
Forecasting the Value-at-Risk of an Equity Portfolio: A

Recurrent Mixture Density Network Approach

Hubert Normandin-Taillon

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Computer Science) at

Concordia University

MontrÂeal, QuÂebec, Canada

December 2023

© Hubert Normandin-Taillon, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Hubert Normandin-Taillon

Entitled: Forecasting the Value-at-Risk of an Equity Portfolio: A Recurrent Mix-

ture Density Network Approach

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Shin Hwei Tan

Examiner
Dr. Abdelhak Bentaleb

Supervisor
Dr. Chun Wang

Co-supervisor
Dr. FrÂedÂeric Godin

Approved by
Joey Paquet, Chair

Department of Computer Science and Software Engineering

2023
Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Forecasting the Value-at-Risk of an Equity Portfolio: A Recurrent Mixture Density

Network Approach

Hubert Normandin-Taillon

The value-at-risk is a useful metric employed by financial institutions to measure the risk of

a portfolio. However, accurately forecasting the value-at-risk is difficult, as it requires predicting

the returns of the portfolio’s assets. Forecasting asset returns is particularly challenging due to

their stochastic nature and the presence of ’stylized facts’ such as heteroskedasticity, fat tails, and

skewness in stock returns series. This thesis considers modeling the assets returns using a recurrent

mixture density network, which has been previously proposed to model other financial time-series.

In this thesis, we propose an improved recurrent mixture density network architecture, as well as

a pretraining method to improve the numerical stability and convergence speed of the model. We

also propose the Copula-S-RMDN-GARCH, which extends the current recurrent mixture density

network architecture to multivariate settings. We compare the value-at-risk forecast obtained with

the Copula-S-RMDN-GARCH with the forecasts obtained from a Copula-AR-GARCH.

iii

Acknowledgments

I would first like to express my gratitude to my advisor Dr. Chun Wang, who gave me great

advises and guidance throughout my research. His advises help me become a better researcher, but

more importantly his ideas guided me throughout my research project. His teaching and advice

allowed me to greatly improve my skills in communication and academic writing. I would also like

to express my gratitude to my thesis co-advisor and Mitacs internship supervisor FrÂedÂeric Godin.

His support and advises were fundamental in conducting my research. I appreciated the guidance

and the opportunity to conduct research under your supervision and gain experience through the

internship.

I also acknowledged Quantolio and Amine El-Kaouachi for the great learning opportunities dur-

ing my Mitacs Accelerate internship at Quantolio. I would also like to thank Abdoul Haki Maoude,

Waleed Ahmed, and Maryam Ouhadi for their support and help during my Mitac Accelerate intern-

ship at Quantolio and beyond. I acknowledged the funding source provided by Mitacs under grant

IT23943.

I also acknowledged my father, family, and friends who supported me throughout my whole

degree. Their support help me go through difficult time during my degree.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Outline of the Thesis . 5

2 Background 6

2.1 Value-at-Risk . 6

2.2 ARCH/GARCH Models . 8

2.2.1 ARCH . 8

2.2.2 GARCH . 9

2.3 Mixture Density Network . 10

2.3.1 RMDN . 11

2.3.2 Neural Network Architecture . 12

2.4 Summary . 13

3 Literature Review 15

3.1 Classical Financial Time Series Model . 16

3.2 Neural Networks Financial Time Series Model 18

3.3 Summary . 20

4 Value-at-Risk Forecasting Model and Methodology 22

v

4.1 Base RMDN Architecture . 22

4.2 Stable-RMDN-GARCH . 25

4.3 Proposed Linear Reduction Pretraining . 29

4.4 Multivariate Extension of the Proposed RMDN 31

4.4.1 Copula Parameter Estimation . 33

4.4.2 Sampling . 34

4.5 Efficient Sampling of the copula-S-RMDN-GARCH and Estimation of the Value-

at-Risk . 35

4.6 Summary . 39

5 Analysis 40

5.1 Data and Parameters . 40

5.2 Analysis of the Performance of the Linear Reduction Pretraining Method 41

5.3 Analysis of the Value-at-Risk Forecast . 43

5.3.1 Testing Methodology . 43

5.3.2 Results . 46

5.4 Summary . 49

6 Conclusion 50

Bibliography 51

vi

List of Figures

Figure 2.1 General Architecture of the Mixture Density Network 10

Figure 2.2 Architecture of the RMDN-GARCH . 13

Figure 4.1 Architecture of the original RMDN . 24

Figure 4.2 Architecture of the RMDN-GARCH . 24

Figure 4.3 Architecture of the proposed RMDN . 27

vii

List of Tables

Table 3.1 Classification of the literature . 21

Table 4.1 In-Sample Test . 25

Table 5.1 In-Sample Pretraining Test . 42

Table 5.2 In-Sample Log-Likelihood . 42

Table 5.3 Descriptive statistics of the likelihood ratio for the Binomial, Kupiec, and

Christofferson Tests . 46

Table 5.4 Descriptive statistics for the Binomial, Kupiec, and Christofferson Test . . . 47

Table 5.5 Summary of the Results of the Binomial, Kupiec and Christofferson Tests . . 47

Table 5.6 Descriptive Statistics for Failure Rates for all Portfolios 48

Table 5.7 Execution Time for the Copula-SP-RMDN-GARCH and the Copula-AR-

GARCH . 48

viii

Chapter 1

Introduction

As part of their operations, institutional investors hold large portfolios on behalf of their clients.

While financial institutions hold a variety of different types of assets, this thesis focuses on equity.

This, in turn, requires the institutions to effectively manage risk. Risk management requires quan-

tifying the risk of a portfolio accurately. This process, part of the portfolio management process, is

particularly important, as it will influence all operations of a financial institution. Quantifying the

risk of the portfolio, in turn, requires the choice of a risk metric. It is also of the utmost importance

that the risk metrics used to quantify the risk be interpretable by the management team. The most

commonly used metric for this is the value-at-risk, which can be easily interpreted. While multiple

criticisms of the value-at-risk have been formulated, it is still the most widely adopted risk measure.

It will, therefore, be the focus of this thesis.

The value-at-risk can be analyzed using three categories of methods: the historical simulation

method, the variance-covariance method, and the Monte-Carlo method (Dalbudak, Atan, & Yilmaz,

2017). The historical simulation method analyzes the value-at-risk of a portfolio based on historical

data. This method has the advantage of being simple to use and examines the effect of historical

data on a specified portfolio. However, it does not incorporate information about the future risk of a

portfolio as it only includes information about the past (Dalbudak et al., 2017). The second method

employed to analyze the value-at-risk is the variance-covariance method. This method relies on the

1

variance and covariance matrix to estimate the value-at-risk of a portfolio analytically. It is advanta-

geous as it is computationally efficient, but it is a parametric method that relies on the parameters of

a distribution. As the name suggests, the variance-covariance method is not designed to accommo-

date skewness and kurtosis as it relies on the Gaussian distribution (Dalbudak et al., 2017). Lastly,

the Monte-Carlo method is the most flexible method, as it allows modeling the values of assets using

different models. The Monte-Carlo method requires sampling multiple series of new observations

from which the value-at-risk can be estimated (Dalbudak et al., 2017). This method is advantageous

because it can be leveraged to forecast the risk of a portfolio rather than only analyzing it. This is

accomplished by forecasting the value of the assets rather than simply modeling their distribution.

As we focus on forecasting the value-at-risk, this method will be the focus of this thesis.

In order to forecast the value at risk using the Monte-Carlo method, the value of a portfolio’s

assets needs to be forecasted. However, forecasting the value of financial assets is complex and

requires specialized models, as stock returns have been shown to incorporate highly stylized facts

such as heteroskedasticity, skewness, and fat tails. Models that incorporate these characteristics have

been widely adopted in the industry. These models include the ARCH/GARCH families of mod-

els, the Markov switching model, as well as neural network models. The ARCH/GARCH models

were first introduced to model heteroskedasticity. This is achieved by forecasting the conditional

variance of a time series as an autoregressive process in the case of the ARCH model and as an au-

toregressive moving average process in the case of the GARCH model. A different approach is the

Markov switching models, which model the economy using multiple states. This allows the Markov

switching model to differentiate between periods of growth and periods of loss in the market. Nu-

merous neural network models have been proposed in the literature that can be used to forecast the

value-at-risk using different approaches. These approaches include forecasting the price, returns,

volatility, or distribution of assets. To this day, the ARCH/GARCH models remain the most widely

adopted by financial institutions.

While the ARCH/GARCH models have been widely adopted, they have two major limitations:

2

(1) The ARCH/GARCH models are parametric models. As such, they make assumptions regard-

ing the underlying time series distribution. This can be problematic in the case of financial

time series, as the distribution of financial asset returns is complex and uncertain.

(2) The ARCH/GARCH models are also linear models. They model the conditional variance as a

linear combination of the previous conditional variance. This can be problematic, as evidence

suggests that stock returns follow a non-linear dynamics (Hinich & Patterson, 1985).

These limitations can be obstacles to obtaining an accurate forecast of the value-at-risk. In its ba-

sic form, the ARCH/GARCH models are univariate. This is problematic as the values of assets

in a portfolio are co-dependent. Multiple multivariate GARCH models (MGARCH) have been

proposed. The multivariate GARCH models include the Constant Conditional Correlation model

(CCC) and the Dynamic conditional correlation model (DCC). The CCC model assumes that the

conditional correlation is constant through time, while the DCC model dynamically assumes that

the conditional correlation is time-varying. The specific dynamic conditional correlation under the

DCC model is commonly thought to be a linear MGARCH model. However, it is not as tractable

and is inherently guaranteed to be linear due to some peculiarity in its specification (Aielli, 2011).

The DCC also requires the estimation of a large number of parameters, making it more difficult to

estimate the model in high dimensions. An alternative to the CCC and DCC model is the OGA-

RCH model, which uses dimensionality reduction of the multivariate time series to minimize the

number of estimated parameters. However, this method is limited and has been shown to underper-

form other methods used for extending the GARCH model to multivariate settings (Engle, 2002).

Another alternative to the model presented is the copula-GARCH model. This model has the ad-

vantage of being flexible, as different copulas can be used for modeling the dependence between

assets. However, the multivariate GARCH still relies on the univariate ARCH/GARCH models and

is subject to the two major limitations of the ARCH/GARCH models.

Another type of model used to forecast financial time series is neural networks. Multiple spe-

cific neural network architectures have been developed to forecast a time series, with the most com-

mon being recurrent neural networks such as the fully recurrent neural network, LSTM, and GRU.

3

Recurrent neural networks have the ability to maintain an internal state, allowing them to consider

information about the past. The LSTM and GRU architectures were developed to incorporate longer

memory than the fully recurrent neural network. These models have been successful in forecasting

financial time series (Di-Giorgi et al., 2023; FjellstrÈom, 2022; Jia & Yang, 2021; Kamalov, Smail, &

Gurrib, 2020; Paranhos, 2021). However, the recurrent neural network only forecasts the expected

value of the time series. The information provided by the expected value does not allow us to fore-

cast the risk of a financial asset, as the other characteristics of the asset’s return distribution are as

important as its expected value. An alternative to recurrent neural networks is the recurrent mixture

density network, which forecasts the shape of the conditional distribution of a time series. The

recurrent mixture density network uses a recurrent neural network to forecast the parameters of a

mixture distribution. This allows the model to forecast not only the expected value of the time series

but all the information contained in the distribution. This model does not have the limitations of the

ARCH/GARCH model. First, the recurrent mixture density network is a semi-parametric method,

and hence it does not assume a specific shape of the distribution. The RMDN is limited only by

the number of components in the mixture and by the shape of the mixture’s underlying distribution.

Furthermore, the RMDN can model various distribution shapes that can be represented by a mixture

Gaussian distribution, including some forms of skewed distributions. Second, unlike the GARCH

models, the RMDN is a neural network, which means that the RMDN can model the non-linear dy-

namics of the conditional variance and the mean. It can also incorporate heteroskedasticity inherent

in stocks returns, as well as time-varying skewness and kurtosis. This allows mimicking the stylized

facts inherent in financial time series, such as heteroskedasticity, skewness, and fat tails.

In this thesis, we propose an improved RMDN architecture based on the work of Nikolaev,

Tino, and Smirnov (2012) and Schittenkopf, Dorffner, and Dockner (2000). This new architecture

enhances the numerical stability of the model. Additionally, we introduce a pretraining method

to improve the convergence of the model. Our proposed improvement focuses on the univariate

RMDN architecture to forecast the value of each individual asset in the portfolio. Furthermore, we

present a method for extending the model to a multivariate setting using a Gaussian copula. Our

method enables the scaling of the forecast to high dimensions. We also introduce a method for

estimating the value-at-risk using an importance sampling scheme to efficiently sample from the

4

RMDN.

1.1 Outline of the Thesis

In this thesis, we first present background information on the ARCH/GARCH models, the

Markov switching model, and the estimation of value-at-risk. Additionally, we provide an intro-

duction to mixture density networks and their applications. In the following chapter, we present a

literature review focused on financial time series forecasting methods used for predicting the value-

at-risk, as the value-at-risk can be easily estimated from the forecast. The next chapter outlines

the methodology for forecasting stock returns and estimating the value-at-risk. We then analyze

the results obtained from our model and compare them with estimates from the GARCH forecasts.

Finally, we conclude and present potential future directions in Chapter 6.

5

Chapter 2

Background

In this chapter, we first introduce key financial concept important for understanding the prob-

lematic of this thesis. Namely, the concept of value-at-risk and its estimation. We then proceed to

introduce two key financial time series model: the ARCH/GARCH models. The next section intro-

duces the reader to mixture density network and their application. We also introduce the recurrent

mixture density network model that will be used throughout this thesis. Finally, we introduce the

reader to the concept of copula and to the theoretical foundation surrounding copula.

2.1 Value-at-Risk

The value-at-risk has been central to many financial institutions’ risk management operations.

The value-at-risk has been first developed at J.P. Morgan in the 1980’s. It has since been adopted by

many financial institutions. Since its introduction, the VaR has been criticized. While proponents

of its use see it as a way to report risk in units that everybody understands, detractors consider it to

be flawed as it cannot accurately measure all possible risks associated with a financial instrument

(Taleb & Jorion, 1997). While the VaR has both its proponents and detractors, it provides a simple

yet effective view of a portfolio’s risk. For the purpose of this thesis we define the value-at-risk as

the smallest amount of capital that keeps the probability of a negative outcome below the level α

6

(FÈollmer & Schied, 2016). We will use the following mathematical definition of the value-at-risk

V aRα(X) = inf{m|P [X +m < 0] ≤ α} (1)

where α is the maximum level of risk the investor is willing to take. There are three main meth-

ods that can be used to estimate the value-at-risk of a portfolio. Namely, the historical simulation

method, the analytical method, and Monte Carlo simulation methods. Each of those methods has

its advantages and disadvantages. The following section describes each of the main methods and

presents their advantages and disadvantages.

In the historical simulation method, the value-at-risk is estimated by applying the weight of the

portfolio over the historical returns and estimating the quantile of loss over the resulting portfolio

returns (Adamkoa, SpuchľÂakovÂab, & ValÂaškovÂab, 2015). This method has the advantage of being

simple and requiring little computation. It also does not make any distributional assumptions re-

garding the underlying time time series. While it is easy to use, the historical simulation method

require a long horizon to be accurate and to capture the underlying time series characteristics such

as fat tails and heteroskedasticity. However, a long horizon might contain events that are irrele-

vant of the current market conditions. An improvement over the historical simulation method is the

bootstrap method, which allows to increase the sample size and retain the time series characteristics

(Adamkoa et al., 2015).

The value-at-risk can also be estimated analytically. This is usually done by the variance-

covariance method (Adamkoa et al., 2015). The main advantage of this method is that it does not

require data and it is computationally efficient. However, this method makes assumptions regarding

the distribution of the assets returns and requires estimating the correlation between every assets.

The estimation of the correlation matrix can be particularly challenging due to the large number

of assets present in a portfolio and to the presence of spurious relationships between assets. This

led to multiple methods being developed to estimate the covariance matrix. Multiple methods have

been proposed to estimate the covariance matrix including factor models (Fan, Fan, & Lv, 2008),

7

shrinkage estimators (Ledoit & Wolf, 2003), and PCA based methods (Avellaneda & Serur, 2020).

The last method used to estimate VaR is the Monte Carlo method. This method is the most

flexible as it allows for the inclusion of financial instrument with a non-linear payoff. This is the

reason why it is the most commonly used by financial institutions today. However, this method is

computationally intensive and requires scenarios based on assumptions about the financial assets.

Those assumptions can result in biased estimation of the value-at-risk (Adamkoa et al., 2015). Two

of the most commonly used models for generating scenarios is the ARCH/GARCH family of models

and the regime switching models.

2.2 ARCH/GARCH Models

Heteroskedasticity is a recurring problem encountered when analysing time series. Financial

time series are particularly prone to this problem (Schwert & Seguin, 1989). Most time series fore-

casting models such as AR and ARIMA do not take into account that the conditional variance of the

model depends on past observations. The ARCH/GARCH models have been proposed to model the

conditional variance. The ARCH model solves this problem by modeling the conditional variance

as an AR process (Engle, 1982). The GARCH model generalizes this by extending the AR model

to an ARMA model. The following two sections introduce the two models.

2.2.1 ARCH

To understand the ARCH model, we first need to consider a first-order autoregressive model

yt = γyt−1 + ϵt (2)

where ϵ is white noise with variance σ2 and γyt−1 is the conditional mean of yt. The conditional

variance of yt is therefore σ2 and the unconditional variance of yt is σ2

1−γ2 .

8

Given the set of all information available at time t ψt, we can define an ARCH process as

yt|ψt−1 ∼ N (0, ht)

ht = α0 + α1y
2
t−1

(3)

the conditional variance dynamic can be generalized by defining the conditional variance ht as the

function h such that

ht = h(yt−1, yt−2, ..., yt−p, α) (4)

This generalization allows for the specification of the GARCH model and further extension of the

model.

2.2.2 GARCH

The GARCH model first appeared in the article ªGeneralized Autoregressive Conditional Het-

eroskedasticityº (Bollerslev, 1986). The GARCH model generalized the ARCH model published in

Engle (1982). The GARCH(p, q) model reduces to a ARCH(q) model when p = 0. The GARCH(p,

q) model’s main advantage over the ARCH(q) model is its introduction of a moving average com-

ponent in the specification of the conditional variance. This make the GARCH model more flexible

and introduces longer memory. In turn, this allows the GARCH model to account for persistent

volatility and volatility clustering. A GARCH model of the log returns of the price yt can be de-

fined using the following equations

yt|ψt−1 ∼ N (0, ht)

ht = α0 +

q
∑

i=1

αiϵ
2
t−i +

p
∑

j=1

βjσ
2
t−j

(5)

We can observe that the difference between the GARCH(p, q) model and the ARCH(q) model is

the addition of the moving average in the second part of the equation. This addition is akin to the

change made from an AR model to an ARMA model on the conditional variance.

9

2.3 Mixture Density Network

The mixture density network neural network architecture was first introduced by Bishop (1994),

to model conditional probabilities of the target data. This contrasts the usual approach for training

a neural network, which models the conditional average of the target data. This is accomplished by

modelling the shape of the conditional probability distribution directly. In a mixture density net-

work, the shape of the conditional probability distribution is approximated using a mixture distribu-

tion of N components. While the mixture can be composed of any distribution, the most commonly

used is a mixture of Gaussian distributions. The parameters of each component in the mixture are

estimated using a neural network, which is trained by minimizing the negative log-likelihood.

Figure 2.1: General Architecture of the Mixture Density Network

10

2.3.1 RMDN

Schittenkopf et al. (2000) present a recurrent mixture density network model for forecasting

the distribution of assets returns. A similar model was proposed by Nikolaev et al. (2012), who

called it an ªRMDN-GARCHº, as it models the heteroskedasticity of the data in a similar fash-

ion as a GARCH model. The RMDN-GARCH also reduces to a GARCH model under specific

circumstances. While the RMDN has some similarity to the GARCH model, it has two clear ad-

vantages, which make it well suited to model financial time series. First, the RMDN models the

volatility non-linearly. Second, as the resulting time-conditional density forecast is a mixture, the

RMDN-GARCH model is able to model the skewness and the kurtosis in a time-varying fashion

(Schittenkopf et al., 2000).

The time-conditional density of the distribution is defined as

p(rt|Rt−1) =
N
∑

i=1

ηi,tϕi(µi,t, σ
2
i,t) (6)

where we define the weight of each distribution in the mixture as ηi,t ≡ ηi,t(rt−1). The parameter

µi,t is the mean of the ith mixing distribution and the parameter σ2i,t is the variance of for the

ith mixand distribution. The conditional density function of the ith mixing distribution is defined

as ϕi. Rt−1 is the information available at time t − 1. The authors in Nikolaev et al. (2012)

consider the Gaussian and the Student-T distributions as candidates for the mixing distributions. If

the conditional density follows a Student-T distribution, the degree of freedom of the distribution ν

also needs to be estimated. Unlike the other parameters of the distribution, the degree of freedom

parameter ν is estimated outside the RMDN by MCMC (Nikolaev et al., 2012). The instantaneous

log-likelihood of the time conditional density is defined as

Lt = log p(rt|Rt−1) = log
N
∑

i=1

ηi,tϕi(µi,t, σi,t) (7)

The parameters of the neural network can be estimated by minimizing the negative log-likelihood.

The authors in Nikolaev et al. (2012) choose the BFGS algorithm due to its fast convergence and

stability. In the next section, we describe the neural networks used to estimate the parameters of the

11

RMDN.

2.3.2 Neural Network Architecture

In order to estimate the three parameters of the RMDN-GARCH, three interlinked neural net-

works are used; each estimating different parameters. The authors in Nikolaev et al. (2012) called

those three networks the mixing network, the mean-level network and the variance recurrent net-

work. The mixing network is used to estimate the mixing coefficient vector ηt, the mean-level

network is used to estimate the mean vector µt, and the variance recurrent network is used to esti-

mate the conditional variance vector σt. The authors in Nikolaev et al. (2012) specify a feedforward

architecture for the mixing network and the mean-level network. The variance recurrent network

is specified as a recurrent neural network. This parallels the GARCH model, as it models time

dependencies. The three different neural networks make the bulk of the architecture of the RMDN-

GARCH. However, to properly estimate each parameter of the RMDN-GARCH model, the links

between the different neural network are as important as the architecture of each individual neural

network as such links allows to model heteroskedasticity.

The input layer of the mixing network and the mean-level network takes for input the log-returns

of the assets. The input layer of each network is composed of 3 nodes followed by an activation

layer containing one linear activation function and two hyperbolic tangent activation functions. We

will refer, throughout this thesis, to an activation layer with two or more different activation func-

tions as an heterogeneous activation layer. This type of activation layer allows the neural network

to reduced to a GARCH model under certain circumstances. This will be shown in Section 4.3. The

variance recurrent network takes for input the error e2t−l and the previous estimate for the condi-

tional variance ht−1. The error e2t−l is defined as e2t−l = (yt−l−µ2t−l). The fitting error is computed

using the mean of the mixture distribution and the log returns of the assets rt−l. It is also followed

by and heterogeneous activation layer. All three networks are followed by an output layer, which is

designed to ensure that the property of each parameters are respected.

For the mixing network, a softmax activation function is used to estimate the mixing coefficient.

12

This ensures that the sum of the mixing coefficient is equal to 1. The mean-level network output

activation layer is a linear activation function, This ensured that the mean of each component is un-

restricted. To properly estimate the variance σ2t parameters, we need to define activation functions

that will ensure that the conditional variance is always superior to 0. The authors in Nikolaev et al.

(2012) specified an absolute function which ensures that the output of variance recurrence network

is always positive. The following diagram describes the architecture of the neural network

Figure 2.2: Architecture of the RMDN-GARCH

In Diagram 4.2, the round nodes correspond to neural network nodes, while the square nodes

are input nodes. The input of the neural networks are the stock returns denoted as rt−l, the error

denoted as e2t−l, the feedback denoted h1,t−l and h2,t−l, and the bias denoted as 1.0. The estimates

for the mixing coefficients are denoted η1,t, η2,t, the estimates for the means denoted as µ1,t, µ2,t,

and the estimates for the conditional variance are denoted as σ1,t and σ2,t. The latter output are then

used as input for the memory neuron of the recurrent network used.

2.4 Summary

This chapter introduces the reader to important concepts that will be central to this thesis. We

first introduce the reader to the value-at-risk and the methods employed to estimate the value-at-

risk, such as the historical method, variance-covariance method, and the Monte-Carlo method. We

13

then proceed to introduce the ARCH/GARCH family of models that can be used to forecast the

value-at-risk. We also introduce the reader to the mixture density network and the recurrent mixture

density network. The recurrent mixture density network will be the main forecasting method used

throughout this thesis.

14

Chapter 3

Literature Review

As forecasting the value-at-risk requires predicting the returns of a stock portfolio, we provide a

detailed summary of the literature related to time series forecasting used in financial contexts. The

current financial time series forecasting literature addresses both univariate and multivariate fore-

casting problems. We specifically focus on the univariate time series forecasting literature adapted

to financial forecasting problems, which we divide into two main groups. Our focus on financial

forecasting problems is crucial, as certain phenomena, known as ºstylized factsº in the literature,

are specific to financial time series. Three main stylized facts have been reported in the literature.

Heteroskedasticity is commonly observed and is described as time-varying variance (Cont, 2001).

The second stylized fact commonly reported is the presence of heavy tails in the distribution of

stock returns (Cont, 2001). The last stylized fact is the ºleverage effect,º which can be described

as the negative correlation between volatility measures and the assets’ returns (Cont, 2001). The

first group of models (a) comprises linear time series models such as the ARCH/GARCH family

of models and regime switching models. The second group (b) comprises neural network models

used for time series forecasting, such as recurrent neural networks, convolutional neural networks,

and hybrids between the two different architectures. This group also includes the mixture density

network and recurrent mixture density network, which is the focus of this thesis. The classification

of financial time series forecasting methods is summarized in Table 3.3. We analyze several time se-

ries forecasting methods previously proposed in the literature to provide a broad view of the current

state of the literature.

15

3.1 Classical Financial Time Series Model

Heteroskedasticity is a feature inherent in financial time series. The general approach to mod-

eling heteroskedasticity is to model the conditional variance using a time series model such as the

AR or ARMA model. This concept was first introduced within the ARCH model by Engle (1982),

which involves modeling the conditional variance as an autoregressive process. Subsequently, the

GARCH model was introduced by Bollerslev (1986) as a generalization of the ARCH model. The

GARCH model improves on the ARCH model by modeling the conditional variance as an ARMA

process (Bollerslev, 1986). This allows past realizations of conditional variance to influence the

conditional variance equation. The GARCH model also sparked a large literature focusing on ex-

tensions of the GARCH model. These extensions aim to improve the GARCH model by modeling

additional stylized facts in the conditional variance equation. Mainly, they attempt to model the

ºleverage effect,º which is defined as negative returns having a larger impact on conditional volatil-

ity than positive returns (Engle & Ng, 1993).

The EGARCH model was first proposed by Nelson (1991). It allows for the conditional vari-

ance to account for asymmetry in the relationship between the returns and the variance. This styl-

ized fact is called the leverage effect. Multiple models were developed to model the leverage ef-

fect. Those models include the GQARCH model (Sentana, 1995), the GARCH-M model (Engle,

Lilien, & Robins, 1987), the GJR-GARCH model (Glosten, Jagannathan, & Runkle, 1993), and

the TGARCH model (Zakoian, 1994). The GQARCH model generalizes the QARCH model as

the GARCH model generalizes ARCH. The GQARCH models the asymmetry as an additive term,

instead of modeling the asymmetry as a multiplicative heteroskedasticity term as in the EGARCH

model (Sentana, 1995). The GARCH-M model introduces a heteroskedastic term to the mean, al-

lowing the conditional variance to affect the mean. However, this model is only appropriate for time

series that are autocorrelated (Engle et al., 1987). The GJR-GARCH improves on the GARCH-M

model by integrating the nominal interest in the conditional variance equation, January and Octo-

ber dummy variables, and the unanticipated part of the stock returns (Glosten et al., 1993). The

TGARCH model proposes to model the conditional variance as a sum of negative and positive

16

functions (Zakoian, 1994). Another extension to the GARCH model is the AP-ARCH model. The

AP-ARCH model allows for longer memory in the conditional volatility dynamic by integrating

the absolute returns rather than the square returns. It also models the asymmetry in the conditional

volatility (Ding, Granger, & Engle, 1993).

Another type of model used extensively to forecast financial time series is the regime-switching

models, also known as Markov switching models. First introduced by Goldfeld and Quandt (1973),

the regime-switching model assumes that the time series can be decomposed into at least two dif-

ferent regimes, that is, two different states of the economy (growth, recession). Such models have

gained traction in the literature since the seminal work of Hamilton (1989), who showed empirically

that Markov switching models were well-suited for accurately estimating economic states. Newer

models have been developed that combine the regime-switching dynamics with the GARCH, pro-

ducing regime-switching GARCH models. Notably, Gray (1996) proposes using a Markov process

to switch between two different regimes, each governed by a GARCH model. The model does not

lead to path dependency, which would otherwise cause issues during estimation. A further improve-

ment is the proposal of Klaassen (2002), which allows the model to incorporate more information

in the GARCH process.

While the ARCH/GARCH family of models and the regime-switching models can provide reli-

able forecasts of the conditional variance, they are parametric models. This means that they require

the specification of an error distribution, which in the case of the GARCH model is generally Gaus-

sian. However, assuming a Gaussian error distribution implies that the time series is symmetric.

It is also difficult to model some of the excess kurtosis or asymmetry in the distribution as is of-

ten observed in financial time series. To model time series with excess kurtosis and an asymmetric

distribution, other error distributions have been proposed (Zivot, 2008). Namely, the student-t distri-

bution (Bollerslev, 1987) and the asymmetric student-t distribution (Fernandez & Steel, 1998) have

been proposed to model the error distribution. However, the choice of a distribution is specific to a

particular time series and should be appropriate for the time series (Zivot, 2008). The choice of a

distribution is also static in that it does not change over time other than with the conditional variance.

17

3.2 Neural Networks Financial Time Series Model

Multiple neural network architectures have been proposed to forecast univariate financial time

series. Notably, recurrent neural networks (RNN) (FjellstrÈom, 2022; Paranhos, 2021), convolu-

tional neural networks (CNN) (J.-F. Chen, Chen, Huang, Huang, & Chen, 2016; Zeng et al., 2023),

and more complex neural networks (Lu, Li, Li, Sun, & Wang, 2020) have been successfully used

to forecast financial time series. Recurrent neural networks are well-suited for this task as they

were initially developed to analyze sequential data and require minimal modification to forecast

time series (Ge, Lalbakhsh, Isai, Lenskiy, & Suominen, 2022). The recurrent neural network has

since been modified to incorporate longer memory first with the long-short-term memory (LSTM)

(Hochreiter & Schmidhuber, 1997) and then with the gated recurrent unit (GRU) architecture (Cho

et al., 2014). The LSTM architecture has been commonly applied to volatility forecasting problems

(Di-Giorgi et al., 2023; Jia & Yang, 2021), inflation forecasting problems (Paranhos, 2021), and

stock price predictions (Kamalov et al., 2020). CNN, on the other hand, requires extensive modi-

fications and/or preprocessing to be used for time series, making it a less attractive option for time

series forecasting. Initially developed for image processing applications, single-dimension convolu-

tions and transformation of the time series to 2 dimensions have been proposed to model time series

using CNN (Ge et al., 2022). Notably, S. Chen and He (2018) proposed using convolutional neural

networks to forecast the prices of stocks listed on the Chinese market. Similar financial forecasting

applications with CNN, such as stock returns forecasting, have also been proposed (Vijh, Pandey,

Vijh, & Kumar, 2021). Hybrid approaches have combined the CNN and LSTM architecture for

forecasting financial time series (Liu, Zhang, & Ma, 2017; Vidal & Kristjanpoller, 2020). However,

the neural network approach mentioned above only forecasts the expected value of the variable be-

ing studied. Newer models proposed include the Deep AR model (Salinas, Flunkert, Gasthaus, &

Januschowski, 2020), the Generative Adversarial Network (Kumar et al., 2021; Tovar, 2020), and

transformer based model (Muhammad et al., 2023; Zeng et al., 2023). Those approaches have been

successfully used for various forecasting applications including demand forecasting and stock price

18

forecasting.

Another approach to time series forecasting is the mixture density network model (MDN). Un-

like RNN and CNN, mixture density networks forecast the shape of the conditional distribution.

First introduced by Bishop (1994), they were originally developed to model arbitrary conditional

distributions of data for non-linear regression. Most time series forecasting methods incorporate a

linear layer as output; the mixture density network differs in that regard, as the output is a mixture

layer that outputs a probability distribution. Since its introduction, the mixture density network has

been extended to model serial dependence in the data using a recurrent neural network in the input

layer. This approach, called a recurrent mixture density network (RMDN), has led to its adoption

for time series forecasting. Notably, Schittenkopf et al. (2000) introduced an architecture that nests

the GARCH model and applied it to the FTSE 100 index returns. Other financial applications of

recurrent mixture density networks include forecasting volatility (Mostafa & Dillon, 2008) and en-

ergy prices (Brusaferri, Matteucci, Ramin, Spinelli, & Vitali, 2020). The recurrent mixture density

network method is attractive for forecasting financial time series due to its semi-parametric nature

and its ability to model non-constant variance and discontinuity in the data. These features are par-

ticularly useful for time series forecasting and parallel the ARCH/GARCH family of models and

the regime-switching models. However, mixture density networks are notoriously difficult to imple-

ment and are prone to instability during training due to underflow and the persistent NaN problem

(Guillaumes, 2017). The simplification of the loss function using the log-sum-exp trick (Blanchard,

Higham, & Higham, 2019) has been proposed to resolve issues with underflow. The persistent NaN

problem is, however, more complex to solve and requires a multi-pronged approach, which includes

replacing the output activation function with an exponential linear unit (ELU)(Clevert, Unterthiner,

& Hochreiter, 2015), applying weight regularization to the variance network, and simplifying the

distribution function (Guillaumes, 2017). These strategies are explored in further detail in this thesis

and are discussed further in Chapter 4.

19

3.3 Summary

This chapter surveys the most important models in the literature related to time series fore-

casting methods and their applications to financial time series, covering linear time series to recent

developments with neural network-based forecasting methods. We discuss the challenges of using

neural networks for forecasting time series and promising methods such as mixture density net-

works, which bridge the gap left by linear time series methods by leveraging neural networks and

also avoiding some of the pitfalls commonly encountered when forecasting time series. This thesis

focuses on forecasting financial time series using recurrent mixture density networks. More specif-

ically, we propose an effective method for accurately forecasting the value-at-risk of an equities

portfolio using recurrent mixture density networks. This method was selected to avoid the pitfall

of selecting a distribution and dynamics for the conditional variance, thus producing more accurate

results than currently proposed methods.

20

Ref. Specific Objective Category

(a) Linear Time Series Models

(Engle, 1982)

(Bollerslev, 1986)
Model heteroskedastic time

series

ARCH/GARCH

model

(Engle et al., 1987)

(Sentana, 1995)

(Glosten et al., 1993)

(Zakoian, 1994)

(Nelson, 1991)

(Higgins & Bera, 1992)

Model heteroskedastic time

series and the ºleverageº

effect

ARCH/GARCH

model

(Goldfeld & Quandt, 1973)

(Hamilton, 1989)

(Gray, 1996)

(Klaassen, 2002)

Model regime change in time

series

Regime-Switching

model

(b) Neural Network Models

(FjellstrÈom, 2022)

(Paranhos, 2021)

(Luo et al., 2018)

(Rodikov & Antulov-Fantulin, 2022)

(Datta, 2022)

(Di-Giorgi et al., 2023)

(Jia & Yang, 2021)

Model volatility of financial

time series

Recurrent Neural

Network

(Vijh et al., 2021)

(S. Chen & He, 2018)
Model financial time series Convolutional Neural

Network

(Vidal & Kristjanpoller, 2020)

(Liu et al., 2017)

(Lu et al., 2020)

Model financial time series Hybrid Neural

Network

(Salinas et al., 2020)

(Kumar et al., 2021)

(Tovar, 2020)

(Zeng et al., 2023)

(Muhammad et al., 2023)

Model financial time series Misc. Neural Network

(Schittenkopf et al., 2000)

(Nikolaev et al., 2012)

(Mostafa & Dillon, 2008)

(Brusaferri et al., 2020)

Models the conditional

distribution of financial time

series

Mixture Density

Network

Table 3.1: Classification of the literature

21

Chapter 4

Value-at-Risk Forecasting Model and

Methodology

This chapter outlines the models and methodology utilized in this thesis. We commence by

introducing the previously proposed RMDN architecture, which forms the foundation for the model

proposed in this work. The initial section delineates the neural network architecture of the RMDN

employed to predict the parameters of the mixture. Subsequently, we elaborate on the training

procedure implemented for the neural network. We then introduce the copula model designed to

account for interdependence among the assets within each independent univariate RMDN model.

Finally, we provide a detailed explanation of the sampling method utilized for estimating the value-

at-risk.

4.1 Base RMDN Architecture

In this section, we introduce the architecture of two interconnected recurrent mixture density

networks proposed previously. Subsequently, we discuss the limitations associated with these ar-

chitectures.

The first recurrent mixture density network architecture proposed for modeling financial time se-

ries is the architecture of Schittenkopf et al. (2000). Their model implements the ideas surrounding

22

the GARCH model, while being capable of modeling a variety of continuous conditional densi-

ties and higher-order moments. The RMDN proposed by Schittenkopf et al. (2000) estimates the

conditional density

f(rt+1|Rt) =

N
∑

i=1

η̂i,t+1k(µ̂i,t+1, σ̂
2
i,t+1) (8)

where the parameters η̂i,t+1, µ̂i,t+1, and σ̂2i,t+1 are, respectively, the mixing coefficients, the mean,

and the conditional variance of the component i of a mixture of N distributions. Each distribution

is described by the density function k(µ, σ2). We define Rt is the information available at time t in

the returns series.

Each of these parameters is estimated using a multi-layer perceptron. The authors specify the

use of two layers for each neural network. The first layer of each neural network is followed by a

tanh activation function. However, there are slight differences in the input and output layers of each

neural network. The first neural network is employed to estimate the parameter ηi,t+1, taking the re-

turns rt as input. The hidden layer comprises three nodes, and the output layer consists of N nodes.

It concludes with a softmax activation function, ensuring that the sum of the weights equals 1. The

second neural network is used to estimate the parameter µi,t+1, taking returns rt as input. Similar

to the first neural network, its hidden layer has three nodes, and the output layer contains N nodes,

concluding with a linear activation function. The linear activation function is chosen as the mean is

defined on the set of real numbers R.The third neural network is employed to estimate the parameter

σ̂i, t+ 12, taking the previous error ε2t = (rt − µt)2 as input. Additionally, the variance recurrent

network takes the previous estimates for the conditional variance hi,t = σ̂2i,t as input, introducing

recurrence into the architecture. The hidden layer consists of 4 nodes, and the output layer contains

n nodes. The output layer is passed through an absolute function to ensure that the variance is pos-

itive. Figure 4.1 provides a detailed illustration of the architecture and interconnections.

The second architecture proposed in the literature is the RMDN-GARCH (Nikolaev et al., 2012).

Building upon the architecture proposed by Schittenkopf et al. (2000), the RMDN-GARCH en-

hanced the RMDN by introducing linear nodes in the hidden layer. This modification enables

23

1 rt

gg g gg g

µt+1

ε2t 1 h1,t h2,t

g g g g

s s

1

. .

1

a a

1

η̂1,t+1 η̂2,t+1 µ̂1,t+1 µ̂2,t+1 σ̂21,t+1 σ̂22,t+1

s: softmax g: hyperbolic tangent activation function a: absolute function

Figure 4.1: Architecture of the original RMDN

the model to encompass the AR-GARCH model, as illustrated in Figure 4.2. Another significant

distinction is the training algorithm employed. The RMDN-GARCH is trained using the RTRL

algorithm (Williams & Zipser, 1989, 1995). In contrast, the preceding model is trained through

backpropagation through time. The key difference between these two algorithms lies in the fact that

the RTRL algorithm allows for online learning, while the backpropagation through time algorithm

is limited to offline learning.

1 rt

gΣ g gΣ g

µt+1

ε2t 1 h1,t h2,t

Σ g Σ g1

s s

1

. .

1

a a

η̂1,t+1 η̂2,t+1 µ̂1,t+1 µ̂2,t+1 σ̂21,t+1 σ̂22,t+1

s: softmax Σ: linear activation function

g: hyperbolic tangent activation function a: absolute function

Figure 4.2: Architecture of the RMDN-GARCH

The RMDN-GARCH architecture has been shown to perform well in comparison with the

24

GARCH model (Nikolaev et al., 2012). However, early tests on a selected number of stocks in-

dicated inconsistent results across different datasets. In some datasets, we were unable to train the

RMDN-GARCH as it converged to NaN. The results of these preliminary tests are reported in Table

4.1. The outcomes suggest numerical stability issues during training, a problem previously iden-

tified with mixture density networks (Guillaumes, 2017). Another issue with the RMDN-GARCH

was its convergence to a lower log-likelihood than the GARCH model. As the RMDN-GARCH

model nests the GARCH model, the log-likelihood of the RMDN-GARCH should be at least equal

to the log-likelihood of the AR-GARCH model. This indicates that the RMDN-GARCH converges,

in some instances, to a local minimum. In the following section, we propose a new architecture

based on the RMDN-GARCH that improves the numerical stability of the model. Additionally, we

introduce a pretraining method in Section 4.3 to enhance the convergence of the model.

Stock Ticker Not Converged Converged

AKAM 7 3

CBRE 6 4

EA 7 3

EMN 6 4

K 7 3

LOW 7 3

MKTX 7 3

NWSA 7 3

OKE 7 3

UAL 8 2

Total 69 31

Total% 69% 31%

Table 4.1: In-Sample Test

4.2 Stable-RMDN-GARCH

In this section, we present enhancements to the RMDN-GARCH architecture. The RMDN-

GARCH architecture, chosen for its inclusion of linear nodes in the hidden layer, possesses a

crucial advantage, detailed in Section 4.3. We introduce the improvements aimed at enhancing

the numerical stability of the loss function, and we henceforth refer to this refined architecture as

Stable-RMDN-GARCH (S-RMDN-GARCH).

25

Following the approach of Nikolaev et al. (2012), we devise a recurrent mixture density net-

work architecture to forecast the conditional density of stock returns through mixtures of Gaussian

distributions. The proposed architecture, while closely aligned with the RMDN-GARCH, incor-

porates recent advancements in mixture density network architecture (Guillaumes, 2017). The

S-RMDN-GARCH architecture comprises three modules, each dedicated to estimating different

parameters of a mixture of N components. In our consideration, we focus on a mixture of Gaus-

sian distributions, characterized by three sets of parameters: the weight of each component η̂t+ 1 =

(η̂1, t+ 1, η̂2, t+ 1, ..., η̂N, t+ 1), the mean of each component µ̂t+ 1 = (µ̂1, t+ 1, µ̂2, t+ 1, ..., µ̂N, t+ 1),

and the variance of each component σ̂t+ 12 = (σ̂1, t+ 12, σ̂2, t+ 12, ..., σ̂N, t+ 12). The proba-

bility density function of a Gaussian mixture distribution with N components is defined as

f(rt|Rt−1) =
N
∑

i=1

ηiϕ(rt;µi, σ
2
i) (9)

where ϕ is the probability density function of the univariate Gaussian distribution. Similarly, the

cumulative distribution function of the Gaussian mixture density distribution is defined

F (rt|Rt−1) =
N
∑

i=1

ηiΦ(rt;µi, σ
2
i) (10)

where Φ is the cumulative density function of the univariate Gaussian distribution.

The conditional mean and variance of the model are respectively given by µt+1 =
∑N

i=1 η̂i,t+1µ̂i,t+1

and σ2t+1 =
∑N

i=1 η̂i,t+1(σ̂
2
i,t+1 + (µ̂i,t+1 − µt+1)

2). The input of the S-RMDN-GARCH is a time

series {rt}Tt=1. The first part of the S-RMDN-GARCH is the mixing network, which takes for input

the last observation rt−1 and estimates the parameters weights of each mixture component η̂t+1. In

order to ensure that the condition
∑N

i=1 η̂i,t+1 = 1 is satisfied, this output layer of this network is

followed by a softmax activation function. The softmax activation function is defined as

si(y) =
eyi

∑N
j=1 e

yj
(11)

26

1 rt

gΣ g gΣ g

µt+1

ε2t 1 h1,t h2,t

Σ g Σ g1

s s

1

. .

1

e e

η̂1,t+1 η̂2,t+1 µ̂1,t+1 µ̂2,t+1 σ̂21,t+1 σ̂22,t+1

s: softmax Σ: linear activation function

g: hyperbolic tangent activation function e: positive exponential linear unit

Figure 4.3: Architecture of the proposed RMDN

for every i in 1, ..., N (M. Bishop, 2006). The estimate η̂t+1 is thus defined as

η̂i,t+1 = si

(

un,1(U1,1rt + U1,0) +

K
∑

k=2

un,k tanh(Uk,1rt + Uk,0) + un,0, n = 1, . . . , N

)

(12)

where U are the input-to-hidden layer weight and u are the hidden-to-output layer weight. The

second part of the model is the mean-level network, which takes for input rt and estimates the mean

µ̂t+1 of each mixture component. The estimate µ̂t+1 is thus defined as

µ̂i,t+1 = vi,1(V1,1rt + V1,0) +

K
∑

k=2

vi,k tanh(Vk,1rt + Vk,0) + vi,0 (13)

where V are the input-to-hidden layer weight and v are the hidden-to-output layer weight. The

third part of the S-RMDN-GARCH is the variance recurrent network, which estimates the variance

of each component of the mixture σ̂2t+1. As in the GARCH model, this network takes for input

the innovation ε2t = (rt − µt)2 and the last estimate for the conditional variance σ̂2t . The output

layer is fed through what we refer to as the positive exponential linear unit, which is defined as

e(x, α) = ELU(x, α) + 1 + ϵ where ϵ is a small number and ELU(x, α) is the exponential linear

unit defined as

ELU(x, α) =

x if x > 0,

α(ex − 1) otherwise.

(14)

27

The hyperparameter α controls the saturation value for negative inputs (Clevert et al., 2015). The

ELU activation function improves the numerical stability of MDN and ensures that the estimated

variance is always greater than 0 (Guillaumes, 2017; Joseph, 2021). We refer to this activation

function as the ºpositive exponential linear activation unitº throughout this paper. The estimate for

σ̂i,t+1 is defined as

σ̂i,t+1 = e

(

wi,1(W1,1ε
2
t +W1,0) +

K
∑

k=2

wi,k tanh(Wk,1ε
2
t +Wk,0) (15)

+ wi,K+1(WK+1,1σ̂
2
i,t +WK+1,0) +

2K
∑

k=K+2

wi,k tanh(Wk,1σ̂
2
i,t +Wk,0) + wi,0

)

where w are the hidden-to-output weights andW are the input-to-hidden weights. A detailed graph-

ical representation of the architecture is presented in Figure 4.3. The model is implemented using

PyTorch (Paszke et al., 2017). As in the RMDN-GARCH, the S-RMDN-GARCH is trained by min-

imizing the negative log-likelihood. Assuming a mixture of N Gaussian components and denoting

by ϕ(·, µ, σ2) the density of a Gaussian distribution with mean µ and variance σ2, the negative

log-likelihood −ℓ is given by

−ℓ =
T
∑

t=1

− log
N
∑

i=1

η̂i,tϕ(rt, µ̂i,t, σ̂
2
i,t)

=
T
∑

t=1

− log

(N
∑

i=1

exp

[

log(η̂i,t)−
1

2
log(2π)− log(σ̂i,t)−

1

2

(rt − µ̂i,t)2
σ̂2i,t

])

. (16)

The formulation (16) makes it possible to use the logsumexp trick (Blanchard et al., 2019) to avoid

underflow issues. We use the logsumexp implementation available in the PyTorch library (Paszke

et al., 2017) as a direct replacement of the term log
∑N

i=1 exp in the loss function. The S-RMDN-

GARCH is trained with the Adam optimizer (Kingma & Ba, 2014) without weight regularization.

However, conventional training method do not guarantee that the model will converge optimally.

28

4.3 Proposed Linear Reduction Pretraining

As previously noted, a well-known issue with mixture density networks is their tendency to

converge to local minima, which may be suboptimal (Hepp, Zierk, Rauh, Metzler, & Seitz, 2022).

This section outlines a pretraining method for the S-RMDN-GARCH aimed at circumventing local

minima that would yield a log-likelihood lower than that of the GARCH model. The S-RMDN-

GARCH model is a generalization of the Gaussian AR-GARCH model, with the latter being nested

within the former. Consequently, the optimized log-likelihood of the S-RMDN-GARCH(1, 1, N)

should always be greater than or equal to that of an AR(1)-GARCH(1,1).1 However, in initial

experiments, the S-RMDN-GARCH(p, q, N) did not consistently converge to a minimum with a

log-likelihood greater than that of the AR(d)-GARCH(p, q). The model exhibited significant insta-

bility, leading to the so-called ’persistent NaN problem,’ a common challenge with MDN as defined

by Guillaumes (2017). In this section, we first present the mathematical relationship between the

AR(1)-GARCH(1,1) and the S-RMDN-GARCH. We then introduce a pretraining method that lever-

ages this relationship to enhance the convergence of the S-RMDN-GARCH.

We first show the implications that using a linear node in the hidden layer implies that the

AR(1)-GARCH(1, 1) model is a particular case of the S-RMDN-GARCH model. Consider an

AR(1)-GARCH(1, 1) defined as

rt+1 = µt+1 + σt+1εt+1, (17)

µt+1 = a0 + a1rt,

σ2t+1 = α0 + α1ε
2
t + β1σ

2
t ,

where εt ∼ N(0, 1) denotes the innovation. Now consider an S-RMDN-GARCH with only 1

component and with only the linear nodes in the hidden layer of each network being used. We

achieve this by setting Vi = 0 for 1 < i ≤ K and Wi = 0 for 1 < i ≤ K and for K + 2 < i ≤ 2K.

1The proposed method can easily extend to S-RMDN-GARCH(p, q, N) models.

29

Since only one component is considered, we set the mixture weight to η̂t+1 = (1, 0). The RMDN-

GARCH can then be reformulated mathematically as

rt+1 = µt+1 + σt+1εt+1 (18)

µ̂t+1 = v1(V1rt + V0) + v0

σ̂2t+1 = e(w1(W1ε
2
t +W0) + w2(W2σ̂

2
t +W3) + w0) + 1.001

For simplicity we set the parameter ϵ of the positive ELU activation function to 0.001. The positive

ELU activation function can be reformulated to ELU(x) + 1. Such representation of the variance

σ̂2t+1 is equivalent to the conditional variance of a GARCH(1,1) when the input of the ELU is greater

than 0. The conditional mean µ̂t+1 also simplifies to an expression equivalent to an AR(1) model.

This implies that the RMDN-GARCH(1, 1) reduces to an AR(1)-GARCH(1, 1) when the input of

the ELU is greater than 02.

We propose a pretraining approach for the S-RMDN-GARCH that leverages the linear nodes

in the hidden layer of each neural network. The rationale behind this method is rooted in the be-

lief that the parameters of a linear S-RMDN-GARCH could serve as a robust starting point for the

parameters of a non-linear S-RMDN-GARCH. This assumption is based on the notion that an opti-

mal linear S-RMDN-GARCH model should be equivalent to an AR(1)-GARCH(1,1) under certain

conditions. This approach mirrors the strategy employed by Nikolaev et al. (2012), who used the

parameters of a GARCH model as the initial values for the RMDN-GARCH. However, this method

is not suitable for the S-RMDN-GARCH due to its specific relationship with the GARCH model,

which is subject to restrictions. Moreover, our pretraining method is more practical, requiring no

estimation of another model.

To initiate the pretraining process for the S-RMDN-GARCH, we commence by randomly ini-

tializing all linear nodes based on a normal distribution. Concurrently, the non-linear nodes are set

to zero to exclude them from the pretraining phase, as they should not be considered at this stage.

2Without loss of generality we can set v1, w1,w2 to 1 and V0, W0, W3 to 0.

30

Throughout the pretraining phase, the non-linear nodes in the hidden layer of each neural network

remain frozen. This is achieved by consistently setting the gradients of the nodes with non-linear

activation functions to zero whenever gradients are computed. The purpose of this step is to ensure

that the parameters of the non-linear activation nodes remain unaltered during training. Subse-

quently, the model undergoes training employing all nodes in the hidden layer. A detailed analysis

comparing the training approach with our proposed pretraining method is presented in Section 5.2.

4.4 Multivariate Extension of the Proposed RMDN

The estimation of the value-at-risk for a portfolio necessitates multivariate forecasts. How-

ever, the S-RMDN-GARCH operates as a univariate model. To address this limitation, we propose

an extension that incorporates a Gaussian copula. This extension allows us to preserve the semi-

parametric characteristics of the S-RMDN-GARCH while introducing the co-dependence of assets

within the portfolio into the forecasts. This approach is scalable to high dimensions, making it

suitable for modeling large portfolios. We refer to this extended model as the copula-S-RMDN-

GARCH.

Copulas, initially introduced by Sklar (1959), provide a framework for modeling joint distribu-

tions using a function C and marginal distributions F1, F2, ..., Fn. They are employed to specify

the marginal distribution of a vector of random variables independently of the interdependence be-

tween each random variable. Given a vector of random variables X = (X1, X2, ..., Xn), the joint

distribution can be expressed in terms of its marginal distribution F and a copula C defined on the

interval [0, 1] as

G(X1, X2, ..., Xn) = C(F1(X1), F2(X2), ..., Fn(Xn)) (19)

The copula C needs to satisfy two conditions:

(1) C(0, 0, ..., 0) = 0,

(2) C(1, ..., 1, α, 1, ..., 1) = α.

There are two main families of copula, the elliptical copulas and the Archimedean copulas. The

31

elliptical family comprises the Gaussian copula and the Student-T copula. Among the Archimedean

family comprises the Gumbel, Frank and Clayton copulas are the most common. Our focus is on the

Gaussian copula as it will be used throughout this thesis. Given a vector of random variable X =

(X1, X2, ..., Xn), the marginal probability of U = (U1, U2, ..., Un) is obtained by the probability

integral transform defined as

(U1, U2, ..., Un) = (F1(x1), F2(x2), ..., F (xn)). (20)

The Gaussian copula C is defined as

C(u) = ΦR

(

Φ−1(u1), ...,Φ
−1(un)

)

(21)

where ΦR is the cumulative distribution function of a joint Gaussian distribution with mean vector

equal to 0 and covariance matrix equal to the correlation matrix R, Φ−1 is the cumulative dis-

tribution function of a Gaussian distribution with mean equal to 0 and variance equal to 1 (Xue-

Kun Song, 2000). The density of the Gaussian copula is defined as

c(u,R) =
1

√

|R|
e−

1

2
·qT (R−1

−I)q (22)

where q = (Φ−1(u1), ...,Φ
−1(un))

T and I is an n × n identity matrix (Xue-Kun Song, 2000).

The probability density function of a multivariate mixture distribution with Gaussian copula can be

defined as

fc = c(u,R) ·
n
∏

i=1

f(x;Wi,Mi, Vi) (23)

where f is the probability density function of a mixture of Gaussian distribution and W , M , and

V are set the set of parameters of for all the univariate mixture . We define those parametersW =

(η1, ..., ηn), M = (µ1, ..., µn), and V = (σ21, ..., σ
2
n).

The remainder of this sections is divided into two parts. In the first part, we present a parameter

estimation method, while the second part presents the algorithm for directly sampling from the

multivariate model.

32

4.4.1 Copula Parameter Estimation

To estimate the parameters of a Gaussian copula, we first need to forecast the conditional dis-

tribution of asset returns using the RMDN. The set of all the asset returns conditional distribution

is the marginal distribution . Let R = (R1, R2, ..., RN) be a set of time series with marginal cu-

mulative distribution function Fi. To estimate the parameter matrix ρ of a Gaussian copula, each

time series Ri ∈ R need to be transformed to a i.i.d. normally distributed set of observation. This is

achieved with the Rosenblatt transform. Let’s define the time series Ri = {ri,t}Tt=1 with marginal

cumulative distribution Fi and its copula C, the Rosenblatt transform Ω is defined as

Ω(R) =

Φ−1(F1,1(r1))

Φ−1(F1,2(r2|r1))

...

Φ−1(F1,T (rT |r1, ..., rT−1))

(24)

where Φ−1 is the inverse cumulative distribution function of a Gaussian distribution with the mean

equal to 0 and the variance equal to 1 (Rosenblatt, 1952). This definition of the Rosenblatt trans-

form is appropriate for non-Markovian models. However, the RMDN is Markovian as the condi-

tional probability distribution estimated is defined as F (rt+1|rt). The appropriate definition of the

Rosenblatt transform for a Markovian model is defined as

Ω(R) =

Φ−1(F1(r1))

Φ−1(F2(r2|r1))

...

Φ−1(Fn(rn|rn−1, ..., rn−l))

(25)

where l is the maximal lag used in the model. After transforming the time series to normally

distributed random variates, we estimate the correlation matrix ρ using Pearson’s correlation coef-

ficient. The sample correlation between a pair of random variable x and y is estimated with the

following formula ρ(x, y) =
∑n

i=1
(xi−x)(yi−y)√∑n

i=1
(xi−x2)

∑n
i=1

(yi−y)2
where n is the number of observations for

each variable and x and y are the estimates for the mean of x and y. Let F (rt|rt−1;w, µ, σ
2) be the

33

cumulative distribution function of the mixture of the RMDN, where w is the weight of all distri-

butions in the mixture, µ is the mean of all distributions and σ2 is the conditional variance for all

distributions. The Rosenblatt transform can be reformulate to

Ω(R;W,M, V) =

Φ−1(F (r1;W1,M1, V1))

Φ−1(F2(r2|r1;W2,M2, V2))

...

Φ−1(Fn(rn|rn−1, ..., rn−l;Wn,Mn, Vn))

(26)

where W , M , V are vectors of weights, means, and the conditional variances respectively. The

algorithm for the estimation of the Gaussian copula is available in algorithm 1.

Algorithm 1: Estimation of the Copula’s Parameters

Data: X , a multivariate time series {x0}T0 , ..., {xN}T0
Data: σ20 , the initial hidden state of the S-RMDN-GARCH at time t = 0
Data: R, a set of N trained RMDN on each time series in X

Result: ρ

Z = [];
for i← 0 to N do

W ← [];
M ← [];
V ← [];
for t← 0 to T do

η, µ, σ2 ← S-RMDN-GARCH(Xi,t, σ
2);

Wt ← η;

Mt ← µ;

Vt ← σ2;

end

Zi ← Ω(Xi,W,M, V);

end

ρ← corr(Z);

4.4.2 Sampling

To sample from the copula-S-RMDN-GARCH, we need to perform the inverse operation com-

pared to estimating the copula’s parameters. This operation is carried out sequentially, considering

the model’s Markovian nature and its dependence on previous estimates. Given an initial set of

34

observations X , we can generate a sample path using Algorithm 2.

Algorithm 2: Single Path Sampling Algorithm

Data: ρ, the correlation matrix of U

Data: σ20 , the initial hidden state of the S-RMDN-GARCH at time t = 0
Data: X , the initial set of observations at time t = 0
Data: T , the horizon over which we want to sample

Result: Y , the samples generated

Y ← [];
for i← 1 to n do

Yi,0 ← Xi;

end

for t← 1 to T do

Z ← randn(), sample from N(0, R);
for i← 1 to n do

Ui ← Φ(Zi);
η, µ, σ2 ← S-RMDN-GARCHi(Yi,t−1, σ

2);
Yi,t ← F−1(Ui; η, µ, σ

2)

end

end

The method can be repeated multiple time to generate more sample paths. However, this method

requires computing the inverse CDF of the mixture. As this is done numerically, it is not an efficient

algorithm for generating a large number of samples. The estimation of a large portfolio requires

sampling a large number of samples. We proposed an importance sampling algorithm in the next

section to estimate the value-at-risk more efficiently.

4.5 Efficient Sampling of the copula-S-RMDN-GARCH and Estima-

tion of the Value-at-Risk

In order to estimate the value-at-risk, a large number of samples are required. The previous

method proposed for sampling requires computing the inverse cumulative distribution function of

the mixture distribution, which can only be done numerically. The inverse cumulative distribution

function needs to be computed for each path generated N ·M times, where N is the number of

assets and M is the number of periods in each path. As a large number of paths are required to

35

estimate the value-at-risk and the estimation of the inverse cumulative distribution functions is done

numerically, sampling directly from the copula-S-RMDN-GARCH is not practical. We present an

importance sampling algorithm for estimating the value-at-risk efficiently.

Importance sampling is a variance reduction technique that allows estimating the properties of a

distribution (the target distribution) from samples generated from a different distribution (the design

distribution). This method can improve the convergence of a Monte Carlo estimate by specifying a

distribution with higher density in the area of interest. It can also be used to sample from a distribu-

tion that is difficult or inefficient to sample from, as is the case with the copula-S-RMDN-GARCH.

To apply this variance reduction technique to the copula-S-RMDN-GARCH, we propose sampling

from a multivariate Gaussian distribution. The multivariate Gaussian distribution, as it has the same

copula as the copula-S-RMDN-GARCH, can be sampled from efficiently, thereby improving the

efficiency of the sampling algorithm.

Let X be a random variable with the pdf fX and h be a function defined on R. To estimate the

expectation of h(X) noted E[h(X)], a Monte-Carlo estimator can be defined as

E[h(X)] =

∫

h(x)fX(x)dx ≈ 1

N

N
∑

i=1

h(Xi) (27)

where X1, ..., XN is a sample drawn from fX and N is the number of sample. Let Z be a random

variable with with the pdf fZ . An unbiased estimator of E[h(X)] can be constructed from the

samples Z1, ..., ZN by using the following relationship

E[h(X)] =

∫

h(x)f(x)dx =

∫

h(x)
fX(x)

fZ(x)
fZ(x)dx ≈

1

N

N
∑

i=1

h(Zi)
fX(Zi)

fZ(Zi)
(28)

If distribution of fZ is chosen appropriately, the new unbiased estimator will reduced the variance of

the Monte-Carlo estimates. Therefore, reducing the number of samples required to get an accurate

estimate for E[X] (Glasserman, 2004).

36

As the definition of the value-at-risk differs from the expectation of the random variable X , a

different importance sampling estimator is needed. First, lets define the value-at-risk for a given

random variable X as

V aRα(X) = inf{x ∈ R|P [X > x] ≤ α} (29)

where α is the level of the value-at-risk (FÈollmer & Schied, 2016). Given this definition, the im-

portance sampling estimator for the value-at-risk of X from a sample Z1, ..., ZN drawn from the

distribution Z is defined as

V aRα(X) ≈ inf{z ∈ R| 1
N

N
∑

i=1

I(Z < z)q ≤ α} (30)

where q is the likelihood ratio. Let Z(0, ρ) be a multivariate Gaussian distribution with pdf fZ and

let U(, ρ, η, µ, σ2) be a multivariate mixture distribution with a Gaussian copula with pdf fU . The

likelihood ratio for the copula-S-RMDN-GARCH is specified as

q =
fU (Z; ρ, η, µ, σ

2)

fZ(Z; 0, ρ)
(31)

In order to estimate the value-at-risk at a given time-step t, we sample and estimate the likelihood

ratio qt. This is done in a two steps process. First, we forecast the parameters of the mixture dis-

tribution η, µ and σ2. We then generate P samples from our design distribution Zi. The second

step consist in calculating the likelihood ratio q. The last step consist in evaluating the value at risk

from the adjusted samples. The complete algorithm for estimating all the steps for time-step T is

explained in Algorithm 3.

The second step in the value-at-risk estimation is the generation of the portfolio returns for each

path. The returns of a portfolio can be calculated using the following formula

Rp = ωT · g(r) (32)

where ω is the vector of the weight of each assets, g is a vector of function that defines the payoff of

37

Algorithm 3: Importance Sampling Algorithm

Data: ρ, the correlation matrix of U

Data: X , the initial set of observations at time t = 0
Data: µ, the initial µ of the S-RMDN-GARCH at time t = 0
Data: σ2, the initial hidden state of the S-RMDN-GARCH at time t = 0
Data: T , the number of time-step for which to sample and calculate the likelihood ratio q

Data: P , the number of samples to generate

Data: n, the number of assets in the portfolio

Result: Z

Ŷ ← [];
q ← [];
Z ← [];
for i← 1 to n do

Y0,i ← X[i];
end

for t← 1 to T + 1 do

W ← [];
M ← [];
S ← [];
for i← 1 to n do

Ui ← Φ(Zi);
η, µ, σ2 ← S-RMDN-GARCHi(Xt−1,i;µi, σ

2
i);

Wi ← η;

Mi ← µ;

Si ← σ2;

µi ← ηT · µ
end

Zt ← randn(), generate P samples from N(0, ρ);

qt ← fV (Zt;ρ,W,M,V)
fZ(Zt)

, calculate the vector of weights;

end

each assets, and r is the vector of returns of each assets. In the case of a stock portfolio, the payoff

of an assets is equal to its return. The vector g is relevant for assets with more complex payoff such

as financial derivatives. In the case of a stock portfolio the returns of a portfolio calculated from the

following formula

Rp = ωT · r (33)

The next step is the estimation of the value-at-risk from the computed portfolio returns. The value-

at-risk can be estimated by finding the value x at which α = P (X > x). We present the algorithm

for estimating the value-at-risk at over the time frame (0, T) in algorithm 4.

38

Algorithm 4: Estimation of the value-at-risk

Data: Z, the samples from the model

Data: w, the weights of each samples from the importance sampling algorithm

Data: α, the level of the value-at-risk

Data: Np, the number of paths generated

Result: V

S ← sort(Zt);
for i← 1 to Np do

pv = 1
P
(Zt ≤ Si))T · wi, Approximate probability of P (Zt ≤ Si) ;

if pv >= α then

break, break when P (Zt ≤ Si) >= α ;

end

V ← Si, VaR is the value of S at index i;

4.6 Summary

In this chapter, we introduce the reader to the methodology proposed to forecast the value-at-

risk. First, we present the current RMDN architecture for univariate forecasting, including the archi-

tectures of the RMDN and the RMDN-GARCH. We then introduce an improved recurrent mixture

density network architecture, referred to as the Stable-RMDN-GARCH (S-RMDN-GARCH). This

new architecture builds on the previously proposed model by enhancing the stability of the gradient

of the model. Additionally, we propose the use of a novel pretraining method, the linear reduction

pretraining, to improve the convergence of the S-RMDN-GARCH. The S-RMDN-GARCH is fur-

ther extended to a multivariate model called the copula-S-RMDN-GARCH. We present an approach

for estimating the parameters of the copula-S-RMDN-GARCH and for sampling the model. Fur-

thermore, we propose an importance sampling method to enhance the efficiency of sampling from

the copula-S-RMDN-GARCH. Finally, the algorithm for estimating the value-at-risk is introduced.

39

Chapter 5

Analysis

This chapter details the methods employed to establish the performance of the copula-S-RMDN-

GARCH. We first present the data used to train and test the model. We then present the analysis of

the performance of the pretraining method presented in Section 4.3. The following sections analyze

the application of the univariate RMDN-GARCH model on the dataset. The same is done for the

multivariate copula-ELU-RMDN.

5.1 Data and Parameters

In this section, we introduce the dataset used to train and test the model. We also present the

parameters used for training and testing the model.

We selected the stocks comprised in the SP 500 index for testing the model. The SP 500 was

chosen as the index comprised of the stocks of the 500 largest market capitalizations in the United

States. Large market capitalization stocks tend to have a long price history, ensuring sufficient data

to train the model and enabling it to perform well under various market conditions. Daily stock price

data was collected for a period covering several years, starting from January 1, 2015, to December

31, 2019. More recent data collected for the years 2020 to 2023 were omitted from the dataset

due to disruptions in the financial markets caused by the COVID-19 pandemic, making the out-of-

sample period difficult to predict. Stocks whose data didn’t cover the tested period were removed

40

from the dataset. The data was separated into two periods: the in-sample period and the out-of-

sample period. The in-sample period starts on January 1, 2015, and ends on December 31, 2017.

The in-sample period was used to train and validate linear reduction pretraining. The out-of-sample

period starts on January 1, 2018, and ends on December 31, 2019. The out-of-sample period was

used solely for testing the model and for comparison with the GARCH-based model. We collected

the data from Yahoo Finance.

The S-RMDN-GARCH was trained for 300 epochs with a learning rate of 0.0001. In the test

where linear reduction pretraining was performed, we pretrained the model for 20 epochs before

training the model. The parameters of the S-RMDN-GARCH were initialized randomly, with the

exception of the output nodes of the variance recurrent network and the bias of the network, which

were initialized to 1. When pretraining is employed, the parameters of the non-linear nodes are

initialized to zero. The models were trained on a Dell Precision T7510 workstation with 2 Intel

Xeon E5-2630 v3 processors and 16GB of DDR3 ECC memory.

5.2 Analysis of the Performance of the Linear Reduction Pretraining

Method

We present an analysis of the linear reduction pretraining method proposed in Section 4.3. To

validate the efficacy of the pretraining method, we selected 10 different stocks randomly from the

SP 500 components present in our dataset. For each stock, we trained 20 RMDN-GARCH models

split equally between two groups: the models with pretraining (S-RMDN-GARCH) and the models

without pretraining (RMDN-GARCH). Each model was initialized with 10 different seeds that were

randomly selected. Each group uses the same seed. We then estimated the number of models that

had converged during training for both groups.

The results from the test performed indicate that the linear reduction pretraining method is ef-

fective for improving the convergence of the model, as all the models in the group with pretraining

converged to a satisfactory minimum. This contrasts with the groups of models trained without

41

linear reduction pretraining, which only converged for 31% of the models. The results of the pre-

training test are presented in Table 5.1.

Without pretraining With pretraining

Stock Ticker Not Converged Converged Not Converged Converged

AKAM 7 3 0 10

CBRE 6 4 0 10

EA 7 3 0 10

EMN 6 4 0 10

K 7 3 0 10

LOW 7 3 0 10

MKTX 7 3 0 10

NWSA 7 3 0 10

OKE 7 3 0 10

UAL 8 2 0 10

Total 69 31 0 100

Total% 69% 31% 0% 100%

Table 5.1: In-Sample Pretraining Test

The results presented in Table 5.2 show that using pretraining leads, on average, to a log-

likelihood greater than that of the GARCH model, with the exception of the training runs per-

formed on the EMN stock. However, after retraining the model on the EMN return series with a

smaller learning rate of 0.00005, the model was able to converge well below the log-likelihood of

the GARCH. This suggests that the choice of learning rate is also an important factor related to

the convergence of the S-RMDN-GARCH. The tests previously presented allow us to conclude that

Stock

Ticker GARCH

With

Pretraining

Without

Pretraining
AKAM -1999.45 -1875.84 -1898.40

CBRE -1973.91 -1934.19 -1951.72

EA -2038.76 -1995.17 -2078.30

EMN -2025.97 -2027.82 -2033.02

K -1782.75 -1695.07 -1700.97

LOW -1993.17 -1906.67 -1914.93

MKTX -2071.61 -2022.83 -2040.89

NWSA -2041.73 -1968.67 -1989.55

OKE -2054.26 -2006.29 -2022.70

UAL -2349.71 -2303.32 -2335.57

Table 5.2: In-Sample Log-Likelihood

42

the linear reduction pretraining method improves the convergence of the S-RMDN-GARCH model

during training. The pretraining method reduces the number of failed trainings but also allows the

model to converge to a greater optimum, thereby improving the model’s forecasting power.

5.3 Analysis of the Value-at-Risk Forecast

To establish the accuracy of the copula-SP-RMDN-GARCH, we present a comparative analysis

of the value-at-risk forecasting accuracy of the Copula-GARCH model and the copula-S-RMDN-

GARCH. This section comprises two parts: the methodology and the analysis of the results.

5.3.1 Testing Methodology

To estimate the accuracy of the model without introducing bias, we generate 50 equally weighted

portfolios composed of 50 randomly selected stocks. The number of stocks per portfolio was se-

lected as it is representative of the size of an average portfolio. The model wasn’t developed for large

portfolio with hundreds of assets. We then forecast the 1-day ahead value-at-risk for each portfolio

for each date in the testing period. For each portfolio, we sample 25000 paths of 100 time steps.

We compute the failure rate of the model and three different statistical tests on the value-at-risk

estimates: the binomial distribution test, Kupiec’s probability of failure test, and Christopherson’s

interval forecast test.

The failure rate measures the number of forecasts for which the value-at-risk was greater than

the realized returns on that day. A perfectly accurate model should have a failure rate equal to the α

of the value-at-risk. For each forecast, the presence of a failure is defined as

It =

1, if yt ≤ V aRα

0, if yt > V aRα

(34)

43

The total number of failures is defined as z =
∑T

t=1 It. The total failure rate is defined as

failure rate =
1

T

T
∑

t=1

It (35)

where T is the number of time steps (Christoffersen, 1998). To ensure that the estimates for the

value-at-risk are consistent through the distribution of the stock returns we estimates the failure

rates for 7 different value-at-risk levels. The failure rate was estimated for the following value-at-

risk level: 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95.

To validate the accuracy of the value-at-risk estimated obtained with the copula-S-RMDN-

GARCH model, we first perform the binomial distribution test. The test states that if the number of

failures {It} are independently and identically distributed the total number of failures should follow

a Binomial distribution. Given a number of violation x, the test statistics is defined as

Zbin =
x−Np

√

Np(1− p)
(36)

where N is the total number of observations and p is the confidence level (Zhang & Nadarajah,

2018). The test was performed with the following critical value: 0.01, 0.05, 0.1.

The second test we perform is the Kupiec proportion of failure test. This test differs from the

Binomial test previously introduced as it measures how close the observed number of failures is to

the probability implied by the value-at-risk level α (Kupiec, 1995). The test is a likelihood ratio

distributed according to a chi-square variable with 1 degree of freedom. We define the likelihood

ratio as

LRPOF = −2log
(

(1− p)n−xpx

(1− x
N
)n−x(x

N
)x

)

(37)

where N is the number of observations and p = 1 − α. Under the null hypothesis, the probability

of a failure is equal to the VaR level α. We reject the value-at-risk model if the likelihood ratio is

greater than a critical value p. The test was performed with the following critical values: 0.01, 0.05,

0.1.

44

The third test performed is Christofferson’s interval forecast test. This test differs from Kupiec’s

proportion of failure test, as it integrate information about the interval time between value-at-risk

breaches and their clustering (Christoffersen, 1998). To perform this test, we first consider a binary

first-order Markov chain with transition matrix

Π1 =

1− π01 π01

1− π11 π11

(38)

where the transition probabilities are defined as

πij = P (It = j|It−1 = i). (39)

Using the observed failures {It}, we can approximate the transition matrix Π1 as

Π̂1 =

1− π01 = n00

n00+n01
π01 =

n01

n00+n01

1− π11 = n10

n10+n11
π11 =

n11

n10+n11

(40)

where nij is the number of observations where we observe a failure at time t − 1 if i = 1 and a

failure at time t if j = 1. For example, n01 corresponds to the number of observations for which

It−1 = 0 and It = 1. The likelihood ratio for the Christofferson’s interval forecast test is defined as

LRCCI = −2log
(

(1− π2)n00+n10πn01+n11

2

(1− π0)n00πn01

0 (1− π1)n10πn11

1

)

(41)

where π0 is the sample probability of having a failure on period t, given that no failure occurred on

period t − 1, π1 is the probability of the model failing on period t, given that the model failed on

t− 1, and π2 is the probability of having a failure at time t. We define π01 as

π01 =
n01

n00 + n01
(42)

45

Similarly, π1 can be defined as

π1 =
n11

n10 + n11
(43)

The definition of π2 is defined as

π2 =
n01 + n11

n00 + n01 + n10 + n11
(44)

Christofferson’s interval forecast test statistic is distributed as a chi-square variable with 1 degree

of freedom. We reject the value-at-risk model if the likelihood ratio is greater than a critical value.

The test was performed with the following critical values: 0.01, 0.05, 0.1.

5.3.2 Results

We compare the results obtained during the estimation of the value-at-risk with the copula-S-

RMDN-GARCH and the copula-AR-GARCH models. To compare the results, we compile descrip-

tive statistics for the binomial, Kupiec, and Christofferson tests. The summary statistics for both

models are presented in Table 5.3. For brevity, the names of the copula-S-RMDN-GARCH and the

copula-AR-GARCH are abbreviated to RMDN and GARCH, respectively.

copula-S-RMDN-GARCH copula-AR-GARCH

Binomial Kupiec Christofferson Binomial Kupiec Christofferson

µ 1.48 1.99 2.12 2.50 5.13 1.90

σ 0.50 1.31 0.86 0.80 2.86 1.56

Min 0.46 0.20 0.20 1.38 1.62 0.06

Max 3.21 7.54 3.36 4.13 11.71 5.78

Table 5.3: Descriptive statistics of the likelihood ratio for the Binomial, Kupiec, and Christofferson

Tests

While the statistics indicate that both models fail on average for all tests, the copula-S-RMDN-

GARCH seems to be a superior model, in part due to its lower average binomial, Kupiec, and

Christofferson test statistics. However, when comparing the results for each portfolio individually

in Table 5.4, the copula-AR-GARCH seems to outperform the copula-S-RMDN-GARCH for the

46

Christofferson test. This indicates that the copula-AR-GARCH outperforms the copula-S-RMDN-

GARCH marginally for most portfolios, but that the copula-S-RMDN-GARCH outperforms the

copula-AR-GARCH substantially in a few cases.

The results of the tests were evaluated at three different critical values: 0.01, 0.05 and 0.1. The

RMDN

>

GARCH

RMDN

>

GARCH%

RMDN

=
GARCH

RMDN

=
GARCH%

Binomial 43 86% 4 8%

Kupiec 43 86% 4 8%

Christofferson 17 34% 4 8%

Table 5.4: Descriptive statistics for the Binomial, Kupiec, and Christofferson Test

number of tests that were accepted are reported in Table 5.5. We can observe that the number of

copula-S-RMDN-GARCH copula-AR-GARCH
Difference

NB Accepted % Accepted NB Accepted % Accepted

Binomial

0.01 48 96% 25 50% 46%

0.05 46 92% 16 32% 60%

0.1 33 66% 9 18% 48%

Kupiec

0.01 49 98% 38 76% 22%

0.05 46 92% 16 32% 60%

0.1 33 66% 9 18% 48%

Christofferson

0.01 50 100% 50 100% 0%

0.05 50 100% 45 90% 10%

0.1 40 80% 40 80% 0%

Table 5.5: Summary of the Results of the Binomial, Kupiec and Christofferson Tests

tests being accepted for the copula-S-RMDN-GARCH is higher than the number of tests being ac-

cepted for the copula-AR-GARCH. This shows that the copula-S-RMDN-GARCH performs better

than the copula-AR-GARCH. It also indicates that the copula-S-RMDN-GARCH can be used to

forecast the value-at-risk effectively.

We also compare the failure rate of the model over multiple value-at-risk levels. This allows

us to determine if the forecasts are accurate across the distribution of the portfolio’s returns. To

compare the copula-S-RMDN-GARCH and the copula-AR-GARCH failure rate, we compute the

47

absolute error from the failure rate. We define the absolute error of the failure rate as

φ = |failure rate− α| (45)

where α is the VaR level. We compare the absolute error rate of the copula-S-RMDN-GARCH with

the absolute error rate off the copula-AR-GARCH in Table 5.6. We report the average, minimum,

and maximum failure rate for both model as well as the number of copula-S-RMDN-GARCH,

which have a lower error rate than the copula-AR-GARCH model. For brevity, the name of the

copula-S-RMDN-GARCH and the copula-AR-GARCH are abbreviated to RMDN and GARCH, re-

spectively. We can observe that the copula-S-RMDN-GARCH outperforms the copula-AR-GARCH

model for most VaR levels alpha. However, the higher VaR levels see less improvement than the

smaller VaR level.

Average Min Max RMDN

>

GARCH

RMDN

>

GARCH%GARCH RMDN GARCH RMDN GARCH RMDN

5% 0.0544 0.0322 0.03 0.01 0.09 0.07 43 86%

10% 0.07 0.0298 0.01 0 0.1 0.07 49 98%

25% 0.037 0.0144 0 0 0.08 0.05 42 84%

50% 0.022 0.018 0 0 0.05 0.07 28 56%

75% 0.0324 0.0248 0 0 0.07 0.07 29 58%

90% 0.0566 0.043 0.02 0 0.09 0.09 29 58%

95% 0.036 0.0228 0 0 0.06 0.05 34 68%

Table 5.6: Descriptive Statistics for Failure Rates for all Portfolios

The average execution time of the experiments, as well as the minimum and maximum execu-

tion times are reported for the copula-S-RMDN-GARCH and the copula-AR-GARCH in Table 5.7.

Overall, the copula-AR-GARCH exhibits a faster execution time than the copula-S-RMDN-

copula-S-RMDN-GARCH copula-AR-GARCH

Copula Sampling VaR Copula Sampling VaR

Average 83.26 87.92 86.96 1.12 122.14 0.05

Min 78.31 80.74 75.04 1.09 113.99 0.05

Max 94.16 104.11 94.70 1.18 127.80 0.05

Table 5.7: Execution Time for the Copula-SP-RMDN-GARCH and the Copula-AR-GARCH

48

GARCH. However, the sampling process of the copula-S-RMDN-GARCH is quicker than that

of the copula-AR-GARCH, suggesting that the importance sampling developed is more efficient

than the direct sampling algorithm of the copula-AR-GARCH. This efficiency is somewhat offset

in the computation of the value-at-risk, as the importance sampling algorithm of the copula-S-

RMDN-GARCH requires additional computations. Nevertheless, the estimation of the copula for

the copula-AR-GARCH is considerably faster than the estimation of the copula for the copula-

S-RMDN-GARCH. This indicates that the algorithm for estimating the copula’s parameters in

the copula-S-RMDN-GARCH is not as efficient as the current algorithm used in the copula-AR-

GARCH.

5.4 Summary

In this analysis, we first show that the linear-reduction pretraining method is able to improve the

convergence of the model, but also that the S-RMDN-GARCH outperforms the GARCH model in-

sample. Our analysis showed that the copula-S-RMDN-GARCH generally outperforms the copula-

AR-GARCH when used to estimate the value-at-risk. From our analysis, we can conclude that

the copula-S-RMDN-GARCH is a viable alternative to the copula-AR-GARCH for estimating the

model to forecast the value-at-risk.

49

Chapter 6

Conclusion

In this thesis, we presented a new methodology for forecasting the value-at-risk of a stock port-

folio. We first discussed the background of the value-at-risk forecasting problem and then provided

a summary of the literature available for forecasting time series. Next, we presented the approach

that we developed to forecast multivariate time series and estimate the value-at-risk. Finally, we

compared our model to the Copula-AR-GARCH model and presented the advantages and limita-

tions of our model.

In this thesis, we focus on probabilistic forecasts as we propose an updated RMDN-GARCH

architecture to improve the stability of the model, which we refer to as the S-RMDN-GARCH.

We also introduce the linear-reduction pretraining method to further enhance the reliability of

the S-RMDN-GARCH during training. Additionally, we propose the Copula-S-RMDN-GARCH

model, which extends the S-RMDN-GARCH to multivariate settings. We first demonstrate that

the S-RMDN-GARCH and linear-reduction pretraining are able to improve the convergence of the

RMDN-GARCH. We conducted a comparative analysis of the Copula-S-RMDN-GARCH, which

is compared with the Copula-AR-GARCH model. Our analysis shows that the Copula-S-RMDN-

GARCH estimates of the value-at-risk are statistically superior to the estimates of the value-at-

risk obtained from the Copula-AR-GARCH forecasts. This indicates that the Copula-S-RMDN-

GARCH is a viable alternative to the GARCH model.

50

References

Adamkoa, P., SpuchľÂakovÂab, E., & ValÂaškovÂab, K. (2015, July). The history and ideas behind VaR.

Aielli, G. P. (2011, July 14). Dynamic conditional correlation: On properties and estima-

tion. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract

id=1507743

Avellaneda, M., & Serur, J. A. (2020). Hierarchical PCA and modeling asset correlations.

Bishop, C. M. (1994, February). Mixture density network (Tech. Rep.). Aston University.

Blanchard, P., Higham, D. J., & Higham, N. J. (2019). Accurate computation of the log-sum-exp and

softmax functions. arXiv. Retrieved from https://arxiv.org/abs/1909.03469

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and

rates of return. The Review of Economics and Statistics, 69(3), 542±547.

Brusaferri, A., Matteucci, M., Ramin, D., Spinelli, S., & Vitali, A. (2020). Probabilistic day-ahead

energy price forecast by a mixture density recurrent neural network. In 2020 7th international

conference on control, decision and information technologies (codit) (Vol. 1, p. 523-528). doi:

10.1109/CoDIT49905.2020.9263898

Chen, J.-F., Chen, W.-L., Huang, C.-P., Huang, S.-H., & Chen, A.-P. (2016). Financial time-series

data analysis using deep convolutional neural networks. In 2016 7th international conference

on cloud computing and big data (ccbd) (p. 87-92). doi: 10.1109/CCBD.2016.027

Chen, S., & He, H. (2018, October). Stock prediction using convolutional neural network. IOP

Conference Series: Materials Science and Engineering, 435(1), 012026. doi: 10.1088/1757

-899X/435/1/012026

51

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning phrase representations using RNN encoder-decoder for statistical machine

translation.

Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4),

841±862.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning

by exponential linear units (ELUs). arXiv. Retrieved from https://arxiv.org/abs/

1511.07289

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quanti-

tative Finance, 1(2), 223-236. doi: 10.1080/713665670

Dalbudak, Z. I., Atan, M., & Yilmaz, V. (2017). Comparison of value at risk methods: Application

of ise 30. Journal of Business, Economics and Finance, 6, 254-263.

Datta, S. (2022, November 2). Modelling asset price volatility over time using LSTM. (Available at

SSRN: https://ssrn.com/abstract=4265186 or http://dx.doi.org/10.2139/ssrn.4265186)

Di-Giorgi, G., Salas, R., Avaria, R., Ubal, C., Rosas, H., & Torres, R. (2023, April). Volatility fore-

casting using deep recurrent neural networks as GARCH models. Computational Statistics.

doi: 10.1007/s00180-023-01349-1

Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns

and a new model. Journal of Empirical Finance, 1(1), 83-106. doi: https://doi.org/10.1016/

0927-5398(93)90006-D

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of

united kingdom inflation.

Engle, R. F. (2002). Dynamic conditional correlation. Journal of Business & Economic Statistics,

20(3), 339-350. doi: 10.1198/073500102288618487

Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating time varying risk premia in the term

structure: The arch-m model. Econometrica, 55(2), 391±407.

Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The

Journal of Finance, 48(5), 1749±1778.

Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor

52

model. Journal of Econometrics, 147(1), 186-197. (Econometric modelling in finance and

risk management: An overview) doi: https://doi.org/10.1016/j.jeconom.2008.09.017

Fernandez, C., & Steel, M. F. J. (1998). On bayesian modeling of fat tails and skewness. Journal

of the American Statistical Association, 93(441), 359±371.

FjellstrÈom, C. (2022). Long short-term memory neural network for financial time series.

FÈollmer, H., & Schied, A. (2016). Stochastic Finance An Introduction in Discrete Time (4th rev. ed.

ed.). Berlin/Boston: De Gruyter. doi: 10.1515/9783110463453

Ge, W., Lalbakhsh, P., Isai, L., Lenskiy, A., & Suominen, H. (2022, January). Neural network±based

financial volatility forecasting: A systematic review. ACM Comput. Surv., 55(1). doi: 10

.1145/3483596

Glasserman, P. (2004). Monte Carlo methods in financial engineering. New York: Springer.

(Section: xiii, 596 pages : illustrations ; 25 cm.)

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected

value and the volatility of the nominal excess return on stocks. The Journal of Finance,

48(5), 1779-1801. doi: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

Goldfeld, S. M., & Quandt, R. E. (1973). A Markov model for switching regressions. Journal of

Econometrics, 1(1), 3-15. doi: https://doi.org/10.1016/0304-4076(73)90002-X

Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching

process. Journal of Financial Economics, 42(1), 27±62.

Guillaumes, A. B. (2017). Mixture density networks for distribution and uncertainty estima-

tion. Retrieved from https://upcommons.upc.edu/bitstream/handle/2117/

100566/122527.pdf

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and

the business cycle. Econometrica: Journal of the econometric society, 357±384.

Hepp, T., Zierk, J., Rauh, M., Metzler, M., & Seitz, S. (2022, July). Mixture density networks for

the indirect estimation of reference intervals. BMC Bioinformatics, 23(1), 307.

Higgins, M. L., & Bera, A. K. (1992). A class of nonlinear ARCH models. International Economic

Review, 33(1), 137±158.

Hinich, M. J., & Patterson, D. M. (1985). Evidence of nonlinearity in daily stock returns. Journal

53

of Business & Economic Statistics, 3(1), 69±77.

Hochreiter, S., & Schmidhuber, J. (1997, November). Long Short-Term Memory. Neural Compu-

tation, 9(8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735

Jia, F., & Yang, B. (2021, February). Forecasting Volatility of Stock Index: Deep Learning Model

with Likelihood-Based Loss Function. Complexity, 2021, 5511802. (Publisher: Hindawi)

doi: 10.1155/2021/5511802

Joseph, M. (2021, March 20). Mixture density networks: Probabilistic regression for un-

certainty estimation. Retrieved from https://deep-and-shallow.com/2021/

03/20/mixture-density-networks-probabilistic-regression-for

-uncertainty-estimation/

Kamalov, F., Smail, L., & Gurrib, I. (2020, November). Stock price forecast with deep learning. In

2020 international conference on decision aid sciences and application (DASA). IEEE. doi:

10.1109/dasa51403.2020.9317260

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. Retrieved

from https://arxiv.org/abs/1412.6980

Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH.

Springer.

Kumar, A., Alsadoon, A., Prasad, P. W. C., Abdullah, S., Rashid, T. A., Pham, D. T. H., & Nguyen,

T. Q. V. (2021, November). Generative adversarial network (gan) and enhanced root mean

square error (ermse): deep learning for stock price movement prediction. Multimedia Tools

and Applications, 81(3), 3995±4013. Retrieved from http://dx.doi.org/10.1007/

s11042-021-11670-w doi: 10.1007/s11042-021-11670-w

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The

Journal of Derivatives, 3(2), 73-84. Retrieved from [] doi: 10.3905/jod.1995.407942

Ledoit, O., & Wolf, M. (2003, November). Honey, i shrunk the sample covariance matrix. Retrieved

from http://www.ledoit.net/honey.pdf

Liu, S., Zhang, C., & Ma, J. (2017). CNN-LSTM neural network model for quantitative strategy

analysis in stock markets. In (p. 198±206).

Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020, November). A CNN-LSTM-Based Model to

54

Forecast Stock Prices. Complexity, 2020. (Publisher: Hindawi) doi: 10.1155/2020/6622927

Luo, R., Zhang, W., Xu, X., & Wang, J. (2018). A neural stochastic volatility model.

M. Bishop, C. (2006). Pattern recognition and machine learning.

Mostafa, F., & Dillon, T. (2008). Modelling volatility with mixture density networks. In 2008

ieee international conference on granular computing (p. 501-505). doi: 10.1109/GRC.2008

.4664673

Muhammad, T., Aftab, A. B., Ibrahim, M., Ahsan, M. M., Muhu, M. M., Khan, S. I., & Alam,

M. S. (2023, April). Transformer-based deep learning model for stock price prediction: A

case study on bangladesh stock market. International Journal of Computational Intelligence

and Applications, 22(03). doi: 10.1142/s146902682350013x

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Economet-

rica, 59(2), 347±370.

Nikolaev, N., Tino, P., & Smirnov, E. (2012). Time-dependent series variance learning with recur-

rent mixture density networks. Neurocomputing, 122, 501-512.

Paranhos, L. (2021). Predicting inflation with neural networks. arXiv. Retrieved from https://

arxiv.org/abs/2104.03757

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A. (2017). Au-

tomatic differentiation in PyTorch. Retrieved from https://arxiv.org/pdf/1912

.01703.pdf

Rodikov, G., & Antulov-Fantulin, N. (2022). Can LSTM outperform volatility-econometric mod-

els?

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical

Statistics, 23(3), 470±472.

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). Deepar: Probabilistic forecasting

with autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181-

1191. doi: https://doi.org/10.1016/j.ijforecast.2019.07.001

Schittenkopf, C., Dorffner, G., & Dockner, E. J. (2000). Forecasting time-dependent conditional

densities: a semi non-parametric neural network approach. Journal of Forecasting, 19(4),

355-374. doi: 10.1002/1099-131X(200007)19:4⟨355::AID-FOR778⟩3.0.CO;2-Z

55

Schwert, G. W., & Seguin, P. J. (1989, May). Heteroskedasticity in stock returns (Working Paper

No. 2956). National Bureau of Economic Research. doi: 10.3386/w2956

Sentana, E. (1995). Quadratic ARCH models. The Review of Economic Studies, 62(4), 639±661.

Sklar, M. (1959). Fonctions de rÂepartition à N dimensions et leurs marges. Annales de l’ISUP,

VIII(3), 229-231.

Taleb, N. N., & Jorion, P. (1997, April). The Jorion-Taleb debate. Re-

trieved from https://web.archive.org/web/20170706074507/http://www

.derivativesstrategy.com/magazine/archive/1997/0497fea2.asp

Tovar, W. (2020). Deep learning based on generative adversarial and convolutional neural net-

works for financial time series predictions.

Vidal, A., & Kristjanpoller, W. (2020, May 4). Gold volatility prediction using a CNN-LSTM

approach. Expert Systems with Applications.

Vijh, S., Pandey, A. K., Vijh, G., & Kumar, S. (2021). Stock forecasting for time series data using

convolutional neural network. In 2021 11th international conference on cloud computing,

data science & engineering (confluence) (p. 866-870). doi: 10.1109/Confluence51648.2021

.9377128

Williams, R. J., & Zipser, D. (1989, June). A Learning Algorithm for Continually Running Fully

Recurrent Neural Networks. Neural Computation, 1(2), 270-280. doi: 10.1162/neco.1989.1

.2.270

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and

their computational complexity. In Backpropagation: Theory, architectures, and applications

(p. 433±486). USA: L. Erlbaum Associates Inc.

Xue-Kun Song, P. (2000). Multivariate dispersion models generated from gaussian copula. Scandi-

navian Journal of Statistics, 27(2), 305-320. doi: https://doi.org/10.1111/1467-9469.00191

Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and

Control, 18(5), 931-955. doi: https://doi.org/10.1016/0165-1889(94)90039-6

Zeng, Z., Kaur, R., Siddagangappa, S., Rahimi, S., Balch, T., & Veloso, M. (2023). Financial time

series forecasting using CNN and transformer.

Zhang, Y., & Nadarajah, S. (2018). A review of backtesting for value at risk. Communications in

56

Statistics - Theory and Methods, 47(15), 3616-3639. doi: 10.1080/03610926.2017.1361984

Zivot, E. (2008). Practical issues in the analysis of univariate GARCH models (Working Papers

No. UWEC-2008-03-FC). University of Washington, Department of Economics.

57

	List of Figures
	List of Tables
	Introduction
	Outline of the Thesis

	Background
	Value-at-Risk
	ARCH/GARCH Models
	ARCH
	GARCH

	Mixture Density Network
	RMDN
	Neural Network Architecture

	Summary

	Literature Review
	Classical Financial Time Series Model
	Neural Networks Financial Time Series Model
	Summary

	Value-at-Risk Forecasting Model and Methodology
	Base RMDN Architecture
	Stable-RMDN-GARCH
	Proposed Linear Reduction Pretraining
	Multivariate Extension of the Proposed RMDN
	Copula Parameter Estimation
	Sampling

	Efficient Sampling of the copula-S-RMDN-GARCH and Estimation of the Value-at-Risk
	Summary

	Analysis
	Data and Parameters
	Analysis of the Performance of the Linear Reduction Pretraining Method
	Analysis of the Value-at-Risk Forecast
	Testing Methodology
	Results

	Summary

	Conclusion
	Bibliography

