
A Cost-effective Framework to Proactive and Non-disruptive

Attack Mitigation in Kubernetes Clusters

Sima Bagheri

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

December 2022

© Sima Bagheri, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sima Bagheri
Entitled: A Cost-effective Framework to Proactive and Non-disruptive At-

tack Mitigation in Kubernetes Clusters

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Walter Lucia
Chair and Examiner

Dr. Carol Fung
Examiner

Dr. Lingyu Wang
Thesis Supervisor

Dr. Suryadipta Majumdar
Co-supervisor

Approved by
Dr. Jun Yan, Graduate Program Director

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

A Cost-effective Framework to Proactive and Non-disruptive Attack
Mitigation in Kubernetes Clusters

Sima Bagheri

A large-scale cluster of containers managed with an orchestrator like Kubernetes is

behind many cloud-native applications today. However, the weaker isolation provided by

containers means attackers can potentially exploit a vulnerable container and then escape

its isolation to cause more severe damage to the underlying infrastructure and its hosted

applications. Besides, Kubernetes reportedly suffers from security vulnerabilities and mis-

configurations which may lead to severe security threats.

Defending against such an attack using existing attack detection solutions can be chal-

lenging. Due to the well-known high false positive rate of such solutions, taking aggressive

actions upon every alert can lead to unacceptable service disruption. On the other hand,

waiting for security administrators to perform in-depth analysis and validation could ren-

der the mitigation too late to prevent irreversible damages, e.g., denial of service. In this

thesis, we propose WARP1, a cost-effective framework to proactive and non-disruptive

attack mitigation to address such security challenges for Kubernetes clusters. First, our

framework is proactive in the sense that it performs mitigation based on predicted (instead

of real) attacks, which prevents irreversible damages. Second, our mitigation framework

is designed to be non-disruptive and it is achieved through live migration of containers,

which causes no service disruption even in the case of false positives. Finally, to realize the

full potential of this framework in containers migration, we formulate the inherent tradeoff
1Warping the defense timeline

iii

between security and cost (delay) as a multi-objective optimization problem and propose a

heuristic algorithm to efficiently achieve a high level of threat reduction with minimal im-

posed delay. We implement and integrate WARP based on Kubernetes as the most popular

container orchestration platform. Our evaluation results show that WARP can successfully

mitigate up to 81% of the attacks, and our heuristic algorithm achieves up to 30% more

threat reduction and 7% less delay while being 37 times faster compared to a standard

optimization solution.

iv

Acknowledgments

I would like to first thank my advisors, Dr. Lingyu Wang and Dr. Suryadipta Majumdar for

their support and guidance.

I also want to thank Hugo and Mahmood for their friendship, camaraderie, kindness,

support, compassion, and humor throughout the past years.

More importantly, I would like to share my love and gratitude for the support I’ve

been given by my parents, my brother Sina, and my best friend Maryam. Thank you for

indulging my decision to stay a student for one decade (!) and specially for the care you’ve

all shown me in the last three years when I needed the most.

I dedicate this thesis to my people in Iran who are living their most courageous lives.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Context and Problem Statement . 1

1.2 Research Gap . 3

1.3 Thesis Contribution . 4

1.4 Related Publications . 7

1.5 Contribution of Co-authors/Collaborators 7

1.6 Outline . 8

2 Background and Motivation 9

2.1 Background . 9

2.2 Motivating Example . 11

2.3 Threat Model . 15

3 Related Work 16

3.1 Attack Detection and Mitigation . 16

3.2 Proactive Attack Detection and Mitigation 17

3.3 Provenance Analysis . 17

vi

3.4 Resource Placement Optimization . 18

3.5 Comparative Study . 18

4 WARP: A Cost-effective Framework to Proactive and Non-disruptive Attack

Mitigation in Kubernetes Clusters 21

4.1 Approach Overview . 21

4.2 Offline Modeling . 25

4.2.1 Optimization Model Formulation 25

4.2.2 Attack Prediction Model Building 28

4.3 Runtime Detection and Mitigation . 29

4.3.1 Proactive Attack Prediction . 30

4.3.2 Non-disruptive Attack Mitigation 31

4.3.2.1 Objective Optimization with P0P 32

4.3.2.2 WARP with Network Slicing 33

4.3.2.3 Mitigation . 37

5 Implementation 39

5.1 Implementing and Integrating WARP with Kubernetes 39

5.2 Auto-scaling WARP . 41

5.3 Portability to Other Cloud Platforms . 41

5.4 Building Dataset . 43

6 Evaluation 44

6.1 Migration Cost . 44

6.2 Optimization Effectiveness . 46

6.3 WARP Effectiveness . 48

6.4 Performance . 52

6.5 Adjustability to Tenants’ Requirements 53

vii

7 Conclusion 55

Bibliography 57

viii

List of Figures

Figure 2.1 Motivating example . 12

Figure 4.1 An overview of WARP . 22

Figure 4.2 Illustrative example of WARP framework overview 24

Figure 4.3 Attack prediction model example 29

Figure 4.4 Parameters value extracted from a received Falco alert 30

Figure 4.5 WARP and network slicing . 36

Figure 5.1 WARP architecture . 40

Figure 6.1 Migration frameworks comparison and cost analysis 46

Figure 6.2 Cluster threat reduction and delay comparison ((a), (b), (c): no delay

constraint) . 48

Figure 6.3 WARP effectiveness . 49

Figure 6.4 Attack progress . 51

Figure 6.5 Performance overhead . 53

Figure 6.6 Effect of network slicing . 54

ix

List of Tables

Table 3.1 Comparing existing solutions with WARP 20

Table 4.1 List of input parameters . 25

Table 4.2 WARP in 5G - example with three services 37

Table 5.1 Overview of simulated APT attacks and exploits for WARP dataset . 42

Table 6.1 WARP effectiveness per attack and dataset 50

x

Chapter 1

Introduction

1.1 Context and Problem Statement

Containerization is an increasingly popular choice for deploying large-scale cloud-native

applications due to its inherent efficiency, agility, and flexibility. A container orchestrator

such as Kubernetes, a widely adopted container orchestration platform [21], makes it easy

to deploy, manage, and maintain a large amount of containerized applications in a Kuber-

netes cluster. However, it is well-known that, compared to full-fledged virtual machines,

containers provide weaker isolation between the application and the underlying host [9].

Moreover, popular container images are shown to be buggy with vulnerabilities [8], and

even the cluster orchestrator itself may contain vulnerabilities or misconfigurations (e.g.,

the Kubernetes privilege escalation vulnerability showcased at Black Hat USA 2022 [42]).

Such weaknesses may render Kubernetes clusters an attractive target to attackers, who can

exploit a vulnerable container for initial accesses, and then escape the container to cause

more severe damages to the underlying infrastructure and other containers as well as the

applications they host. Additionally, security is typically an afterthought in the deployment

of containerized applications and security breaches and attacks are usually detected after

the fact, which could result in irreversible damages (e.g., denial of service or information

1

leakage).

There already exist attack prevention solutions for containers and Kubernetes, such

as the Open Policy Agent (OPA) and Gatekeeper [26] combination for runtime security

policy enforcement, as well as the Seccomp (SECure COMPuting) filter [32], which is for

preventing containers from accessing certain host-level resources through blocking system

calls. The Seccomp filters are also leveraged in existing works [48, 51, 60] to block system

calls that are not normally used by the applications. Nonetheless, those preventive solutions

can only reduce the general attack surface of containers to some extent, and cannot prevent

all attacks. Moreover, these solutions leverage disruptive defenses (i.e., blocking) which

is not desirable if a false positive attack detection occurs. Therefore, non-disruptive attack

mitigation solutions are still necessary. To that end, Falco [17] provides a popular open

source solution for detecting attacks on both the containers and the infrastructure, either

with the default rules or by developing custom rules for specific attacks. Although such

detection solutions can enable a security administrator to take notice and keep track of

ongoing attacks, they do not provide a direct, automated, and non-disruptive way to stop

such attacks.

Compared to prevention and detection, automated mitigation of detected attacks in Ku-

bernetes clusters has received less attention (a detailed review of related works is given in

Chapter 3). Attack mitigation in practice still largely depends on the intervention of se-

curity administrators, who will first investigate the alerts reported by a detection solution

such as Falco [17], and then take corresponding mitigation actions to stop or slow down

the attack progress. However, such a traditional mitigation framework may face several

major challenges in the specific context of defending Kubernetes clusters (we will further

illustrate those limitations through an example in Section 2.2).

Therefore, we formulate the problem as finding a solution on how to proactively prevent

the attack while being non-disruptive to service functionality in case of false positive. This

2

is to prevent alert fatigue faced by security administrators, and develop a security solution

which is non-disruptive to the deployed services.

1.2 Research Gap

WARP mainly fills the current limitations of the state-of-the-art works as follows. The

details of the existing solutions and their limitations are elaborated in Chapter 3.

• The manual attack mitigation efforts from an admin can hardly be scalable enough

for a large Kubernetes cluster. Such efforts are usually tedious for an admin, limited

by his/her knowledge and skills, and prone to human errors. These can be exacer-

bated when managing a large Kubernetes cluster, since many alerts reported by a

detection solution (e.g., Falco) can easily cause the admin to develop alert fatigue

and subsequently miss the actual attack events.

• Moreover, in making such a mitigation decision, an admin may likely face a dilemma.

First, due to the well-known high false positive rate of most attack detection solu-

tions, the administrator may be aware that taking an aggressive action such as shut-

ting down the victim container, or disconnecting its connected users could lead to

unacceptable service disruption. On the other hand, the administrator knows the

importance of a timely mitigation action, since performing in-depth analysis and val-

idation of the reported alerts may take too long, and render the subsequent mitigation

too late to prevent irreversible damages, such as potential large-scale information

leakage or denial of service (DoS).

• Finally, knowing that any mitigation action may unavoidably incur a cost (e.g., de-

lay to services), the admin must also strive to balance security against cost through

an efficient strategy towards attack mitigation. Moreover, the multi-tenant nature of

3

cloud and its diverse applications both imply that the tenants may have very different

requirements in terms of security and costs (e.g., an autonomous vehicle application

may regard negligible delay as its top priority, while a co-located smart parking ap-

plication may value security more than delay). Therefore, it is highly challenging for

the administrator of a Kubernetes cluster to cater to those different requirements, all

through manually adjusting his/her mitigation actions.

WARP first provides an automated and proactive attack detection and mitigation to

tackle the problem of manual attack investigation and further alerts fatigue. Second, we

propose a non-disruptive mitigation solution (i.e., live migration) to address the challenge

of false positive and guarantee the service continuity. Lastly, we provide an optimization

for the mitigation selection to minimize the added cost of the mitigation while maximizing

the benefit (i.e., security or threat reduction). To the best of our knowledge, WARP is the

first work offering an optimized and automated proactive attack mitigation solution for the

containerized environments.

1.3 Thesis Contribution

In this thesis, we propose a novel framework named WARP to address the aforementioned

limitations. First, we provide a fully automated solution for performing attack mitigation

in Kubernetes clusters. This helps avoid various limitations of manual efforts and makes

attack mitigation scalable enough for large-scale applications. Second, upon a detected at-

tack, we perform proactive mitigation actions to prevent the attacker from reaching other

co-located or connected containers. Taking such early mitigation actions prior to attack

propagation can limit the scope of attack damages and prevent irreversible losses. Third,

we realize the proactive mitigation through a non-disruptive type of mitigation actions, i.e.,

live migration of Kubernetes Pods. Such mitigation actions can avoid service disruption in

4

case the detected attack turns out to be a false alarm later on, since live migration is trans-

parent to tenants, and is already being routinely performed in Kubernetes clusters for other

purposes (e.g., load balancing or maintenance). Fourth, we provide cost-effective mitiga-

tion plans through multi-objective optimization. This allows us to maximize the amount of

threat reduction achieved by our mitigation actions, while minimizing their potential delay

and overhead. Finally, we provide customized mitigation to different groups of logically

separated containers. This enables our solution to tailor the attack mitigation to the differ-

ent requirements of tenants in terms of the security level and its associated cost, as typically

specified in their Service Level Agreements (SLAs).

In summary, the main contributions of this thesis are as follows:

• As per our knowledge, this is the first proactive attack mitigation framework that can

also avoid the service disruption caused by potential false alarms. Our framework

benefits the security administrators in terms of providing an automated and proactive

attack mitigation solution based on early indicators of compromise, which grants the

administrator plenty of time to safely perform alert analysis for further development

of his/her desired mitigation without experiencing alert fatigue.

• We build the first large-scale Kubernetes attack dataset with 231K Falco alerts based

on real-world APT attacks simulated in a controlled environment. This labeled

dataset is useful to evaluate the effectiveness of any detection/mitigation solutions

that take advantage of monitoring solutions (e.g., Falco). Our dataset has been re-

leased as open-source for future research and is available on Github [18].

• Using this Falco alerts dataset, we develop an attack prediction model to learn at-

tackers’ tactics and strategies in the form of MITRE ATT&CK framework [23]. This

prediction model is learned offline and applied at runtime for attack prediction.

5

• We develop a series of techniques to predict the attacker’s probable next moves af-

ter an initial attack is detected, identify the Pods (i.e., smallest deployable units of

Kubernetes) that could become the next targets of attack propagation, evaluate the

risk of those Pods to decide when mitigation should be triggered, and finally perform

non-disruptive attack mitigation through migrating the Pods at risk according to an

optimal migration plan.

• To derive such a cost-effective mitigation plan, we formulate the migration options

and corresponding costs as a multi-objective optimization problem, prove its NP-

hardness, and develop an efficient heuristic algorithm to find solutions that can max-

imize threat reduction with minimal cost.

• We are the first to leverage network slicing [1] to apply different mitigation plans to

different slices (groups of logically separated containers), such that our attack mit-

igation can be customized for each tenant to satisfy its unique security requirement

and cost constraint.

• We implement our framework based on a Kubernetes cluster deployed with Falco.

Kubernetes is selected as it is the most popular platform for cloud native applications.

We evaluate the effectiveness and performance of our solution through experiments

and our built dataset. Our evaluation results show that WARP can mitigate up to 81%

of the attacks, and our heuristic algorithm achieves up to 30% more threat reduction

and 7% less delay while being 37 times faster compared to a standard optimization

solution.

6

1.4 Related Publications

Conference Paper. Our work for warping the defence timeline: non-disruptive proactive

attack mitigation for Kubernetes clusters has been published as an article in a peer-reviewed

conference’s proceedings:

Warping the Defence Timeline: Non-disruptive Proactive Attack Mitigation for

Kubernetes Clusters. Sima Bagheri, Hugo Kermabon-Bobinnec, Suryadipta

Majumdar, Yosr Jarraya, Lingyu Wang, and Makan Pourzandi. Proceedings of

the IEEE International Conference on Communications (ICC), Rome, Italy, 28

May - 01 June, 2023. [Published]

Journal Paper. Moreover, we extended the conference paper for ACE-WARP: a cost-

effective framework to proactive and non-disruptive attack mitigation in Kubernetes clus-

ters and submitted our manuscript to the IEEE Transactions of Information Forensics and

Security as T-IFS-16834-2023.

ACE-WARP: A Cost-Effective framework to Proactive and Non-disruptive At-

tack Mitigation in Kubernetes Clusters. Sima Bagheri, Hugo Kermabon-Bobinnec,

Mohammad Ekramul Kabir, Suryadipta Majumdar, Lingyu Wang, Yosr Jar-

raya, Boubakr Nour, and Makan Pourzandi. IEEE Transactions of Information

Forensics and Security. [Under review]

1.5 Contribution of Co-authors/Collaborators

The student co-authors’ contributions to the aforementioned publications are as follows:

Sima Bagheri contributed to the motivation, framework and design, implementation as well

as experiments. Hugo Kermabon-Bobinnec contributed to the testbed configuration, and

part of the genetic algorithm implementation.

7

1.6 Outline

The rest of this thesis is organized as follows: Chapter 2 provides the necessary background

for this dissertation. Chapter 3 covers the literature related to this thesis. We present our

solution for proactive and non-disruptive attack mitigation in Chapter 4. The implementa-

tion and evaluation results are discussed in Chapters 5 and 6, respectively. We present our

conclusion, limitations and future work in Chapter 7.

8

Chapter 2

Background and Motivation

This chapter first provides a background on containerization, Kubernetes and its runtime

security, followed by Network slicing. It then presents the motivation behind this thesis

work, and defines our threat model.

2.1 Background

Containerization and Kubernetes. The concept of containerization allows developers to

create and deploy applications faster and more securely. In contrast to virtual machines

(VMs), containers share the underlying operating system kernel and do not require the

overhead of associating an operating system per application. Kubernetes [21] is one of

the most widely adopted container orchestrators for cloud-native applications [37]. On the

left side of Figure 2.1, the Kubernetes cluster includes one Master Node and two Worker

Nodes hosting applications and services within Pods as the smallest deployable units of a

Kubernetes cluster. In this case, Pods are hosting some network functions in a 5G Service-

Based Architecture (SBA) [20]. According to the communication policies between Pods,

some of the Pods have explicit connections shown as a direct line between them.

Kubernetes Runtime Security. The cluster shown in Figure 2.1 is also configured with

9

Falco [17] is a cloud-native security tool, and a popular runtime security solution for Ku-

bernetes which reports real-time security alerts on suspicious events in the cluster. Falco

employs an agent on each Worker Node to monitor and detect malicious activities, which

will then be reported in the form of alerts to the Master Node agent.

Network Slicing. Network slicing, as a network architecture method, allows multiple logi-

cal networks (slices) to co-exist on the same virtual network infrastructure (e.g., Kubernetes

cluster) [1]. Each slice is logically isolated and can host services sharing similar require-

ments [67]. Therefore, this concept enables a Kubernetes cluster to host multiple services

with different requirements of security and delay, e.g., a 5G application for autonomous

vehicles may need close to zero delay and high security, whereas other applications (e.g.,

smart parking, and smart agricultural services) may value security over delay [1]. The left

side of Figure 2.1 depicts how those 5G network functions can be separated into multiple

slices (illustrated in different colors). In WARP, we take advantage of network slicing to

customize attack mitigation for different tenants.

Optimization. The problem of optimization in cloud computing has always been high-

lighted for optimizing the tradeoff between the gained security benefit and the imposed

cost. The employed optimization approaches in the concept of virtual network function

(VNF) placement consist of heuristics, meta-heuristics, and machine learning algorithms.

Heuristic optimization, elaborated in this thesis, is an optimization technique used to solve

the optimization problem quickly by finding near-optimal solutions. Similar to heuristics,

meta-heuristics also find promising results for a given problem. However, they are more

generic and can deal with different problems. In this thesis, we select genetic algorithm as

a meta-heuristic one and compare it with our heuristic which is specifically designed for

our optimization problem (i.e., Kubernetes Pod migration plan). Chapter 4 elaborates on

the optimization model formulation and proposed heuristic algorithm.

10

2.2 Motivating Example

Figure 2.1 depicts an attack scenario exploiting a real-world vulnerability [13] in a Kuber-

netes cluster hosting a 5G core [20].

Attack Scenario. The upper-left corner of Figure 2.1 depicts a container escaping attack

scenario (assuming security measures such as AppArmor are disabled and SYS_ADMIN

capabilities are enabled) as follows. First, the attacker exploits the above-mentioned vul-

nerability in the rightmost container (which hosts the 5G Access and Mobility Management

Function (AMF)) to escalate his/her privilege to root. Second, to escape the Pod’s isolation

and get into Worker Node 1, s/he creates a new control group (cgroup) by mounting a

cgroup controller inside the container; s/he enables the notify_on_release option

and specifies a command to be executed on the host in the release_agent file; sub-

sequently, once the cgroup process terminates, the command in the release_agent

file is executed on the host, allowing the attacker to escape into the Node. Finally, the at-

tacker now gains unauthorized accesses to other containers (e.g., Unified Data Management

(UDM)) inside the co-located Pods.

As shown in the upper-left corner of Figure 2.1, those three attack steps are assumed to

occur at time T6, T8, and T10, respectively. Falco raises an alert for each attack step, as

shown above the timeline in the upper-right corner of Figure 2.1 (Alert #1 can be ig-

nored for now and will be explained later). First, at time T6, Alert #6 reports a detected

privilege escalation in AMF. Second, at T8, Alert #8 reports a shell being spawned in-

side a container. Finally, at T10, Alert #10 reports a suspicious file access. To mitigate

the attack based on those alerts, the right side of Figure 2.1 also shows three potential

frameworks.

11

Fi
gu

re
2.

1:
M

ot
iv

at
in

g
ex

am
pl

e

12

1. Early (but disruptive) mitigation. Assume Security admin #1 would like to minimize

the security threat by taking an aggressive mitigation framework as follows. Upon the de-

tection of Alert #1 at time T1, which indicates a write operation in the binary directory

of the Authentication Server Function (AUSF) Pod, the admin promptly takes action to

block further access to its directory. However, after further investigation, s/he realizes that

Alert #1 is actually a false positive indicating no real threat. Nonetheless, his/her previ-

ous action has already caused unwanted disruption to the AUSF service, which is certainly

not acceptable.

2. Non-disruptive (but late) mitigation. On the other hand, assume Security admin #2

takes a more cautious framework to avoid causing any service disruption. Therefore, the

admin carefully analyzes each alert (till Alert #10), and eventually succeeds to identify

Alert #1 as a false positive and fully understand the attack scenario. However, by the

time s/he starts to implement the mitigation action (of enforcing a new network policy) at

time T10, it is already too late, since the confidential 5G user data managed by UDM is

already leaked out to the attacker, which is a damage that cannot be reversed.

3. Our solution. As shown at the bottom of the figure, WARP can overcome the above

limitations through a proactive and non-disruptive framework as follows. First, it proac-

tively builds an attack prediction model at offline phase (before T1). Next, upon receiving

an alert at runtime, it evaluates the risk of attack propagation by predicting potential future

attacks (using the attack prediction model, and the risk calculation formula), and triggers

a mitigation action once such a risk exceeds a predefined threshold. For instance, at time

T1, it decides that the attack propagation risk of Alert #1 is not yet sufficient to trigger

a mitigation action. However, at time T6, by applying the prediction model and risk cal-

culation to Alert #6, it predicts that a future escaping attack is probable (which would

actually happen at T8, if not prevented), and hence decides the risk is high enough (illus-

trated as the yellow to red arrow) to trigger the mitigation. Therefore, at T6, it performs

13

live migration of Pods, e.g., by migrating the Pods containing UDM, and UPF a to another

Node.

In order to settle the cluster in a secure state (i.e., minimum existing risk of attack prop-

agation), the Pods live migration follows an optimal migration plan to prevent. Therefore,

As a result, even though the attacker may still escape to the Node at T8, the threat to the

cluster is decreased as s/he would no longer have access to UDM, and UPF. Note the live

migration would not cause any service disruption even if Alert #6 later turns out to be

a false positive. Finally, as demonstrated in the magnified area, our heuristic optimization

algorithm can find an optimal migration plan more efficiently, with a higher level of threat

reduction and less cost (delay), compared to a standard (genetic) optimization algorithm.

In addition, our solution provides customizable mitigation to satisfy the tenants different

requirements via network slicing.

14

2.3 Threat Model

In the following, we define both in-scope and out-of-scope threats for this work. We mainly

focus on mitigating the potential damages caused by attack propagation inside a Kubernetes

cluster.

In-Scope Threats. The in-scope threats may include any attacks that aim at compromising

multiple Pods, whose initial step(s) can be detected by an existing detection or monitoring

tool such as Falco. Such attacks may be launched by external attackers, a malicious tenant,

or insiders whose goal is to cause large-scale damages through exploiting misconfigurations

or vulnerabilities in a Kubernetes cluster.

Out-of-Scope Threats. As WARP is designed to mitigate the damages caused by detected

attacks, both attacks that can be effectively prevented using existing solutions, and zero

day attacks that can completely evade existing detection tools are out of scope. Also, as we

focus on mitigating attack propagation, attacks whose damages can be detected in a single

step or in a single Pod are out of scope. Finally, attacks targeting lower-level infrastructures

than containers, attacks that can tamper with the integrity of WARP, Falco, and Kubernetes,

and attacks that can breach the isolation of network slicing are out of the scope of this thesis.

15

Chapter 3

Related Work

In this section, we review and compare WARP to the related works in the areas of 1) Attack

Detection and Mitigation, 2) Proactive Attack Detection and Mitigation, 3) Provenance

Analysis, and 4) Resource Placement Optimization. Besides, we provide a comparative

study based on several features and evaluate WARP with the state of the art researches.

3.1 Attack Detection and Mitigation

Most of the existing attack detection and mitigation solutions are limited to detecting at-

tacks or security policy violations in a reactive manner, which cannot prevent irreversible

attack damages such as information disclosure or denial of service. For instance, Sys-

dig [34], Falco [17], and OPA/Gatekeeper [26] are runtime attack detection tools designed

for containerized environments. The authors in [72] presented KubAnomaly, a learning-

based anomaly detection framework for security monitoring in Kubernetes. Several solu-

tions [50, 74] have been proposed to analyze the performance data of Kubernetes containers

and Pods, and detect anomalies. Unlike those reactive solutions, WARP provides a proac-

tive attack mitigation solution by predicting and mitigating the attacker’s probable next

move after an initial attack is detected.

16

3.2 Proactive Attack Detection and Mitigation

There exist efforts on security policy compliance for container-based (e.g., Kubernetes [59])

and traditional cloud environments ([36, 64, 63, 66]). The authors in [64, 65, 66] pro-

pose proactive security policy verification where the mitigation is performed at runtime.

ProSPEC [59] extends such proactive security auditing to Kubernetes. However, as these

frameworks only start the mitigation after critical events have occurred, they may still be too

late to prevent irreversible damages. Several efforts focus on proactive detection of specific

attacks. The authors in [61] propose a watermark-based framework to proactively defend

against man-in-the-middle attacks. PROLEMus [70] is a learning-based framework for

addressing denial-of-service (DoS) attacks. Unlike those existing proactive frameworks,

WARP is not limited to specific attacks, and it employs a non-disruptive mitigation frame-

work (migration of Pods), which can be launched well before the attack events actually

occur yet without the risk of causing service disruption.

3.3 Provenance Analysis

Provenance analysis solutions aim to investigate the root cause of detected attacks and do

not provide attack mitigation [56, 55, 73]. UNICORN [53] proposes a graph-based tech-

nique to investigate contextual information of stealthy APT attack steps without predefined

attack signatures. NoDoze [54] focuses on attack triaging using provenance graphs to iden-

tify anomalous paths for further manual response. Holmes [68] correlates suspicious events

with the MITRE ATT&CK framework to trigger a detection signal and provide the analyst

with a high-level graph for further actions. The authors in [38] design a learning-based

framework to build a sequence-based model out of a provenance graph to extract the attack

story. WARP can leverage analyst’s feedback after provenance analysis to improve its at-

tack detection accuracy and risk formulation, while it can complement provenance-based

17

solutions with its mitigation capability.

3.4 Resource Placement Optimization

The problem of optimal resource placement and scheduling has been studied [47, 43, 49,

40, 71, 58]. Since this problem is generally intractable, heuristics, meta-heuristics, and

machine learning algorithms are proposed to solve the problem efficiently. The authors

in [47, 45] propose a near-optimal heuristic for virtual network functions (VNF) placement

and scheduling in cloud environments with the objective of minimizing energy consump-

tion and resource utilization. VNF placement is also studied in the 5G C-RAN context

in [40]. CODO [43] presents a heuristic solution to the problem of firewall rule ordering in

the cloud to optimize network traffic, QoS/throughput, delay, and security. In Kubernetes,

the authors in [49] propose a genetic algorithm to solve the non-linear problem of mi-

croservices placement and maximize throughput. Resource allocation to containers based

on hyper-heuristic algorithms is studied in [71]. The authors in [58] study the problem

of scheduling mobile charging infrastructure for vehicles. The placement optimization to

container network functions is studied in [41]. Similarly, the reduction of cluster threat and

delay are the main objectives for the Pods migration optimization problem formulated in

this work.

3.5 Comparative Study

WARP lies at the intersection of attack detection, attack investigation and provenance, at-

tack mitigation, proactive security, and resource placement optimization. Table 3.1 presents

a comparison of WARP with existing solutions in terms of their methods, environments,

tenant adjustability, and multiple different features (i.e., proactiveness, model learning,

18

leveraging the MITRE ATT&CK framework, attack coverage, mitigation, and being non-

disruptive). If the feature is fully covered in a work, it is illustrated using (). Similarly,

if the authors partially address the associated feature, it is depicted as (H#). For instance,

if one approach is covering a specific type of attacks and it is not designed to mitigate all

known attacks, then it is a partial coverage. If the mentioned feature is not evaluated at all,

it is considered as a (-), and if a feature is not considered in an approach, it is marked as

(N/A) (e.g., the approaches that are not proposing any mitigation solution, do not have the

any form of non-disruptiveness).

As it is observed in Table 3.1, WARP combines all the aforementioned features and

builds a learning based non-disruptive mitigation based on the MITRE ATT&CK frame-

work standard. WARP provides a security solution which is adjustable based on the tenants’

requirements. However, none of the existing solutions considered the users’ needs.

19

Ta
bl

e
3.

1:
C

om
pa

ri
ng

ex
is

tin
g

so
lu

tio
ns

w
ith

W
A

R
P

Pr
op

os
al

s
M

et
ho

d
Fe

at
ur

es
E

nv
ir

on
m

en
t

Te
na

nt
A

dj
us

ta
bi

lit
y

Proactive

ModelLearning

MITREATT&CK

AttackCoverage

Mitigation

Non-disruptive

PR
O

L
E

M
us

[7
0]

M
A

C
pr

ot
oc

ol

-

H#
-

N
/A

C
og

ni
tiv

e
R

ad
io

N
et

w
or

k
(C

R
N

)
N

/A

Pr
oS

A
S

[6
6]

C
us

to
m

A
lg

or
ith

m

-

-
C

lo
ud

-

M
a

et
al

.[
62

]
C

us
to

m
A

lg
or

ith
m

-

-
H#

K
ub

er
ne

te
s

-

Pr
oS

PE
C

[5
9]

C
us

to
m

A
lg

or
ith

m

-

-
K

ub
er

ne
te

s
-

L
iu

et
al

.[
61

]
W

at
er

m
ar

k

-
-

H#
-

N
/A

C
yb

er
-p

hy
si

ca
ls

ys
te

m
N

/A

A
T

L
A

S
[3

8]
C

us
to

m
A

lg
or

ith
m

-

-

-
N

/A
W

in
do

w
s

N
/A

N
oD

oz
e

[5
4]

C
us

to
m

A
lg

or
ith

m
-

-
-

-

N
/A

W
in

do
w

s
N

/A

U
N

IC
O

R
N

[5
3]

C
us

to
m

A
lg

or
ith

m

-

H#
-

N
/A

W
in

do
w

s/
L

in
ux

N
/A

W
A

R
P

C
us

to
m

A
lg

or
ith

m

∗

K

ub
er

ne
te

s

T
he

sy
m

bo
ls

(
),

(H#
),

(-
)a

nd
N

/A
m

ea
n

fu
lly

su
pp

or
te

d,
pa

rt
ia

lly
su

pp
or

te
d,

no
ts

up
po

rt
ed

an
d

no
ta

pp
lic

ab
le

,r
es

pe
ct

iv
el

y
∗ W

A
R

P
at

ta
ck

co
ve

ra
ge

re
lie

s
on

un
de

rl
yi

ng
de

te
ct

io
n

to
ol

(C
ha

pt
er

7)

20

Chapter 4

WARP: A Cost-effective Framework to

Proactive and Non-disruptive Attack

Mitigation in Kubernetes Clusters

4.1 Approach Overview

Figure 4.1 shows an overview of WARP, including the overview of its integration to Ku-

bernetes cluster (on the left) and overview of its major steps (on the right).

Integration Overview. As shown in left side of Figure 4.1, WARP is integrated with the

Kubernetes cluster. Specifically, there is an WARP agent deployed in each Node (both

Worker and Master) of cluster. The WARP agent in Master Node is connected to Falco to

receive alerts collected from those Nodes. Additionally, the tenants’ service-level agree-

ment (SLA) policies, such as security and delay requirements, are also the input to WARP.

21

Fi
gu

re
4.

1:
A

n
ov

er
vi

ew
of

W
A

R
P

22

Approach Overview. WARP is performed in two major phases: (i) Offline Modeling, and

(ii) Runtime Detection and Mitigation. During the offline phase, WARP first formulates

an optimization model to derive cost-effective migration plan for Pods while reducing the

overall cluster threat. It also builds an attack prediction model to predict the attacker’s next

steps. During the runtime phase, WARP proactively predicts attack steps from a received

Falco alert using the prediction model and calculates the risk for each Pod. If the risk

is higher than a predefined threshold (derived from tenants’ inputs and discussed later),

WARP initiates non-disruptive mitigation where it first derives Pods migration plan using

the optimization model to minimize the cluster threat with minimum imposed delay. Thus,

it proactively prevents the attacker from proceeding with the attack. In the following, we

illustrate WARP’s framework using an example.

Example 1. Figure 4.2 illustrates a toy example to show major steps of WARP for a cluster

of two Worker Nodes (Node 1 and Node 2) where Pods are distributed over two slices

(Slice A and Slice B). First, it builds an attack prediction model (based on histor-

ical alerts) with three attack vertices where the probability for an attacker to move from

Privilege Escalation to Execution is 0.31 (i.e., edge label). Second, at run-

time, WARP receives Alert 1 related to the same attack described in our motivating

example (exploiting CVE-2021-3156) with the alert tag privilege_escalation.

Third, WARP finds the corresponding vertex (Privilege Escalation) in the predic-

tion model for the current attack and then predicts potential next moves with the highest

probability (Execution). Fourth, it calculates the estimated risks incurred by all the Pods

(Pod 1- Pod 6) in the cluster using the risk formula (explained in Section 4.2), and finds

the Pods with a risk higher than their slice threshold. Fifth, while meeting the constraints

and achieving the objective of minimizing the Threat and Delay, it finds two migration

options: (i) Pod 3 to Node 2 in Slice A, and (ii) Pod 5 to Node 1 in Slice B.

Finally, WARP performs those two migrations and thus, the cluster threat is reduced.

23

Fi
gu

re
4.

2:
Il

lu
st

ra
tiv

e
ex

am
pl

e
of

W
A

R
P

fr
am

ew
or

k
ov

er
vi

ew

24

4.2 Offline Modeling

This section elaborates on the offline phase of WARP.

4.2.1 Optimization Model Formulation

The problem of optimal Pod placement in the cluster has a trade-off between the potential

security threats to a cluster (i.e., cluster threat) and the delay involved with Pods’ migration

from one Node to another in a cluster (i.e., cluster delay). Therefore, in this step, WARP

aims at formulating the Pods placement as an optimization problem. Table 4.1 lists the

parameters used in our problem formulation. We formulate a mathematical model after

defining the input parameters, constraints, decision variables, and optimization objectives.

Table 4.1: List of input parameters

Input Symbol Description

P Set of all Pods p of the cluster

N Set of all Nodes n of the cluster

xn
p xn

p = 1 if Pod p is located at Node n; Otherwise 0

MDp Migration delay of Pod p

AVp Asset value of Pod p

Sizep Size of Pod p (in MB)

Capacityn Maximum capacity of Node n (in MB)

patt The Pod under attack

Conpp′ Conpp′ = 1 if Pod p has a network connection with Pod p′; Otherwise 0

Decision Variable. We define the decision variable ynp to represent if Pod p is migrated to

Node n or not:

25

ynp =

⎧⎪⎪⎨⎪⎪⎩
1, if Pod p migrated to Node n

0, otherwise
∀p ∈ P (1)

Constraints. At a particular time, a Pod p ∈ P can be located at only one Node n ∈ N :

∑︂
n

ynp = 1, ∀p ∈ P (2)

On the other hand, each Node n ∈ N has a maximum capacity, Capacityn, and hence,

we cannot migrate more Pods to Node n beyond its capacity as shown in Equation (3).

∑︂
p

(ynp × Sizep) ≤ Capacityn, ∀n ∈ N (3)

Here, Sizep is the size of Pod p.

Objective. Our multi-objective optimization model simultaneously intends to: (1) mini-

mize the cluster threat; and (2) minimize the migration delay for critical Pods as follows.

(1) Cluster Threat. According to our threat model, any Pod that can be reached from

the attacked Pod after a finite number of lateral movements is under threat. Therefore, the

threat of attack propagation in the cluster can be modeled as the summation of the asset

values of all such Pods. More formally, we define a binary relation R over the set of Pods

P to represent the collection of pairs of Pods that are reachable using direct connection or

co-location:

R = {(pi, pj) | pi, pj ∈ P, (Conpipj
= 1) ∨ (∃n ∈ N, ynpi

× ynpj
= 1)} (4)

Let R∗ be the transitive closure [69] of R (i.e., the collection of pairs of Pods that are

reachable via a finite number of applications of R). Given any attacked Pod patt, we can

then define the cluster threat, T, using R∗. Specifically, as Equation (5) shows that the

cluster threat is modeled as the total asset value that could potentially be affected by attack

26

propagation from the attacked Pod to all other Pods which are either directly connected or

co-located with the attacked Pod.

T =
∑︂

p: (patt,p)∈R∗

AVp (5)

2. Delay. The total migration delay D is expressed as:

D =
∑︂
p

(1−
∑︂
n

xn
py

n
p)×MDpn ×AVp (6)

MDpn is the delay of migrating Pod p to Node n, and when Pod p is not migrated (i.e.,

xn
p = ynp), (1 −

∑︁
n x

n
py

n
p) = 0, and hence, according to Equation (6), Pod p does not add

any delay. Moreover, we also weigh the delay of each Pod with its asset value to express

that the migration delay has more impact on Pods with higher asset values (likely critical)

than on Pods with lower asset values (less critical).

Therefore, we can formulate a multi-objective optimization problem to minimize both

the cluster threat (T) and delay (D). Alternatively, we can also combine the two objectives

through a weighted sum, with α and β as the weighting factors that are used to adjust the

relative importance of each objective (with α+β = 1). Therefore, if minimizing the threat

is more important than maintaining low latency, then α should be larger than β, and vice

versa. In practice, α and β can be adjusted as per each tenant’s requirements. Hence, our

optimization problem can be formally defined as follows.

Definition 1. Given a set of Nodes N , a set of Pods P , and a Pod patt ∈ P under attack,

minimize (T,D) or minimize (αT+ βD) under given constraints.

Theorem 1. Our problem in Definition 1 is NP-hard.

Proof. We reduce the well-known NP-hard Minimum Dominating Set problem [52] (i.e.,

finding a subset of nodes in a graph such that every node in the graph is either in the

subset or adjacent to another node in the subset) to our problem. Consider any instance

27

G = (V,E) of the Minimum Dominating Set problem, where V is the set of vertices and

E the set of edges. We construct an instance of our problem as follows. For each v ∈ V ,

we create a Node that contains two Pods, one with asset value 0, and the other with asset

value 1. For each e ∈ E, we assign a migration delay of 0 for migrating a Pod with asset

value 0 in either direction of the edge, and a migration delay of 1 for all other migrations.

We also assume the attacked Pod patt is not co-located with, but connected to, all the Pods

with asset value 0.

Let α = 1 and β = ∞. To minimize (αT+βD), we must have D = 0, while minimizing

T. First, to achieve D = 0, we can only migrate the Pods with asset value 0 along each

edge in either direction (since all other migrations have a delay of 1). Second, to minimize

T, we need to minimize the total number of Nodes that contain Pods with asset value 0

after migration, since each such Node will incur a threat of 1.

To minimize the total number of Nodes containing Pods with asset value 0 after mi-

gration, we need to find a minimum subset of Nodes, such that every Node n we create is

either already in this subset (no migration is needed), or adjacent to another Node n′ in the

subset (the Pod with asset value 0 in n′ will be migrated to n, with a delay of 0), which

is equivalent to the dominating set. Therefore, finding a solution to this instance of our

problem yields a solution to the given instance of the Minimum Dominating Set problem

in polynomial time. Since the latter is known to be NP-hard, this concludes the proof.

4.2.2 Attack Prediction Model Building

This step is to build an attack prediction model based on the historical Falco alerts to predict

the attacker’s next move. Specifically, WARP first collects and processes Falco alert logs

of Pods in a cluster by parsing the alert log entries from different Pods and extracting

their mitre <tactic name> tag and forms a sequence. Second, WARP learns the

predictive model from the sequences of tactics by leveraging Bayesian network [57] for

28

this model where Nodes indicate MITRE ATT&CK tactics, edges indicate their transitions

and are labeled with probabilities of transitions.

Example 2. Figure 4.3 shows an example of this model built out of the MITRE tactic pa-

rameter in the alerts. Our attack scenario tactics (highlighted in red) start from the Privilege

Escalation, lead to Execution and then use Persistence, with a probability of 31% and 25%,

respectively.

Figure 4.3: Attack prediction model example

4.3 Runtime Detection and Mitigation

This section presents the steps during our runtime phase.

29

4.3.1 Proactive Attack Prediction

This step is to predict future attacks based on alerts raised by Falco at runtime. To that

end, WARP first applies the previously built attack prediction model to find the attacker’s

potential next step. Then, it calculates the risk for Pods by examining the alert parameters

where it assigns each parameter a value according to the definition given below. If the

calculated risk exceeds a predefined threshold, it performs the Pods migration based on

optimization model (as in Section 4.3.2).

Example 3. Figure 4.4 shows how the risk associated with pod_one is calculated using

our risk formula (Equation (7)). The MITRE ATT&CK tactic for the observed alert is

Privilege escalation. Therefore, according to Figure 4.3, the next likely tactic

is Execution. Other variables of the risk formula are extracted from alert as shown in

Figure 4.4. Finally, the overall risk for pod_one is calculated using the following formula.

Risk = Priority_Severity ×MITRE_Tactic_Severity×

Context_Severity ×Next_MITRE_Tactic_Probability×

max(NEXT_MITRE_Tactic_Severity)×Asset_V alue

(7)

Figure 4.4: Parameters value extracted from a received Falco alert

In the following, we describe the Equation (7) parameters.

• Priority Severity [1− 5]: is enumerated from one to five based on the priority pa-

rameter in a Falco alert (i.e., Debug, Notice, Warning, Error, and Critical), respec-

tively.

30

• MITRE Tactic Severity [1− 5]: is the average priority severity of all alerts for one

MITRE ATT&CK tactic.

• Context Severity [1− 5]: is assigned to alert parameters depending on their prede-

fined malicious level.

• Next MITRE Tactic Probability [0− 1]: is the probability of the attacker’s next

tactic from the prediction model.

• Asset Value [1− 5]: is assigned by security admin to each Pod based on the relative

importance of hosted services and information.

• Next MITRE Tactic Severity [1− 5]: is the MITRE Tactic Severity for the next

predicted tactic.

4.3.2 Non-disruptive Attack Mitigation

This step is to perform the mitigation when the associated risk for at least one Pod is higher

than a certain threshold. WARP optimally mitigates by reducing both the migration de-

lay and overall threat so that with the growing number of migrations, it does not incur

prohibitive delay to the users. Specifically, WARP first obtains the current placement in-

formation of the entire cluster. Second, it finds the optimal migration plan that leads to

a safer cluster state using the previously formulated optimization model and our heuristic

algorithm, Proactive 0Ptimization (P0P) as in Algorithms 1 and 2, discussed later. Third,

WARP utilizes CRIU [11] to migrate the selected Pods to the selected Nodes, and finally,

the cluster transits into a state with reduced threat. In the following, we elaborate on our

heuristic optimization algorithm.

31

4.3.2.1 Objective Optimization with P0P

As the optimization problem formulated in Section 4.2.1 is non-linear in nature, we first

explore the potential of using standard heuristics such as genetic algorithms to find near-

optimal solutions for the problem. However, our evaluation in Chapter 6 will show, such a

standard optimization algorithm not only finds sub-optimal solutions, but also is computa-

tionally more expensive. In WARP, the Optimization sub-step first applies our optimization

model (see Section 4.2.1) and seeks to minimize the threat while minimizing the migration

delay using our proposed heuristic algorithms (Algorithms 1 and 2). Next, the Network

Slicing sub-step ensures the Pods are placed in their corresponding slices. Finally, using

the migrations discovered with Algorithm 1, WARP performs the actual Pod migration

from source to destination Node.

The optimal Pods placement problem can be divided into three sub-problems to prevent

recomputing the steps (a dynamic programming-based framework [46]) as follows.

1. Threat: isolating the Pods that are either directly connected or co-located with the

attacked Pod (patt).

2. Delay: having the maximum delay tolerance in each tenant’s SLA and each Pod

migration delay (MDp), find the maximum possible number of Pods allowed to be

migrated.

3. Capacity: having each Node size (Capacityn), and Pod size (Sizep), find the maxi-

mum possible number of Pods to be placed in each Node.

Algorithm 1 solves the Threat, and Delay sub-problems. Using a breadth-first search

algorithm (BFS), it finds all the Pods connected to the attacked Pod(s) (both direct connec-

tion, and co-location), defined as HotPods (Line 1). For the Delay sub-problem, it finds

the maximum number of migrations (Line 2). In Lines 3 and 4, it finds the OptimalNode

for migration destination. This Node has the minimum asset value of Citizens (i.e., Pods

32

that do not belong to HotPods). The OptimalNode is the best destination as it hosts less

important Citizens in case a HotPod migrates there. In Lines 5-7, as long as we do not

exceed the delay constraint, HotPods are migrated to the OptimalNode, and placed in

their slice. Eventually, if we are left with Migrations, we attempt to evict Citizens to

another Node and thus achieve more isolation for the HotPods. The complexity of BFS is

O(Pods+ Connections), and accordingly P0P complexity is linear.

Algorithm 2 is called right before the migration to solve the Capacity sub-problem. It

stores the result of a maximum number of Pods per Node in LNodeCapacity (Lines 1 and 2).

The preservation of the result in this list prevents the recursive computation, and reduces

the algorithm complexity. Lines 5 and 6 are to meet the MaxCapacity and MaxDelay

constraints. Lines 7 and 8 perform the migration to the Destination Node using CRIU,

and return the delay. In case the delay exceeds the delay constraint, the algorithm stops,

and in case a capacity constraint is exceeded, the next available Node from LNodeCapacity is

selected as destination.

4.3.2.2 WARP with Network Slicing

The main goal of network slicing is to provide tenants with a proactive security solution

that can be customized based on their requirements (i.e., security and delay). Network

slicing can be leveraged to have many logical networks (slices) over the cluster through

three different methods as follows.

No Network Slicing. In the first method, all services are deployed in the Kubernetes cluster

without being logically separated (i.e., no network slicing). Although there is much less

network complexity, it is not possible to differentiate between different tenants services. As

a result, WARP is obliged to set one global threshold for the whole cluster, which eventually

sacrifices some services requirements over the others.

Network Slicing - Type One. In the second method, there is one slice per Node hosting

33

Algorithm 1 P0P

1: Input: G: Cluster graph, MaxDelay, LNodes: Nodes list, LAttackedPod: Attacked Pods
list

2: Output: G′: Optimized cluster graph, Delay
3: HotPods = BFS(G,LAttackedPod)
4: Migrations = Max_Num_Migration(MaxDelay)
5: OptimalNode = Find_Optimal_Node(G)
6: Citizens = Find_NonHot_Pod(OptimalNode) ▷ List of Pods to be potentially

compromised sorted by their asset value
7: while (Migrations > 0 and Len(HotPods) > 0) do
8: Delay += Migrate(G,HotPods.pop(0), OptimalNode)
9: Adjust_Network_Slice()

10: end while
11: ▷ Number of HotPods is less than delay tolerance ▷ Citizen Pods eviction to other

Nodes due to threat
12: if Migrations > 0 then
13: while Migrations > 0 and Len(Citizens) > 0 do
14: Delay += Migrate(G,Citizens.pop(0), LNodes −OptimalNode)
15: Adjust_Network_Slice()
16: end while
17: end if
18: Return G’, Delay

services with similar requirements. Although this framework can take advantage of WARP

in terms of different thresholds per slice, it has several disadvantages. First, in the case of

service scaling, a Node is fully devoted per slice, which is not efficient in terms of resource

utilization. Second, deploying Pods with similar services in one Node, exposes them to a

single point of failure (SPOF) risk. Third, this method might interfere with our optimization

objectives. For instance, if WARP decides to migrate Pod p to Node n, and Node n does

not host its slice, the migration plan must be modified.

Network Slicing - Type Two. In the third method, all slices are present in each Node, to

overcome the previous method’s disadvantages. Therefore, not only it does not interfere

with P0P’s optimization objectives, but also it distributes the Pods over multiple Nodes,

using the resources efficiently, and resulting in less risk of SPOF. Example 4 depicts the

P0P logic.

34

Algorithm 2 Migrate(G,Pod,Destination)

1: for Node in LNodes do
2: LNodeCapacity = Max_Num_Pods(Node)
3: end for
4: while Len(LNodeCapacity) > 0 do
5: if Check_Capacity(Destination) then
6: if Check_Delay(Pod) then
7: MigDelay = CRIU(Pod,Destination)
8: Adjust_Network_Slice()
9: else

10: Return : 0 ▷ Beyond MaxDelay
11: end if
12: else
13: Destination = LNodeCapacity.pop(0) ▷ Next available Node
14: end if
15: end while
16: Return MigDelay

Example 4. Figure 4.5 depicts an example of P0P logic and illustrates its adjustability

to the tenants’ requirements with three services (A, B, and C) deployed in their slices

in the cluster. As shown in Figure 4.5a, A1 is identified as the AttackedPod during the

Proactive Attack Prediction step. The HotPods are either co-located or directly connected

with A1. Therefore, services B and C are included in the cluster threat as well. Based

on Algorithm 1, HotPods are: A2, and A3 due to co-location and B2, and C3 due to

direct connection with A1. The OptimalNode is Node 1, because it has less asset value

compared to other Nodes. B1 Pod is a Citizen as a non-hot Pod. The goal is to isolate

the AttackedPod and the HotPods in the OptimalNode, and evict the Citizens,

as long as there are available migration moves. Therefore, C3 is migrated to Node 1, and

Citizen B1 is migrated to an available Node (e.g., Node 2) in its own slice.

35

(a) Before: attacker initial step

(b) After: WARP mitigation

Figure 4.5: WARP and network slicing

In the second part of this example, we elaborate on the advantage of network slicing

for tenants’ requirements adjustability. Table 4.2 compares the three slicing methods for

the three aforementioned services. Suppose services A, B, and C require 80, 70, and

60 (%) security, and accept up to 2, 1, and 0.5 (seconds) delay, respectively, according to

the tenants’ SLA specifications. As a result, in case of not utilizing network slicing, either

36

security or delay is sacrificed for some services over others because of selecting a global

threshold (e.g., 40%). However, both network slicing types (Type one and Type two) can

adjust with each service requirement.

Table 4.2: WARP in 5G - example with three services

Frameworks
WARP Threshold per

Service Resource Utilization
(# of Nodes)

A B C
No Network Slicing 30% 30% 30% 3

Network Slicing- Type One 27% 42% 53% >3
Network Slicing- Type Two 27% 42% 53% 3

4.3.2.3 Mitigation

This step is to perform mitigation by using the optimization result as a migration plan (i.e.,

list of Pod(s) to be migrated to the selected destination(s)). There are several ways for Pods

migration, and we detail three of them as follows.

Kubernetes Rescheduling and Docker. Utilizing Kubernetes rescheduling for Pod mi-

gration poses the major limitation due to the lack of control over the destination Node

selection, which is in contrast to P0P objective optimization [10]. Although, Pods’ anti-

affinity can be used to modify the destination Node, it requires yaml file modification at

runtime (e.g., specifying Nodes for the Pods through labels). Since, any changes to the

yaml file requires Pod redeployment, this method is not efficient for our purpose. Docker

has a similar but more efficient mechanism as Kubernetes, by stopping the Pod, pushing

into a local repository and recreating it in a new Node. However, its incurred delay might

not be desirable to the end user.

CRIU. CRIU [11] is a checkpoint and restore tool that can be used to migrate containers

by saving the latest checkpoint of the container’s state in the disk and restoring them in

a new Pod at the destination Node. CRIU keeps the network connection states inside the

37

containers to meet the non-disruptive migration principle. In WARP, CRIU checkpoints

the latest state of the container prior to the Falco alert and ensures that the state is prior

to the attacker’s presence. After saving checkpoint, the Pod is immediately deleted (to

minimize the attacker time window), and restored with its checkpoint in the destination

Node. During the restoring process (i.e., migration), a delay is experienced by the end user

which is discussed in Section 6.1. We overlook the checkpoint transfer time to the disk, as

several transfer methods (e.g., SSH/SCP, FTP, rsync [31]) exist with various performances.

38

Chapter 5

Implementation

5.1 Implementing and Integrating WARP with Kubernetes

WARP is implemented and integrated with Kubernetes following the architecture shown

in Figure 5.1. Specifically, WARP is implemented in Python 3.8 and integrated with Ku-

bernetes v1.20.2. The physical infrastructure is composed of one physical rack-mounted

server with 2x Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz and 128GB of DDR4-2933

running Debian 10. Our Kubernetes cluster is hosted over 11 VMs (one Master Node and

ten Worker Nodes) running Lubuntu 20.04, with VirtualBox 6.1 as the hypervisor. For

alert collection, we deploy Falco in our Kubernetes cluster using its official Helm deploy-

ment [19]. The prediction model (Bayesian network) is implemented using the pgmpy

library [39]. At runtime, we leverage CRIU v0.27.0 [11] for mitigation (i.e., Pods migra-

tion). For network slicing, the netaddr Python library [25] is used.

39

Fi
gu

re
5.

1:
W

A
R

P
ar

ch
ite

ct
ur

e

40

5.2 Auto-scaling WARP

Kubernetes along with the underlying cloud infrastructure supports automatic horizontal

scaling, which can dynamically adjust the cluster to the tenants’ service requirements by

increasing or decreasing the number of Pods/Nodes in the cluster.

Similarly, we implement WARP in such a way that it can also scale horizontally us-

ing Kubernetes DaemonSet [14]. Specifically, new WARP agents will be automatically

created upon Nodes scaling up, and those agents will communicate with the main WARP

agent (deployed in the Master Node) to obtain its configuration regarding network slices

(i.e., threshold values, as detailed below). In case of Node termination due to services scal-

ing down, Kubernetes will take care of gracefully terminating the Pods containing WARP

agents.

5.3 Portability to Other Cloud Platforms

WARP can potentially be adapted to other major cloud platforms, such as Amazon Elas-

tic Container Service (ECS) [2] and Microsoft Azure [22]. The components of WARP

that may depend on the platform include the runtime monitoring tool, the mapping be-

tween alerts and MITRE tactics, and the migration. First, different monitoring tools (e.g.,

Falco [17], Sysdig Secure [35], and Prometheus [29]) may be leveraged for different cloud

platforms. Also, there are different dedicated plugins to handle the MITRE ATT&CK

framework in different cloud platforms (e.g., in Azure Platform Logs [24] and AWS [5]).

Second, although the optimization step is platform-independent, the migration step of

WARP will depend on specific migration techniques used in the cloud platform. Finally,

WARP is independent of the container orchestrator and can thus work for other orchestra-

tion systems such as Docker Swarm [15] or OpenShift [27].

41

Ta
bl

e
5.

1:
O

ve
rv

ie
w

of
si

m
ul

at
ed

A
PT

at
ta

ck
s

an
d

ex
pl

oi
ts

fo
rW

A
R

P
da

ta
se

t

A
tt

ac
k

ID
A

tt
ac

k
C

am
pa

ig
n

C
V

E
N

um
be

r
A

tt
ac

k
Fe

at
ur

es
a

PL
PA

IN
J

IG
B

D
M

IT
R

E
AT

T
&

C
K

Ta
ct

ic
Se

qu
en

ce
b

1
A

PT
3

[4
]

20
15

-3
11

3
✓

✓
✓

✓
✓

E
xe

,D
E

,D
is

,D
E

,L
M

2
Sp

am
ca

m
pa

ig
n

[7
]

20
17

-1
18

82
✓

✓
✓

✓
D

is
,P

er
,E

xe
,D

E
,D

E
,L

M
,E

xf

3
A

PT
29

[3
]

20
21

-3
69

34
✓

✓
✓

✓
✓

Pe
r,

E
xe

,D
E

,P
E

,D
E

,D
is

,L
M

,I
A

,P
er

,P
E

,D
E

4
E

sc
ap

e
at

ta
ck

[1
6]

20
21

-3
15

6
✓

PE
,E

xe
,P

er

5
Si

m
ul

at
ed

cr
yp

to
m

in
er

sp
re

ad
[1

2]
20

17
-1

02
71

✓
✓

✓
✓

D
is

,E
xe

,P
er

,D
E

,L
M

6
R

oo
td

at
a

th
ef

t[
30

]
20

20
-1

43
86

✓
✓

✓
D

is
,P

er
,P

E
,E

xf
,P

er
,L

M

7
SW

C
[3

3]
20

15
-5

12
2

✓
✓

✓
✓

D
is

,E
xe

,D
E

,P
er

8
Ta

rg
et

ed
go

v
ph

is
hi

ng
[2

8]
20

15
-5

11
9

✓
✓

✓
✓

D
is

,P
er

,L
M

,E
xf

a
PL

:P
hi

sh
in

g
em

ai
ll

in
k.

PA
:P

hi
sh

in
g

em
ai

la
tta

ch
m

en
t.

IN
J:

In
je

ct
io

n.
IG

:I
nf

or
m

at
io

n
ga

th
er

in
g.

B
D

:B
ac

kd
oo

r.
b
E

xe
:

E
xe

cu
tio

n,
D

E
:D

ef
en

se
E

va
si

on
,D

is
:

D
is

co
ve

ry
,L

M
:L

at
er

al
M

ov
em

en
t,

Pe
r:

Pe
rs

is
te

nc
e,

PE
:P

riv
ile

ge
E

sc
al

at
io

n,
IA

:I
ni

tia
lA

cc
es

s,
E

xf
:E

xfi
ltr

at
io

n

42

5.4 Building Dataset

To facilitate learning our prediction model (see Section 4.2.2) and to support future re-

search, we build a relatively large dataset of Falco alerts for Kubernetes, which is publicly

available on GitHub [18]. Our dataset includes the alert samples of both normal activities

and (APT) attacks and it is valuable for evaluating the effectiveness of the security moni-

toring and attack prevention approaches. A sample of Falco alert is depicted in Figure 4.4.

For normal activities, we rely on the fact that Falco generates normal daily routine alerts

even in the absence of any attack, therefore we collected these samples and labeled them

as “normal”. For the attack alerts, we leverage CALDERA [6], an adversary emulation

platform developed by MITRE, to mimic different attacks in a Kubernetes cluster. Finally,

our dataset contains 231K alerts (including 2,314 attack alerts and 228,686 normal alerts).

Table 5.1 provides more details of those attacks including the attack feature(s) they follow

and the MITRE ATT&CK tactic sequences collected and extracted from the alerts.

Challenges. During building this dataset, we encountered several challenges as follows.

First, Falco alerts may be reported at a high rate from many unrelated resources in a Ku-

bernetes cluster. To identify correct alert sequences and reconstruct the attack steps, we

wrote scripts to automatically aggregate the alert by resources (e.g., using the container

IDs) and then extract the MITRE ATT&CK tactics’ property from the sequence of alerts

on each container. Second, the original dataset we obtained is imbalanced with a sig-

nificantly higher number of normal alerts than attack ones, as Falco tends to generate a

considerable number of alerts for normal system events. To obtain a realistically balanced

dataset [38] for our experiments, we undersample the normal alerts by filtering out normal

alerts that share more than 80% similarities, and oversample the attack alerts by duplicat-

ing attack alerts (since different attacks may share similar tactics regardless of the exploited

vulnerability or the executed payload [38]).

43

Chapter 6

Evaluation

This section evaluates the effectiveness of WARP. In particular, we investigate the follow-

ing research questions (RQ):

RQ1. What is the cost of Pod migration?

RQ2. How effective is our optimization algorithm (P0P)?

RQ3. How effective is WARP for mitigating attacks?

RQ4. How much overhead does WARP incur?

RQ5. What is the impact of network slicing on WARP?

6.1 Migration Cost

To answer RQ1, we need to measure the cost of migration. To clarify, the imposed cost

of migration (i.e., delay) depends on the CRIU checkpoint/restore process which is based

on the container size. In the following experiments, we first compare different migration

solutions in terms of delay for containers of different sizes. Second, we deploy ten different

44

sized services as Pods, and evaluate the migration delay for each service under different

threshold values, along with the number of triggered migrations.

Migration frameworks Comparison. As discussed in Section 4.3.2.3, migrating a Pod

is performed by migrating its container(s). In this set of experiments, we measure the de-

lay caused by three popular migration methods (i.e., CRIU, Kubernetes rescheduling, and

Docker) for containers of different sizes. Among the three methods shown in Figure 6.1a,

we find that CRIU has the best performance (i.e., the lowest delay) as it stores the check-

points directly in memory. Moreover, unlike other methods, it does not need to redeploy

the Pods from yaml files (cf. Kubernetes rescheduling), or fetch the Pods image from

repositories (cf. Docker) [11].

Migration Delay on Services. Figure 6.1b depicts the impact of service size over the mi-

gration delay for ten services (i.e., Services 1-10) with different sizes of Pods (from 22 MB

to 316 MB). Even under a threshold of 30% (a smaller threshold means more frequent mi-

gration), the average delay is no more than 3.1 (seconds). In addition, Figure 6.1c measures

the number of migrations/hour for those ten different services under different thresholds.

As expected, a higher threshold value triggers less frequent migrations and hence less delay

to the services (e.g., Services 1, 2, and 3 under 70% threshold). Finally, Figure 6.1d shows

both the number of migrations per hour and the average delay under various threshold val-

ues, which both decrease under larger values of thresholds. Although there is an inherent

trade-off between mitigation effectiveness and migration delay, the impact on services is

generally negligible and, more importantly, non-disruptive.

45

21.9 52.3 90 124 154.2
Container Size (MB)

0

50

100
D

el
ay

 (s
)

K8S Rescheduling
Docker
CRIU

(a) Migration frameworks comparison

22 56 88 115147170202236260316
Service Size (MB)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
ve

ra
ge

 D
el

ay
 (s

) Threshold
30%
50%
70%

(b) Migration average delay/service

1:222:563:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

2
4
6
8

10
12

N
um

be
r o

f M
ig

ra
tio

ns
(/h

ou
r)

Threshold
30% 50% 70%

(c) Number of migrations/hour

10 20 30 40 50 60 70 80
Threshold (%)

0

10

20

N
um

be
r o

f M
ig

ra
tio

ns
(/h

ou
r)

0

2

4

A
ve

ra
ge

 D
el

ay
 (s

)Num. of Migrations
Average Delay

(d) Migration frequency and delay

Figure 6.1: Migration frameworks comparison and cost analysis

6.2 Optimization Effectiveness

To answer RQ2, we compare our P0P heuristic algorithm with a standard optimization

solution (genetic algorithm (GA) [44]).

To evaluate the effectiveness of those two algorithms, we measure the cluster threat

reduction (Figure 6.2a) and the number of migrations (Figure 6.2b) for 0.5% and 1% attack

data under different cluster sizes. As shown in those results, P0P achieves a significant

reduction in cluster threat, with an average decrease of 95% and 90.3% for 0.5% and 1%

attack data, respectively. On the other hand, GA exhibits a reduction in cluster threat by

76.3% and 70.8%, respectively.

We also compare the number of migrations required by P0P and GA for reducing the

46

cluster threat (Figure 6.2b). P0P achieves more threat reduction while migrating less Pods

under all sizes of clusters. Note the total number of migrations is reasonable consider-

ing the fact that the average migration delay per Pod is only about 0.87 seconds using

CRIU (Figure 6.1a).

For further evaluation, we perform a stress test on both P0P and GA to evaluate their

effectiveness in reducing the cluster threat under different percentages of attack data for a

large cluster of 1,000 Pods in 33 Nodes (Figure 6.2c). Overall, P0P performs significantly

better than GA (i.e., 20% more threat reduction on average). Under larger percentages

of attack data, both algorithms struggle to minimize threat as more Pods are exposed to

attacks; however, P0P still outperforms GA.

In addition, we consider the case where tenants specify a constraint on the total delay

(i.e., the delay accumulated over all migrations, see Section 4.2.1). Figure 6.2d shows the

results of employing P0P to reduce the cluster threat while satisfying delay constraints.

The results demonstrate that, for smaller clusters, a stricter delay constraint does not make

a significant difference in threat reduction. However, when the size of the cluster grows,

more relaxed delay constraints become necessary, as more Pods might need to be migrated

in a larger cluster (note the delay per Pod, which is what tenants would experience, remains

negligible, e.g., 0.87 (seconds) using CRIU).

47

200/6 400/13 600/20 800/26 1000/33
Cluster Size (Pods/Nodes)

0

20

40

60

80

100
C

lu
st

er
 T

hr
ea

t R
ed

uc
tio

n
(%

)

(a) Threat reduction per cluster size

200/6 400/13 600/20 800/26 1000/33
Cluster Size (Pods/Nodes)

0

10

20

30

40

50

N
um

be
r o

f M
ig

ra
tio

ns P0P 0.5% attack
GA 0.5% attack
P0P 1% attack
GA 1% attack

(b) # of migrations per cluster size

0.5 1 5 10 15
% of Attack Data

0

50

100

C
lu

st
er

 T
hr

ea
t

R
ed

uc
tio

n
(%

) P0P
GA

(c) Attack data impact (1000 Pods/33 Nodes)

10 15 20 25 30
Delay Constraint (s)

0
20
40
60
80

100

C
lu

st
er

 T
hr

ea
t

R
ed

uc
tio

n
(%

) Pods/Nodes
50/4
150/6
450/12
950/22

(d) The delay/threat trade-off

Figure 6.2: Cluster threat reduction and delay comparison ((a), (b), (c): no delay constraint)

6.3 WARP Effectiveness

To answer RQ3, we evaluate the effectiveness of WARP in attack mitigation in terms of

mitigating attack alerts (i.e., true positives), non-attack alerts (i.e., false positives), and

missed attack alerts (i.e., false negatives). Table 6.1 shows the numerical results for six of

the simulated attacks.

For a lower threshold value (e.g., 30%), WARP is more aggressive and hence results

in a higher mitigated attack alert rate (a lower missed attack alert rate) and a higher false

positive rate (Figure 6.3). Therefore, adopting such a lower threshold is generally prefer-

able, especially considering that the false positives have less impact under WARP due to

the non-disruptive nature of migration (i.e., they only result in a slightly increased delay

but no disruption to the services).

48

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(a) Threshold = 30%

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(b) Threshold = 50%

1:22 2:56 3:88
4:115

5:147
6:170

7:202
8:236

9:260
10:316

Service Number : Size (MB)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Missed Attack Alert
False Positive
Mitigated Attack Alert

(c) Threshold = 70%

Figure 6.3: WARP effectiveness

49

Table 6.1: WARP effectiveness per attack and dataset

Threshold Average per Attack
(%) Total Dataset (%)Attack ID

1 2 3 4 5 6
30% Mitigated

Attack
Alerts (%)

60 91 68 91 95 89 81 81
50% 0 85 40 77 84 79 61 61.95
70% 0 68 30 44 67 65 45.6 42.54
30% False

Positive(%)

32 39 39 42 77 38 39 35.1
50% 8 34 29 34 35 33 28 26
70% 8 24 18 23 31 28 22 18.29

Attack Progress. We conducted another set of experiments (as shown in Figure 6.4) to

evaluates the effectiveness of WARP for mitigating three sample attacks (i.e., SWC, APT

3, and APT 29) under different threshold values (reflected by the number of received Falco

alerts). The risk values are calculated using the method described in Figure 4.4 upon re-

ceiving each Falco alert. For instance, APT 29 is completed with ten alerts received, and

the associated risk value stays in the range of very low during the first three alerts and

reaches to high after Alert 7. As the figure shows, for different thresholds (30%, 50%, and

70%), indicated by horizontal dashed line, WARP will mitigate the attacks at different risk

levels. A threshold of 30% (Figure 6.4a) can mitigate all the attacks and prevent potential

damages to the cluster. A higher threshold of 50% (shown in Figure 6.4b) will mitigate

APT 29, while allowing APT 3 and SWC to successfully complete without being miti-

gated. Finally, a threshold of 70% (shown in Figure 6.4c) will only mitigate APT 29 at the

high risk level, and the other attacks will complete successfully. The implication of those

results is that a security admin could generally choose a lower threshold to mitigate attacks

more effectively (although it also implies a slightly higher migration delay, as shown in the

following experiments).

50

0 1 2 3
Attack Alert

0

2500

5000

7500
R

is
k

Very Low

Low

Medium

High

Threshold = 30%

SWC APT3 APT29

(a) Threshold = 30%

0 1 2 3 4 5 6
Attack Alert

0

2500

5000

7500

R
is

k

Very Low

Low

Medium

High

Threshold = 50%

SWC APT3 APT29

(b) Threshold = 50%

0 1 2 3 4 5 6 7
Attack Alert

0

2500

5000

7500

R
is

k

Very Low

Low

Medium

High
Threshold = 70%

SWC APT3 APT29

(c) Threshold = 70%

Figure 6.4: Attack progress

51

6.4 Performance

To answer RQ4, we perform two experiments to evaluate the execution time and CPU con-

sumption. Figure 6.5a shows the execution time for various cluster sizes, considering 0.5%

and 1% attack data. The results demonstrate that P0P surpasses GA in terms of perfor-

mance. Specifically, P0P makes its decision in less than a second even for a relatively large

cluster. Figure 6.5b shows the CPU consumption of WARP running under three different

thresholds. A lower threshold triggers more frequent migrations resulting in higher CPU

usage on average (spikes in the graph). However, even under a lower threshold (e.g., 30%),

the CPU consumption increases only by 20% compared to the cluster’s normal CPU usage.

52

50/4
150/6

250/8
350/10

450/12
550/14

650/16
750/18

850/20
950/22

Cluster Size (Pods/Nodes)

0

50

100

Ex
ec

ut
io

n
Ti

m
e

(s
) P0P 1% attack

GA 1% attack
P0P 0.5% attack
GA 0.5% attack

(a) P0P Execution time

0 1000 2000 3000 4000
Time (s)

0

25

50

75

100

A
dd

ed
 C

PU
 (%

)

Threshold
30%
50%

70%
Normal

(b) WARP CPU consumption

Figure 6.5: Performance overhead

6.5 Adjustability to Tenants’ Requirements

To answer RQ5, this experiment studies how network slicing can meet different services’

requirements, and how WARP can be leveraged as an adjustable security solution.

Figure 6.6 shows both delay and threat reduction deviation from the actual require-

ments for each service with and without the network slicing. When network slicing is not

53

considered, one global threshold is set for all services, and therefore WARP may sacrifices

requirements (i.e., providing more or less security/delay than what each service require).

On the other hand, when network slicing is considered, each slice has its own threshold

value instead of a global one. Hence, each WARP agent (residing in a Node) performs the

migration for threat reduction based on its own threshold value. Subsequently, WARP is

able to fully meet the different requirements of services, as demonstrated by a close-to-zero

deviation from the tenant requirement. adjustable security solution.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Service Number (#)

10
5
0
5

10
15
20
25
30

C
lu

st
er

 T
hr

ea
t R

ed
uc

tio
n

D
ev

ia
tio

n
(%

)

Security Requirement
Network Slicing
No Network Slicing

(a) Threat reduction

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Service Number (#)

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
el

ay
D

ev
ia

tio
n

(s
)

Delay Requirement
Network Slicing
No Network Slicing

(b) Imposed delay

Figure 6.6: Effect of network slicing

54

Chapter 7

Conclusion

In this thesis, we presented WARP, a cost-effective and fully automated framework for

proactive and non-disruptive attack mitigation in Kubernetes clusters. WARP avoids vari-

ous limitations of manual efforts and makes attack mitigation scalable enough for large-

scale applications. The main contributions of our framework is being proactive, non-

disruptive, and cost-effective which prevents the attacker from proceeding into the clus-

ter by deploying in advance non-disruptive mitigation, i.e., live migration of Kubernetes

Pods. We satisfied proactiveness through proposing a prediction model built out of MITRE

ATT&CK tactics. We utilized this model to identify the resources under the risk of attack

propagation. Next, we designed our non-disruptive migration and leveraged optimization

to apply the optimal number of migrations in a way that it highly reduces the cluster threat

with minimum imposed cost. To derive the most cost-effective migration plan, we devel-

oped our efficient heuristic optimization algorithm and compared it with a meta-heuristic

algorithm, i.e., genetic. Finally, we leveraged network slicing to support different tenant

requirements within the same cluster.

Limitations and Future Work. This thesis work currently has a few limitations, which

will be considered during our future work. First, we utilize Falco as a rule-based threat

detection tool, which lacks the capabilities to detect zero-day attacks or attacks that mimic

55

normal behavior. A future work is to leverage other attack detection methods to cover more

attacks. Second, our prediction model is learned from a list of manually simulated attack

alerts, and therefore expanding the scope of our model is another future direction. Third,

WARP only employs MITRE ATT&CK tactics for attack prediction, and a future work is

to explore alert text processing along with MITRE ATT&CK techniques to derive novel

attack indicators. Finally, we plan to explore other non-disruptive mitigation methods to

complement migration for better coverage.

56

Bibliography

[1] 5G network slicing. https://www.ericsson.com/en/network-
slicing. [Accessed 10-3-2023].

[2] Amazon ECS. Amazon Elastic Container Service (ECS) https://aws.amazon.
com/ecs/. [Accessed 25-4-2023].

[3] APT 29. https://attack.mitre.org/groups/G0016/. [Accessed 30-3-
2022].

[4] APT 3. https://attack.mitre.org/groups/G0022/. [Accessed 30-3-
2022].

[5] AWS Security Stack Mappings. AWS Security Stack Mappings. https:
//center-for-threat-informed-defense.github.io/security-
stack-mappings/AWS/README.html. [Accessed 30-3-2022].

[6] CALDERA. https://caldera.mitre.org/. [Accessed 30-3-2022].

[7] Cedrick Ramos. Spam campaigns with malware exploiting CVE-2017-11882
spread in Australia and Japan. https://www.trendmicro.com/vinfo/
us/threat-encyclopedia/spam/3655/spam-campaigns-with-
malware-exploiting-cve201711882-spread-in-australia-and-
japan/. [Accessed 30-3-2022].

[8] Container images vul. https://sysdig.com/learn-cloud-native/
container-security/docker-vulnerability-scanning. [Accessed
4-7-2023].

[9] Containers vs. VM. https://learn.microsoft.com/en-us/
virtualization/windowscontainers/about/containers-vs-vm.
[Accessed 4-7-2023].

[10] CORDON/UNCORDON. https://kubernetes.io/docs/tasks/
administer-cluster/safely-drain-node/. [Accessed 10-3-2023].

[11] CRIU. https://criu.org. [Accessed 30-3-2022].

57

https://www.ericsson.com/en/network-slicing
https://www.ericsson.com/en/network-slicing
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://attack.mitre.org/groups/G0016/
https://attack.mitre.org/groups/G0022/
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://center-for-threat-informed-defense.github.io/security-stack-mappings/AWS/README.html
https://caldera.mitre.org/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3655/spam-campaigns-with-malware-exploiting-cve201711882-spread-in-australia-and-japan/
https://sysdig.com/learn-cloud-native/container-security/docker-vulnerability-scanning
https://sysdig.com/learn-cloud-native/container-security/docker-vulnerability-scanning
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://criu.org

[12] Crypto miner delivery. Exploiting CVE-2017-10271. https://www.mandiant.
com/resources/cve-2017-10271-used-deliver-cryptominers-
overview-techniques-used-post-exploitation-and/. [Accessed
30-3-2022].

[13] CVE-2021-3156. https://nvd.nist.gov/vuln/detail/CVE-2021-
3156/. [Accessed 30-3-2022].

[14] DaemonSet | Kuberetes. Daemonset | Kubernetes. https://kubernetes.io/
docs/concepts/workloads/controllers/daemonset/. [Accessed 30-
3-2022].

[15] Docker Swarm. Docker Swarm https://docs.docker.com/engine/
swarm/. [Accessed 25-4-2023].

[16] Escape attack. Exploiting CVE-2021-3156. https://www.
helpnetsecurity.com/2021/01/27/cve-2021-3156/. [Accessed
30-3-2022].

[17] Falco. https://falco.org/. [Accessed 30-3-2022].

[18] Falco alert dataset with APT attacks. https://github.com/simabagheri1/
Falco-Alerts-Dataset-with-APT-attacks.

[19] Falco Installation Tools. https://falco.org/docs/getting-started/
third-party/install-tools/#helm. [Accessed 10-3-2023].

[20] Free5GC. https://www.free5gc.org/. [Accessed 30-3-2022].

[21] Kubernetes. https://kubernetes.io/. [Accessed 30-3-2022].

[22] Microsoft Azure. Microsoft Azure https://azure.microsoft.com/. [Ac-
cessed 25-4-2023].

[23] MITRE Att&CK. https://attack.mitre.org/. [Accessed 30-3-2022].

[24] MITRE ATT&CK Azure. https://www.microsoft.com/en-us/
security/blog/2021/06/29/mitre-attck-mappings-released-
for-built-in-azure-security-controls/. [Accessed 25-4-2023].

[25] Netaddr Python library. https://pypi.org/project/netaddr/. [Accessed
4-7-2023].

[26] Open Policy Agent/Gatekeeper. Open Policy Agent/Gatekeeper https://open-
policy-agent.github.io/gatekeeper/. [Accessed 10-3-2023].

[27] OpenShift. OpenShift. https://docs.openshift.com/. [Accessed 30-3-
2022].

58

https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://www.mandiant.com/resources/cve-2017-10271-used-deliver-cryptominers-overview-techniques-used-post-exploitation-and/
https://nvd.nist.gov/vuln/detail/CVE-2021-3156/
https://nvd.nist.gov/vuln/detail/CVE-2021-3156/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.helpnetsecurity.com/2021/01/27/cve-2021-3156/
https://www.helpnetsecurity.com/2021/01/27/cve-2021-3156/
https://falco.org/
https://github.com/simabagheri1/Falco-Alerts-Dataset-with-APT-attacks
https://github.com/simabagheri1/Falco-Alerts-Dataset-with-APT-attacks
https://falco.org/docs/getting-started/third-party/install-tools/#helm
https://falco.org/docs/getting-started/third-party/install-tools/#helm
https://www.free5gc.org/
https://kubernetes.io/
https://azure.microsoft.com/
https://attack.mitre.org/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://www.microsoft.com/en-us/security/blog/2021/06/29/mitre-attck-mappings-released-for-built-in-azure-security-controls/
https://pypi.org/project/netaddr/
https://open-policy-agent.github.io/gatekeeper/
https://open-policy-agent.github.io/gatekeeper/
https://docs.openshift.com/

[28] Pierluigi Paganini. Phishing campaigns target US government agencies exploiting
hacking team flaw CVE-2015- 5119. . [Accessed 30-3-2022].

[29] Prometheus. Prometheus https://prometheus.io/. [Accessed 25-4-2023].

[30] Root data theft. Kernel vulnerability exploiting CVE-2020-14386. https://nvd.
nist.gov/vuln/detail/CVE-2020-14386/. [Accessed 30-3-2022].

[31] Rsync. https://linux.die.net/man/1/rsync. [Accessed 10-3-2023].

[32] Seccomp security profiles forDocker. https://github.com/docker/
docker/blob/master/docs/security/seccomp.md. [Accessed 4-7-
2023].

[33] Strategic web compromise. https://www.fireeye.com/blog/threat-
research/2015/07/second_adobe_flashz0.html/. [Accessed 30-3-
2022].

[34] Sysdig. Sysdig https://sysdig.com/. [Accessed 10-3-2023].

[35] Sysdig SECURE. Sysdig SECURE https://sysdig.com/products/
secure/. [Accessed 25-4-2023].

[36] OpenStack Congress, 2015.

[37] CNCF Survey Report. www.cncf.io, 2020. [Accessed 10-10-2022].

[38] A. Alsaheel et al. ATLAS: A sequence-based learning approach for attack investiga-
tion. In USENIX Security, 2021.

[39] A. Ankan et al. pgmpy: Probabilistic graphical models using python. In SCIPY.
Citeseer, 2015.

[40] S. Arzo et al. Study of virtual network function placement in 5g cloud radio access
network. IEEE Trans. Netw. Serv., 2020.

[41] W. Attaoui et al. Vnf and cnf placement in 5g: Recent advances and future trends.
IEEE Trans. Netw. Serv., 2023.

[42] Y. Avrahami and S. Ben Hai. Kubernetes privilege escalation: Container escape ==
cluster admin? In Black Hat USA, 2022.

[43] S. Bagheri et al. Dynamic firewall decomposition and composition in the cloud. TIFS,
2020.

[44] W. Banzhaf et al. Genetic programming: an introduction: on the automatic evolution
of computer programs and its applications. Morgan Kaufmann Publishers Inc., 1998.

59

https://securityaffairs.co/wordpress/38707/cyber-crime/phishing-cve-2015-5119.html/
https://prometheus.io/
https://nvd.nist.gov/vuln/detail/CVE-2020-14386/
https://nvd.nist.gov/vuln/detail/CVE-2020-14386/
https://linux.die.net/man/1/rsync
https://github.com/docker/docker/blob/ master/docs/security/seccomp.md
https://github.com/docker/docker/blob/ master/docs/security/seccomp.md
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html/
https://www.fireeye.com/blog/threat-research/2015/07/second_adobe_flashz0.html/
https://sysdig.com/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
www.cncf.io

[45] F. Bari et al. Orchestrating virtualized network functions. IEEE Trans. Netw. Serv.,
2016.

[46] R. E. Bellman. Dynamic programming. Princeton university press, 2010.

[47] A. De Domenico et al. Optimal virtual network function deployment for 5g network
slicing in a hybrid cloud infrastructure. TWC, 2020.

[48] N. DeMarinis et al. Sysfilter: Automated system call filtering for commodity soft-
ware. In RAID, 2020.

[49] Z. Ding et al. Kubernetes-oriented microservice placement with dynamic resource
allocation. IEEE Trans. on Cloud Comput., 2022.

[50] Q. Du et al. Anomaly detection and diagnosis for container-based microservices with
performance monitoring. In ICA3PP, 2018.

[51] S. Ghavamnia et al. Confine: Automated system call policy generation for container
attack surface reduction. In RAID, 2020.

[52] F. Grandoni. A note on the complexity of minimum dominating set. J. Discrete
Algorithms, 2006.

[53] X. Han et al. Unicorn: Runtime provenance-based detector for advanced persistent
threats. In NDSS, 2020.

[54] W. Hassan et al. Nodoze: Combatting threat alert fatigue with automated provenance
triage. In NDSS, 2019.

[55] W. Hassan et al. OmegaLog: High-fidelity attack investigation via transparent multi-
layer log analysis. In NDSS, 2020.

[56] W. Hassan et al. Tactical provenance analysis for endpoint detection and response
systems. In IEEE SP, 2020.

[57] D. Heckerman. A tutorial on learning with bayesian networks, 2021.

[58] M. Kabir et al. Joint routing and scheduling of mobile charging infrastructure for v2v
energy transfer. IEEE Trans. Intell. Veh., 2021.

[59] H. Kermabon-Bobinnec et al. Prospec: Proactive security policy enforcement for
containers. In ACM CODASPY, 2022.

[60] L. Lei et al. Speaker: Split-phase execution of application containers. In DIMVA.
Springer, 2017.

[61] H. Liu et al. Watermark-based proactive defense strategy design for cyber-physical
systems with unknown-but-bounded noises. IEEE Trans. Autom. Control., 2022.

60

[62] T. Ma et al. A mutation-enabled proactive defense against service-oriented man-in-
the-middle attack in kubernetes. IEEE Trans. Comput., 2023.

[63] S. Majumdar et al. Proactive verification of security compliance for clouds through
pre-computation: Application to openstack. In ESORICS, 2016.

[64] S. Majumdar et al. LeaPS: Learning-based proactive security auditing for clouds. In
ESORICS. Springer, 2017.

[65] S. Majumdar et al. Learning probabilistic dependencies among events for proactive
security auditing in clouds. In J. Comput. Secur., 2019.

[66] S. Majumdar et al. Prosas: Proactive security auditing system for clouds. TDSC,
2021.

[67] B. Martini et al. Intent-based network slicing for sdn vertical services with assurance:
Context, design and preliminary experiments. FGCS, 2023.

[68] S. Milajerdi et al. Holmes: real-time APT detection through correlation of suspicious
information flows. In IEEE SP, 2019.

[69] I. Munro. Efficient determination of the transitive closure of a directed graph. Infor-
mation Processing Letters, 1971.

[70] M. Patnaik et al. Prolemus: A proactive learning-based mac protocol against puea
and ssdf attacks in energy constrained cognitive radio networks. TCCN, 2019.

[71] B. Tan et al. A cooperative coevolution genetic programming hyper-heuristics ap-
proach for on-line resource allocation in container-based clouds. IEEE Trans. on
Cloud Comput., 2020.

[72] C.-W. Tien et al. Kubanomaly: anomaly detection for the docker orchestration plat-
form with neural network approaches. Engineering reports, 2019.

[73] R. Yang et al. UIScope: Accurate, instrumentation-free, and visible attack investiga-
tion for GUI applications. In NDSS, 2020.

[74] Z. Zou et al. A docker container anomaly monitoring system based on optimized
isolation forest. IEEE Trans. on Cloud Comput., 2019.

61

	List of Figures
	List of Tables
	Introduction
	Context and Problem Statement
	Research Gap
	Thesis Contribution
	Related Publications
	Contribution of Co-authors/Collaborators
	Outline

	Background and Motivation
	Background
	Motivating Example
	Threat Model

	Related Work
	Attack Detection and Mitigation
	Proactive Attack Detection and Mitigation
	Provenance Analysis
	Resource Placement Optimization
	Comparative Study

	WARP: A Cost-effective Framework to Proactive and Non-disruptive Attack Mitigation in Kubernetes Clusters
	Approach Overview
	Offline Modeling
	Optimization Model Formulation
	Attack Prediction Model Building

	Runtime Detection and Mitigation
	Proactive Attack Prediction
	Non-disruptive Attack Mitigation
	Objective Optimization with P0P
	WARP with Network Slicing
	Mitigation

	Implementation
	Implementing and Integrating WARP with Kubernetes
	Auto-scaling WARP
	Portability to Other Cloud Platforms
	Building Dataset

	Evaluation
	Migration Cost
	Optimization Effectiveness
	WARP Effectiveness
	Performance
	Adjustability to Tenants' Requirements

	Conclusion
	Bibliography

