
Integrity Verification for Virtualized Networks
Using Side-Channel

A S M ASADUJJAMAN

A THESIS

IN

THE DEPARTMENT

OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN INFORMATION AND SYSTEMS ENGINEERING AT

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

OCTOBER 2023

© A S M ASADUJJAMAN, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: A S M ASADUJJAMAN

Entitled: Integrity Verification for Virtualized Networks Using Side-

Channel

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (INFORMATION AND SYSTEMS ENGINEERING)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Mustafa K. Mehmet Ali

External Examiner
Dr. Elias Bou-Harb

External to Program
Dr. Anjan Bhowmick

Examiner
Dr. Chadi Assi

Examiner
Dr. Lingyu Wang

Thesis Supervisor
Dr. Suryadipta Majumdar

Approved by
Dr. Jun Yan, Graduate Program Director

2023
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Integrity Verification for Virtualized Networks Using Side-Channel

A S M ASADUJJAMAN

Concordia University, 2023

Virtualization of networks has recently attracted enormous interest as an enabler of high-

performance, cost-effective, scalable, and reliable communication services (e.g., 5G). How-

ever, these advantages are accompanied by issues such as increased attack surface, software

bugs, lack of visibility, and lack of control over in-the-cloud virtualized networks. These

issues pose the risk of integrity breaches of virtualized networks preventing them from

providing services as intended by their owners (i.e., network service providers). There-

fore, to reap the benefits of virtualized networks, appropriate integrity verification mecha-

nisms must be deployed to detect any integrity breaches that may arise due to these issues.

On one hand, it is often challenging to find mechanisms to perform such verification un-

der the constraints of limited access and high-scalability requirements of contemporary

communication services, while, on the other hand, potential attacks are getting more and

more sophisticated (e.g., attack on the underlying infrastructure, zero-day attacks, and run-

time attacks). To that end, existing works can be mainly divided into two categories: pre-

deployment and runtime. Firstly, existing pre-deployment approaches are applied before

the deployment of virtualized networks and therefore, are unable to detect any breach of

integrity at runtime. Secondly, existing runtime approaches require access to data that are

typically unavailable to owners of virtualized network services. Moreover, even when such

data are made available, collecting these data requires intrusive techniques that affect the

iii

performance and scalability of network services. In this thesis, we overcome all the above

limitations of existing works by looking beyond what is possible with traditional direct

observation-based approaches and focusing on the indirect effects of the attacks (a.k.a.,

side-channels). We propose a side-channel based integrity verification system that offers a

practical and scalable approach without requiring access to data that are typically unavail-

able. For this purpose, we organize our work into three main phases. In the first phase, we

propose an approach to verify the integrity of virtualized network function (VNF) chains;

where the proposed system verifies a wide range of integrity breaches of VNF chains, such

as, VNF bypassing, packet dropping, and packet injection without requiring access to the

underlying cloud infrastructure on which the VNFs are deployed. In the second phase,

we propose a mechanism to detect functional integrity breaches of the virtualized network

functions (VNF) caused by code injection (through the exploitation of vulnerabilities at

different levels of the virtualization ecosystem). Thus, the first two phases combined can

provide overall integrity verification by guaranteeing that the components (i.e., VNFs) are

working properly both collectively (i.e., packets are being forwarded properly through the

service chains) and individually (i.e., each VNF is providing exactly the same functionality

as intended). Finally, in the third phase, we improve the above solutions to become more

efficient and resilient against adaptive attempts to deceive our mechanisms by proposing

a continuous verification technique. In summary, this thesis contributes towards enhanc-

ing the comprehensiveness, practicality, and security of integrity verification for virtualized

networks.

iv

Acknowledgments

This thesis work is the result of help and collaboration from many people, to whom I

am extremely grateful and would like to appreciate their support.

First, I would like to thank my PhD supervisor Dr. Suryadipta Majumdar. His con-

tinuous guidance and availability helped me the most to complete this thesis work. I am

grateful to him for enlightening me with his profound knowledge and precise insights. His

constructive criticism greatly helped me to improve my research skills throughout my PhD

study.

I would also like to thank Dr. Lingyu Wang for his mentorship during my PhD. Despite

his busy schedule, he always manages his time to listen to my various issues and to provide

realistic solutions to them. I am grateful to the members of my PhD examination commit-

tee, Dr. Anjan Bhowmick, Dr. Jeremy Clark, Dr. Elias Bou-Harb, Dr. Mustafa Mehmet

Ali, and Dr. Chadi Assi, for their insightful advice during different phases of this work. I

also thank Dr. Mohammad Shah Alam, my master’s supervisor, who continued his support

to me during my PhD.

My sincere gratitude extends to all members of the Audit Ready Cloud group, espe-

cially Dr. Makan Pourzandi, Dr. Yosr Jarraya, Dr. Mohammad Ekramul Kabir, Momen

Oqaily, and Hinddeep Purohit, with whom I collaborated throughout my PhD study. I also

acknowledge the financial support of NSERC, Ericsson Canada, and Concordia University.

Finally, I would like to acknowledge the unconditional affection and continuous support

of my family.

v

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 Forwarding Integrity Verification for Virtualized Networks Using

Side-Channel . 3

1.2.2 Functional Integrity Verification for Virtualized Networks Using

Side-Channel . 3

1.2.3 Continuous Verification of Forwarding Integrity for Virtualized Net-

works Using Side-Channel . 4

1.3 Contributions . 5

1.4 Thesis Structure . 6

2 Related Work 7

2.1 Forwarding Integrity Verification . 7

2.1.1 Pre-deployment Verification . 8

2.1.2 Runtime Verification . 8

2.1.3 Traffic Throughput Estimation . 9

vi

2.1.4 Comparison Among Related Works 9

2.2 Functional Integrity Verification . 12

2.2.1 Detection of Functional Integrity Breach in 5G 12

2.2.2 Malware Detection . 12

2.2.3 Performance Metrics Correlation 13

2.2.4 Comparison Among Related Works 13

3 Forwarding Integrity Verification of NFV Service Chains Using Artificial Packet

Pair Dispersion 15

3.1 Introduction . 15

3.2 Preliminaries . 18

3.2.1 Motivating Example . 18

3.2.2 Main Idea . 19

3.2.3 Threat Model and Assumptions 20

3.3 Methodology . 21

3.3.1 Overview . 21

3.3.2 The APPD Effect . 22

3.3.3 Stage 1: Estimation of Incoming Traffic Throughput 23

3.3.4 Stage 2: Verification of Service Chain Integrity 27

3.4 Implementation . 29

3.5 Experiments . 31

3.5.1 Overview of Experiments . 31

3.5.2 Experimental Settings . 31

3.5.3 Experimental Results . 32

3.6 Conclusion . 36

4 Functional Integrity Verification for 5G Cloud-Native Network Functions 38

vii

4.1 Introduction . 38

4.1.1 Motivating Example . 39

4.1.2 Main Ideas and Contributions . 41

4.2 Preliminaries . 43

4.3 Functional Integrity Verification for 5G 45

4.3.1 Approach Overview . 45

4.3.2 Stage 1: Outliers Detection . 46

4.3.3 Stage 2: Integrity Breach Detection 48

4.4 Implementation . 51

4.5 Experiments . 52

4.5.1 Overview of Experiments . 52

4.5.2 Experimental Settings . 52

4.5.3 Experimental Results . 53

4.6 Conclusion . 56

5 Continuous Forwarding Integrity Verification of Virtualized Service Chains

Using Side-Channel 58

5.1 Introduction . 58

5.2 Preliminaries . 61

5.2.1 Motivating Example . 62

5.2.2 Main Idea . 64

5.2.3 Threat Model and Assumptions 66

5.3 Overview and Sanity Check . 67

5.3.1 Overview . 68

5.3.2 Sanity Check . 68

5.4 Passive Observation-based Technique . 70

5.4.1 Packet Gap Parameter Computation 70

viii

5.4.2 Packet Gap Classification . 72

5.5 Active Probing-based Technique . 74

5.5.1 Dual Probing Request . 74

5.5.2 Probing Response Capture . 76

5.5.3 Clustering . 77

5.6 Security and Performance Analysis . 77

5.6.1 Security Analysis . 78

5.6.2 Performance Optimization . 79

5.7 Implementation . 80

5.8 Experiments . 81

5.8.1 Overview of Experiments . 81

5.8.2 Experimental Settings . 83

5.8.3 Experimental Results . 84

5.9 Conclusion . 90

6 Conclusion 91

Bibliography 93

ix

List of Figures

Figure 3.1 An example of integrity breaches in NFV (top) and a possible solu-

tion and its key challenge (bottom) . 18

Figure 3.2 The main ideas of APPD . 19

Figure 3.3 A high-level overview of APPD . 22

Figure 3.4 Clusters are formed due to artificially created congestion (the APPD

effect) . 22

Figure 3.5 An example of probe generation 23

Figure 3.6 Integrity verification logic . 29

Figure 3.7 The architecture of APPD . 29

Figure 3.8 Applying DBSCAN clustering algorithm on inter-packet delay (IPD);

Noise (), Cluster 1 (), Cluster 2 () . 34

Figure 3.9 Measuring APPD overhead in terms of network performance metric

(packet loss, jitter, out-of-order packets) 35

Figure 3.10 Sensitivity of APPD to packet loss in the network 36

Figure 4.1 An example of functional integrity breach in a possible CNF imple-

mentation of 5G core (top) and limitations of existing solutions (bottom) . . 40

Figure 4.2 The main ideas of 5GFIVer . 41

Figure 4.3 An excerpt of 5G topology [1] . 43

Figure 4.4 An example of a metric (CPU utilization), that shows to be highly

correlated for AMF and UDM. 44

x

Figure 4.5 A high-level overview of 5GFIVer 46

Figure 4.6 5GFIVer time series analysis; AMF (), UDM (), analysis of

AMF (△), analysis of UDM (×) . 47

Figure 4.7 Heatmaps showing correlation in CPU and memory utilization of

different CNFs (blank cells mean no correlation) 53

Figure 4.8 The variance and mean of CPU and memory utilization in different

CNFs . 53

Figure 4.9 Accuracy of time series algorithms for different hyperparameter

value settings . 54

Figure 4.10 Impact of cloud dynamicity on the accuracy of verification on AMF

for different correlated CNFs; Stage 1 (without multi-CNF correlation),

Stage 2 (with multi-CNF correlation) . 54

Figure 5.1 An example of integrity breaches in NFV 62

Figure 5.2 The main idea of the passive detection 63

Figure 5.3 The main ideas of the active probing 64

Figure 5.4 A high-level overview of (SC)3 . 68

Figure 5.5 Low input IPG leads to a constant output IPG (packet swarm) 69

Figure 5.6 Horizontal Inter-Packet Gap (IPG) clusters are formed due to artifi-

cially created congestion . 69

Figure 5.7 An example of packet gap classification to detect packet dropping;

NP: No Packets at saturation gap (insert a virtual packet), DL: Delay is

Less than saturation gap (end of pattern), PA: Packet At Saturation gap

(continue adding packets to pattern) . 73

Figure 5.8 An example of probe generation 74

Figure 5.9 The architecture of (SC)3 . 80

xi

Figure 5.10 Active probing approach is applying DBSCAN clustering algorithm

on inter-packet delay (IPD); Noise (), Cluster 1 (), Cluster 2 () 86

Figure 5.11 Comparison of the effect of probing interval on overhead in terms

of network performance metric (packet loss, jitter, out-of-order packets) for

active approach . 87

Figure 5.12 Comparison of detection performance between the hybrid and active

approaches . 89

xii

List of Tables

Table 2.1 We propose the first blackbox approach for continuous sanity check-

ing of service chains in NFV while covering all likely integrity breaches . . 11

Table 2.2 We propose the first blackbox approach for functional integrity veri-

fication . 14

Table 3.1 Applying APPD in real network setting shows that it could correctly

verify all the experimental scenarios . 32

Table 4.1 Performance profile of 5GFIVer on a lightweight Amazon EC2 vir-

tual machine (VM) of type t2.medium (i.e., two vCPUs and 4 GB memory) 56

Table 5.1 Applying (SC)3 in real network setting shows that it could correctly

verify all the experimental scenarios . 84

xiii

Chapter 1

Introduction

1.1 Motivation

Network virtualization softwarizes and outsources traditional network functions (NFs)

to the cloud in order to bring more scalable, rapidly deployable, flexible, and reliable Net-

work Services (NS). Fueled by these benefits, the global market size of network virtualiza-

tion is expected to exceed 36.3 billion USD by 2024 [2]. However, these incredible benefits

of network virtualization also bring concerns about increased complexity, software bugs,

lack of visibility, increased attack surface, and lack of control on the off-premises cloud

infrastructure. As virtualized networks combine both traditional networking and cloud

computing; the attack surface can be even larger than that of traditional networking and

cloud computing combined. Therefore, to leverage the benefits of network virtualization,

appropriate security verification mechanisms must be in place to detect any security viola-

tion that may arise due to these concerns [3, 4]. Finding such verification mechanisms is

made difficult by the facts that: 1) cloud tenants typically do not have access to the underly-

ing infrastructure [5], and 2) modern communication services are sensitive to performance,

scalability, and deployability [6].

There exists a body of work on the integrity verification of virtualized networks. First,

1

the Pre-deployment Verification approaches [7, 8, 9, 10] perform static verification of var-

ious policies and system specifications before actual deployment. These approaches rely

on access to the policies and descriptions of both the Network Functions (NFs) and the

underlying cloud infrastructure. However, this may not be feasible in many scenarios (e.g.,

information, such as, how many virtual machines may be running on a physical host is

typically not made available to the cloud tenant [11]). Moreover, they cannot perform

verification against breaches that might happen at runtime after deployment. Second, the

Runtime Verification approaches [12, 13, 14, 15] perform verification of performance and

correctness of the operations of the NFs at runtime. They require equipment external to

the original cloud (e.g., a local replica of NFs [12]) to carry out such verification or require

intrusive modification of the NFs [13, 14, 15]. Thus, all these existing approaches hardly

meet the requirements of working without access to underlying infrastructure and being

unintrusive (in terms of performance, scalability, and deployability).

1.2 Problem Statement

In this thesis, we propose verification mechanisms to guarantee the security of virtual-

ized networks while respecting constraints of access, performance, scalability, and deploy-

ability. To that end, we look beyond what is possible with traditional direct observation-

based approaches and analyze the indirect effects of the attacks (known as side-channels).

In particular, we first propose an approach to verify the integrity of virtualized network

function (VNF) chains as a whole. Second, we move closer to the virtualized network

functions (VNF) themselves and propose mechanisms to detect breach of integrity of their

software function. Third, we propose mechanisms for continuous verification (i.e., mini-

mizing the detection time as much as possible).

In particular, this thesis work mainly addresses the following research questions:

2

(1) How can we verify that virtualized networks are forwarding traffic as intended by the

tenant?

(2) How can we verify that virtualized networks are providing exactly the same func-

tionality as desired by the tenant?

(3) How can we maximize security coverage while remaining unintrusive to preserve the

high efficiency and performance of the network?

We discuss the above problems in detail in the following.

1.2.1 Forwarding Integrity Verification for Virtualized Networks Us-

ing Side-Channel

During the first phase of our work, we focus on the integrity verification of Network

Functions Virtualization (NFV) service chains to ensure traffic forwarding as intended by

the tenant. To this end, our goal is to address the limitation of all existing works and to

overcome the previously mentioned challenges in the area of integrity verification of vir-

tualized networks. Specifically, we focus on allowing NFV tenants to perform verification

without requiring any infrastructure-level data by exploring techniques available in the area

of network traffic throughput estimation. Additionally, we focus on detecting a wide range

of attacks that are regarded as difficult to detect and avoided by existing works. Chapter 3

details our work on forwarding integrity verification for virtualized networks.

1.2.2 Functional Integrity Verification for Virtualized Networks Using

Side-Channel

In the second phase of our work, we focus on ensuring that the virtualized network func-

tions themselves perform as intended by the tenant. To this end, we note that by exploiting

3

the existing vulnerabilities, an attacker, ([16, 17]) can inject code into some virtualized

network functions. We call it a breach of functional integrity. Here our goal is to provide

a practical solution that works at runtime without access to the underlying host operating

system while guaranteeing high-performance requirements. Chapter 4 further describes

our idea on verifying functional integrity for virtualized networks.

1.2.3 Continuous Verification of Forwarding Integrity for Virtualized

Networks Using Side-Channel

In the third phase of our work, we aim to guarantee continuous verification for our

forwarding integrity verification approach to build a practical network service integrity

verification system. To this end, we propose a new hybrid approach where we design and

integrate active and passive techniques to work side-by-side to confirm inconsistencies.

Chapter 5 further describes our idea on achieving continuous verification of forwarding

integrity for virtualized networks.

In summary, the three phases of this thesis work provide a comprehensive (i.e., cover-

ing both network service chains and individual network functions), practical, and secure

mechanism for the integrity verification of virtualized networks by cloud tenants. In the

following, we describe the link between these topics and, how they were identified. We

start with the goal to provide a solution for the integrity verification of virtualized networks

and find that these networks can be divided into two layers of abstraction: 1) network ser-

vice chains and, 2) network functions. Thus to have a comprehensive security solution, we

cover both of these layers in the first two phases of our PhD research. A key challenge

faced during the early phases of our work is that attackers may try to evade our verification

mechanism by acting only when they cannot be detected. Therefore, in the third phase of

our work, we develop a mechanism for continuous verification without leaving any window

for attackers to go undetected.

4

1.3 Contributions

The main contributions of this thesis work are towards enabling cloud tenants to verify

their in-the-cloud virtualized network services practically and efficiently. To this end, we

propose a side-channel-based system, which supports verification of end-to-end service

(i.e., both forwarding and function), overcomes the limitations of lack of access of cloud

tenants to the underlying cloud infrastructure, and uses techniques that allow performance

of the network to remain unaffected. We elaborate on these contributions in the following.

Firstly, our work focuses on the verification of forwarding integrity of virtualized net-

work services by cloud tenants where several network functions are chained together to

create a complete network service. To that end, we propose a side-channel-based approach

that does not require any infrastructure-level data. In this work, we first send two rounds

of probe packets to create artificial congestion (without actually causing any network over-

head) and see their effects in terms of delay between packet pairs (a.k.a., packet-pair disper-

sion). We then apply a machine learning (clustering) algorithm which enables our integrity

verification approach to decide whether there is any breach of forwarding integrity.

Secondly, we propose a mechanism for verification of functional integrity that com-

plements our forwarding integrity mechanism to provide overall network service integrity

verification. In this work, we collect performance metrics that are already made available

to the tenants for a purpose other than security verification and derive side-channel infor-

mation from them to achieve verification of functional integrity.

Thirdly, we propose a continuous security verification mechanism that extends our for-

warding integrity verification mechanism by enabling it to perform verification continu-

ously. To that end, we design a hybrid approach that leverages a passive observation-based

mechanism and does not completely rely on the previous probing-based active approach.

In summary, our main contributions are the following:

5

• As per our knowledge, we propose the first side-channel-based approach that elim-

inates the need for infrastructure-level data for verifying the forwarding integrity of

virtualized network services.

• We are the first to propose a mechanism for verifying the functional integrity of vir-

tualized network functions without requiring access to the underlying host operating

system and keeping network performance unaffected.

• We are also the first to propose a mechanism to perform continuous black-box veri-

fication of virtualized network services.

• We implement and integrate our proposed systems into major cloud platforms such as

OpenStack [18] and Amazon Elastic Compute Service (ECS) [19]. Evaluation with

both synthetic and real data shows the effectiveness and efficiency of our approach.

1.4 Thesis Structure

This thesis is organized into six chapters. Chapter 1 introduces this thesis work. Chap-

ter 2 reviews the related literature. Chapter 3 discusses the result of our blackbox approach

to verification of NFV service chain integrity. Chapter 4 presents our research work on

functional integrity verification of virtualized network functions. Chapter 5 details our

work on continuous integrity verification of virtualized networks using side-channel. Fi-

nally, we conclude our thesis in Chapter 6.

6

Chapter 2

Related Work

In this chapter, we review existing works related to our problem areas. We also present

a qualitative comparison between our proposed solutions and existing works in this chapter.

Our review of the related works is organized as follows. Firstly, in Section 2.1, we review

the literature and show a qualitative comparison between existing works and our proposed

solutions in the area of forwarding integrity verification. Secondly, in Section 2.2, we

review the literature and show a qualitative comparison between existing works and our

proposed solutions in the area of functional integrity verification.

2.1 Forwarding Integrity Verification

Most existing works in forwarding integrity verification have focused on pre-deployment

verification of the integrity of VNFs themselves [7, 8, 9, 10] and little attention has been

given to verifying the integrity of service chains in runtime. Moreover, the majority of the

works that propose a technique to verify service chain integrity in runtime mainly use hop-

by-hop verification using per-packet tag and require access to the underlying infrastructure

(e.g., reading flow rules [13, 14] or reprogramming firmware [20, 21, 15, 22, 23]).

7

2.1.1 Pre-deployment Verification

To verify the service chains before actual deployment, several works have been pro-

posed. These works can be broadly classified into four types: (i) static script verification,

(ii) sand-box deployment, (iii) resource requirement determination, and (iv) optimal place-

ment. EasyOrchestrator [24] proposes to verify the correct ordering of VNFs in a service

chain. Bouten [8] proposes a detection mechanism for affinity and anti-affinity violation of

VMs in a service chain. Durante [9] proposes a formal modeling and verification approach

for service chains. They demonstrate how their model can detect service chains that are

placed in incorrect order. 5GTango [25] proposes a verification and validation framework

for network services using a sand-box environment. Touloupou [26] presents an approach

for determining resource requirements in NFV by performing correlation between metrics

(E2E latency, throughput, CPU utilization, number of users etc.). Marchetto [27] proposes

a framework for optimal placement of VNFs onto physical resources (e.g., servers).

2.1.2 Runtime Verification

Several works propose solutions for verifying the correct enforcement of service chain

specification at runtime. Shin et al. [13] proposes an approach that is capable of verifying

service chain forwarding even when there can be a dynamic change in forwarding behavior

(e.g., FW is used only when DPI detects anomaly). It does so by repeatedly translating

service chain specification and flow tables into an intermediate representation called pACR

and then comparing both translations. ChainGuard [14] generates topology from flow ta-

bles and then compares it with the service chain forwarding graph. vHSFC [28], vSFC [21]

and FlowCloak [15] use a tagging-based hop-by-hop verification mechanism. In [29, 30]

authors propose techniques for detecting the presence of malware (leading to a breach of

functional integrity) at runtime but their approach requires interception of system calls

which can affect the performance of the NFs (e.g., increased network latency [31, 32]).

8

Finally, Oqaily et al. [33] proposes an innovative approach combining both formal meth-

ods and machine learning that can potentially be adapted to quickly verify the integrity of

service chains at runtime given access to the underlying infrastructure.

2.1.3 Traffic Throughput Estimation

In the literature, extensive work has been done in estimating available capacity (which

we use to estimate throughput) using Packet Pair Dispersion Technique [34, 35, 36, 37,

38, 39, 40]. However, these techniques are not applicable in our context. Firstly, because,

they mainly measure available capacity at the bottleneck link (i.e., link with the lowest

capacity) and cannot measure available capacity at a link that may not be the bottleneck

link. Secondly, most of the existing tools require cooperation from both ends (i.e., require

on-premise deployment) of the path for estimation. It makes their deployment very diffi-

cult [41] and cannot provide an in-cloud solution. Finally, existing tools have large relative

errors [42] making them unsuitable for integrity verification purpose.

2.1.4 Comparison Among Related Works

Table 2.1 summarizes the comparison among existing works and our proposed solutions

for forwarding integrity verification, namely, APPD and (SC)3. The first column lists the

works. The second column lists their main techniques. The next four columns indicate dif-

ferent design goals, such as continuous (i.e., without leaving a window for an attacker to go

undetected), unintrusive (i.e., without affecting performance and deployability), blackbox

(i.e., without requiring access to the underlying cloud infrastructure), and in-cloud (i.e., on-

premise hardware/software which would increase the total cost of ownership (TCO) [43]

is not needed). The next eight columns list different integrity breaches and threats that are

mentioned in Section 5.2.3.

9

As shown in Table 2.1, most existing works are unable to provide continuous verifica-

tion while remaining unintrusive. Moreover, most of the works that verify service chain

integrity require access to the underlying infrastructure (e.g., reading flow rules [13, 14]

or reprogramming firmware [20, 21, 15, 22, 23]). Additionally, some works propose on-

premise mechanism [23] (i.e., they are not in-cloud solutions). Not only that the existing

works do not provide a blackbox approach but also they cannot verify different types of

service chain integrity breaches. Firstly, they cannot detect packet bypass when all VNFs

are bypassed or the last VNF in the chain is bypassed [20, 21, 15, 22, 23]. This is because

they need to first assign a tag to the packets which can be done only after the packets have

arrived at least at one (first) VNF. Also, they need to verify the tags in the last VNF of the

chain (at the latest). Additionally, existing works cannot detect both packet dropping and

fake packet injection before the first VNF in the chain [20, 21, 15, 22, 23]. This is because

existing works need to collect statistics which is available only when the packets arrive at

least at the first VNF.

10

Table 2.1: We propose the first blackbox approach for continuous sanity checking of service chains in NFV while covering all likely
integrity breaches

Proposals Approach Goals Capabilities

C
on

tin
uo

us

U
ni

nt
ru

si
ve

B
la

ck
bo

x

In
-c

lo
ud VNF bypass Packet drop Packet injection

A
da

pt
iv

e
at

ta
ck

re
si

st
an

ce

Fu
ll

SC

Pa
rt

ia
l(

ex
ce

pt
la

st
V

N
F)

Pa
rt

ia
l(

la
st

V
N

F)

B
ef

or
e

fir
st

V
N

F

A
ft

er
fir

st
V

N
F

B
ef

or
e

fir
st

V
N

F

A
ft

er
fir

st
V

N
F

FlowCloak [15] Per-packet tag ✓ - ✓ - - ✓ - - - - - ✓

vSFC [21] Per-packet tag and acknowledgement ✓ - ✓ - - ✓ - - ✓ - ✓ ✓

REV [20] Per-packet per-switch tag ✓ - ✓ ✓ - ✓ - - ✓ - ✓ ✓

Thang et al. [23] Modification of end hosts - - ✓ - ✓ ✓ ✓ - ✓ - ✓ -

Shin et al. [13] Forwarding device configuration - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

ChainGuard [14] Forwarding device configuration - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

APPD Side-channel - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(SC)3 Side-channel ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11

2.2 Functional Integrity Verification

In search of a solution to detect functional integrity breaches in virtualized 5G core,

we investigated existing works close to our problem area. To that end, we looked at the

area of 5G security, malware detection, network virtualization, and performance metrics

correlation.

2.2.1 Detection of Functional Integrity Breach in 5G

Existing works in 5G security can be categorized by the related key technologies as

follows: 1) Software Defined Networking (SDN), 2) virtualized Network Functions (NFs),

3) Network Slicing, and 4) Mobile Edge Computing (MEC). Among these, works that dis-

cuss security issues related to virtualized NFs are the closest to our research. Among the

works in this area, authors report the possibility of 1) code injection attack [16], 2) migra-

tion of NFs to a less secure host to compromise it subsequently [17], and 3) propagation of

malicious code to a co-hosted NF [44]. However, they do not provide any mechanism to

perform integrity verification against these attacks.

2.2.2 Malware Detection

In the literature, extensive work has been done on detecting malware in applications [45].

However, existing malware detection works cannot be applied in our case for the follow-

ing reasons: (i) we classify works that statically extract features from binaries for detec-

tion [46, 47, 48, 49, 50] as pre-deployment. However, these solutions might not be ap-

plicable against our threat model, especially when an attack will happen after the binaries

(i.e., CNF images) are deployed and run, (ii) on the other hand, a few works that perform

during run-time by using a signature-based approach cannot detect zero-day attacks [51],

and (iii) works [29, 30] that attempt to detect zero-day attacks but use system features (e.g.,

12

system calls) usually cannot be applied due to challenges in collecting those features (e.g.,

lack of access to the underlying host operating system by a tenant) and even when those

features can be collected, collecting them would require significant cost in terms of over-

head (considering the high throughput requirement of 5G) due to interception and need for

instrumentation of each CNF [52].

2.2.3 Performance Metrics Correlation

Correlation between different performance metrics (e.g., CPU utilization and memory

utilization) of various elements can provide valuable insight into the behavior of a sys-

tem. In [53], the correlation between different performance metrics (e.g., CPU utilization,

memory utilization, received packets etc.) for a single VNF has been studied. On the

other hand, [54] studied the correlation between metrics from different 5G Radio Ac-

cess Network (RAN) cells. However, none of the above works studied the correlation

among metrics of different network functions (multi-network function metric correlation)

and therefore, cannot be adapted to serve our purpose.

2.2.4 Comparison Among Related Works

Table 2.2 summarizes the comparison among existing works and our proposed solution

on functional integrity verification, namely, 5GFIVer. The first column lists the works.

The second column lists their main approach. The next four columns indicate different

capabilities, such as unintrusive (i.e., without affecting performance and deployability),

Runtime (i.e., able to detect attacks that occur at runtime), blackbox (i.e., without requiring

access to the underlying cloud infrastructure), and zero-day (i.e., able to detect previously

unknown attacks).

13

Table 2.2: We propose the first blackbox approach for functional integrity verification

Proposals Approach Unintrusive Runtime Blackbox Zero-day

Schultz et al. [46]
Extracting static

features from
binary executables

✓ - - ✓

Hahn et al. [47]
Extracting static

features from
binary executables

✓ - - -

Shaukat et al. [48]
Extracting static

features from
binary executables

✓ - - ✓

Chaganti et al. [49]
Extracting static

features from
binary executables

✓ - - -

Luo et al. [50]
Extracting static

features from
binary executables

✓ - - -

Wagener et al. [29]
Extracting dynamic

features from
binary executables

- ✓ - -

Das et al. [30]
Extracting dynamic

features from
binary executables

- ✓ - -

5GFIVer [15] Side-channel ✓ ✓ ✓ ✓

14

Chapter 3

Forwarding Integrity Verification of

NFV Service Chains Using Artificial

Packet Pair Dispersion

3.1 Introduction

Network Functions Virtualization (NFV) is considered one of the cornerstones of the

emerging 5G technology due to its various benefits such as cost efficiency and greater flexi-

bility [55]. NFV allows virtual network functions (VNF), such as firewalls, IDS, and DPI to

be implemented as service chains over a third-party cloud infrastructure, such that the net-

work service providers (i.e., NFV tenants) can leverage the benefits of NFV without having

to deploy and manage their own infrastructures [56, 57, 58]. However, such outsourcing of

VNFs might limit the capability of an NFV tenant to know whether their VNFs have been

properly deployed in the underlying cloud infrastructure, as the third-party cloud providers

would typically not allow the NFV tenant to access the infrastructure-level resources (e.g.,

SDN switches) and data (e.g., logs and configuration).

15

On the other hand, enabling the above-mentioned verification capability for NFV ten-

ants is becoming more important with the growing security concerns in NFV infrastruc-

ture, especially those involving various types (e.g., VNF bypassing, packet dropping, fake

packet injection) of integrity breach of VNF service chains [20, 21, 15, 22]. Such integrity

breaches are mainly caused by misconfigured (e.g., [59]) or compromised (e.g., [60, 61,

62]) components of the underlying infrastructure (e.g., SDN switches), which could lead

to severe security consequences, such as circumventing security mechanisms (e.g., virtual

firewall or IDS) inside a service chain. Therefore, an interesting research challenge is to

enable the verification of service chain integrity for NFV tenants without requiring access

to infrastructure-level resources or data.

Most existing efforts (e.g., [13, 14, 63, 20, 21, 15, 22]) fall short of fulfilling this need.

Specifically, some existing works (e.g., [13, 14, 63]) rely on the infrastructure-level data

(e.g., flow rules and flow statistics in SDN switches) to verify service chain integrity. Other

existing works (e.g., [20, 21, 15, 22]) aim to reduce the requirement of infrastructure-

level data by using a cryptographic tagging mechanism at the VNF level. Nonetheless,

those works require modifications (such as reprogramming the firmware) to infrastructure-

level devices (e.g., SDN controller), which may not be practical with third-party providers.

Moreover, those works are not designed to detect all types of integrity breaches (e.g., by-

passing the last VNF, or all VNFs, in the service chain). To the best of our knowledge,

there does not exist a blackbox approach (where tenant-level data along with the available

side-channel data would be sufficient to verify service chain integrity).

In this thesis, we propose a blackbox approach, namely, artificial packet-pair disper-

sion (APPD), to allow NFV tenants to verify service chain integrity without requiring any

infrastructure-level data. Our key idea is twofold. First, if we could somehow enable the

VNFs to estimate the throughput of incoming traffic to NFV (i.e., traffic flowing into the

service chain), then by comparing this throughput to the actual throughput observed by

16

each VNF along the service chain, the VNFs could then identify any integrity breach all

by themselves (e.g., an increased throughput may indicate bypassing). Second, to address

the key challenge of allowing VNFs to estimate the incoming traffic throughput, we rely

on the fact that the inter-packet delay could be increased by (and thus indicate) congestion

in a link. Specifically, our proposed approach consists of two major steps. First, APPD

estimates incoming traffic throughput to NFV from the inter-packet delay by creating an

artificial congestion (as natural congestion is rare in an NFV-like high-bandwidth infras-

tructure). Second, it detects service chain integrity breaches by comparing the estimated

incoming traffic throughputs with the actual traffic throughput using a machine learning

(clustering) approach. We will further elaborate on our motivation and idea through an

example in Section 5.2.

In summary, our main contributions are the following:

• As per our knowledge, this is the first blackbox approach that eliminates the need for

infrastructure-level data for verifying common integrity breaches (e.g., bypassing,

fake packet injection, and packet dropping) in NFV service chains.

• We are the first to introduce a novel method of artificial packet-pair dispersion (APPD),

which allows to the creation of artificial congestion in a high-bandwidth network

like in an NFV infrastructure (where natural congestion is rare, if not impossible)

for estimating incoming traffic throughputs to NFV. We believe this novel method

for estimating throughput may find other applications beyond service chain integrity

verification.

• As a proof of concept, we integrate APPD with OpenStack/Tacker, a popular choice

for NFV deployment, and, through extensive experiments in a real network environ-

ment, we demonstrate both effectiveness and efficiency (i.e., negligible overhead) of

APPD.

17

FW IDS DPI VNFN

…

Dropping Bypassing

…

Cloud Infrastructure

=?
Traffic throughput

at VNF

T
en

a
n

t
P

ro
v

id
er

Switch2 SwitchN

Traffic at

VNF

Integrity Breach

Potential Blackbox Solution

Switch1 Switch3

N

F

V

Challenge for a blackbox solution:

How to know the incoming traffic

throughput?

X

Injection

Incoming traffic

Incoming traffic throughput

Lazy providerAttacker

Challenge for a tenant:

Verifying service chain integrity

is impossible due to lack of

access to infrastructure-level data.

Figure 3.1: An example of integrity breaches in NFV (top) and a possible solution and its
key challenge (bottom)

3.2 Preliminaries

This section first presents a motivating example. Then it defines our threat model and

assumptions.

3.2.1 Motivating Example

The top of Fig. 3.1 depicts a simplified NFV deployment, with different integrity breaches

(indicated by the red dashed lines), as well as the main challenge (the red stop sign). The

bottom of Fig. 3.1 illustrates a potential solution and its key challenge.

NFV Deployment. The top slice of Fig. 3.1 shows an example of an NFV environment

where VNFs are running on a third-party cloud provider’s infrastructure. As shown in

blue dashed lines, the incoming traffic is planned to pass through the service chain consist-

ing of several VNFs, such as Firewall (FW), Intrusion Detection System (IDS), and Deep

Packet Inspection (DPI) as well as their underlying cloud infrastructure (Switch1, ...,

SwitchN).

Integrity Breach in NFV Service Chains. The middle slice of Fig. 3.1 shows various

integrity breaches including injection of fake packets, dropping legitimate packets, and by-

passing one or more VNFs due to misconfigurations (e.g., [59]) by a cheap/lazy provider

18

Last-mile link

Incoming

traffic

throughput

IDEA 1: Packet pair →

Congestion →

Increased Inter-Packet Delay (IPD)

NFV

Can be used to estimate HOWEVER,

NO guarantee that

congestion can be

created at the last-

mile link

IDEA 2: Artificial Congestion

Using Probing Packets

Server 1

Server 2

Server 3

Figure 3.2: The main ideas of APPD

or attacks by exploiting compromised resources (e.g., [60, 61, 62]). As a result, traffic may

follow an entirely different path (as shown in the red lines) than planned paths. An NFV

tenant cannot easily verify such an integrity breach, due to the limited access to the under-

lying infrastructure-level data (including the flow rules of Switch1, ..., SwitchN).

Potential Blackbox Solution and Its Challenge. The bottom slice of Fig. 3.1 shows a

potential blackbox solution that could avoid the need for infrastructure-level data. The

solution compares the incoming traffic throughput (i.e., the traffic flowing into NFV to

be processed by the service chain) and the traffic throughput actually observed at a VNF.

However, it is not feasible for the VNFs to measure the incoming traffic throughput due to

the fact that the VNFs are not directly connected to the incoming traffic. Therefore, the key

challenge to this blackbox solution is: “How to know the incoming traffic throughput?”.

3.2.2 Main Idea

Fig. 3.2 illustrates our main ideas as follows.

Idea 1: Estimation of Incoming Traffic Throughput. Our first idea is to estimate (instead

of directly observing which would require access to the underlying cloud switches) the

tenants’ network traffic throughput by extending the concept of Packet-Pair Dispersion

19

(PPD) [34], where a traffic throughput can be estimated from inter-packet delay by causing

a momentary congestion in a network. Particularly, the concept of PPD indicates that if

two packets (e.g., the two yellow envelopes in Fig. 3.2) are transmitted at a rate that can

cause congestion in a link, then this will lead to an increase in the inter-packet delay (IPD)

between these two packets. Conversely, from the increase in the IPD, it is possible to

estimate the network traffic throughput. However, in our context, it is almost impossible

to directly apply natural PPD, as natural congestion in NFV-based networks is rare due to

their high-bandwidth nature.

Idea 2: Artificial Packet-Pair Dispersion. To overcome the above-mentioned NFV-

specific issue, our second idea is to artificially create a PPD using probing packets such

that we no longer rely on natural PPD to estimate traffic throughput. Particularly, to gener-

ate artificial PPD, we send probing packets from multiple hosts (via different ingress links)

for a short period of time (to ensure that there will be no significant overhead on the NFV

environment or on any tenant resources, as also validated by our experimental results in

Section 3.5). Afterwards, we estimate the tenants’ network traffic throughput by leverag-

ing a machine learning (i.e., clustering) based approach, and verify service chain integrity

without requiring any infrastructure-level data. Section 3.3 will further elaborate on these

ideas.

3.2.3 Threat Model and Assumptions

This work considers integrity breaches of service chains that may be caused when (i) a

malicious attacker compromising any of the underlying forwarding devices (e.g., SDN

switches [60, 61, 62]), or (ii) a cheap-and-lazy cloud provider [59] is misconfiguring (in-

tentionally or by mistake) the underlying forwarding devices.

We consider a stronger threat model in comparison to existing works (e.g., [20, 21, 15,

22]) by including a wide range of attacks and attacker capabilities as follows. (i) VNF

20

bypassing: Compromised or misconfigured switches may bypass one or more VNFs in the

service chain; compromised switches may also collaborate with each other [23] to bypass

a combination of VNFs (e.g., the entire service chain). (ii) Packet dropping: Compromised

or misconfigured switches may drop packets at any switch (e.g., first switch) instead of

forwarding as planned. (iii) Packet injection: Attackers may inject fabricated packets to

overwhelm the VNFs at any position (e.g., before the first VNF). Many of these possibilities

are deemed hard to detect and avoided by most existing works [23].

As the NFV tenant has access to the VNFs to deploy any security mechanism (i.e., there

is no need for blackbox verification for VNFs), we exclude any attack on VNFs from our

threat model. Similar to SDN switches in the cloud infrastructure, we consider that the

tenants’ gateway router can also be compromised by attackers [64]. However, as the tenant

has access to the logs and configuration data of the gateway router, we consider that any

changes in the forwarding rules in the gateway router can be verified by the tenant admin.

Therefore, we only consider the violation of confidentiality (e.g., communication between

the gateway router and NFV may not be trusted due to compromised secret keys) of the

gateway router. We assume a hierarchical structure of the Internet bandwidth where links

closer to the edge (e.g., NFV tenant) have lower capacity compared to the links closer to

the core (e.g., NFV/cloud infrastructure) [65].

3.3 Methodology

This section presents the APPD methodology.

3.3.1 Overview

Fig. 3.3 shows an overview of our methodology, which contains two major stages. Stage

1 performs incoming traffic throughput estimation (detailed in Section 3.3.3), and Stage 2

21

C
lo

u
d

In
fr

as
tr

u
ct

u
re

APPD

Artificial Congestion

Generation (Probing)

Received Traffic

Capture

Throughput Estimation

(Clustering)

Integrity Verification V
er

if
ic

at
io

n

R
es

u
lt

P
ro

b
in

g
/T

en
an

t
T

ra
ff

ic

Stage 1 Stage 2

Figure 3.3: A high-level overview of APPD

Time

In
te

r-
P

ac
k
et

 D
el

ay
 (

IP
D

)

No clusters without

Artificial Congestion

(a) No artificial congestion

Time

In
te

r-
P

ac
k
et

 D
el

ay
 (

IP
D

)

Cluster formed due to

Artificial Congestion

11.1 μs

(b) Artificial congestion

Figure 3.4: Clusters are formed due to artificially created congestion (the APPD effect)

performs integrity verification (detailed in Section 3.3.4). In Stage 1, APPD first sends

probing packets to create artificial congestion in tenants’ last-mile link and then relies on

the received packets at the VNF (affected by artificial congestion) to estimate the incoming

traffic throughput. In Stage 2, APPD performs integrity verification of the service chain by

comparing the incoming traffic throughput with the throughput of the received traffic at a

VNF (in a service chain).

3.3.2 The APPD Effect

The APPD effect refers to the formation of a distinguishable cluster of IPD values due

to the artificial congestion created by APPD (as shown in Fig. 3.4). These clusters are

distinguishable by their high density in the data space as shown in Fig. 3.4b. Moreover,

22

NFV

1. Probe RequestL1 L2

L3

L4

2
.

P
ro

b
e

R
es

p
o
n

se

200Mbps

200Mbps

100Mbps

Figure 3.5: An example of probe generation

they have a very specific shape of being spread in the horizontal direction and having a

very small height. Although the cluster in Fig. 3.4b is easy to identify visually in this

particular case, the clusters may not be easy to identify manually in general. To this end,

we exploit the high spatial density of the clusters to identify them using a density-based

clustering algorithm, which will be detailed in the next section.

3.3.3 Stage 1: Estimation of Incoming Traffic Throughput

This stage consists of the following three steps: (Step 1.1) artificial congestion genera-

tion, (Step 1.2) received traffic capture, and (Step 1.3) throughput estimation using cluster-

ing.

Step 1.1: Artificial Congestion Generation. This step is to create an artificial con-

gestion at the tenants’ last-mile link for a very small duration (e.g., 50ms). To do so,

APPD generates probing packets that will enter the tenants’ gateway router through multi-

ple ingress ports. To achieve this, probe request traffic is generated from the VNFs using

a request/response protocol (e.g., HTTP get request, ICMP echo request, etc.) to differ-

ent hosts that are connected through different ingress ports of the tenants’ gateway router.

Thus, when the reply packets come back to the tenants’ gateway router, the accumulated

last-mile link traffic will experience artificial congestion.

Example 1 As shown in the road-junction analogy in Fig. 3.5, the junction (i.e., router)

23

connecting roads (i.e., ingress links) L1, L2, L3 and the egress link L4 is tenants’ gateway

router. Probe traffic, shown in gray/orange/golden envelopes (each color for a different

ingress port), are sent to this router as a response to requests sent from NFV (specifically

from the first VNF in the service chain) through ingress links L1, L2, and L3. As a result,

artificial congestion is created, and the traffic leaves the last-mile link L4 experiencing the

APPD effect.

The probe traffic generation module is designed to ensure there will be artificial con-

gestion to cause the APPD effect on the traffic at the last-mile link. To achieve this, the

APPD adjusts the probe throughout based on the actual received traffic throughput at VNF

(which should be the same as the last-mile link traffic when there are no integrity breaches)

such that the combined throughput of probe traffic and tenants’ traffic will be equal to the

last-mile link capacity. As a result, the APPD effect will induce distinguishable patterns

in terms of the inter-packet delay, as discussed in Section 3.3.2 and evaluated in Fig. 3.8.

More formally, for last-mile link capacity C, probe rate TP , received traffic throughput TVNF

and the last-mile link traffic throughput λ, clusters will be found when TP + λ ≥ C.

Now, considering the last-mile link throughput to be equal to the received throughput

(i.e., λ = TVNF), the combined traffic will be equal to last-mile link capacity (i.e., TP +λ =

C) when probe throughput is set to,

TP = C − TVNF (1)

Sending only one round of probing packets with the throughput calculated above may result

in false estimation if the last-mile link throughput is more than the received traffic through-

put (i.e., in case of fake traffic injection). To avoid this possibility of false estimation, two

rounds of probing packets are sent. One at probe throughput TP1 and another at probe

24

throughput TP2 as given in the following equations,

TP1 = C − TVNF − δT (2)

TP2 = C − TVNF (3)

Here, the parameter δT is a small number that can be configured by the tenant admin.

Computing this parameter automatically by using an efficient binary search approach will

be an interesting future work. The number of clusters generated at probe throughput TP1 is

denoted as NC1 and the number of clusters generated at probe throughput TP2 is denoted

as NC2.

Step 1.2: Received Traffic Capture. In this step, APPD first collects attributes of each

packet (e.g., timestamp, size in bytes, etc.) by sniffing packets from the network interface,

and then calculates IPD values from the timestamps.

Example 2 As shown in Fig. 3.5, 1,000 probe response packets are generated and received

at the first VNF having timestamps P1→tP1, P2→tP2, P3→tP3, ..., P1000→tP1000. Now, the

packet capture step at the first VNF will output the following to the next module: tP1,

tP2, tP3, ..., tP1000. IPD values will then be calculated as follows: D1 = tP2 − tP1,

D2 = tP3 − tP2, D3 = tP4 − tP3, ..., D999 = tP1000−tP999
.

Step 1.3: Throughput Estimation (Clustering). This step is mainly responsible for two

operations,

(i) Clustering the inter-packet delay (IPD) values: This step performs clustering on

each data window. It uses data points comprising inter-packet delay and timestamp as

input. As mentioned in Section 3.3.1, under the APPD effect, inter-packet delay values

form clusters. We use the extended DBSCAN algorithm as the clustering algorithm and

CityBlock distance metric. The use of the CityBlock distance metric allows us to select

25

only those clusters that are spread horizontally and have a very small height. For a real

example of the clusters, see Fig. 3.8. After clustering, if the number of clusters is non-zero

(i.e., at least one cluster is formed), then artificial congestion is confirmed for the current

round of probing.

Example 3 As shown in Fig. 3.4b, clustering algorithm on IPD values: D1 = tP2 − tP1,

D2 = tP3 − tP2, D3 = tP4 − tP3, ..., D999 = tP1000−tP999
finds zero clusters for the first

round (i.e., NC1 = 0) and two clusters for the second round (i.e., NC2 > 0). Then artificial

congestion is not confirmed for the first round but confirmed for the second round.

(ii) Throughput estimation: This step estimates traffic throughput based on the clus-

tering result. When artificial congestion is confirmed, received throughput is equal to the

last-mile link throughput, that is, λ = TNFV. Replacing this in Equation 1 and replacing λ

with estimated throughput λ′ we have,

λ′ = C − TP (4)

Example 4 Suppose, the clustering result is “NC1 = 0 and NC2 > 0”, C = 1Gbps and

TP2 = 500Mbps. Since artificial congestion is confirmed for the second round of probing,

we have λ′ = C − TP2 = 1Gbps− 500Mbps = 500Mbps.

Once λ′ is known, an expected value of incoming traffic throughput is calculated by sub-

tracting reportedly dropped or otherwise rerouted traffic throughput by each previous VNF.

The information update process by which a VNF obtains dropped or otherwise rerouted

traffic throughput of each previous VNF is described in the following paragraph. Now, for

V NFN , the expected incoming traffic throughput (TE) is calculated as given in Equation

5.

TE = λ′ −
N−1∑︂
i=1

DVNFi (5)

26

Every VNF periodically provides updates (e.g., incoming traffic throughput and

dropped/rerouted traffic throughput) to the next VNF(s) in the service chain. These in-

formation updates can be encrypted and digitally signed for confidentiality and integrity

protection. As such updates comprise aggregate information of many packets (i.e., not

on a per-packet basis), the use of encryption and digital signatures would not introduce

additional communication overhead to tenants.

3.3.4 Stage 2: Verification of Service Chain Integrity

Depending on the position of the VNF in the service chain, integrity verification is

done using one of the following two approaches (as shown in Fig. 3.6): (i) cluster-based

verification, and (ii) throughput-based verification. The first approach is used only for the

first VNF in the service chain whereas the second approach is used for the remaining VNFs

in the service chain. These two steps are mainly concerned with three variables: (i) number

of inter-packet delay (IPD) clusters for each round of probing, (ii) actual received traffic

throughput, and (iii) expected traffic throughput. In the following, we detail these two

approaches to integrity verification.

Step 2.1: Cluster-based Verification. For the first VNF in the service chain, verification

is performed based on the probe round for which clusters were found in Step 1.1. This

is because, firstly there are no preceding VNFs that can legitimately drop/reroute traffic.

Therefore, estimating expected throughput (which is a way to take dropped/rerouted traffic

into account) is not necessary. Secondly, if artificial congestion is not confirmed (i.e., no

inter-packet delay clusters are formed for Equation 4 to be valid) throughput estimation

cannot be performed. In fact, knowing the number of clusters indirectly reveals incoming

27

traffic throughput. The cluster-based integrity verification logic is given below,

Integrity =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Normal, if NC1 = 0 and NC2 > 0

Drop/Bypass, if NC1 > 0

Injection, if NC2 = 0

Step 2.2: Throughput-based Verification. For the remaining VNFs in the service chain,

the expected throughput (TE) is compared with actual received traffic at the VNF (TV NF)

to verify the service chain integrity and classify the result of the verification according to

the detection logic, which is shown in the equation below,

Integrity =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Normal, if TE = TV NF

Drop/Bypass, if TE > TV NF

Injection, othewise

The rationale behind using expected traffic throughput (TE) for all other VNFs (except the

first) in the service chain is there are preceding VNFs that may legitimately drop/re-route

traffic. Since (TE) is calculated using the dropped/re-routed traffic information, using (TE)

will give accurate verification results even when some traffic is legitimately dropped/re-

routed by preceding VNFs as part of those preceding VNF’s functionality.

Example 5 Suppose, λ′ = 500Mbps, at VNF 2, TV NF2 = 400Mbps, and VNF 1 reported

no packet drop/rerouting. Then, TE = λ′ − DV NF1 = 500Mbps. So, the condition TE =

TV NF is not satisfied implying integrity violation. Since, in this case, TE > TV NF , the

detected integrity violation is classified as “Drop/Bypass”.

It is noteworthy that, the estimated incoming traffic throughput may differ from the

actual throughput by δT . This means the expected throughput may also differ from the

28

Start

D1?

Normal

D2?

Injection
Bypassing

/Dropping

End

True

False

FalseTrue

D1:= NC1 = 0 and NC2 > 0

D2:= NC1 > 0
D1:= |TE –TVNF| ≤ δT

D2:= TE > TVNF

VNF

Position = 1?
True False

Figure 3.6: Integrity verification logic

Packet Collector

Packet Capture Program

(e.g., tcpdump) Invocation

Packet Capture File

Reading Using libpcap

Clustering and Throughput Estimator

Throughput Estimation

Integrity Verification Module

Cluster-based

Verification

Throughput-based

Verification

Clustering Using

DBSCAN Lite

Probe Generator

Probe Request List

Generation

Configuration

Database (SQLite)

APPD Daemon

R
es

u
lt

 (
e.

g
.,

 N
o
rm

al
,

B
y

p
as

si
n
g
,
et

c.
)

Probe Generation

Control

Packet Capture

Control

Probe Request List

Execution

APPD

Tenant Network Traffic Throughput Estimation Module

Verification Approach Selection (VNF

Position > 1?)No Yes

Cloud

Infrastructure

P
ro

b
e

R
eq

./
T

en
an

ts
’
T

ra
ff

ic

Gateway Router

Servers

Workstations

Tenants’ Network

Figure 3.7: The architecture of APPD

actual throughput by δT .

3.4 Implementation

This section presents the implementation of APPD.

APPD Architecture. There are four major components of APPD (Fig. 3.7): (i) the APPD

29

daemon for orchestrating the other modules, (ii) the incoming traffic throughput estimation

module for estimating incoming traffic throughput, (iii) the integrity verification module

for conducting service chain integrity verification, and (iv) the configuration database for

storing parameters (e.g., δT) for different modules of APPD. The incoming traffic through-

put estimation module is further divided into three components. (i) the probe generator is

periodically started by the APPD daemon to send probing request packets, (ii) the packet

collector is periodically started by the APPD daemon to capture received traffic at the VNF,

and (iii) the clustering and throughput estimator performs clustering on inter-packet delay

(IPD) data and estimates incoming traffic throughput.

Implementation Details. We implement APPD as a Linux service using systemd [66]. We

chose Linux because it is the most popular operating system in the cloud [67]. However,

APPD can also be deployed in any other operating system following a similar architecture

as described in this section. APPD is deployed on each VNF, started as soon as the VNF

operating system (OS) is booted, and continues to run as long as the VNF OS is running.

All of the modules of APPD are developed using C programming language. The packet

collector invokes a packet capture program (i.e., the tcpdump command-line packet ana-

lyzer [68]), prepares input for the clustering and throughput estimator by reading the cap-

ture file (.pcap) generated by the packet capture program, starts the clustering and through-

put estimator, and receives update messages from previous VNF. An in-memory storage is

used to pass captured packets from tcpdump to the packet collector. Clustering is done us-

ing DBSCAN Lite (our extended version of DBSCAN algorithm, which is detailed below).

We use SQLite [69], a fast database engine, to implement the configuration database.

Extending DBSCAN. We extended the DBSCAN algorithm to guarantee fast execution

time. We call the resulting algorithm DBSCAN Lite. To that end, our main extensions

are: (i) reducing search space by sorting and axis trimming, (ii) reducing search space by

dividing data into blocks, and (iii) reducing the number of searches by using a convex hull.

30

3.5 Experiments

This section presents our experimental results.

3.5.1 Overview of Experiments

As APPD is the first blackbox auditing solution to verify the forwarding integrity of

service chains, a quantitative comparison between our work and other existing works is

infeasible. Therefore, we evaluate APPD in terms of its ability to correctly verify experi-

mental scenarios, the effectiveness of its clustering algorithm, and the overhead caused by

probing.

3.5.2 Experimental Settings

To conduct our experiments, we build our NFV testbed using Tacker [70] and Open-

Stack [18], where OpenStack is a very popular infrastructure-as-a-service (IaaS) software

and Tacker is an official OpenStack [27] project that provides a VNF Manager (VNFM)

and an NFV Orchestrator (NFVO) that can be used to deploy and manage VNFs. Our

testbed includes one controller node and up to 80 compute nodes, each with 8 CPUs and

12 GB RAM running Ubuntu 20.04 server. We have used Mininet-2.3.0 [71] to set up the

tenant network and Internet links (between tenant network and NFV) with virtual hosts,

virtual links, and Open vSwitch (OVS) [72] virtual switches on a dedicated server. To con-

nect the tenant network to the service chains, the server where the tenant network is set

up is then connected to the NFV testbed using a 10Gbps local area network (LAN). Also,

similar to real ISP, we set up a traffic shaper to limit the bandwidth (to 1Gbps) from the

tenant network to NFV using the Linux traffic control module NetEm [73]. We also set up

10 virtual hosts inside the tenant network and 10 additional virtual hosts connected to the

Internet switches. The virtual hosts either act as video servers (using ffserver [74]) or video

31

Table 3.1: Applying APPD in real network setting shows that it could correctly verify all
the experimental scenarios

E
xp

N
o. Experimental

Integrity
Scenario V

N
F

Po
si

tio
n

A
ct

ua
lR

ec
ei

ve
d

T
hr

ou
gh

pu
t(
T

V
N

F
)1

E
st

im
at

ed
Te

na
nt

T
hr

ou
gh

pu
t(
λ
′)

1

Pr
ob

e
T

hr
ou

gh
pu

t(
T
P
1

)1

Pr
ob

e
T

hr
ou

gh
pu

t(
T
P
2

)1

N
o.

of
IP

D
C

lu
st

er
s(
N

C
1

)

N
o.

of
IP

D
C

lu
st

er
s(
N

C
2

)

D
ro

pp
ed

/R
er

ou
te

d
T

hr
ou

gh
pu

t(
T
D

)1

E
xp

ec
te

d
T

hr
ou

gh
pu

t
(T

E
=

λ
′
−

∑︁ T
D

)1

APPD Result

1
Normal

(first VNF) = 1 500 - 440 500 0 2 - -

NC1 = 0
and

NC2 > 0
: Normal

2
Bypass/Drop
(first VNF) = 1 400 - 540 600 2 2 - -

NC1 > 0
: Bypass/Drop

3
Injection

(first VNF) = 1 600 - 340 400 0 0 - -
NC2 = 0:
Injection

4
Normal

(second VNF2) >1 400 500 - - - - 100 400
|TE − TVNF|

≤ δT
: Normal

5
Bypass/Drop

(second VNF2) >1 300 500 - - - - 100 400
TE >

TVNF + δT
: Bypass/Drop

6
Injection

(second VNF2) >1 500 500 - - - - 100 400
TE <

TVNF − δT :
Injection

1 In Mbps.
2 Second VNF is representative of any VNF in the service chain except the first VNF (i.e., VNF Position
>1).

clients (using MPlayer [75]). On one hand, to generate tenant network traffic, hosts inside

the tenant network act as video clients to stream video from video servers in the Internet.

On the other hand, to generate cross-traffic [76], hosts outside tenant network act as video

clients to stream video from video servers on the Internet.

3.5.3 Experimental Results

We present our experimental results to evaluate the effectiveness and overhead of APPD

as follows.

Effectiveness in Verifying Service Chain Integrity. Table 3.1 demonstrates the effective-

ness of APPD through six different scenarios (including different attacks such as bypass,

drop, injection, as well as normal behavior at different VNFs) where APPD could correctly

32

detect all existing breaches. We emulate the attacks by modifying the flow rules of the SDN

switches. This table reports the results corresponding to the first two VNFs. The first VNF

is shown to demonstrate cluster-based verification, whereas the second VNF illustrates

throughput-based verification. Any remaining VNFs in the service chain can perform in-

tegrity verification in the same way (i.e., throughput-based) as the second VNF; however,

we do not report their result for the sake of brevity. In the following, we explain the sce-

narios listed in Table 3.1. In these scenarios, the tenant is sending traffic at a throughput

λ = 500Mbps at the time of verification, capacity C = 1Gbps, and δT = 60Mbps. APPD

is running on each VNF of the service chain FW-IDS-...-VNF N that is receiving the

tenants’ traffic. The first three scenarios are for the first VNF (i.e., FW) whereas the last

three scenarios are for the second VNF (i.e., IDS).

• First scenario: The actual throughput received at FW is TV NF = 500Mbps. Two

rounds of probe requests are sent from FW, the first having response throughput

TP1 = C − TV NF − δT = 440Mbps and the second having response throughput

TP2 = C − TV NF = 500Mbps. Now, since λ = 500Mbps, at TP1 = 440Mbps the

clustering algorithm doesn’t find any clusters in the IPD values, as shown in Fig. 3.8b

resulting in NC1 = 0. However, at TP2 = 500Mbps, two clusters are found as shown

in Fig. 3.8d, giving NC2 = 2. Since NC1 = 0 and NC2 > 0, at the verification phase

(using cluster-based verification) it is confirmed that the scenario is Normal and the

estimated incoming throughput (λ′) is calculated to be C − TV NF = 500Mbps.

• Second scenario: Traffic is bypassing/dropping FW and the actual throughput re-

ceived at FW is TV NF = 400Mbps. Then, first probe requests are sent having re-

sponse throughput TP1 = C − TV NF − δT = 540Mbps and the clustering algorithm

finds two clusters. Since NC1 > 0, Bypass/Drop is detected.

• Third scenario: Similar to above.

33

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(a) Probe Throughput: 400Mbps

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(b) Probe Throughput: 440Mbps

0 10000 20000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(c) Probe Throughput: 450Mbps

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(d) Probe Throughput: 500Mbps

Figure 3.8: Applying DBSCAN clustering algorithm on inter-packet delay (IPD); Noise
(), Cluster 1 (), Cluster 2 ()

• Fourth scenario: Received throughput is TV NF = 400Mbps. IDS is updated by FW

that λ′ = 500Mbps and dropped traffic by FW throughput is TD = 100Mbps. So, the

IDS calculates its expected traffic throughput E = 400Mbps. Since TE − TV NF =

0 ≤ 60, the scenario is detected as Normal.

• Fifth and sixth scenarios: Similar to fourth scenario.

Effectiveness of Probing and IPD Clustering. In Fig. 3.8, we demonstrate the IPD

clustering results for different probe throughputs in a Normal scenario (i.e., no integrity

breaches). Here the tenants’ last-mile link capacity and throughput are 1Gbps and 500Mbps,

respectively. For lower probing throughputs: 400Mbps (Fig. 3.8a) and 440Mbps (Fig. 3.8b)

34

0.00

0.01

0.02

0.03

0.04

0.05

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0

0
0

P
ac

k
et

 l
o

ss
 (

%
)

Probe Throughput (Mbps)

(a) Packet loss

0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.014
0.014
0.014

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Ji
tt

er
 (

m
s)

Probe Throughput (Mbps)

(b) Jitter

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

1
0

0

2
0

0

3
0
0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0
0
0O
u

t-
o
f-

o
rd

er
 p

ac
k

et
s

(%
)

Probe Throughput (Mbps)

(c) Out-of-order packets

Figure 3.9: Measuring APPD overhead in terms of network performance metric (packet
loss, jitter, out-of-order packets)

no cluster is formed, and for higher probing throughputs: 450Mbps (Fig. 3.8c) and 500Mbps

(Fig. 3.8d) two clusters (as indicated in orange and green) are formed. Here the transi-

tion from no clusters to two clusters happens between probing throughput 440Mbps and

probing throughput 450Mbps. Therefore, APPD expects no clusters in a Normal scenario

for its first round of probing (TP1 = 440Mbps), as calculated from Equation 2 in Sec-

tion 3.3. Similarly, APPD expects one or more clusters for its second round of probing

(TP2 = 500Mbps), as calculated from Equation 2 in Section 3.3.

Overhead. We evaluate the overhead of APPD in terms of impact on different network

performance metrics (e.g., packet loss, jitter, and packet reordering). To do so, we measure

these metrics while performing tenant network throughput estimation at different possible

probe rates. To measure these metrics, we capture packets (at both video clients and video

servers) and perform calculations on these packets by identifying the same packets using

Transmission Control Protocol (TCP) sequence numbers. The results of these experiments

are shown in Fig. 3.9 where we can see that there is no correlation between these perfor-

mance metrics and the APPD probe throughput (e.g., packet loss does not show an upward

trend as probe throughput increases). Thus, it is evident that APPD has a negligible impact

on network performance.

Effect of Network Sensitivity. We evaluate the effect of dynamic changes in the network

35

0

50

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
o

rr
ec

tn
es

s
(%

)
Packet Loss (%)

Δ = 50 Δ = 100 Δ = 150 Δ = 200

Figure 3.10: Sensitivity of APPD to packet loss in the network

(e.g., packet loss, delay, and packet reordering) on the ability of APPD to correctly verify

integrity. For this purpose, we utilize the experimental integrity scenario that we created

for verification of effectiveness with varying levels of dynamic changes in the network.

We then observe how many (out of the total six scenarios) are correctly verified by APPD

and calculate a percentage score. We also vary the parameter ∆ to see if it can improve

the percentage of correctly verified scenarios. As we can see in Fig. 3.10, although APPD

can correctly verify integrity under a low packet loss, an increase in packet loss quickly

deteriorates its ability to perform verification correctly. However, by increasing the value

of ∆, APPD can still perform verification correctly under a higher packet loss rate. We do

not show the effect of delay and jitter here as we did not notice any significant effect of

those metrics on the ability of APPD to perform verification correctly.

3.6 Conclusion

This chapter proposed a blackbox approach, namely, APPD, to verify service chain

integrity in NFV without requiring any access to the infrastructure-level data or resources.

Additionally, APPD can verify integrity breaches resulting from a wider range of attacks

in comparison to the existing works. To that end, APPD first created an artificial packet-

pair dispersion among the incoming traffic to NFV using probing packets. Second, APPD

36

estimated tenant network traffic throughput from inter-packet delay that is caused by the

artificial packet-pair dispersion. Finally, APPD verified different types of integrity breaches

by comparing the estimated throughput with the actual traffic throughput observed in any

VNF in a service chain. Experimental results in a real network environment showed that

our approach can effectively verify service chain integrity for a wide range of integrity

breaches and have negligible impact on network performance. As future work, we plan

to automate setting the parameters of the clustering algorithm and further optimize other

parameters of APPD. Furthermore, we plan to perform extensive security analysis and more

experimental evaluations of APPD in future.

37

Chapter 4

Functional Integrity Verification for 5G

Cloud-Native Network Functions

4.1 Introduction

The cloudification of network functions (NFs) in 5G networks is recently empowered

by cloud-native technologies (e.g., containers) to ensure high-speed, cost-efficient, and

large-scale connectivity [77]. However, running these software as Cloud-Native Network

Functions (CNFs), where the NFs share resources (e.g., operating system kernel) with po-

tentially malicious collocated tenants, increase the risk of many threats including code

injection attack that might lead to malicious modifications of the in-memory instructions

of the NFs (a.k.a. breach of functional integrity) at runtime [16],[17]. For instance, such

vulnerabilities have been reported in open-source implementations of 5G core network

software (e.g., Open5GS [78]). Additionally, some reused libraries and software compo-

nents have been shown to be vulnerable to code injection (e.g., Log4j [79] and CVE-2022-

28391 [80]). For example, our scanning of the Open5GS [78] project using Trivy [81],

an open-source security scanner, reveals numerous bugs (1,309 vulnerabilities, where 41

of those vulnerabilities are critical and 317 vulnerabilities are highly severe). Considering

38

the vital role of 5G in various cyber critical infrastructure and their security, tackling ma-

licious code injection and verifying the functional integrity of NFs are very important for

the security of 5G networks.

However, two major approaches (i.e., pre-deployment and post-deployment) to verify-

ing functional integrity are usually insufficient in the context of CNFs in 5G mainly due

to the following reasons: i) Pre-deployment: The verification approaches (e.g., [46, 47])

that are conducted before the deployment of the network functions in the cloud cannot de-

tect the integrity breaches that are caused by the malicious code injected at runtime (i.e.,

after the deployment). (ii) Post-deployment: The verification approaches (e.g., [29, 30])

that are conducted after the deployment of the network functions require infrastructure-

level data (which is usually inaccessible to 5G operator [82]). On the other hand, relying

on an infrastructure-level runtime solution (e.g., using system-call interception) to verify

such functional integrity may add significant latency [31, 32] to the performance sensitiv-

ity of 5G applications. We further illustrate these limitations and our main ideas through a

motivating example as follows.

4.1.1 Motivating Example

The top of Fig. 4.1 illustrates a practical scenario of functional integrity breaches in a

possible 5G core implementation, and the bottom depicts the limitations of existing verifi-

cation solutions.

Functional Integrity Breach. By exploiting the existing vulnerabilities, e.g., Open5GS

PFCP[78], an attacker, e.g., collocated tenant ([16, 17]) can inject code into some NFs.

Particularly, as shown in the figure, the attacker injects malicious code into the in-memory

NF, Access and Mobility Management Function (AMF), to modify its functionality.

Limitations of Existing Solutions. The existing verification approaches could be divided

into two major categories: 1) the bottom left illustrates the pre-deployment approaches and

39

UDMUPF

AMF

UE

In search of a solution

Functional integrity breach in CNFs

AUSF

gNB

NF bugs

- Open5GS PFCP bug

OS bugs

- CVE-2022-28391

Bugs in CNF Software

Library bugs

- Log4Shell SMF

Attacker

(Collocated tenant)

5G Core CNFs

AMF is injected with ransomware!

Pre-deployment

Attack happens later at runtime

AMF AMF AMF

Signature-based

(e.g., byte sequence)

Zero-day attack

Runtime (post-deployment)

How can the 5G operator practically

verify functional integrity?

AMF codeAttack signature

Unknown!

=?

5G Operator

(Cloud tenant)

AMF System (SYS) call sequence:

Normal: SYS1, SYS7, SYS8, …

Current: SYS1, SYS3, SYS7, SYS8, …

Infrastructure-level Data

Requiring SYS calls

Behavior-based

(e.g., System calls)

010010

$Increased cost

and overhead

Deployment Runtime

Figure 4.1: An example of functional integrity breach in a possible CNF implementation
of 5G core (top) and limitations of existing solutions (bottom)

2) the bottom right depicts the post-deployment approaches. A pre-deployment approach

verifies the integrity of AMF before deployment either at the operator level or at the cloud

provider level. Therefore, such an approach cannot detect this integrity breach where AMF

is modified at the runtime. On the other hand, a post-deployment approach performs either

signature-based or behavior-based verification. Signature-based verification (e.g., [83])

relies on the attack signature of the malicious code snippet and checks the binary code of

AMF to find a match. On the other hand, behavior-based verification matches the current

system call sequence [45] against the normal sequence of system calls to identify that

SYS3 is a mismatch and causing the integrity breach in AMF. However, this verification

method requires access to the infrastructure-level data which makes the approach costly

(due to the instrumentation) and inefficient (due to the frequent system-level interception).

Moreover, the adoption of CNF limits the capacity of 5G operators in accessing provider-

level data [82], and hence these post-deployment approaches also become infeasible for the

5G operator.

40

Time-series

outlier detection

Idea 1: Identify potential integrity breaches using

time-series analysis of performance metrics

Idea 2: Filter out noises caused by Cloud

Dynamicity via multi-CNF comparison

Integrity breach in

AMF is detected!

Functional integrity

breach?

Workload fluctuation

Infrastructure changes

Cloud Dynamicity?

Hyperscale Cloud

Provider (HCP)
Memory

Utilization

CPU

Utilization
Available Performance

Metrics

Cloud Container Service

UDM

AMF AUSF

SMF
AMF

UDM

AMF

Figure 4.2: The main ideas of 5GFIVer

4.1.2 Main Ideas and Contributions

To overcome those limitations in the existing solutions, our main ideas (Fig. 4.2) are as

follows.

Idea 1: Performance Metric as a Side-channel. As depicted in the middle of Fig. 4.2,

our first idea is inspired by the fact that any change in software functionality (i.e., caused by

injected code) may affect the resource (e.g., CPU, memory, power, etc.) consumption [84]

in a distinctive way. Particularly, our idea is to perform a time-series analysis of the avail-

able performance metrics (e.g., CPU and memory utilization of each container) to identify

outliers. The key advantages of this idea are: 1) our approach makes the decision based

on the available performance metrics (e.g., CPU and memory utilization of AMF, UDM,

AUSF, SMF as shown in Fig. 4.2), and hence, does not need any access to the infrastructure

level data, 2) these performance metrics are made available by public cloud providers (e.g.,

Amazon AWS, Microsoft Azure, IBM cloud, etc.) for billing purposes [85], and hence, our

proposed approach does not require any instrumentation (i.e., no modification of 5G core

NF) to collect data, and 3) the implementation of time-series analysis in detecting outliers

provides us the opportunity to detect breaches at runtime. A key challenge here is that,

apart from the attacks mentioned earlier, the dynamic behavior of the cloud infrastructure

(e.g., workload variation, infrastructural changes, etc.) may also affect CPU and memory

consumption. Therefore, relying only on Idea 1 would result in false-positive decisions;

41

which motivates us to propose our second idea to address such concerns.

Idea 2: Multi-CNF Correlation. Our second idea is to correlate the findings of time-series

analysis of the containers whose resource consumptions are correlated with each other (de-

tailed in Section 4.2) in order to verify the decisions made by Idea 1. The containers of

the 5G core NFs are considered correlated with each other when they tend to respond in

a similar way to any legitimate changes in their performance metrics (e.g., due to under-

lying infrastructure change or workload fluctuation). Therefore, the first step of Idea 2 is

to identify the correlated containers and then to implement a time-series analysis for each

container to identify respective outliers. If an outlier is identified for a particular container,

we correlate this finding with its correlated containers which are expected to show similar

outliers, while for the attack, only the infected container may show an outlier. Conse-

quently, Idea 2 can potentially help to reduce false positives while keeping all advantages

of Idea 1. We will elaborate on these ideas in Section 4.3.

Main Contributions. The main contributions of this work are:

• We propose an operator-oriented black-box approach to verify functional integrity in

5G core implementation without relying on the provider-level data.

• To improve the accuracy and minimize the false positives, we implement time-series

analysis on the available performance metrics (e.g., memory and CPU consumption

by each container) to detect outliers and verify whether those are due to attacks or

not, through the correlation between containers.

• Our proposed approach does not require any instrumentation to collect required data,

i.e., no change is required to the 5G core during the data collection process. This

makes our solution more deployable and practical.

• We implement our solution and integrate it with Open5GS [86], a popular open-

source 5G core implementation, under our testbed, and our experimental evaluation

42

shows the robustness of our solution.

The rest of this chapter is organized as follows. Section 4.2 provides the background

on 5G NFs and defines our threat model. Section 4.3 describes the proposed solution. Sec-

tion 4.4 presents our implementation details along with the experimental results. Finally,

Section 4.6 concludes the chapter.

4.2 Preliminaries

This section discusses 5G core cloudification, describes the correlation among the con-

tainers, and then defines our threat model and assumptions.

Cloudification of 5G Core. 5G core is an essential component of 5G networks that orches-

trates various services such as authentication, authorization, session management, routing

and switching, data and policy management, and maintaining connectivity with the client.

These functionalities are completely virtualized on the cloud deployment and are called

CNFs. As shown in Fig. 4.3, the 5G core is composed of a plethora of CNFs including

but not limited to Access and Mobility Management Function (AMF), User Plane Function

(UPF), Session Management Function (SMF), and Unified Data Management (UDM). All

of these functions serve diverse roles, say, AMF is responsible for letting user equipment

(UE), e.g., mobile phones, connect to the core network. 5G core can function only when

these CNFs interact. As a result of this interaction, as shown in Fig. 4.4a, a new task in

one CNF (e.g., processing Initial UE Message in AMF) also leads to a new task for another

UE gNB

AMF UPF

SMF

AUSFUDM

DN

Figure 4.3: An excerpt of 5G topology [1]

43

gNB AMF UDM

1: Initial UE Message

.

.

.
15: AMF

registration with

UDM
.
.
.

(a) An example of AMF
call flow in 5G [87]

0

5

10

15

20

25

30

35

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (Minutes)

AMF

UDM

(b) CPU utilization of AMF and UDM

Figure 4.4: An example of a metric (CPU utilization), that shows to be highly correlated
for AMF and UDM.

CNF (e.g., AMF registration for UDM). Since certain CNFs share the related responsibility,

it is likely that their performance metrics may also be correlated (discussed below).

The Correlation Among 5G CNFs. Our experiments indicate that performance metrics

(e.g., CPU and memory utilization) of certain CNFs (e.g., AMF) show a strong correlation

with other specific CNFs (e.g., UDM). For example, as shown in Fig. 4.4b, CPU utilization

of AMF (shown in solid green) shows a similar pattern as CPU utilization of UDM (shown

in dashed purple).

Another way to interpret the above phenomenon is that any “unusual” behavior shown

in the performance metrics due to the cloud dynamicity (e.g., change in workload or under-

lying infrastructure) is likely to affect multiple CNFs instead of only one (i.e., it will affect

all the CNFs that are correlated). We can leverage this observation to search for evidence of

cloud dynamicity and thus filter them out to avoid false positives. Although the correlation

in Fig. 4.4b is easy to visually identify in this particular case, it may not be the case in the

presence of many CNFs and a large volume of data. To this end, we use correlation analysis

to identify highly correlated CNFs, which will be detailed in Section 4.3.

Threat Model and Assumptions. This work considers integrity breaches of containerized

network functions (CNFs) caused by a code injected into the CNF by exploiting vulnera-

bilities [88, 89] in: (i) CNF software (e.g., Open5GS PFCP bug [78]), (ii) libraries used

44

by the CNF (e.g., Log4j [79]), or (iii) underlying host operating systems(e.g., CVE-2022-

28391 [80]). This code injection happens at runtime in-memory after the CNF is loaded

from its image and does not modify the latter. Once compromised, the CNF cannot be

trusted any longer (e.g., for collecting logs via SSH) because it may be under the control

of the attacker. In addition, the code injection may be either (i) transient: when the code

modification is not permanent and only lasts for the duration of the processing of the cur-

rent packet/request, or (ii) permanent: when the code modification is permanent and lasts

even after the packet/request is completed/processed. We assume that as the vulnerabilities

in each CNF are unique, it will be difficult for the attacker to compromise all the CNFs that

are correlated with each other. We do not assume that the attack signature is known (i.e.,

possibly for a zero-day attack). Also, we do not assume that the tenant has access to the

underlying infrastructure to collect information (e.g., logs) apart from what is commonly

available to users of cloud container services. On the other hand, the out-of-scope threats

for this chapter include verifying integrity breaches due to those attacks that: i) compro-

mise all CNFs, ii) similarly affect the correlated CNFs, and iii) do not have much impact

on CPU/memory consumption, which will be considered in our future work.

4.3 Functional Integrity Verification for 5G

This section presents the methodology of 5GFIVer in detail.

4.3.1 Approach Overview

Fig. 4.5 shows an overview of 5GFIVer, which contains two stages. First, in Stage 1,

5GFIVer performs a time series analysis of the performance metrics (e.g., CPU, memory,

etc.) to detect the outliers as an indication of potential attacks. Specifically, in this stage,

5GFIVer first collects and processes the available performance metrics for each container.

45

Then, it deploys an unsupervised learning technique (e.g., level shift detection [90]) to

perform a time series analysis of the collected data to detect outliers for each container

(e.g., AMF). In Stage 2, 5GFIVer filters out the outliers caused by the cloud dynamicity

to identify integrity breaches. Specifically, in this stage, 5GFIVer eliminates false-positive

decisions made in Stage 1 by using the correlated behavior among multiple CNFs (e.g.,

UDM is correlated with AMF) and then identifies integrity breaches accordingly. We detail

each stage as follows.

4.3.2 Stage 1: Outliers Detection

This first stage of 5GFIVer performs: (Step 1.1) performance metrics collection, and

(Step 1.2) time series analysis.

Step 1.1: Performance Metrics Collection. This step is to collect available performance

metrics for the CNFs to be analyzed for detecting potential integrity breaches. According

to our investigation, different performance metrics (e.g., CPU or memory utilization) from

different public cloud container services are available to the 5G operator [85]. Our experi-

ments with those available performance metrics show that these metrics are affected by the

Cloud Container and Monitoring Service

Performance Metrics

Collection

Time Series Analysis V
er

if
ic

at
io

n
 R

es
u

lt

Performance metrics

Stage 1

Stage 2

5GFIVer

Spike Detection

Level Shift Detection

Correlation

Matrix Generation

Correlation

Analysis

Offline steps

Pattern Change Detection

Seasonal Detection

Correlated CNF

Analysis and Matching

Integrity Breach

Detection

Multi-CNF Correlation steps

Figure 4.5: A high-level overview of 5GFIVer

46

0 50 100
Time (Minutes)

0

10

20

30

C
PU

 U
til

iz
at

io
n

(%
)

t=20 t=69

t=118

(a) Transient code injection

0 50 100
Time (Minutes)

0

20

40

C
PU

 U
til

iz
at

io
n

(%
)

t=106
t=107
t=108

(b) Permanent code injection

Figure 4.6: 5GFIVer time series analysis; AMF (), UDM (), analysis of AMF (△),
analysis of UDM (×)

code injection attack, and hence can be utilized in our solution to detect such breaches. For

instance, we collect performance metrics (e.g., CPU utilization) periodically (e.g., at every

minute) during the operation of 5GFIVer as shown in Fig. 4.6. Hence, the outcome of this

step can be represented as a stream of timestamp-metric pairs for time t1 to tn as follows:

t1→Mt1 , t2→Mt2 , t3→Mt3 , ..., tn→Mtn .

Step 1.2: Time Series Analysis. This step is to identify outliers in the stream of timestamp-

metric pairs collected in Step 1.1. Fig. 4.5 lists a number of possible types of time series

outlier detection algorithms. In this chapter, we demonstrate two of them to detect two

types of outliers: 1) detecting spikes caused by the transient code injection and 2) detecting

level shift caused by the permanent code injection.

The spike (a.k.a. additive outlier [91]) is a sudden change in the performance metrics

for a short span of time. This can be detected by considering three consecutive disjoint

sliding windows and tracking the difference in the median value between the short central

window and the other two outer windows [91]. For instance, Fig. 4.6 (a) depicts the spikes

as outliers in CPU consumption of AMF at t = 20, t = 69, and t = 118. Hence, the

outcome of this spike detector for each CNF is a set of timestamps: TS(CNF) = {tS1 , tS2 ,

tS3 , ..., tSn}, where tSn indicates the time for a spike Sn.

On the other hand, the level shift [90] indicates a shift in the level of the performance

47

metrics that might occur due to a permanent code injection. To determine this level shift,

we leverage the LevelShiftAD detector from the anomaly detection toolkit by Arundo [92],

which detects a shift in the metrics value level by considering the difference in median value

between two adjacent sliding windows. It needs to be mentioned that LevelShiftAD is not

spike sensitive [92], and hence any spike generated by transient injection is not detected by

this detector. Fig. 4.6 (b) shows that a level shift occurs at t = 106 in the CPU consumption

of AMF, while no shift is found for UDM. The outcome of the level shift detector is another

set of timestamps: TL(CNF) = {tL1 , tL2 , tL3 , ..., tLn}, where tLn indicates the time for a

level shift Ln.

However, the key challenge in outlier detection is that these outliers (i.e., spike or level

shift) can occur either due to code injection or caused by legitimate changes in the cloud

infrastructure. Hence, we verify the detected outliers in Stage 2 to eliminate false positive

decisions.

4.3.3 Stage 2: Integrity Breach Detection

The second stage performs: (Step 2.1) multi-CNF correlation, and (Step 2.2) integrity

breach detection.

Step 2.1: Multi-CNF Correlation. This step (marked in the light purple background in

Fig. 4.5) is to identify outliers (both spikes and level shifts) caused by cloud dynamics but

detected by Stage 1. The inputs to this step are a CNF under verification (e.g., CNF1),

its correlated CNF (e.g., CNF2), and the sets of timestamps for each of these CNFs from

Stage 1. This step consists of (i) conducting an offline process to find which CNF metrics

are correlated with each other, and (ii) conducting an online process to identify outliers

caused by the cloud dynamicity.

The offline process generates a correlation matrix, i.e., the matrix containing the sim-

ilarity in resource consumption patterns of different containers (e.g., AMF, UDM, AUSF,

48

etc.). For instance, Fig. 4.6 shows that the CPU consumption, respectively, of AMF and

UDM have similarities (evaluated in Fig. 4.7a) and hence, these two CNFs are correlated

with each other. Hence, the outcome of this offline process is a matrix containing the infor-

mation regarding the correlated CNFs (e.g., AMF is correlated with UDM or SMF is with

UPF) which will be available to the online process. This outcome enables the next steps,

for any CNF under verification (e.g., CNF1), to know its correlated CNF (e.g., CNF2).

The online process performs correlation to identify the common ones among the de-

tected outliers (in Stage 1) of the correlated CNFs (i.e., CNF1 and CNF2). The outcome of

this step is the number of outliers that are in common in CNF2 and in CNF1, for each type.

As these CNFs have correlated metrics, the outliers in common can be related to cloud dy-

namicity issues as discussed in Section 4.2. Thus, the number outliers in common of type

spike, denoted by NCS
, and the number outliers in common of type level shift, denoted by

NCL
, can be computed as follows:

NCS
= n({TS(CNF1) ∩ TS(CNF2)}) (6)

NCL
= n({TL(CNF1) ∩ TL(CNF2)}) (7)

where n(T) is the number of elements in a set T . For instance, in Fig. 4.6a (it is noteworthy

that 4.6a and 4.6b are from different experiments and we do not show the corresponding

spike detection for 4.6b due to lack of space), three spikes are detected in CPU consumption

of AMF (i.e., CNF1) at t = 20, t = 69, and t = 118, while two spikes are detected for

UDM (i.e., CNF2) at matched timestamps (i.e., at t = 20, and t = 118). The online process

computes that NCS
= 2. Similarly, as no level shift is detected in UDM in Fig. 4.6b, it

computes NCL
= 0.

Step 2.2: Integrity Breach Detection. Using the findings from the previous step, this step

identifies integrity breaches and classifies them (i.e., transient or permanent).

49

The input to this step is the same pair of CNFs as in Step 2.1, the number of their respec-

tive identified outliers, and the number of outliers common between them. Let NCNF1 be

the total number of identified outliers (in Stage 1) for CNF1 computed using the following

equation,

NCNF1 = NCNF1S +NCNF1L (8)

Here, NCNF1S is the number of outliers detected by the spike detector, and NCNF1L is

the number of outliers detected by the level shift detector in CPU utilization of CNF1 (e.g.,

AMF). Now a positive value of NCNF1 indicates a potential integrity breach, whereas, if

NCNF1 is zero, it indicates that there are no integrity breaches. If NCNF1 > 0, we compute

the total number of correlated outliers NC as follows,

NC = NCS
+NCL

(9)

Then we define a parameter ∆ as follows.

∆ = NCNF1 −NC (10)

It should be noted that, according to our assumptions in Section 4.2, NCNF1 ≥ NC and

NC ≥ 0. At this point, a positive value of ∆ indicates that there are integrity breaches in

CNF1, and a zero value of ∆ indicates that there is no integrity breach.

To further classify the type of code injection (i.e., transient or permanent), the value of

spike or level shift can be consulted. Specifically, if ∆ > 0, the code is injected in CNF1.

Now to classify the injected code, NCNF1S and NCNF1L can be utilized. Since transient and

permanent code injections are exclusive in our threat model, a positive value of NCNF1S

indicates transient code injection. On the other hand, if NCNF1L is positive, it indicates

50

permanent code injection.

Code Injection =

⎧⎪⎪⎨⎪⎪⎩
Transient, if NCNF1S > 0

Permanent, if NCNF1L > 0

For instance, from Fig. 4.6b, we can see that the total number (both spikes and level

shifts) of outliers in CNF1 (i.e., AMF) is NCNF1 = 3, while for the correlated CNF2 (i.e.,

UDM), NC = 0. Hence, we have a value of ∆ = 3 and this indicates that there is an

integrity breach in AMF. On the other hand, since NCNF1L = 3 > 0, the breach is caused

by a permanent injection in AMF.

4.4 Implementation

This section presents the implementation details and experimental evaluation of 5GFIVer.

We implement 5GFIVer as a Linux service using systemd [66] running on a virtual ma-

chine (Ubuntu 20.04 server). We use a VM-based deployment as it is easier to port to

any server. However, 5GFIVer can also be deployed on any other platform (e.g., bare-

metal or containers) following a similar architecture as described in this section. 5GFIVer

should continuously run where it is deployed (e.g., container, VM, bare-metal) to perform

its verification. It uses different open-source libraries (e.g., Python library ADTK [93] is

used to implement the Level Shift Detector) as well as scripts developed by us in Python.

The performance metrics collector invokes a script to collect performance metrics from the

underlying cloud service which is specific to the monitoring service (e.g., Amazon Cloud-

Watch, Google Cloud Metrics, Azure Monitor, or Prometheus) and prepares input for the

time-series outlier detector in it’s required format. Communication between different com-

ponents and modules is done using a database. We use MongoDB [94], an open-source

NoSQL database engine, to implement the database.

51

We extended the Anomaly Detection Toolkit (ADTK) [93] to develop our spike de-

tector, called SpikeAD, which detects spikes by tracking the difference between median

values at the central and the other two outer windows of three sliding time windows next to

each other. Thus, SpikeAD can detect spikes while ignoring level shifts.

4.5 Experiments

This section presents our experimental results.

4.5.1 Overview of Experiments

As 5GFIVer is the first side-channel based solution to verify the functional integrity

of CNFs, we could not perform a quantitative comparison between our solution and other

existing approaches (as there exist none). It is also infeasible to perform a quantitative

comparison between 5GFIVer and our previous solution, APPD, because they solve two

orthogonal problems (i.e., functional and forwarding integrity verification) to achieve the

common goal of securing virtualized networks. Instead, we evaluate 5GFIVer in terms of

its effectiveness (e.g., to find correlated CNFs and appropriate features), the accuracy of its

time series algorithms, and the effect of cloud dynamicity on its overall accuracy.

4.5.2 Experimental Settings

We adopt Open5GS-2.4.8 [86], which is a popular open-source implementation of the

5G core network, to create images of the CNFs for the 5G core. We used UERANSIM [95]

to emulate the Radio Access Network (RAN) and user equipment (UE). We emulate up to

10,000 UEs in our experiments. We limit the allowed CPU cores (between 1 and 8) and

memory (512 MB) for each CNF. To investigate the behavior of CNFs in terms of consum-

ing the resources from the cloud, we deployed containers on Amazon Elastic Container

52

am
f

ud
m

au
sf pc
f

sm
f

ud
r

up
f

bs
f

amf
udm
ausf
pcf
smf
udr
upf
bsf

0.2

0.4

0.6

0.8

1.0

(a) Correlation (CPU utilization)

am
f

ud
m

au
sf pc
f

sm
f

ud
r

up
f

bs
f

amf
udm
ausf
pcf
smf
udr
upf
bsf

0.2

0.4

0.6

0.8

1.0

(b) Correlaton (Memory utilization)

Figure 4.7: Heatmaps showing correlation in CPU and memory utilization of different
CNFs (blank cells mean no correlation)

AMF UDM UPF SMF
0

5

10

Va
ria

nc
e

CPU Utilization
Memory Utilization

(a) Variance

AMF UDM UPF SMF

1

2

3

4
M

ea
n

CPU Utilization
Memory Utilization

(b) Mean

Figure 4.8: The variance and mean of CPU and memory utilization in different CNFs

Services (ECS) [19]. We then collected performance metrics for our deployed containers

from Amazon CloudWatch [96] metric monitoring service.

4.5.3 Experimental Results

This section presents the experimental results to evaluate the effectiveness of 5GFIVer.

Metrics Selection and Multi-CNF Correlation. These sets of experiments identify the

correlated behavior among different CNFs and the effectiveness of performance metrics

in detecting code injection attacks. The heatmaps in Fig. 4.7 demonstrate the correlation

53

(a) Impact of window sizes on accuracy (b) Impact of factors on accuracy

Figure 4.9: Accuracy of time series algorithms for different hyperparameter value settings

(a) Impact of infrastructure dynamicity (b) Impact of workload variation

Figure 4.10: Impact of cloud dynamicity on the accuracy of verification on AMF for dif-
ferent correlated CNFs; Stage 1 (without multi-CNF correlation), Stage 2 (with multi-CNF
correlation)

among multiple CNFs in terms of consuming CPU and memory. Fig. 4.7a) depicts that

CPU utilization of some CNFs is highly correlated (the darker the shade, the higher the

co-relation) with that of some other CNFs (e.g., AMF and UDM are correlated with each

other), while, Fig. 4.7b) shows the correlation for Memory utilization. Hence, to verify the

outliers (i.e., due to attack or cloud dynamicity) found in AMF, we can utilize its correlation

with UDM.

On the other hand, Fig. 4.8 shows the variance and mean of CPU and Memory uti-

lization for different CNFs. Although the variance (Fig. 4.8a) of the CPU utilization is

54

quite high for the different CNFs, the variance of memory utilization is very low (indicat-

ing a lack of useful information [97]). Hence, to attain a higher entropy, we select CPU

utilization throughout the rest of our experiments. However, memory utilization of other

performance metrics can also be used for this purpose.

Accuracy of Detectors. The detection accuracy is highly dependent on the adopted detec-

tion algorithms and their parameter selection. Fig. 4.9 shows the effectiveness of detecting

outliers using time series analysis algorithms (as mentioned in Section 4.3.2) for different

hyper-parameters (i.e., window size and factor value) [92]. As shown in Fig. 4.9a, the level

shift detector (i.e., LevelShiftAD) is most effective when window size is between 4 and

11, as indicated by the accuracy of 1.0. Similarly, Fig. 4.9a, and Fig. 4.9b show the effec-

tiveness of detection when the hyper-parameters of the detection algorithms are configured

correctly. Hence, by tuning these parameters, we can achieve higher accuracy in outlier

detection.

Effect of CPU Sensitivity on the Accuracy of Verification. We investigate the impact

of cloud dynamicity, i.e., the sensitivity of our solution to changes in the infrastructure

(Fig. 4.10a) and workload variation (Fig. 4.10b) in our verification accuracy and highlight

the importance of the Stage 2 verification. To that end, we simulate an increasing level of

cloud dynamicity by incrementing the number (by 0% to 40%) of occurrences of fluctua-

tions in the performance metrics of the CNFs caused by cloud dynamicity. On the other

hand, we vary the workload dynamicity by increasing the number of UEs (from 1K to

10K). Finally, we intend to detect the breaches in AMF for four different scenarios: 1)

implementing Stage 1 only (i.e., no verification from Stage 2), 2) considering UDM (i.e.,

strongly correlated with AMF) as the correlated CNF in Stage 2, 3) considering AUSF (i.e.,

weakly correlated with AMF) as the correlated CNF in Stage 2, and 4) considering UPF

(i.e., very weakly correlated with AMF) as the correlated CNF in Stage 2.

Fig. 4.10a illustrates that the accuracy of Stage 1 (i.e., without verifying by Stage 2)

55

Table 4.1: Performance profile of 5GFIVer on a lightweight Amazon EC2 virtual machine
(VM) of type t2.medium (i.e., two vCPUs and 4 GB memory)

Performance measure Average Min Max
Execution time for each iteration 1.2s 0.7s 2s

CPU utilization during each iteration 31% 11.0% 52%

Memory utilization during each iteration 1.1% 0.7% 4.0%

decreases with an increased value of dynamicity, while this decreasing trend is almost linear

with the increased workload. Then to improve the performance (i.e., eliminate false positive

decisions due to cloud dynamicity/workload), we implement Stage 2 for three correlated

CNFs and find that the accuracy can be regained high when the considered CNF (i.e.,

UDM) has a strong correlation with the AMF. On the other hand, considering UPF as the

correlated CNF cannot make any significant improvement due to its very weak correlation

with AMF.

Overhead Evaluation. We examine the added overhead by 5GFIVer to evaluate its effi-

ciency. To that end, we deploy 5GFIVer on a lightweight Amazon EC2 virtual machine

(VM) of type t2.medium and observe its performance profile. We list the average value

along with the observed maximum and minimum values of various parameters (e.g., re-

quired time, CPU, and memory consumption) of the performance profile in Table 4.1 which

shows that 5GFIVer is very fast to detect the breaches (e.g., it takes only 1.2s in average

to complete an iteration) while adding a negligible amount of CPU and memory overhead

(e.g., CPU utilization of 31% and memory utilization of 1.1% on average).

4.6 Conclusion

This chapter proposed an operator-oriented, lightweight side-channel-based black-box

approach, namely, 5GFIVer, to verify the functional integrity of CNFs without relying on

56

any underlying cloud infrastructure data. To that end, 5GFIVer first analyzed performance

metrics available to the 5G operators to detect outliers that may contain many false positives

due to the dynamic behavior of clouds or noises. To filter out the false positives, 5GFIVer

then verified service chain integrity by correlating the outliers with the outliers found in

other correlated CNFs. We integrated 5GFIVer with a popular open-source 5G core im-

plementation (Open5GS [86]), under our testbed and the experimental results showed that

our approach can effectively verify functional integrity by adding a negligible overhead. In

the future, we plan to extend our approach for performing verification when the integrity

of multiple CNFs can be breached, ensemble the findings from multiple detection algo-

rithms to attain more accuracy, and further optimize other parameters of 5GFIVer. Further-

more, we plan to perform extensive security analysis and more experimental evaluations of

5GFIVer to show its effectiveness in other 5G core implementations in the future.

57

Chapter 5

Continuous Forwarding Integrity

Verification of Virtualized Service

Chains Using Side-Channel

5.1 Introduction

Virtualized service chains allow automated rerouting of data traffic through one or more

virtual network functions (VNF), such as firewall, Intrusion Detection System (IDS), and

Deep Packet Inspection (DPI) over a third-party cloud infrastructure. This allows network

service providers (i.e., NFV tenants) to leverage the benefits of NFV (e.g., greater flexibility

and cost efficiency) without having to deploy and manage their own infrastructures [56,

57, 58]. However, this virtualization also comes along with the threat of various possible

forwarding integrity breaches of network services (e.g., VNF bypassing, packet dropping,

fake packet injection) [20, 21, 15, 22]. Such integrity breaches are mainly reported to be

caused by misconfigured (e.g., [59]) or compromised (e.g., [60, 61, 62]) components (e.g.,

SDN switches) of the underlying third-party cloud infrastructure. Due to the critical nature

58

of network services, leaving even a short window for the attackers to go undetected may

lead to various security and privacy issues [15]. Therefore, it is extremely important for

the service providers to be able to continuously ensure that services are forwarding traffic

exactly as intended without suffering from the aforementioned security concerns.

On the other hand, network service providers typically do not have access to the infras-

tructure owned by third-party providers. Which makes it difficult to directly observe such

infrastructure to ensure the integrity of network services. Therefore, an interesting research

challenge is to enable the continuous verification of service chain integrity for NFV tenants

without requiring access to infrastructure-level resources or data.

Most existing efforts (e.g., [13, 14, 63, 20, 21, 15, 22]) fail to fulfill this need. Specif-

ically, some existing works (e.g., [13, 14, 63]) rely on third-party infrastructure-level data

(e.g., flow rules and flow statistics in SDN switches) to verify virtualized service chain

integrity. Other existing works (e.g., [20, 21, 15, 22]) can avoid the need for third-party

infrastructure-level data by using a cryptographic tagging mechanism at the VNF level.

Nonetheless, those works require either (1) modifications (such as reprogramming the

firmware) to infrastructure-level devices (e.g., SDN controller), which may not be prac-

tical with third-party providers, or, (2) inefficient detour of traffic to and from NFV ten-

ants’ premise. Moreover, those works are not designed to detect all types of integrity

breaches (e.g., bypassing the last VNF, or all VNFs, in the service chain). To the best

of our knowledge, there does not exist a blackbox approach (where tenant-level data along

with the available side-channel data would be sufficient to continuously verify service chain

integrity).

In this chapter, we bridge this gap and propose a blackbox approach, to allow NFV ten-

ants to continuously verify virtualized service chain integrity without requiring any third-

party infrastructure-level data. Our key ideas are twofold, firstly, as packets travel through

the network the inter-packet gap (IPG) will be naturally affected by the switches and thus

59

will generate additional information. So, we can possibly leverage this side-channel infor-

mation of “how” the packets have been affected by the switches. Using the aforementioned

intuition, we first develop a technique to detect inconsistency in packet processing by only

passively observing IPGs. However, due to the noisy nature of the network traffic, relying

on the passive observation-based technique alone may lead to false positives. To that end,

secondly, we use an active probing-based technique that can confirm the occurrences of

inconsistencies. It is to be noted that, the active probing technique is capable of detecting

inconsistencies alone, however, it can do so only at certain intervals, leaving a window

for attacks to go unnoticed. Therefore, we use it only as a second stage after the passive

verification approach, which can perform continuous verification (i.e., without leaving any

significant interval for attacks to go unnoticed). In the following, we describe the above

two stages more specifically.

For the passive approach, we look for events (hereafter referred to as packet swarm)

when several packets arrive at the underlying switch at a rate that the switch is unable to

process. This results in packets leaving the switch at a nearly constant gap. If any packet in

a swarm is dropped by the switch, it can be identified by a larger gap between the packets

received at the VNF.

On the other hand, in the active probing approach, we first send two rounds of probe

packets to carefully attempt to create artificial congestion. We then observe the inter-packet

gap (IPG) of the response packets and use an unsupervised machine learning algorithm (i.e.,

clustering) to detect the actual occurrence of artificial congestion. Finally, our integrity

verification algorithm can confirm a breach of integrity (e.g., VNF bypassing) based on the

combination of the number of clusters detected in both rounds of probing.

We will further elaborate on our motivation and idea through an example in Section 5.2.

In summary, our main contributions are the following:

60

• As per our knowledge, this is the first blackbox approach that can continuously ver-

ify common forwarding integrity breaches (e.g., bypassing, fake packet injection,

and packet dropping) in virtualized service chains without requiring any third-party

infrastructure-level data.

• We are the first to introduce a novel hybrid method combining a passive observation

and an active probing technique to detect common forwarding integrity breaches.

• As a proof of concept, we integrate the solution with OpenStack/Tacker, a popular

choice for virtualized network service deployment, and, through extensive experi-

ments in a real network environment, we demonstrate both effectiveness and effi-

ciency (i.e., negligible overhead) of our solution.

The remainder of this chapter is organized as follows. Section 5.2 provides preliminar-

ies. Section 5.3 presents the overview of our solution which we call Side-Channel-based

Sanity Checking of Service Chains, or in short (SC)3. Section 5.4 provides the detailed

methodology of the passive observation-based technique. Section 5.5 discusses the active

probing-based approach. Section 5.6 provides the theoretical security and performance

analysis of (SC)3. Section 5.7 describes the implementation details of (SC)3. Section 5.8

presents our obtained experimental results. Finally, Section 5.9 concludes the chapter.

5.2 Preliminaries

In the following, we first present a motivating example. Then we define our threat

model and assumptions.

61

Figure 5.1: An example of integrity breaches in NFV

5.2.1 Motivating Example

The left of Fig. 5.1 depicts a simplified NFV deployment, with different integrity

breaches (indicated by the red dashed lines). The right of Fig. 5.1 illustrates the neces-

sity of continuous verification and the challenge for a black-box solution.

NFV Deployment. The left part of Fig. 5.1 shows an example of an NFV environment

where VNFs are running on a third-party cloud provider’s infrastructure. As shown in blue

dashed lines, the incoming traffic is planned to pass through the service chain consisting of

several VNFs, such as Firewall (FW), Intrusion Detection System (IDS), and Deep Packet

Inspection (DPI) as well as their underlying cloud infrastructure (i.e., the switches).

Continuous Verification of Integrity Breaches in NFV Service Chains. The bottom-left

part of Fig. 5.1 lists various integrity breaches including injection of fake packets, dropping

legitimate packets, and bypassing one or more VNFs due to misconfigurations (e.g., [59])

by a cheap/lazy provider or attacks by exploiting compromised resources (e.g., [60, 61,

62]). As a result, traffic may follow an entirely different path (as shown in the red lines)

than planned paths. An NFV tenant cannot easily verify such an integrity breach, due to

the limited access to the underlying infrastructure-level data (including the flow rules of the

switches).

The right part of Fig. 5.1 shows the potentially transient nature of these integrity breaches

62

Figure 5.2: The main idea of the passive detection

where an attack can last for only a short duration. For example, in this part of the figure,

we can see that for a duration of 50ms (between 50ms and 100ms in the timeline) there

is (1) less (for Dropping/Bypassing attack) or (2) more (for Injection attack) number of

packets flowing through the VNF layer compared to the number of packets actually pass-

ing the third-party infrastructure layer (i.e., the switches); while for the rest of the time,

the number of packets passing both layers remains same. Thus, performing verification

only occasionally would result in false negatives (e.g., if verification is performed between

0ms and 50ms, no integrity breach will be detected). So, it is desirable that a mechanism

verifying the forwarding integrity is able to detect such a transient breach of integrity (i.e.,

the mechanism must be able to perform continuous verification).

The bottom-right part of Fig. 5.1 highlights the key challenge, How to know if there is

an inconsistency between the number of packets flowing through the different layers without

having access to the third-party infrastructure layer?

63

Figure 5.3: The main ideas of the active probing

5.2.2 Main Idea

Fig. 5.2 and Fig. 5.3 illustrate our main ideas as follows. Our main idea is to leverage

information carried by IPGs (also known as Inter-Packet Delay or IPD) as a side-channel

to detect inconsistencies. However, a single IPG may not always reliably carry information

about underlying forwarding inconsistency. To this end, our first idea is to use a notion that

we call “packet swarm” and works by only passive observation of the packets. Although

the packet swarm-based technique guarantees that it will always detect an inconsistency

(i.e., no false negative), it cannot guarantee that the detected event is indeed an inconsis-

tency (i.e., may contain false positive). To this end, our second idea is to use an active

probing approach to confirm that the detected event by the passive technique is indeed an

inconsistency (i.e., to eliminate false positives). We discuss these ideas in more detail in

the following.

Idea 1: Packet Gap Sandwich. We propose a novel system, namely packet gap sandwich

(PGS), that encapsulates several packets between a pair of packets. Each of these packets

may come from different ingress ports of the router whose egress port is connected to the

64

NFV upstream. When these packets reach the destination, the final gap between the outer-

most pair of packets will depend on the number of packets inside the sandwich. Middlebox

Bypass, packet drop, or fake generated packets can then be detected by comparing the es-

timated number of packets inside the sandwich with the actual number of packets received

inside it.

In the following, we draw an analogy between our approach and a coffee shop to make

it easy to understand. As shown at the top of Fig. 5.2, a coffee vendor can serve one

coffee per minute. If any customer comes while the previous customer is still being served,

then the new customer will have to wait. In order to make it easy to track which customer

came first, the coffee shop employs a system where each customer is assigned a token

as they arrive. After collecting tokens, the customers will wait in a queue. The coffee

vendor will then serve each customer in their order of arrival. Now, suppose, three cus-

tomers, Customer1, Customer2 and Customer3 (we avoided labeling these in the figure for

the sake of simplicity) arrived within the same minute and assigned tokens Token1, Token2

and Token3. Each token has a timestamp that records the arrival time of the respective cus-

tomer. Now, clearly, the timestamps as given in the tokens will fall within 1 minute. In

other words, the difference between the arrival time of Customer1 and the arrival time of

Customer3 will be less than 1 minute. That is,

Timestamp(Customer3)− Timestamp(Customer1) < 1min (11)

As these three customers are served and leave the coffee shop their exit time, Exittime1,

Exittime2, Exittime3 is monitored. Clearly, the difference between exit time between Customer1

and Customer3 will be 3 min, because it takes 1 minute to serve each customer. The fact

that Equation 11 is satisfied, makes these three customers a valid sample for our approach

and the fact that there is one customer between Customer1 and Customer3 can be estimated

by the Exittime3-Exittime1. Now, if at the exit, we see only Customer1 and Customer3, we

65

can still estimate that there was one customer between Customer1 and Customer3 who is

missing.

In reality, we do not even have access to the arrival timestamps and therefore we further

modify our above idea to eliminate any need for knowing the input timestamp. This will

be detailed in our methodology in Section 5.3.

Idea 2: Lightweight Active Probing to Fathom Actual Traffic Level. Our second idea

is to fathom the actual traffic level at the underlying third-party cloud infrastructure by

a lightweight and efficient active probing technique. To that end, we extend the concept

of Packet-Pair Dispersion (PPD) [34], where the inter-packet delay between packets can

create a specific pattern indicating momentary congestion. Particularly, the concept of PPD

indicates that if two packets are transmitted at a rate that can cause congestion in a link, then

this will lead to a specific inter-packet delay (IPD) between these two packets irrespective

of their original input latency. Conversely, from observing the IPD, it is possible to infer

congestion in the network.

By leveraging the above phenomenon, as shown in Fig. 5.3, our second idea is to design

different probe throughputs from observed traffic throughput at the virtualized network

functions to artificially create momentary congestion. By observing the effect on IPD

while the probes are flowing through the network we can fathom whether the amount of

traffic received at the virtualized network functions is the actual amount of traffic at the

underlying third-party infrastructure.

Section 5.3 will further elaborate on these ideas.

5.2.3 Threat Model and Assumptions

This chapter considers integrity breaches of virtualized network service chains that may

be caused when (i) any of the underlying forwarding devices (e.g., SDN switches [60, 61,

62]) are compromised by a malicious attacker, or (ii) the underlying forwarding devices are

66

misconfigured (intentionally or by mistake) by a cheap-and-lazy cloud provider [59].

We consider a more challenging threat model in comparison to existing works (e.g., [20,

21, 15, 22]) by including a wide range of attack scenarios as follows. (i) Transient attack:

Inconsistencies may happen for only a short period of time (e.g., an attacker may quickly

add and then remove a flow entry, or an erroneous flow rule may be hit by a flow of short

duration). Security mechanisms must detect the attack within such a short period of time.

(ii) VNF bypassing: Compromised or misconfigured switches may bypass one or more [23]

VNFs (including the possibility of bypassing all the VNFs) in the service chain. (iii) Packet

dropping: Compromised or misconfigured switches may drop packets at any switch (e.g.,

first switch) rather than rerouting through the service chain as planned. (iv) Packet injec-

tion: Attackers may inject fake packets to exhaust resources of the VNFs at any position

(e.g., before the first VNF). (v) Packet replay: Compromised switches may be programmed

to replay packets along the service chain. In particular, attackers can evade detection by

existing tagging-based or statistics-based mechanisms by replaying packets through the en-

tire service chain. (vi) Adaptive attack: Attackers may try to evade detection by launching

attacks only when they cannot be detected (a.k.a., coward attacks [98]). Many of these

possibilities are not addressed by existing works as they are deemed hard [23].

We exclude any attack on VNFs from our threat model in this chapter. Such attacks are

explored in Chapter 4. We also exclude any action by the attacker that is not supported by

SDN switches (e.g., delaying packets) from our threat model.

5.3 Overview and Sanity Check

This section presents our methodology.

67

Figure 5.4: A high-level overview of (SC)3

5.3.1 Overview

Fig. 5.4 shows an overview of our methodology which contains two major stages. Stage

1 performs passive observation-based detection (detailed in Section 5.4), and Stage 2 per-

forms active probing-based verification (detailed in Section 5.5). In Stage 1, (SC)3 first

passively observes side-channel information (i.e., inter-packet delays) to tentatively detect

forwarding integrity breaches. In Stage 2, (SC)3 further confirms the detected forwarding

integrity breach (if detected by Stage 1) by using an active probing technique.

We detail these stages in Section 5.4 and Section 5.5.

5.3.2 Sanity Check

Before proceeding with building on our above ideas, we check the feasibility that (i)

passive observation of inter-packet gap can be used to detect VNF bypassing, packet drop-

ping, and injection, and (ii) active probing can be used to estimate incoming traffic through-

put.

Saturation of Inter-Packet Gap (IPG). As shown in Fig. 5.5, the output inter-packet

68

Figure 5.5: Low input IPG leads to a constant output IPG (packet swarm)

Time

In
te

r-
P

ac
k
et

 D
el

ay
 (

IP
D

)

No clusters without

Artificial Congestion

(a) No artificial congestion

Time

In
te

r-
P

ac
k
et

 D
el

ay
 (

IP
D

)

Cluster formed due to

Artificial Congestion

11.1 μs

(b) Artificial congestion

Figure 5.6: Horizontal Inter-Packet Gap (IPG) clusters are formed due to artificially created
congestion

gap (IPG) between packets becomes constant when the input IPG is sufficiently low (i.e.,

output IPG doesn’t vary as input IPG varies). This shows the feasibility that the constant

IPG can create a pattern to be detected and used as an indicator of a group of packets

having sufficiently low input IPG (i.e., packet swarm). Subsequently, the packet swarm

can be used to detect if any packet has been dropped, bypassed, or injected by inferring the

original number of packets from the IPGs.

Clustering of IPG Under Artificial Congestion. As shown in Fig. 5.6, if we plot IPGs

against time, it may or may not show specific clusters of horizontal shape depending on

whether there is any congestion created in the underlying forwarding links. These clusters

are distinguishable by their high density in the plot as shown in Fig. 5.6b. Although the

cluster in Fig. 5.6b is easy to notice visually in this particular case, the clusters may not

69

be easily detectable manually in general, especially from the large volume of data in real

network traffic. To this end, we leverage the high spatial density of the clusters to find them

even when a large amount of data is involved.

5.4 Passive Observation-based Technique

In this section, we describe our passive observation-based technique. In order for the

technique to be scalable, explainable, and easy to be adjusted by a human analyst, we

divide our approach into two parts: 1) parameter computation and 2) classification using

computed parameters.

5.4.1 Packet Gap Parameter Computation

This step is to compute parameters that will be used by the Packet Gap Classification.

The parameters are as follows: (i) saturation region inter-packet gap, (ii) minimum sat-

urated gaps, and (iii) maximum number of virtually inserted packets. This step runs in

parallel with the Packet Gap Classification step, providing updated parameter values to the

latter to facilitate classification in a dynamic environment.

Saturation Region Inter-packet Gap. The output inter-packet gap (gout) of a switch de-

pends on mainly two values, the input inter-packet gap (gin) and the capacity of the switch

C. As gin decreases, gout continues to decrease until a minimum value of gin beyond which

the former cannot decrease any more. This region is called the saturation region which

occurs when packets arrive at the switch faster than they can process (as mentioned in our

main ideas). Knowing the value of gout at the saturated region (gsout) will allow detection of

the moments when a number of packets had arrived at the switch at a rate faster than it could

process. This indirect way of detecting such moments is required because there is no way

to know the actual arrival time of the packets at the switch. To this end, a naı̈ve approach

70

would be to compute the value of (gsout) by continuously monitoring gout and tracking its

minimum value. However, such a simple technique may fail to adapt to the dynamic cloud

environment. Instead, we track the standard deviation σg of gout in a sliding time window

and update gsout as the median of the time window when δg is within a certain threshold

value.

σg =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

gi − µ2 (12)

gsout =

⎧⎪⎪⎨⎪⎪⎩
g̃, if σg ≤ σth

g

unchanged, otherwise
(13)

Where µ and g̃ are the mean and median respectively for N consecutive samples of gout

that form the time window.

Minimum Saturated Gaps. To reliably detect the moments of packets arriving at a rate

faster than the switch can process, an important parameter is the minimum number of

packets that arrive at such a rate. A value that is too high for this parameter may lead to

too many false negatives while a too low value would lead to too many false positives. To

address these issues, we continue to monitor consecutive packets arriving at an inter-packet

gap of gsout and track the minimum value of their count Nmin
packet that minimizes the number

of false positives. This is done through a feedback process from Stage 2 to Stage 1. Here,

the false positive produced by Stage 1 is calculated using the outcome of Stage 2 as the

ground truth.

Example 6 Suppose, gsout = 1ms, Nmin
packet = 8 and we observe seven packets with 1ms

gap. Then we will update Nmin
packet to 7. On the other hand, if Stage 2 reports a higher false

positive, Nmin
packet will be increased to 8 again.

Maximum Virtual Packets. In the event of a packet drop or bypass, detecting the moments

71

of packets arriving at a rate faster than the switch can process may fail. This is because the

dropping or bypassing will increase the inter-packet gap perceived by the VNF and the

condition of gout = gsout will fail. To overcome this issue, a number of virtual packets

are inserted to compensate for such dropped or bypassed packets. However, inserting too

many virtual packets may lead to false detection. So, this parameter specifies the maximum

number of such virtually inserted packets.

5.4.2 Packet Gap Classification

This step is to detect the moments when a number of packets had arrived at the switch

at a rate faster than it could process using the parameters gsout and Nmin
packet computed in the

previously discussed step. To do so, it continuously monitors inter-packet gaps in incoming

packets and tries to find a consecutive number of packets that satisfy the criteria gout =

gsout and Npacket ≥ Nmin
packet. However, a simple incremental search will fail to find such

consecutive packets if one packet is dropped and the remaining packets do not satisfy the

criterion of Npacket ≥ Nmin
packet. To overcome this issue, when gout = gsout fails before

satisfying Npacket ≥ Nmin
packet it inserts a virtual packet at a gap of gout = gsout.

In case of multiple packet dropping, insertion of a single virtual packet is not enough

to fill the gap created by such dropping. In such case, this step will insert multiple packets

(up to a maximum number specified by N vmax
packet) to fill the gap as follows,

Nvpacket = ⌊gout
gsout

⌋ (14)

Where Nvpacket is the number of virtually inserted packets. In the following, we show

an example of how packet gap classification can detect packet dropping.

Example 7 As shown in Fig. 5.7, gsout = 1ms and Nmin
packet = 4. Now, we observe three

packets (colored green and at the bottom part of the figure) with the following gaps 2ms

72

(a) Normal

(b) Packet Drop

Figure 5.7: An example of packet gap classification to detect packet dropping; NP: No
Packets at saturation gap (insert a virtual packet), DL: Delay is Less than saturation gap
(end of pattern), PA: Packet At Saturation gap (continue adding packets to pattern)

and 1ms. This will not satisfy the criteria of detection. However, if we consider a virtual

packet (as shown with a green dotted border in the figure) after the first packet at a 1ms

gap then we see that it satisfies the criterion of Npacket ≥ 4. Here, the virtually inserted

73

1. Probe Request

L1 L2

L3

L4
2. Probe Response

1000 packets

VNF

Figure 5.8: An example of probe generation

second packet is possibly a packet dropped or bypassed at the underlying switch.

Grid Search for Optimum Parameter Values. To know the optimum values of the param-

eters Nmin
packet and N vmax

packet, we perform a grid search over possible values of these parameters.

To do so, firstly we begin with the first element of the grid (i.e., [0,0]) and observe detec-

tion performance (e.g., false positives and detection rate). Next, we continue to advance in

the grid and note the detection performance for all the elements. Finally, the grid element

yielding the best detection performance is used in classification. This search continues

throughout the lifetime of the verification.

5.5 Active Probing-based Technique

In this section, we describe our active probing-based technique. This stage consists

of the following three steps: (Step 1.1) Dual probing request, (Step 1.2) probing response

capture, and (Step 1.3) clustering.

5.5.1 Dual Probing Request

This step is to create artificial congestion at the incoming link to the switch at the

cloud infrastructure for a very short duration (e.g., 50ms). To do so, (SC)3 generates

74

probing packets. To achieve this, probe request traffic is generated from the VNFs using

a request/response protocol (e.g., HTTP get request, ICMP echo request, etc.) to different

hosts. Thus, when the reply packets reach the ingress link, they will experience artificial

congestion for a very short duration.

Example 8 As shown in Fig. 5.8, the junction (i.e., router) connecting roads (i.e., ingress

links) L1, L2, L3, and the egress link L4 is a router in the cloud infrastructure. Probe

traffic, shown in golden envelopes, is sent to this router as a response to requests sent from

the VNF (specifically from the first VNF in the service chain) through ingress links L1. As

a result of this probe traffic combined with existing traffic all links (e.g., L1, L2, and L3)

artificial congestion is created, and the traffic leaves the link L4 experiencing a clustering

effect in their inter-packet gaps (IPGs).

The probe traffic generation module is designed to ensure there will be artificial con-

gestion to cause the clustering effect on the traffic at the ingress link. To achieve this,

we adjust the probe throughout based on the actual received traffic throughput at the VNF

(which should be the same as the traffic at the ingress link, link L4 in Fig. 5.8, when there

are no integrity breaches) such that the combined throughput of probe traffic and actual traf-

fic will be equal to the ingress link capacity. As a result, the clustering effect will induce

distinguishable patterns in terms of the inter-packet delay, as discussed in Section 5.3.2 and

evaluated in Fig. 5.10. More formally, for ingress link capacity C, probe rate TP , received

traffic throughput TVNF and the ingress link traffic throughput λ, clusters will be found

when TP + λ ≥ C.

Now, considering the ingress link throughput to be equal to the received throughput

(i.e., λ = TVNF), the combined traffic will be equal to ingress link capacity (i.e., TP + λ =

C) when probe throughput is set to,

TP = C − TVNF (15)

75

Sending only one round of probing packets with the throughput calculated above may re-

sult in a false estimation if the ingress link throughput is more than the received traffic

throughput (i.e., in case of fake traffic injection). To avoid this possibility of false estima-

tion, two rounds of probing packets are sent. One at probe throughput TP1 and another at

probe throughput TP2 as given in the following equations,

TP1 = C − TVNF − δT (16)

TP2 = C − TVNF (17)

Here, the parameter δT is a small number that can be configured by the tenant admin.

Computing this parameter automatically by using an efficient binary search approach will

be an interesting future work. The number of clusters generated at probe throughput TP1 is

denoted as NC1 and the number of clusters generated at probe throughput TP2 is denoted

as NC2.

5.5.2 Probing Response Capture

In this step, (SC)3 first collects attributes of each packet (e.g., timestamp, size in bytes,

etc.) by sniffing packets from the network interface, and then calculates IPD values from

the timestamps.

Example 9 As shown in Fig. 5.8, 1,000 probe response packets are generated and received

at the first VNF having timestamps P1→tP1, P2→tP2, P3→tP3, ..., P1000→tP1000. Now, the

packet capture step at the first VNF will output the following to the next module: tP1,

tP2, tP3, ..., tP1000. IPD values will then be calculated as follows: D1 = tP2 − tP1,

D2 = tP3 − tP2, D3 = tP4 − tP3, ..., D999 = tP1000−tP999
.

76

5.5.3 Clustering

This step is mainly responsible for clustering the data points formed by inter-packet

delays paired with corresponding timestamps on each time window. As mentioned in Sec-

tion 5.3.2, inter-packet delay values form clusters of special shape (i.e., horizontal) when

congestion is present in the underlying forwarding links. We use our extended version DB-

SCAN algorithm (for improved performance) as the clustering algorithm and CityBlock

distance metric. The use of the CityBlock distance metric lets us select only those clusters

that are spread horizontally and have a very small height. For a real example of the clusters,

see Fig. 5.10 from our experimental results. After clustering, if at least one cluster is found,

then the formation of artificial congestion is ensured for the current round of probing.

Example 10 As shown in Fig. 5.6b, clustering algorithm on IPD values: D1 = tP2 − tP1,

D2 = tP3 − tP2, D3 = tP4 − tP3, ..., D999 = tP1000−tP999
finds zero clusters for the first

round (i.e., NC1 = 0) and two clusters for the second round (i.e., NC2 > 0). Then artificial

congestion is not confirmed for the first round but confirmed for the second round.

Finally, the following logic is applied to confirm and classify the integrity breach,

Integrity =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Normal, if NC1 = 0 and NC2 > 0

Drop/Bypass, if NC1 > 0

Injection, if NC2 = 0

5.6 Security and Performance Analysis

In this section, we analyze the security guarantee and performance optimizations of

(SC)3.

77

5.6.1 Security Analysis

In the following paragraphs, we analyze the security guarantee of the (SC)3 methodol-

ogy as described in Sections 5.3 - 5.5; where we describe how (SC)3 verifies service chain

integrity. To facilitate our analysis, we consider a service chain consisting of N number of

VNFs whose intended forwarding order is: VNF1, VNF2, ... VNFN ; and a packet swarm,

St, consisting of packets: P1, P2, ..., PN being forwarded via the service chain at time t.

We also consider the possibility of an adaptive attack [98], where an attacker tries to evade

the detection by (SC)3.

VNF Bypassing/Packet Dropping. If packets are bypassing a VNF (e.g., VNF1) or being

dropped, one or more of the packets in St will be missing at VNF1. Those missing packets

will be detected by Stage 1. Subsequently, as VNF1 will be receiving less amount of traffic

than the incoming traffic volume, Stage 2 will detect clusters in both rounds of probing.

Therefore, the integrity breach will be detected by (SC)3.

On the other hand, if packets are bypassing or being dropped from any other VNF (e.g.,

VNF2), its expected value of incoming traffic throughput TE will be greater than the traffic

received by VNF2. Thus, VNF2 will be able to detect if it is being bypassed.

Packet Injection. If packets are being injected into a VNF (e.g., VNF1), there must be

one or more pairs of packets received at VNF1, having an inter-packet gap g < gsout. These

events will be detected by Stage 1. Subsequently, as VNF1 will be receiving more amount

of traffic than the incoming traffic volume, Stage 2 will not detect clusters in any of the two

rounds of probing. Therefore, the integrity breach will be detected by (SC)3.

On the other hand, if packets are being injected into any other VNF (e.g., VNF2), its

expected value of incoming traffic throughput TE will be less than the traffic received by

VNF2. Thus, VNF2 will be able to detect if packets are being injected into itself. Similarly,

the remaining VNFs will also be able to perform packet injection.

Adaptive Attack. We consider the following possibilities that would allow an attacker to

78

evade our detection:

(1) there are no missing packets in any packet swarm when packets are being bypassed

or dropped,

(2) there are no inter-packet gaps of g < gsout when packets are being injected,

(3) there is no cluster detected when clusters should be present, and

(4) there are present clusters when there should be no clusters.

However, the attacker is capable of only modifying flow rules or injecting traffic. Given

these capabilities, it would be impractical for the attacker to modify inter-packet delays

between millions of packets. Thus, the above possibilities are infeasible. Therefore, an

attacker is unlikely to be able to evade our detection.

Network Issues. Due to different network issues packets may be lost, delayed, or out-

of-order. While jitter or out-of-order packets will not affect our probing mechanism as

our clustering algorithm is inherently immune to noise [99], packet loss can affect our

detection. However, in contemporary high-performance networks, packet loss is typically

low and can be accommodated by adjusting the parameter ∆ as follows.

∆ = δ + Lmax ∗ TVNF (18)

In the above, δ is the value of ∆ without considering packet loss, Lmax is the maximum

packet loss rate, and TVNF is the received traffic volume at the VNF.

5.6.2 Performance Optimization

(SC)3 uses clustering to detect congestion. However, finding all the clusters is unnec-

essary for the purpose of detecting congestion. Therefore, we modified our algorithm to

terminate as soon as the first point satisfying the criterion of a core point (i.e., ϵ and minPts)

79

Integrity Verifier

Cluster Detector

Clustering Using

DBSCAN Lite

Configuration

Database (SQLite)

(SC)3 Daemon

R
es

u
lt

 (
e.

g
.,

 N
o

rm
al

,
B

y
p

as
si

n
g

,
et

c.
)

Systemd

Interface

Module Execution

Control

(SC)3

Probe Generator

Probe Request List

Generation

Probe Request List

Execution
Verification Logic

Cloud

Infrastructure

L
in

k
 b

et
w

ee
n
 F

o
rw

ar
d

in
g

D
ev

ic
es

 a
n
d
 t

h
e

V
N

F

Incoming/

Outgoing

NFV Traffic

Packet Collector

Packet Capture Program

(e.g., tcpdump) Invocation

Packet Capture File

Reading Using libpcap

Passive Observer

Parameter

Computation
Classification

Figure 5.9: The architecture of (SC)3

is found. Therefore, although the best-case time complexity of DBSCAN would be O(n log

n), the best case for our modified algorithm is O(log n). This is because even the first point

in the dataset can be a core point. Thus, the clustering algorithm of (SC)3 performs faster

than the original DBSCAN algorithm.

5.7 Implementation

This section presents the implementation of (SC)3.

Architecture. There are seven major components of (SC)3 (Fig. 5.9): (i) the (SC)3 dae-

mon for orchestrating the other modules, (ii) the packet collector for extracting metadata

from incoming packets, (iii) the cluster detector for performing clustering on metadata (i.e.,

inter-packet gap), (iv) the passive observer for performing passive observation-based de-

tection (given in Algorithm 1), (v) the probe generator for active probing, (vi) the integrity

verifier for consolidating outcomes of other modules into concrete results, and (vii) the

configuration database for storing parameters (e.g., maximum swarm size) for different

modules of (SC)3.

The cluster detector helps both passive observation-based detection and active probing-

based detection. It does so by continuously performing clustering on collected packet meta-

data (e.g., inter-packet gap) irrespective of whether there is an active probing happening or

80

not. Then it is controlled by the (SC)3 daemon whether the outcome of the cluster detector

is processed by the passive observer or directly by the integrity verifier (i.e., interpreted as

part of active probing).

Implementation Details. (SC)3 has been implemented as a Linux service using sys-

temd [66]. Linux was chosen because it is the most popular operating system in the

cloud [67]. However, (SC)3 can also be deployed in VNFs based on other operating sys-

tems following a similar architecture as described in this section. Being a service, (SC)3

is deployed on each VNF, started as soon as the VNF operating system (OS) is booted,

and continues to run as long as the VNF OS is running. Some of the modules that need to

work at the line rate are developed using C programming language while other modules are

developed in Python. We describe the implementation of our verification in Algorithm 1.

Efficient Parameter Learning. As the parameters learned by one VNF for the passive

detection remain effective for other VNFs as well, in our implementation, these parameters

are learned by only one VNF and then shared with other VNFs. To this end, we define

three types of VNFs: 1) repository, 2) designated, and 3) ordinary. The designated VNF is

responsible for performing learning of the parameters and updating the repository. On the

other hand, ordinary VNFs retrieve these parameters from the repository and reuse them.

5.8 Experiments

This section presents our experimental results.

5.8.1 Overview of Experiments

As (SC)3 is the first side-channel-based solution to perform continuous forwarding

integrity verification of virtualized service chains, a quantitative comparison between our

solution and other existing approaches is infeasible. Instead, we evaluate (SC)3 in terms

81

Algorithm 1: (SC)3 Verification
1 PassiveDetection ()

Input: g out, g out sat, ϵ
Output: Triggering Active Detection if necessary
Data: Packet metadata packet

2 while nextPacketReceived do
3 if g out sat− g out < ϵ then
4 Increment n packet by one

5 else
6 n vpacket = g out sat/g out
7 if n vpacket < n vpacket max then
8 Increment n packet by n vpacket Set has vpacket to true

9 else
10 Reset n packet to zero Reset has vpacket to false

11 if n packet >= n packet min and has vpacket then
12 ActiveDetection()

13 ActiveDetection ()
Input: g out, g out sat, ϵ
Output: Confirm inconsistency
Data:

14 Calculate probe throughputs
15 Send probe packets
16 Perform verification

82

of its ability to correctly verify experimental continuous verification scenarios and its over-

head. Furthermore, we compare the hybrid technique (by combining passive observation

and active probing techniques) used in (SC)3 with our previous active-probing-only tech-

nique.

5.8.2 Experimental Settings

To conduct our experiments, we build our NFV testbed using OpenStack [18] which is

a very popular infrastructure-as-a-service (IaaS) software, and Tacker [70] which is an offi-

cial OpenStack [27] project providing a VNF Manager (VNFM) and an NFV Orchestrator

(NFVO) for deploying and managing VNFs. Our testbed includes one controller node and

up to 80 compute nodes, each with 4 CPUs and 8 GB RAM running Ubuntu 20.04 server.

We have used Mininet-2.3.0 [71] to set up the user-side network and Internet links (be-

tween the user-side network and NFV) with virtual hosts, virtual links, and Open vSwitch

(OVS) [72] virtual switches on a dedicated server. To connect the user-side network to the

service chains, the server where the user-side network is set up is then connected to the

NFV testbed using a 10Gbps local area network (LAN). Also, similar to real ISP, we set

up a traffic shaper to limit the bandwidth (to 1Gbps) from the user-side network to NFV

using the Linux traffic control module NetEm [73]. We also set up 10 virtual hosts inside

the user-side network and 10 additional virtual hosts connected to the Internet switches.

The virtual hosts either act as video servers (using ffserver [74]) or video clients (using

MPlayer [75]). On one hand, to generate the user-side network traffic, hosts inside the

user-side network act as video clients to stream video from video servers in the Internet.

On the other hand, to generate cross-traffic [76], hosts outside the user-side network act as

video clients to stream video from video servers on the Internet.

83

Table 5.1: Applying (SC)3 in real network setting shows that it could correctly verify all
the experimental scenarios

E
xp

N
o. Experimental

Integrity Scenario

Sw
ar

m
Si

ze
(N

pa
ck

et
)1

N
um

be
r

of
V

ir
tu

al
Pa

ck
et

s(
N

vp
ac

ke
t)

Pr
ob

e
T

hr
ou

gh
pu

t(
T
P
1
)

Pr
ob

e
T

hr
ou

gh
pu

t(
T
P
2
)

N
o.

of
IP

D
C

lu
st

er
s(
N

C
1
)

N
o.

of
IP

D
C

lu
st

er
s(
N

C
2
)

(SC)3 Result2

1 Normal 5 0 0 - - -

Npacket < Nmax
packet

and
Nvpacket = 0

: Normal

2 Bypass/Drop 5 1 540 600 2 2

Nvpacket > 0
→

NC1 > 0
: Bypass/Drop

3 Injection 8 0 340 400 0 0

Npacket >Nmax
packet

→
NC2 = 0

: Injection
1 Max Swarm Size = 6.
2 Detection logic for passive observation and active probing shown on the left and right side of the

arrow (→) respectively.

5.8.3 Experimental Results

We present our experimental results to evaluate the effectiveness and overhead of (SC)3

as follows.

Effectiveness in Continuously Verifying Service Chain Integrity. Table 5.1 demon-

strates the effectiveness of (SC)3 through three different scenarios (including different

attacks such as bypass, drop, injection, as well as normal behavior) where (SC)3 could

correctly detect all common breaches. We emulate the attacks by modifying the flow rules

of the SDN switches in our testbed. This table shows the hybrid integrity verification steps

without going into detail of the parameter learning and classification steps of the passive

detection approach. In the following, we explain the three scenarios listed in Table 5.1. In

these scenarios, the VNF is receiving traffic at a throughput VNF = 500Mbps at the time of

verification, capacity C = 1Gbps and δT = 60Mbps.

84

• First scenario: The passive observation algorithm is seeing an average swarm size

of five and has not found any virtual packets. As the average swarm size is less

than the maximum threshold it is not suspected packet injection. On the other hand,

as there is no virtual packet inserted, packet drop/bypassing is not detected either.

Therefore, (SC)3 concludes that the scenario is normal and there is no need for the

active probing stage.

• Second scenario: Traffic is bypassing/dropping and therefore (SC)3 has detected it

in the passive observation stage by one virtual packet. It then further ensures that

there is indeed bypassing/dropping happening by active probing as follows. As the

actual throughput received at the VNF is TV NF = 400Mbps the active probing stage

calculates the throughput for first probe requests TP1 = C−TV NF − δT = 540Mbps

and the clustering algorithm finds two clusters. Since NC1 > 0, Bypass/Drop is

confirmed.

• Third scenario: Traffic is being injected and therefore (SC)3 has detected it in the

passive observation stage by an increased swarm size of eight which is higher than

the maximum swarm size (i.e., six). It then further ensures that there is indeed packet

injection happening by active probing as follows. As the actual throughput received

at the VNF is TV NF = 600Mbps the active probing stage calculates the throughput

for first probe requests TP1 = C − TV NF − δT = 340Mbps and for second probe

requests TP2 = C − TV NF = 400Mbps the clustering algorithm finds no clusters.

Since NC2 = 0, Injection is confirmed.

Effectiveness of Probing and IPD Clustering. In Fig. 5.10, we demonstrate the IPD

clustering results for different probe throughputs in a Normal scenario (i.e., no integrity

breaches). As the clusters are difficult to see due to the high density of the links, we ad-

ditionally plot the histogram of the number of points having the same IPD at the right of

85

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(a) Probe Throughput: 400Mbps

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(b) Probe Throughput: 440Mbps

0 20000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(c) Probe Throughput: 450Mbps

0 20000 40000
Time (s)

0

50

100

150

200

In
te

r-P
ac

ke
t D

el
ay

 (I
PD

) (
s)

(d) Probe Throughput: 500Mbps

Figure 5.10: Active probing approach is applying DBSCAN clustering algorithm on inter-
packet delay (IPD); Noise (), Cluster 1 (), Cluster 2 ()

each graph. From these histograms, it is clearly visible that where clusters are formed,

the number of points having the same IPD is relatively high and crosses the red vertical

line. Now, in this scenario, the tenants’ last-mile link capacity and throughput are 1Gbps

and 500Mbps, respectively. For lower probing throughputs: 400Mbps (Fig. 5.10a) and

440Mbps (Fig. 5.10b) no cluster is formed, and for higher probing throughputs: 450Mbps

(Fig. 5.10c) and 500Mbps (Fig. 5.10d) two clusters (as indicated in orange and green) are

formed. Here the transition from no clusters to two clusters happens between probing

throughput 440Mbps and probing throughput 450Mbps. Therefore, (SC)3 expects no clus-

ters in a Normal scenario for its first round of probing (TP1 = 440Mbps), as calculated

from Equation 16 in Section 5.5. Similarly, (SC)3 expects one or more clusters for its

second round of probing (TP2 = 500Mbps), as calculated from Equation 16 in Section 5.5.

86

(a) Packet loss

(b) Jitter

(c) Out-of-order packets

Figure 5.11: Comparison of the effect of probing interval on overhead in terms of network
performance metric (packet loss, jitter, out-of-order packets) for active approach

Overhead. We evaluate the overhead of (SC)3 in terms of impact on different network

performance metrics (e.g., packet loss, jitter, and packet reordering). To do so, we measure

87

these metrics while performing tenant network throughput estimation at different possible

probe rates. To measure these metrics, we capture packets (at both video clients and video

servers) and perform calculations on these packets by identifying the same packets using

Transmission Control Protocol (TCP) sequence numbers. The results of these experiments

are shown in Fig. 5.11 (Fig. 5.11a illustrates the packet loss, Fig. 5.11b shows jitter and

Fig. 5.11c depicts out-of-order packets) where we can see that these metrics may or may

not be significantly affected depending on the probing interval. When the probing inter-

val is high (e.g., 1s), there is little or no effect on the performance metrics. However, a

lower probing interval (e.g., 50ms) may significantly affect these metrics. As (SC)3 uses

active probing only when an integrity breach is detected by the passive observation-based

approach, we do not require a low probing interval.

Comparison of Detection Performance With Active Probing. We compare the perfor-

mance (in terms of detection rate and detection time) hybrid approach in (SC)3 to our pre-

vious active-probing-only approach as shown in Fig. 5.12. Fig. 5.12a shows the detection

rate for the two approaches while the verification interval is increased. Here, the detec-

tion rate increases linearly with the decrease of verification interval for both approaches.

Fig. 5.12b illustrates the detection rate for both the active-probing-based approach and

the hybrid approach while increasing attack duration. Here, the detection rate increases

with the increase in attack duration. However, the detection rate for the hybrid approach

increases very quickly to peak while the active probing approach shows a linear improve-

ment. Fig. 5.12c illustrates the detection time for both active and hybrid approaches while

the verification interval is increased. Here, the detection time increases for both approaches

with the increase in verification interval.

88

(a) Effect of probe interval on detection rate

(b) Effect of attack duration on detection rate

(c) Effect of probe interval on detection time

Figure 5.12: Comparison of detection performance between the hybrid and active ap-
proaches

89

5.9 Conclusion

This chapter proposed a side-channel-based approach, namely, (SC)3, to verify ser-

vice chain integrity in virtualized networks without requiring any access to third-party

infrastructure-level data or resources. Additionally, (SC)3 can verify integrity breaches

continuously without leaving a large window for attackers to escape verification. To that

end, (SC)3 employs a hybrid approach that combines a preliminary passive mechanism that

works continuously and upon preliminary detection, it further confirms integrity breaches

using an active probing mechanism. Experimental results in a real network environment

showed that our approach can effectively verify service chain integrity for a wide range of

integrity breaches while maintaining a negligible impact on network performance. Addi-

tionally, we have performed an extensive security analysis of (SC)3. In future work, we

plan to automate setting the parameters of the clustering algorithm and further optimize

other parameters of (SC)3.

90

Chapter 6

Conclusion

Network virtualization is a rapidly growing technology that has received a lot of interest

from the industry and academia due to its potential benefits. However, this softwarization

opens the door to many security vulnerabilities that must be carefully considered before

harvesting these benefits. To this end, there exist two types of solutions: pre-deployment

verification and runtime verification. However, existing works under these categories fail to

provide solutions for virtualized networks under the constraints of lack of visibility and per-

formance sensitivity of modern communication services. In this thesis, we proposed mech-

anisms to overcome the above-mentioned challenges by using side channel information (at

the tenant-side) as the indirect effects of the attacks. To this end, we first proposed an

approach to verify the forwarding integrity of virtualized network function (VNF) chains;

which covered a wide range of integrity verification scenarios (e.g., entire service chain

bypassing, packet dropping, and packet injection). Second, we proposed mechanisms to

detect breaches of integrity of the individual network functions (NF); which can detect

zero-day attacks without affecting the performance of the NFs. Third, we proposed mech-

anisms for continuous verification of the forwarding integrity of the service chains (i.e.,

minimizing the detection time as much as possible).

However, our work has a few limitations, which will be addressed in future works.

91

– First, our approach is based on side channels and therefore not as precise as solu-

tions that directly observe cloud configurations. In the future, we intend to improve

the precision of our techniques using multiple side channels and more advanced ma-

chine learning techniques. Also, we will cover a wider range of integrity verification

scenarios to validate the effectiveness of our side-channel based solution.

– Second, our solution to verify functional integrity may not work properly when all the

network functions are compromised by a coordinated attack. We plan to overcome

this limitation in the future using a self-learning technique to provide a certain degree

of resilience in each network function.

– Third, our functional integrity verification approach cannot work when an attack does

not affect performance metrics. In the future, we hope to discover more side channels

beyond the performance metric to overcome this issue.

– Finally, although we have tested our solutions on various platforms (e.g., OpenStack,

Hyperscale Cloud Providers, Open5GS, and free5GC), we have not deployed our

solutions in a live environment. In the future, we will explore the possibility to

test and optimize our solutions in an environment with active users (e.g., in a cyber

range). In addition, we plan to automate the parameter settings of our machine-

learning algorithms.

In summary, this work significantly contributed towards providing security assurance to

cloud tenants who operate virtualized network services. We believe that our work can facil-

itate future research as follows. First, our network-based side channels can solve problems

in other network security areas (e.g., early detection of DDoS attacks without requiring

access to routers on the Internet). Second, our idea of using performance metrics as a side

channel and using correlation between multiple functions to filter out false positives may be

applied to solve other security problems (e.g., efficiently detecting compromised switches

92

in a large network).

93

Bibliography

[1] Evolve your core network for 5G. [Online]. Available: https://www.ericsson.com/en/

core-network/5g-core

[2] Network Function Virtualization (NFV) Market. [Online]. Available: https:

//www.marketsandmarkets.com/Market-Reports/network-function-virtualization-m

arket-93929190.html

[3] NFV Security. [Online]. Available: https://www.etsi.org/deliver/etsi gs/nfv-sec/001

099/003/01.01.01 60/gs nfv-sec003v010101p.pdf

[4] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A. Meddahi, “NFV security sur-

vey: From use case driven threat analysis to state-of-the-art countermeasures,” IEEE

Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3330–3368, 2018.

[5] What is cloud computing? [Online]. Available: https://azure.microsoft.co

m/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#:∼:

text=Simply%20put%2C%20cloud%20computing%20is,resources%2C%20and%2

0economies%20of%20scale.

[6] 5G service requirements. [Online]. Available: https://www.3gpp.org/news-events/3g

pp-news/sa1-5g

[7] Y. Yue and B. Cheng, “EasyOrchestrator: A NFV-based network service creation

platform for end-users,” in IEEE IPCCC, 2018.

94

https://www.ericsson.com/en/core-network/5g-core
https://www.ericsson.com/en/core-network/5g-core
https://www.marketsandmarkets.com/Market-Reports/network-function-virtualization-market-93929190.html
https://www.marketsandmarkets.com/Market-Reports/network-function-virtualization-market-93929190.html
https://www.marketsandmarkets.com/Market-Reports/network-function-virtualization-market-93929190.html
https://www.etsi.org/deliver/etsi_gs/nfv-sec/001_099/003/01.01.01_60/gs_nfv-sec003v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-sec/001_099/003/01.01.01_60/gs_nfv-sec003v010101p.pdf
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#:~:text=Simply%20put%2C%20cloud%20computing%20is,resources%2C%20and%20economies%20of%20scale.
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#:~:text=Simply%20put%2C%20cloud%20computing%20is,resources%2C%20and%20economies%20of%20scale.
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#:~:text=Simply%20put%2C%20cloud%20computing%20is,resources%2C%20and%20economies%20of%20scale.
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing#:~:text=Simply%20put%2C%20cloud%20computing%20is,resources%2C%20and%20economies%20of%20scale.
https://www.3gpp.org/news-events/3gpp-news/sa1-5g
https://www.3gpp.org/news-events/3gpp-news/sa1-5g

[8] N. Bouten, R. Mijumbi, J. Serrat, J. Famaey, S. Latré, and F. De Turck, “Semantically

enhanced mapping algorithm for affinity-constrained service function chain requests,”

IEEE TNSM, vol. 14, no. 2, 2017.

[9] L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A model for the analysis of

security policies in service function chains,” in IEEE NetSoft, 2017, pp. 1–6.

[10] M. Bonfim, F. Freitas, and S. Fernandes, “A semantic-based policy analysis solution

for the deployment of NFV services,” TNSM, vol. 16, no. 3, pp. 1005–1018, 2019.

[11] Amazon EC2 cloud is made up of almost half-a-million Linux servers. [Online].

Available: https://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almos

t-half-a-million-linux-servers/

[12] X. Zhang, H. Duan, C. Wang, Q. Li, and J. Wu, “Towards verifiable performance

measurement over in-the-cloud middleboxes,” in IEEE INFOCOM 2019-IEEE Con-

ference on Computer Communications. IEEE, 2019, pp. 1162–1170.

[13] M. K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J. Y. Choi, “Verification for

NFV-enabled network services,” in IEEE ICTC, 2015.

[14] M. Flittner, J. M. Scheuermann, and R. Bauer, “ChainGuard: Controller-independent

verification of service function chaining in cloud computing,” in IEEE NFV-SDN,

2017, pp. 1–7.

[15] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “FlowCloak: Defeat-

ing middlebox-bypass attacks in software-defined networking,” in IEEE INFOCOM,

2018.

[16] A. Aljuhani and T. Alharbi, “Virtualized network functions security attacks and vul-

nerabilities,” in IEEE CCWC, 2017, pp. 1–4.

95

https://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almost-half-a-million-linux-servers/
https://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almost-half-a-million-linux-servers/

[17] S. Lal, T. Taleb, and A. Dutta, “NFV: Security threats and best practices,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 211–217, 2017.

[18] OpenStack. [Online]. Available: https://docs.openstack.org

[19] Amazon ECS. [Online]. Available: https://aws.amazon.com/ecs/

[20] P. Zhang, “Towards rule enforcement verification for software defined networks,” in

IEEE INFOCOM, 2017.

[21] X. Zhang, Q. Li, J. Wu, and J. Yang, “vSFC: Generic and agile verification of ser-

vice function chains in the cloud,” IEEE/ACM Transactions on Networking, pp. 1–14,

2020.

[22] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “Securing middlebox policy

enforcement in SDN,” Computer Networks, vol. 193, 2021.

[23] N. C. Thang and M. Park, “Detecting compromised switches and middlebox-bypass

attacks in service function chaining,” in IEEE ITNAC, 2019.

[24] Y. Yue and B. Cheng, “EasyOrchestrator: An end-user oriented network service cre-

ation platform with verification mechanism,” in 2019 IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, 2019, pp. 1–6.

[25] P. Twamley, M. Müller, P.-B. Bök, G. K. Xilouris, C. Sakkas, M. A. Kourtis,

M. Peuster, S. Schneider, P. Stavrianos, and D. Kyriazis, “5GTANGO: An approach

for testing nfv deployments,” in 2018 European Conference on Networks and Com-

munications (EuCNC). IEEE, 2018, pp. 1–218.

[26] M. Touloupou, E. Kapassa, A. Mavrogiorgou, and D. Kyriazis, “Towards optimized

verification and validation of 5G services,” in 2019 Sixth International Conference on

Software Defined Systems (SDS). IEEE, 2019, pp. 5–10.

96

https://docs.openstack.org
https://aws.amazon.com/ecs/

[27] G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework for verification-

oriented user-friendly network function modeling,” IEEE Access, vol. 7, pp. 99 349–

99 359, 2019.

[28] S. Chen, J. Li, B. Chen, D. Guo, and K. Li, “vHSFC: Generic and agile verification

of service function chain with parallel VNFs,” in 2023 26th International Conference

on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2023, pp.

498–503.

[29] G. Wagener, A. Dulaunoy et al., “Malware behaviour analysis,” Journal in computer

virology, vol. 4, no. 4, pp. 279–287, 2008.

[30] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online mal-

ware detection: Towards efficient real-time protection against malware,” IEEE TIFS,

vol. 11, no. 2, pp. 289–302, 2015.

[31] M. Gebai and M. R. Dagenais, “Survey and analysis of kernel and userspace tracers

on Linux: Design, implementation, and overhead,” ACM Computing Surveys (CSUR),

vol. 51, no. 2, pp. 1–33, 2018.

[32] A. Darki, A. Duff, Z. Qian, G. Naik, S. Mancoridis, and M. Faloutsos, “Don’t trust

your router: Detecting compromised router,” in IEEE CoNEXT, vol. 16, 2016.

[33] A. Oqaily, Y. Jarraya, L. Wang, M. Pourzandi, and S. Majumdar, “Mlfm: Machine

learning meets formal method for faster identification of security breaches in network

functions virtualization (nfv),” in European Symposium on Research in Computer

Security. Springer, 2022, pp. 466–489.

[34] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion techniques

measure?” in IEEE INFOCOM, 2001.

97

[35] X. Liu, K. Ravindran, and D. Loguinov, “What signals do packet-pair dispersions

carry?” in IEEE INFOCOM, 2005.

[36] P. L. Dordal, Linux Traffic Control (tc). [Online]. Available: http://intronetworks.cs.l

uc.edu/current/uhtml/mininet.html

[37] S. K. Khangura, “Neural network-based available bandwidth estimation from TCP

sender-side measurements,” in IEEE PEMWN, 2019.

[38] F. Ciaccia, I. Romero, O. Arcas-Abella, D. Montero, R. Serral-Gracià, and M. Ne-

mirovsky, “SABES: Statistical available bandwidth estimation from passive tcp mea-

surements,” in IEEE IFIP Networking, 2020.

[39] S. K. Khangura and M. Fidler, “Available bandwidth estimation from passive TCP

measurements using the probe gap model,” in IEEE IFIP Networking, 2017.

[40] V. Kirova, E. Siemens, D. Kachan, O. Vasylenko, and K. Karpov, “Optimization

of probe train size for available bandwidth estimation in high-speed networks,” in

MATEC Web of Conferences, vol. 208. EDP Sciences, 2018, p. 02001.

[41] N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating internet bottlenecks:

Algorithms, measurements, and implications,” ACM SIGCOMM Computer Commu-

nication Review, vol. 34, no. 4, pp. 41–54, 2004.

[42] S. Bauer, J. Janelidze, B. Jaeger, P. Sattler, P. Brzoza, and G. Carle, “On the accuracy

of active capacity estimation in the internet,” in IEEE/IFIP Network Operations and

Management Symposium. IEEE, 2023, pp. 1–7.

[43] S. Bibi, D. Katsaros, and P. Bozanis, “Business application acquisition: On-premise

or saas-based solutions?” IEEE software, vol. 29, no. 3, pp. 86–93, 2012.

98

http://intronetworks.cs.luc.edu/current/uhtml/mininet.html
http://intronetworks.cs.luc.edu/current/uhtml/mininet.html

[44] A. H. Anwar, G. Atia, and M. Guirguis, “It’s time to migrate! a game-theoretic

framework for protecting a multi-tenant cloud against collocation attacks,” in IEEE

CLOUD, 2018, pp. 725–731.

[45] Ö. A. Aslan and R. Samet, “A comprehensive review on malware detection ap-

proaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[46] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods for detec-

tion of new malicious executables,” in IEEE S&P, 2000.

[47] K. Hahn and I. Register, “Robust static analysis of portable executable malware,”

HTWK Leipzig, vol. 134, 2014.

[48] K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for

malware detection,” Engineering Applications of Artificial Intelligence, vol. 122, p.

106030, 2023.

[49] R. Chaganti, V. Ravi, and T. D. Pham, “Deep learning based cross architecture internet

of things malware detection and classification,” Computers & Security, vol. 120, p.

102779, 2022.

[50] J.-S. Luo and D. C.-T. Lo, “Binary malware image classification using machine learn-

ing with local binary pattern,” in 2017 IEEE International Conference on Big Data

(Big Data). IEEE, 2017, pp. 4664–4667.

[51] R. Tahir, “A study on malware and malware detection techniques,” International Jour-

nal of Education and Management Engineering, vol. 8, no. 2, p. 20, 2018.

[52] Y. Ji, Q. Li, Y. He, and D. Guo, “Overhead analysis and evaluation of approaches

to host-based bot detection,” International Journal of Distributed Sensor Networks,

vol. 11, no. 5, p. 524627, 2015.

99

[53] A. Zafeiropoulos, E. Fotopoulou, M. Peuster, S. Schneider, P. Gouvas, D. Behnke,

M. Müller, P.-B. Bök, P. Trakadas, P. Karkazis et al., “Benchmarking and profiling

5G verticals’ applications: An industrial iot use case,” in IEEE NetSoft, 2020, pp.

310–318.

[54] P. Munoz, I. De La Bandera, E. J. Khatib, A. Gómez-Andrades, I. Serrano, and

R. Barco, “Root cause analysis based on temporal analysis of metrics toward self-

organizing 5G networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 3,

pp. 2811–2824, 2016.

[55] NFV deployment–important considerations for operators. [Online]. Available:

https://www.ericsson.com/en/blog/2018/6/nfv-deploymentimportant-consideration

s-for-operators

[56] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making

middleboxes someone else’s problem: network processing as a cloud service,” ACM

SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[57] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely outsourc-

ing middleboxes to the cloud,” in USENIX NSDI, 2016.

[58] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding network

functions in the cloud,” in USENIX NSDI, 2018, pp. 201–216.

[59] K. D. Bowers, M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How to tell if your

cloud files are vulnerable to drive crashes,” in ACM CCS, 2011.

[60] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network: Attacking an SDN

with a compromised openflow switch,” in Nordic Conference on Secure IT Systems.

Springer, 2014, pp. 229–244.

100

https://www.ericsson.com/en/blog/2018/6/nfv-deploymentimportant-considerations-for-operators
https://www.ericsson.com/en/blog/2018/6/nfv-deploymentimportant-considerations-for-operators

[61] R. M. Hinden, “Why take over the hosts when you can take over the network,” in RSA

Conference, 2014, pp. 1–41.

[62] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-defined network (SDN)

data plane security: issues, solutions, and future directions,” Handbook of Computer

Networks and Cyber Security, pp. 341–387, 2020.

[63] P. T. Dinh and M. Park, “ECSD: Enhanced compromised switch detection in an

SDN-based cloud through multivariate time-series analysis,” IEEE Access, vol. 8,

pp. 119 346–119 360, 2020.

[64] Router Bugs Flaws Hacks and Vulnerabilities. [Online]. Available: https:

//routersecurity.org/bugs.php

[65] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta, and A. Akella,

“On the treeness of internet latency and bandwidth,” in ACM SIGMETRICS, 2009.

[66] Systemd. [Online]. Available: https://www.freedesktop.org/wiki/Software/systemd/

[67] Ubuntu Linux is the Most Popular Operating System in Cloud. [Online]. Available:

https://fossbytes.com/ubuntu-linux-is-the-most-popular-operating-system-in-cloud

/#:∼:text=simple%20answer%20is.-,Ubuntu%20Linux.,popular%20operating%20sy

stem%20in%20cloud.

[68] Tcpdump. [Online]. Available: https://www.tcpdump.org/

[69] SQLite. [Online]. Available: http://mininet.org/

[70] Tacker. [Online]. Available: https://wiki.openstack.org/wiki/Tacker

[71] Mininet. [Online]. Available: http://mininet.org/

[72] Open vSwitch. [Online]. Available: https://www.openvswitch.org/

101

https://routersecurity.org/bugs.php
https://routersecurity.org/bugs.php
https://www.freedesktop.org/wiki/Software/systemd/
https://fossbytes.com/ubuntu-linux-is-the-most-popular-operating-system-in-cloud/#:~:text=simple%20answer%20is….-,Ubuntu%20Linux.,popular%20operating%20system%20in%20cloud.
https://fossbytes.com/ubuntu-linux-is-the-most-popular-operating-system-in-cloud/#:~:text=simple%20answer%20is….-,Ubuntu%20Linux.,popular%20operating%20system%20in%20cloud.
https://fossbytes.com/ubuntu-linux-is-the-most-popular-operating-system-in-cloud/#:~:text=simple%20answer%20is….-,Ubuntu%20Linux.,popular%20operating%20system%20in%20cloud.
https://www.tcpdump.org/
http://mininet.org/
https://wiki.openstack.org/wiki/Tacker
http://mininet.org/
https://www.openvswitch.org/

[73] NetEm. [Online]. Available: https://www.linux.org/docs/man8/tc-netem.html

[74] Ffserver. [Online]. Available: https://trac.ffmpeg.org/wiki/ffserver

[75] MPlayer. [Online]. Available: http://www.mplayerhq.hu/design7/news.html

[76] C. Blake, D. Katabi, S. Katti et al., “Cross-traffic: noise or data?” in ISMA Bandwidth

Estimation Workshop. San Diego, 2003.

[77] Cloud native is transforming the telecom industry. [Online]. Available: https:

//www.ericsson.com/en/cloud-native

[78] “Open5GS PFCP bug.” [Online]. Available: https://research.nccgroup.com/2021/10/

06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establish

ment-on-upf-cve-2021-41794/

[79] Exploiting, Mitigating, and Detecting CVE-2021-44228: Log4j Remote Code

Execution (RCE). [Online]. Available: https://sysdig.com/blog/exploit-detect-mitigat

e-log4j-cve/

[80] CVE-2022-28391 Detail. [Online]. Available: https://nvd.nist.gov/vuln/detail/cve-2

022-28391

[81] Trivy. [Online]. Available: https://aquasecurity.github.io/trivy/dev/

[82] A. Asadujjaman, M. Oqaily, Y. Jarraya, S. Majumdar, M. Pourzandi, L. Wang, and

M. Debbabi, “Artificial packet-pair dispersion (APPD): A blackbox approach to ver-

ifying the integrity of NFV service chains,” in 2021 IEEE Conference on Communi-

cations and Network Security (CNS). IEEE, 2021, pp. 245–253.

[83] E. S. Parildi, D. Hatzinakos, and Y. Lawryshyn, “Deep learning-aided runtime

opcode-based windows malware detection,” Neural Computing and Applications,

vol. 33, no. 18, pp. 11 963–11 983, 2021.

102

https://www.linux.org/docs/man8/tc-netem.html
https://trac.ffmpeg.org/wiki/ffserver
http://www.mplayerhq.hu/design7/news.html
https://www.ericsson.com/en/cloud-native
https://www.ericsson.com/en/cloud-native
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/
https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/
https://nvd.nist.gov/vuln/detail/cve-2022-28391
https://nvd.nist.gov/vuln/detail/cve-2022-28391
https://aquasecurity.github.io/trivy/dev/

[84] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile app fingerprinting

via power analysis,” in IEEE INFOCOM, 2017, pp. 1–9.

[85] Amazon CloudWatch Pricing. [Online]. Available: https://aws.amazon.com/cloudwa

tch/pricing/

[86] Open5GS. [Online]. Available: https://open5gs.org/open5gs/

[87] ETSI TS 123 502: Procedures for the 5G System. [Online]. Available: https://www.et

si.org/deliver/etsi ts/123500 123599/123502/15.02.00 60/ts 123502v150200p.pdf

[88] Code Injection. [Online]. Available: https://owasp.org/www-community/attacks/Cod

e Injection

[89] A Complete Guide to Cloud-Native Application Security. [Online]. Available:

https://www.trendmicro.com/en no/devops/21/k/a-complete-guide-to-cloud-native-a

pplication-security.html

[90] H. Dehling, R. Fried, and M. Wendler, “A robust method for shift detection in time

series,” Biometrika, vol. 107, no. 3, pp. 647–660, 2020.

[91] Outliers Detection and Intervention Analysis. [Online]. Available: https:

//datascienceplus.com/outliers-detection-and-intervention-analysis/

[92] LevelShiftAD. [Online]. Available: https://arundo-adtk.readthedocs-hosted.com/en/s

table/notebooks/demo.html#LevelShiftAD

[93] Anomaly Detection Toolkit. [Online]. Available: https://adtk.readthedocs.io/en/stable/

[94] MongoDB. [Online]. Available: https://www.mongodb.com/

[95] UERANSIM on GitHub. [Online]. Available: https://github.com/aligungr/UERANS

IM

103

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://open5gs.org/open5gs/
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Code_Injection
https://www.trendmicro.com/en_no/devops/21/k/a-complete-guide-to-cloud-native-application-security.html
https://www.trendmicro.com/en_no/devops/21/k/a-complete-guide-to-cloud-native-application-security.html
https://datascienceplus.com/outliers-detection-and-intervention-analysis/
https://datascienceplus.com/outliers-detection-and-intervention-analysis/
https://arundo-adtk.readthedocs-hosted.com/en/stable/notebooks/demo.html#LevelShiftAD
https://arundo-adtk.readthedocs-hosted.com/en/stable/notebooks/demo.html#LevelShiftAD
https://adtk.readthedocs.io/en/stable/
https://www.mongodb.com/
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM

[96] Amazon CloudWatch. [Online]. Available: https://aws.amazon.com/cloudwatch/

[97] Feature Selection Using Variance Threshold in sklearn. [Online]. Available: https://li

fewithdata.com/2022/03/13/feature-selection-using-variance-threshold-in-sklearn/

[98] B. Liu, J. T. Chiang, J. J. Haas, and Y.-C. Hu, “Coward attacks in vehicular networks,”

ACM SIGMOBILE Mobile Computing and Communications Review, vol. 14, no. 3,

pp. 34–36, 2010.

[99] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “DBSCAN: Past, present

and future,” in IEEE ICADIWT, 2014.

104

https://aws.amazon.com/cloudwatch/
https://lifewithdata.com/2022/03/13/feature-selection-using-variance-threshold-in-sklearn/
https://lifewithdata.com/2022/03/13/feature-selection-using-variance-threshold-in-sklearn/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Forwarding Integrity Verification for Virtualized Networks Using Side-Channel
	Functional Integrity Verification for Virtualized Networks Using Side-Channel
	Continuous Verification of Forwarding Integrity for Virtualized Networks Using Side-Channel

	Contributions
	Thesis Structure

	Related Work
	Forwarding Integrity Verification
	Pre-deployment Verification
	Runtime Verification
	Traffic Throughput Estimation
	Comparison Among Related Works

	Functional Integrity Verification
	Detection of Functional Integrity Breach in 5G
	Malware Detection
	Performance Metrics Correlation
	Comparison Among Related Works

	Forwarding Integrity Verification of NFV Service Chains Using Artificial Packet Pair Dispersion
	Introduction
	Preliminaries
	Motivating Example
	Main Idea
	Threat Model and Assumptions

	Methodology
	Overview
	The APPD Effect
	Stage 1: Estimation of Incoming Traffic Throughput
	Stage 2: Verification of Service Chain Integrity

	Implementation
	Experiments
	Overview of Experiments
	Experimental Settings
	Experimental Results

	Conclusion

	Functional Integrity Verification for 5G Cloud-Native Network Functions
	Introduction
	Motivating Example
	Main Ideas and Contributions

	Preliminaries
	Functional Integrity Verification for 5G
	Approach Overview
	Stage 1: Outliers Detection
	Stage 2: Integrity Breach Detection

	Implementation
	Experiments
	Overview of Experiments
	Experimental Settings
	Experimental Results

	Conclusion

	Continuous Forwarding Integrity Verification of Virtualized Service Chains Using Side-Channel
	Introduction
	Preliminaries
	Motivating Example
	Main Idea
	Threat Model and Assumptions

	Overview and Sanity Check
	Overview
	Sanity Check

	Passive Observation-based Technique
	Packet Gap Parameter Computation
	Packet Gap Classification

	Active Probing-based Technique
	Dual Probing Request
	Probing Response Capture
	Clustering

	Security and Performance Analysis
	Security Analysis
	Performance Optimization

	Implementation
	Experiments
	Overview of Experiments
	Experimental Settings
	Experimental Results

	Conclusion

	Conclusion
	Bibliography

