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Abstract

A Privacy-Preserving Edge Computing Solution for Real-Time Passenger Counting at Bus

Stops using Overhead Fisheye Camera

Pardis Ghaziamin

Successful transit planning in smart cities requires automated and efficient passenger counts at

bus stops while also respecting the privacy of passengersÐa paramount consideration in the age

of responsible AI. In this thesis, we describe the implementation and development of a real-time

passenger counting system at bus stops on Nvidia Edge devices powered only by solar panels, with

limited memory, while not compromising privacy or incurring substantial costs. Numerous studies

have developed and applied computer vision people detection techniques, although this has not been

applied and optimized explicitly to edge-computing passenger counting at bus stops. In this regard,

we evaluated different object detection models using a novel dataset from an overhead fisheye lens

camera of passengers at a bus stop that we developed to analyze and improve the accuracy of the

passenger counting system. We also optimize and reduce the models to allow them to be deployed

on edge devices. We find that YOLO-V4 with mAP of 87% outperforms DetectNet-V2 and Faster-

RCNN. The best object detection model then has been optimized and deployed on the Nvidia Jetson

Device and the performance and efficiency of the passenger counting system evaluated. Deployment

via Nvidia DeepStream on the edge showcased a more than 50% reduction in GPU, CPU, and

memory consumption, enhancing efficiency while conserving energy. As a result, we present a

more accurate and efficient edge-computing video analytics solution for an ethically responsible

passenger counting system at the smart city bus stop.
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Chapter 1

Introduction

Based on the World Urbanization Report by the United Nations Department of Economic and

Social Affairs in 2018 [3], the population portion who are located in urban areas will increase to

60% by 2030 and 68% by 2050, while it was only 54% in 2014, despite the short respite in this

trend due to COVID-19 [4][5]. Urbanization will amplify the challenge of traffic and transportation

congestion in the cities. Moreover, based on the press release from the World Health Organization

[6], nine out of ten people in the world breathe polluted air. This study found that exposure to tiny

airborne particles causes about 7 million deaths worldwide annually. According to a report issued

by ÂEquiterre in 2009 [7] on the effects of transportation on the environment and public health, 40%

of Quebec’s greenhouse gas emissions are related to transport, with 82.7% of those emissions from

the road transport industry. Solutions to reduce air pollution, noise pollution, landscape transforma-

tion, and climate change include the use of integrated mobility, electrification of transportation, and

public transportation.

Public transportation, particularly bus travel, has the potential to decrease the use of private

cars, reduce fuel consumption, and alleviate traffic congestion. Indeed, it is not only waiting times

and travel duration but also the level of crowding inside buses that holds paramount importance for

the efficiency of Public Transport. Overcrowding can dissuade individuals from opting for public

transportation, thereby rendering accurate passenger counting a pivotal challenge in the context of

smart cities.

Moreover, active modes, carpooling, and other innovative options might be able to address these
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challenges effectively. Currently, transit agencies are able to count people onboard buses and other

transportation means. The central issue lies in our limited understanding of passenger numbers at

bus stops. Furthermore, accurately understanding the behavior of individuals who arrive at these

stops but alter their plans due to prolonged waiting times for alternative transportation methods

remains a significant challenge. This uncertainty poses a considerable hurdle in comprehensively

assessing and managing passenger behaviour at these crucial transit points. Understanding passen-

ger behaviour at bus stops can help stakeholders better plan, and passengers better choose, more

sustainable ways to travel. Having an accurate number of passengers who are waiting at the bus

stops can help transportation managers and urban planners better manage travel behavior, reduce

passenger congestion, and improve public transportation services [8].

The research described in this work is related to work done with the smart bus stop company,

BusPas [9], in order to establish an end-to-end people counting system (with overhead fisheye cam-

eras) to their Nvidia GPU-powered ªSCiNeº smart bus stop sign to improve the public transportation

system. BusPas is a tech company that is developing a smart display named SCiNe which stands

for ºSmart City Networkº, and is based on Nvidia Jetson devices with various IoT sensors, such

as motion detection, temperature, display temperature, safety light, speakers, a fisheye camera and

an e-paper screen. E-paper is a display technology that replicates the appearance of ink on paper,

providing high contrast, wide viewing angles, and low power consumption by reflecting ambient

light, making it ideal for devices with limited battery. To increase mobility and track efficiency, this

device gathers telemetry data using a variety of sensors. All of these devices are connected to the

cloud-based platform called ORA, which was created by the BusPas team, to simplify the commu-

nication and management of these devices. The SCiNe has a display to bring real-time information

to passengers and is equipped with a camera positioned at 8 feet to have an optimal view of the bus

stop. They aim to have the most optimal and efficient algorithm to be able to process on the edge

device powered by solar panels. Figure 1.1 demonstrates a graphical schema of the close-up of the

bottom of the SCiNe where the camera is located.

Recent reports have shown that the popularity of video-based automatic passenger counting

systems (APCS) is on the rise [10][11]. Nowadays, data received from camera-based automatic

passenger counting (APC) systems is a source of knowledge for solving a wide variety of urban
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transport issues, ranging from public service improvements to real-time responses to critical traffic

situations. Understanding these types of data while preserving privacy is fundamental to the de-

velopment of smart cities [12]. Especially when it comes to edge computing where respect to the

privacy and sustainability of the system are vital factors. Optimal edge computing systems play a

vital role in developing smart cities due to the cost, energy efficiency, and privacy. Different from

conventional AI methods, Edge AI technology merges Artificial Intelligence and Edge Computing.

In this approach, AI algorithms and models are integrated into edge devices, enabling them to func-

tion locally without relying on internet connectivity. This eliminates network latency issues and

privacy risks in signal transmission.

Furthermore, data security and privacy are important in passenger counting for several reasons:

• Protecting passenger privacy [13]: Passenger counting systems may collect data from pas-

senger devices, such as laptops, smartphones, and tablets, to estimate the number of passen-

gers.

• Preventing data breaches [14]: Passenger counting systems may collect sensitive data, such

as passenger information, which can be used to identify potential security threats.

• Ensuring data accuracy [15]: Passenger counting systems rely on accurate data to provide

useful insights into passenger behavior and ridership information.

• Maintaining system integrity [16]: Passenger counting systems are critical components of

public transportation systems, and any disruption or compromise to the system can have seri-

ous consequences.

Therefore, it is important to ensure that the system is secure and that appropriate measures are

taken to prevent system failures or attacks. Edge computing can enhance security and privacy by

reducing the need to send data to the cloud since it processes data closer to the source without

recording and storing it [12].

Nowadays, computer vision is being used worldwide, from security solutions to passenger

counting in public transport [17]. Computer vision needs a capable camera to be used for pas-

senger counting in public transportation. However, passenger counting is a complex task due to
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Figure 1.1: BusPas SCiNe Device (Left) and the Camera position underneath of the SCiNe (Right)

the variability of bus passengers in terms of their physical features and attire. Each bus stop has a

different background, and lighting conditions can affect signal quality. Moreover, the duration of

passengers getting on a bus is also very brief, lasting from 1 to 5 seconds, with an average of 2

seconds. Additionally, having high frames per second (fps) processing speed is essential because it

provides more frequent data points, capturing rapid changes accurately and enhancing the system’s

responsiveness [18]. To address these challenges, using a capable camera with a wide-angle lens or

mounting the camera higher can be a feasible solution [19]. Over the past two decades, numerous

studies have been conducted on crowd monitoring. However, conventional cameras are limited in

their ability because they cover a small field of view and have large blind areas. This results in

the need for several cameras to be installed if one wishes to capture a 360-degree field of view.

Additional cameras, of course, lead to additional (and higher) costs.

In contrast, fisheye lenses offer an unparalleled field of view, eliminating blind spots and provid-

ing a comprehensive perspective of the surroundings, making them more suitable and economical

for people detection than standard lens cameras. Furthermore, overhead images offer a solution to

the occlusion problem encountered with standard cameras [20], enhancing privacy by eliminating

the need to capture facial information, and, at the same height top-view (which is 8 feet for the
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Figure 1.2: Overhead fisheye camera images vs standard camera images

BusPas SCiNe), fisheye cameras bring a greater field of view compared with standard cameras.

Figure 1.2 shows the field of view of each camera that was simulated by the AIGO simulation

platform, presented by Rexys company [2]. Figure 1.2 (A) is the area that is captured by a standard

camera in 8 feet height from two different perspectives, overhead and front, and Figure 1.2 (B)

shows the area that fisheye camera can capture when is installed overhead in the same height. The

comparison clearly demonstrates that fisheye camera brings a greater field of view at the same height

which makes it a better fit for the passenger counting at the bus stop.

This 360-degree vision, combined with optimized edge computing, propels passenger counting

into a realm of unprecedented accuracy and real-time analysis. Moreover, fisheye cameras bring

about greater advantages when it comes to edge processing due to generally being smaller and

more cost-effective [21]. While fisheye cameras have been used in intelligent robot and car safety

device applications, little research has used them for people counting in crowd monitoring and no

research has been conducted on passenger counting using fisheye cameras on the edge in public

transportation areas [22]. Furthermore, there is no publicly available dataset of fisheye cameras of
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passenger counting in an uncontrolled environment such as a bus stop.

Over the past two decades, numerous studies have developed and applied computer vision peo-

ple detection techniques, although these studies have not been optimized explicitly for passenger

counting at the bus stop, especially on the edge without relying on cloud-based solutions. More-

over, current models were developed using images from conventional, standard-lens cameras. While

fisheye cameras have been used in intelligent robot and car safety device applications, only little

research has used them for people counting in crowd monitoring and no research has been con-

ducted on passenger counting using fisheye cameras on the edge in public transportation areas [22].

Furthermore, there is no privacy-friendly dataset of fisheye cameras of passenger counting in an

uncontrolled environment such as a bus stop.

Traditional passenger counting systems have often been challenged with efficiency, especially

in dynamic and densely populated environments. Fisheye cameras, with their panoramic view and

unmatched depth perception, have revolutionized the landscape of surveillance and data collection.

When coupled with the real-time processing prowess of edge computing, these fisheye cameras

become not just lenses capturing moments, but gateways to a new era of intelligent transportation.

Besides Edge-AI, Deep Learning based object detection is also the main focus of this study.

Deep Learning allows a machine to learn to detect or classify objects using a training dataset. There-

fore, the performance of the model will depend on many factors of the trained data source, such as

the quantity of images, the accuracy of the labels, or the angle at which the camera is positioned

when collecting data. At the same time, Nvidia provides a platform, DeepStream, that supports the

most common and powerful object (and therefore people) detection models. DeepStream is an end-

to-end platform with pre-developed models for video analysis that can be trained with the Nvidia

TAO (Train, Adopt, and Optimize) Toolkit. This is helpful because the Nvidia models are robust,

having been trained on massive datasets. Moreover, Nvidia makes it possible to adapt these models

with user-provided data, giving users the ability to take advantage of these well-trained models for

their own tailored purposes. Finally, it allows for the optimization of the models to ensure they

are as computationally efficient as possible because of the close integration of the edge accelerator,

especially when it comes to real-time edge processing in Nvidia Jetson devices where there is lim-

ited memory and battery power due to the use of a solar panels. It turns out, however, that, as with
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object detection more broadly, none of the Nvidia-implemented models have been used with fisheye

cameras either. In this research, we evaluate different object detection models implemented with

Nvidia DeepStream for passenger counting at bus stops with overhead fisheye cameras and deploy

the best model into the Nvidia Jetson device to make it more privacy-preserving to process on the

edge implement the passenger counting system on BusPas smart bus stop SCiNe.

The speed of processing in parallel for multi-sensor people detection systems has always been

a challenge. Utilizing GPU time and memory efficiently requires significant effort and parameter

tuning for object detection inference. This study focuses on scaling up the people detection and

counting System using the Nvidia DeepStream SDK to make it more robust in processing multiple

camera feeds simultaneously and generating real-time insights [23]. It gives us the benefit of de-

ploying our models offline on the edge, which in turn is helpful as it provides real-time processing

and also protects the privacy of the public at the bus stops, as we are not storing any images or

videos. Instead, the camera feed is input to the device, which does the processing in real-time with

the GPU on our device, and gives the results without having to store any images of people and in-

vade their privacy. Deep stream is an end-to-end platform for video analysis that brings about many

advantages, as it is able to work in an integrated manner with both input and output. It performs

more effectively and efficiently than a deep learning model since it can process data independently

and asynchronously better in various applications such as semantic segmentation, object detection,

classification, and detection [24]. The Nvidia Deep Stream platform also provides the Nvidia TAO

Toolkit (Train, Adopt, and Optimize) to train and adopt pre-trained models together with any cus-

tom dataset to perform well in any particular domain. The structure of the TAO Toolkit is shown in

Figure 1.3 [25].

The Nvidia Transfer Learning Toolkit has been applied for model adoption and launch to the

edge because of the potential benefits that can be gained from the tight integration of the edge accel-

erator and optimization [26]. The Nvidia Transfer Learning Toolkit (Nvidia TAO), primarily known

as Nvidia TLT (transfer Learning toolkit) is a framework for training, adapting, and optimizing

computer vision and conversational AI models with any custom data, in a fraction of the time with-

out large training data sets or AI expertise. The TAO application layer is designed and built based

on CUDA-X, which includes all the lower-level Nvidia libraries. These libraries include the Nvidia

7



Figure 1.3: TAO Toolkit Schema [1]

Container Runtime for GPU acceleration, CUDA and cuDNN for deep learning (DL) operations,

and TensorRT (the Nvidia inference optimization and runtime engine) for model optimization. As

a result, the TAO Toolkit models are fully compatible with, and accelerated for, TensorRT, ensuring

the best inference performance with no additional work. It actually allows the customization of

Computer Vision (CV) and AI models by integrating Nvidia pre-trained models with your own data

using the Nvidia TAO Toolkit [1]. One of the applicable pre-trained models for people detection is

PeopleNet. PeopleNet is a specialized model designed for detecting pedestrians and other objects

in the context of autonomous driving. It uses a combination of computer vision and deep learning

techniques to accurately detect objects in real-time. According to Nvidia, PeopleNet can achieve

inference speeds of up to 200 frames per second (FPS) on Nvidia’s Jetson platform [27]. Besides

purpose-built models, Nvidia TAO also provides training on some famous detection architectures,

such as YOLOv3, FasterRCNN, SSD/DSSD, and RetinaNet some of which we will experiment

the performance of. In this study, we have utilized state-of-the-art deep learning models such as

PeopleNet, Detectnet-V2, YOLO-v4, ssd, Retina net, faster-RCNN.

Our contributions in this research involve three main parts which are first, collecting, processing,

and annotating a rare privacy-friendly overhead fisheye dataset of passengers in a bus stop in an un-

controlled environment, second, training, adopting, and evaluating different Nvidia object detection

models on the aforementioned dataset, and third, optimizing, and deploying the trained model into

the Nvidia edge devices to assess the efficiency of implementing the passenger counting system.

The study achieved an end-to-end solution that integrates multiple live feeds through a single
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application, making the people counting pipeline lightweight and improving processing speed on a

low-end device like Jetson. The DeepStream SDK also allows for easy configuration and adaptation

to new GPU environments with minimal effort. This study details the process used to achieve the

solution and explores improvements in deploying the people-counting system on Jetson devices,

which is discussed in further sections.

The next section provides background literature relevant to the research. Next comes a descrip-

tion of the methodology and the dataset. A subsequent section describes the experiments conducted

followed by the study results and a concluding section.
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Chapter 2

Literature Review

In the world of responsible AI and computer vision, accurate passenger counting stands as a fun-

damental necessity. Beyond its fundamental role in optimizing public transportation and enhancing

customer experiences in retail, precise passenger counting has a vital role in informed decision-

making and sustainable practices. By harnessing innovative technologies, such as overhead fisheye

cameras and advanced AI algorithms, passenger counting not only ensures efficient resource alloca-

tion but also fosters safety, security, and privacy. As we delve into the depths of existing literature,

it becomes evident that responsible implementation of these technologies is paramount, not just

for operational efficiency, but also for upholding ethical standards and environmental conservation.

This literature review aims to explore the intersection of responsible AI, computer vision, and pas-

senger counting, shedding light on the transformative potential of these advancements in shaping a

smarter, safer, and more sustainable future.

In this literature review, we conduct an extensive review of existing literature, exploring respon-

sible AI solutions for passenger counting and the latest advancements in computer vision models

for people detection, which form the foundation of our counting method.

2.1 Responsible Edge-Computing Object Detection

Several computer vision models have been developed for large GPU processing. However, send-

ing data to the cloud is neither sustainable nor cost-effective for real-time streaming processing [28].
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Moreover, it poses privacy risks during data transmission. In order to handle privacy issues, studies

such as [29][30] focus on data anonymizing like blurriness or distortion that can impact accuracy

and efficiency. However, encryption methods, while highly secure, pose inherent privacy risks be-

cause every encryption algorithm must have a corresponding decryption method. This duality is

essential for legitimate users to access encrypted information. However, it also means that if unau-

thorized parties gain access to the decryption key or method, they can potentially compromise the

encrypted data, thus challenging the confidentiality and privacy of the information. Therefore, even

though encryption is a powerful tool for securing data, the potential for decryption underscores the

need for additional layers of security and careful key management to mitigate privacy risks effec-

tively [31]. Furthermore, encryption, while effective, can sometimes be computationally intensive,

impacting system efficiency. Balancing security and efficiency becomes paramount, requiring care-

ful consideration of encryption algorithms and key management practices to minimize privacy risks

without compromising performance [32]. To address these issues, we propose the following: per-

forming all processing on the edge, eliminating privacy risks associated with cloud-based GPU data

transmission [33] while using a sustainable alternative. The following paragraph explores existing

literature on edge computing with Nvidia-based edge devices.

There are some studies that have adopted Nvidia deep learning models using the Nvidia trans-

fer learning toolkit (TAO) and then optimized them to deploy on edge devices, particularly Nvidia

Jetson devices. For example, Ho Chuen Kam and Tomio G. both have adopted DetectNet-V2 and

Resnet50 models for face mask detection [25][26]. Umair et al. trained and investigated the perfor-

mance of different Nvidia pre-trained models for Automated Plastic-Bag Contamination Detection

[34]. Simon et al. used Mask R-CNN and analyzed performance by tuning hyperparameters for

real-time segmentation of Neonates [35]. Abu Anas et al. trained and optimized DetectNet-V2 for

vehicle license plate recognition [36]. These studies used Nvidia models and deployed on edge de-

vices for real-time applications but none of them was used in the context of passenger counting and

utilizing overhead fisheye camera video. In the following section, we delve into the cutting-edge

advancements in computer vision models tailored specifically for people detection.
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2.2 Computer vision techniques for Object Detection

In the realm of computer vision, object detection stands as a pivotal domain, crucial for appli-

cations ranging from autonomous vehicles to surveillance systems [17]. With the advent of deep

learning, remarkable progress has been made in developing sophisticated models capable of accu-

rate object detection [37]. However, the traditional focus has largely been on object detection in

standard images captured by conventional cameras. In recent years, the emergence of fisheye im-

ages as a unique category has presented both challenges and opportunities in the field of computer

vision. In this regard, this part covers the latest advancements in computer vision models for peo-

ple detection which consists of two main parts: studies focused on images captured by standard

cameras, and studies utilizing images captured by fisheye cameras. Through this approach, first,

we can comprehensively analyze the advancements, challenges, and methodologies in object de-

tection models designed for standard images, and second, critically evaluate the emerging trends

and research gaps in object detection models specifically designed for fisheye images. By compar-

ing these two categories, this review aims to provide insights into the evolution of object detection

techniques in the context of varying image types and pave the way for passenger counting using

overhead fisheye images.

2.2.1 Counting people in Standard Images

In this study, standard images refer to images taken by a standard lens camera, which produces a

perspective (or ªgnomonicº) projection of reality, and most of the images captured in real life are of

this type. Based on previous works, there are two ways of counting people in these kinds of images

that will be elaborated in the next session [38].

Direct and Indirect methods

All kinds of counting algorithms try to take the vector of features from images, and then apply

different computations on top of that. Basically, a vector of features could be a better input than

the original values of pixels. The two types of people counting methods adopt different statistical
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methods. The indirect method, which is based on a regression model that utilizes feature vectors to

count the number of people and direct methods, that apply classification models on feature vectors

to detect people in the images.

According to many studies [39], and [40], direct detection methods are more accurate in sparse

crowds, however, indirect methods work better in dense crowds. Crowd refers to situations where

people overlap with each other.

In the case of Montreal bus stops, crowds tend to be sparse, so we can continue with direct

counting methods that have better performance in the sparse crowd.

As all direct models initially detect people, it is simple to calculate the count from the number

of detections. In this instance, it is clear that the precision of the chosen person detector directly

affects the precision of the count. In this regard, we aim to improve and advance a detection model

that suits our specific application.

In this literature review, we will go through the state of the art of people detection models.

The public datasets for people (and other object) detection used to train these models are initially

presented in the section that follows. Since statistical models often benefit from training on related

datasets and auxiliary tasks, we present object detection datasets in addition to the person detection

datasets [40][41].

Datasets

Datasets for conventional images: We can list 4 datasets specifically for people detection in

addition to the 4 primary datasets for object detection (Pascal VOC, ILSVRC, MS-COCO, and

Open Images) (Caltech Pedestrian, CityPersons, EuroCity, CrowdHuman). A few of these datasets

are used to train most object or person detectors. These 8 datasets can be outlined as follows:

• Pascal visual object classes (VOC) [42]: There are 27,000 objects in the 11,000 photos,

which are divided into 20 classes and include people, various animals, various cars, and some

furniture or accessories. An example of the dataset is demonstrated in figure 2.2 (A).

• ImageNet large scale visual recognition challenge (ILSVRC) [43]: The 200 classes consist of

more than 500,000 images and more than 500,000 annotations. The 200 classes of ILSVRC
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also contain classes similar to the 20 classes in Pascal VOC. An example of the dataset is

demonstrated in figure 2.2 (B).

• Microsoft Common Objects in Context (MS-COCO) [44]: More than 200,000 photos with

more than 500,000 annotations are included which are grouped into 80 classes. This dataset is

more difficult than the previous ones since it has more overlapping, tiny objects. Many pub-

lished models are trained and tested on this dataset. An example of the dataset is demonstrated

in figure 2.2 (C).

• Open Pictures [45]: This dataset has 600 classes and almost 2 million photos, with 16 million

annotations because of which it is by far the biggest online object detection dataset. An

example of the dataset is demonstrated in figure 2.2 (D).

• Caltech Pedestrian [46]: It includes 350,000 annotations from 2,300 different people on

200,000 photos taken from videos. An example of the dataset is demonstrated in figure 2.3

(A).

• CityPersons [47]: Despite the fact that this dataset is smaller (5,000 photos with 35,000

annotations of people) than Caltech Pedestrian, it has 20,000 different individuals than the

latter, which is almost 10 times more. An example of the dataset is demonstrated in figure 2.3

(B).

• EuroCity [48]: Over 50,000 photos with 238,200 annotations of persons are included in it.

The photos were taken in roughly 30 different cities during the day and night in all four

seasons. Since it encompasses a wide range of backgrounds and light intensities, it is a

challenging dataset. An example of the dataset is demonstrated in figure 2.3 (C).

• CrowdHuman [49]: This dataset has over 15,000 photos with 339,600 different annotations

of humans. This data set frequently contains individuals who partially or entirely overlap,

with about 22 individuals in each image. An example of the dataset is demonstrated in figure

2.3 (D).

• Kitti Dataset [50]: Karlsruhe Institute of Technology provides an autonomous vehicle dataset

that applies to different applications such as object detection, tracking, segmentation, etc. The
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Figure 2.1: An example of public Object Detection Datasets with the standard camera: Kitti dataset

benchmark for object detection and object orientation estimation consists of 80.256 labeled

objects spread across 7481 training images and 7518 test images. This dataset is captured by

driving around the mid-size city of Karlsruhe. Per image, up to 15 vehicles and 30 people are

observable. An example of the dataset is demonstrated in figure 2.1.

One feature links all of the aforementioned datasets: practically all of them consist of side-

viewed photographs. Hence, models trained on these generalize on the distinctive visual charac-

teristics of objects and individuals when viewed from the side. These models, however, cannot be

relied upon to accurately identify humans in 360-degree diving-view images since they are not ex-

posed to diving-view images. In the following sections, we describe a method to solve this issue

for 360-degree photos taken with hypergone lens cameras that have vertical dive views. For the

time being, we investigate object and person detectors in common photos. These detectors can be

categorized as common or deep based on how they extract feature vectors from the images.

Classic detectors

If a detector extracts feature vectors from the images via manual calculations, it is referred to as

a ªclassicalº detector. The features that were extracted may indicate:

Key points: The combination of these spots that the individual considers special forms the

feature vectors. They can be defined in a number of ways, including using Harris wedges [51],
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Figure 2.2: An example of public Object Detection Datasets with the standard camera: (A) Pas-

cal visual object classes (VOC), (B) ImageNet, (C) Microsoft Common Objects in Context (MS-

COCO), and (D) Open Pictures

Figure 2.3: An example of public People Detection Datasets with the standard camera: (A) Caltech

Pedestrian, (B) CityPersons, (C) EuroCity, and (D) CrowdHuman
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SURF (speeded-up robust features) [52], or SIFT (scale-invariant feature descriptors) [53]. These

descriptors are simple and quick to compute, but they also give persons encountered during the

training phase a distinct identity. As a result, they are excellent at identifying people in new photos,

but they have trouble identifying persons whose looks have not previously been learned [54]. So,

key points are characteristics more suited to the task of re-identifying individuals rather than their

detection and are not applicable to our study.

Texture indicators: There are a number of ways to extract texture indicators locally from

images: using the local binary pattern (LBP) [55], with the histogram of oriented gradients (HOG)

[56], with Haar wavelets [57], or with other methods. The histogram of image gradients is created

by computing all of the gradients present in the image (using Sobel filters, for example), sorting the

gradients on each small 8x8 neighborhood of the image into a histogram based on their direction

and intensity, and then analyzing the histogram. These histograms for all neighborhoods are simply

concatenated to create the HOG feature vector. HOG has been demonstrated to be a useful descriptor

for person detection [56]. Yet, as will be discussed in the following section, the deep features learned

from the data outperform HOG and other conventional descriptors at the detection task.

In several traditional detectors [56][57][58][59][60], the detection is carried out using the sliding

window method. To establish whether a person is present at a certain area, they move a window

to various scales and locations in the image, compute the chosen feature vector on this window,

and then use a classifier (support vector machine (SVM) [61], AdaBoost [62], or another). There

are modifications to this idea that increase precision or accelerate calculations. For instance, to

better detect persons, the integral channel features (ICF) detector [58] converts images into several

color spaces (HSV, LUV, grayscale) before computing the feature vectors. By providing a technique

to approximate gradients on oversampled or undersampled images from the original gradients and

avoiding repeating computations of feature vectors at various scales, the aggregated channel features

(ACF) detector [59] speeds up computations. As a result, it can work two times faster than ICF

without sacrificing precision.

The dynamic parts model (DPM) detector [60], which is a predecessor of deep convolutional

networks for the detection of persons and objects, is worth mentioning at this point. A primary filter

that encodes the object’s overall appearance is used to model the objects that need to be detected,

17



together with higher resolution special filters that encode the object’s numerous components and

their ideal positions in relation to the object’s center. These filters are used to weigh the features

that were extracted from the images in order to detect objects, and a score is then given to each

position in the images. It measures how well the primary filter matches that region of the images

as well as how effectively the individual filters create high responses close to their ideal placements

(a high value indicates the presence of an object at that location). Compared to ICF and ACF, the

DPM detector generates more precise detections but is slower than ACF.

DPM is comparable to more current detectors based on deep convolutional layer networks since

it uses filter-based object representations. DPM can also be expressed as a convolutional neural

network(CNN) [63]. This research demonstrates an improvement in DPM performance by replacing

deep features acquired from the data for a DPM’s traditional features. This confirms the claim that

manually derived features are weaker than deep features for detection. Because of this, we won’t

use a conventional detector to count people at bus stops; instead, the next part will offer models for

item and person detection based on deep neural networks.

Deep Sensors

The extraction of feature vectors from images for a deep detector is now a process that a neural

network has learned from the data rather than being manually engineered. Convolutional neural

networks (CNN) are deep networks that perform best at detecting objects and people, which is

potentially a result of the translational equivariance property of convolutions. During feature ex-

traction, this feature enables the model to make use of identical parameters across the entire image.

Several Convolutional model structures have been proposed, and we offer the top-performing mod-

els in this section in order of their date of development. As it is challenging to determine beforehand

which of these models will be the most effective for our goal, we will employ a number of the deep

detectors discussed in this part in our experiments to help us reach this determination. Moreover,

deep sensors can be divided into two types: 1-step detectors, which find and classify objects in a

single operation, and 2-step detectors, which propose regions of interest (RoI) on an image before

classifying this RoI among the item classes taken into account.
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2-step detectors

Initially, fast region-based convolutional neural networks (Fast R-CNN)[64] provide a classi-

fication layer for classifying all detections at once by integrating the regions of interest using the

RoI pooling layer (taking as input an image and a list of regions of interest). This layer converts

all areas of interest into feature maps of the same size, which makes them all processed at once

by the classification network. The detector’s previously extracted features separate for every region

of interest, which significantly lengthens the computation time. Nevertheless, this article does not

address the expensive stage in this detector known as the proposal of regions of interest.

Second, faster region-based convolutional neural networks (Faster R-CNN) [65] accelerate the

proposal of regions of interest (RPN) with the aid of developing the region proposal network (RPN).

A convolutional network called the RPN introduces the idea of anchor boxes. Taking into account

the k anchor boxes, the RPN is made to predict k confidence scores and 4k relative dimensions at

each image position. Following that, the RPN-proposed regions of interest are those with confidence

levels above a certain threshold, and their dimensions are calculated in relation to the anchor boxes

with the 4k predicted values. Combining RPN for proposing regions of interest with Fast R-CNN for

classifying these regions of interest, helps the Faster R-CNN model to remain efficient and effective.

Besides, RPN and Fast R-CNN have some shared convolutional layers that improve inference speed

so that the final model is able to process 5-20 frames per second.

Lastly, the feature pyramid network (FPN) [66] is made up of convolutional layers that lower the

feature maps’ resolution and then convolutional layers that raise it (Figure 2.3) in which, these two

feature maps are connected to each other with residual connection in the same direction. Moreover,

links that are shortened (or residual) between feature maps in the same dimension are used. The

resolution is then increased by making predictions from all the layers. Its architectural design makes

it easier to predict regions of interest at various scales. Replacing the RPN for the region of interest

proposal with an FPN in Faster R-CNN, the accuracy of the model can be increased by up to 10%

and it can be slightly sped up.
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1-step detectors

You Only Look Once (YOLO) [67] efficiently speeds up object detection by discarding the

2-step detection approach used by earlier detectors. The RPN deployed by Faster R-CNN has a

similar structure to the YOLO model, while it does not make use of marker boxes. Instead, it uses

a smaller grid size and does not make predictions anywhere on the image. Moreover, it predicts a

confidence score and absolute box dimensions at each grid point. Because it operates directly on a

picture and recognizes and locates objects inside it, it can be considered a comprehensive detection

model. Although it achieves slightly worse performances than earlier versions, it operates at a rate

at least twice as fast and respects the real-time limitation. The versions YOLO-V2 [68], YOLO-V3

[69], and YOLO-V4 [70] are then created by applying a number of advancements connected to the

development of the deep learning sector to YOLO. The upgraded versions, for instance, predict

multi-resolution detections as FPNs, raise the resolution of the input images, add normalization,

use landmark boxes as RPNs, include residual connections, and lightly adjust the training (loss

functions, activation functions, etc.). All of these changes enhance the model’s accuracy without

significantly slowing it down.

Similar to this, the single shot detector (SSD) [71] performs its predictions using bounding

boxes and produces predictions on feature maps with different resolutions as opposed to a single grid

which enables it to process 15 more frames per second while being 10% more accurate than YOLO.

Nevertheless, since newer versions of YOLO use comparable designs with further improvements,

SSD no longer stands out against these new versions.

Then, the RetinaNet model’s developers [72] came up with the idea that the mismatch of train-

ing classes is what keeps one-step detectors from being as accurate as two-step detectors. They

discover that ªeasyº instances including background areas that are exposed to one-step detectors

much more frequently than ªhardº ones including objects. Hence, they switch out the conventional

cross-entropy classification loss function for the loss function. In summary, they introduce a pa-

rameter to cross-entropy costs that significantly reduces when the class probability is accurately

predicted. Hence, the loss is more heavily influenced by ªdifficultº situations than by obvious ones.

RetinaNet is now approximately 10% more accurate than SSD on the MS-COCO data set as a result.
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2.2.2 Counting People in Fisheye Images

Relevant literature on people detection with fisheye camera images involves two aspects. First,

computer vision models developed in this context, but also importantly, publicly available datasets

that make model development possible. We start with publicly available fisheye lens labeled datasets.

Datasets for 360 degree images:

Since we are developing a model to work with overhead fisheye cameras in uncontrolled

environments (i.e. bus stops), we require a suitable dataset. However, labeled fisheye lens camera

datasets are extremely rare. Those that do exist include the following. The HABBOF dataset [73]

comprises four brief videos with three or four persons in each. The MW-R dataset [74] is made

up of frames that were taken from 19 films shot in indoor settings with a limited (1-5) number of

(frequently the same) individuals between videos. The CEPDOF dataset [74] consists of 8 films

with 8 to 13 persons in them captured in a break room of an office. The WEPDTOF dataset [75]

is derived from YouTube videos. Overall, 188 different people can be found across all interior

videos, with 1±35 people per film. The Woodscape dataset [76] is a fisheye dataset for autonomous

vehicles captured by a car equipped with cameras. What is important to recognize here is that

publicly available fisheye datasets are constrained primarily to the controlled overhead environments

with few people, or uncontrolled environments but with point-of-view fisheye lenses mounted on

vehicles. That is, there are no datasets from overhead fisheye cameras in uncontrolled environments,

and obviously, none at bus stops either.

Labeled vertical dive view fisheye lens camera datasets are extremely rare. Few are annotated

with encompassing right rectangles (around people) aligned with the axes of the images or with dots

on the heads of people, such as MirrorWorld (collected and annotated by the Institute of Creativity,

Arts, and Technology at Virginia Tech University), BOMNI [77], and PIROPO [78]. We do not

use these three datasets in our research since their annotation formats are unfit for either training or

evaluating detectors in 360-degree images. These datasets can be outlined as follows:
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Figure 2.4: An example of public fisheye Dataset: (A) HABBOF, (B) CEPDOF, (C) WEPDOF, (D)

MW-R, and (E) Woodscape
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• HABBOF: Human-Aligned Bounding Boxes from Overhead Fisheye cameras dataset

dataset [73]: It comprises of four brief videos with three or four persons in each. Due to

its limited size, this dataset is not used to verify our models. An example of the dataset is

demonstrated in figure 2.4 (A).

• MW-R: Mirror Worlds Dataset [74]: They updated the annotations on the Mirror-World

dataset in 2020 and gave it the new moniker MW-R [54]. It is made up of frames that were

taken from 19 films that were shot in indoor settings with a limited number of individuals

present (1-5 people, frequently the same people from video to video). An example of the

dataset is demonstrated in figure 2.4 (D).

• CEPDOF: Challenging Events for Person Detection from Overhead Fisheye images

dataset [74]: It consists of 8 films with 8 to 13 persons in them, involving extreme over-

laps between people, unusual human stances, poor lighting conditions, etc. and is designed

to be a dataset for ºdifficultº or ºchallengingº situations. This dataset is utilized in the last

part of our experiments to analyze the performance of the Detectnet-V2 model. An example

of the dataset is demonstrated in figure 2.4 (B).

• WEPDTOF: In-the-Wild Events for People Detection and Tracking from Overhead

Fisheye Cameras dataset [75]: This is made form YouTube videos. 188 different people

can be found across all videos, with 1±35 people per film. Although there are still images

of interiors, the settings are much more diversified (exhibition, warehouse, grocery store,

daycare, office, etc.). An example of the dataset is demonstrated in figure 2.4 (C).

• Woodscape [76] [79]: Valeo Woodscape is a fisheye dataset for autonomous vehicles cap-

tured by equipped cars with cameras. It includes labels for various autonomous vehicle

tasks such as semantic segmentation, monocular depth estimation, object detection (2D &

3D bounding boxes), visual odometry, visual SLAM, motion segmentation, soiling detection,

and end-to-end driving (driving controls). It provides 1000 images with 2D bounding box

labels including pedestrians, vehicles, bicycles, traffic lights, and traffic signs. An example of

dataset is demonstrated in figure 2.4 (E).
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Adaptation of structure of deep detectors

In this section, we discuss detection models that optimize their internal structure to take into

consideration the equivariance of rotations in 360-degree vertical dive view photos. The AP50, or

alternatively the mAP is frequently used to assess the accuracy of detectors if only one class of

objects (in our case, persons) is analyzed. To define this metric, we define its precision and recall as

the ratio of correct predictions to the total number of detections and the ratio of true detections to the

total number of people actually present in the image, respectively. Detection is often considered to

be true if its intersection-over union with an annotation exceeds 50%. This lower bound is especially

significant as the detections made by the predictor and both the precision and recall are dependent

on it. The detector’s precision-recall curve can then be plotted by tweaking it. The area under this

curve is represented by the AP50, and the mAP is the average of the AP50 across all classes taken

into account. When these values are high, a detector is thought to be more effective.

Using a unique angle-aware loss function, the rotation-aware people detection (RAPiD) model

modifies YOLO to predict encompassing rectangles centered around persons in images. An aug-

mented MS-COCO is used to train this model, by adding rotations, reflections, scaling, and color

changes to photos. It is then retrained using a cross-validation approach on the 360° MW-R, HAB-

BOF, and CEPDOF image datasets (when retrained on MW-R and HABBOF, it is validated on

CEPDOF, and vice versa). This model can process 7 frames per second on a GTX1650 graph-

ics card and is quite accurate (97% AP50 on MW-R, 98% AP50 on HABBOF, and 86% AP50 on

CEPDOF), but it needs to be trained on MS-COCO with the given data increments and retrained on

360 frames.

The model below, which Li et al. [80] described, is a multi-class detector for 360-degree pic-

tures. They employ deformable convolutions to extract object properties from the warped 360-

degree images, and their model’s final predictions are irregular quadrilaterals, which appear to be

the main two aspects that set it apart. To assess the effectiveness of their method, they compute

the intersection-over-union of two asymmetric quadrilaterals using the Monte Carlo method. They

simulate a 360-degree picture dataset by applying distortions to the Pascal VOC dataset in order to

train and test their algorithm. For this dataset, which they dub VOC-fisheye, they find a mAP of
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75%. Such a multi-class detector is not appropriate for our purposes, which is to explicitly count

persons.

The authors of a different paper [81] contend that the incompatibility between trained fiducial

boxes and the appearances of humans in 360-degree photos is what causes issues when utilizing a

detector that has been previously trained on conventional images. So, they suggest an architecture

(influenced by CenterNet) that, without the use of landmark boxes, determines the center of the

detections and directly computes the size and orientation of the enclosing rectangles. Their model

achieves an AP50 of 96% on MW-R, 96% on HABBOF, and 80% on CEPDOF when running at 20

frames per second on a GTX1070Ti graphics card.

There are few object detection models optimized for fisheye photos to detect people. Some

traditional people detection methodologies such as HOG and LBP have been adapted to this purpose

by changing the fisheye geometry of the images [82] [83][58]. For instance, Chiang and Wang [83]

obtained HOG features from the top center of each fisheye image after rotating each image in tiny

angular steps. They then used an SVM classifier to detect people. In a different approach, Krams and

Kiryati [84] trained an ACF (aggregate channel features) classifier on standard images and restored

the ACF features taken from the fisheye image for person detection. Recently, algorithms based on

Convolutional Neural Networks (CNNs) have also been applied to this use case. By training a CNN

on a rotated version of the COCO dataset [44], Tamura et al. introduced a version of YOLO that

is rotation-invariant [67]. Their approach assumes that the bounding boxes in a fisheye image are

parallel to the image radius during the inference stage. Another YOLO-based approach [85] uses

undistorted versions of overlapping windows that were taken out of a fisheye image and then applies

YOLO to them. Each fisheye image is rotated by Li et al. [86] in 15 steps, and YOLO is solely

applied to the upper center region of the image, where subjects typically stand erect. They then use

post-processing to eliminate duplicate detections of the same person. Their system applies YOLO,

24 times to each image, which makes it computationally complex even though it is quite accurate.

The rotation-aware people detection (RAPiD) model modifies YOLO, using an angle-aware loss

function to predict rectangles around persons. It is trained on 360° MW-R, HABBOF, and CEPDOF

datasets, and achieved 97% AP50, 98%, and 86%, respectively [74]. In another study, Li et al. [80]
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describe a multi-class detector for 360-degree pictures, employing deformable convolutions to ex-

tract object properties and predict irregular quadrilaterals. Their method achieves 75% mAP on their

VOC-fisheye dataset, but it is built with a dataset that is not suitable for explicit person counting.

Another paper [81] proposed an architecture inspired by CenterNet to address the incompatibility

between trained fiducial boxes and human appearances in 360-degree photos. It directly computes

the size and orientation of enclosing rectangles without landmark boxes. The model achieves 96%

AP50 on MW-R, 96% on HABBOF, and 80% on CEPDOF.

In most of the cases, the datasets were neither comprehensive nor challenging enough (i.e.,

single object per image with no background noise). Moreover, none of the aforementioned models

utilize a dataset that has been created in an outdoor setting, for detecting and counting passengers

waiting at the bus stop. These critical analyses clearly suggested the need to develop a practical

solution with challenging real-world data for identifying and counting passengers at bus stops.

2.3 Literature Review Summary

To summarize, In the area of computer vision and passenger counting technology, previous re-

search has predominantly concentrated on large models demanding high computational resources

for execution. Furthermore, most of the computer vision models utilized conventional cameras,

leaving fisheye images largely unexplored. A significant gap persists in developing an efficient peo-

ple detection model utilizing fisheye cameras, particularly in the context of edge computing, where

safeguarding passenger privacy and ensuring sustainability are critical concerns. This unexplored

territory highlights the need for innovative solutions in this domain.

Moreover, there are a large number of models available that could potentially be used to under-

take passenger counting at bus stops. At the same time, Nvidia has a toolkit that has implemented

the most common and powerful models and allows them to be estimated based on user data. These

models have, for the most part, not been used with fisheye cameras. This is where we highlight

our contribution to this research. Addressing this gap, our research stands out by employing an

overhead fisheye camera on edge devices, a pioneering approach that conserves energy, upholds

privacy, and eliminates the need for transmitting sensitive data to the cloud. By addressing these
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critical challenges, our research offers a novel perspective and practical solution, marking a signif-

icant advancement in the domain of passenger counting technology. This innovative solution not

only conserves energy, making it environmentally friendly, but also prioritizes passenger privacy, a

paramount concern in public transportation settings. By eliminating the need to transmit sensitive

data to external servers or cloud platforms, our approach ensures that passenger information remains

secure and confidential. This not only aligns with current privacy regulations but also builds trust

among passengers, making them more receptive to such technological advancements.

In essence, our research does not merely offer a technical solution; it introduces a holistic ap-

proach that combines cutting-edge technology with ethical considerations. By embracing the over-

head fisheye camera, we redefine the standards of privacy-friendly passenger counting technology.

This groundbreaking methodology not only marks a significant advancement in the domain but also

sets a new benchmark for responsible innovation in the field of computer vision and edge comput-

ing.
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Chapter 3

Methodology

This research focuses on people detection and counting at bus stops using overhead fish-

eye images on edge devices. One of the challenges is acquiring a dataset that meets our needs. The

subsequent step involves building an optimal model based on this dataset, enabling efficient detec-

tion and counting people at bus stops, and deploying and implementing a people counting system

on Nvidia edge devices.

3.1 Data

This research focuses on the task of people detection and counting in overhead images. In this

work, two major datasets were used, one of which is CEPDOF which was mentioned in section

2.2.2. It is known to be a difficult and challenging dataset for overhead images for people detec-

tion. The other dataset used for this study comprises images captured using an Nvidia-compatible

camera module - IMX477, deployed on one of the SCiNe devices in our testing environment. The

dataset encompasses approximately 2212 images, providing a diverse range of scenarios and crowd

densities. As shown in the following image, a few representative photos from our dataset showcase

the variations in lighting conditions, perspectives, and crowd compositions. The availability of this

dataset enabled us to investigate and develop robust algorithms for accurate people detection and

counting in overhead imagery.

Capturing our own images and creating a dataset was necessary for several reasons. Firstly,
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our camera captured overhead fisheye images, which provide a unique perspective and field of

view compared to traditional camera setups. Existing datasets for overhead images often focus on

controlled environments, such as the CEPDOF dataset, which features images taken in an indoor

office break room setting. However, our testing environment is uncontrolled and situated in an

open outdoor space, introducing various factors that affect people detection, such as varying light

conditions, which resulted in different shadow placements during different times of the day. In

addition, on some days we experienced rain, and on others, dust accumulated on the camera lens

resulting in blurry images. By capturing our own images, we ensure that our dataset reflects the

challenges and complexities present in real-world scenarios.

Moreover, our dataset includes images captured during low-light conditions, such as nighttime

or cloudy days. This adds another layer of difficulty for people detection algorithms, as visibility

is reduced and distinguishing individuals becomes more challenging. Additionally, our dataset con-

tains instances of occluded objects, where people may be standing beside the bus stop or partially

obstructed, not in clear view of the camera. These occlusions are common in crowded areas and

present a significant challenge for accurate people detection.

By creating our own dataset, we addressed the limitations of existing datasets, catered to our

specific testing environment, and included a wide range of real-world conditions. This allowed

us to develop and evaluate more robust and reliable algorithms for people detection in overhead

images.

3.1.1 Capturing images

To capture the images for our dataset, we employed the camera module IMX477, renowned for

its image quality and compatibility with Nvidia toolkit. The camera module allowed us to capture

360-degree overhead fisheye images, providing a comprehensive view of the surrounding area.

The images were captured at an average interval of 10 seconds, ensuring a consistent and contin-

uous stream of data. This interval was chosen to capture the dynamics of the environment, including

the movement of people and changing lighting conditions. Over a period of 15 days, we conducted

image-capturing sessions ranging from 3 to 10 hours each day, resulting in a substantial collection

of 17,529 images.
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By collecting images over an extended duration and covering multiple days, we aimed to cap-

ture a diverse range of scenarios and crowd dynamics. This comprehensive dataset allowed us to

study and address challenges associated with varying light conditions, temporal changes, and crowd

density. The abundance of images also facilitates robust algorithm development and evaluation,

contributing to the reliability and accuracy of people detection and counting in overhead imagery.

3.1.2 Data cleaning

To ensure the quality and relevance of our dataset, a thorough data-cleaning process was con-

ducted. We focused on creating a dataset specifically tailored to our testing environment, which

primarily involved the area in and around the bus stop.

The initial data comprised approximately 17,529 images captured over a span of 15 days, as

stated before. To filter the data, we implemented a careful selection process. Our objective was to

retain only those images that contained people within our area of interest, namely the vicinity of

the bus stop. This filtering step aimed to eliminate images that did not directly contribute to our

research objective of people detection and counting in the designated testing environment.

Through meticulous examination, we reviewed each image and identified those that captured

individuals in the vicinity of the bus stop. After this filtering process, we obtained a refined dataset

comprising approximately 2,200 images, which sufficiently represented the dynamics and scenarios

occurring in our testing environment. This cleaned and curated dataset provides a focused and

targeted resource for training and evaluating algorithms for people detection and counting in the

specific area of interest around the bus stop.

3.1.3 Data Annotation

For the neural networks to be supervised trained, images with bounding boxes must first be

provided. To annotate this dataset, we leveraged the powerful annotation platform called Roboflow.

The annotation process began with manual annotation of a subset of images, where we carefully

labeled the presence and location of people in the overhead images. This initial annotated data was

then utilized to train a model using Roboflow’s training capabilities, which developed the ability to

predict people’s positions in the remaining unlabeled images. To expedite the annotation process
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for the rest of the dataset, we employed Roboflow’s label assist feature. This feature utilizes the

trained model’s predictions as suggestions, which were then reviewed and corrected by us, ensuring

accurate and efficient annotations for a large volume of images in our dataset. The combined efforts

of manual annotation and the utilization of Roboflow’s label assist feature resulted in a comprehen-

sive and accurately annotated dataset for our research on people detection and counting in overhead

images.

They were initially converted to KITTI format [87], after which the pictures were cropped to a

1280 * 720 size. They were then introduced to the data layer for additional processing. After the

data feeding, online image augmentation was carried out to prevent overfitting and provide the AI

with more training data.

3.2 Nvidia Pre-trained models

To find the most optimized solution, we have adopted and evaluated several variations of cutting-

edge computer vision object detection models (such as detecnet v2 Faster R CNN, YOLOv4) to

determine which model performed the best. The following is a presentation of the theoretical back-

ground for each of the implemented computer vision models [34]. The following object detection

models were implemented via the Nvidia Tao toolbox, which is based on TensorFlow.

3.2.1 Detectnet V2

DetectNet is a novel object detection framework developed by Nvidia by predicting the object-

ness (coverage) within grid squares. With this knowledge, bounding box coordinates may be found

as they correspond to the centers of the grid squares that are occupied. The DetectNet architecture

is outlined below:

-Data Ingestion and Augmentation Layer

-Fully Conventional Network (FCN)

-Loss Function

-Bounding Box Clustering
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After preparing and augmenting the dataset, the fully convolutional network received the training

data and used it to extract features and predict the location of bounding boxes and object classes.

Coverage maps, which have a grid of cells to assess whether an object is present in patches on them,

were used to do this. In order to determine the total system loss, two distinct loss functionsÐthe

bounding box loss and the coverage lossÐwere combined.

Equation (1) displays the coverage loss based on the difference between the output coverage

map produced by the fully convolutional neural network and the one produced from the training

data (ground truth), which is measured as the least square error (L2), where coveraget is the actual

value obtained from the ground truth, coveragep is the system’s predicted coverage value, and N is

the batch size. The bounding boxes correspond to the second loss.

Coverage loss =
1

2N

N∑

i=1

|coverageti − coverage
p
i |
2 (1)

Equation (2) demonstrates that the mean absolute difference (L1) between the ground truth and

the output-predicted bounding boxes was used to determine the bounding box losses. (xmin, ymin),

and (xmax, ymax) indicates the two points of the bounding box, and (xt, yt) refers to the ground

truth, while (xp, yp) refers to the predictions of the model.

Bbox loss =
1

2N

N∑

i=1

|xtmin − x
p
min|+ |ytmin − y

p
min|+ |xtmax − xpmax|+ |ytmax − ypmax| (2)

The bounding boxes generated by the predictor were clustered and filtered by DetectNet in the final

layer. These bounding boxes were then grouped together based on their similar locations and sizes

[26].
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3.2.2 Faster RCNN

Ren et al. [88] proposed Faster R-CNN model addresses the issue of high processing cost when

computing on the region proposals. This model is based on a novel Region Proposal Network

(RPN) that was designed with the purpose of sharing features coming from the feature extraction

with detection networks in order to significantly cut down on computational costs.

Further, the Fast R-CNN and RPN networks were merged using the shared CNN features and

introduced the attention-based mechanism. In the RPN, anchors are used to address the multiple

scales and aspect-ratio problems related to objects. As a result of this operation, an anchor is

placed at the center of each spatial window. The proposals are then parametrized in relation to the

anchors. This results in a unified single model with two modules: the RPN deep CNN model and

the Fast R-CNN detector. Compared to other object detection models, the proposed RPN network

generates multi-scale anchors as regression and adopts a pyramid type approach to make it efficient.

Therefore, the loss function includes both the classification and regression tasks as expressed in

Equation (3). It can be observed that both the regression loss and classification loss are optimized

to train the model.

Additionally, the Fast R-CNN and RPN networks were combined with the CNN features that

they had in common and the attention-based mechanism was introduced. RPN utilizes anchors to

handle to issues with multiple scaling and aspect-ratio issues related to objects . This process results

in an anchor being positioned in the center of each spatial window. In reference to the anchors, the

proposals are subsequently parametrized. The RPN deep CNN model and the Fast R-CNN detector

are the two modules that result in a single, unified model. The proposed RPN network creates

multi-scale anchors as regression and uses a pyramid-style method to increase efficiency compared

to previous object detection models. As a result, the loss function, as described in Equation (3),

takes into account both the classification and regression tasks. It is clear that the model’s training

minimizes both the classification and regression losses.

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗

i ) + λ
1

Nbbox

∑

i

p∗iLbbox(ti, t
∗

i ) (3)
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where i is the index for the anchor, pi refers to the probability for the ith anchor, p∗i is the ground

truth for the ith anchor, ti is the vector containing the predicted bbox coordinates, t∗i is the vector

for the ground truth bbox coordinates, cls and bbox refer to regularization parameters, and l is the

balancing parameter.

The shared convolutional layers in the backbone network initially extract the deep features asso-

ciated with people from the images during training. This network is known as the feature extractor.

The information retrieved by the RPN layer will be used as input to the pooling layer alongside an

image with the fixed size. The final step involves connecting a high-dimensional feature vector to

an output detection network with fully connected layers. In the output network, one fully connected

layer is utilized to determine the classification score, while the other layer is used to determine the

position to be detected by regression. During the training process, the neural network’s parameters

are modified based on the loss function (see Equation (3)). The SGD optimizer modifies the net-

work’s weights based on the output of the loss function in order to reduce the model’s loss during

back propagation. The steps involved in this process are as follows:

First, the network’s weights (w) and bias (b) are initialized depending on the backbone network;

Once the forward-propagation process has begun, the input image will be processed based on the

type of the network layer.

The following expression is used to do forward computation for a fully connected layer:

αm,l = σ(zm,l) = σ(W lαm,l−1 + bl), (4)

where m stands for the image sample, l for the network layer, σ signifies the activation function (in

this case, ReLU), W for the network weights, and b for the network bias;

The following expression is used to do forward computation for a convolutional layer:

αm,l = σ(zm,l) = σ(W l ⊗ αm,l−1 + bl), (5)
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where ⊗ stands for the convolution operation;

For the pooling layer, a reduced dimension operation is applied on the input ;

A Softmax function is utilized to predict the class probabilities for the output layer. Mathemat-

ically, the softmax operation is expressed as:

Softmax(z)j =
expzj

∑K
k=1

ezk
forj = 1, 2, ...,K, (6)

where K is the z-vector’s dimension, on which Softmax is being applied;

Depending on the layer in the network, a back propagation operation applies using the loss

function. Weights and bias values are changed for each layer in accordance with the gradient values

throughout the backpropagation process, which uses the gradient descent approach to minimize

loss. The gradient descent method depends strongly on the learning rate, which must be properly

selected during training. It was decided to use a learning rate of 0.02 for the Faster R-CNN training

[34].

3.2.3 You Only Look Once Version 4 (YOLO-V4)

In order to achieve accurate and fast performance for mobile platforms deployed in the field

for real-time applications, Bochkovskiy et al. [89] suggested the YOLOv4 model. YOLOv4 is

frequently described as an enhanced version of YOLOv3 with more accuracy and speed. The new

model has a variety of universal features that can be applied to enhance performance, such as Cross-

Mini-Batch Normalizations (CmBN), Cross-Stage Partial Connections (CSP), mish activation, and

Self Adversarial Training (SAT).

An optimized backbone architecture, a neck architecture, and a detecting head architecture make

up the overall structure of YOLOv4. YOLOv4 by default was created utilizing CSPDarkNet53

as the backbone, an additional SSP module, a PANet neck model, and a YOLOv3 head model.

The input is split in two by the CSPDarkNet53 backbone network; one portion passes through the
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DenseNet network while the other does not. The main reason the SPP and PAN are used is due to

their improved receptive fields. A max pooling operation is applied at the SPP layer, in order to get

around the fixed size input restriction, leading to fixed output representations. Within the network,

PANet performs the pooling operation at multiple layer levels in order keep the spatial information.

In the end, YOLOv3 head architecture applies for the objects’ detection and localization. YOLOv4

introduced SAT and mosaic data augmentation methodologies and uses genetic algorithms to op-

timize the model hyperparameters in terms of improving training performance. The mosaic data

augmentation method combines four training samples, eliminates the requirement for several mini-

batches, and generates better object features. On the other hand, the training image is altered when

using the SAT augmentation, and the model is then trained on the altered image to find objects of in-

terest. Figure 4 depicts the YOLOv4 model’s architecture. While sustaining real-time performance,

the new YOLOv4 model performed better than the YOLOv3 model [34].

Figure 3.1: The Internal hardware connections

3.3 Hardware Design

The proposed passenger counting system is a part of bus stop sign presented by BusPas. It

mainly consists of two hardware components:
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• A camera to capture the video

• An edge-computer to process the video through the computer vision models to detect con-

tamination.

For the developed prototype, Arducam Camera and a Nvidia edge-computer were used. This ex-

periment has been done first on the labratory on Nvidia Jetson Nano Development kit and then

Nvidia Jetson Orin AGX and the last experiment was running on the SCiNe which is equipped with

Nvidia Jetson Orin Nano. Figure 1 shows the laboratory hardware setup for the proposed passenger

counting system. Brief details of each hardware component are provided as follows:

• Arducam High-Quality Camera: BusPas signs are equipped with 12.3MP Camera Module

with 180-degree fisheye camera Lens which is installed at the bottom of the SCiNe about 8

feet high to make sure that it doesn’t capture any information about the faces of the people.

• Nvidia edge device: The edge device is a system-on-module supporting popular AI frame-

works capable of running multiple neural networks simultaneously. It offers real-time infer-

ence of the people detection model and does not store any image. For the developed prototype,

Nvidia Jetson Orin Nano, Nvidia Jetson Orin AGX, and Nvidia Jetson Nano edge-computers

were used.

Figure 3.1 shows a schema of BusPas SCiNe design for our laboratory test setup with Nvidia Jetson

Nano and Arducam fisheye camera.
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Chapter 4

Experiment

4.1 Experimental Data

As stated in the previous sections, we captured our own overhead fisheye images in our testing

environment which was crucial due to unique perspectives and uncontrolled outdoor testing con-

ditions. Our dataset addressed limitations of existing datasets, featuring varying light conditions,

occluded objects, weather restrictions like rain, accumulation of dust on the camera lens, and real-

world complexities. Using the IMX477 camera module, we captured 17,529 images over 15 days,

ensuring comprehensive coverage. Thorough data cleaning focused on the area, in and around the

bus stop, resulted in a refined dataset of approximately 2,200 images. These images were then an-

notated to create labeled data for training and annotations were converted to KITTI format. This

curated dataset enabled the development of robust algorithms for people detection and counting in

the specific testing environment, considering crowd dynamics and diverse scenarios.

4.2 Augmentation

To further enhance the diversity and robustness of our dataset, we applied various data aug-

mentation techniques. These augmentations aimed to introduce variations and simulate real-world
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scenarios, ensuring that our trained models could generalize well to different conditions. The fol-

lowing augmentations were utilized:

1. Horizontal Flip: We performed a horizontal flip on the images, effectively doubling the

dataset by mirroring it along the vertical axis. This augmentation is particularly beneficial in our

scenario, where people can be present on either sides of the bus stop. By mirroring the images,

we expanded the dataset to encompass both orientations, enabling our models to learn and recog-

nize people from different perspectives. The Nvidia TAO Toolkit documentation provides further

information on this augmentation technique [90].

2. Rotation: To introduce variations in the orientation of the images, we applied rotation aug-

mentation. This technique randomly rotates the images by a certain degree, simulating different

camera angles and perspectives. By incorporating rotation, we aimed to improve the model’s ability

to detect and count people from various viewpoints, mirroring real-world scenarios where individu-

als may be positioned at different angles relative to the camera.

3. Saturation, Contrast, and Brightness: We also employed augmentations to adjust the sat-

uration, contrast, and brightness of the images. These modifications mimic changes in lighting

conditions, ensuring our models can effectively detect people under varying illumination levels. By

incorporating these augmentations, we aimed to improve the model’s robustness to different light-

ing scenarios, such as low-light conditions during nighttime or the presence of shadows caused by

sunlight.

By leveraging these augmentation techniques, we expanded and diversified our dataset, allowing

our models to learn from a broader range of scenarios and improve their performance in real-world

situations.

4.3 Evaluation

An automatic people detection system has been created using a conventional two-stage data-

driven research methodology (see Figure 6). The data preparation stage, which is the initial step,

involved sorting, filtering, and processing the raw images that were taken from our test environment.

Then, at this step, photos were labeled using the Roboflow annotation tool. To satisfy the criteria
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of the training module, the labels were converted to KITTI format. The second stage is known

as the model training phase, when object detection models were selected and the hyperparameters

for training were determined in accordance with the literature (e.g., Detectnet-V2, Faster R-CNN,

YOLOv4). It was decided to use Resnet-18 [91] as the feature extraction backbone. It was selected

because it balances accuracy and inference time, which is appropriate for this use case. It was

pretrained using a subset of the Google OpenImages dataset prior to training [92]. And then, the

deployment and optimization will be done to implement on edge devices. Figure 4.1 shows the

workflow that is followed in this project.

Figure 4.1: Block diagram representation of the research approach for people detection

The chosen models were adopted using the Nvidia TAO toolbox, and the performance was

evaluated using the training loss, validation loss, and validation mAP values to make sure that the

training followed the expected patterns. The trained models’ predictions were tested and evaluated

using numerous software and hardware performance metrics during the final stage, which is known

as the testing and validation stage.

In this study, the Nvidia TAO toolbox (Train, Adopt, and Optimize), which is based on Ten-

sorFlow and Python, was used to train, adopt and then optimize the object detection model. All of

the models were trained on the OMEN GT13-0090 30L Gaming PC with characteristics of Nvidia

GeForce RTXTM 3090, Intel Core i9-10850K, and HyperX 32 GB DDR4- 3200 XMP MHz RAM

(2 3 16 GB). For training, testing, and validation, a data split of 80%, 10% and 10% was utilized,

respectively. Resnet18 has been used as the backbone of the networks. Each model was first trained

with a batch size of 120, 80, 12 epochs respectively. Then, the models were pruned (with a pruning
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threshold of 0.2 for Detectnet-v2, 0.2 for Faster R-CNN model and 0.1 for YOLOv4), and then re-

trained for same numbers of epochs. The most optimal hyperparameters were determined through a

process of experimentation. In order to lower the complexity or size of the model without compro-

mising the integrity of the model as a whole, pruning is a popular strategy used in neural networks.

This leads to improved memory consumption, reduced training time, and quicker inference times.

However, the pruning threshold should be chosen carefully since it affects the accuracy. Because

some significant weights may have been lost during the pruning process, a pruned model may see

a decrease in prediction accuracy. In order to maintain accuracy after pruning, it is important to

retrain the model. The Stochastic Gradient Descent (SGD) optimizer with 0.9 momentum and a

base learning rate of 0.02 with L2 regularization with weight of 1e-4 was utilized for Faster R-CNN

models. The learning rate with the minimum of 1e-7, and 4.99e-06 and the maximum of 1e-4, and

0.0005 was used for YOLO-V4 and Detectnet-v2, respectively. L1 regularization with the weight

of 3.00e-09 and 3e-5 and the Adaptive momentum (Adam) optimizer was used for detectnet-v2 and

YOLO-V4, respectively.

Using various matrices, the performance of the developed people detection system was evalu-

ated. The testing and training phases each involved a separate evaluation of the software’s perfor-

mance. Using training loss, validation mAP, training time per epoch, and training curve monitoring,

the training performance of computer vision models was assessed. The mAP was used to evaluate

the test performance of models on the unseen validation dataset. The mathematical formula for

calculating mAP is in Equation (9).

mAP =
1

N

N∑

i

APi, (7)

where AP stands for Average Precision, which is the weighted sum of precision at each threshold,

with the weight corresponding to the increase in recall. One of the most widely used metrics for

assessing the effectiveness of object detection models is AP , which is derived from the precision-

recall curve. The standard in the Pascal VOC Challenge [42], which measures the AP from the

outcomes with the Intersection Over Union (IoU) greater than 0.5, is followed by the average pre-

cision per class and the overall mean Average Precision. N stands for the number of classes. In this
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instance, mAP is equivalent to AP because there is just one detection class (i.e., people). Precision

can be calculated as the equation below, where TP and FP refer to the number of true positives

and false positives respectively.

Precision =
TP

TP + FP
(8)

(9)

Both the validation and testing datasets were used to evaluate models. The evaluation of the devel-

oped people detection system is presented in this part. For each evaluation, the results are presented

numerically, visually, and qualitatively to emphasize the key trends.

4.4 Experimental Results

The training and testing capabilities of object detection models for people detection were as-

sessed. Tabular representations of quantitative results are provided, and training curves are used to

display the enhancement.

Inference speed and model size are one of the most important factors to take into account be-

cause this people detection system is a real-time application on the edge where we have memory

and power limitations. Some of the trained model’s parameters have been pruned to reduce the size

of the model while preserving its structure. The detailed impacts of pruning on computer vision

detection models are quantitatively presented in Table 4.1. The table shows the size reduction of

each model after pruning based on the pruning threshold. Because the pruning process might have

lost some useful weight, it was retrained to regain its accuracy [26]. After pruning, the loss was

seen to grow for a few epochs for all three models before decreasing to its minimal value. The loss

of significant weights during the pruning phase caused the accuracy of the model to degrade, which

was anticipated. However, after retraining, the pruned model was able to not only maintain but also

have an increase in accuracy and less training loss.

Figure 4.2 shows the training loss curve for the DetectNet-V2. A negative exponential trend
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was also observed for the training loss curve after pruning; besides earlier convergence, the loss

kept on decreasing after the pruning of models which is an evidence of effective pruning. Validation

loss also has been observed and showed a similar behavior however early stopping technique was

considered to avoid overfitting.

Table 4.1: Models’ size comparison before and after pruning

DetectNet-V2 YOLO-V4 Faster-RCNN

before prune 45MB 243MB 102MB

after prune 22MB 23MB 51MB

Figure 4.2: Training loss curves for Detectnet-V2 before and after pruning

Our algorithm evaluation comprises three sections. In each section, we employed the object

detection models: first, with our custom dataset; second, with the augmented dataset that accounts

for environmental challenges. In the final section, we examined DetectNet-V2 model’s performance

on the CEPDOF dataset (high-activity scenarios) and we compared these results with the RAPID

model [74], which was introduced alongside the CEPDOF dataset.

.

The trained computer vision models were subjected to both validation and testing datasets to

evaluate their test performance. The test performance of implemented models was compared based

on the mAP values. For smooth and real-time monitoring, the optimal model should have high

average precision to avoid false positives and false negatives as well as low inference time / high

43



frame rates. As it is shown in Table 4.2, training and adopting each of the models with our created

dataset, YOLO-V4 with the mean average precision of 86.88% outperforms detectnet-v2 and faster-

RCNN. The mAP train and retrain refers to the mean average precision of the validation set during

the first training and retraining after pruning.

Table 4.2: Models’ Performance comparison with our dataset

Model (mAP)train (mAP)retrain (mAP)testing

DetectNet-V2 92.85 92.28 75.01

YOLO-V4 88.42 89.42 86.88

Faster-RCNN 96.95 96.60 86.60

In the second experiment, we used data augmentation techniques to expand and enhance our

dataset so that the object detection model would be more robust to the possible environmental chal-

lenges that might occur such as rain, dust, and different lighting conditions. Table 4.3 demonstrates

the performance comparison of each model on this augmented dataset. As it is shown, the test-

ing mAP for each model has been increased and YOLO-V4 still is outperforming other models in

precision.

Table 4.3: Models’ Performance comparison with our Augmented dataset

Model (mAP)train (mAP)retrain (mAP)testing

DetectNet-V2 80.06 79.69 77.05

YOLO-V4 88.76 89.28 87.23

Faster-RCNN 96.96 99.18 86.83

In the last experiment, we analyzed the performance of Detecnet-v2 on the CEPDOF dataset

compared with the RAPID object detector model presented with CEPDOF. The architecture of the

model is elaborated in the background part. CEPDOF dataset has different scenarios and in this

experiment, we only considered the ºHigh-activityº scenario. As Table 5 indicates, the testing per-

formance of adopted detectnet-v2 after pruning with the mAP of 98.27% excels the RAPID model

trained on CEPDOF, High-activity scenario, with the mAP of 94.2% . Given this experiment, the

performance of the best-performing Nvidia model was observed to be comparable to the literature

when a similar challenging real-world dataset has been used and signifies the effectiveness of Nvidia

object detection models.
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Table 4.4: DetetcNet-V2 Performance comparison with RAPID model

Model (mAP)train (mAP)retrain (mAP)testing (mAP)RAPID testing

DetectNet-V2 98.03 98.23 98.27 94.2

Nonetheless, it can be seen from the mAPs that, following model pruning, the model trained

by the augmented dataset outperformed the others in terms of performance. It was observed that

the greatest mAP of almost 87% was attained by the YOLO-V4 demonstrates a greater ability to be

used as our people detector. Figure 4.3 shows the synthetic image of how our testing environment

looks like. The model has been tested in a real environment that can not be shared due to confiden-

tiality and privacy. Our tests on the real environment show the ability of the model to detect both

further and closer people with different views and in different scenarios proving that this system

also works with different orientations of humans to the camera, and it is robust to shadowing or dif-

ferent lighting and weather conditions. Moreover, our system is doing the whole process real-time

without recording any image, and only the number of passengers will be sent to cloud in the every

given time interval (for example 5 minutes).

Figure 4.3: Synthetic images of our test environment [2]
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4.5 System setup

In this step, we explain how to implement the passenger counting system. First, trained people

detection models have been optimized with TensorRT engine to reduce the model size and optimize

hardware resources. This was achieved by consolidating and removing redundant layers in the

models. Optimized people detector models then were combined with Nvidia object trackers in

order to complete the counting task. Nvidia has several trackers such as NvDCF, NvSORT, and

NvDeepSORT after experimenting with them we found NvDeepSORT performing better on this

use case.

In order to distinguish between the passengers and pedestrians, a region of interest (ROI) has

been defined which helps to count only people who are staying at the vicinity of the bus stop shelter.

This way helps us to only consider passengers who are waiting for the bus and the number of

passengers (RF) will be sent to the cloud for further analysis.

Furthermore, we used TensorRT engine as the optimizer to decrease the model size and re-

sources of the hardware by merging and eliminating duplicated layers in the models. TensorRT

engine optimizes deep learning models and allows them to run with high-performance inference.

TensorRT is compatible with popular frameworks in deep learning today such as PyTorch, Tensor-

Flow, Caffe, Darknet. By converting the darknet pretrained file of YOLOv4 to trt file of TensorRT,

the speed of YOLOv4 is increased to 30 FPS from 9.5 FPS on Nvidia Jetson Orin AGX while the

accuracies are similar to the unoptimized models. It optimizes the workspace memory by reducing

memory footprint and reusing by allocating the memory when the tensor is used in its period and

preventing the memory allocation overhead. As of the final experiment, to magnify the strength of

the solution, we have experimented with other people detection implementations as well. We have

deployed YOLO-V4 once via DeepStream and optimized with TensorRT and another time without

DeepStream and with Darknet framework to evaluate the efficiency of DeepStream on Nvidia Jet-

son devices. Table 4.5 shows the strength of the implemented YOLO-V4 model via DeepStream

over the performance of the same model, implemented via the darknet. YOLO-V4 implemented

with DeepStream allocated 776MB of GPU, 42% of the CPU and 241MB memory compared with

the YOLO-V4 implemented with darknet that allocated 1.6GB of GPU, 128% of CPU, and 657MB
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of memory which is more than two times of consumption when we implement the object detection

model via DeepStream. CPU usage of more than 100% refers to when it takes multiple CPUs. This

shows the computational efficiency of the DeepStream models optimized with TensorRT which is

vital for edge processing tasks, given the constraints in power and memory resources.

Moreover, YOLO-V4 is only able to process 9.6 FPS (frame per second) when running without

DeepStream, but it is able to run 30 FPS when it is implemented through DeepStream, which is

considered an important factor in our comparison because real-time processes require a high FPS

for smooth performance.

Table 4.5: Computing comparison on Jetson Orin
GPU CPU% Memory FPS

YOLO-V4 (running via DeepStream) 776MB 42.0 241MB 30

YOLO-V4 1.6GB 128.8 657MB 9.5
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Chapter 5

Conclusion

Effective transit planning and operations are aided by passenger counting, which is affected by

numerous factors. The use of deep learning models for detecting and counting passenger flows is

becoming increasingly common. However, having an optimal view of passengers at the bus stop

and analyzing that while preserving privacy presents a challenge. Overhead fisheye cameras offer

an advantageous perspective of the bus stop area. Yet, most of the people detection deep learning

models have been developed on the images captured by standard images. Additionally, this process

traditionally has been hindered by the reliance on heavy deep learning models requiring significant

computational resources such as large GPUs or cloud-based GPUs, where there is a high risk of

compromising privacy.

In this study, we presented a passenger counting system on edge devices, without any need

to transmit data to the cloud, using computer vision at bus stops to optimize passenger flow and

transit vehicle efficiency, reducing waiting times. We developed a privacy-friendly overhead fisheye

dataset of passengers at bus stops and utilized Nvidia DeepStream and Transfer Learning Toolkit

(TLT), leveraging pre-trained models retrained and pruned on our dataset. Three deep learning

models, DetectNet-V2, YOLO-V4, and Faster-RCNN, were analyzed, comparing their accuracy

(mAP). Our results show that YOLO-V4 adopted on our augmented dataset outperforms the other

two models. We also deployed the adopted object detection model into the Nvidia Jetson Orin and

evaluated the performance of real-time passenger counting models implemented via DeepStream.
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The result shows the YOLO-V4 running via DeepStream has less than half GPU, CPU, and memory

usage on the edge compared to the same model running without DeepStream.

The experimental findings have confirmed the good performance and practicality of the pro-

posed object detection and tracking system for real-time monitoring scenes. The methods of this

research are cost-effective and stable compared to the conventional approach for detecting objects

in real time by hardware and do not involve the development or installation of any large-scale work

on existing monitoring machines. Furthermore, the appearance of Jetson Orin is a new step for

machine learning technology, since there won’t be a server to receive the information from the edge

to process the frame and make decisions. Instead of using a standard camera to get the information,

the cameras are fisheye to be more cost-effective and smaller and to bring a greater field of view.

These cameras are located overhead to capture bigger views while not capturing any facial informa-

tion and respecting the privacy of passengers. This system has become more intelligent through the

integration of deep learning models on Jetson devices. As Edge-AI, these devices can perform tasks

efficiently and effectively, eliminating the need for a large server to process inputs or store output

results. On the other hand, our dataset contains images captured by overhead fisheye cameras from

passengers waiting at the bus stop in our test environment which is a rare dataset.

For future work, the model’s precision, efficiency, and reliability can be improved by having

access to additional data sets with a wider time range. Future work would also consider more pat-

terns representing exogenous dependencies, like particular weather conditions and traffic incidents.

Other aspects of extending this research would be considering the influence of network parameters

on model performance. Moreover, even though the practicability of the model is verified through

a bus case study, the applicability of the model for other scenarios like bike flows, and migration

flows, could be examined.

In essence, our work not only presents a technical breakthrough but also embodies a transfor-

mative shift in how we approach real-time monitoring and data analysis. By blending cutting-edge

technology with practicality, privacy consciousness, and cost-effectiveness, we have paved the way

for a new era of responsible AI applications, with far-reaching implications for various industries

and societal advancements.
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