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Abstract

Enhancing Anomaly Detection with Flexible Distribution Models

Oussama SGHAIER

The performance of an anomaly detection task depends on the modeling of the input data. In

the case of proportional data, Dirichlet and its general form distributions are a convenient choice to

effectively capture the underlying characteristics of this kind of data.

In this thesis, we propose a normality score approach based on transformations that consist of learn-

ing a normality function. We suggest geometric transformations for image data and transformation-

based neural networks for non-image data. Then, we propose an approximation of the softmax

output vector of a classifier with generalized Dirichlet (GD), scaled Dirichlet (SD), shifted scaled

Dirichlet (SSD), and Beta-Liouville (BL) distributions. We use a technique based on likelihood to

determine its parameters.

Motivated by the salient characteristics of Liouville and Libby-Novick Beta distributions, we ex-

pand the Beta-Liouville distribution and build a new distribution called the Libby-Novick Beta-

Liouville distribution. We demonstrate the efficiency of our proposed distribution through three

challenging approaches. First, we develop generative models, namely finite mixture models of

Libby-Novick Beta-Liouville distributions. Then, we propose two discriminative techniques: nor-

mality scores based on selecting the given distribution to approximate the softmax output vector of

a deep classifier, and an improved version of the Support Vector Machine (SVM) by suggesting a

feature mapping method. We test the efficiency of our suggested techniques for anomaly detection

tasks using several experimental settings and five data sets: three image data sets and two non-image

data sets.
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Chapter 1

Introduction

1.1 Background

Anomaly detection is the identification of patterns in a data set that conflict with the normal

behavior [1]. It has become the topic of extensive research thanks to its potential applications such

as fraud detection in credit card transactions [2], detection of the presence of malignant tumors in

MRI images [3] · · · However, the task of anomaly detection remains challenging. We can resume

the challenges in these two points, 1) The exact definition of an anomaly event is still ambiguous

and depends on the studied case; 2) Collecting abnormal samples is hard and costs much time due

to the fact that anomaly events are rare.

Thanks to its intuitive interpretation, the normality scores approach makes it simpler to identify and

understand the degree of abnormality in data points. While lower scores point to possible abnor-

malities, higher scores usually imply a higher possibility of being normal. In our second chapter,

we develop a deep anomaly detector for both image and non-image data based on transformations

and normality scores, with a generalization for the assumption of the softmax output vector. In this

context, the assumption of approximating the softmax vector with a Dirichlet distribution is a weak

hypothesis. Moreover, although Dirichlet distribution has been used in several applications such

as human skin detection [4] and online data clustering [5], it has strong independencies between

random variables, which makes it less robust in real-life applications [6],[7],[8]. Also, it has poor

parameterization that limits the representation of variance and covariance in a data set. Thus, to
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handle the problems cited above, we choose to approximate the output softmax vector with gen-

eral forms of Dirichlet distribution as they have a more general covariance structure and have more

parameters, which offer more degrees of freedom and flexibility. The selected general forms of

Dirichlet distribution are generalized Dirichlet, scaled Dirichlet, shifted scaled Dirichlet, and Beta-

Liouville distributions.

In the second work, motivated by the great performance of Beta-Liouville distribution in the first

part of the thesis and taking the advantage of Libby-Novick Beta in modeling data on the support

[0,1][9], we expand the Beta-Liouville distribution and build a new distribution called the Libby-

Novick Beta-Liouville distribution. Compared to Dirichlet, it contains three more parameters, and

one more parameter compared to Beta-Liouville. Therefore, it provides more degrees of freedom

for data modeling. Moreover, the additional shape parameters can change the tail weights, simulta-

neously adjust the skewness and kurtosis, and increase the entropy of the resulting distribution [9].

Furthermore, it has almost half the number of the generalized Dirichlet parameters, which reduces

significantly the complexity as well as the execution time. The main objective of creating such a

distribution is to illustrate the potential of both generative approaches and discriminative methods

in accomplishing excellent achievement in anomaly detection tasks. Typical generative-based ap-

proaches such as model-based reconstruction schemes like Autoencoder (AE) [10],[11],[12] and

Variational Autoencoder (VAE) [13] rely only on learning the normal data during the training.

Therefore, they could miss the distinctive features of outliers, which could lead to misclassifica-

tion of anomalies. In this setting, mixture models [14],[15],[16],[17] are a very effective generative

approach in learning the distribution of the entire dataset and are hence well-suited for anomaly

identification. Furthermore, mixture models enable a formal solution to unsupervised learning [15].

Taking these benefits, we develop Libby-Novick Beta-Liouville finite mixture models for detecting

anomalies. For discriminative techniques, the normality scores approach described in the first part of

this introduction might be considered a decision boundary method capable of clearly separating the

normal class from the anomaly class by estimating the classifier output vector with Libby-Novick

Beta-Liouville distribution. Added to that, a range of classical approaches has been developed in-

cluding Support Vector Machine (SVM) [18], Isolation Forest (IF) [19][20], Local Outlier Factor

(LOF) [20], K-Nearest Neighbors (KNN) [21], etc. However, these approaches such as KNN suffer
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from sensitivity to hyperparameters, and they do not take into account the kind of data. Thanks to its

computational effectiveness, particularly in high-dimensional feature spaces, SVM has established

itself as a standard learning tool producing benchmark results. However, its traditional kernels do

not take into account the nature of the data. For that, a feature mapping function may be constructed

using the benefits of Libby-Novick Beta-Liouville in terms of flexibility and data nature capture.

This will improve understanding of the statistical properties of the data and lead to an improvement

in classification accuracy.

1.2 Related Work

We can divide the previous related work into two main categories: Generative models and dis-

criminative models.

Hidden Markov Models (HMM) were introduced in [22],[23] as an effective generative technique

for data modeling and data clustering. Additionally, several previous generative methods were based

on the development of Auto Encoder [10],[11],[24]. It is composed of an Encoder to transform the

input into a latent vector, and a decoder that repeats the input from the latent vector. At testing time,

the normal samples have small reconstruction errors, while the abnormal ones are supposed to have

large reconstruction errors. The main issue with AutoEncoder is that it requires a regularized la-

tent space, where each point in the latent space is significant, to produce data correctly. Variational

Auto Encoder was introduced to solve this issue [25]. Moreover, Generative Adversarial Networks

(GAN) are widely used in the task of anomaly detection especially in images [26],[27],[28], as

they can easily generate detailed reconstructed images. Another generative scheme introduced in

this field is mixture models based on a given distribution. Typical mixture models were based on

the Gaussian distribution (Gaussian Mixture Models: GMM). In [29], the authors proposed a Deep

Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. They gen-

erated a low representation of the input data through a deep autoencoder and fed the reconstructed

data to a Gaussian mixture model. Added to that, LGMAD was introduced in [30] which is a com-

bination of LSTM and GMM. The goal was to detect anomalies in time-series data sets. However,

it has been demonstrated that the Gaussian distribution is excessively inflexible and is not the best
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option for proportional data. In this context, Dirichlet and its general forms distribution mixture

models [31],[32][33],[34],[35],[36] have received less attention than that of Gaussian, yet some

significant research works in outlier detection have been presented for modeling proportional data.

The Dirichlet process mixture is used in [37] to model information in order to detect outliers in

large-scale traffic data. Moreover, to build a scalable anomaly detection system, Dirichlet mixture

models serve as a decision engine [38], where the process starts by collecting network data, then

analyses and filters data, and at the end, classify samples with Dirichlet mixture models. In [39][40],

the work was focused on modeling proportional data for classification tasks by applying Dirichlet,

generalized Dirichlet, and Beta-Liouville mixture models. Using the same distributions mixture

models (Dirichlet, generalized Dirichlet, and Beta-Liouville), the work in [41] was dedicated to the

application of the spacial color image segmentation.

For discriminative approaches, several architectures have been developed for the task of anomaly

detection. In this section, we will consider only two kinds of approaches: Normality scores methods

and techniques based on SVM.

The idea of the normality scores approach is to train the model on the normal data, and at testing

time, a score is given for each sample to classify it as an anomaly or not. In [42], authors proposed

an architecture that starts by applying geometric transformations on image data, then fed the trans-

formed data to a classifier. At testing time, and after approximating the softmax output vector with

Dirichlet distribution, a normality scores function is built to classify the samples. Another interest-

ing work was presented in [43]. The normality scores were developed during the testing time after

applying a semi-supervised method based on GANs and frame prediction.

SVM has been a powerful tool in several research works to achieve the task of anomaly detection.

For instance, authors in [44] began by outlining the necessary terminology for the SVM classifier

and intrusion detection systems. Then, they discussed how different machine learning methods

have been used in conjunction with the SVM classifier to identify abnormalities. Deep learning

was introduced with SVM, where the architecture presented in [45] started by training deep belief

networks (DBN) to extract robust features, then training one-class SVM from the features extracted

by DBN. Implementing feature mapping functions was another topic of interest for improving the

performance of SVM while dealing with proportional data. The feature mapping function suggested
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by [46] based on the Dirichlet distribution has proven effective for several classification and regres-

sion tasks using proportional data. As an improvement to this work, authors in [47] try to exploit

the explanatory capabilities of generalized Dirichlet and Beta-Liouville distributions in modeling

proportional data, to build a flexible feature mapping function.

1.3 Contributions

This thesis’ primary goal is to investigate how well general types of Dirichlet distributions work

when it comes to attaining excellent results in anomaly detection tasks for proportional data. We

summarize our contributions as the following:

• Dirichlet and Liouville-Based Normality Scores for Deep Anomaly Detection Using Trans-

formations:

We propose a deep anomaly detection architecture based on normality scores by approximat-

ing the softmax output vector of the classifier with generalized Dirichlet (GD), scaled Dirich-

let (SD), shifted scaled Dirichlet (SSD), and Beta-Liouville (BL) distributions. The proposed

procedure is evaluated on both image data and non-image data. For the first kind of data, we

choose the geometric transformation, while for the second kind of data, neural networks are a

good option to transform them. This work has been submitted to ieee transactions on neural

networks and learning systems and is under review [48].

• Libby-Novick Beta-Liouville Distribution for Enhanced Anomaly Detection in Propor-

tional Data:

In this work, we investigate the appropriateness of the proposed Libby-Novick Beta-Liouville

distribution for modeling proportional data in developing useful approaches for anomaly de-

tection. We develop Libby-Novick Beta-Liouville finite mixture models. We also introduce

a deep anomaly detector based on a general assumption for the softmax predictions vector,

applicable to both images and non-images. We provide the Libby-Novick Beta-Liouville

method for approximating the classifier’s output vector. Finally, we construct a novel feature

mapping function in SVM using the Libby-Novick Beta-Liouville distribution.This contribu-

tion has been submitted to ACM Transactions on Intelligent Systems and Technology [49].
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1.4 Thesis Overview

□ In Chapter 1, we describe in detail the proposed deep anomaly architecture-based normality

scores. We present the different generalizations of Dirichlet normality scores. It also in-

cludes the learning of the parameters. We conduct experiments on different data sets, and we

implement some baseline methods for benchmarking.

□ In Chapter 2, we introduce our proposed Libby-Novick Beta-Liouville distribution. Also,

we present three different approaches based on it: finite mixture models, normality scores,

and feature mapping in SVM. We perform several tests on three image data sets and two

non-image data.

□ In Chapter 3, we provide a summary of our overall contributions in closing remarks.
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Chapter 2

Dirichlet and Liouville-Based Normality

Scores for Deep Anomaly Detection

Using Transformations

In this chapter, we describe in detail our normality scores architecture and we develop the differ-

ent general forms of Dirichlet normality scores function. We use maximum likelihood to estimate

the different parameters.

2.1 The Proposed Procedure

2.1.1 Problem Statement

In this part, we focus on anomaly detection based on normality score. The principle of this

methodology is as follows: let X be the set of all data samples and each sample has its own label:

’Normal’ or ’Anomaly’. Let X be the set of normal samples, the idea is to establish a classifier C(x)

that takes a sample x and returns 1 if x ∈ X and 0 if not. For that, we need to build a score function

ns(x) and compare its value to a threshold λ, and based on this comparison, we classify our sample

whether it is an anomaly or not.
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Cλ
s (x) =















1 ns(x) ≥ λ

0 ns(x) < λ.

In our work, the main challenge is how to learn the score function not how to detect a suitable value

for the threshold λ, that’s why we will focus only on how to create the score function correctly and

ignore the constrained binary decision problem. For that, we need useful metrics to evaluate the

score function. As mentioned in [42], a useful metric to evaluate the quality of the score function is

the Area Under the Receiver Operating Characteristic (AUROC) which is used to measure the use-

fulness of a test or a combination of tests where a greater area means more useful test, it tells how

much the model is capable of distinguishing between classes. Another metric can be used which is

Area Under Precision-Recall (AUPR) which can be suitable when we have prior knowledge of the

anomaly proportion.

2.1.2 General Framework of the Proposed Architecture

Figure 2.1: The proposed anomaly detection pipeline
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In this section, we develop a supervised model, aiming at learning the normality of a given

sample using transformations. An overview of the architecture is presented in Fig.2.1.

For the transformation step, let

∆ = {T1, T2, . . . TK}

be the set of K transformations. Each transformation will be applied on each normal sample of the

data set so that at the end of the operation we get the transformed data set:

XT ≜ {(Ti(x), i) : x ∈ X, Ti ∈ ∆} .

where i is the index of transformation, Ti is the corresponding transformation, x is the given sam-

ple and X is the set of normal samples. In this manner, each new transformed sample has a new

label which is the index of transformation. As we will see later in the implementation details, we

use the one-vs-all technique which consists of considering one class as normal and the rest of the

classes as anomalies, we use the transformed data of the normal classes to feed a deep multi-class

classifier fcθ (K-classifier). The main goal of using such a classifier is to predict which transfor-

mation is applied to the sample. At the testing time, we take an unseen sample, and then apply all

the transformations in ∆ on it, after each transformation, the trained K-classifier model will output

a K-soft-max vector (length = K) where each element of the vector assigns the probability of the

given unseen transformed sample to belong to the class of transformation which is the index of the

element. Then, starting from the prediction vectors generated after each transformation, we build

our score function as the sum of the log-likelihood of the distributions of these vectors:

ns(x) =
K
∑

i=1

log p(y(Ti(x))|Ti) (1)

where y(Ti(x)) is the soft-max vector predictions outputted by the deep classifier on the ith XTi
:

data (data after being applied by the transformation Ti). Note that we assume that the conditional

probabilities in the score function are independent. From the expression of the normality score

function, we can assume that the higher the score of an image the more likely to be normal, in other

words, if ns(x1) > ns(x2), x1 is more normal than x2.

9



Back to the transformation task, and as mentioned in the introduction, we choose to apply geo-

metric transformations to images for two main reasons. 1) Geometric transformations are a set of

bijections. As a result, the original image and its transformed version will have the same geomet-

ric structure. By this way, we define the effectiveness of this kind of transformation by its ability

to preserve the spatial information about normal samples [42]; 2) Non-geometric transformations

such as sharpening can easily destroy the features of an image which leads to bad performance.

For non-images data, the idea of neural networks based on dense layers was inspired by geometric

transformations. In fact, geometric transformations are linear transformations as they are changes

in the bases formula which preserve the structure of a sample. Thus, under certain circumstances,

many qualitative evaluations of a vector space that is the subject of a linear transformation may

hold automatically in the form of the linear transformation. So the most suitable idea is to apply

neural networks based on linear layers. The difference between the neural networks is the size of

the hidden layers. In this way, we obtain different representations of the data. The auto-encoder was

added for a better extraction of features.

Talking now about the classifier, we decided to assign each kind of data to a specific classifier. For

image data, we choose to apply Wide Residual Networks [50] as it has shown good performance in

classifying images [50],[42]. Compared to traditional residual networks, WRN has more channels

per convolution layer. It has two main parameters: N number of convolution blocks and D number

of feature maps to increase per layer. For non-image data, we build our own classifier which is a

succession of 1D Convolution layer followed by max-pooling layer and dense layer. The convolu-

tion layer takes into consideration spatial information in a way we can reduce the variation between

the different features. In earlier stages of this work, we tried to build a classifier based only on dense

layers, but we got bad results in training it, so we abandoned it. We hypothesize that dense layers

cannot reduce the variance between the features.

The estimation of the parameters of the distribution followed by y(Ti(x)) for a fixed transfor-

mation Ti is based on the predictions of the classifier for the normal transformed data XTi
. Let

Ci = (Ci1, · · · ,CiN ) with Cij (j = 1, · · · , N ) is the softmax output vector prediction for the

sample j in XTi
. N is the cardinal of XTi

. We use maximum likelihood to estimate our param-

eters. Authors in [42] choose to approximate the softmax output vector predictions y(Ti(x)) with
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Dirichlet distribution for two main reasons: 1) It is a common choice for data defined on a simplex;

2) Since the Dirichlet distribution, as well as its general forms, belong to the exponential family, the

objective function of log-likelihood will be convex, therefore, the maximum can easily be found by

a simple search [51]. The expression of the likelihood is given by:

p(Ci|θi) =

N
∏

j=1

p(Cij |θi) (2)

For the rest of the chapter, we fix the set of transformations as ∆ = {T1, T2, . . . TK}. ns(x) is our

normality score and y(Ti(x)) = softmax(fθ(Ti(x))) the output predictions vector of fθ applied on

Ti(x) with fθ is a K-class classification model trained on XT . K is the number of transformations.

2.2 Normality Scores

In this section, our intention is to build a verified version of normality score. We assume an ap-

proximation of the softmax output vector with general forms of Dirichlet distribution. The different

relationships between the general forms of Dirichlet can be found in Table 2.1.

Distribution Number of Parameters Reduced to Dirichlet

Generalized Dirichlet 2K βi=αi+1+βi+1

Scaled Dirichlet 2K β = (1, · · · , 1)

Shifted scaled Dirichlet 2K + 1 β = (1, · · · , 1), p = (1, · · · , 1) and a = 1

Beta-Liouville K + 2 α =
∑K

k=1 αk and β = αK+1

Table 2.1: Different relationships between the general forms of Dirichlet distributions

2.2.1 Generalized Dirichlet Normality Score

In dimension K, the generalized Dirichlet probability density function is defined by[6]:

f(X) =
K
∏

i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
Xαi−1

i (1−
i
∑

k=1

Xk)
γi (3)
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for αi , βi and Xi > 0 for i = 0, · · · ,K,
∑K

i=0Xi ≤ 1 and

γi =











βi − αi+1 − βi+1 1 ≤ i ≤ K − 1

βK − 1 i = K

When βi = αi+1 + βi+1, the generalized Dirichlet is reduced to Dirichlet distribution which is given

by:

p(X) =
1

B(α)

d
∏

i=1

Xαi−1
i (4)

It was an efficient tool for several applications such as market-share data mining [52] and unsual

events detection [53]. The most important advantage of this general form and unlike the standard

form, it eliminates the strict correlation negativity between any two random variables [34]. For more

details, the mean and the variance of Dirichlet distribution are given by:

E(Xi) =
αi

∑K
m=1 αm

(5)

V ar(Xi) =
αi(
∑K

m=1 αm − αi)

(
∑K

m=1 αm)2(
∑K

m=1 αm + 1)
(6)

Thus, the covariance between two random variables Xi and Xj is given by:

Cov(Xi, Xj) = −
αiαj

(
∑K

m=1 αm)2(
∑K

m=1 αm + 1)
(7)

From the expression in (7), we conclude that any two random variables from X are negatively

correlated which is not always the case. In [6], Wong demonstrated that the covariance between two

random variables in generalized Dirichlet is given by:

Cov(Xi, Xj) = E(Xj)

(

αi

αi + βi + 1

i−1
∏

k=1

βk + 1

αk + βk + 1
− E(Xi)

)

(8)

One other advantage of generalized Dirichlet distribution is that it has a more structured co-

variance matrix which makes it more practical and useful than Dirichlet. To understand very well

12



the difference between the two distributions, Wong [6] introduced two experiments, and from these

experiments, it has been shown that the independencies between random variables in generalized

Dirichlet are much weaker compared to Dirichlet, that’s why the general form is more robust for

realistic cases.

For this part, we approximate y(Ti(x)) ∼ GD(θi) with GD is the generalized Dirichlet distribution

and θi = (αi1,· · · ,αik,βi1,· · · ,βiK) the parameter of the distribution, i is the index of transforma-

tion.

By injecting the expression of the density function (3) in the expression of the normality score (1),

we get:

ns(x) =
K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j +

K
∑

i=1

K
∑

j=1

γ̃ij log

(

1−

j
∑

m=1

[y(Ti(x))]m

)

+
K
∑

i=1

K
∑

j=1

log(B(α̃ij , β̃ij)) (9)

where B(α, β) is the beta function, α̃ij and β̃ij are the estimators of αij and βij respectively. By

eliminating the last term of the expression as it is independent of the sample, the score function

becomes:

ns(x) =
K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j +
K
∑

i=1

K
∑

j=1

γ̃ij log

(

1−

j
∑

m=1

[y(Ti(x))]m

)

(10)

where:

γ̃ij =











β̃ij − α̃i,j+1 − β̃i,j+1 1 ≤ j ≤ K − 1

β̃i,K−1 − 1 j = K

For the parameters, and following a full study done by Wong. T in [6], we can get the following

expression of the estimated vector parameters:

α̃ij =
aijµijBi,j−1 − µij

(

Sijj + µ2
ij

)

µij

(

Ai,j−1 + µ2
ij

)

− aijµijBi,j−1

(11)
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β̃ij =
α̃ij (Ai,j−1 − µij)

µij
(12)

where Si is the covariance matrix of the normal samples data set after being applied by the ith

transformation, µi is the mean vector: µij represent the mean of the prediction values for the jth

sample and:































aij =
αij

αij+βij

Aij =
∏j

1=1
βil

αil+βil

Bij =
∏j

1=1
βil(βil+1)

((αil+βil)(αil+βil+1)

When βij = αi,j+1 + βi,j+1 (the case where the generalized Dirichlet is reduced to Dirichlet), we

obtain the following normality score which is the Dirichlet normality score as developed in [42]:

ns(x) =
K−1
∑

i=0



log Γ(
K
∑

j=1

α̃ij)−
K
∑

j=1

log Γ(α̃ij) +
K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j



 (13)

The simplified form is given by:

ns(x) =
K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j (14)

2.2.2 Scaled Dirichlet Normality Score

In dimension K, the scaled Dirichlet probability density function is defined by [7]:

f(X) =
Γ(
∑K

i=1 αi)
∏K

i=1 Γ(αi)

∏K
i=1 β

αi

i Xαi−1
i

(
∑K

i=1 βiXi)
∑K

i=1
αi

(15)

For a better understanding of the scaled Dirichlet distribution, we know that the Dirichlet family

is the most convenient choice when it comes to choosing a suitable prior in Bayesian analysis of

multinomial situations [7]. However, we need to mention that Dirichlet distribution does not take

into account relative positions between categories or multinomial cells [7] [8]. The main differ-

ence between scaled Dirichlet distribution and the standard one is that in the first distribution, we
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remove the requirement of the equal scaled parameters in the Gamma because the standard distribu-

tion can be obtained by normalizing a set of independent, equally scaled Gamma random variables

(see Property 3.1 in [7]). As result, scaled Dirichlet can be reduced to Dirichlet when the Gamma

random variables are scaled equally [54].

Now, we assume that y(Ti(x)) ∼ SD(θi) where SD is the scaled Dirichlet distribution and θi =

(αi1,· · · ,αik,βi1,· · · ,βiK) the parameter of the distribution, i is the index of transformation.

Using the maximum likelihood method, the expressions of the estimated parameters are the follow-

ing at iteration t:

α̃ik,t = Ψ−1



Ψ(

K
∑

j=1

α̃jk,t−1) + log(β̃ik,t−1) +
1

N

N
∑

j=1

log(cjk) −
1

N

N
∑

j=1

log(

K
∑

m=1

β̃im,t−1cjm)





k = 1 · · ·K (16)

β̃ik,t =
Nα̃ik,t

(

∑K
m=1 α̃im,t

)(

∑N
j=1

cjk
∑K

m=1
β̃ik,t−1cjm

) k = 1 · · ·K (17)

where C = (cji)j=1···N,i=1···K the matrix where the jth raw represents the softmax output vector

for the sample j in XTi
Once we have the expression of the parameters we can calculate our score

function:

ns(x) =
K
∑

i=1

log (Γ(α̃ij)−
K
∑

i=1

K
∑

j=1

log (Γ(α̃ij))

+
K
∑

i=1

K
∑

j=1

α̃ij log
(

β̃ij

)

+
K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j

−
K
∑

i=1

(α̃i,+) log





K
∑

j=1

β̃ij [y(Ti(x))]j



 (18)

where α̃ij is the estimate of αij and with β̃ij is the estimate of βij , and α̃i,+ =
∑K

j=1 α̃ik After

removing all the terms that are not related to our observations, the new expression of ns(x) is:

K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j −

K
∑

i=1

(α̃i,+) log





K
∑

j=1

β̃ij [y(Ti(x))]j



 (19)
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By setting (βi1, · · · , βiK) = (1, · · · , 1), the normality score in 19 becomes:

K
∑

i=1

K
∑

j=1

(α̃ij − 1) log[y(Ti(x))]j −

K
∑

i=1

(α̃i,+) log





K
∑

j=1

[y(Ti(x))]j



 (20)

As
∑K

j=1[y(Ti(x))]j = 1 because y(Ti(x)) is the softmax output vector of the classifier, the nor-

mality score in 19 becomes the same as the Dirichlet normality score in 14. In this way, we deduce

that by generalizing the distribution, we are generalizing the normality score.

2.2.3 Shifted Scaled Dirichlet Normality Score

Being in the same family as the previously discussed distributions, shifted scaled Dirichlet dis-

tribution is a modified version of Dirichlet distribution where operations of powering and perturba-

tions are applied.

Assuming X follows a shifted scaled Dirichlet with parameters θ = (α1, · · · , αK , p1, · · · , pK , a),

its probability density function is defined by [7]:

f(X) =
Γ(
∑K

i=1 αi)
∏K

i=1 Γ(αi)

1

aK−1

∏K
i=1 p

−
αi
a

i X
αi
a
−1

i
(

∑K
i=1

(

Xi

pi

) 1

a

)

∑K
i=1

αi

(21)

As generalized Dirichlet and scaled Dirichlet distributions, shifted scaled Dirichlet distribution

has almost twice the number of parameters compared to the Dirichlet distribution (2K + 1) which

provide the flexibility for diverse real-world applications [55],[56],[57], and also provide the ability

to model the mean and the variance-covariance matrix separately [56]. It has complete permutation

symmetry. The parameter a is called the scale parameter and it describes how the plotting of the

density is distributed (stretching or shrinking the distribution), while the location parameter p =

(p1,· · · ,pK) follows the location of the data densities that simply shift the samples[58][59]. Note

that when a = 1, the shifted scaled Dirichlet distribution is reduced to scaled form of Dirichlet

distribution with parameters θ = (α1, · · · , αK , 1
p1
, · · · , 1

pK
), also we can move to the standard

form by setting a = 1 and p = (1, · · · , 1).

In this sub-section, we approximate the softmax vector with shifted scaled Dirichlet distribution;
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y(Ti(x)) ∼ SSD(θi) where SSD is the shifetd scaled Dirichlet distribution and θ = (αi1, · · · , αiK ,

pi1, · · · , piK , ai) the parameters of the distribution, i is the index of transformation.

From the expression of the pdf in (21), the normality score, in this case, is defined by:

ns(x) =
K
∑

i=1

log[Γ(α̃i,+)]−
K
∑

i=1

K
∑

j=1

log(α̃ij)− (K − 1)

K
∑

i=1

log ãi

−
K
∑

i=1

K
∑

j=1

(−
α̃ij

ãi
log p̃ij) +

K
∑

i=1

K
∑

j=1

(
α̃ij

ãi
− 1) log ([y(Ti(x))]j)

−

K
∑

i=1

α̃i,+ log





K
∑

j=1

(

y(Ti(x))j
p̃ij

) 1

ãi



 (22)

α̃ij is the estimate of αij , p̃ij is the estimate of pij , ãi is the estimate of the parameter ai and

α̃i,+ =
∑K

j=1 α̃ij . After removing all the terms that are not related to our observations, the new

expression of ns(x) is:

ns(x) =
K
∑

i=1

K
∑

j=1

(
α̃ij

ãi
− 1) log ([y(Ti(x))]j)−

K
∑

i=1

α̃i,+ log





K
∑

j=1

(

y(Ti(x))j
p̃ij

) 1

ãi



 (23)

As in the two previous distributions, we generalize the Dirichlet normality score. By setting a = 1

and p = (1, · · · , 1), we obtain the expression in (14).

Using the same method as for scaled Diriclet distribution, we can find the following expressions of

the estimated parameters at iteration t:

α̃ik,t = Ψ−1



Ψ(
K
∑

j=1

α̃ij ,t−1) +
1

ãit−1
log (p̃ik,t−1) +

1

Nãit−1

N
∑

j=1

log cjk

−
1

N

N
∑

j=1

log[
cjk

p̃ik,t−1
]

1

ãit−1



 k = 1 · · ·K (24)
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p̃ik,t =
−

α̃ik,t−1

ãit−1

∑N
j=1 α̃+

(cjk)
1

ãit−1 1

ãi

1

p̃ik,t−1

1
ãit−1

+1

∑K
l=1

(
cjl

p̃il,t−1
)

1
ãit−1

k = 1 · · ·K (25)

ãi,t =
q1

N(K − 1)
(26)

where:

q1 =
N
∑

j=1

α̃+

∑K
l=1 log

(

cjl
˜pil,t−1

)

(
cjl
˜pil,t−1

)
1

ãit−1

∑K
l=1(

cjl
˜pil,t−1

)
1

ãit−1

(27)

2.2.4 Beta-Liouville Normality Score

The last general form in this work is Beta-Liouville distribution. From the name, this distribu-

tion is a mixture of both Liouville and Beta distributions. A K-dimentional vector X is assumed to

follow a Liouville distribution with parameters (α1,· · · ,αK) and density generator g(.) if its pdf is

defined by [39] [60]:

f(X) = g(u)
K
∏

i=1

Xαi−1
i

Γ(αi)
(28)

By taking the density generator of this form:

g(u) =
Γ(
∑K

i=1 αi)

uΓ(
∑K

i=1
αi−1)

f(u) (29)

where f(.) is the pdf of the variable u, therefore we can obtain a new form of the pdf of Liouville

distribution in Eq(28):

f(X) =
Γ(
∑K

i=1 αi)

uΓ(
∑K

i=1
αi−1)

f(u)

K
∏

i=1

Xαi−1
i

Γ(αi)
(30)

As Beta distribution has a flexible shape, we can adopt it as a density for the variable u with two

positive parameters α and β [61]:

f(u|α, β) =
Γ(
∑K

i=1 αi)Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1 (31)
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By injecting Eq (31) in (30), we obtain:

f(X) =
Γ(
∑K

i=1 αi)Γ(α+ β)

Γ(α)Γ(β)

K
∏

i=1

Xαi−1
i

Γ(αi)
(

K
∑

i=1

Xi)
α−

∑K
i=1

αi(1−
K
∑

i=1

Xi)
β−1 (32)

Note that in (31), when we set α =
∑K

k=1 αk and β = αK+1, equation (30) is reduced to Dirichlet

distribution with parameters α1,· · · ,αK+1.

Compared to Dirichlet distribution, Beta-Liouville has two extra parameters to adjust the spread of

the distribution. In contrast to Dirichlet distribution, its covariance matrix may be positive or nega-

tive. Its flexibility allows researchers to apply it in different applications such as text classification

and texture discrimination [62] and automatic image orientation detection [39].

Now, we approximate y(Ti(x)) by Beta-Liouville distribution, y(Ti(x)) ∼ BL(θi) with θi =

(αi1, . . . , αiK , αi, βi). We start by estimating the parameters, the expressions are given by:







































































α̃ik,t = Ψ−1
[

Ψ
(

∑K
m=1 α̃im,t−1

)

+ 1
N

∑N
j=1 log cjk

− 1
N

∑N−1
j=0 log

(

∑K
m=1 cjm

)]

k = 1 · · ·K

α̃i,t = Ψ−1
[

Ψ(α̃i,t−1 + β̃i,t−1)

+ 1
N

∑N
j=1 log

(

∑K
k=1 cjk

)]

β̃i,t = Ψ−1
[

Ψ(α̃i,t−1 + β̃i,t−1)

+ 1
N

∑N
j=1 log

(

1−
∑K

k=1 cjk

)]
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Using the same expression of the normality score used for the previous distributions, we get:

ns(x) =

K
∑

i=1

log



Γ(

K
∑

j=1

α̃ij)



+

K
∑

i=1

log
(

Γ(α̃i + β̃i)
)

−

K
∑

i=1

log (Γ(α̃i))−

K
∑

i=1

log
(

Γ(β̃i)
)

+

K
∑

i=1

K
∑

j=1

α̃ij log[y(Ti(x))]j

−
K
∑

i=1

K
∑

j=1

log (Γ(α̃ij)) +
K
∑

i=1

(α̃i −
K
∑

j=1

α̃ij) log
K
∑

j=1

[y(Ti(x))]j

+

K
∑

i=1

(β̃i − 1) log



1−

K
∑

j=1

[y(Ti(x))]j



 (33)

where α̃ij is the estimator of αij , α̃i is the estimator of αi and β̃i is the estimator of βi. As we

see, the expression of the score function is a bit complicated that’s why we are going to simplify

it in the same way as the previous two distributions. We remove all the terms that are independent

of the observations (prediction vectors). So, the simplified expression of the score function for

Beta-Liouville distribution is :

ns(x) =
K
∑

i=1

K
∑

j=1

α̃ij log[y(Ti(x))]j +

K
∑

i=1

(α̃i −
K
∑

j=1

α̃ij) log
K
∑

j=1

[y(Ti(x))]j

+
K
∑

i=1

(β̃i − 1) log



1−
K
∑

j=1

[y(Ti(x))]j



 (34)

By taking α =
∑K

k=1 αk and β = αK+1, the Beta-Liouville normality score in (34) is reduced to

Dirichlet normality score (Equation (14)).

2.3 Experimental Results

In this section, we carry out experiments to investigate and demonstrate the performance of the

proposed general forms of normality scores using the general forms of Dirichlet distributions. Our
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suggested distributions’ effectiveness is validated through image and non-image data. We demon-

strate through experiments that they outperform the baseline methods such as One-Class Support

Vector Machine (OC-SVM) as well as the standard form based on Dirichlet. Note that the tech-

nique used for evaluation in our experiments is the one-vs-all technique. It considers one class as

an anomaly and the rest as normal categories.

2.3.1 Learning the Normality Score for Image Data

Implementation Details

In the first application, we investigate the proposed distributions to an anomaly detection prob-

lem in two image data sets. The first data set is CIFAR10 previously used in [63]. It contains 50000

training samples of 32×32 color images divided into 10 classes: 0:airplanes, 1:cars, 2:birds, 3:cats,

4:deer, 5:dogs, 6:frogs, 7:horses, 8:ships, and 9:trucks with 5000 samples for each class, and 10000

samples for testing (1000 samples for each class). The second data is Fashion MNIST developed

in [64]. As CIFAR10, it contains 50000 training 32×32 image samples partitioned equally over

10 categories: 0:T-shirt/top, 1:Trouser, 2:Pullover, 3:Dress, 4:Coat, 5:Sandal, 6:Shirt, 7:Sneaker,

8:Bag, 9:Ankle boot and 10000 for testing.

We fix the number of geometric transformations K = 72. Due to the high number of transformed

training samples (50000 × 72 = 3600000), we choose to reduce the number of the training samples

to 10000 (number of transformed samples, in this case, 10000 × 72 = 720000) and the number of

the testing samples to 1000 (number of transformed samples 1000 × 72 = 72000), because training

a deep learning classifier model on the whole data set costs in terms of time and hardware (powerful

server). The distribution of samples over classes in training set and testing set for both data sets:

CIFAR10 and Fashion MNIST are shown in Table 2.2.

Now, we show the effectiveness of the chosen classifier: Wide Residual Network. Although authors

in [42] chose to work with 10 and 4 as depth and width parameters for the classifier, we select, in

our work, these parameters to be 16 and 8, respectively as in [50] because the anomaly detection

results improved by setting these values. It is noteworthy that the measure of the usefulness of the
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Data Set CIFAR10 Fashion MNIST

Class Train Test Train Test

0 1005 103 942 107

1 974 89 1027 105

2 1032 100 1016 111

3 1016 103 1019 93

4 999 90 974 115

5 937 86 989 87

6 1030 112 1021 97

7 1001 102 1022 95

8 1025 106 990 95

9 981 109 1000 95

Table 2.2: distribution of samples over classes in the training set and testing set for both data sets:

CIFAR10 and Fashion MNIST

proposed classifier should take into consideration the fact that we have balanced data (almost 1000

× 72 training samples for each class and almost 100 × 72 testing samples for each category). That’s

why, we can consider, in this case, the accuracy as a metric to measure the capability of the classi-

fier in distinguishing the different transformations applied to the normal samples. Fig 2.2 shows the

training accuracy for each class for both data sets. The batch size is fixed and equals 128. We can

notice that the classifier fits well for all classes ranging from 88% to 99% for Fashion MNIST and

from 92% to 100% for CIFAR10.

The initial values of the parameters for each distribution are shown in Table 2.3. More specifically,

.

Figure 2.2: Performance of the WRN on both image data sets

they were chosen through two possible methods: 1) Use the Wicker Initialization [65] to estimate
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Dirichlet’s parameters using maximum likelihood approximation; 2) We fix them to a constant C.

Usually, the second method is applied when the Wicker Initialization for estimating the parameter

presents several iterations and operations to execute which can affect the time and the complexity.

For Dirichlet and Beta-Liouville distributions, the estimation of the parameter vector α is based on

Wicker Initialization, while we fix the parameters α and β for Beta-Liouville to (α,β) = (0.1,0.1).

Note that there is no initialization for the parameters of generalized Dirichlet, as their expressions

are dependent on the covariance matrix of the observed data. This will decrease the complexity

of the estimation procedure as well as the execution time. For scaled Dirichlet and shifted scaled

Dirichlet distributions, Wicker Initialization didn’t give us great results, therefore, we have inves-

tigated the following values for the initialization: α = β = (0.05, · · · , 0.05) for scaled Dirichlet,

and α = p = (0.2, · · · , 0.2) and a = 0.5 for shifted scaled Dirichlet.

α = (α1,· · · , αK) β = (β1,· · · , βK) α β p a

Dirichlet Wicker Initialization ± ± ± ± ±

Generalized Dirichlet No Initialization No Initialization ± ± ± ±

Scaled Dirichlet (0.05,· · · , 0.05) (0.05,· · · , 0.05) ± ± ± ±

Shifted Scaled Dirichlet (0.2,· · · , 0.2) ± ± ± (0.2,· · · , 0.2) 0.5

Beta-Liouville Wicker Initialization ± 0.1 0.1 ± ±

Table 2.3: Parameters Initialization for each used distribution

Results

To demonstrate the merits of our proposed general forms of Dirichlet distribution in the con-

struction of the normality score, they are compared with the standard Dirichlet distribution and

other two baseline methods based on One Class Support Vector Machine (OCSVM) including Raw

OCSVM and Convolutional Auto Encoder One Class Support Vector Machine (CAE OCSVM)

[66],[67]. OCSVM model learns the boundary for the normal data samples so that it is able to clas-

sify the points outside the boundary as anomalies. The hyperparameters of OCSVM were set to this

range of values ν ∈ {0.1, · · · , 0.9} and γ ∈
{

2−7, 2−6, · · · , 22
}

. We report the normality score

performance of different methods in Table 2.4 and Table 2.5 in terms of AUROC.

From the two tables, we notice that the Dirichlet distribution family (the standard form as well as
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RAW-OC-SVM CAE-OC-SVM Dirichlet Generalized Dirichlet Scaled Dirichlet Shifted Scaled Dirichlet Beta-Liouville

airplane 63.0 58.23±2.0 71.2±1.9 68.26±2.0 66.7±1.08 67.43±3.0 76.76±3.6

cars 50.0 51.4±0.5 88.73±1.7 93.93±0.5 93.6±0.2 93.2±0.4 93.46±1.2

bird 68.1 66.43±0.3 73.5±0.7 68.1±4.9 67.66±4.0 68.76±0.9 72±1.3

cat 54.3 51.53±0.3 73.76±1.1 68.93±0.9 70.03±2.29 67.4±1.0 63.53±1.2

deer 71.6 68.4±0.4 74.06±1.4 74.23±0.6 77.73±2.38 81.73±0.9 74.66±2.4

dog 50.0 58.66±0.4 82.63±2.4 78±1.6 78.83±3.06 74.46±2.1 79.6±3.1

frog 77.4 79.83±0.4 72.66±0.8 74.93±2.1 81.76±7.16 78.76±2.7 74.8±2.8

horse 52.2 55.33±0.8 90.06±1.6 89.66±0.1 90.86±0.63 90.1±1.8 92.36±1.2

ship 70.7 68.3±1.0 89.53±1.2 91.03±0.8 89.66±1.47 90.93±0.2 89.33±3.6

truck 52.4 60.56±1.1 85.2±0.5 88.83±0.8 89.56±1.09 89.1±0.4 86.6±2.0

mean 60.34 60.87 80.13 79.59 80.64 80.19 80.31

Table 2.4: Average AUC with standard deviation over 3 runs for CIFAR10 dataset

the general forms) outperforms the baseline methods, especially in the CIFAR10 dataset where the

difference in AUC reaches 20% (60.34% for Raw OCSVM and 80.64% for scaled Dirichlet). This

confirms (our assumptions) that data defined on simplex are better discriminated by Dirichlet distri-

butions. Overall, the scaled Dirichlet distribution has the better AUC outperforming the rest of the

methods whether in CIFAR 10 dataset (80.64%) or Fashion MNIST dataset (93.21%).

As shown in Table 2.4, for CIFAR10 dataset, the proposed general forms of Dirichlet outperform

the standard one in 7 out of 10 classes. Generalized Dirichlet marks AUC = 93.93% for class 1

(automobile) and AUC = 91.03% for class 8 (ship) as the best scores compared to other models.

The same thing for scaled Dirichlet and Beta-Liouville distributions, they have the best AUC scores

for classes 6, 9 (frog,truck) and 0, 7 (airplane,horse) respectively.

Inspecting the results in Table 2.5, we notice that the baseline methods can perform much better

on smaller size datasets (the size of an image in Fashion MNIST is 32×32×1, while the size in

CIFAR10 is 32×32×3), reaching the best score for three classes (1:Trouser, 3:Dress, 7:Sneaker).

However, the general forms excel in six classes (two classes by generalized Dirichlet, three classes

by scaled Dirichlet, and one class by shifted scaled Dirichlet).

Another interesting point we can notice from Table 2.5 is the performance of Dirichlet distribution.

Compared to other methods, the best performance for Dirichlet was reported in class 8 (Bag). Also,

it was outperformed by the general forms (generalized Dirichlet, scaled Dirichlet, and shifted scaled

Dirichlet) as well as the baseline methods (Raw-OC-SVM). To interpret this, in Fig2.3, we present
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RAW-OC-SVM CAE-OC-SVM Dirichlet Generalized Dirichlet Scaled Dirichlet Shifted Scaled Dirichlet Beta-Liouville

T-shirt/top 92.0 89.1±0.95 89.3±1.83 92.16±0.55 95.33±0.5 91.8±0.26 90.06±0.32

Trouser 99.1 97.1±0.55 97.86±0.63 98.7±0.55 96.83±1.5 96.6±1.3 98.53±0.73

Pullover 89.5 86.1±0.2 86.16±0.55 89.1±1.75 93.06±0.37 90.5±0.25 88.26±1.45

Dress 92.0 85.7±1.0 88.56±1.2 87.63±2.88 86.6±1.67 82.0±2.2 79.46±0.8

Coat 90.9 88.4±0.76 86.13±1.97 91.46±0.45 91.16±0.15 91.0±0.58 87.9±1.15

Sandal 93.2 92.8±1.2 96.16±0.9 96.23±2.05 95.73±0.96 96.2±0.75 93.33±3.14

Shirt 82.1 81.7±0.8 78.8±0.26 80.26±4.07 83.9±0.72 83.3±0.43 78.53±0.75

Sneaker 98.5 97.0±0.4 97.26±0.75 98.23±0.28 97.76±0.2 98.1±0.37 97.83±0.87

Bag 91.2 94.5±1.8 97.73±0.66 94.23±2.65 92.26±0.65 91.0±1.2 93.86±1.51

Ankle boot 98.2 96.2±0.7 99.33±0.05 99.5±0.1 99.46±0.11 99.5±0.05 99.1±0.6

mean 92.67 90.9 91.73 92.75 93.21 92.09 90.69

Table 2.5: Average AUC with standard deviation over 3 runs for Fashion MNIST dataset

the correlation matrices for the predicted vectors after each experiment. Note that in experiment

i, the classifier and after being trained on the transformed form of samples of class i (class i is

the normal class and anomalous are instances from other classes), predicts the softmax vectors for

testing data being applied by all the transformations (Normally, we should analyze the CM of the

predicted vectors of the testing data being transformed by all the transformations, but, we can’t show

all of them as we have 72 transformations, so we choose to show a random transformation which is

the first transformation: transformation with index 0, note that each correlation matrix is 72 × 72, so

we take the first 10 × 10 for display). From the correlation matrices, we see that the elements of the

softmax output vector are highly correlated as well as are mostly positively related, which contracts

the properties of Dirichlet, when we assume that it works better for independents random variables

and negatively correlated random variables.

2.3.2 Learning the Normality Score for Non-image Data

Implementation Details

Now, we evaluate our extension work performance on non-image data. We choose to work

with NSL-KDD Cup dataset [68]. It contains 125973 samples as train set and 22544 samples as

test set. The names of the labels are normal, neptune,back, land, pod, smurf, teardrop,mailbomb,

apache2, processtable, udpstorm, worm, ipsweep, nmap, portsweep, satan ,mscan, saint, ftp-write,
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Figure 2.3: Correlation matrices of the first 10 elements of the softmax output vector obtained by

10 experiments

guess-passwd, imap, multihop, phf, spy, warezclient, warezmaster, sendmail, named ,snmpgetat-

tack, snmpguess, xlock, xsnoop ,httptunnel, buffer-overflow, loadmodule, perl, rootkit, ps ,sqlattack,

xterm. In order to simplify the work, we restrict the names of the labels to only two classes: we put

all the labels that are different from the normal class into one class named attack. As a result, we

have at the end two classes: normal class and attack class.

In this section, we build our own classifier. The summary of the classifier can be found in Table 2.6.

For the transformations, we choose the number of transformations K = 10. So, the dimension of

the hidden layer is in this set: h dim ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The autoencoder is

established with a code size equal to 32.

The initialization of the parameters of all the distributions remains the same as in image data exper-

iments.
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Layer (type) Output shape

conv1d (Conv1D) (None, 114, 128)

max pooling1d (None, 38, 128)

lstm (LSTM) (None, 70)

dropout (Dropout) (None, 70)

dense26 (Dense) (None, 10)

Total params: 56,942 ±

Trainable params: 56,942 ±

Non-trainable params: 0 ±

Table 2.6: Summary of the proposed classifier

Results

In this section, we demonstrate the effectiveness of using general forms of Dirichlet normality

score in an anomaly detection problem for non-image data.

Table 2.7 illustrates the AUC results on NSL-KDD Cup data set by different general forms of Dirich-

let distribution as well as the standard form. As shown in this table and except for the generalized

Dirichlet, all the general forms outperform the standard one. The AUC reaches 84.59% for the

scaled Dirichlet normality score, followed by shifted scaled Dirichlet with 79.05%. According to

these results, we can see that Dirichlet and Beta-Liouville have the same performance for the Nor-

mal class, and the same thing for scaled Dirichlet and shifted scaled Dirichlet. For the Attack class,

we notice that scaled Dirichlet marks a very high score compared to other distributions (87.4% with

a difference of more than 5% from the nearest second score).

Another metric can be used especially when it comes to dealing with skewed data which is Area

Under Precision-Recall. We can treat this metric in two different ways: the first is to calculate the

score by considering the anomalies the positive class (AUPR-pos), and the second is to consider

the anomalies of the negative class (AUPR-neg). Table 2.8 shows the different scores obtained by

our methods for building the normality score. We can see the great performance of scaled Dirichlet

in Attack class for both cases of AUPR. For normal class, the best score when anomalies are the

positive class is marked by scaled Dirichlet normality score while Beta-Liouville outperforms all

the other distributions in the case when anomalies are the negative class. Overall, scaled Dirichlet

has the best scores compared to other methods. However, we can confirm that the other distribu-

tions succeeded too in creating good results (> 75%). Fig 2.4 represents the different correlation
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Dirichlet Generalized Dirichlet Scaled Dirichlet Shifted Scaled Dirichlet Beta-Liouville

Normal 75.62 79.09 81.79 82.12 75.12

Attack 76.91 72.67 87.4 75.98 81.59

mean 76.26 75.88 84.59 79.05 78.35

Table 2.7: AUC for NSL-KDD Cup dataset

Distribution Dirichlet Generalized Dirichlet Scaled Dirichlet Shifted Scaled Dirichlet Beta-Liouville

Class AUPR pos AUPR neg AUPR pos AUPR neg AUPR pos AUPR neg AUPR pos AUPR neg AUPR pos AUPR neg

Normal 75.9 67.93 85.0 68.0 85.42 76.92 84.37 77.19 68.14 77.23

Attack 80.71 76.46 78.78 66.65 87.15 87.25 72.46 68.17 70.14 85.42

mean 78.3 72.19 81.91 67.32 86.28 82.08 78.41 72.68 69.14 81.32

Table 2.8: AUPR NSL-KDD Cup dataset

matrices of the predicted vectors by each transformation for both classes. We can notice that sev-

eral elements are highly positively related which demonstrates the need to use the general forms of

Dirichlet rather than Dirichlet.
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Figure 2.4: Correlation matrices for the softmax output vector obtained by 10 transformations
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Chapter 3

Libby-Novick Beta-Liouville

Distribution for Enhanced Anomaly

Detection in Proportional Data

In this chapter, we focus on development the Libby-Novick Beta-Liouville distribution. We in-

vestigate it in three different methods: Finite mixture models, normality scores, and feature mapping

in SVM. Comparisons with comparable recent approaches have shown the worth of our proposed

distribution.

3.1 Libby-Novick Beta-Liouville Distribution

A K-dimensional vector X follows a Liouville distribution with parameters (α1,· · · ,αK) and

density generator g(.) if its pdf (probability density function) is defined by [39] [60]:

p(X|α1, · · · , αK) = g(u)
K
∏

i=1

Xαi−1
i

Γ(αi)
(35)

where u =
∑K

i=1Xi < 1, and 0 < Xi < 1, i = 1, · · · ,K. One common choice of the generator

function is:

g(u) =
Γ(
∑K

i=1 αi)

uΓ(
∑K

i=1
αi−1)

f(u) (36)
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where f(.) is the pdf of the variable u, as a result, we can obtain a new expression of the pdf of

Liouville distribution:

p(X) =
Γ(
∑K

i=1 αi)

u
∑K

i=1
αi−1

f(u)
K
∏

i=1

Xαi−1
i

Γ(αi)
(37)

A convenient choice as a distribution for u is Beta distribution which can approximate any

arbitrary distribution thanks to its two shape parameters [69]. However, in this context, Libby-

Novick Beta (LNB) [9], which is an extended form of the Beta distribution, contains more shape

parameters than the ordinary version, it has three shape parameters. Therefore, it can fit data with

more flexibility. Because of the additional feature, LNB can accurately represent skewness and

kurtosis in data, especially when modeling real-world data [70]. Added to that, the third additional

shape parameter modifies tail weights and increases the produced distribution’s entropy. In our

work, we choose LNB as a distribution for modeling the random variable u, its pdf is given by [9]:

f(u|α, β, λ) =
λαuα−1(1− u)β−1

B(α, β)(1− (1− λ)u)α+β
(38)

with:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(39)

represents the Beta function and Γ(.) denotes the Gamma function. Note that when λ = 1, LNB is

reduced to standard Beta with shape parameters α and β.

We obtain the expression of the pdf for our proposed distribution for work, which is the Libby-

Novick Beta-Liouville distribution, by using the Libby-Novick Beta as the density function for u in

Eq(36) and injecting Eq(38) in Eq(37).

p(X|α1, · · · , αK , α, β, λ) =
Γ(
∑K

i=1 αi)Γ(α+ β)

Γ(α)Γ(β)

λα(
∑K

i=1Xi)
α−

∑K
i=1

αi(1−
∑K

i=1Xi)
β−1

(1− (1− λ)
∑K

i=1Xi)α+β

K
∏

i=1

Xαi−1
i

Γ(αi)
(40)

Figure(3.1) displays some examples of Libby-Novick Beta-Liouville distribution for different

parameters.
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Figure 3.1: Examples of Libby-Novick Beta-Liouville distribution

When the density generator function has a LNB distribution with parameters
∑K

k=1 αk, αK+1, and

1:

f(u|α, β, λ) =
u
∑K

k=1
αk−1(1− u)αK+1−1

B(α, β)
(41)

Eq(40) is is reduced to the Dirichlet distribution with parameters α1, · · · , αK , αK+1. We can con-

firm that Dirichlet is a special case of Libby-Novick Beta-Liouville distribution.

3.2 Libby-Novick Beta-Liouville Finite Mixture Models

Let X = (X1, · · · ,XN ) a set of training examples where N is the number of samples. Each

sample Xi(i = 1, · · · , N) can be represented by finite mixture of distributions:

p(Xi|Θ) =
M
∑

j=1

pjp(Xi|θj) (42)

where Θ = (p1, · · · , pM ,θ1, · · · ,θM ) is the set of parameters, pj > 0, j = 1, · · · ,M ,
∑M

j=1 pj =

1, and M is the number of components. As a generative model, finite mixture allows the generation

of a vector by selecting a component density j with probability pj , and then creating a vector

from that distribution p(X|θj). However, deploying finite mixture models remains challenging.

The main challenge is the choice of the appropriate distribution of each component p(X|θj) that

should fit well the data. Numerous studies have been conducted on techniques for choosing the

distribution and estimating the parameters of mixture models [14],[39], etc. In our work, we adopt

an Expectation-Maximization (EM) algorithm for Libby-Novick Beta-Liouville mixture models.
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When dealing with mixture models, an important task that must be achieved is the estimation of

the associated parameters. In this paper, we choose the Maximum Likelihood approach (ML),

which consists of estimating the parameter values that maximize the likelihood function: Θ̂ =

argmax
Θ

P (X|Θ), where P (X|Θ) is the likelihood function:

P (X|Θ) =
N
∏

i=1

M
∑

j=1

pj
Γ(
∑K

k=1 αjk)Γ(αj + βj)

Γ(αj)Γ(βj)

λ
αj

j (
∑K

k=1Xik)
αj−

∑K
k=1

αjk(1−
∑K

k=1Xik)
βj−1

(1− (1− λj)
∑K

k=1Xik)αj+βj

K
∏

k=1

X
αjk−1
ik

Γ(αjk)
(43)

ML can be combined with the EM algorithm to estimate the mixture parameters through an iter-

ative process [71]. During the Expectation step, we define Zi = (Zi1, · · · , ZiM ) a multi-Bernoulli

distributed random vector, to indicate the cluster of the vector Xi: Zij = 1 if Xi belongs to class

j, 0 otherwise. By the end of the Expectation step, we use the expected values of the class as-

signments with are the posterior probabilities (Ẑij =
pjp(Xi|θj)

∑M
j=1

pjp(Xi|θj)
) to replace the missing data

Z = (Z1, · · · , ZN ).

The Maximization step is used to update the estimates of the parameters. The idea consists of max-

imizing the following expression:

L(X|Θ) =
N
∑

i=1

M
∑

j=1

Ẑij log(pjp(Xi|θj)) (44)

The expressions of the first derivatives of L(X|Θ) with respect to the mixture components parame-

ters are the following:

∂L(X|Θ)

∂αj
= (Ψ(αj + βj)−Ψ(αj))

N
∑

i=1

Ẑij +

N
∑

i=1

Ẑij

(

log(λj) + log(

K
∑

k=1

Xik)

+ log(1− (1− λj)

K
∑

k=1

Xik)

)

(45)

33



∂L(X|Θ)

∂βj
= (Ψ(αj + βj)−Ψ(βj))

N
∑

i=1

Ẑij +

N
∑

i=1

Ẑij

(

log(1−

K
∑

k=1

Xik)

− log(1− (1− λj)
K
∑

k=1

Xik)

)

(46)

∂L(X|Θ)

∂λj
=

αj

λj

N
∑

i=1

Ẑij − (αj + βj)

N
∑

i=1

Ẑij

∑K
k=1Xik

(1− (1− λj)
∑K

k=1Xik)
(47)

∂L(X|Θ)

∂αjk
=

(

Ψ(

K
∑

k=1

αjk)−Ψ(αjk)

)

N
∑

i=1

Ẑij +
N
∑

i=1

Ẑij

(

log(Xik)− log(
K
∑

k=1

Xik)

)

(48)

where Ψ(x) = ∂ log Γ(x)
∂x

denotes the digamma function. From the previous equations, we notice

that it is evident that the θj parameters lack a closed-form solution. Therefore, and starting from a

given set of initial estimates, we adopt Newton-Raphson method to estimate these parameters.

θj
(t+1) = θj

(t) −H(θj
(t))−1∂L(X|Θ(t))

∂θj
(t)

(49)

where H(θj
(t))−1 is the inverse of the hessian matrix. More details about how to calculate the

inverse of the hessian matrix can be found in Appendix A. For the pj , a closed form expression can

be given by:

pj =
1

N

N
∑

i=1

Ẑij (50)

We decided to initialize the parameters in our work with random values drawn from a uniform dis-

tribution. Furthermore, if we randomly start with values within the specified range (a, b), we are

less likely to find ourselves trapped in local minima or maxima. This uncertainty might facilitate

early investigation of a wider search field and result in better solutions.

Once the estimation equations are in hand, the complete learning algorithm can be found in Algo-

rithm 1:
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Algorithm 1 Expectation Maximization Algorithm

1: Initialization

2: Expectation step: Compute the posterior probabilities: Ẑij =
pjp(Xi|θj)

∑M
j=1

pjp(Xi|θj)

3: Maximization step:

4: a) Update θj using Eq(49), j=1,· · · ,M

5: b) Update pj using Eq(50), j=1,· · · ,M

6: Repeat Steps 2 and 3 until convergence

3.3 Libby-Novick Beta-Liouville Normality Score

The problem statement as well as the proposed procedure are the same as described in sec-

tion 2.1. In this section, we approximate y(Ti(x)) with Libby-Novick Beta-Liouville distribution:

y(Ti(x)) ∼ LNBL(θi) with θi = (αi1, · · · , αiK , αi, βi, λi). Injecting the expression of LNBL

pdf in Eq(40) into the normality scores expression in Eq(1), we obtain the following expression of

ns(x):

ns(x) =
K
∑

i=1

log

(

Γ(
K
∑

k

α̃ik)

)

+
K
∑

i=1

log
(

Γ(α̃i + β̃i)
)

−
K
∑

i=1

log (Γ(α̃i))−
K
∑

i=1

log
(

Γ(β̃i)
)

+
K
∑

i=1

α̃i log(λ̃i) +
K
∑

i=1

(

α̃i −
K
∑

k=1

α̃ik

)

log

(

K
∑

k=1

[y(Ti(x))]k

)

+
K
∑

i=1

(β̃i − 1) log

(

1−
K
∑

k=1

[y(Ti(x))]k

)

−
K
∑

i=1

(α̃i + β̃i) log

(

1− (1− λ̃i)
K
∑

k=1

[y(Ti(x))]k

)

+
K
∑

i=1

K
∑

k=1

(α̃ik − 1) log ([y(Ti(x))]k)−
K
∑

i=1

K
∑

k=1

log (Γ(α̃ik)) (51)

where α̃ik is the estimator of αik, α̃i is the estimator of αi, β̃i is the estimator of βi, and λ̃i is the

estimator of λi. By eliminating all the terms that are independent of the sample values, we can

simplify the expression of ns(x) to:

ns(x) =
K
∑

i=1

(

α̃i −

K
∑

k=1

α̃ik

)

log

(

K
∑

k=1

[y(Ti(x))]k

)

+

K
∑

i=1

(β̃i − 1) log

(

1−

K
∑

k=1

[y(Ti(x))]k

)

−
K
∑

i=1

(α̃i + β̃i) log

(

1− (1− λ̃i)
K
∑

k=1

[y(Ti(x))]k

)

+
K
∑

i=1

K
∑

k=1

(α̃ik − 1) log ([y(Ti(x))]k) (52)

Using the Fixed Point Iteration, the expressions of the estimated parameters are the following at
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iteration t:

α̃ik,t = Ψ−1



Ψ(
K
∑

j=1

α̃jk,t−1) +
1

N

N
∑

j=1

log(cjk) −
1

N

N
∑

j=1

log(
K
∑

m=1

cjm)



 k = 1 · · ·K (53)

α̃i,t = Ψ−1



Ψ
(

α̃i,t−1 + β̃i,t−1

)

+
1

N

N
∑

j=1

log

(

K
∑

k=1

cjk

)

−
1

N

N
∑

j=1

log

(

1− (1− λ̃i,t−1)

K
∑

k=1

cjk

)



 (54)

β̃i,t = Ψ−1



Ψ
(

α̃i,t−1 + β̃i,t−1

)

+
1

N

N
∑

j=1

log

(

1−
K
∑

k=1

cjk

)

−
1

N

N
∑

j=1

log

(

1− (1− λ̃i,t−1)

K
∑

k=1

cjk

)



 (55)

λ̃i,t =
Nα̃i,t−1

∑N
j=1

[(

α̃i,t−1 + β̃i,t−1

) ∑K
k=1

cjk

1−(1−λ̃i,t−1)
∑K

k=1
cjk

] (56)

with C = (cjk)j=1···N,k=1···K is the matrix where the jth raw equals to y(Ti(xj)), xj is the sample

j in the normal samples set X .

By setting the values of the estimated parameters of αi, βi, and λi to
∑K

k=1 αik, αK+1, and 1

respectively, we get this expression of ns(x):

ns(x) =
K
∑

i=1

[

log Γ(
K
∑

k=1

α̃ik)−
K
∑

k=1

log Γ(α̃ik) +
K
∑

k=1

(α̃ik − 1) log[y(Ti(x))]k

]

(57)

The expression in Eq(57) is Dirichlet normality score [42]. This indicates that we are generaliz-

ing the normality score from Dirichlet normality scores to Libby-Novick Beta-Liouville normality
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scores.

3.4 Libby-Novick Beta-Liouville Feature Mapping in SVM

3.4.1 Support Vector Machines Classifier

A well-known and popular option for the supervised learning is SVM. Empirically, it has

demonstrated strong generalization abilities in a variety of investigations and applications [72],[73].

Finding the best decision boundaries that optimize the margin between several classes in a dataset

is particularly successful with SVMs [74]. The primal representation of the SVM optimization

problem is given by:

min
w,b,ϵ

1

2
∥w∥2 + C

∑

i

ϵi (58)

subject to

y(i)(wtϕ(Xi) + b) > 1− ϵi, i = 1 · · · , N (59)

ϵi > 0, i = 1 · · · , N (60)

where N is the number of samples, Xi is the normalized version of the ith sample in the data set,

and yi is the corresponding label.

The hyperparameter C controls the regularization strength in SVM. By adding a penalty to the mis-

classifying data points, it reduces the overfitting of the model. It manages the trade-off between

minimizing the classification error (greater complexity) and getting a wider margin (lower com-

plexity). In (59), ϕ(Xi) is the feature mapping function from the input space χ to the feature space

H . It is equal to the input data if no extra features are added or extracted from the data. In this

case, the kernel K which is the inner product between data points, becomes < Xi,Xj > instead of

< ϕ(Xi), ϕ(Xj) >.
∑

i ϵi is the upper bound of the generalization error, where the slack variable

ϵi is given to solve the case of non-lineary separated data. More details about the properties of the

primal representation of the optimization problem of SVM can be found in [47]. For large datasets,

it is computationally convenient to solve the dual problem. Using Lagrange multipliers to loosen
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the restrictions, the dual solution becomes,

max
γ

N
∑

i

γi −
1

2

N
∑

i

N
∑

j

γiγjy
(i)y(j) < ϕ(Xi), ϕ(Xj) > (61)

subject to

0 < γi < C,

N
∑

i

γiy
(i) = 0, i = 1 · · · , N (62)

In this case, the decision function of SVM becomes:

f(X) =
N
∑

i

γiy
(i) < ϕ(Xi), ϕ(X) > (63)

3.4.2 Libby-Novick Beta-Liouville SVM Feature Mapping Function

In this section, we focus on how to choose the feature mapping function to solve both the

primal and dual problems given respectively in (58) and (61). For better modeling, the choice of

ϕ(X) depends on the structure of the data. Taking the advantage of Libby-Novick Beta-Liouville

distribution in modeling proportional data, a possible feature mapping function can be structured as

follows:

ϕj(Xi) =











Xij , j = 1, · · · ,K

Γ(
∑K

k=1
αk)Γ(α+β)

Γ(α)Γ(β)
λα(

∑K
k=1

Xik)
α−

∑K
k=1

αk (1−
∑K

k=1
Xik)

β−1

(1−(1−λ)
∑K

k=1
Xik)α+β

∏K
k=1

X
αk−1

ik

Γ(αk)
, j = K + 1

(64)

From the proposed feature mapping function in (64), we notice that the input dimension is increased

by 1. The added feature introduces diversity in the data set. Added to that, it provides additional

details regarding the overall distribution of the original features. This new representation knowledge

can be useful for categorizing aberrant samples. Using the initial input data set, we can use Newton

Raphson’s method to estimate the parameters in a similar way as in [46]. More details can be

found in Appendix B. We obtained a new formulation of Libby-Novick Beta-Liouville SVM (LNBL
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SVM), after getting the trained parameters, as follows:

min
w,b,ϵ

1

2

K+1
∑

k

w2
k + C

N
∑

i

ϵi (65)

subject to

y(i)(wtϕ(Xi) + b) > 1− ϵi, i = 1 · · · , N (66)

ϵi > 0, i = 1 · · · , N (67)

A new expression of LNBL SVM can be formulated as follows:

min
w,b,ϵ

1

2

K+1
∑

k

w2
k + C

N
∑

i

ϵi (68)

subject to

y(i)(

K
∑

k=1

wkXik + wK+1
Γ(
∑K

k=1 αk)Γ(α+ β)

Γ(α)Γ(β)

λα(
∑K

k=1Xik)
α−

∑K
k=1

αk(1−
∑K

k=1Xik)
β−1

(1− (1− λ)
∑K

k=1Xik)α+β

K
∏

k=1

X
αk−1
ik

Γ(αk)
+ b) > 1− ϵi, i = 1 · · · , N (69)

ϵi > 0, i = 1 · · · , N (70)

3.5 Results

In this section, we conduct experiments to look into and gauge how well our suggested distribu-

tion works for the various proposed approaches. We demonstrate through the implementation results

that the Libby-Novick Beta-Liouville outperforms the typical distribution used for proportional data

such as Dirichlet, Beta-Liouville, and Multivariate Beta.

39



3.5.1 Data Sets

Our evaluation was based on five different data sets: three image data sets and two non-image

data sets. For the image data, the first two data sets are CIFAR10 and fashion MNIST described

in section2.2.The third one is the MNIST data set [75], a popular handwritten digit data set. It has

50000 training samples (5000 samples for each digit from zero to nine) and 10000 testing images.

For non-image data, a widely used data set for the task of anomaly detection is the NSL-KDD Cup

data set [68] described in section2.3.2. The last data set is bank additional full which is related to

direct marketing campaigns of a Portuguese banking institution [76]. It has 41188 samples with two

possible labels: yes and no, to indicate whether the client will subscribe to a term deposit or not.

The statistics of the data sets are summarized in Table 3.1.

Data Set Dimensions Instances

CIFAR 10 784 60000

Fashion MNIST 784 60000

MNSIT 784 60000

NSL-KDD Cup 41 148517

Bank data 20 41188

Table 3.1: Data Sets Summary

Given that each image dataset contains 784 features for each sample, it presents a significant com-

putational challenge. Principal Component Analysis (PCA) is used to lessen this by reducing the

feature dimensionality to 30, which makes the process of anomaly identification easier to handle.

3.5.2 Mixture Models Results

In this section, our assessment is predicated on three subsets of data built from the NSL-KDD

data set. Each one of them contains only two classes. The first one is established by considering

the samples belonging to normal class as the normal samples (67343 samples) and the samples be-

longing to Neptune class as the anomaly samples (41212 samples), therefore, the anomaly rate in

this case is 37%. Using an identical methodology, the second one establishes the anomaly rate in
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this instance as 5%. This is achieved by classifying the samples from the normal class as normal

samples (67343 samples) and the samples from the Satan class as anomaly samples (3633 samples).

The third one is by taking the NMAP class (1493) as the outlier category, making the anomaly rate

equal to 2%. Furthermore, we set the number of components M = 2.

Fig(3.2) displays an overview of the anomaly detection outcomes for the three subsets as determined

by the accuracy and f1 score values. In this figure, we present results obtained by One-Class Support

Vector Machines (OC-SVM), by setting the contamination parameter to the anomaly rate, and Iso-

lation Forest (IF), using the outlier rate as the ν parameter of IF. Additionally, we show the results of

generative finite mixture models with different distributions, namely Libby-Novick Beta-Liouville

mixture models (LNBLMM), Beta-Liouville mixture models (BLMM), Dirichlet mixture models

(DMM), Multivariate Beta mixture models (MBMM), and Gaussian mixture models (GMM).

We can observe that LNBLMM outperforms the other methods for low anomaly rates (2% and 5%).

For 2% and 5% outlier rates, respectively, LNBLMM achieves 99.65 and 99.04 as f1 scores, and

99.32 and 98.23 as accuracy. Furthermore, we observe that DMM, BLMM, and LNBLMM perform

noticeably better than GMM overall. The reason behind this is that the Dirichlet family distributions

based on our generative models are highly relevant options because the resultant vectors following

normalization are defined on the simplex with a unit-sum constraint. For this reason, the Dirichlet

distribution and two more flexible generalizations, the Beta-Liouville and the Libby-Novick Beta-

Liouville distributions, are among the best choices. For high anomaly rates, GMM has the highest

scores, outperforming the other generative models which themselves perform better than OC-SVM

and IF.

Figure 3.2: F1 score and Accuracy for the three subsets built from NSL KDD Data Set

The confusion matrices of LNBLMM, BLMM, and DMM for the two scenariosÐwhen nmap is
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the outlier category (Anomaly rate = 2%) and satan is the anomaly class (Anomaly rate = 5%)Ðare

shown in Figs. (3.3) and (3.4). Inspecting the matrices, we notice that LNBLMM and BLMM

score better performance than DMM in detecting anomalies and classifying correctly the normal

samples. This can be assumed by the higher values of True Positive (TP) and True Negative (TN)

for LNBLMM and BLMM compared to DMM. Between LNBLMM and BLMM, we can affirm

that both of them have almost the same performance in detecting anomalies reaching 0 as False

Positive (FP) for LNBLMM and 1 as FP for BLMM, in the case where the anomaly rate is set to

2%. For classifying the normal samples, LNBLMM has higher values of TP for both cases (2% and

5%) compared to BLMM (TP=9645 for LNBLMM to 9217 for BLMM in case of 2% anomaly, and

TP=9541 for LNBLMM to 9405 for BLMM in case of 5% anomaly).

Figure 3.3: Confusion Matrices in case where Satan is the anomaly class (Anomaly rate = 5%)

Figure 3.4: Confusion Matrices in case where NMAP is the anomaly class (Anomaly rate = 2%)

Table 3.2 shows the results of the different generative models as well as OCSVM and IF for the

bank data. It is clear that LNBLMM excels over the other approaches, reaching 98.89 as the f1 score

and 98.16 as accuracy. The performance between LNBLMM and DMM is remarkably significant

whereas the results between LNBLMM and BLMM are less noticeable. This affirms the quality of
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the LNBL and BL distributions in capturing the feature data distribution.

Data Set Bank Data

Approach F1 Score Accuracy

LNBLMM 98.89 98.16

DMM 89.16 82.97

BLMM 95.64 92.5

MBMM 85.29 78.24

GMM 90.31 82.33

OCSVM 94.13 90.59

IF 87.11 81.2

Table 3.2: F1 score and Accuracy for different approaches on Bank Data Set

3.5.3 Normality Scores Results

In this section, we implement our proposed Libby-Novick Beta-Liouville (LNBL) normality

scores approach on the NSL-KDD Cup as well as the three image data sets: Fashion MNIST,

MNIST, and CIFAR10. Regarding the NSL-KDD Cup dataset, and to make the task easier, we

limit the label names to only two classes: we group all the labels that differ from the normal class

into one class namely the attack class. Consequently, we have two labels at the end: the normal class

and the attack class. We evaluate its efficacy by contrasting our LNBL distribution-based normal-

ity scores with Dirichlet and Beta-Liouville distributions-based normality scores, and two baseline

approaches, namely Raw One-Class Support Vector Machine (RAW-OCSVM) and Convolutional

AutoEncoder One-Class Support Vector Machine (CAE OCSVM) [66],[67].

The chosen classifier for our architecture is Wide Residual Networks (WRN) [50]. We set its depth

and width to 16 and 8 respectively. Furthermore, the hyperparameters of OCSVM were adjusted

to γ ∈
{

2−7, 2−6, · · · , 22
}

and ν ∈ {0.1, · · · , 0.9}. We can initialize the parameters in one of

two ways when it comes to estimation:1) Apply the maximum likelihood to the initialization sug-

gested by Wicker in [65]; 2) Fix them to a constant C. In our study, we fix the starting values

of LNBL to (α1, · · · , αK , α, β, λ) = (0.05, · · · , 0.05, 1.4, 1.2, 1.6) and initialize the Dirichlet and

Beta-Liouville parameters using Wicker initialization. Lastly, we set K = 72 as the number of

transformations.

We show the normality scores performance of several the techniques in terms of AUROC for image
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data sets in Tables 3.3, 3.4, and 3.5. Note that the evaluation approach used in our trials is the one-

vs-all strategy. It sees the other classes as typical, and one class as abnormal.

We can confirm that Dirichlet, Beta-Liouville, and Libby-Novick Beta-Liouville perform better than

the baseline techniques based on the results in the three tables. This validates (our conjectures) that

distributions like Libby-Novick Beta-Liouville and Beta-Liouville are better at differentiating be-

tween data that are defined on a simplex.

For the MNIST data set, the LNBL normality score (AUC=96.23) is superior to the Dirichlet

normality scores (AUC=95.68), Beta-Liouville normality scores (AUC=93.94), RAW OCSVAM

(AUC=93.85), and CAE OCSVM (AUC=85.31), as shown in Table 3.3. Furthermore, LNBL

achieves AUC=99.9 for class 6 and has the highest scores for five of the 10 classes: 3,4,5,6,7.

Nevertheless, Dirichlet performs exceptionally well in three classes: 2,6,9, whereas class 8 receives

the highest AUC=93.19 according to Beta-Liouville.

Raw-OC-SVM CAE-OC-SVM Dirichlet Beta-Liouville Libby-Novick Beta-Liouville

0 99.54 97.25 91.4 88.99 90.24

1 99.91 99.28 85.5 73.78 93.8

2 88.5 82.33 99.4 99.31 98.88

3 89.07 76.14 96.01 95.96 99.5

4 95.46 79.39 98.72 96.69 98.94

5 91.17 78.35 98.35 97.82 99.56

6 97.06 86.69 99.9 99.9 99.9

7 95.05 86.83 95.58 94.94 96.03

8 86.47 74.41 92.94 93.19 86.83

9 96.3 92.48 99.09 98.91 98.7

mean 93.85 85.31 95.68 93.94 96.23

Table 3.3: AUROC MNIST dataset

Upon examining Tables 3.4 and 3.5, it is evident that the baseline methods perform remarkably

well when dealing with smaller data samples (the size of an image in Fashion MNIST is 32×32×1,

whereas it is 32×32×3 in CIFAR10). The fashion MNIST has the best AUC in four classes: Trouser,
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Dress, Coat, Sneaker, and the highest test AUC is achieved by Raw OCSVM (AUC=92, 67). More-

over, it is clear that overall LNBL outperforms both BL and Dirichlet. It has the highest scores

across 4 out of 10 classes for Fashion MNIST and has the best average AUC for the CIFAR10 data

set (AUC = 80.35). One explanation for this could be that the three extra parameters of LNBL

over Dirichlet provide a more stable covariance structure that can address the problem of feature

independence in a data set.

Raw-OC-SVM CAE-OC-SVM Dirichlet Beta-Liouville Libby-Novick Beta-Liouville

T-shirt/top 92.0 89.1 89.3 90.06 92.4

Trouser 99.1 97.1 97.86 98.53 97.05

Pullover 89.5 86.1 86.16 88.26 92.31

Dress 92.0 85.7 88.56 79.46 81.29

Coat 90.9 88.4 86.13 87.9 87.4

Sandal 93.2 92.8 96.16 93.33 92.08

Shirt 82.1 81.7 78.8 78.53 84.48

Sneaker 98.5 97.0 97.26 97.83 97.34

Bag 91.2 94.5 97.73 93.86 96.84

Ankle boot 98.2 96.2 99.33 99.1 99.46

mean 92.67 90.86 91.73 90.68 92.06

Table 3.4: AUROC Fashion MNIST dataset

Table 3.6 illustrates the AUC results on the NSL-KDD Cup data set by Dirichlet, BL, and

LNBL. As shown in this table, LNBL excels in the two classes with 10% difference in AUC from

the nearest score (AUC = 88.14 for LNBL to AUC = 78.35 and AUC = 76.26 for BL and Dirichlet

respectively). The AUC of the attack class reaches 85.96 for the LNBL normality score, followed by

BL with 81.59. For the normal class, we can see that Dirichlet and BL have the same performance

for the Normal class. Furthermore, we notice that LNBL marks a very high score compared to other

distributions (90.33 with a difference of 15% from the nearest score).
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Raw-OC-SVM CAE-OC-SVM Dirichlet Beta-Liouville Libby-Novick Beta-Liouville

airplane 63 58.23 71.2 76.76 72.79

automobile 50 51.4 88.73 93.46 89.91

bird 61.8 66.43 73.5 72 75.18

cat 54.3 51.53 73.76 63.53 69.78

deer 71.6 68.4 74.06 74.66 73.27

dog 50 48.66 82.63 79.6 77.5

forg 77.4 79.83 72.66 74.8 76.84

horse 52.2 55.33 90.06 92.36 89.24

ship 70.7 68.3 89.53 89.33 89.91

truck 52.4 60.56 85.2 86.6 89.12

mean 60.34 60.56 80.13 80.31 80.35

Table 3.5: AUROC CIFAR10 dataset

Dirichlet Beta-Liouville Libby-Novick Beta-Liouville

Normal 75.62 75.12 90.33

Attack 76.91 81.59 85.96

mean 76.26 78.35 88.14

Table 3.6: AUROC NSL-KDD Cup dataset

3.5.4 Feature Mapping SVM Results

In this part, our evaluation was based on three subsets of data from MNIST data and three others

from Fashion MNIST data. We consider the class 0 the normal class (10000 samples) and we take

2000 samples from each of the following classes: 1, 2, and 3 to serve as anomaly classes for the

three subsets respectively (Class 1 is the anomaly class of the first subset, class 2 is the anomaly

class of the second subset, and class 3 is the anomaly class of the third subset). Therefore, we fix

the anomaly rate to 16%. We choose to work with three kernels: Linear, RBF, and Polynomial. For

the Polynomial kernel, we set the degree to 3. The hyperparameter C in the objective function is

varied from 0.001 to 50 depending on the experiment. We choose the value that gives us the best

performance. We compare the proposed Libby-Novick Beta-Liouville SVM (LNBLSVM) to the

baseline SVM, Dirichlet SVM (DSVM), and Beta-Liouville SVM (BLSVM).

Fig(3.5) and Fig(3.6) illustrate the f1 scores for each subset data of both Fashion MNIST and
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MNIST datasets, for different proposed kernels. We can observe that the f1 score for the anomalous

challenge has greatly increased using our suggested feature mapping strategy. The enhanced sepa-

rability between the support vectors from every image category is the cause.

For the fashion MNIST data set, in linear feature map, LNBLSVM shows a 4% and 2% improve-

ment in f1 score for the first and the third subsets. In contrast, BLSVM has the best performance for

the second subset with f1 score = 89.3. In general, non-linear kernels show a competitive perfor-

mance between LNBLSVM and BLSVM, while the DSVM outperforms the other approaches only

in the polynomial kernel for the third subset with f1 score = 70.38.

Figure 3.5: F1 score over subsets for the different approaches on Fashion MNIST Data Set

Examining the MNIST data findings, we can confirm that the first subset exhibits a notable

level of perfection for LNBLSVM, with a f1 score of 98.49 in the RBF kernel scenario. How-

ever, BLSVM performs better than the other methods for the other two subsets, particularly in the

non-linear kernel. For example, in the polynomial kernel situation, it scores f1 score = 82.74 for

the third data, which is more than 8% from the nearest score. In general, by inspecting the nine

scenarios (three kernels with three subsets), it is clear that LNBLSVM performs better than DSVM

and BLSVM. The Libby-Novick Beta-Liouville distribution’s superior generalization abilities to

capture data distribution with a greater coherence covariance structure [9] may be the reason behind
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this improvement.

Figure 3.6: F1 score over subsets for the different approaches on MNIST Data Set

Another data set used in our work to measure the performance of our feature mapping strategy

for SVM is the bank data. According to Table 3.7, for all the kernels, LNBLSVM outperforms

baseline SVM, BLSVM, and DSVM except for the polynomial kernel where baseline SVM achieves

a higher accuracy of 86.22 and a higher f1 score of 90.87. Considering the RBF SVM, LNBLSVM

gives the highest accuracy of 97.55 and the highest f1 score of 98.52 whereas linear SVM achieves

93.43 accuracy and 95.84 f1 score as the best results. Fig(3.7) shows the distribution of accuracy

scores for different approaches. Note that a larger area surrounding the mean in the violin plot

indicates a greater likelihood of obtaining a consistent average result. Consequently, it is clear that

feature mapping based on the Libby-Novick Beta-Liouville and Beta-Liouville distributions can be

employed with classical kernel functions with greater confidence than the Dirichlet distribution. In

this case, we consider the LNBLSVM as it has the best performance.
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Kernel Linear RBF Polynomial

Approach F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Baseline SVM 94.86 91.95 94.97 92.11 90.87 86.22

DSVM 94.77 91.82 97.65 96.08 79.93 72.45

BLSVM 94.77 91.82 97.68 96.15 87.51 81.72

LNBLSVM 95.84 93.43 98.52 97.55 86.04 79.82

Table 3.7: F1 score and Accuracy for different kernels on Bank Data Set

.

Figure 3.7: Violin plots of experimental results for Bank dataset
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Chapter 4

Conclusion

In this thesis, we have addressed the problem of anomaly detection in proportional data using

the salient properties of different general forms of Dirichlet distribution in modeling such kind of

data.

In Chapter 2, we proposed a deep anomaly detection architecture based on normality score using

four general forms of Dirichlet for approximating the softmax output vector predictions of the clas-

sifier. In our framework, we choose the appropriate transformations as well as the the appropriate

classifier for each kind of data. In order to estimate the parameters of each distribution, we devel-

oped the maximum likelihood estimators and we used the Wicker initialization for initializing the

parameters. The advantages of the proposed deep anomaly detector were demonstrated through ex-

periments on two image data sets and one non-image data set. A possible future work is to optimize

and detect a threshold λ to be compared with the normality score in a way we can have a complete

anomaly detection system.

The focus of the second part of this work was the development of generative and discriminative

methods for proportional data modeling and anomaly detection tasks. These approaches were based

on the Libby-Novick Beta-Liouville distribution produced from the Liouville family which includes

the Dirichlet as a specific case. Moreover, these techniques’ main benefit is the effective statistical

representation of the data’s properties through the use of the Libby-Novick Beta-Liouville distri-

bution, which is driven by the abundance of data mining, pattern recognition, and computer vision

applications that naturally generate this kind of data. Specifically, a novel mixing model founded on
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the Libby-Novick Beta-Liouville distribution has been presented. Additionally, we have suggested

a technique that uses the EM approach for estimation to learn the new distribution of finite mix-

ture models. Furthermore, we suggested a deep anomaly detection architecture based on normality

score, which approximates the classifier’s softmax output vector predictions using Libby-Novick

Beta-Liouville. In the third and the last approach, three feature mapping functions for proportional

data have been introduced in the SVM learning method. Above all, the three methods’ results have

unequivocally demonstrated that the Libby-Novick Beta-Liouville outperforms the commonly used

Dirichlet and it can be a great substitute for the recently suggested Beta-Liouville. A possible future

work is to develop hybrid generative discriminative approaches by deploying SVM kernel generated

from Libby-Novick Beta-Liouville mixture models.
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Appendix A

Inverse of Hessian Matrix

The second and mixed derivatives of L(X|Θ) are given by:

∂2L(X|Θ)

∂αjk1∂αjk2

=











∑N
i=1 Ẑij

(

Ψ′(
∑K

k=1 αjk)−Ψ′(αjk)
)

if k1 = k2 = k

∑N
i=1 ẐijΨ

′(
∑K

k=1 αjk) otherwise

(71)

∂2L(X|Θ)

∂αjk∂αj
=

∂2L(X|Θ)

∂αjk∂βj
=

∂2L(X|Θ)

∂αjk∂λj
= 0 (72)

∂2L(X|Θ)

∂2αj
=
(

Ψ′(αj + βj)−Ψ′(αj)
)

N
∑

i=1

Ẑij (73)

∂2L(X|Θ)

∂2βj
=
(

Ψ′(αj + βj)−Ψ′(βj)
)

N
∑

i=1

Ẑij (74)

∂2L(X|Θ)

∂2λj
= (αj + βj)
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k=1Xik)
2
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Ẑij (75)

∂2L(X|Θ)

∂αj∂βj
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∂2L(X|Θ)

∂βj∂αj
= Ψ′(αj + βj)

N
∑
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Ẑij (76)
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∑
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k=1Xik

)



 (77)
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∂2L(X|Θ)

∂βj∂λj
=

∂2L(X|Θ)

∂λj∂βj
=

N
∑

i=1

−Ẑij

∑K
k=1Xik

(

1− (1− λj)
∑K

k=1Xik

) (78)

where Ψ and Ψ′ are the digamma and trigamma functions respectively. In this way, the hessian

matrix has a block-diagonal structure: H(θj) = block-diag(H(αj1, · · · , αjK), H(αj , βj , λj)) with:

H(αj , βj , λj) =

















∂2L(X|Θ)
∂2αj
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,

H(αj1, · · · , αjK) = ∂2L(X|Θ)
∂αjk1

∂αjk2

k1, k2 = 1 · · · ,K(79)

From [[77], Theorem 8.8.16], we have: H(θj)
−1 = block-diag(H(αj1, · · · , αjK)−1,

H(αj , βj , λj)
−1). We can write H(αj1, · · · , αjK) as H(αj1, · · · , αjK) = S + γaaT , where:

S = diag

[

−Ψ′(αj1)
N
∑

i=1

Ẑij , · · · ,Ψ
′(αjK)

N
∑

i=1

Ẑij

]

(80)

γ = Ψ′(

K
∑

k=1

αjk)

N
∑

i=1

Ẑij , aT = 1, γ ̸=

K
∑

k=1

(

a2k
Skk

)−1

(81)

Then, the inverse of H(αj1, · · · , αjK) is given by: [[77], Theorem 8.3.3]

H(αj1, · · · , αjK)−1 = S∗ + δa∗a∗T (82)

S∗ = S−1 = diag

[

−1

Ψ′(αj1)
∑N

i=1 Ẑij

, · · · ,
−1

Ψ′(αjK)
∑N

i=1 Ẑij

]

(83)

a∗T = (
a1

S1
, · · · ,

aK

SK
) =

(

−1

Ψ′(αj1)
∑N

i=1 Ẑij

, · · · ,
−1

Ψ′(αjK)
∑N

i=1 Ẑij

)

(84)
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δ∗ = −γ

K
∑

k=1

(

1 + γ
a2k
Skk

)−1

= Ψ′(

K
∑

k=1

αjk)

N
∑

i=1

Ẑij

(

1 + Ψ′(

K
∑

k=1

αjk)

N
∑

i=1

Ẑij

K
∑

k=1

−1

Ψ′(αjk)
∑N

i=1 Ẑij

)−1

(85)
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Appendix B

Parameter Estimation of LNBL in SVM

Approach

Let Dobs = (X1, · · · , XN ) be the observed proportional data. Assuming Xi ∼ LNBL(θ) with

θ = (α1, · · · , αK , α, β, λ). The entire dataset’s joint probability function can be calculated in the

manner shown below:

p(Dobs|θ) =
N
∏

i=1

p(Xi|θ)

=
N
∏

i=1

Γ(
∑K

k=1 αk)Γ(α+ β)

Γ(α)Γ(β)

λα(
∑K

k=1Xik)
α−

∑K
k=1

αk(1−
∑K

k=1Xik)
β−1

(1− (1− λ)
∑K

k=1Xik)α+β

K
∏

k=1

X
αk−1
ik

Γ(αk)
(86)

Our goal is to maximize Eq(86), for that, we calculate the gradient and set it to zero. We tackle the

Maximum Likelihood Estimation (MLE) approach to estimate the parameters. Taking the logarithm

of the distribution stated above will make it a convex optimization problem since it comes from the

exponential family [78].
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l = log p(Dobs|θ) = N

(

log Γ(

K
∑

k=1

αk) + log Γ(α+ β)− log Γ(α)− log Γ(β)

)

+Nα log λ

+ (α−
K
∑

k=1

αk)
N
∑

i=1

(

log
K
∑

k=1

Xik

)

+ (β − 1)
N
∑

i=1

log(1−
K
∑

k=1

Xik)

− (α+ β)

N
∑

i=1

log

(

1− (1− λ)

K
∑

k=1

Xik

)

+
N
∑

i=1

K
∑

k=1

logXik −N

K
∑

k=1

log Γ(αk) (87)

The dataset’s gradient is K×1, and it may be expressed in the following way:

∇l =





























































∂l
∂α1

...

∂l
∂αK

∂l
∂α

∂l
∂β

∂l
∂λ





























































=



































































N
(

Ψ(
∑K

k=1 αk)−Ψ(α1)
)

+
∑N

i=1

(

log(Xik)− log(
∑K

k=1Xik)
)

...

N
(

Ψ(
∑K

k=1 αk)−Ψ(αK)
)

+
∑N

i=1

(

log(Xik)− log(
∑K

k=1Xik)
)

N (Ψ(α+ β)−Ψ(α)) +N log(λj)

+
∑N

i=1

(

log(
∑K

k=1Xik) + log(1− (1− λ)
∑K

k=1Xik)
)

N (Ψ(α+ β)−Ψ(β)) +
∑N

i=1

(

log(1−
∑K

k=1Xik)

+ log(1− (1− λ)
∑K

k=1Xik)

N α
λ
− (α+ β)

∑N
i=1

∑K
k=1

Xik

(1−(1−λ)
∑K

k=1
Xik)



































































(88)

Using Newton Raphson algorithm, we can update the parameters in the following way:

θnew = θold −H−1∇l(θold) (89)

where H is the hessian of the log-likelihood function. The inverse of H can be calculated in the

same way as in Appendix A.

An important step for estimating the parameters is the setting of the initial values of the parameters

accurately. Method of moments was previously used to provide an initial guess of the parameters
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in [42] and [47]. However, it may affect the robustness of the algorithm. If the Newton-Raphson

method is started, for instance, at a point where the derivative is close to zero, it may not converge

or converge slowly. In our work, we choose to initialize the parameters with random values from a

uniform distribution. Moreover, we are less likely to become caught in local minima or maxima if

we randomly initialize with numbers within the given range (a,b). This unpredictability may aid in

the early exploration of a larger search field and lead to more effective solutions.
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