes to parameter and variable types. It is important to emphasize that these

alterations essentially constitute syntactic adjustments aimed at harmonizing the code with the new

class name or location. Consequently, these changes within statement mappings can typically be

classified as pure replacements, as they maintain the code’s fundamental logic intact.

51

3.4 Step 2: Non-mapped Statement Analysis

Non-mapped statements within the body of method-level refactorings are portions of code that do

not have a direct, one-to-one correspondence between the original version and the refactored version

when a method-level refactoring is applied. In other words, these are statements that are either

added, removed, or significantly altered during the refactoring process, so they can not be precisely

mapped from the original code to the refactored code.

For instance, when you perform a method-level refactoring like EXTRACT METHOD, some

statements from the original method might be moved to the new extracted method, while others

remain in the original method. The ones that are moved to the new method are considered mapped

because they have a clear correspondence in the new code. However, statements left behind in the

original method that are no longer present in the new extracted method are considered non-mapped.

The context can be inverted as well. In certain situations, non-mapped statements may also be

observed in the refactored method instead of the original method.

Analyzing the non-mapped statements is essential in assessing the purity of method-level refac-

torings because these statements can impact the code’s behavior or introduce impurities, and they

are in the focus of PurityChecker for ensuring that refactorings maintain code’s behavior and as-

sessing the refactorings’ purity.

Typically, when non-mapped statements are present within method-level refactorings, the purity

of the refactoring is compromised, leading to its classification as impure. Nonetheless, there are spe-

cific scenarios in which non-mapped statements can co-exist with method-level refactorings without

violating their purity criteria. We will now explore these scenarios to provide a more comprehensive

understanding of this concept.

Stage 2.1: Tolerable Statement Addition or Deletion

We can identify a few scenarios in which statement additions or deletions, categorized as non-

mapped statements, do not introduce any impact on the program’s behavior or the purity of the

refactoring operation. Additionally, certain types of refactorings have inherent mechanics that make

them tolerant to non-mapped statements while preserving the functionality of the refactored code.

52

These scenarios can be broadly classified into two main categories, which we will explore in detail.

Non-Mapped Statements with No Impact on Behavior:

PurityChecker employs a rule that disregards certain statement types when assessing the purity of

a refactoring. This rule was established through extensive analysis, wherein numerous refactorings

were rigorously evaluated for their purity.

The primary categories of statements exempt from consideration encompass those that do not

carry any behavioral information. These determinations are primarily derived from our comprehen-

sive examination of refactorings’ purity within the process of our oracle validation.

Statements related to printing or logging functions fall into this category. Typically, these state-

ments serve debugging purposes. Therefore, when assessing method-level refactorings, any addi-

tions or removals of such statements are overlooked. For example, consider a MOVE METHOD

refactoring, where a method relocates from class A to class B. In this context, the introduction of

new logging statements within the moved method is inconsequential to the refactoring’s purity, as

long as the other purity criteria remain satisfied. Additionally, debugging assertions, like those in-

volving the assert statement, are omitted from purity assessments, as they are primarily meant

for debugging.

Furthermore, in situations where variable declarations have no substantial impact on code be-

havior, they will be exempt from scrutiny, particularly if the variables have no relevance elsewhere

in the refactoring-affected code.

It is crucial to note that the specific list of statement types to disregard can be refined based on

the particular requirements of a code analysis tool or the context of the refactoring under evaluation.

The categories provided above represent common categories happened within our dataset, but the

exact criteria for determining purity can be tailored to the needs of a given project or analysis tool.

Non-mapped Statements Resulting from Certain Refactoring Mechanics:

In the context of the EXTRACT METHOD refactoring, PurityChecker allows for the presence of

non-mapped leaves within the source operation. This means that any non-mapped statements or

code that appear within the source operation before the extraction of the method do not impact the

refactoring’s purity assessment. In essence, PurityChecker focuses exclusively on the portion of the

code affected by the actual extraction process.

53

This approach aligns with the mechanics of the EXTRACT METHOD refactoring itself. The goal

of an EXTRACT METHOD operation is to isolate a specific block of code into a separate method.

Therefore, any code that exists outside this selected block is irrelevant to the extraction process. As

a result, non-mapped leaves within the source operation are disregarded in the assessment of the

EXTRACT METHOD refactoring’s purity, as they do not affect the refactoring’s intended behavior.

Additionally, it is important to note that EXTRACT METHOD refactorings can introduce return

statements within the newly created method. These additions are also considered pure changes, and

they are permitted as non-mapped leaves in the refactored code.

On the other hand, in the context of the INLINE METHOD refactoring, PurityChecker extends a

degree of tolerance for non-mapped leaves within the target operation (child version). The criteria

for assessing purity of INLINE METHOD differ because this refactoring is essentially the opposite

of the EXTRACT METHOD.

During an INLINE METHOD operation, the goal is to replace a method call with the actual

method body. In this case, non-mapped leaves or statements found within the target operation (the

child version) before the inlining are disregarded in the purity assessment of the INLINE METHOD

refactoring. These statements do not affect the intended behavior of the refactoring and are permit-

ted as they are part of the refactoring’s mechanics.

This approach aligns with the mechanics of the INLINE METHOD refactoring, where the target

method (the one being inlined) is absorbed into the calling method. The context of the target method

beyond the inlined portion is not considered when evaluating the INLINE METHOD refactoring’s

purity.

Regarding return statements, the allowances for non-mapped leaves in the context of the IN-

LINE METHOD refactoring are switched from the allowance of addition of return statements to the

allowance of deletion of return statements in the inlined operation (child version). These adjust-

ments align with the specific mechanics of the INLINE METHOD refactoring and its purity criteria.

To illustrate this phase more clearly, we present a real-world example27 sourced from the

facebook-android-sdk project28. The example is visualized in Figure 3.15. Please note that we
27Visit the GitHub commit link
28https://github.com/facebook/facebook-android-sdk

54

https://github.com/facebook/facebook-android-sdk/commit/19d1936c3b07d97d88646aeae30de747715e3248
https://github.com/facebook/facebook-android-sdk

Figure 3.15: Pure Extract Method Refactoring In Presence of Non-mapped Statements

have made slight adjustments to the code to ensure its suitability for demonstration purposes.

In the depicted scenario, we have an EXTRACT METHOD refactoring where the getErrorMes-

-sage method is being extracted from the handleResultOk method. The source operation be-

fore the extraction, labeled as 1 in the figure, contains non-mapped statements labeled as 3 . These

non-mapped statements, although present in the parent version, do not affect the purity of the ex-

tracted method, labeled as 4 in the figure. Additionally, a return statement, marked as 5 in

the figure, has been added to the body of the extracted code portion, which aligns with the Extract

Method refactoring mechanics.

Given these considerations, PurityChecker classifies this EXTRACT METHOD refactoring as

pure, since it satisfies all the purity criteria related to replacements and non-mapped statements.

Stage 2.2: Justifying Non-mapped Statements Caused by Overlapping Refactoring Opera-

tions

Several refactoring operations have the potential to introduce non-mapped statements when ap-

plied alongside method-level refactorings. Since the inclusion or removal of these non-mapped

statements directly results from the application of overlapping refactorings, PurityChecker tolerates

these changes. These non-mapped statements are accepted because we argue that they do not alter

the program’s behavior.

Extract Variable and Inline Variable as Overlapping Refactorings:

55

Figure 3.16: Pure Move Method Refactoring In Presence of Non-mapped Statements Caused by
Overlapping Extract Variable

The Extract Variable refactoring can lead to the pure addition of non-mapped statements when ap-

plied alongside or on top of a method-level refactoring, such as MOVE METHOD. When EXTRACT

VARIABLE is applied on top of method-level refactorings, it often involves the creation of new

variable declarations within the refactored code. These new variables are essentially non-mapped

statements because they do not exist in the original version of the method. The addition of these

non-mapped statements, which mainly consists of the extracted variable declarations, is a direct

result of the EXTRACT VARIABLE refactoring’s mechanic.

In terms of purity, these non-mapped statement additions can be deemed pure. They serve to

enhance code understandability without altering the fundamental behavior of the method. There-

fore, PurityChecker tolerates these additions, considering them compatible with the code’s core

functionality.

In summary, when EXTRACT VARIABLE is applied on top of method-level refactorings, it may

result in the pure addition of non-mapped statements, primarily in the form of newly declared vari-

ables within the refactored method, contributing to code clarity while preserving its behavior.

Similarly, when the INLINE VARIABLE refactoring is employed in conjunction with method-

level refactorings, it can result in the reporting of non-mapped statements in the original method,

particularly the deleted variable declarations. This occurrence primarily transpires within the orig-

inal method, contrasting with the non-mapped statement additions associated with the EXTRACT

VARIABLE refactoring.

To illustrate how EXTRACT VARIABLE and INLINE VARIABLE refactorings can lead to the pure

56

addition or removal of non-mapped statements, we have presented a real-world example29 derived

from the hibernate-orm project30, which is depicted in Figure 3.16. Please note that we have made

minor modifications to the code to ensure its appropriateness for this illustrative purpose.

In the presented scenario, the decomplileDumpedClass method was moved from the

EnhancerTestUtils class to the DecompileUtils class. Simultaneously, the developer

carried out an EXTRACT VARIABLE refactoring, as indicated by labels 3 and 4 in the figure,

resulting in the extraction of the fileName variable.

The figure highlights a particular statement labeled as 4 , distinguished in green, which does

not have a direct counterpart in the original method. RefactoringMiner 2.0 identifies this as a non-

mapped statement. However, PurityChecker takes a more nuanced approach by comparing the

initializer of the extracted variable with the ‘before’ version of the replacement within the statement

mapping marked as 5 in the figure. As the replacement aligns perfectly with the initializer of the

extracted variable, PurityChecker deems the addition of this statement, corresponding to the decla-

ration of the extracted variable, as acceptable and pure. In the previously presented example, we

encounter a combination of pure replacement and pure statement addition (non-mapped statement)

due to the overlapped use of the EXTRACT VARIABLE refactoring.

Localize Parameter and Parameterize Variable as Overlapping Refactorings:

LOCALIZE PARAMETER refactoring is a process in which a parameter, which was originally ac-

cessible as a variable in the method or operation, is transformed into a local variable within the

method. In essence, it shifts a parameter’s scope from being a method’s input to being a locally

scoped variable within the method.

When the LOCALIZE PARAMETER refactoring is applied on top of method-level refactorings,

it might introduce non-mapped statements within the refactored code. This happens because when

a parameter is localized, a new local variable declaration is introduced to capture the parameter’s

value at the beginning of the method. This newly added local variable declaration qualifies as a

non-mapped statement, as it is introduced solely due to the LOCALIZE PARAMETER refactoring

and does not have a direct counterpart in the original code.
29Visit the GitHub commit link
30https://github.com/hibernate/hibernate-orm

57

https://github.com/hibernate/hibernate-orm/commit/44a02e5efc39c6953ca6dd631669d91293ab67f6
https://github.com/hibernate/hibernate-orm

Figure 3.17: Pure Move Method Refactoring In Presence of Non-mapped Statements Caused by
Overlapping Localize Parameter Refactoring

PARAMETERIZE VARIABLE is somewhat related to the concept of LOCALIZE PARAMETER but

involves a different process. In PARAMETERIZE VARIABLE, a local variable within a method is

elevated to become a parameter of that method. When PARAMETERIZE VARIABLE is applied on

top of method-level refactorings, it can result in non-mapped statements in the original code. This

occurs because, in PARAMETERIZE VARIABLE, the original local variable is transformed into a

parameter, which result in the deletion of the variable declaration in the original method.

The mechanisms behind how LOCALIZE PARAMETER and PARAMETERIZE VARIABLE refac-

torings introduce non-mapped statements are quite akin to the process seen in EXTRACT VARIABLE

and INLINE VARIABLE refactorings. In all these cases, we witness the addition or deletion of non-

mapped statements as a direct consequence of the respective refactoring operations.

To better elaborate on this concept, we have presented a real-world example of applying LO-

CALIZE PARAMETER refactoring on top of a method-level refactoring. This real-world examples31

sourced from the gradle project32, which is depicted in Figure 3.17. It is worth mentioning that we

have made minor code adjustments to facilitate illustration.

In this scenario, the registerOrFindDeploymentHandle method has been moved from

the PlayApplicationPlugin class to the PlayRun class. Additionally, a parameter called

deploymentRegistry, as indicated by 3 in the figure, has undergone the LOCALIZE PARAM-

ETER refactoring. This refactoring introduced the deploymentRegistry local variable and

added it to the moved method.
31Visit the GitHub commit link
32https://github.com/gradle/gradle

58

https://github.com/gradle/gradle/commit/3a7ccf5a252077332b9505acb22f190745f726f7
https://github.com/gradle/gradle

Figure 3.18: Pure EXTRACT METHOD Refactoring In Presence of Non-mapped Statement Caused
by Overlapping SPLIT CONDITIONAL Refactoring

PurityChecker permits this addition of a statement for two primary reasons. Firstly, the state-

ment is directly related to the concurrent application of the LOCALIZE PARAMETER refactoring.

Secondly, as the new variable’s initialization is inherently linked to the argument passed as the cor-

responding parameter, PurityChecker deems this statement addition a direct outcome of the over-

lapped LOCALIZE PARAMETER refactoring.

As previously mentioned, PurityChecker also tolerates replacements involving the direct ac-

cess of fields with their associated getter methods, as observed in overlapping ENCAPSULATE AT-

TRIBUTE refactoring, which is mentioned in section 3.3.

Merge and Split Conditional as Overlapping Refactorings:

MERGE CONDITIONAL is a refactoring technique often employed when developers identify mul-

tiple conditional statements within a code block that can be simplified and grouped into a single,

more concise conditional expression. By doing so, they reduce code redundancy and enhance code

clarity. This refactoring can yield pure code modifications, particularly when merging conditionals

that perform distinct and non-overlapping checks. When these merged conditionals are behaviorally

equivalent to the individual conditions, the refactoring results in a pure change, preserving the func-

tionality of the code while making it more streamlined.

SPLIT CONDITIONAL, on the other hand, is used when developers encounter a complex, com-

pound conditional statement that can be logically separated into multiple smaller, more manageable

59

conditions. This refactoring simplifies code readability and helps prevent nested or deeply nested

conditionals. Split Conditional can also lead to pure code modifications when a complex condi-

tion is divided into separate, distinct conditions that individually serve a specific purpose. If these

newly created conditions, which are based on the original compound condition, maintain the same

behavior, the Split Conditional refactoring produces pure changes.

The changes causing from the overlapping application of these two refactorings appear as state-

ment deletion (in case of MERGE CONDITIONAL) or addition (in case of SPLIT CONDITIONAL)

within the body of method-level refactorings. To provide an example showing the effect of applying

these refactorings on top of method-level refactorings, we have included a real-world case33 from

the drill project34, which is depicted in Figure 3.18.

Within this example, the nextRowInternally method has been extracted from the next

method. Within this EXTRACT METHOD refactoring, the developer decided to split the while con-

ditions into an if statement containing one of the expressions within the while condition, and an-

other while statement containing the rest conditions, which is reported as a SPLIT CONDITIONAL

refactroing by RefactoringMiner 2.0. Moreover, the newly added if statement is reported as a non-

mapped statement by RefactoringMiner 2.0. This specific code transformation, marked as 3 in the

figure, qualifies as a pure code alteration, as it is justifiable by the overlapped SPLIT CONDITIONAL

refactoring.

Rename Method as an Overlapping Refactoring:

Interestingly, when RENAME METHOD refactoring is applied on top of method-level refactorings, it

can lead to the introduction of non-mapped statements in both the original and refactored methods.

This peculiarity arises from the way PurityChecker analyzes data provided by RefactoringMiner

2.0, including replacements, statement mappings, and refactoring operations.

In specific situations, when a RENAME METHOD refactoring significantly changes a method

name, particularly if argument names are also altered, RefactoringMiner 2.0 may not recognize the

statements influenced by overlapping RENAME METHOD, as mapped statements, even though they

inherently should be.
33Visit the GitHub commit link
34https://github.com/gradle/gradle

60

https://github.com/apache/drill/commit/711992f22ae6d6dfc43bdb4c01bf8f921d175b38
https://github.com/gradle/gradle

Figure 3.19: Pure Move Method Refactoring In Presence of Non-mapped Statements Caused by
Overlapping Extract Method Refactoring

To address this, PurityChecker meticulously inspects non-mapped statement pairs that involve

method calls. If it identifies that RENAME METHOD refactorings are responsible for these non-

mapped statements, it tolerates these statements as direct consequences of overlapping RENAME

METHOD refactorings.

Extract Method and Inline Method as Overlapping Refactorings:

When EXTRACT METHOD and INLINE METHOD refactorings overlap with method-level refactor-

ings, they can lead to the introduction of non-mapped statements. This occurs due to the inherent

nature of these refactorings.

During EXTRACT METHOD, a method is extracted, and this is naturally followed by a call to

the newly extracted method. While the statements within the extracted operation might find their

counterparts in the original method, the new method call in the refactored method remains non-

mapped, as there is no equivalent in the original method.

Likewise, in the case of an overlapped INLINE METHOD refactoring, a similar situation unfolds

in the original method. When a method is inlined, the statement containing the call to the inlined

method is deleted, and this non-mapped change is permitted.

61

PurityChecker recognizes and allows the addition of non-mapped statements that represent the

calling of the extracted method in the child version and the deletion of statements responsible for

the call to the inlined method in the parent version. It is important to note that these non-mapped

statements do not compromise the purity criteria of the method-level refactorings.

To provide a more detailed illustration of the scenario described earlier, we have made slight

adjustments to one of the real-world examples previously discussed in Section 3.3. The altered case

is visually presented in Figure 3.19.

As shown in the figure, as stated earlier, the runmethod was moved from the CommandThread

class to the AbstractFourLetterCommand class. Additionally, the cleanupWriterSocket

method was moved from the NIOServerCnxn class to its superclass, ServerCnxn, and this ac-

tion is detected as a PULL UP METHOD refactoring by RefactoringMiner 2.0. Additionally, the

readProcess method is also extracted from the run method, as indicated by the label 2 in the

figure. Therefore, there are two overlapping refactorings atop the MOVE METHOD refactoring. We

would not reiterate how PurityChecker tags the replacement caused by the overlapping PULL UP

METHOD refactoring as pure, as we have already discussed this in the previous section.

Concerning the overlapping EXTRACT METHOD refactoring, the call to the extracted method

is marked as 3 in the figure. Since there are no corresponding statements in the original method,

RefactoringMiner 2.0 rightly identifies this statement as a non-mapped statement, which is entirely

reasonable. Looking at the figure, it is clear that adding this call as a non-mapped statement did

not disrupt the purity criteria for the MOVE METHOD refactoring. Instead, it maintains the purity

standards for the MOVE METHOD refactoring. This non-mapped statement is a call to a nested

EXTRACT METHOD refactoring, and since their statements have been mapped by RefactoringMiner

2.0, PurityChecker accepts this statement addition and labels the MOVE METHOD as pure.

3.5 PurityChecker Structure and Functionality

PurityChecker, as an extension of RefactoringMiner 2.0, is intended to become an integral part of

RefactoringMiner. Currently, PurityChecker is a separate public fork from RefactoringMiner, yet to

be fully integrated.

62

In terms of PurityChecker’s project structure, it features a crucial method called isPure. This

method takes two main arguments: umlModelDiff, which contains information about the parent

and child classes along with all the changes in a commit, and refactorings, which includes

a list of refactorings performed in the given commit. These arguments are obtained by invoking

RefactoringMiner on a specific commit (commit URL).

PurityChecker integrates with all RefactoringMiner APIs. RefactoringMiner offers multiple

APIs for detecting refactorings, allowing users to work with locally cloned git repositories, direc-

tories containing Java source code, file contents as strings, and directly through the GitHub API.

PurityChecker’s compatibility lies in its ability to utilize the same arguments as specified earlier,

ensuring that it functions in tandem with all RefactoringMiner API options.

To enhance the usability of PurityChecker, we have developed an API method within the “API.java”

file. This API method simplifies the process by only requiring the commit URL as input and pro-

viding the purity output as a result.

The output of PurityChecker indicates whether the refactorings are pure or not, along with an

automatically generated comment that explains why the changes are behavior-preserving or not. For

example, in the case of an EXTRACT METHOD refactoring detected as pure due to the application

of an overlapping INLINE VARIABLE refactoring, PurityChecker generates a comment like this:

“Overlapped refactoring - can be identical by undoing the overlapped refactoring - Inline Variable,”

and assigns a purity value of true.

63

Chapter 4

Evaluation and Experimental Results

In this chapter, we present the outcomes of our extensive investigation into the purity of method-

level refactoring operations. Our research encompasses a comprehensive empirical analysis of

roughly 2,400 method-level refactoring operations found across over 600 commits, with a primary

emphasis on determining their purity. To this end, we established two oracles that serve as our

primary sources of ground truth to evaluate our tool: one is used for training our purity criteria

rules and the other for testing them. Each method-level refactoring supported by PurityChecker

underwent meticulous manual validation during our evaluation process, a significant contribution

that characterizes our thesis. In the subsequent sections, we will provide a detailed account of our

evaluation procedure.

Our evaluation is designed to address the following research questions:

RQ1. To what extent does PurityChecker accurately assess pure and impure refactorings?

RQ2. What are the key factors that render inaccuracies for PurityChecker?

RQ3. What is the distribution of pure and impure refactorings? Are there any discernible trends

or patterns in this distribution?

RQ4. Among refactorings that are not identical in their bodies, how many were correctly iden-

tified as pure due to overlapping refactorings? What are the most popular overlapping refactoring

types?

64

4.1 Oracle Creation

4.1.1 Dataset and Commit Selection

Our primary training dataset is based on RefactoringMiner 2.0’s dataset (Tsantalis et al., 2020).

This choice is rooted in two fundamental reasons. Firstly, PurityChecker operates as an extension

of RefactoringMiner 2.0 and is highly dependent on it. Therefore, working with the same dataset

utilized by this foundational tool offers several advantages. In the validation process, we maintained

open lines of communication with the authors to address any potential issues or discrepancies within

the original tool. Secondly, the refactorings within this dataset have been verified by a team of

developers, including the authors of the paper. This meticulous validation process instills a higher

level of confidence in our own dataset, as it has already been validated by domain experts.

In the case of our testing dataset, we conducted a thorough examination of various available

datasets and opted for the one featured in the study by Pantiuchina et al. (Pantiuchina et al., 2020).

The authors of this study provided an extensive dataset encompassing a wide spectrum of refactoring

operations. Notably, their refactoring dataset was generated using the RefactoringMiner 2.0 tool for

detecting refactorings. It is essential to highlight that the primary objective of their study was to

detect and predict the motivations driving refactoring operations within version histories.

When selecting commits from our datasets, we adhered to specific criteria. As mentioned before,

PurityChecker only supports method-level refactorings. Therefore, our first criterion was to choose

commits that included at least one method-level refactoring. Additionally, we intentionally sought

out commits with a relatively large number of refactorings. This deliberate choice allowed us to

thoroughly evaluate the tool’s robustness, particularly when dealing with overlapping refactorings,

a core aspect of our study’s innovation.

Our purity oracles are in form of JSON files, encompassing details about the repository, the

commit, detected refactorings by RefactoringMiner, and purity information regarding method-level

refactorings. This information includes whether the refactoring is manually validated as pure or

impure, PurityChecker’s detection of the refactoring as pure or impure, a comment generated by us

during the manual validation process, and an auto-generated comment by PurityChecker explaining

why the refactoring is identified as pure or impure.

65

4.1.2 Refactoring Purity Manual Validation

As discussed in Chapter 2, PurityChecker stands out as the first available tool designed for the auto-

mated assessment of refactoring purity, specifically identifying whether a method-level refactoring

preserves the behavior of the code. In the realm of refactoring research, we have come across two

other tools that aimed to tackle this problem, which are the RefDistiller and GhostFactor. Unfor-

tunately, these tools are not publicly available, which made it impossible for us to perform direct

comparisons. It is worth noting that while the DIFFCAT tool is accessible online, a direct compar-

ison with PurityChecker was not feasible. This is because DIFFCAT analyzes code modifications

in every code change, whereas PurityChecker operates within the scope of refactorings. In simpler

terms, DIFFCAT assesses whether a code change is non-essential, while PurityChecker determines

whether a refactoring is behavior-preserving, pure or not. Therefore, a comparison between these

tools would not yield meaningful insights.

In light of this, we recognized that our evaluation phase needed to be exceptionally rigorous.

Given the absence of comparative studies and tools, it was imperative to ensure that our tool’s

evaluation process was robust, instilling confidence among experts regarding the tool’s reliability

and trustworthiness.

We made a deliberate decision to manually validate each commit containing at least one method-

level refactoring in our training dataset, which is sourced from RefactoringMiner 2.0’s oracle. While

we acknowledge that manual validation can be a time-consuming endeavor, our aim was to assemble

the largest possible training dataset to bolster our tool’s reliability. Since our purity rules are derived

directly from real-world cases, increasing the number of validated cases provided invaluable insight

into developer practices and purity patterns. Consequently, this approach yielded more accurate and

dependable purity rules.

For manual validation of method-level refactoring cases, we employed diverse diff tools like

GitHub, Visual Studio Code (VSCode), and RefactoringMiner’s Chrome extension to visually in-

spect changes in method bodies. In cases where diffing the changes was impractical, as with certain

refactorings occurring in different files, such as MOVE METHOD, we replicated both the original

and moved methods into a local diff tool like VSCode. We meticulously examined changes in the

66

Table 4.1: Number of Validated Refactoring per Refactoring Type

Refactoring Type
Validated Refactorings

Training Test

Extract Method 925 93

Extract and Move Method 94 51

Inline Method 104 93

Move and Inline Method 13 6

Move Method 345 77

Move and Rename Method 107 26

Pull Up Method 282 53

Push Down Method 42 53

bodies to determine if the behavior was maintained.

Given PurityChecker’s support for changes related to overlapped refactorings, instances where

there were indications of changes due to overlapped refactorings prompted us to scrutinize the list of

refactorings in the commit. This scrutiny aimed to determine if the change was behavior-preserving.

Throughout manual validation, we documented comments outlining our justifications for the purity

or impurity of a refactoring. In instances of complex cases where manual determination of a refac-

toring’s purity was challenging, we engaged in discussions during our meetings with various expert

software developers and researchers. This collaborative approach aimed to validate the accuracy of

our manual assessments.

Our purity rules and algorithms are primarily influenced by the actual cases validated in our

training dataset, leading us to follow a similar thinking process. The list of applied refactorings

in a commit, provided by RefactoringMiner, also proved valuable in discerning whether a change

resulted from the application of overlapped refactorings.

It is noteworthy to highlight that during the testing phase, PurityChecker underwent evaluation

on a thoroughly isolated dataset. This rigorous testing approach was instrumental in ensuring the

validity, generality, and comprehensiveness of our purity rules and algorithms.

During our manual validation process, we meticulously assessed over 2,400 method-level refac-

torings spanning across 600 commits. Interestingly, the number of refactorings we validated was at

least double the number of validated method-level refactorings. This is due to our comprehensive

67

approach that involves examining not only method-level refactorings but also considering overlap-

ping refactorings, which included a broader category of refactoring types. While this approach

extended the duration of our validation and evaluation process, it was instrumental in fortifying our

purity rules and ensuring the reliability of our metrics.

Table 4.1 displays the number of validated refactoring operations categorized by their types. For

our testing oracle, we validated a minimum of 50 refactoring instances for each of the supported

refactoring types. Notably, we increased the number of testing validations for EXTRACT METHOD

refactorings, examining 93 cases in total. EXTRACT METHOD refactorings are of particular in-

terest in the field of Software Refactoring, which led us to focus more on them. In line with this

decision, the number of training cases for EXTRACT METHOD refactorings exceeds that of other

refactorings, as sourced from the RefactoringMiner 2.0 oracle. It is worth emphasizing that for the

MOVE AND INLINE, and MOVE AND RENAME METHOD refactorings, the instances available in

our testing dataset were limited, totaling fewer than 50 cases. We meticulously incorporated all of

these instances into our validation process.

Upon completing the implementation of PurityChecker and crafting our purity rules, we initiated

the process of validating and evaluating our tool using the testing oracle. It is imperative to note that

we strictly isolated the testing oracle from the tool’s training data, ensuring that the testing metrics

would remain reliable and untainted by any influence from the training dataset.

During our manual validation of the training oracle, we encountered instances where Refac-

toringMiner 2.0 failed to accurately report essential information required by PurityChecker. This

information encompasses the details of refactoring operations within a commit, statement map-

pings within method-level refactorings, and the replacements that occurred within these mappings.

Recognizing the critical significance of these resources in correctly identifying the purity of refac-

torings, we reported these issues to the authors of RefactoringMiner 2.0. Our aim was to benefit

both tools by ensuring the accuracy and completeness of the provided data.

In the realm of Software Engineering research, there are numerous cases where the absence of

a valid testing validation negatively impacts the quality and reliability of empirical studies. In this

context, it is worth emphasizing that during the evaluation of our testing oracle, we deliberately

froze the version of RefactoringMiner tool and based our testing on that specific version. This

68

Table 4.2: Evaluation Metrics per Supported Refactoring Types for Training and Testing Oracles

Refactoring Type

Metrics

Training Testing

Precision Recall Specificity Precision Recall Specificity

Extract Method 95.28 88.68 95.31 97.73 81.13 97.5

Extract and Move Method 92.31 73.47 93.34 100 93.02 100

Inline Method 98.28 95 97.73 96.97 86.49 98.21

Move and Inline Method 100 100 100 100 100 100

Move Method 100 92.03 100 100 82.81 100

Move and Rename Method 100 80.65 100 100 75 100

Pull Up Method 100 94.92 100 100 86.36 100

Push Down Method 100 87.18 100 100 100 100

approach guarantees the validity of our testing evaluation.

to

To summarize, one of our key contributions lies in the creation of two meticulously designed

purity oracles that stand as valuable resources for future research endeavors.

4.2 Results and Discussion

This section offers an in-depth analysis of our tool’s performance, featuring different evaluation

metrics. These metrics are derived from our meticulously crafted training and testing oracles, which

were developed through thorough manual validation. Furthermore, we will delve into our responses

to the research questions outlined earlier in this section.

4.2.1 RQ1: Purity Detection Accuracy

Table 4.2 shows the performance of PurityChecker for both the training and testing phases. During

our evaluation, we have mainly used three metrics as follows:

Precision =
TP

TP + FP

69

Table 4.3: Weighted Average of Evaluation Metrics According to the Number of Each Refactoring
Type

Training Testing

Precision Recall Specificity Precision Recall Specificity

97.07 90.01 97 98.57 87.61 98.34

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

Where True Positive (TP) highlights the number of refactorings that are genuinely pure and

correctly identified as pure by PurityChecker, True Negative (TN) shows the number of refactorings

that are genuinely impure and correctly identified as impure, False Negative (FN) shows the number

of refactorings that are genuinely pure and erroneously categorized as impure by PurityChecker, and

False Positive (FP) identifies the number of refactorings that are genuinely impure and erroneously

categorized as pure by the tool.

In the realm of Software Engineering empirical studies, many researchers commonly rely on

Precision and Recall as their primary evaluation metrics. However, we recognized the importance

of a metric that not only considers true predictions of pure refactorings but also accounts for the

accurate identification of impure ones. This recognition led us to include the Specificity metric,

which gauges the tool’s ability to correctly identify impure refactorings among all the actual impure

refactorings in the dataset.

Due to the varying quantities of refactorings within each refactoring type, we have provided

Table 4.3, offering a weighted average of the evaluation metrics. This table shows the actual overall

performance of PurityChecker in both the training and testing phases.

As indicated in the provided tables, the recall rate is consistently lower than the other metrics by

3-15%. This discrepancy can be attributed to the inherent difficulty of minimizing false negatives

(FNs) in our study. Specifically, detecting purity in scenarios involving multiple code transforma-

tions that affect numerous statement mappings and generate replacements, which are inherently

pure, poses a substantial challenge. Consequently, we tend to experience a higher number of FN

70

cases than false positives (FPs) in most situations, leading to a slightly lower recall rate compared

to other metrics.

An interesting observation is that the evaluation metrics within the testing oracle performed

slightly better than those in the training oracle. This contrasts with the typical findings in most

research studies. The rationale behind this divergence lies in the complexity of the refactoring

operations present in our training oracle, which tend to be more intricate than those in our testing

oracle. Furthermore, the relatively greater amount of time spent on validating the training samples

compared to the testing samples aligns with this observation. We found that it took us approximately

1.4 times more time to validate a training sample compared to a testing sample.

4.2.2 RQ2: PurityChecker Inaccuracies

Our study is undeniably subject to inaccuracies, leading to several occurrences of both false nega-

tives (FNs) and false positives (FPs) in our evaluation. These inaccuracies can be attributed to two

main factors.

First, some code transformations are inherently complex, making it challenging to determine

their purity solely through static source code analysis. In other words, relying solely on statement

mappings and replacements is not sufficient to assess the purity of these refactorings in such sce-

narios. For instance, in certain situations, we had to evaluate intricate conditions or a small section

of code to be able to automatically deduce whether the refactoring is behavior-preserving or not.

Having the current resources in PurityChecker, it is not possible to detect the purity of some of

these cases.

Secondly, since all required information comes from RefactoringMiner 2.0, and our tool is

highly reliant on this tool, we inherit the limitations of RefactoringMiner 2.0. In specific cases,

RefactoringMiner 2.0 fails to accurately report statement mappings and especially, the replace-

ments within statement mappings in a given commit. Consequently, PurityChecker’s analysis is

compromised, resulting in FPs and FNs.

Notably, during our validation process, we encountered a considerably smaller number of false

positive (FP) cases compared to false negatives (FN). This phenomenon primarily stems from the

fact that identifying impure modifications is a comparatively simpler task when contrasted with

71

Figure 4.1: Pure MOVE AND RENAME METHOD Refactoring Mistakenly Reported as Impure by
PurityChecker

recognizing pure code changes. In simpler terms, any code alteration within the context of a method-

level refactoring is initially classified as impure, unless it can be reasonably justified by a limited

number of purity rules and considerations. It is worth mentioning that the realm of impure code

modifications encompasses a much broader spectrum than that of pure alterations.

To provide examples of such cases which highlight the PurityChecker’s limitations, we have

included two real-world examples from our training oracle, where PurityChecker produced false

negatives.

The first example1 sourced from the osmdroid project2, which is depicted in Figure 4.1. In this

example, the developer moved the getBitMapmethod from the MapTileProviderBase class

to the MapTileApproximater class, and renamed the method to getTileBitMap, which is

accurately reported as a MOVE AND RENAME MEHTOD refactoring by RefactoringMiner.

However, in addition to this modification, the developer made an adjustment by inverting the if

statement’s condition, resulting in a change in line sequence. This alteration led to the switching of

two pairs of return statements, labelled as 3 in Figure 4.1. While RefactoringMiner accurately re-

ported the statement mappings, replacements, and the list of refactorings, which built the resources

of PurityChecker, there was a limitation in PurityChecker’s resources – it did not possess the infor-

mation about the sequence of lines.

Consequently, PurityChecker could not justify the replacement concerning the inverted condi-

tion. To classify this refactoring as pure and label the replacement as a pure code modification, it

was essential to consider the order of lines. Justifiably, the replacement could only be considered as
1Visit the GitHub commit link
2https://github.com/osmdroid/osmdroid

72

https://github.com/osmdroid/osmdroid/commit/f78ca2784a75b64ce69eb5cc44048bb2be0b9ae7
https://github.com/osmdroid/osmdroid

Figure 4.2: Pure EXTRACT AND MOVE METHOD Refactoring Mistakenly Reported as Impure by
PurityChecker

pure if it was known that the return statements had indeed been interchanged.

The second example3 derived from the graphhopper project4, which is depicted in Figure 4.2.

Within this example, the developer extracted the toDetailsString method from a method with

the same name in the GraphHopperStorage class, and moved it to the BaseGraph class, as

indicated as 1 and 2 in the figure. This code transformation is accurately reported as an EXTRACT

AND MOVE METHOD by RefactoringMiner.

Moreover, the developer moved the nodeCount attribute from the GraphHopperStorage

class to the BaseGraph class, which is the destination class of the EXTRACT AND MOVE METHOD

refactoring mentioned above. On top of this, the developer encapsulated the nodeCount attribute

into the getNodes method, which is labeled as 5 in the figure. The last change, which can

be defined as an (Move and) ENCAPSULATE ATTRIBUTE refactoring, have not been reported by

RefactoringMiner.

PurityChecker fails to justify the replacement from nodeCount to getNodes(), which is

directly attributed to the missing information about the ENCAPSULATE ATTRIBUTE refactoring. If

PurityChecker had access to the information of the above mentioned ENCAPSULATE ATTRIBUTE

refactoring, it could definitely justify the replacement, as PurityChecker supports tolerating code

transformation resulting from the overlapping application of ENCAPSULATE ATTRIBUTE refactor-

ing.
3Visit the GitHub commit link
4https://github.com/graphhopper/graphhopper

73

https://github.com/graphhopper/graphhopper/commit/7f80425b6a0af9bdfef12c8a873676e39e0a04a6
https://github.com/graphhopper/graphhopper

Table 4.4: Number of Actual Pure and Impure Refactoring Operation Instances

Refactoring Type # Pure Instances # Impure Instances

Extract Method 530 488

Extract and Move Method 92 53

Inline Method 97 100

Move and Inline Method 5 14

Move Method 352 70

Move and Rename Method 53 94

Pull Up Method 300 35

Push Down Method 88 7

Total 1517 861

4.2.3 RQ3: Distribution of Pure and Impure Refactorings

One of our primary research questions aimed to explore the prevalence of two categories of method-

level refactorings: pure and impure. As described in Chapter 1, impure refactorings involve modifi-

cations that alter the behavior of the refactored code, while pure refactorings are those that transform

the code while preserving its original behavior.

Based on our empirical analysis of the distribution of pure and impure refactoring operations, as

detailed in Table 4.4, it appears that developers exhibit a preference for behavior-preserving refac-

torings over those that introduce changes affecting the program’s behavior. In total, pure refactoring

operations outnumber impure ones by a ratio of two to one.

Several factors contribute to this observation. Firstly, it can be attributed to the widespread usage

of automatic refactoring tools. These tools tend to generate pure refactorings as they operate based

on predefined mechanics, resulting in zero overlapping changes. Secondly, when developers engage

in refactoring activities, they often consciously isolate the refactoring task from other concurrent

changes, such as bug fixes. This separation streamlines the reviewing process, making it more

straightforward to evaluate the impact of the refactoring itself.

Another intriguing observation from our study is that specific refactoring types, primarily those

associated with moving code across different classes (MOVE METHOD, PULL UP METHOD, and

PUSH DOWN METHOD), exhibit a significantly higher occurrence of pure refactorings compared

74

to impure ones. This noteworthy finding provides an intriguing avenue for future research to delve

into the underlying reasons behind this phenomenon.

4.2.4 RQ4: Frequency of Overlapped Refactorings Causing Pure Refactoring Op-

erations - Most Popular Overlapping Refactoring Types

As our primary innovation, we have equipped PurityChecker with the capability to identify pure

code modifications resulting from the application of overlapping refactorings within method-level

refactorings. We have thoroughly explained these scenarios in Sections 3.3 and 3.4, demonstrating

how different overlapping refactorings can lead to the introduction of pure code modifications.

In this section, we will present the findings of our empirical study, focusing on the prevalence

of overlapping refactorings and their contribution to pure code changes.

Table 4.5: Frequency of Overlapping Refactorings within Method-level Refactorings

Refactoring Type # Cases (%)

Rename Variable 91 (29.6%)

Add Parameter 66 (21.4%)

Rename Class 51 (16.6%)

Extract Method 20 (6.5%)

Rename Method 13 (4.2%)

Replace Accessor Call with Direct Field Access 13 (4.2%)

Remove Parameter 12 (3.9%)

Extract Variable 11 (3.6%)

Rename Attribute 7 (2.3%)

Inline Variable 6 (2%)

Move Attribute 6 (2%)

Merge Variable 3 (1%)

Split Conditional 2 (0.6%)

Move Method 2 (0.6%)

Pull Up Method 2 (0.6%)

Encapsulate Attribute 1 (0.3%)

Merge Conditional 1 (0.3%)

Inline Method 1 (0.3%)

75

Within our training oracle, we encountered a total of 1053 TP (True Positive) cases, indicating

refactorings correctly identified as pure by PurityChecker. Within these cases, 605 refactorings are

identical in their bodies and 448 refactorings involved changes within their bodies. In other words,

more than 42% of TP cases in our training oracle exhibited non-identical statements.

Among these 448 cases, 204 had at least one change within their body, which is directly related

to the application of overlapping refactorings, marking a substantial portion of cases as we expected.

This underscores our decision to include analysis of changes resulting from overlapping refactorings

in our tool.

Additionally, we observed 304 cases that contained behavior-preserving changes resulting from

the application of overlapping refactorings in both true positive and true negative cases, which

form our ground truth. This analysis provides insights into the most common types of overlapping

refactorings within our training dataset.

Table 4.5 presents the occurrence rates of different types of overlapping refactorings in our

training dataset. The table reveals that Rename Variable is the most frequently observed overlapping

refactoring type, followed by Add Parameter, Rename Class, Extract Method, and Rename Method

refactorings, which make up the top five in terms of prevalence

Negara et al. addressed a research question in their study (Negara et al., 2013) concerning the

most commonly performed refactorings. According to their findings, the most prevalent refactoring

is Rename Variable, with Extract Method, Rename Method, Rename Class, and Extract Variable

refactorings also ranking among the top 10 most popular refactorings.

(Wang et al., 2018)

Our analysis aligns with the findings of the mentioned study regarding the most frequently

used overlapping refactoring types. This suggests that the adoption of overlapping refactorings is

intrinsically intertwined with the broader practice of applying refactorings, and interestingly, the

popularity of applied refactoring types is more or less the same as the popularity of the applied

overlapping refactoring types.

In other words, the relatively frequent use of overlapping refactoring during method-level refac-

torings, coupled with our findings aligning with the study’s results, implies that developers regularly

76

employ overlapping refactorings alongside other refactorings. This connection indicates that devel-

opers, in their refactoring endeavors, frequently encounter scenarios where overlapping refactorings

are not only necessary but also advantageous, contributing to their widespread use.

77

Chapter 5

Threats to Validity

5.1 Internal Validity

Our research is susceptible to internal threats, mainly concerning biases, errors, and limitations

originating from the process of building purity rules. Here, we address these potential threats and

how they can affect the generalizability and accuracy of the PurityChecker tool.

Building purity rules relied on our own validated oracle, and these rules have been gradually

refined over time through extensive validation. This iterative process poses potential biases, includ-

ing overfitting rules to our specific dataset. Such biases may limit the tool’s adaptability to diverse

datasets and hinder its generalizability. As we evaluated our tool on a fully separate dataset and the

outcoming results are promising, we have managed to address this threat to some extent.

The generation of purity rules inherently involves a manual, judgment-based approach. Hu-

man subjectivity and individual perspectives play a significant role in this process. In some cases,

determining the purity of refactorings can be subjective, as it requires an understanding of the devel-

oper’s thought process during the code transformation. Without insight into the developer’s exact

intentions, making definitive claims about the purity of certain changes becomes challenging.

78

5.2 Construct Validity

The threats concerning the construct validity of our research mainly focus on the reliance of our tool

to RefactoringMiner 2.0 and the accuracy of this tool.

PurityChecker heavily relies on RefactoringMiner 2.0 to provide information about refactor-

ings within a codebase. A threat arises if RefactoringMiner incorrectly identifies or misclassifies

refactorings or statement mappings and the replacements among them. For example, if a complex

refactoring operation is misunderstood or underreported by RefactoringMiner, PurityChecker may

inherit these inaccuracies and produce flawed results. As a result, a discrepancy can emerge be-

tween what RefactoringMiner identifies and what actually occurs within the codebase. This issue

could lead to false positives, where impure refactorings are incorrectly classified as pure, or false

negatives, where pure refactorings are erroneously marked as impure.

5.3 External Validity

One external threat to the validity of your research is the potential impact of shifts in programming

practices and coding standards within the software development community. The coding landscape

is not static; it evolves with emerging best practices, methodologies, and paradigms. As such, what

constitutes a “pure” or “impure” refactoring can change over time. New coding patterns and idioms

that become popular may not align with the existing criteria used by PurityChecker.

Moreover, the evolution of Java programming language is another external threat to our study.

Java continuously develop and introduce new features, constructs, and paradigms. These changes

can significantly impact how code is structured and how refactorings are conducted.

79

Chapter 6

Conclusion and Future Works

In the realm of software engineering, refactoring is a foundational practice embraced by develop-

ers to enhance code quality and maintain codebases effectively. The ability to discern whether a

refactoring operation maintains code behavior, in other words, whether it is ’pure’ or not, holds

substantial value across various domains.

For code reviewers, this distinction streamlines the review process, providing profound insights

into code health while significantly reducing review time. In the realm of empirical research within

Software Engineering, the concept of refactoring purity opens up a wealth of opportunities, enabling

comprehensive large-scale studies leveraging these insights. Furthermore, practical and research

tools in software development can harness this knowledge to enrich their capabilities.

In the scope of this research, we introduced a publicly accessible tool known as PurityChecker,

designed for the automated assessment of method-level refactoring purity. A comprehensive review

of the relevant literature underscores PurityChecker’s pioneering status in this specialized domain

of Software Engineering tools.

Our extensive evaluations demonstrate PurityChecker’s remarkable capabilities, achieving pre-

cision and recall rates exceeding 90% across diverse scenarios. This tool’s robust performance

reaffirms its position as a cutting-edge solution in the field, providing invaluable insights into the

purity of refactoring operations.

Another substantial contribution arising from this thesis is the extensive empirical study we

conducted on the purity of refactoring operations. This comprehensive investigation yielded two

80

manually-validated oracles. These oracles, with their carefully verified data, can serve as invaluable

resources for future research endeavors within the domains of Software Engineering and Software

Refactoring.

In terms of potential future avenues in this field, there are promising directions to explore. In-

corporating a variety of tools that provide multiple sources of statement mappings and replacements

can enhance the reliability and robustness of our tool. Furthermore, while our current work fo-

cused on defining purity for method-level refactorings, there is room for expansion into supporting

variable and class-level refactorings in future research efforts.

81

References

Agnihotri, M., & Chug, A. (2020). A systematic literature survey of software metrics, code smells

and refactoring techniques. Journal of Information Processing Systems, 16(4), 915–934.

Agnihotri, M., & Chug, A. (2022). Understanding refactoring tactics and their effect on software

quality. In 2022 12th international conference on cloud computing, data science & engineer-

ing (confluence) (pp. 41–46).

Alves, E. L., Song, M., & Kim, M. (2014). Refdistiller: a refactoring aware code review tool for

inspecting manual refactoring edits. In Proceedings of the 22nd acm sigsoft international

symposium on foundations of software engineering (pp. 751–754).

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and challenges of modern code review.

In 2013 35th international conference on software engineering (icse) (pp. 712–721).

Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., & Strollo, O. (2012). When

does a refactoring induce bugs? an empirical study. In 2012 ieee 12th international working

conference on source code analysis and manipulation (pp. 104–113).

Black, A. P., & Murphy-Hill, E. (2007). Why don’t people use refactoring tools?

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., & Garcia, A. (2017). How does refactoring

affect internal quality attributes? a multi-project study. In Proceedings of the xxxi brazilian

symposium on software engineering (pp. 74–83).

Dig, D., Comertoglu, C., Marinov, D., & Johnson, R. (2006). Automated detection of refactor-

ings in evolving components. In Ecoop 2006–object-oriented programming: 20th european

conference, nantes, france, july 3-7, 2006. proceedings 20 (pp. 404–428).

82

Fluri, B., Wursch, M., PInzger, M., & Gall, H. (2007). Change distilling: Tree differencing for fine-

grained source code change extraction. IEEE Transactions on software engineering, 33(11),

725–743.

Fowler, M. (2018). Refactoring. Addison-Wesley Professional.

Henkel, J., & Diwan, A. (2005). Catchup! capturing and replaying refactorings to support api

evolution. In Proceedings of the 27th international conference on software engineering (pp.

274–283).

Kawrykow, D., & Robillard, M. P. (2011). Non-essential changes in version histories. In Proceed-

ings of the 33rd international conference on software engineering (pp. 351–360).

Kaya, M., Conley, S., Othman, Z. S., & Varol, A. (2018). Effective software refactoring process. In

2018 6th international symposium on digital forensic and security (isdfs) (pp. 1–6).

Kim, M., Cai, D., & Kim, S. (2011). An empirical investigation into the role of api-level refactorings

during software evolution. In Proceedings of the 33rd international conference on software

engineering (pp. 151–160).

Kim, M., Zimmermann, T., & Nagappan, N. (2012). A field study of refactoring challenges and

benefits. In Proceedings of the acm sigsoft 20th international symposium on the foundations

of software engineering (pp. 1–11).

Kim, M., Zimmermann, T., & Nagappan, N. (2014). An empirical study of refactoringchallenges

and benefits at microsoft. IEEE Transactions on Software Engineering, 40(7), 633–649.

Kolb, R., Muthig, D., Patzke, T., & Yamauchi, K. (2005). A case study in refactoring a legacy

component for reuse in a product line. In 21st ieee international conference on software

maintenance (icsm’05) (pp. 369–378).

Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G. (2006). Does refactoring improve reusability?

In International conference on software reuse (pp. 287–297).

Murphy-Hill, E., & Black, A. P. (2007). Why don’t people use refactoring tools? In Proceedings

of the 1st workshop on refactoring tools (pp. 61–62).

Murphy-Hill, E., & Black, A. P. (2008). Refactoring tools: Fitness for purpose. IEEE software,

25(5), 38–44.

Murphy-Hill, E., Parnin, C., & Black, A. P. (2011). How we refactor, and how we know it. IEEE

83

Transactions on Software Engineering, 38(1), 5–18.

Murphy-Hill, X. G. E. (n.d.). Manual refactoring changes with automated refactoring validation.

Negara, S., Chen, N., Vakilian, M., Johnson, R. E., & Dig, D. (2013). A comparative study

of manual and automated refactorings. In Ecoop 2013–object-oriented programming: 27th

european conference, montpellier, france, july 1-5, 2013. proceedings 27 (pp. 552–576).

Nouri, P. (2023). Puritychecker. (https://github.com/pedramnoori/

RefactoringMiner?organization=pedramnoori&organization=

pedramnoori)

Opdyke, W. F. (1990). Refactoring: An aid in designing application frameworks and evolving

object-oriented systems. In Proc. of 1990 symposium on object-oriented programming em-

phasizing practical applications (sooppa).

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. University of Illinois at Urbana-

Champaign.

Ouni, A., Kessentini, M., Ó Cinnéide, M., Sahraoui, H., Deb, K., & Inoue, K. (2017). More:

A multi-objective refactoring recommendation approach to introducing design patterns and

fixing code smells. Journal of Software: Evolution and Process, 29(5), e1843.

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G., & Penta, M. D.

(2020). Why developers refactor source code: A mining-based study. ACM Transactions on

Software Engineering and Methodology (TOSEM), 29(4), 1–30.

Prete, K., Rachatasumrit, N., Sudan, N., & Kim, M. (2010). Template-based reconstruction of

complex refactorings. In 2010 ieee international conference on software maintenance (pp.

1–10).

Ratzinger, J., Fischer, M., & Gall, H. (2005). Improving evolvability through refactoring. In

Proceedings of the 2005 international workshop on mining software repositories (pp. 1–5).

Sillitti, A., & Succi, G. (n.d.). A case study on the impact of refactoring on quality and productivity

in an agile team.

Silva, D., da Silva, J. P., Santos, G., Terra, R., & Valente, M. T. (2020). Refdiff 2.0: A multi-

language refactoring detection tool. IEEE Transactions on Software Engineering, 47(12),

2786–2802.

84

https://github.com/pedramnoori/RefactoringMiner?organization=pedramnoori&organization=pedramnoori
https://github.com/pedramnoori/RefactoringMiner?organization=pedramnoori&organization=pedramnoori
https://github.com/pedramnoori/RefactoringMiner?organization=pedramnoori&organization=pedramnoori

Silva, D., Tsantalis, N., & Valente, M. T. (2016). Why we refactor? confessions of github contribu-

tors. In Proceedings of the 2016 24th acm sigsoft international symposium on foundations of

software engineering (pp. 858–870).

Silva, D., & Valente, M. T. (2017). Refdiff: Detecting refactorings in version histories. In 2017

ieee/acm 14th international conference on mining software repositories (msr) (pp. 269–279).

Tsantalis, N., Ketkar, A., & Dig, D. (2020). Refactoringminer 2.0. IEEE Transactions on Software

Engineering, 48(3), 930–950.

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., & Dig, D. (2018). Accurate and

efficient refactoring detection in commit history. In Proceedings of the 40th international

conference on software engineering (pp. 483–494).

Vakilian, M., Chen, N., Negara, S., Rajkumar, B. A., Bailey, B. P., & Johnson, R. E. (2012).

Use, disuse, and misuse of automated refactorings. In 2012 34th international conference on

software engineering (icse) (pp. 233–243).

Vashisht, H., Bharadwaj, S., & Sharma, S. (2018). Analysing of impact of code refactoring on

software quality attributes. IJ Scientific Research and Engineering Trends, 4, 1127–1131.

Wang, K., Zhu, C., Celik, A., Kim, J., Batory, D., & Gligoric, M. (2018). Towards refactoring-aware

regression test selection. In Proceedings of the 40th international conference on software

engineering (pp. 233–244).

Weißgerber, P., & Diehl, S. (2006). Are refactorings less error-prone than other changes? In

Proceedings of the 2006 international workshop on mining software repositories (pp. 112–

118).

Xing, Z., & Stroulia, E. (2007). Api-evolution support with diff-catchup. IEEE Transactions on

Software Engineering, 33(12), 818–836.

85

	List of Figures
	List of Tables
	Introduction
	Motivation
	Code Reviewer Perspective
	Developer Perspective
	Researcher Perspective
	Application in Regression Testing
	Limitation of Existing Tools

	Objectives and Contributions
	Outline

	Literature Review
	Refactoring Mining Tools
	Refactoring Purity
	Limitation of the Existing Approaches
	PurityChecker Improvements over Existing Approaches

	Approach
	Refactoring Purity Definition
	Automatic Refactoring Purity Detection
	Step 1: Replacement Analysis
	Step 2: Non-mapped Statement Analysis
	PurityChecker Structure and Functionality

	Evaluation and Experimental Results
	Oracle Creation
	Dataset and Commit Selection
	Refactoring Purity Manual Validation

	Results and Discussion
	RQ1: Purity Detection Accuracy
	RQ2: PurityChecker Inaccuracies
	RQ3: Distribution of Pure and Impure Refactorings
	RQ4: Frequency of Overlapped Refactorings Causing Pure Refactoring Operations - Most Popular Overlapping Refactoring Types

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion and Future Works
	Bibliography

