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Abstract

Absolutely continuous invariant measures for piecewise convex maps of an interval with
countable (in nite) number of branches

A H M Mahbubur Rahman, Ph.D.
Concordia University, 2023

This thesis delves into three areas of research on dynamical systems. First, it explores the
existence and exactness of Absolutely Continuous Invariant Measures (ACIM) for piecewise con-
vex maps with countable (in nite) number of branches. Second, it employs Ulam's method to
approximate the density function of these ACIMs. Third, it investigates the existence of Absolutely
Continuous Invariant Measures for piecewise concave maps using the technigue of conjugation.
For the rst topic, we examine the existence and uniqueness of ACIMs within two distinct classes,
denoted asT;: (1) and Tpe *°(1); which together encompass piecewise convex maps! =
[0;1] ! [O; 1] with countable number of branches. We establish the necessary conditions under
which these maps possess a unique ACIM, presenting multiple illustrative examples of ACIM exis-
tence. Our ndings are based on the analysis of the Frobenius-Perron operator associated with these
maps, utilizing analytical techniques to gain insights into the Frobenius-Perron operator's proper-
ties.
The main purpose of the second part of this thesis is to approximbjethe map »; where we
construct a sequencg with a nite number of branches. Then, approximageby Ulam's method.
Since piecewise convex maps have countable (in nite) number of branches, the convergence of
Ulam's method becomes more challenging, and complexity makes it harder to nd a suitable se-
guence of approximating functions that can accurately analyze the behavior of this system across
all branches.
The primary contribution of this Ph.D. thesis lies in the generalization of the existence of absolutely
continuous invariant measures for piecewise convex maps de ned on an interval with an in nite

number of branches. In the case'lgt (1); we examine piecewise convex maps with an in nite



number of branches and arbitrary countable number of limit points for partition points separated
from O. ForTlc,lC ;O(I ); we consider piecewise convex maps with countable number of branches and
partition points that converge to 0. Throughout the thesis, we investigate Absolutely Continuous In-
variant Measures (ACIM) for 2 Tplc (I)and 2 Tp% ;O(I ); along with exploring non-autonomous
dynamical systems of maps within these classes and scrutinize the existence of ACIMs for their
limit maps.

Furthermore, we investigate the approximation for ACIMs associated with piecewise convex maps
with an in nite number of branches by employing Ulam's method. This computational approach
is a practical way to estimate the density functions of ACIMs and thereby facilitate their numerical
analysis. We then extended our research area on ACIM for piecewise concave maps with countable
number of branches. We examine the existence and uniqueness of ACIMs for two distinct classes,
Tplcv(l ) andTplc\jl(I ); which encompass piecewise concave mappings denotedviis utilize the
concept of conjugation with piecewise convex maps demonstrate that conserves a normalized

absolutely continuous invariant measure with a density that exhibits increasing behavior.
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Chapter 1

Introduction

In the realm of discrete dynamical systems, the focus lies on understanding the long-term pat-
terns exhibited by trajectories as they evolve through the iteration of a map. The presence of chaos
within deterministic dynamical systems introduces an inherent limitation in our ability to forecast
the future behavior of these systems, given a particular set of initial conditions. Hence, it is natural
to adopt a statistical perspective when describing the entire system's behavior. This approach seeks
to characterize the dynamics by establishing the presence of an invariant measure and studying its
ergodic properties. By considering the system from a statistical viewpoint, we focus on the long-
term average behavior rather than attempting to predict individual trajectories. We aim to identify a
measure that remains unchanged under the system's evolution, capturing its essential characteristics.
This invariant measure provides a statistical description of the system's dynamics, enabling us to
analyze its properties and make probabilistic predictions. Observing absolutely continuous invari-
ant measures (ACIM) in computer simulations carries signi cant implications, such as in molecular
dynamics simulations of a gas, simulations of a chaotic system like the double pendulum, quantum
mechanical simulations, climate simulations, aerospace engineering, traf ¢ simulations, and so on
[5, 41]. It indicates that absolutely continuous invariant measures (ACIM) can adequately describe
the system's behavior using probability densities and continuous distributions. In genexabéet
a metric space be a  algebra of subsets &f, and be a measure oR: The Birkhoff Ergodic
theorem states that if : (X; B; ) ! (X; B; ) is ergodic with respect to an invariant measure

andE is a measurable subset ¥f then the orbit of almost every point of occurs in the set



E with the asymptotic frequency(E): If the measure is absolutely continuous, this occurs for
points forming a set of positive Lebesgue measure, so for a physically meaningful set of points. The
Birkhoff Theorem does not say anything about the existence of invariant measures. The existence
of an absolutely continuous invariant measure is one of the most important problems in the ergodic
theory and dynamical systems. If a dynamical system possesses an absolutely continuous invariant
measure, it often indicates that the system is indeed ergodic. The Frobenius-Perron operator plays
an essential role in understanding the existence and properties of ACIM. This operator is a funda-
mental tool in ergodic theory, enabling the study of invariant measures and the long-term statistical
behavior of dynamical systems.

In [32], Lasota and Yorke established the existence of absolutely continuous invariant measures
for piecewise expanding maps. 183, the authors investigated the exactness and the existence of
ACIM for piecewise convex transformations with a nite number of branches with a strong repeller.

In this context, the authors irBg] considered the following properties as fundamental properties
for the proof of the existence of ACIM: (i) the F-P operaB®r maps non-increasing functions to
non-increasing functions; (ii) If : [0;1] ! R is non-increasing, thek P f k; is bounded

by A kf ki +B kf ky; whereA < 1andB are some constants. Similar results were also
demonstrated ing] for convex transformations with a nite number of branches.36][ the author
studied the ACIM for a piecewise convex map[0nl] with countable number of branches where 1

is the limit point of partition points. We generalize these results to more general classes of piecewise
convex maps.

Recently, there has been a burgeoning interest in non-autonomous dynamical systems. In such
systems, each map from the familyf ,gl_, applies at the-th step within the system. Carvalho
et al. B], Cheban 9, 10, 11], Chepyzhov and Vishik12], Haraux 4], Kloeden and Rasmussen
[3Q] studied non-autonomous dynamical systems and their global attractors. The a@fhior [
troduced the generalization of the Sinai-Ruelle-Bowen (SRB) (originally conceived in the 1970s)
measure to non-autonomous systems. 2R [L7], P. Géra et al. studied the generalization of
Krylov-Bogoliubov Theorem and Straube's Theorem for non-autonomous dynamical systems of
continuous maps on a compact space. Furthermore, they investigated ACIMs of the limit map for

non-autonomous dynamical systems of piecewise expanding maps.



S. M. Ulam suggested numerical computations of stationary densities of invariant measures for
dynamical systemgip]. Ulam's method is one of the most used and the best-understood numerical
methods for the approximation of stationary densities of absolutely continuous invariant measures
for deterministic maps and random maps. For piecewise expanding deterministic transformations,
T-Y Li [ 34] rst proved the convergence of Ulam's approximation. Subsequently, researchers ex-
tended Ulam's method to encompass one-dimensional and higher-dimensional expanding deter-
ministic transformations. For piecewise expanding interval maps, Bose and Murray presented the
convergence rate of Ulam's method i8].[ In the context of higher-dimensional Jablonski trans-
formations, Boyarsky and Lou proved the convergence of Ulam's methofl].inFor piecewise
expanding andC? transformations, Ding and Zhou proved the convergence of Ulam's method in
[16]. On random maps with constant probabilities, Froyland con rmed the convergence of Ulam's
method and presented the rate of convergencédh Gora and Boyasrsky proved the convergence
of Ulam's method for position-dependent random mapsbin [n [35], Miller proved the conver-
gence of Ulam's method for piecewise convex transformations with a nite number of branches with
a strong repeller. J. DindL{] developed and presented piecewise linear and piecewise quadratic
Markov nite approximation methods for piecewise convex maps with a nite number of branches.

If piecewise convex maps have countable (in nite) number of branches, the convergence of Ulam's
method becomes more challenging and complex. This complexity makes it harder to nd a suit-
able sequence of approximating functions that can accurately capture the behavior of this system
across all branches. I12()], the author presented a class of maps with countable (in nite) num-
ber of branches without any absolutely continuous invariant measur@1]ingora and Boyarsky
presented an approximation method for invariant measures for piecewise continuous maps with
countable number of branches. Here, we consider countable number of branches to mean an in nite
number of branches. A set is countably in nite if its elements can be put into one-to-one corre-
spondence with the natural numbers. For instance, the set of all natural numbers {1, 2, 3, 4, ...}
is countably in nite because we can list its elements one after the other, and each natural number
corresponds to a unigue element in the set.

The main objective of this thesis is the study of the existence and exactness of absolutely con-

tinuous invariant measures for piecewise convex maps with countable number of branches. We also



investigate the existence of ACIMs of limit maps for a non-autonomous dynamical system of piece-
wise convex maps with countable (in nite) number of branches. We explore numerical methods for
approximating ACIMs for piecewise convex maps with countable (in nite) number of branches by
applying Ulam's method. While there are several results on piecewise convex maps with a nite
number of branches, there is only one work about such maps with an in nite number of branches
[38]. The existence and approximation of ACIMs of piecewise concave maps with an in nite num-
ber of branches are also studied. In most applications, the Lebesgue measure is the predominant
choice. When we opt for a singular measure, it often renders actual points imperceptible. While
such measures have theoretical existence, they typically lack practical relevance. In practice, we
commonly rely on the Lebesgue measure and frequently work with measures that are absolutely
continuous with respect to the Lebesgue measure.

In Chapter3, we scrutinize the ACIMs for two classe'sip,lC (1) and Tp% ;O(I ); of piecewise
convex maps with countable (in nite) number of branches. We study absolutely continuous invari-
ant measures of mapsin the rst cIassTp}: (1), where : 1 =[0;1]! [0;1] has a countable
number of branches with an arbitrary countable number of limit points of partition points sepa-
rated fromO: For the second clas'lép% ;O(I ); we assume: there exists a countable (in nite) partition
fO = ay < <ag n<ag ;1 < < apg 2 <ag 1= ap;ag;as;:ii;an;:::gof
I =[0;1]with limn1 @ n = 0: Here, we also consider non-autonomous dynamical systems
of maps inTplc m[T plc ;O(I ) and study the existence of acim of the limit map. We give several
examples of piecewise convex maps with a countable number of branches.

In the next Chapter, i.e., Chapt#rwe use Ulam's method for approximationfof wheref is
the actual stationary density of absolutely continuous invariant meadorehe piecewise convex
map with countable number of branches. Ulam's method does not guarantee uniqueness in the
approximation off , but when we deal with exactness, the density is unique (almost everywhere)
with respect to the Lebesgue measure. We construct a sequeygie; of piecewise convex maps
with a nite number of branches such that ! almost uniformly. We apply Ulam's method to

n and compute an approximatidf.x of the actual density, of , and prove that,x ! f, as
k!1 :Finally, weprovethat,x ! f asn!1l ;k!1 .It'simportantto note thatour notion

of "approximation" does not rely on any speci ¢ norm. In this sense, approximation mgadns



almost uniformly. We also illustrate by numerical examples.

In Chaptel5, we extend our research area on absolutely continuous invariant measures for piece-
wise concave maps with countable number of branches. We investigate the existence and approxi-
mation of ACIMs for two classeé',plcv(l ) andTplc\jl(I ); of piecewise concave mapswith a strong
repellor. We give some examples of piecewise concave maps with countable (in nite) number of
branches and exhibit that if any convex maps have an ACIM, then piecewise concave maps has
also an ACIM. One fascinating aspect of piecewise concave maps is that they can be conjugated to

piecewise convex maps on [0, 1], which allows us to use results from the theory of piecewise convex

maps to study their properties.



Chapter 2

Preliminaries

2.1 Review of Necessary Facts for Dynamical System

2.1.1 Review of Measure Theory

In this Section, we recap some important de nitions and theorems of measure theory. The
interested reader may consult the books " Chapte4@,dr Chapter 1,19]". Most of the material
can be found in18] and [5].
Let(X; B; ) be a measure space whetes a non-empty seB is a -algebra of subsets &f and
is a measure oB. We call it aprobability space or normalized measure spaife (X)=1. If

X is a countable union of sets of nite measure, then we say thafa - nite measure.

De nition 2.1.1. Let and be two measure on same measure sgxceB). We say that is

absolutely continuousvith respect to , denoted by ,ifforanyE 2 B
(E)=0=) (E)=0:

For absolutely continuous measures, the following theorem is useful:

Theorem 2.1.2.[1§] if and only if for every > 0 there exists > 0 such that (E) <
=) (B)<



If , then it is possible to representin terms of . Now, we want to state the Radon-

Nikodym theorem, which is related to absolutely continuous measures.

Theorem 2.1.3.[18] Let (X; B) be a measure space and leend be two - nite positive nor-
malized measures qiX; B). If , then there exists a uniqde2 L1(X; B; ) such that for
everyA 2 B, 7
(A= fd:
A
The functionf is called the Radon-Nikodym derivative,=d , or a density of with respectto
. So, the Radon-Nikodym theorem states that i$ absolutely continuous with respect tpand

both measures are nite, then has a density, or "Radon-Nikodym derivative," with respect.to
The Frobenius-Perron operator (see page 12, Se2iBserves as a bridge between the dynamics

of the transformation and the associated Radon-Nikodym derivative or density funt3]owlich

encapsulates how the transformation affects the probability distribution over its state space.

De nition 2.1.4. Let(X; B; ) be a normalized measure space.

LetD(I; B; )= ff 2 LY( ):f 2 0andjjfjji1 = 1gdenote the space of probability density
R

functions. A functionf 2 D(I; B; );then ¢(A)= fd is a measure anid is called the

density of ¢ and is written as;":

2.2 Overview of Ergodic Theory with Measure-Preserving Transfor-

mations

Ergodic theory deals with studying the long-term statistical behavior of dynamical systems,
particularly those that exhibit chaotic or random-like properties. However, the presence of chaos
renders it impossible for deterministic dynamical systems to accurately predict their long-term be-
havior from any speci c set of initial conditions. Despite this, it is still possible to derive statistical
conclusions regarding chaotic systems using ergodic theory. For a more detailed understanding of
ergodicity and its applications in chaos theory, interested individuals may consult works such as
"Chapter 3, ] or Chapter 1,13] (1980 in English translation)".

Let (X; B; ) as a normalized measure space.

7



De nition 2.2.1. A transformation : X ! X is said to be measurable on a measure space
(X;B; )if XB) B ;ie,A2B =) 1(A) 2B,where 1(A)= fx2 X : (x)2Ag:

Additionally, is said to be -invariant or preserves measureif for everyA 2 B,

( 'A)= (A): (2.2.2)

0.8

0.6

0.4

0 02 04 0.6 0.8 1

x

Figure 2.1: Tent map for equation2.2.3

For example, consider a transformation[0; 1] ! [0; 1] de ned as

8
52x; X 2 [O;%).

25 2x; x 2 [3:1]

(x) = (2.2.3)
SupposéA =[0;0:4], s0  1(A)=[0;0:2][ [0:8;1]:
(A)= ([0;0:4]) =0:4and ([0;0:2][ [0:8;1]) =0:2+0:2=0:4
Therefore, ( 1(A) = (A).
If the precise information regarding all the members of BorelBé$ unavailable, it can be
challenging to verify whether preserves a measure. Employing asystem can provide a valuable

approach to determining whethepreserves a measure.

De nition 2.2.4. A family P of subsets oK is called a -systemf and only if for anyA;B 2 P,
A\ BisalsoinP.



Theorem 2.25.[5] Let : X ! X be a measurable transformation on a normalized measure
space(X; B; ):LetP be a -systenthat generate®: If ( 1(A))= (A)foranyA 2 P:then

preserves measure

De nition 2.2.6. Let(X; B; ) be a normalized measure space and leX ! X preserve . The
quadruplgX; B; ; ) is called adynamical system

In the study of dynamical systems, the primary concern is the investigation of the properties
exhibited by the sequence of poirits’ (x)g, ¢ called the orbit or the trajectory of the poitThe

nth iterate of is denoted by " i.e.

"(x) = {z (x?:

n-times

If has an invariant measure, then the orbit starting in a speci ed set, returns to that initial set

(state) in nitely many times. The Poincaré Recurrence Theorem exactly tells us this.

Theorem 2.2.7. (Poincaré Recurrence Theorerf§j] Let (X; B; ) be a normalized measure space
and : (X;B; )! (X;B; ) beameasure-preserving transformation. Ee2 B be such that

(E) > 0. Then, almost all points @& return in nitely often toE under iteration of .

De nition 2.2.8. A measure-preserving transformation (X; B; ) ! (X; B; ) is ergodic if for

any invariant seA 2 B, suchthat (A)= A, (A)=0or (X nA)=0.

So, we can say that a dynamical system is ergodic if it is indecomposable, that is if every

invariant measurable set has a measure 0 &}.1 [

De nition 2.2.9. Let(X; B; ; ) be a dynamical system. A sBt2 B is called

(i) -invariantif (B)= B,

(i) aimost -invariantif ( B4 B)=0.
Here B4B =( !BnB)[ (Bn !B)and4 -the symmetric difference of sets.
Similarly, a measurable function is callednvariantiff = f and almost -invariantiff = f

-a.e.



TheBirkhoff Ergodic Theoremis one of the cornerstones of ergodic theory. This theorem says

the time averages along the trajectories are equal to the space avéi@ges [

Theorem 2.2.10.[5] Let transformation : (X;B; ) ! (X; B; ) be a measure-preserving,
where(X; B; )is -nite,andf 2 L( ). Then for almost every 2 X, there exists a function

R .
f 2L ) = ,jfjd < 1 suchthat

K 1
; k - . o
nI!|1m o f(*"x)=f1; ae:
k=0
Furthermore f =f -ae andif (X)< 1 ,then
z z
fd= fd:
X X

The functionf is invarianti.e.

fFC"x)="f (x); n>0

Corollary 2.2.11. [5] If is ergodic, therf is constant -a.e. andif (X) < 1 ,then

Z
1
f = fd ae
X) x
Thus, if (X)=1 and isergodicand = ¢ whereE 2 B, we have
i 1 K l k = - . e
g eCfe0= E®r 0 ae

and thus the orbit of almost every point ¥f occurs in the seE with the asymptotic relative
frequency (E).
If isergodic, then the above Corollagy2.11states that the time average equals the space average

and convergence is also true, i.e.,

z
f(x)d:
X

X1 o
m ﬁkzof( D= =53
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Denition 2.2.12. Let :(X;B; )! (X; B; ) be atransformation preserving the measure

(i) isergodicif and only if for allA;B 2 B;

y(l

1 _
lim ﬁk:o ( A\ B)= (A) (B)

(i) isweakly mixingif for all A;B 2 B,

oaAXt o .
lim oo ( "A\'B) (A) (B)j=0
' k=0

(iii) is strongly mixingif for all A;B 2 B,

Im ( "A\B)= (A) (B)

(iv) isexactifforeveryA 2B, (A)> 0,and (A) 2B,
H n — .
nI!llm ("(A)=1:

Moreover, the exactness ofimplies that is strongly mixing, but the converse is not generally

true.

Now, we introduce the functions of bounded variation. [&t] R be a bounded interval

and let denote Lebesgue measure[anh: We deneP = fl; =[x; 1;Xj):i=1;2;:::;nga
partition of[a; b]: The pointsf Xg; X1;:::;Xng are called end-point of the partitid®;

De nition 2.2.13. Letf : 1 =[a;! RandletP = fa= Xg;X1;:::;Xn = bg be a partition of
I =[a;b.

11



(i) f is called of bounded variation da; b if there isM 2 R* such that

X
i) fxi ) M
i=1

for all partitionsP:
(i) Vi f is called total variation or, the variation bfon|
(s | -)
Vi f =sup jExi) (X 1)
P =1
HereV, () denotes the variation of a function ¢d 1] and BV(l) is the space of function of

bounded variation oh equipped with the norm
k kev = Vi()+ k ki;

wherek ki denotes the norm dn?(l; B; ).
Recall the de nitions of -invariance of and . If satis es these properties, then we

say that is absolutely continuous invariant measure fan (X; B; ).

2.3 The Frobenius-Perron Operator

The Frobenius-Perron Operator is a linear operator that determines the transformation of density
[37]. This operator was rst introduced by Kuzmin R. ][ The Frobenius-Perron operator plays
an essential role in the existence of acim. We de ne non-singular transformation and then de ne

the Frobenius-Perron operator.

De nition 2.3.1. Let(X; B; ) be ameasure space andX ! X be a measurable transformation

on(X; B; ). Then is called non-singularif ( 1(A)) =0 forall A 2 B such that (A) =0.

De nition 2.3.2. Let(l; B; ) be a measure space andl ! | be a non-singular transformation
on(l; B; ):Let be the normalized Lebesgue measuré amd let ; wheref is the density

for : The operatoP : L' ! L called theFrobenius-Perron operatorassociated with is

12



de ned by 7 7

Pfd = fd; 8A2B:8f 2L ):
A 1(A)

Here, the Lebesgue measure,is normalized if and only if it is on an interval of length 1. In any
other case, we can speak about a measure equivalent to the Lebesgue measure. In particular, the
Lebesgue measure Bf is in nity, and we cannot normalize it.
LetA =[a;x] |. We obtain
z
d
Pf(x)= — fd ae:
X YA=[ax])

and if has countable number of monotonic branches thehas the explicit representatiobl{

X f(w) .
i qw)j’

P f(x)= (2.3.3)

w2f  1(x)g
Note that:(  1(x))°= W: For any value ok; the sef  1(x)g consists of at most count-
ably many points. Here is the short proof of the equation (2.3.3).
Since is monotonic on eaclia; 1;&);i = 1;2;:::; we de ne an inverse function for each
Ja 1a)
Let i = ljg,;whereB; = ([a 1;a]):
Then ; :Bi! [a p;aland (A)= [L, i(Bi\ A); where the seté {(Bj\ A)gi-; are
mutually disjoint.
Now,

z 2 Z w2 Z

Pfd = fd = fCix)j Xx)jd
A iz1 i(Bi\A) iz1  (Bi\A)

where we have used the change of variable formula for edaie obtain,

z % £ R ()
fd = fCix)j dx)j s (x)d = L 22T ey (X)d
A P - A ( (X))J (X)J B|(X) A - i ({ i 1(X))J (a 1; |)(X)

13



SinceA is arbitrary,

Xf( )

Pf = —— 1 77
bJ i=1 j (( i 1(X))J

(a 1;ai)(x)

foranyf 2 L1

The existence and uniquenessRof are established through the use of the Radon-Nikodym The-
orem. The Radon-Nikodym Theorem ensures the existence and uniqueness of the Radon-Nikodym
derivative under certain conditions. These conditions typically involve the absolute continuity of
the probability density function (PDF) with respect to the measuamnd the measure-preserving
property of the transformation When these conditions are met, the Frobenius-Perron operator

P f exists and is unique. One of the main propertieB df is that its xed points are the densities

of invariant measures under5].

Some importanpropertie$5] of the Frobenius-Perron operator:

LetP :L!! L?be the Frobenius-Perron operator associated witfhen

(i) Linearity: P is a linear operator. Ldtg 2 L;and ; be constants. Then,
P(f +g)=P f+ P g:

(ii) Positivity: If f 2 LYandf 0, thenP f 0.

: R

(iii) Preservation of Integral:, P fd = | fd

(iv) Contraction:P is contraction, i.ekP fk; k fki foranyf 2 L1

(v) Composition: Letq; 2:1 ! | be non-singular transformations. Then

In particular,P » = P" for any integem 1.

14



The Frobenius-Perron operator is an adjoint operator oKib@man operator. The basic
idea is to use a suitable change of variables that transforms the Koopman operator into a form that
is equivalent to the Frobenius-Perron operator. Let(X; B; ) ! (X;B; ) be a measurable

transformation. The operatar : L* | L' de ned by
Uuf="f

is called the Koopman operator akd fk; k fky ,foranyf 2 L1 :
Here, we show thgiU fjj;  jj fij1:

Since the Koopman operator : L1 | L' de ned by
Uuf="f

Letforanyx 2 | =[0; 1]; then we havgf jj1 =supys, jfj=1:

Now jjU fjj1 =supyz j(U f)(X)] = supyz jf ( (X))]:
Letforanyx 2 I; jf ( (x))j jj fjj2 = 1: Since this inequality holds for akl 2 |; we have

iU fjj1 =supjf ( (x))j 1L
x21

Thus foranyf 2 LY with jjf jj; =1;we have shown thaiU fjj; 1

Proposition 2.3.4.[5] Let (I; B; ) be a normalized measure space and letl ! | be a non-

singular transformation. If isa - invariant measure, then
(kP fky k fky,whenl p +1.
(i) isexact) foranyf 2D(l;B; ),
im P" f =1
n!l !
whereD(l; B; ) denotes the probability density functions on the measure qppa8&s ) and1l is

15



a constant function equal to 1 everywhere.

The following proposition tells us why we need the Frobenius-Perron operator for the existence

of invariant measures.

Proposition 2.3.5.[5] Let :1 ! | be non-singular and . Then

z

Pf =1 ae: (A) = f d;
A

isa -invariant measure.

This proposition tells us a density functibén is a xed point of Frobenius-Perron operater
if and only if it is the density of a -invariant measure, absolutely continuous with respect to a
measure .

Now, we considet = [0; 1] with normalized Lebesgue measur®n|: Let T (1) denotes the

class of transformation : 1 =[0;1]! | that satisfy the following conditions:

(1) ispiecewise monotonic and expanding, i.e. there exists a paffiterf|; = [a; 1;a);i =
1;2;::1;Ng of | such that ji, ;) is Ct andj Ax)j > 1 for anyi and for all
X2 (a 1;a);

(2) % is a function of bounded variation, wher(x) is the appropriate one-sided derivative

at the end points d?:

Comment: Since is piecewise monotonic and expanding, so for any{x) > 1: Thus
ﬁ < 1:Ifitis not then we don't have an ACIM. If{x)  1then we have no ACIM and it will
have a attracting xed point and attracting xed point has no ACIM.

Lasota - Yorke theorenBp] provides the existence of absolutely continuous invariant measures
for a class of point transformation of the unit intery@l1] to itself. Originally, Lasota and Yorke

assumed piecewigg? instead of assumption (2).
Theorem 2.3.6. (Lasota - Yorke)Let 2 T (1): Then for anyf 2 L1[0; 1] the sequence

1 X

n i=1

Pif
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is convergent in normtb 2 L[0; 1]. The limit function has the following properties:
wf 0= f 0.

(2)Rolf d = Rolfd

(3P f =f andconsequentlythe measare = f d isinvariantunder .

(4) The functionf 2 BV [0;1]. Moreover, there exists a constantindependent to the choice
of initial f such that

V[O;l]f kf ky:

Lemma 2.3.7.Let 2 T (I). Then there exist constaris<c < 1;C > 0, andR > 0 such that

foranyf 2 BV () andanyn 1,
kP"f Kgv C "kf key + RKf ki:

The inequality above is called the Lasota-Yorke inequality, and different versions of this in-
equality play essential roles in the theory of absolutely continuous invariant measures. Below, we
will use a similar inequality but with different norms, since our transformations are not necessarily

piecewise expanding.

2.4 Piecewise convex transformations

De nition 2.4.1. Letl =[0;1]. Atransformation :1 ! | isconvexif8x;y 2 |1,and 2 [0;1],

we have

(x+@ )y )+ ) (y):

A function is strictly convex if ( x + (1 )< (x)+(@ ) (y) whenevex 6 vy.
A convex transformation is continuous (@ 1) and thus measurable with respect to the Lebesgue

measure.

17



Letl = [0;1] andTpc(l) be the class of transformations: | ! | that satisfy the following

conditions:

(i) there exists a partitioR = fO = ag < <apn =1lgofl suchthatp, . iscontinuous,

(i) (8 1)=0; Ya 1)>0; i=1;:::;N;

iy 0= > 1L
Transformations iMpc(1 ) are called piecewise convex maps with strong repellers.
A convex function is differentiable except at a countable set of points, and its derivivaon-

decreasing. In particular, this means that (ii) implies

) > %a 1)> 0 x2[a 1;a)

Lasota and Yorke33] proved the existence of an ACIM with respect to the Lebesgue measure
for one-dimensional piecewise convex maps with a strong repellor. The following propositions,

Lemma and Theorem, are proved §).[

De nition 2.4.2. A setS is countably in nite if S has a one-to-one correspondence Wthe., the

fori 6 j and every element @& is listed.

Proposition 2.4.3.[5] Let 2 Tpe(l) andf be a non-increasing function. TheR, (f) is also

non-increasing.

Lemma?2.4.4.1ff 0Oandf is non-increasing, thefi(x) % (f), forx 2 [0; 1], where
z

(F) = fd :
1=[0:1]
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Proposition 2.4.5.Let 2 Tpe(1). If f : [0;1]! R™ is non-increasing, then

P fjja =jifjis + Cjjf jju;
— P r . . 1
whereC= [, (a 1 Y& 1)) .

Theorem 2.4.6.[5] Let 2 Tpe(l). Then admits an absolutely continuous invariant measure,

= f ,andthe density is non-increasing.

Theorem 2.4.7.[33] Let : | =[0;1]! [0;1]and 2 Tpe Then, there exists the unique
normalized absolutely continuous measure g thatis invariant under: The syster{l; B; ; )
is exact and the densityis bounded and decreasing. MoreoMan, P"f = ginL1(I; );forany
f 2 LY(I; ) where isthe Lebesgue measure fin1] andP is the Frobenius-Perron operator

corresponding to .

2.5 Non-autonomous Dynamical Systems

De nition 2.5.1. [22] Let (X; ) be a compact metric space and: X ! X be a sequence of
maps such that, converges uniformly to a limit map, where is a continuous map. Then, the

non-autonomous dynamical system is de ned by
Xm+1 = m(Xm); m=0;1,2;::

where g is the identity andg 2 X . When the system startsyag, the rstiteration,x1, is given by
o(Xo), and since g is the identity mapxs = o(Xg) = Xo. This ensures that the initial condition
is preserved after the rst iteration.

Forn > m , we write

(mn)= n n 1 m+l  m-
In particular,
©on= n n1 1 0
A trajectory of a poin in the phase spaceis 1(X); 2( 1(x));:::. LetTo = n 1 1
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;i1 2 1. Then the above trajectory of the non-autonomous dynamical system can be written as

The Krylov—Bogoliubov Theorem is a powerful tool in the domain of nhon-autonomous dynam-
ical systems because it addresses the challenges posed by explicit time dependence and provides

conditions under which solutions exist and are unique.

Theorem 2.5.2. (Krylov-Bogoliubov Theorem)[5] Let X be a compact metric space and let the
transformation : X ! X be continuous. Then there exists a invariant normalized measure

onX:

Note that: Krylov-Bogoliubov Theorem does not tell about absolute continuity. But this result
establishes that every continuous transformation on a compact metric space is guaranteed to have

an invariant measure.

Theorem 2.5.3. (Extension of the Krylov-Bogoliubov Theorem)22] Let f g be a sequence of
transformations de ning a non-autonomous dynamical system on the compact metric<spatte
a continuous limit . We assume that thg's converge uniformly to. Let be a xed probability

. P

measure orX . De ne the measuresp = = . i;where j = ( ©;i)) - Let bea -weak

limit point of the sequende g, 1: Then isa -invariant measure,i.e., =

Straube Theorem provides a suf cient condition foto be absolutely continuous.

Theorem 2.5.4. (Straube Theorem]22] Let (X; B; ) be a normalized measure space and let
f ngbe a sequence of non-singular transformations de ning a non-autonomous dynamical system
on X . We do not assume that the limiis continuous. Assume there exists 0and0< < 1

such that

— 1 .
(BE)< =) sup ok (E) <

for all E 2 B: Then there exists a invariant normalized measurewhich is absolutely continu-

ous with respect to.
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2.6 Markov transformations and approximation of invariant measure

of dynamical systems by Ulam's method

Markov transformation is a piecewise monotonic transformation such that each interval of the
partition is mapped onto a union of intervals of the partition. The Frobenius-Perron operator can
be de ned in terms of the Markov transformation matrix. To approximate the xed point of the
Frobenius-Perron operatér , we use the xed point of a matrix operator known as the Markov
operator. S. Ulam introduced Ulam's conjectug® &s part of a comprehensive set of intriguing
open problems in applied mathematics, one of which pertained to the approximation of Frobenius-

Perron operators.
Conjecture 2.6.1. Ulam's Conjecture:[2]
» A nite rank approximation of the Frobenius-Perron operator by E2.6(4); and

« the conjecture that the dominant eigenvector ( corresponding to eigenvalue equal to 1) weakly

approximates the invariant distribution of the Frobenius-Perron operator.

De nition 2.6.2. Let :1 =[0;1]! [0;1]andletP = fO = ap <aj < <ap=1gbea
partition ofl: Letl; = (& 1;&);i =1;2;:::;nand ; = j;: If ; is homeomorphism fror;
onto some connected union of intervalshfi.e., some intervalaj (i)s A(i) then is said to be
Markov transformation. The partitidn is said to be a Markov partition with respect to the function

. Ifeach j is linear onl;; then is a piecewise linear Markov transformation.

Theorem 2.6.3.[5] Let : | =1[0;1]! [O;1] be a piecewise linear Markov transformation on
the partitionP = flq;15;:::;1ng. Then there existsam n matrixM suchthatP f = M f
for every piecewise constant functibn= (f1;f2;:::;f,) on the partitionP: The matrixM =

_ g (Ii\ l('j)).l
J'ﬂ ('i) ’

where(aj )1 ij n is the incidence matrix induced byand P: Here denotes the normalized

ijon (2.6.4)

Lebesgue measure dnandf Iig}‘:1 is a nite family of connected sets with nonempty and adjoint
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interiors that covel i.e.,l = [ X 1;; and indexed in terms of nested re nements.

Example 2.6.5.Let :[0;1]! [O;1]be a piecewise linear Markov transformation on the partition

f0;%: 21 2 1g de ned by

8
§2x+§, x20 Xx 3
X+ 3 x2%i<x 1
(x) = 1
% M+ 2 x23<x 32
T4x 3 x23<x 1

Here we use equation (2.6.4) for nding the all elements of the madrix

0.50

0 025 0.50 0.75 1

Figure 2.2: The map for Example2.6.5

Now usingi;j = 1;2;3;4 successively, then

m = Y _ (0N N0 103\ (g ) _
11 — - - -

(1) ([0; 1] ([0; 7]

0
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ooy Mg (0D (0E) _ 2
3 (1) ([0:; 3] 2
o) M) (03 (D) 1
H () (10; 3] 2
MU ' S (VI (151 LN (15 1)
3t (1) (%3 3
SO S (VI (£33 A (F 15
41 — -

(14) - (33 4

Similarly, we can nd the rest of the elements;, = 0; m3, = M3z = %; M34 =0; My = My3 =
Mgy = %: Thus, the matrix approximation of the F-P operator has the form for map

2 3
0 0 12 1=2

0 0 0 1

1=3 1=3 1=3 0

14 144 14 14
The resulting  may be interpreted as a transfer matrix, for which it is easy to check that all row
sums ard; i.e.,P j mij = 1 8j:
Letf = (f1;f2;f3;fa), wheref; = fji,;1; =[5}, £1;i = 1;2; 3; 4. The normalized density of the
map (Figure2.2) is the left eigenvector dfl  with eigenvalue 1P f = f reducestd M = f

which is a system of linear equation. It can be shown that
f =(2;234):

Since determining the xed point of the Frobenius-Perron opefatasf or invariant density
of is generally challenging, especially considering the increased complexity associated with the

Frobenius-Perron equatiéhf = f: Itis required to approximate the F-P operag®orusing Ulam's
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method. S. M. Ulam42] rst introduced the approximation of the Frobenius-Perron operator. If
the map is piecewise linear and Markov, we can nd the Frobenius-Perron operator in a matrix
form. Therefore, itis possible to nd the density or invariant measure because the Frobenius-Perron
equationP f = f is a system of linear equations. Ulam's method stands as a widely employed and
thoroughly comprehended approach for numerically computing the stationary density of invariant
measures in dynamical system. B4] rst proved the convergence of Ulam's approximation for
one-dimensional piecewise expanding transformations. MillBf fproved convergence for piece-
wise convex maps with a nite number of pieces.

Let :1 =[0;1]! [0;1] be a piecewis€?- map withinfy,0.7j 4X)j > 2: Let P(M =

transition probabilities, de ned in26.4, between the elements &M formap : 1 ! I

Let L(") be then dimensional linear subspace Iot which is the nite element space generated

operatorQ, : L1! L(M: de ned by

X 1 z
Qﬂ(f ) = (|) fd |
i=1 ! li
Sincef 1iglL, is an equipartition of i.e.1 = [ L, I and (I;)= 1.
0 Z Z Z Z
Qn(f)= n fd i= n fd;n fd;:::; fd

i=1 li I1 I2 In

Let P be the Frobenius-Perron operator odndPy, : L(M 1 L") be a nite approximation of
P , de ned by
P.f=Mf = mi f; j:

Then, we have
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More generally, fof 2 L; we have

PnQnf = QnP Qpf:

The following Lemmas and Theorem are proved3d][

Lemma 2.6.6.Forf 2 L!; the sequenc®,f convergesiltof asn!1
Lemma2.6.7.Forf 2 LM we haveP,f = Q,P f:

Lemma 2.6.8.For f in L("); the sequencB,f convergest® f inLlasn!1
Lemma 2.6.9. The sequenceVp.qfn  is bounded, whernf, = fy:

If P has a unique xed point, then the sequence of xed poifysof P, are expected to
converge to that xed point as approaches in nity, according to the Ulam's method. The following

theorem proves this.

Theorem 2.6.10.[34] Let :[0;1]! [O;1]be a piecewis€? function withM =inf j § > 2:
Supposé® has a unigque xed point. Then, for any positive integetP, has a xed pointf, in

LM withk f k=1 andff,gconverges i to the xed pointofP :

Note: Lasota-Yorke inequality has a constant m <1

2.7 Some Facts from Functional Analysis

Here we de nedD or D(X; B; ) as a set of densities In*.

De nition 2.7.1. LetF be a linear space. A functign jj : F! R™ is called a norm if it has the

following properties:
«jfj=040 f=0
gt =gt
<t +gii Ji fii+ g
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forf;g 2F and 2 R*:The spacé is called a normed linear space.
De nition 2.7.2. Alinear operatoP : L1 ! L1is called Markov if it has the following properties:
P ispositive,i.e.f 0 =) Pf 0 foranyf 2 L1;
* jiPjji1  landjjPfjji = jifjjiforf 0; f 2L
De nition 2.7.3. Let (X; B; ) be a measure space aRd: L1 ! L* a Markov operator. Then
fP"gis said to beasymptotically stableif there exists a uniqué 2 D suchthaPf =f and

n||i1m kP"f f k=0 foreveryf 2D: (2.7.4)

De nition 2.7.5. Afunctionh 2 L' is alower bound function for a Markov operatoP : L ! L*!
if
nIli{n k(P"f h) k=0 foreveryf 2D: (2.7.6)

Equation (2.7.4) may be rewritten as
(P h) = n;
wherek , k1! Oasn!1 or, explicitly, as
P"f h g

Theorem 2.7.7.LetP : L ! L be a Markov operatorf P"g is asymptotically stable if and only

if there is a nontrivial lower bound function fét:

De nition 2.7.8. Let K be a set of functions de ned on a measure sp@€eB; ): ThenK is

uniformly bounded irL® if there exists a constaM such thasup; , kf ki M:

De nition 2.7.9. A setK of functions inL? is said to baveakly compactif every sequencéf g

in K has a subsequenté,, g that converges weakly to a functién2 L(K):
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De nition 2.7.10. Let a sequence of functiori$ ,g de ned on a measure spa€¥; B; ); where
for eachf, is Lebesgue integrable In*(X ): The sequencéf ,g is said to baveakly convergent

in LY(X) if it converges to a limit functiori in L1(X):

Theorem 2.7.11. (The Dunford-Pettis Theorem)5] Let a sequencéfngi_,;fn 2 LYn =
1;2;::: satisfy the following conditions:

(Ykfn ke M forsomeM;

(i) 8 > 09 > OsuchthatforanA 2B;if (A) < thenforalln;

y
i fad <
A

Thenf f ,g contains a weakly convergent subsequencefitgg is weakly compact ih 1:

Theorem 2.7.12.Let a sequencéf g be uniformly bounded ih! : Thenf f,gis weakly compact

inL1:

Proof. Let (X; B; ) be a normalized measure space.
Sincef f g is uniformly bounded in.! ,i.e.,kf, k1 M for someM:
Now, we can write

fn(x) supfp(x) M; 8n:

x2X

Which implies, 7 7
fn(x)d Md =M (X)= M:

X X

Thereforek f, k1 M:
R
Now suppose that(A) < § foranyA 2 B: So, , jfnjd <

Using the Dunford-Pettis Theorerft,,g is weakly compact i

Theorem 2.7.13. (Yoshida— Kakutani Theorem)5] Let F be a Banach space and [&t: F ! F

be a bounded linear operator. Assume there ex¥sts 0 suchthatk T" k M;n =1;2;::::
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Furthermore, if foranyf 2 E F ;the sequenckf ,g; where

contains a subsequente,, g which converges weakly f; then for anyf 2 E;

1)@
= T 1 f 2F

k=1
(norm convergence) antd(f )= f :

Theorem 2.7.14. (Helly's Theorem)[5] Let F = ff g be an in nite family of functions on an
interval [0; 1]: If jf (X)] K} Viayf K 8f 2 F; then there exists a sequenidg,g F such
thatfn ! f 8x 2 [a;b; andVjyyf K:
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Chapter 3

ACIM for piecewise convex maps with

countable (in nite) number of branches

3.1 Introduction

The existence and properties of absolutely continuous invariant measures of deterministic dy-
namical systems re ect their long-time behaviour and play an important role in understanding most
of their chaotic natureq, 31, 32]. Let B a Borel -algebra of subsets ¢f = [0;1] and be the
normalized Lebesgue measurelorLet : 1 ! | be a non-singular measurable transformation. A
measure onBis -invariantor preserve if ( (A))= (A)forall A 2 B: The Frobenius-
Perron operatoP : L(I;B; ) ! L(I;B; ) of plays an important role for the existence,

approximations, and properties of ACIMs. The Frobenius-Perron opdtatsrde ned by

z z

Pfd = fd; 8A2B:8f 2 L% (3.1.1)
A 1(A)

If has countable number of monotonic on efigh;; b ]; then it can be shown that the Frobenius-
Perron operatdP has the following representatiof][:
() X i@,

P f (X) = o0 1w b 1;bi)(X) = : -, (312)
PRI G e)] T I O
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where ; i =1;2;:::;n;::: are inverse branches ofon | . In [32], Lasota and Yorke proved
the existence of absolutely continuous invariant measures for piecewise expanding maps. In this
Chapter, we consider transformations that are not necessarily expanding, i.e., their derivatives may
be smaller thari, but they possess another property that makes them very special: piecewise con-
vexity. In [33], the authors studied the exactness and the existence of absolutely continuous in-
variant measures (ACIM) for piecewise convex transformations with a nite number of branches
and with a strong repeller. The authors 88| considered the following properties as primary fac-
tors for the proof of the existence of ACIM (i) the F-P operdormaps non-increasing functions
to non-increasing function; (ii) If : [0;1] ! R™ is non-increasing, thejjP fjj; is bounded
by Ajjifjj1 + Bjjfjj1; whereA < 1 andB are some constants. 18][ similar results proved
for convex transformations with a nite humber of branches. In this chapter, we consider two
cIassesTplC (I );Tp% (1) of piecewise convex maps: | = [0;1]! [0;1] with countable num-
ber of branches. In Sectidh2, we study absolutely continuous invariant measures of maps
the rst cIassTplC (1), where : 1 =[0;1]! [O;1] has a countable number of branches with
an arbitrary countable number of limit points of partition points separated @trom Section3.3,
we study absolutely continuous invariant measures of mapshe second clas . ;O(I ); where

;1 =[0;1]! [0;1] has a countable number of branches. We assume there exists a countable
partitionf0 = ag < <ag n<ag (n 1< <ag 2<ag 1= a;ag;as;:i:;an;::.gof
I =[0;1]withlimp1 @ n =0:In Section3.4, we study ACIMs of non-autonomous dynamical
systems of piecewise convex maps with a countable number of branches. The exactness of maps in
ok (1); e *°(1) is presented in Sectiché.

Recently, there has been an increasing interest in non-autonomous dynamical s$6tdms [

A non-autonomous dynamical system of a family of maps__, is a system that acts on the space
by application of ,, in the n-th step. In 2], P. Géra et al. studied the generalization of Krylov-
Bogoliubov Theorem and Straube's Theorem for non-autonomous dynamical systems of continuous
maps on a compact space. Moreover, they learned the ACIMs of the limit map for non-autonomous
dynamical systems of piecewise expanding maps. In se8tiaof this Chapter, we consider non-
autonomous dynamical systems of mapé}fg n; TplC ;O(I ) and study the existence of ACIM of

the limit map.
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3.2 ACIMs for piecewise convex maps ofD; 1] with countable number

of limit points of partition points separated from 0

Consider(l = [0;1];B; ) be a measure space, wherés the Lebesgue measure brandB

increasing or decreasing. For any f0;1;2;:::g; let n(i) be the index such that the interval

[a&i; an(iy] does not contain any other points of the partitionadfis the limit point of decreasing
subsequence @&, 's, the n(k) is not de ned. This notation allows us to consider maps with more
than one, even an in nite number of limit points of the partition points. We assume that the set of

such limit points has Lebesgue measOr&Ve say that 2 Tplc (r)if
(1) o= Joay) is continuous and convex;
i = lfaia,)) IS continuous and convek=1;2; |
(2 (a@)=0; Ya)>0;i=1;2:::;
3) (0)=0; V)= 1>1

p
(4) ilzlﬁ)(lafi)<13

Remarks: If the Condition (2) does not satisfy for santhen there will be a problem with showing
P
that if f is non-increasing, theR f is non-increasing, Lemma.2.2 Also, if il=1 1(17') > 1;

then we will show one example in this chapter thdtas no ACIM.
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For 2 TplC (1);f 2 LY(1);f 0the Frobenius-Perron operafer is de ned as

X f(. 1
[O;al)(X) + (((Il(())(()))) [ai ;an(i))(x) (321)
i=1 I

p o= (00
Ao (X))
The proof of equation (3.2.1) is analogous to the proof of equaldhd in Chapter 2.
Lemma3.2.2.Let 2T (1);f 2LY(1);f 0O;f non-increasing. Then
(1) P (f) 2 L(1):

@ PF) o

(3) P (f) is non-increasing.

P
(4) kP (f)ky Ckf kg ;whereC = il+ ilzlﬁ
Proof. (1) . , i
P (f)d = fd = fd
! (1) |
ThereforeP (f) 2 L(1)
(2) Note that
= 1o (0 R TO) _
P f(X) - ({ 0 1(X)) [O;al)(x) + ~ ({ i l(x)) a ;an(i))(X).

1

We want to show tha: 0((0 ((’;)))) [0;a;)(X) is non-negative. Since : [0;1] ! [0;1], o =
0

[0a;) and | = 4 anqy) are continuous and convey, is positive and hence, x) o

Sincef  O;f( 1(x))  0: The derivative of a convex function is non-decreasing. Thus,

1
by property 2, 4 , (x)) Oand hence*ﬁ,fo(( 0 (();)))) [0;a1) (X) iS non-negative. Similarly,
0
f(i ) - :
o ) @ aniy) (X) is @lso non-negative.

(3) Assume that 2 L1(1);f  0O;f non-increasing. Leéd x<y  1: We will show that for
anyi =0;1,2;:::;

HE)

i 1)

FCi M)

({ i 1(y)) [ai;an(i))(y): (323)

[ai;an(i)) (x)
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Letus xi 2 f0;1;2;:::0: Now, | = j[ai;an(i)) is increasing and () = 0: If x 2
[ai;angy) theny 2 [aj; ay(jy): In other words, if 5, ;an(i))(x) =0 then [ai;an(i))(Y) =
0: Thus,

[ai ;an(i))(x) [a ;an(i))(y):

IfbothX;y 2 jia.a,,,) then ; Yx) < | Yy) and thus,

FC 1) > (5 Hy):

Moreover, since %is non-decreasing and *(x) < ; *(y);wehave © ; }(x) < © . (y)

and thus,
1 1

i) A )

Combining above inequalities, we have prova®(3.

(4) We have

_ () A1)
PO gy P T T )
@Jf Kfki _ f(0)+>4 kf ks
© ., Y 1, &)
I
1.1
o &)

1

[ai ;an(i))(x)

kKf kg :

O]

Proposition 3.2.4.1ff  Oandf is non-increasing, theh(x) % (f); forx 2 [0;1]; where

Zl
(F) = i f(x)d (x):

Proof. Forany0O<x 1; fromthe gure3.1we have

YA 1 z X
)= fx)d (x) f(x)d (x) x f(x):
0 0
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0.6

0.4
fix)

0 02 x 04 0.6 0.8 1

Figure 3.1: Graph for propositio® 2.4

For more detailed, sinde 0 andf is non-increasing. Ldt2 [0;x] andt Xx. So

f (1) f(X)Z=) f@® fx) 0

=) f f)Jdt 0

Now,

z, Z Z
f(t)dt = fo)dt+  [F() f(x)]dt
0 ZO 0

X

f(x)dt=x f(x)
0

Lemma 3.2.5.1f f :[0;1]! R* is non-increasing and 2 Tp% (1); then

KP (f)ki —Kf ki +D Kkf ki (3.2.6)
1

=)
whereD = = L, Ll

Proof. Sincef is non-increasind, (0) jj fjj1 ; and by par of Lemma3.2.2

Pf(O) k Pfki:
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21, Y0)
f(0)+ !

S G ()
100 @)
SO )

1 () 1
f

1 ©)+ o, oa Ya) '
1 X1 1
Rl _, a a)

o

PIO) = 5

Kf Kkq:

O]

Theorem 3.2.7.Let 2 TplC (1): Then admits an absolutely continuous invariant measure

f with non-increasing density functidn :

Proof. Letf = 1 and consider the sequenie kf g&zo: Sincef is non-increasing, then by part 4

of Lemma3.2.2we can apply Lemma.2.5iteratively and obtain

kPKfk, = kP PXY kg Sk PXY Kk +Dk PK I K
1
1 1 ‘2 5 -
— —k P f ki +Dk P f ki +Dk P f kp
1 1
1
ikkfklm k Pk k1+11kPk ’f kg + o+ kllkPZf ke
1 1
1+D 1+i+ + i11 =1+ Dlj
1 1 1 =

Sothe sequeno‘d?"‘gl}=O is uniformly bounded in.* and thus weakly compact In'. By Yosida-
») .
Kakutani theorem% j!(=l P!f convergesi!toaP invariant functiorf : Itis non-increasing

since it is the limit of non-increasing functions. O
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3.3 ACIMs for piecewise convex maps of0; 1] with countable number

of branches whereQ is a limit point of partition points

Consider(l =[0;1];B; ) be a measure space, where the Lebesgue measure brandB is

| suchthaty < ajandallag;as; 2 [az;1]: We do not assume the sequelfieg;:::;an;:::g

to be increasing or decreasing. For ar® f 1;2;:::g; let n(i) be the index such that the interval
[ai; an(y] does not contain any other points of the partitionadfis the limit point of decreasing
subsequence @f,'s, then(k) is not de ned. Moreover, we consider a decreasing in nite sequence
fap. ng of partition points in(ag; a;] such thaf0 = ag < <ag n<ag (na < <

ao, 2<ao, 1= aigandlimyy ao, n =0= ap: We say that 2 Tpe °(1) if

(1) o G+1) = l(ay (.1 a0, ;118 CONtinuous and convex, j=1, 2, ...;

i = laiay) IS CONtinuous and convek= 1;2;

2) (ao; j)=0; %ao, j)>0;j =1;2:::;

(@)=0; Ya)>0i=1;2:::;

Py

— 1 1 .
(4) D1 = j:lwm<l-

Remark3.3.1 The Condition (3) and Condition (4) can be replaced by the following Condg&ign

where
P

1 1 .
B) e ma Tt i way <1
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If condition (3*) is satis ed, thenwe can ndd 1 such that

3 1

Yag, i) <t

j=J
and after proper renaming of the partition points, the Condition (3) and Condition (4) are satis ed.
Lemma3.3.2.Let 2 Tp °(1);f 2 LY(1);f 0;f non-increasing. Then

(D) P (f)2 LY(I):

@ P () o

(3) P (f) is non-increasing.

(4) kP (f) ki Ckf ky ;whereC= Dj+ P - oy
Proof. The proof is similar to the proof of Lemnt2.2 O

Lemma 3.3.3.1ff :[0;1]! R is non-increasing and 2 Tp% ;O(I ). Then

kP (f)kiy Dikf ks +D kf ky; (3.3.4)
_Pa 1.
whereD = i) 75y
Proof. The proof is similar to the proof of Lemn#&2.5 O

Theorem 3.3.5.Let 2 TlolC ;O(I ): Then admits an absolutely continuous invariant measure

=f with non-increasing density functidn :

Proof. The proof is similar to the proof of Theore®?2.7. O

3.4 ACIMs of the limit map for non-autonomous dynamical systems

of piecewise convex maps

We consider non-autonomous piecewise convex dynamical system = m(Xm);m =

0;1;:::, where we assume thag is the identity mapxo 2 [0;1]; it means that the mapping
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function ¢ for the initial statexg is such that ¢(xg) = Xg for all values ofxg within the interval
[0;1] and m 2 TE (1) of m 2 Tpe O(1)y;m = 1;2;:::: Also, we assume that all, satisfy
the Lasota-Yorke inequality3(2.5 with common constants; andD or inequality ¢8.3.4 with

common constant®; andD: We write,

(m;n): n n 1 m-
In particular,
(O;n): n n 1 0-
LetTh= n n 1 > ywhere 2 TE () [Tpe®()ik=1;2:0m:

Proposition 3.4.1. Letf be a non-increasing function. ThePy, f is also non-increasing.

Proof. We use mathematical induction. For= 1;Pt,f = Pr,f = P ,f is non-increasing by
Lemma3.2.20r 3.3.4 Assume thaPt,f non-increasing. The®Rr, ,f = P ., (P, f) is non-

increasing by Lemma&.2.20r 3.3.4 O

Proposition 3.4.2. Letf ,gl_, be a sequence of transformations such that2 Tp}: (1); or

n 2 Tplc ;O(I );n =1;2;:::; |, satisfy the Lasota-Yorke inequalit$.2.5 or (3.3.4 with com-
mon constants 1 andD or D1 and D, and ,, converges uniformly to a map Then, for any
non-increasing density, the sequenck, = Pt f forms a pre-compact set in' and any conver-

gent subsequence converges to a density of an ACIM of the limit:map

Proof. Letr = max( il; D1) and letf 1: Since for class 1 and class 2 transformatign> 1

andD1 < 1respectively. Them is non-increasing. Note th&, = P P

n n 1

P, P
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We can apply inequality3.2.9 or (3.3.4 consecutively and obtain

kPTnf ki rkPTn 1f ki +D kPTn 1f ki

r I’kPTn 2f ki +D kPTn 2f k1 +DkPTn 1f kq

(M kfk +D kPr, fki+rkPr, f ki+ +r" TkPpf ky

1+D 1+r+ +r" 14

D

= 1+ :
1 r

Thus, the function®+, f are uniformly bounded and thus weakly compadt n

Letf, = Pr,f. Letff,, gbe aweakly convergent subsequence with limit Since the func-
tionsf,, are all decreasing and uniformly bounded, they are also of uniformly bounded variation.
By Helly's Theorem, every bounded sequence has a subsequence that converges pointwise. Now
let we have another subsequerﬁ(\;gj convergent to somg a.e.. Sincd n,, Converges weakly to
f ,wegetf = g. Thus,f, convergestd pointwise. Now, by the Lebesgue Dominated Con-
vergence Theorem, we git, ! f inL%. We will prove that the measuréd and(P f)d are
equal. Itis enough to show that for ahy2 C(1), Rh(f Pf)d =0:

First, we estimateR h(P ,F P F)d ,forany densityr . By conjugacy to Koopman operator,
we have 7 7

h(P . F PF) Fih n h jd 'p(supjn J); (3.4.3)

where! y, is the modulus of continuity of the functidn For more detailed calculations, s&€ in
Appendix.

To simplify the notation, we will skip the subindéx Let us de ne

1
gnzﬁ(f1+f2+ + fn):
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Sincef, ! f inL'wealsohave,! f inLl We have

P f :P(Iliin o) = Ilim P gn:

n n'l

R
We will showthat (P g, 0,)hd convergestoO, forany2 C(l). Letus xan > 0. Since
kn ki ! Oasn!l wecan ndN 1lsuchthatforalh N wehave h(k,, Kki)<
LetMy, = sup jhj:

We can write

Pt = (PP lot +Pfy 1 +Ply) S(fitfor  +0y 1+1n)

1 1 X1 1 1 X1
=—Pfn f)+ - (Pfi fi)=_—(Pfn fo)+ - P P fi:
n n. n n.
i=1 i=1
Using the estimate (A.1.2) we obtain
z Z 1
(P o ghhd ZiP fa fajjhid
1 X 1 X1
+ o Ppfi P, ., fi jhjd + = Pfi P, fi jhjd
i=1 i=N+1
1 1 1
_ + — + = .
nZMh nNZMh n(n 1 N 1)My;
which convergesto 0 as! +1 . This completes the proof of the Theorem. O

3.5 Examples

Example 3.5.1. Consider the piecewise convex map [0;1] ! [0; 1] with countable number of

nh 04
branches on the countable partition'-; g:}] . of [0; 1] de ned as
= mod 1): 3.5.2
()= ;— (mod1) (35.2)
See Figure 3.1 for the graph of

nh 04
(x) is piecewise continuous on the countable partition™—; 9+ . of [0;1]. We use the

n=

notation from Sectior8.2 Here,ap = 0;a = 3;a = ;a3 = 2;a4 = £ as so on. Now,
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05 sl

0.5

Figure 3.2: Piecewise convex map with in nitely many branches for ExaiBilel

) = ﬁf which is increasing offei; anyl;i 1 Thus is piecewise convex. Novga; 2
i N2 2

[0:1]; i =1:2.3:::; Ya) = ﬁ >0 o) 0(1ai) = @Ay e, oé\o) - 2
1.1 - @2 _ 2 1 @32 _ 2.
ey - 2 S ey — 2 - 15 ... Therefore,

* 1 1 11

=2 s+ st s+ 1:2898< 1
i @) 2 F A

From the above calculations,satis es all conditions in Sectio8.2 Thus, 2 Tp% (1) and hence

by TheorenB.2.7 has an ACIM.

Example 3.5.3. Consider the piecewise convex map [0;1] ! [0; 1] with countable number of

branches de ned as

1 1 1
(X)= —pr—— h on ; — (3.5.4)
GESIR n+l'n
See Figure 3.2. We show thasatis es conditions of Sectiof.3.
Condition 1: (x) is piecewise continuous and convex on its domain.
h i
Condition 2: Here, 4X) = —mt— Which is increasing on—i-; % : Thus is piecewise

(n(n+1) X)2

convex. Now8n 2 N; {3)=(n+1)2> 0
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0.5

0

0.5 1

Figure 3.3: Piecewise convex map with countable number of branches, for Exarbfde

Condition (3): Condition (3) is obviously satis ed since in this example we have only one interval

P
in between and 1, and 0(%) =1, which means 1, ﬁ =1<1:

Condition (4):

P .
D;= jl=l 7)(;57]) =ztptatet 0:6449< 1: Thus, 2 Tpc °(1) and hence
by TheorenB.3.5 has an ACIM.
h i
Example 3.5.5.[20] Let] = [0;1;A = fog[ 1:n=1;2::: and), = -i;% forn=
1,2::::Wedene @ jj;,(x)=2x 1;foranyn=2;3;:::; ]j, isanincreasing linear function
i

suchthat (Jy) = 0;-%; ; (0)=0:Wedene

; X 2 Int(J1)

NN 0
NI

1
") = gn(”né) X2 Int(Jn);n=2:3:::;

-0 X2 A:

°(x) = 2; whenx 2 [1=2; 1] which implies% = 2; and wherx 2 (0; 1=2); m%x—) = ﬁ
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Figure 3.4: For Exampld.5.5

+ L+ 2+ 2+ =+1 > 1

P
wheren = 2;3:4;:::: Thus,D; = lew@ﬁ= S+t

N

and condition (4) is not satis ed. It is proven i@(] that has no nite ACIM and any interval is

mapped after a nite number of iterations onto the whole intetval[0; 1].

3.6 Exactness of piecewise convex maps with countable number of
branches

Theorem 3.6.1.Let : 1 =[0;1]! [0;1] satis es Conditiong1)- (4) in Section3.2 Then

there exists the unique normalized absolutely continuous meaguhat is invariant under: The

systen(l; B; g4; ) is exact and the densityis bounded and decreasing. Moreoven, P"f = g

inLY(l; );foranyf 2 L1(l; )where isthe Lebesgue measure[@l]andP isthe Frobenius-

Perron operator corresponding to.

Proof. We follow [33] closely. We will prove that operatd® admits a lower bound function. We

are going to construct a nontrivial lower function for: First, we will prove that the set
S=[r0 "(fagias;az:::g)
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is dense irff0; 1]: Suppose it is not true. Then there exists an intexglyo]  [0; 1] such that

"([xo0;Yol) \f ao;as;a;:::g

is empty for alin = 0;1;2; : Therefore, for each; the pointsx, = "(Xg) andy, = "(yo)

belong to the same intervé;; a,()). Recall from the 1st paragraph of Secti®r2, n(i) is the

index such that the intervd;; a, )] does not contain any other points of the partitich =

ag; ap; az;::.gsuch thatag < a; and allay; as;

the convexity of ; =  jay:a,); S€€ Figure 3.4,

2 [ag; 1] If Xn;Yn 2 (ag;a1); we have by

tan ;= 1(Xn) 1(Xn) and tan = 1(Yn) 1(Yn); S 0
1 Xn 2 Yn
71 (V)
T4 ()
!
| 4—
Qg & xy Va a
|—»

Figure 3.5: A graph for Equatiod.6.2

Now,

tan o, tan

1(Yn)

1(Xn)

R

44

Xn



Yn+1 1(Yn) Yn
= — 3.6.2
Xn+1 1(Xn) Xn ( )

If Xn;¥Yn 2 (ai;ang)) withi  1; similarly we have

Yo+1 _ iyn) Yo @ Yo 1 1Xn=Hh .

Xn+1 i(Xn) Xn @ Xp 1 a
H Yn+1 Yn Xn+1 Xn Xo - Xn Xg -
Slnce—xn+l o We havem " v andthus,=) 1 ag " 1 alYO.Therefore,
1 aiXn=Yn 1 aiXo=Yo

and consequently

1 ai 1 a

Yn+1 qyi where q = 1 aiXoZYo

1 (3.6.3)
Xn+1 Xn a

Since {x)  X0) > 1; the pointsx,;y, cannot belong t¢ao; a;) for almost alln: For in nitely
manyn's we havex,;y, > aj; and, according to Equatior3.6.2 and @.6.3, Iimn(z—:) = 1:
Sincelimsup, Xn  ay; this in turn implieslimsup, y, = 1 which is impossible. ThusS is
dense in0; 1]:

Second, we claim that fan suf ciently large P"1, is a decreasing function, wheflg be
the characteristic function of an intervél = [ dg; d;] with the endpoints belonging to the s&t
HereP" is the Frobenius-Perron operator corresponding'toThe function " satis es condition

analogous to Conditionks-4 in Section3.2 Let

fo=al;al":::aM; g

be the partition corresponding td i.e. " is convex on each intervgd"; af]rg)) and "(a")=0.
We see that

fal::iaM;iiig= ™fagiianiiig

if we assume for simplicity that(1) = 0: Moreover,8i 0; (a) =0, and hencey 2  1(0)

Yfap=0;a1:::;an;:::0): Thus,
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it follows by induction that

which shows that the system of patrtition is decreasing. Silacd; 2 S there is an integeng
suf ciently large such that belongs to the partitiohal"”;::::a{";:::gforn  no: The operator

P" is the Frobenius-Perron operator fdf and so it may be written as

n » n
Pnf (X) - f ( 0 (X)) f ( i (X)) . )(X)

R omamy (0F g,
(Mo "e) POWRDTE (MY ") R
In particular forf =1, andi  ngwe have

1 3 1

P = TTmo Nrow a1 TN N npa(M .
M0 T e gy )

Since the right side of the equation is decreasind®$d,, has the same property.

Finally, letDo be a subset df 1(I; ) consisting of all functions of the form

X
f(x)= &l (X); & O
i=1

where the endpoints of the intervdls belong toS: SinceS is dense iff0; 1], the seDg is dense in
L1(Do; ). Now, we construct a lower function fé : Letf 2 D¢ be an arbitrary function. There
existsng = no(f) such thaP"f is decreasing fon ng: No decreasing density d0; 1] exceeds

1=x: In fact for any decreasinfy we have

Z X
1 f(s)ds x f(x):
0

In particular we hav@"f (x) 1=xforn ng: Applying this estimate, using lemn&a3.2 to the

equality

h 3
LT P

n+l —
PTO= g @)

P (a)
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we obtain

P"*1f (0) iP”f(0)+ D
1

1

P
whereD = L, z—izy: From Condition 3 of SectioB.2, we have 1 > 1and by an induction

argument (and using theore®r2.7) we obtain

D
1i1+1i

1 1

PITISE(0)  (1)"P™OF (0) +
1

Now let K

D=(1 1= ;) +1: Forn sufciently large, sayn  nj;; we haveP"f (0) K:

De ne h = 315,15 ;: We will prove that
P"(x) h(x) for n ng: (3.6.4)

Suppose not. Then therexg 2 [0; 1=(2K )] such thaP"f (xg) < h (xg) = % and

z Z,

Xo
1= Pfdx + P"fdx

0 X0

R, :
For somex 2 [0;xo] by the MVT, °P"fdx = xoP"f(x): Again x 0; so P"f (x)
P"f (0) K: Similarly for second part of the integral and consequently

z z,

1= XOP”fdx+ P"fdx < x K+}(1 X0) iK+}—1
- ‘6 o™ T2 o 2K 2
which is impossible.
O
Theorem 3.6.5.Let : 1 =[0;1]! [0;1] satis es Conditiong1)- (4) in Section3.3. Then

there exists the unique normalized absolutely continuous meagthat is invariant under: The
systen(l; B; ¢; ) is exact and density is bounded and decreasing. Moreovan, P"f = gin
L1(1; );foranyf 2 LY(I; ) where isthe Lebesgue measure finl]andP is the Frobenius-

Perron operator corresponding to.

Proof. The proof is similar to the proof of Theoref6.1 Recall from the beginning of section
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3.3 we consider a decreasing countable sequénge g of partition points in(ap; a;] such that
fO=ap< <ag n<ag (n 1)< <apg 2<ag 1= agandlimpy ag n=0= ap;

andf 0 = ag; az; az;:::;an;:::gbeacountable partition dfsuch thapy < a; andallay;as; 2

will prove thatthese6 = [, "(fao, jO)[ [ {=; "(fas;az:::;an;:::0)is denseirf0; 1]

whereJ 1. Suppose it is not true. Then there exists an integlyo]  [0; 1] such that

"([xo;Yo]) \f 0= ag < <ag n<ag (n 1 < <ag 2<ap 1= a;::;an;:i:g
is empty for alln = 0;1;2;:::. This means that for eaahthe pointsx, = "(xg) andy, =
"(yo) belong to the same intervédy. (+1):a0; j1[ (aisan))si =1:2,  ;j =12, :If

Xn;Yn 2 (Ao, (j+1):a0; j][ (@ an()); we have by applying the similar techniques of the proof of

Theorem3.6.1,
Yn+1 1(yn) Yn
= n 3.6.6
Xn+1 1(Xn) Xn ( )
Yn+1 Yn 1 aiXo=Yo
Z— where = —"">1 3.6.7
Xn+1 an g 1 a ( )

Since the derivation of on (ap; a1) is positive, the pointxn;y, cannot belong tqag; a;) for
almost alln: For in nitely many n's we havex,;y, > a1 and, according to3.6.6 and 3.6.7),
Iimn(;’—:) = 1 :Sincelimsup, Xxn  ai; thisin turnimpliedimsup, y, = 1 which isimpossible.
ThenS is dense iH0; 1]: The remaining part of the proof is very similar to the corresponding part

in the proof of Theoren3.6.1
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Chapter 4

Ulam's method for computing stationary
densities of invariant measures for

piecewise convex maps

4.1 Introduction

In this chapter, we use Ulam's method for the approximatiohn ofin invariant density of a map
or equivalently a xed point of the Frobenius-Perron operdtor Fixed points of the Frobenius-

Perron operatoP of 2 TplC [T plc ;O(I) are the stationary densities of The F- P operator
P is an in nite dimensional operator. Except for some simple cases (Wh&giecewise linear
Markov and the Frobenius-Perron operator has a matrix representation), it is not easy to obtain an
analytical solution of the F-P equatiéhf =f :

Asymptotic stability of stationary densities and weakly attracting repellors for piecewise convex
maps are studied by Inoue i8] and [26]. Recently, InoueZ7] contemplated invariant measures
for random piecewise convex maps with a nite number of branches. However, the literature on
stationary densities of ACIMs for piecewise convex maps with countable number of branches is not
af uent.

In Chapter3, we studied ACIMs of maps in two classﬁé ny; T,OlC ;O(I ) of piecewise convex
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maps : 1 =[0;1]! [O;1]with countable (in nite) number of branches. It is proved 8] that

any 2 Tplc [T plc ;O(I) has a stationary densify of absolutely continuous invariant measure

Numerical computations of stationary densities of invariant measures for dynamical systems
were suggested by Ulard?]. For piecewise expanding deterministic transformations, T-Y3Y] [
rst proved the convergence of Ulam's approximation. Since then, Ulam's method has been applied
to one and higher-dimensional expanding deterministic transformations. For piecewise expanding
interval maps, Bose and Murray presented the convergence rate of Ulam's metBpdriritie con-
text of higher-dimensional Jablonski transformations, Boyarsky and Lou proved the convergence of
Ulam's method in §]. For piecewise expanding aif transformations, the convergence of Ulam's
is proved by Ding and Zhou irlp]. In the case of random maps with constant probabilities, Froy-
land proved the convergence of Ulam's method and presented the rate of convergdi®feGofa
and Boyasrsky proved the convergence of Ulam's method for position-dependent random maps in
[5]. However, there are few results on the approximation for stationary densities of invariant mea-
sures for piecewise convex maps. Bo], Miller proved the convergence of Ulam's method for
piecewise convex transformations with a nite number of branches with a strong repeller. J. Ding
[14] developed and presented piecewise linear and piecewise quadratic Markov nite approximation
methods for piecewise convex maps with a nite number of branches. If piecewise convex maps
have countable number of branches, then the convergence of Ulam's method becomes more chal-
lenging and complex. This complexity makes it harder to nd a suitable sequence of approximating
functions that can accurately capture the behavior of this system across all brancl2d}. Gofa
and Boyarsky presented an approximation method for invariant measures for piecewise continuous
maps with countable number of branches. As far as our knowledge goes, Ulam's method for piece-
wise convex maps with in nitely many branches has not been investigated so far. In S&&ion
we introduce notations and review the existence of stationary densities of absolutely continuous
invariant measures for 2 T (1) [T oc °(1): In Section4.3.1, we construct a sequente,gt_;
of maps , : [0;1] ! [0;1]s.t. , has nite number of branches ang converges to almost

uniformly. Using supremum norms and Lasota-Yorke type inequalities, we prove the existence of
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densitiesf, of ACIMs |, for . In Section4.3.1, we apply Ulam's method to, and compute

an approximatiorf .. of f, and prove that,x ! f, ask !'1 : Finally, in Sectior4.3.2 we
prove thatf , ! f wheref is the actual stationary density of absolutely continuous invariant
measures for the piecewise convex maywith countable number of branches. In Sectibag we

present numerical examples.

4.2 Stationary densities of ACIMs for piecewise convex maps in class
Toe (N [T ge°(1):

In this section, we review results on the existence of stationary densities of absolutely contin-
uous invariant measures (ACIMs) of piecewise convex maps with countable (in nite) number of

branches. We closely follow Chaptgr

4.2.1 Stationary densities for piecewise convex maps with countable (in nite) branches

and limit points of partition points separated from O

Consider(l = [0;1];B; ) be a measure space, wherés the Lebesgue measure brandB

increasing or decreasing. For any f0;1;2;:::q; let n(i) be the index such that the interval
[ai; an(y] does not contain any other points of the partitionadfis the limit point of decreasing

subsequence @, 's, then(k) is not de ned. We say that 2 Tplc () if
(1) o= o) is continuous and convex;
i = J[a an i) is continuous and convek=1;2; ;
2 (a)=0; Ya)>0i=1;2:::;

3) (0=0; W= 1>1

51



Pl
@ o gy < 1

For 2 TplC (1);f 2 LY(1);f  0Othe Frobenius-Perron operafer is de ned as

_ (o) X1 )
Pf(x)= q o 1(X)) [O;al)(x)+ - qQ i 1(x))

fa a0 1)) (X) (4.2.1)
The following results are proved in Chapter
Lemma4.2.2.Let 2T (1);f 2LY(1);f O;f non-increasing. Then
(1) P (f) 2 L(1):
P () O
(3) P (f) is non-increasing.
(4) kP (f)ky Ckf ky ;whereC= L+ P L )
Proposition 4.2.3.1f f  0andf is non-increasing, thefi(x) % (f); forx 2 [0;1]; where

Zl
(f)= . f()d (x):

Proof. Forany0<x 1;we have

Z 1 Z X
)= fx)d (x) f)d (x) x f(x):
0 0

Lemma4.2.4.1ff :[0;1]! R is non-increasing and 2 Tp}: (1). Then

KP (f)ki —kf ki +DKF Ky; (4.2.5)
1

=)
whereD = = L, 1ol

Theorem 4.2.6.Let 2 TplC (1): Then admits an absolutely continuous invariant measure

f with non-increasing density functidn :
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4.2.2 Stationary densities of ACIMs of maps with countable (in nite) number of

branches whereQ is a limit point of partition points

and allay; az; 2 [az; 1]: We do not assume the sequeriee;:::;an;:::gto be increasing or
decreasing. For any2 f 1;2;:::g; let n(i) be the index such that the interjal; a, ] does not
contain any other points of the partition.df is the limit point of decreasing subsequencegs,
then(k) is not de ned. Moreover, we consider a decreasing in nite sequéage g of partition
points in(ap; a1] such thaf 0 = ag < <apg; n<ag (n 1) < <ap 2<ag 1= agand

limnn @ n=0= ap: We say that 2 Tpe (1) if
1) o G+ = Ja, 1 20 ] is continuous and convex, =1, 2, ...;

i = Jfaiay ;) IS CONtinuous and convek=1;2;

(2) (a0 j)=0; Yag, j)> 0;j =1;2::1;

(a)=0; Ya)>0i=1;2:::;
1 .

4) D =P 1 <1

() 1= i=1 ay, ;) .

Remark4.2.7. Condition 3 and Condition 4 can be replaced by the following Cond&forwhere
Py 1 P 1

1 .
8. ja e )t = Wy <L

If 3* is satis ed, thenwe can ndd 1 such that

3 1

Ya, i) <t

j=J
and after proper renaming of the partition points, Conditions 3 and Condition 4 are satis ed.
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The following results are proved i2§].
Lemma 4.2.8. Let 2Tp% ;O(I);f 2 L1(1);f  0;f non-increasing. Then
(L) P (f)2 LY(I):
@@ P () o
(3) P (f) is non-increasing.
Py

(4 kP (f)ky Ckf ky ;whereC= Dj+ i=1ﬁ

Lemma4.2.9.1ff :[0;1]! R* is non-increasing and 2 TplC ;O(I ). Then

kP (f)ki Dikf ki +D kf ki (4.2.10)

_Pa 1.
whereD = ., 75y

Theorem 4.2.11.Let 2 Tplc ;O(I ): Then admits an absolutely continuous invariant measure

=f with non-increasing density functidn :

4.3 Ulam's method for piecewise convex maps with countable (in -

nite) number of branches

4.3.1 Approximation of piecewise convex maps with an in nite number of branches

by piecewise convex maps with nite number of branches

Let :[0;1]! [0;1]be a piecewise convex mapTg: (1) [T o= (1) with countable (in nite)
number of branches. In this section, we will describe the most dif cult case @feethe limit of the
partition points for the map 2 Tp% 0 We assume that there are no other limit points of the partition
points. The other cases, i.e., where there are such limit pointﬁdf& , are done similarly. Thus,
the map is like in Sectiond.2.2 For simplicity, we change the notation by renaming the partition
points. Leta, = agp n, N = 1;2;:::. Then, the assumptions (3) and (4) of SectbB.2are

restated as:
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(3") There existsamN 1 such that

3 1

N Y

n=N+1

1: (4.3.1)

Then, the Lemm4d.2.8and Lemmat.2.90f Sectiord.2.2hold with changed constants

g X 4

n=1 Yan) n=1 Aan) (4.32)
X

_, @ O(an):

C=D1+

D=

n
Forn N, we construct a sequend:eng%:,\, of maps  : [0;1] ! [0;1] s.t.  has nite
number of branches and converges to almost uniformly (see de nitiod.3.8and proof of lemma
4.3.9. Using supremum norms and Lasota-Yorke type inequalities, we prove that the existence of
stationary densitiek, of ACIMs , for ,. We approximate : [0;1]! [O; 1] with the following
sequence of maps, : [0;1]! [0;1],n N, with nite number of branches:

8
Ex=an;0 X<an;

n(X) = B

xX);an x L

In the following, we show that for eaatn  0; the map ,, has an absolutely continuous invariant
measure. Each, is a piecewise convex map with nite partitidrl = ag; a;; as; j8n;An+1 =

Og and , satis es following conditions:

(1) n, = ni(3;a 1]iscontinuous and convek,= 1;2; ‘n+1;
2 n(a)=0; Xg)>0j=1; ;n+1;

(3) n(0)=0: %0)= £ > 1

n

p
(4) jnillﬁ)(laj<1:
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Letf 2 L(1);f  0: Then, the Frobenius-Perron operaior is de ned as

X1 £ (p,1(0)

P fx)=
0T )

n (8 ;3 11(X) (4.3.3)

Lemma4.3.4.Letf 2 LY(1);f 0O;f non-increasing. Then
(1) P (f)2 LY(1)foreachn =1;2;::::
(2) P, (f) Oforeachn=1;2;::::
(3) P, (f) is non-increasing foreach = 1;2;::::

4 kP, (f) ki Chkf ki (1+C) kf kg foreachn = 1;2;::. whereC, =
P, 1

+ !
an i=1 (&)

Proof. (1)

ThereforeP  (f) 2 L(I)

(2) Note that
XL (LX)

P f(x)= ———— @ gX):
=1 r?( njl(x)) (aJ a 1]
Each of the branch £0ny 00 (x) is non-negative
i T BEICEL gative.
f(n;'(x) , , g o
(3) Each of the branch RORRIGCE 11(x) is non-increasing since, ~ is increasingf is
ninj

non-increasing and? is increasing.

(4) We have

56



XL f( H(x)
=1 r?( njl(X)) n(a;a 1]

X1kt Kk X1k Ky

P.f(x)

(x)

bzl r?( njl(x)) izl r?(al)
X
= @a,+ —AKkfk
T @)
Q1+ C)kf kg
O
Lemma4.3.5.1ff :[0;1]! R* is non-increasing, then foreach N,
kP (f)ki (an+ Di1)kf kg +D kf ky; (4.3.6)

Proof. Sincef is non-increasingf (0) k f ki ; and by Lemmat.3.4 P f(0) k P f ky :

Now,

X £, H0))
@R ()
R OB IR O]
O O IR O)
X fan) X f(an)
= nf ] i
a (0)+,~=N r?(anj)’fj:1 (an,)

P.f(0)

n(aj ;g 1](0)
j

o) 1
o & o)
(an+ D1) kf ki +D kf ky:

(an + D1)f (0) +

Theorem 4.3.7.For eachn 2 N; , admits an absolutely continuous invariant measwe= f

with non-increasing density functidn :
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Proof. Our proof works for alh  ng, where we have,, + D1 < 1and gives a uniform estimate.
For then < n g the claim follows from Subsectioh.2.1
Letf = 1 and consider the sequeni:lé"nf Ui : Clearlyf is non-increasing. Then by part 3

of Lemma4.3.4we can apply Lemm4.3.5iteratively and obtain

kPKf ki =kP, PXM ki (an+Dy)k PXM kg +Dk PX M K

(an+ D1) (an+D1)k PX2f kg +Dk PX2f k +Dk PX1f ki

(an+ Dl)kkf k]_ +D kPkn 1f k1+(an+ Dl)kpkn 2f kl
+  +(an+ Dk TkP3f kg

(@ + D1)* kf ki +D 1+(an+ D1)+ +(an+ D)k !

D

+ D) R
(o DUTKEI T G, D)

So the sequeno‘eP"nf gﬁzo is uniformly bounded and weakly compact. By Yosida-Kakutani the-
P .
orem,% }‘:1 P! f converges irL! to aP , invariant functiorf : It is non-increasing since it is

the limit of non-increasing functions. O

De nition 4.3.8. Let ,; are maps of0; 1] into itself and ,; are de ned as above. We say
that , converges to almost uniformly if, given > 0; there exists a measurable et

[0;1]; (A)>1 ;suchthat,! uniformly onA :
Lemma 4.3.9. ,, converges to almost uniformly.

Proof. Let > 0: Choose the decreasing partitibh = ap; as; ay; ;an;an+1 = 0gof[0; 1] for
n Suchthaa, < : LetA =(an;1): Then, (A)=1 a,>1 :Since = onA this

completes the proof.
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4.3.2 Ulam's method for approximation

In general, most dynamical systems do not possess Markov properties, implying that they lack
a Markov partition, and most partitions designed for these systems will not qualify as Markov
partitions (section (4.2.2), example 4.1(&])[ However, when we encounter such systems, the
corresponding the Frobenius-Perron operator can be accurately represented by an operator of nite
rank. Markov transformation is a piecewise monotonic transformation such that each interval of the
partition is mapped onto a union of intervals of the partition. The Frobenius-Perron operator can
be de ned in terms of the Markov transformation matrix. We can approximate the xed point of
the Frobenius-Perron operafér by the xed point of a matrix operator, which we call the Markov
operator. If the map is piecewise linear and Markov, we can nd the Frobenius-Perron operator in
a matrix form. Therefore, it is easy to nd the density or invariant measure because the Frobenius-
Perron equatio® f = f is a system of linear equations. In the deterministic case, the matrix

approximation of the F-P operator has the form

|
LI\ Ji
(Ji)

10 k

where denotes the normalized Lebesgue measurg andf Jigk; is a nite family of connected
sets with nonempty and adjoint interiors that covere.,J = | }‘zlJi; and indexed in terms of

nested re nements.

Example 4.3.10.Let :[0;1]! [O;1]be a piecewise linear Markov transformation on the partition

f0:3:3: 41 1g de ned by

7.1 1
4 4 2
(x) = 1
5. 1 3
X I 3<X g
5. 3
X+ 3 z<x 1

Here we use the above matrix form of the F-P operator for nding all elements of the rivatrix
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Figure 4.1: Markov map ; with partition shown for Examplé.3.10

Now usingi;j = 1;2;3;4 successively, then

= 1) Y90 _ (031N MO E) _ (05 31N (05 4D) _
(J1) ([0; 31 ([0; 1)
= 31 Y92 _ (0N MR (O (s E) _
(J1) ([0; 1] ([0; 31
SO £ S £V (3 1 (1) B (£ 15 A (15 7 )
(J2) (73] ([0; 3]
ST 7 S £ N (5 ) AN (G55 8
2 (32) ER) 3’
MU £ W € B (15 AN (EVEE 1)
% (J3) %3 3’
SUSS: 72 S € 2) N (-5 LN (13D I
“ (J2) (3:1) 2
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Similarly, we can nd the rest of the elements;3 = M4 = ;M1 =0; M3 = M= §;Mz =
0; M32 = M3g = %;m34 = 0;m41 = Mgy = O;m43 = %:
Thus, the matrix approximation of the F-P operator has the form for map

2 3
14 14 14 14

0 1=3 1=3 13
0 13 13 1-3
0 0 12 1=2
The resultingM may be interpreted as a transfer matrix, for which it is easy to check that all row

sums ard;ie, ;mj =18;
Letf = (fq1;f2;f3;fa), wheref; = fji,;1i =[52; 1];i = 1;2;3;4. The normalized density of the
map (Figure4.l) is the left eigenvector dfl  with eigenvalue 1P f = f reducestd M = f

which is a system of linear equation. It shows that (0;1; 2; 2):

Ulam's method is often used to describe the process of using Ulam's conjecture (see Chapter
2, Conjecture2.6.]). In this subsection, rst, we describe Ulam's method for nite-dimensional
approximatiorPy.; n andk denoted by the number of branches and number of partitions, respec-
tively, of the Perron-Frobenius operafr, of ,: Ulam's method computess,.x on a partition of
k subintervals of the state space as an approximation of the actual stationary density fiynction
of n; n 1. Moreover, we show thdt, converges td, ask ! 1 : We closely follow 4],
[35] and [14]. Let ,, be an approximation of 2 TplC [T p% (1): Then, by Theorerd.3.7, ,
has an absolutely continuous invariant measuyrevith stationary density functiof,: The approx-
imationf , is carried out using a two-step process. Initially, we approximdig the map ,, with
a nite number of branches. Then, we further approximateising Ulam's method. In our case,
we don't need approximation in tHe! norm. So, it's not an approximation of any norm. In this

sense, approximation means converges almost uniformly. Now, we describe Ulam's method
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interval[0; 1] into k equal subintervals. Now, construct the matrix
!
n l(Jj) \ Ji

M K =
" (Ji)

1 k

LetL®  L2([0:1]; ) be asubspace af! consisting of functions which are constant on elements

P
correspond to the functioh= " ¥, f; ;: We introduce the operat@®) : L1 1 L&): de ned

by

& Z z Z
QW(f) = L fd 3 = L fd;:::; L fd (4.3.11)

Trans

plf = m® ([F1:f2;:00 k) (4.3.12)

which is a nite-dimensional approximation to the operalor: AT'@" denotes the transpose of
the matrixA:
Then, we have

Pl = Qp f:

More generally, fof 2 L!; we have
plgs = Qkp nQ(k)f:

The following Lemma will be used several times in the sequel.

LY:Ifg,! h;asn!1l ;weaklyinL?; then the convergence is alsolirt and a.e.

Proof. Sinceg,'s are non-increasing and uniformly boundedLit ; they are also of uniformly

bounded variation. By Helly's Theorem [ Rudin, 1976], there is a subsequgpceonvergent
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a.e. to some functioh;. Sincegn, ! h; weakly inL® we haveh; = h. Considering all possible
subsequences we prove that! h a.e. Since, converge td a.e. and they are uniformly bounded

inL! , the convergence is alsolirt (e.g., by Lebesgue Dominated Convergence theorem).[]

Since each map, is exact [Lasota and Yorke, 1982], by Proposition 1.2 of [Hunt and Miller,

1992], we obtain that the invariant densitfgs, of P(,i‘) are unique.
Lemma 4.3.14. The invariant density .k ofP(,'f) n IS non-increasing for any; k > 1.

Proof. Letf 2 L(k): SinceP"f = QP f; and both operator® , andQ® transform non-
increasing functions into non-increasing functions, the opelfafb?r also have this property. Let

f = 1 be a constant function understood[&sl; : :: 1] 2 L{k): It is non-increasing. Thus, all the
functions(P ,)™f;m =1;2;;;; are non-increasing. Similarly, as the estimate (15) was obtained,
they can be shown to be uniformly bounded.ih and thus weakly compact in'. Then, Yosida-
Kakutani theorem [Yosida and Kakutani, 1941] shows that the senge?\ceP(:) " f converges

in L to the invariant densit§.« : By Lemma4.3.13the convergence is also a.e. dngk is non-

increasing. O

Using Ulam's method and corresponding convergence analysis describgd B5] 14], we

prove the following theorem.

Theorem 4.3.15.Let 2 Tp% ;O(I ) be a piecewise convex map with countably many branches. Let

f ngi_, be the approximating sequence of piecewise convex maps with nite numbers of branches
where , are de ned in the previous Sub-Sectidi3.1 If f,,x is a normalized xed point of
P®:k = 1;2:::; dened in 4.3.12, then the sequendef nkOi=; is weakly pre-compact in

L1: Any limit pointf , of the sequenckf nx gi_, is a xed point ofP

Proof. Let P(nk) be the Ulam's approximation of the Frobenius-Perron opeRatpof : Let Q)
be the isometric projection de ned id3.1)). It can be shown that (see: (4), page33]| def. (2.1),
page 5 B4)):

piQls = Qp f: (4.3.16)

From lemma 2.5 of35], we get

kQWf kg k f ky : (4.3.17)
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Equation ¢.3.17 implies thatQ(®) does not increase in! norm.

From equation4.3.9, P , satis es the following Lasota-Yorke type inequality
kP fki (an+Di)kf ks +Dkf ky: (4.3.18)
Using equation4.3.19 and @.3.17 we obtain
kPUf ky =k QWP f ki k P,f ki (an+D1)kf ki +DKf ky: (4.3.19)
Now, f h.x is a normalized xed point of the approximate of the F-P operﬁtﬁﬁ); then we can write
Kfnk ki =k POy kg
From equation4.3.17 and equation4.3.19 we obtain

kPUOFf ki =k QWP frx ki k P fnk ki (an+ D1) Kfnk ki +D Kfp ke :

(4.3.20)
Thus, we have
kfn;k kl (an+D1)kfn;k kl +D kfn;k kl
Kfn ki — 2 Kfok (4.3.21)
nk K1 1 (an"' Dl) nk K1 -9.

This shows that the densitiés.x are uniformly bounded ! and thus form a precompact set

in the weak topology of *: There exists a subsequerfee ; that converges weakly ib! to some

limit function f~for xed n. Since allf ., 's are decreasing, they are also of uniformly bounded
variation. By Helly's Theorem, there is a further subsequédngeconvergent a.e. to some function

f~ Since the function, . are uniformly bounded, by Lebesgue dominated convergence theorem ,
we obtain that

fo ! = inL:

Is

This implies that™ = f~ Since the same reasoning applies to any subsequerfigg ofve obtain
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that

fn ! 5 inLh:

Now, we want to show that i, ! fin xed, kj ! 1 then for any continuous functiogpwe

have 7
gf P fd=0
Now, 7 7 z
j gf P djj gf fuq dj+j g fag P d]
Z Z
=j g f fu dj+j g Pfn, P d]
Z Z Z

g f fag di+i g PM% P dj+j g PUr P Fodj

Sinceg; being continuous, is bounded ahg; ! f~weakly inL!; so rstterm goes td:
Since

fo ! £ inL?

J

andP(:") is a norm 1 operator the second integral goes to 0. From the lemma 2.2 of T-Y Li, for
f~2 L; the sequenc®i)f~converges i tof-ask; ! 1

Which implies,P%)f= Q)P 1 P finLlask !1 . Therefore, the third term also
goes to zero.

O

Theorem 4.3.22.Let 2 Tp% ;O(I) be a piecewise convex map with countably many branches.
As described at the beginning of subsectiol.1, letf ,gi_, be the approximating sequence of
piecewise convex maps with nite numbers of branchesPL‘,@t, k=1;2;::: be the sequence of
Ulam's operators approximating operatoR . Letf,, be the normalized (ih.') xed point of

L1, Iffn . ,] =1;2;::: is aweakly convergent subsequence, then it converge’ (and almost

everywhere) to a functioh which is a xed pointofP ,P f = f.
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Proof. The stationary densitielsf g, 1 of f g, 1 are uniformly bounded in.? by Theorem
4.3.7. Moreover, the densities,., the piecewise constant approximationsf @k are also uni-
formly bounded inL! by formula @.3.29. Thus, the setf .« gi-; is weakly compact in.!. As-
sume thaf f .« g&zl has weakly convergent subsequefitg ., g with limit f: Since the functions
ffn, . g are decreasing and uniformly bounded, they also have uniformly bounded variations. By
Helly's Theorem there is a further subsequeftg _, g that converges pointwise to some func-
tion h. Since subsequence off ;. gﬁzl converges weakly t6 we havef = h: Thus,ff g&zl
converges té pointwise. By the Lebesgue Dominated Convergence Thedrem! f inL%:

It remains to show thédt is a xed pointofP , P f = f: We will show that the measuréd
and(P f)d are equal. Itis enough to show that for ang C(1), we haveRg(f Pf)d =0:

To simplify the notation we assume that the whole sequépgeconverges tdé . We have,

4 y4 Y4

iogf Pfjj of faldi+ti gfax Pfai)d |
Z Z Z
+j gPWfax P fa)d j+j oP,fax P,f)dj+j oP,f Pf)dij

Sincefx ! fin L!; the rstterm goestdandk ! 1 : Sincef .k are xed points ofP (r'f); the
second term i§:

Third integral:

Z Z
9Pt P ofodd = gQO(P fox) P, faxk)d

We haveQh ! hinL?*foranyh 2 L. Since the densitigs .« g form a pre-compact set in?,
the convergence is uniform on this set. The third integral converges th 0 as 1 .

Sincef,x ! f inL!andP ,'s are norm 1 operators, the fourth integral converges to 0 (as
nk! +1).

The last integral. By properties of the Frobenius-Perron operator, we have

Z Z
j oP,f Pf)d =) (@ ~n g )fd

To show that this converges to 0, we x dr» 0. LetM = sup jgj. For integrable functioh we
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R
can nda ; > Osuchthat , jfd j<"=2M forany setA with (A) < ;. Since p ! almost
uniformly, we can nd a sefA with (A) < 1 suchthat ! uniformly on A€. Functiong is

continuous, so for its modulus of continuity we can nd a » suchthat ¢( 2) <" . Now, we can

ndan N 1suchthatfon N we havg p j < 20nACf Then,forn N we write
Z Z
j (9 n g )fd jg n g )ifd
z z
= jg n g |jfd + g n g jfd 2M "=2M + 14(2) 1 2%
A Ac
This shows that the last integral convergesto @ 4s +1 . O
4.4 Examples

Example 4.4.1. Consider the piecewise expanding and piecewise linearmag0; 1] ! [0; 1]

with countable number of branches de ned as

I =

TX)=i(i+1) x % on 1=1;2, (4.4.2)

1
i+1i

See Figure 4.1 for a graph of It shows that the Lebesgue measure is invariant umdBerivative

1

0.8

0.6

0.4

0.2

o

02 0.4 0.6 08 1

Figure 4.2: The graph of the piecewise expanding and piecewise lineaf nfapExample4.4.1

=]
of T isi(i +1) and its reciprocal, i.e.,ﬁ% = ﬁ = 1 L. Therefore, | ﬁ% =
P

L, * A =1;which means that the Lebesgue measure is invariant uhdghe slope
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h [

1.1
of T on et

is -2 and therefore, the inverse df has slopef  --: Then, with the

i pTl
densityf = 1;Psf = [, 1 I =1:Thus,Prf = f andf = 1is the invariant density

of T. Now, consider the conjugatiom : [0;1] ! [0;1]dened byh(x) =1 (1 x)% We
construct the piecewise convex map [0; 1] ! [0; 1] with countable number of branches de ned

by =h ! T h:SeeFigure 4.2 for a graph af The piecewise convex mapis topologically

Figure 4.3: The graph of the piecewise convex mapith countable number of branches for Ex-
ample4.4.1

conjugated to the piecewise linear and piecewise expandingmiépthe conjugatiom. Therefore,
the stationary densityof is givenbyg= f h j h9 (see proof of Theorerd.2.2in Chapter 5).
Now,h(x) =1 (1 x)% Henceg(x) = f(h(x)) j h{x)j = j2(1 x)j: See Figure 4.3 for a
graph of the stationary densigyof :

2

0.5

Figure 4.4: The graph of the stationary dengjtpf the piecewise convex mapwith countable
number of branches for Example4.1

Now, we ndthe rstfew branches (from right) of on[0; 1]. Note that (x) =(h 1 T h)(x);

whereh(x)=1 (1 x)%h }(x)=1 P (1 x): See Figure 4.4 for graphs bfandh 1
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0.8 0.8
0.6 0.6
0.4 0.4
0.2 02
0 0
0 02 0.4 N 0.6 0.8 1 0 02 0.4 0.6 0.8 1

Figure 4.5: Graphs ofil (left) andh 1 (right).

The map T is piecewise onto the partition

1.1t _ 1111 111111,
i+1'i ., 77'22'21'20'19'°°7'7'6’5'4'3' 2’
q,i
Moreoverh 1 T = 1 =1;2;3;:::: Thus, the map is de ned on the partition
(" r r 1#) 1 ( g '3 '3 Tg )
i i
S T S T - U B
q-—
Ifx 2 [1 ;1] thenh(x) 2 [3;1]: If x 2 [$;1]; thenT(x) 2 [0;1]: If x 2 [0;1]; then
q<
h 1(x) 2 [0;1]: Thus, ifx 2 [1 Z;1)then (x)= =(h 1 T h)(x) 2 [0;1]: Moreover,
q_
on[l1  3:1];
(x) = (h ' T h)x)

h T@@ @ x)?)

h 2@ @ %% 1)

1 P1 1 21 x)?

1 p5(1 X):

In a similar way, we can nd other branches obn the partition 1 - L1 =

69



3. 2. 1.4 .
| 1l 1 51
The rst few, starting froml to the left, the branches ofon

" r # " r r # 1] r r # n

arel IO2(1 X); 1 P 6(1 x)2 31 P 121 x)2 81 P 201 x)2 151 P 301 x)2 24

respectively.

Now, consider the following sequenée,g, o of piecewise convex map, : [0;1] ! [0; 1] with

nite number of branches:

8
3 1 .. 95
—p——x;0 x<1 T
n(x) = Lo "
2 q
Tox);1 n x 1

n+1

See Figure 4.6 for a graph of, with n = 5: The sequencé g, o of piecewise convex map

1

0.8

0.6

0.4

0.2

Figure 4.6: Piecewise convex mapwith nite number of branchesif = 5).

n - [0;1]! [O; 1] with nite number of branches converges almost uniformly twith countable
number of branches. In Figure 4.7, we present a graph of approximate stationary tigqsity=
5; k = 100 via Ulam's method of the actual stationary densityf pfn = 5 of the piecewise convex
map n;n =5 with a nite number of branches. Note that;n = 5 is an approximation of the
piecewise convex map In Figure 4.7, we present the density of the piecewise convex nvath
a nite number of branches and the graph of the approximate stationary dépgity = 5;k =

100 via Ulam's method. In Figure 4.8, we present the graph of the actual dapgityred) of
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¥

.5

o 0z 04 06 08 I

Figure 4.7: The approximate stationary dendify;n = 5;k = 100 via Ulam's method of the
piecewise convex map, with nite number of branchesn(=5).

2 =2

0.5 0.5

o 4 e 0.4 0.6 o8 I 0 02 04 06 08 1
’

Figure 4.8: The graph of the actual invariant dengitf the piecewise convex mapwith in nite
number of branches(in red) and the graph of of the approximating dépgitfin blue):n =5;k =
10000n the left anch = 10; k = 1000 on the right hand side.

the piecewise convex map with countable number of branches and graphs of the approximate
stationary densitiel,x (in blue) via Ulam's method for maps, with a nite number of branches.
Numerical computations are performed for a number of cases. In the following table, we present
theL! norm errorjjg  f.xjj1: Note that for eacim; |, is a map with a nite number of branches,

approximating the piecewise convex mapm Figure 4.3 with countable number of branches.
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n| k| jig fakia
100 | 0.2195470623

1000 | 0.2195243505

100 | 0.1943541673

1000 | 0.1943541673

N (oo | ool

1000 | 0.1742407352

10 | 1000 | 0.133493040

The above table shows that as we increasthe L norm errorjjg  fn.«jj1 gets smaller. For the
xed n; the increasing ok is ineffective. For example, the errors flor= 100 andk = 1000 are
almost identical. The main method to lower the error is to increase the number of branches of

Theorem4.3.22con rms that for largen and largek theL norm error is close to:

Example 4.4.3. Consider the piecewise convex map [0;1] ! [0; 1] with countable number of

branches de ned as

(x): %

1
TEA R '

H l . - e I .
i on 1 1=1;2, (4.4.4)

See Figure 4.9 for a graph ofwhich is de ned on the countable number of partitiogn=1; b, =

=13 ;b= -1 of[0;1]: Itis shownin P3 that 2 Tpe °(1) and hence by Theorem

NI
Wl

1

0.8

0.6

0.4

0.2

B}

02 0.4 0.6 08 1

Figure 4.9: Piecewise convex map with countable number of branches, for exdmpte,

4.2.§ has an acim. Now, consider the following sequeficeg, o of piecewise convex map

n . [0;1]! [O; 1] with nite number of branches:
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See Figure 4.10 for a graph of with n = 4; 8: The sequencé g, o of piecewise convex map

! 1 1

02 02

Figure 4.10: Piecewise convex mapwith nite number of branchesn(=4; n =8 andn = 10).

n - [0;1]! [0; 1] with nite number of branches converges almost uniformly:tén Figure 4.11,
we compare three graphs of approximate stationary defigityn = 4;k = 60; k = 120 andk =
240respectively via Ulam's method of the actual stationary densitf,0h = 4 of the piecewise
convex map n;n = 4 with nite number of branches. In Figure 4.12, we present a graph of
Ulam's approximatiorf ,.c; n = 10; k = 1000 of the actual invariant density &f,;n = 10 of the
piecewise convex map,;n = 10 with a nite number of branches. By Theorefn3.22 it is also
an approximation of the invariant density of the map . The same Figure 4.12 shows also the
approximatiorf . ; n = 10; k = 1000, as the densitiefs; o;1000 andf 10;500 are indistinguishable at
this scale. We havgf 101000 fi1o500j1  0:00055 In Figure 4.13, we show the enlargement of

both graphs on the small subinterval.
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0.8 08 08

Figure 4.11: The graphs of approximate stationary deffigityn = 4;k = 60;k = 120 andk =
240respectively via Ulam's method of the actual stationary densitf,0h = 4 of the piecewise
convex map n;n = 4 with nite number of branches. The map;n = 4 is an approximation of
the piecewise convex mapin Figure 4.9

=2
N
=3
S
o]
=)
=3
=

1744

17124

1704 i

168+ =

1664

T T T 1
0 0.005 0010 0.015 0020
x

Figure 4.13: Enlargement of the approximating densiti@sooo (in red) andf 10,500 (in blue) on
[0; 0:02]:
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Chapter 5

ACIMs for Piecewise concave maps with
countable (in nite) number of limit

points of partition points

5.1 Introduction

In the previous two Chapters, we focused on analyzing piecewise convex maps characterized
by a countable (in nite) number of branches. Now, let's shift our attention to another signi cant
category of maps: concave maps. Piecewise concave maps on the interval [0, 1] with in nite num-
ber of branches are another important class in dynamical systems, with applications in areas such
as optimization, economics, and physics. 18][ the existence of ACIMs is proved for a class of
piecewise concave interval maps with a nite number of branches. One interesting aspect of piece-
wise concave maps is that they can be conjugated to piecewise convex maps on [0, 1], which allows
us to use results from the theory of piecewise convex maps to study their properties. Conjugation
is a powerful tool in dynamical systems that allows us to transform one system into another while
preserving certain properties, such as the existence of invariant measures.

In the last two Chapters, the existence of a unique normalized absolutely continuous invariant mea-

sure is proved for two classe'ﬁplc (1) and TplC ;O(I ), of piecewise convex mapping and we also
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proved the convergence of Ulam's approximation method for computing the invariant measure of
piecewise convex mapping. In this Chapter, we want to show similar results for two cl'ﬁég,els)
andTp%\,;l(l ); of piecewise concave maps We use conjugation of that is de ned in ChapteB

(page: 31), which implies that preserves a normalized absolutely continuous invariant measure

whose density is an increasing function.

5.2 ACIMs for piecewise concave maps on [0, 1] with countable (in -

nite) number of branches

5.2.1 Piecewise concave maps with countable (in nite) number of limit points sepa-

rated from 1

Consider(l; B; ) be a measure space, wherés the Lebesgue measure br= [0; 1] andB

increasing or decreasing. For any f0;1;2;:::g; letn(i) be the index such that the interval
[an(i); @] does not contain any other points of the partitionadfis the limit point of increasing
subsequence a@f,'s, then(k) is not de ned. We say that a non-singular transformatich Tplcv(l )
if

(1) 1= (a1 is continuous and concave;

i = J(anq:a] 1S CONtiNUOUS and concaver 1; 2; ;

2 (@)=1; Ya)>0i=1;2:::;

) (a)=1; Ya)= 1> 1;

P
4 sy <l:
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For 2 Tplc\,(l );92 L1(1);g Othe Frobenius-Perron operafr is de ned as

_ 90 1)) S G 9)
P a(x) = m (ar;1](X) + . W (an(i);ai](x) (5.2.1)

We construct a piecewise convex map [0; 1] !  [0; 1] with countable number of branches such
that it is conjugated to. Consider the diffeomorphisim: [0; 1] ! [0;1]de nedbyh(x) =1 x:
It can be shown (seA.2 in Appendix for proof) that the map : [0;1] ! [0;1]dened by =
h 1 h is a piecewise convex map with countable number of branches hatbng to the class
TplC (1) of piecewise convex maps with countable number of branches (see CBapter

If f isa -invariantdensitytheg= f h !t j h 1 0j isa -invariant density according to

the following theorem.

Theorem 5.2.2.[5] Let (I; B; ; ) and(l; B; ; ) be the dynamical system and let [0; 1] !
[0; 1] be nonsingular. Leh : [0;1] ! [0; 1] be a diffeomorphism. Then

P f = f impliesP g= g;where = h h landg= f h?! jhtY;

i.e.iff isa invariant density, thegisa invariant density.

Proof. LetP f = f: Using the properties of Frobenius-Perron operator we have,

P (Pnf)

Ph nh 1(Pnf)

Phn P Ppoipf

= thl
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To proveP g = g;we need to show th&,f = g: We have

Phf (x)

|
—

. Q
h; b h; o a 1:a)]

I
—h
=y

=
—
=y
=
o
—

sinceh is monotonic and also a diffeomorphism [@1]. Thus, we have

Pg=P (Pyf)= Pyf = g:

We can also prove the existence of the ACIM adlirectly without using the conjugation.

Proposition 5.2.3.1f g 0 andg is non-decreasing, thefl x) g(x) (9); for x 2 [0;1];

where z,

(9) = ) g(x)d (x):

X 1-x

Figure 5.1: Graph for Profh.2.3
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Proof. Forany0O<x  1; from the Figureb.1

Z, z
(1 x)a(x) g(t)dt g= (9):

X

Sinceg 0Oandgis non-decreasing. L&t 2 [x; 1]Jandt x; =) g(t) 9(x): Therefore,

Z 1 VA 1
g(t)dt g(x)dt=(1  x)g(x):

X X

O
Lemma5.2.4.1f g: [0;1]! R* is non-decreasing and 2 Tplcv(l ). Then
1
kP (g) ki —kgkis +D kgkg; (5.2.5)
1
P
whereD = L, -~
Proof. Sinceg is non-decreasingy(1) k gkj ;andsoP g(1) k P gk; :
1 ogita) 1 2 g(a)
Pol) = 1) + ! —g(1) +
Since g is non-decreasing, from Propositto8.3
(9 @ a) 9(a)
Therefore,
!
1 @ 1 1 X1 1
Pgl —o1)+ — kgk; + ———— kgk;:
O

Theorem 5.2.6.Let 2 Tp{:\,(l ): Then admits an absolutely continuous invariant measure

g with non-decreasing density functign:
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Proof. The proof is analogous to the proof of Theor8r@.7in Chapter3. O

5.2.2 Piecewise concave maps with countable (in nite) number of branches where 1

is a limit point of partition points

Consider(l; B; ) be a measure space, where the Lebesgue measure brr [0; 1] andB is

be increasing or decreasing. For dn® f 0;1;2;:::g; let n(i) be the index such that the interval
[an(i); @] does not contain any other points of the partitiorais the limit point of increasing sub-
sequence od,'s, then(k) is not de ned. Moreover, we consider an increasing sequéaggg of
partition points in(a;; ag] such thaf 1 = ag > > A+ >aArn >aAgn 1) > >agp >

a1 = ajgandlimpy;  ain = ap = 1: We say that a non-singular transformatio2 Tplc\jl(l ); if
(1) 15 = Jfay .1 sayy) IS cONtinuous and concave, j=1, 2, ...;
i = aniy) is continuous and concaves 1;2;
(2) (a15)=1; Yay)>0j =1;2::1;
(8)=1; Ya)>0i=1;2, ;

p
3) ilzlﬁ)(lafi)<1:

HDy= b, ol o<1
() 1- i=1 Uayy) .

Remark5.2.7. Condition (3) and Condition (4) can be replaced by the following Condit#i ;

where
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P, , P

1 1 .
(3)+ j=1 U(al;j) + i=1 Oa) <1:

We construct a piecewise convex map|[0; 1]! [0; 1]with countable number of branches such
that it is conjugating to . Consider the diffeomorphisim: [0; 1]! [0;1]de ned byh(x) =1 x:
It can be easily shown (se&2 in Appendix for proof) that the map : [0;1] ! [O; 1] de ned by
=h1t h is a piecewise convex map with countable number of branches aebbng to the
cIassTplc [T p% ;O(I ) of piecewise convex maps with countable number of branches (see Chapter
3). If f isa -invariantdensitytheg= f h ! j h ! %isa -invariant density according to

Theoremb.2.2

Again, we can prove the existence of the ACIM odlirectly.

Lemma5.2.8.1f g: [0;1]! R* is non-decreasing and 2 Tpe,(1). Then

kP (g ki Dikgks +D kgky; (5.2.9)
P
whereD = ;) -l
Proof. The proof is analogous to the proof of Lem®.2.4 O

Theorem 5.2.10.Let 2 Tplcv;l(l ): Then admits an absolutely continuous invariant measure

=g with non-decreasing density functign:

Proof. The proof is analogous to the proof of Theor8r.7in Chapter3. O

5.3 Ulam's method for piecewise concave maps with countable (in -
nite) number of branches

5.3.1 Approximation of piecewise concave maps with countable (in nite) number of
branches by piecewise concave maps with nite number of branches

Let :[0;1]! [O;1]be a piecewise concave map‘ﬁ&v(l )T p%\}l(l ) with countable number

of branches. In this section, we will describe the most dif cult case whés the limit of the
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partition points for map 2 Tp%\,;l. We assume that there are no other limit points of the partition
points. The other cases, i.e., where there are such limit pointéZoTp%V, are done similarly. Thus,
the map is like in Section5.2.2 For simplicity, we change the notation by renaming the partition
points. Leta, = ai.n, N =1;2;:::. Then, the assumptions (3) and (4) of Sectiah 2are restated
as:

(3% There exists alN 1 such that

D, = <1 (5.3.1)
n=N+1

Then, the Lemm&.3.40f Section5.2.2hold with changed constants

X s
D= o andD = 1

<1 (5.3.2)
n=11 an Yan) n= N +1 Yan)

Forn N, we construct asequend:eng%=N of maps ,, : [0;1] ! [0;1] s.t. , has nite
number of branches ang, converges to almost uniformly. Using supremum norms and Lasota-
Yorke type inequalities, we prove the existence of stationary dengjtie6 ACIMs ,, for . We
approximate : [0;1]! [O; 1] with the following sequence of maps, : [0;1]! [0;1],n N,

with nite number of branches:
8
EX=é’ln yan X L

n(x) = 3

xX);0 x ap:

In the following, we show that for each 0; the map , has an absolutely continuous in-
variant measure. It shows that each is a piecewise convex maps with nite partitid® =

ap; a; az; ;an;an+1 =1gand , satis es following conditions:

(1) n; = ni(g;a 1]iscontinuous and concave=1;2; ;n+1;

) n(g)=1; Ay)>0j=1; ;n+1;
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3 W=1; SO)= ;i >

an
p
(4) Jn:11 7)(1aT <1l:

Letg2 L(1);g 0: Then, the Frobenius-Perron operafor, is de ned as

X1 g( (X))

P = -
n g(X) i r(])( njl(X))

nlaj;a; 1) (X) (533)

Lemma5.3.4.Letg2 L1(1);g 0;gnon-decreasing. Then
(1) P . (g) 2 LY(1)foreachn =1;2;::::
(2) P ,(9) Oforeachn=1;2;::::
(3) P ,(9) is non-decreasing for eaain=1;2;::::

4 kP, (9 ki ©Cn kagks A+ C) k g kg for eachn = 1;2;::: whereC, =

+ 7 1
1 a, j=1 nﬁ(aj)

Proof. (1)

ThereforeP , (g) 2 L(I)

(2) Note that
X1 g( n1(x))
j=1 I(1)( n,—l(x))

P.g(x)=

n[a) ;3 1)(X):

1
Each of the branche&. ">

n ( njl(X)) nlaj;a 1) (X) IS non-negative_

( nf (X)) , g .
(3) Each of the branche%m ola:a 1)(X) is non-decreasing since, " is decreasingg

is non-decreasing and is decreasing.

(4) We have
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XL g( 1 (x))
i=1 r?( njl(x))

Xt kgk X1 Kk gk

P n 9(x) n[aj ;g 1)(X)

b:l r(1)( njl(x)) j=1 1 g(aj)
X
= @ a,+ ——Akgk
"L @) '
(1+C)kgks

O

Lemma5.3.5.1f g:[0;1]! R* is non-decreasing, then foreaoch N,
kP, (9) ki (an+ D1)kgks +D kgky; (5.3.6)

Proof. Sinceg is non-decreasingy(1) k g kj ; and by Lemm&.34 P ,g(1) k P gk :

Now,

X g( (1)
=1 r(])( njl(l))
1 X gl ata) X g a)

P n g(l) n (aj 18 1](1)

j

= ——0o(1 1 ) B
ﬁ(l)g()+j=N 8 nt@) o 8 ML)
X g@,) X gan)
= (1 an)g)+ L+ '
oy f@n) T B
@ 1

(1 an+ D1)g(1)+ - a 9a)

(1 a,+Di1)kgks +D kgks:

Theorem 5.3.7.For eachn 2 N; , admits an absolutely continuous invariant measwe= g,

with non-decreasing density functigp:
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Proof. The proof is analogous to the proof Theordr.7in Chapter4. O

De nition 5.3.8. Let ,; are maps onf0; 1] into itself and ,; are de ned as above. We say
that ,, converges to almost uniformly if, given > 0; there exists a measurable get

[0;1; (A)>1 ; suchthat! uniformly onA :
Lemma 5.3.9. , converges to almost uniformly.

Proof. Let > 0: Choose the increasing partitié® = ag; az; as; ;an;an+1 = 1gof[0; 1] for
nsuchthatt a, < : LetA =(0;a,): Then, (A)=a,>1 :Since , = onA the

proof is complete.

5.3.2 Ulam's method

In this subsection, rst, we describe Ulam's method for nite-dimensional approximaipa

n andk denoted by the number of branches and number of partitions, respectively, of the Frobenius-
Perron operatd? , of ,:Ulam's method computes,x on a partition ok subintervals of the state
space as an approximation of the actual stationary density furggioh ,; n 1. Moreover, we
show thatg,k convergest@, ask ! 1 :Let p isan approximation of 2 Tplcv(l) [T p%\,;1(I ):
Then, by the Theorerd.3.7,  has an absolutely continuous invariant measuyrwith stationary
density functiorg, : The approximatiowy, is carried out using a two-step process. In the beginning,
we approximate by the map , with a nite number of branches. Then, we further approximate

n by using Ulam's method. In our case, we don't need approximation ir.theorm. So, it's
not an approximation of any norm. In this sense, approximation meagenverges almost

uniformly. Now, we describe Ulam's method for approximatigg Let k be a positive integer.

deterministic case, we construct the matrix approximation of the F-P operator as the form
!
n 1(Jj ) \ Ji

Moo = (Ji)
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where denotes the normalized Lebesgue measur andf Jigk; is a nite family of connected
sets with nonempty and adjoint interiors that covere.,J = | }‘zlJi; and indexed in terms of
nested re nements. Lét(K)  L([0;1]; ) be a subspace &f!' consisting of functions which are
constant on elements of the partitiB : We will represent functions ih () as vectors: vectay =
[g1: G0; 1 gk] corresponds to the functiam = P K. G 1 LetQ® be the isometric projection

of L ontoL (¥:

X 1 1
®(q) = d = d;:::; d 5.3.10
Q™(g) I R L R (A @0 Y (5.3.10)

PRg = (M )T™ (lg1;02:: 55 0]) (5.3.11)

which is a nite-dimensional approximation to the operalor : AT"@"S denotes the transpose of
the matrixA:
Then, we have

PMg= QWP g:

More generally, fog 2 L!; we have
pliQkig= Qp QKg:

The following Lemma will be used several times in the sequel.

L1:1fg,! h;asn!1l ;weaklyinL?®;then the convergence is alsolirt and a.e.

Proof. The proof is analogous to the proof of the Lem#a.13 in Chapter 4. O
Lemma 5.3.13.The invariant densitg-x ofP(nk) n IS non-increasing for any; k > 1:

Proof. The proof is analogous to the proof of the Lem#a.14in Chapter 4. O
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Using Ulam's method and corresponding convergence analysis describ@d, 5[ 14], the

following theorem can be proved.

Theorem 5.3.14.Let 2 Tplc\}l(l ) be a piecewise concave map with countably many branches. Let

f ngi_, be the approximating sequence of piecewise convex maps with nite numbers of branches
where , are de ned in the previous Sub-Sectié8.1 If g, is a normalized xed point of

P(ﬁ); k = 1;2;:::; dened in (6.3.19, then the sequend&, Ji-; is weakly pre-compact in

L1: Any limit pointg, of the sequencgn« i, isa xed point ofP :
Proof. The proof is analogous to the proof of TheordrB.15in Chapterd. O

Theorem 5.3.15.Let 2 Tp%\,;l(l) be a piecewise concave map with countably many branches.
As described at the beginning of subsection 3.1f legl_, be the approximating sequence of
piecewise convex maps with nite numbers of branches.PIf@t, k =1;2;::: be the sequence

of Ulam's operators approximating operatoRs .. Letgn.k be the normalized (') xed point

L1 . If On k-0 =1;2;::1 isaweakly convergent subsequence, then it converdes(and almost

everywhere) to a functioh which is a xed pointofP ,P g= g.

Proof. The proof is analogous to the proof of TheorérB.15in Chapterd.

5.4 Examples

Example 5.4.1. Consider the piecewise concave map [0; 1] ! [0; 1] with countable (in nite)
number of branches de ned by = h; ! hy; wherehy : [0;1] ! [O; 1] is the diffeomorphism
dened byhi(x) =1 xand :[0;1]! [0;1]is a piecewise convex map with countable
number of branches denedby= h 1 T h;h:[0;1]! [0;1]is the conjugation de ned by
h(x)=1 (1 x)%T:[0;1]! [0;1]is the piecewise expanding and piecewise linear map with

countable number of branches de ned as

=

=12, (5.4.2)

. 1 1
= + _ [
TX)=i(i+1) x 1 on Rk
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See Figure 5.2 for a few branches oéind a few branches of Moreover, see Figure 5.3 for a graph

of the piecewise expanding and piecewise linear Mmafor Example5.4.1

1

0.8

0.6

0.4

0.2

0 0.2 04 0.6 08 1

x

Figure 5.2: Graphs of (left) and (right) for Example5.4.1

0.8

0.6

0.4

0.2

02 04 0.6 08 1

x

o

Figure 5.3: The graph of the piecewise expanding and piecewise lineaf pfapExample5.4.1

Itis shown in Chapted thatf (x) = j2(1 x)j is the stationary density of the piecewise convex
map with countable number of branches. Therefa@g) = f (hi(x)) j h$(x)j = 2jxj is the
stationary density of See Figure 5.4 for a graph of

Now, we nd the rst few branches (from right) of on [0;1]. Note that (x) = (hl1
hy)(x); wherehlgx) =1 x hll(x) =1 x: The piecewise con(\)/ex mapis piecewise

_ _q_ _
onto on the partition :::;1 31 21 31 21 ;1 of [0; 1]: Moreover,
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Figure 5.4: The graph of the stationary dengjtgf the piecewise concave mapwith countable
(in nite) number of branches for Examp&4.1

q— q— q 5 q 5 q 3 q 3 q-—
31(1)=o;ha1 é = $hp 1 5= %h 1 2= 3n 1 % =
3ihy 1 2 = 2;:::: Therefore, the piecewise concave majs de ned on the partion
ng—o0°n g d_qg_q_'q 0 q_
P = 4 = 0 &l; 2003 % 251 of [01]: If x 2 [0;  3]; thenhy(x) 2
q_ _
[1 Lapifx2[1 1-1]then (x) 2 [0:1]: If x 2 [0;1]; thenh 1(x) 2 [0;1]: Thus, if
2
_ q_

x2[0; 3]then (x)=(h,* h)(x) 2 [0; 1]: Moreover, or[0;  3];

(x) = (hy? h)(x)
hy'( (1 )

h pé(l 1 x)

hia P2y

P 2X:

Similarly, we can nd other branches ofon the partition

(r — ) C r—_r_r_r_r_ )
i

1
P= 5 = 0 3 21 of [0;1]:

a1l |

Wi N
Al
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hg _—q_i hg_q_i hg_q_i hg_q_i p
The branche¢n =4) on  3; ;%3 % 4 45 are X2 3
P 12x2 8;p 20x2 15;p 30x2 24 respectively. Now, consider the following sequeficgg, o

wWIN

of piecewise concave map, : [0;1]! [0; 1] with nite number of branches:

q
—p—x 0 Sox 1

1 = n+1 n+1

q n
(xX); 0 x< I

n(X) =

"W W 00
o)

See Figure 5.5 for a graph of, with n = 5: The sequence g, o of piecewise concave map

Figure 5.5: Piecewise concave mapwith nite number of branchesf = 5).

n:[0;1]! [O; 1] with nite number of branches converges almost uniformly twith countable
(in nite) number of branches. In Figure 5.6, we present a graph of approximate stationary density
Onk;N = 5;k = 100 via Ulam's method of the actual stationary densityggfn = 5 of the
piecewise concave map,;n = 5 with a nite number of branches. Note that;;n = 5 is an
approximation of the piecewise concave map

In Figure5.7, we present a graph of the actual dengityf the piecewise concave mapwith

countable number of branches and graphs of the approximate stationary dgasity= 5;k =
100andn = 10; k = 1000 via Ulam's method of the actual stationary densitygefn = 5 and10
of the piecewise concave map;n =5 and10respectively with nite number of branches. Note
that ,;n = 5 is an approximation of the piecewise concave map Figure 5.2 and therefore,

theL! norm errork g ghx k1= 0:2205242549nith n = 5;k = 100 is not very small but for

90



Figure 5.6: The approximate stationary dengify;n = 5;k = 100 via Ulam's method of the
piecewise concave map, with nite number of branches(=5).

n = 10;k = 1000 the L' norm errork g gnk k1= 0:133497358668%vhich is smaller than
n =5;k = 100. Theorenb.3.14con rms that for largen and largek, theL® norm error is close to

0.

Figure 5.7: The graph of the actual invariant density g of the piecewise concave miéth
in nite number of branches (in red) and the graph of the approximating degsity(in blue):
n =5;k =100 on the left anch = 10; k = 1000 on the right hand side.

Example 5.4.3.Consider the piecewise concave map|[0;1]! [0; 1] with countable number of
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h [

branches on the partition z2-; 52~

gi_, of 1 =[0;1]de ned as

x)=1 (% 2)(mod 1): (5.4.4)

Figure 5.8: Graphs of (left) and (right) for Example5.4.3

In the following, we show that satis es conditions of Theoref.2.6 i.e., 2 Tplcv(l ):
i

Condition (1): (x) is piecewise continuous and concave %; 23n :Since (x) =1
i

2 2 (modl)and {x)= ;5 is decreasing onsZ; »2- : Thus is piecewise concave.
Condition (2): (5%:)=1 & 2 +n=1; &)= %+%2>08n2N:
2+ n
Condition (3): Clearly, (1)=1; Y1) =2(= )>1
Py

Condition (4): we have only one interval in betwegandl; and © 2 = 3:Thus |, 5y =
2 :
s§<1:
Thus 2 Tplcv(l ) and hence by Theoref2.6§ has an acim.

Now, consider the piecewise convex map[0; 1]! [0; 1] with countable number of branches
on the partitiorf [,"; 1*1)gl_  of [0; 1] de ned as

2+n?’ 3+n

(x) =

1T x (mod 1): (5.4.5)

See Figure 5.9 for the graph of(right) and (left). Consider the diffeomorphisim: [0; 1]! [O; 1]

denedbyh(x)=1 x:Wehaveh = h:Hence istopologically conjugate to By Theorem
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5.2.2 if has a unique acim with densityf , then it is easy to nd the stationary densdyf : In

fact,g= f h* jhtY:

Example 5.4.6. Consider a piecewise concave map [0;1] ! [0; 1] with countable (in nite)

number of partition$ 1 = ag;a;;a;:::gofl =[0;1]de ned as

n
—F—+ N 0N )
1tn n? n 'n+1
n(n+1) + X

(x)=1 (5.4.7)

We want to show that is an acim for:

Figure 5.9: Graphs of and for examples.4.6

From ChapteB, Consider the piecewise convex map [0; 1]! [0; 1] with in nite number of

branches de ned as

1
(X)= Zpeg— N oon
n(n+1) X

(5.4.8)

>
+ |
H

Sk

See Figure 5.10 for the graph ofand :

Condition 1:

Here (x) is piecewise continuous and concave on its domain. Sifoe = ﬁz is
h i n(n+1)

decreasing on™1; - : Thus is piecewise concave.

Conditions2; 3:

Since in this example we have only one interval in betw@and:
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P
(%)=1>O;and0%=1>o;Thus i1=173(1217i)=1<1:

Condition 4:
Pl 1 1,1 1 1 1 1 1 2 . .
=1 Tagy) - 4t ot et Tt =ttt = 5 1 0:6449< 1. We know

that (x) is piecewise continuous on the countable parti[iﬁﬂﬁf; %] of [0; 1]. Since is a unique

acim for .

Leth:[0;1]! [O; 1] be a diffeomorphism de ned as
h(x)=1 x:

Here, h(x) is linear with slopes 1, and we havéh = h. By Theorem5.2.2 if has
a unique ACIM with densityf, then it is easy to nd the stationary densigyof : In fact,

g=f h' jhtY
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Chapter 6

Conclusion

In this thesis, we dealt with the problems of the existence and exactness of ACIMs of some
chaotic dynamical systems in one dimension.
First, we de ned two new classes of transformatid’gh (I );Tp% ;O(I) of piecewise convex maps
with countable (in nite) number of branches. We investigated the properties of these classes that
enable us to derive a unique ACIM for the transformations in these classes. We determined the
density function using Ulam's method for these new classes.
Our study extended to non-autonomous dynamical systems within these de ned classes, focusing
on the existence of ACIMs for the limit map, We established a signi cant result, demonstrating
that the -invariant density could be obtained as the limit of a sequence of denBHefs, whereT,
represents the composition of the rst n-maps in the non-autonomous system, for a non-increasing
densityf .
We discussed the invariant density using the Frobenius-Perron operator in Chdhtegenerally,
the xed point or invariant density is not found easily. In Chapferour main purpose was to
approximate the F-P operator by a sequence of nitely dimensional operators. Determining the
xed point of the Frobenius-Perron operatBr of is generally challenging. It was required
to approximate the F-P operatBr using any of the approximation methods. We used Ulam's
approximation. We introduced an opera@f<) that projected.? ! L&) and used the nite
dimensional approximatioR (nk) of the F-P operatoP , of p:

In Chapter5, we explored the dynamics of new families of transformatioTb%‘,(l );Tplc\)l(l ),
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focusing on the conjugation of a piecewise concave map to a convex map previously introduced in
Chapter3. This conjugation provided insights into the dynamics of these maps and enabled us to
prove the existence of an invariant density.

This research has endeavored to elucidate certain obscure aspects within the eld of dynamical
systems, particularly with respect to the existence and stability of ACIMs.

Moving forward, for future research, our research directions will focus on investigating ACIMs for
random maps within the class of piecewise convex maps with a countable number of branches. This
exploration will include both constant and position-dependent probabilities, as we can use Ulam's
method to approximate ACIM in terms of random maps with countable partitions. Additionally, we
aim to explore the concept of sustainability within this framework, providing new perspectives and
solutions to this complex problem. Overall, the insights and methods developed in this thesis will
pave the way for future research and lead to a deeper understanding of ACIM in chaotic dynamical

systems.
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Appendix A

A.1 Inequality (3.4.3):

Recall that the Koopman operatdr : L* ! L1 isde ned by

Ug=g

Proposition A.1.1. [5] If f 2 LYandg2 L! ;thentP f;gi = Hf;U gi;i.e.,

z z
(Pf) gd = f Ugqd:
| |
Now from inequality 3.4.3:

z z

h(P ,F P F)d j(P,F P F)hjd
z

= j(P,Fh P Fh)jd
z

= jF(U, h U h)jd

z

= Fjh ,» h jd

Ph(supj n )
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A.2  isconjugated to

Proposition A.2.1. Let be a piecewise concave map with countable number of branches. Consider
the diffeomorphisrh : [0;1]! [0;1]de nedbyh(x) =1 x: Showthatthe map:[0;1]! [O;1]

denedby =h ! h is a piecewise convex map with countable number of branches.

Proof. Here the diffeomorphisnh : [0;1] ! [0;1]dened byh(x) =1 x is linear and non-
increasing. soh 1(x) =1 x is also linear and non-increasing on its domain.

Consider is a piecewise concave map with countable number of branches.

Since the composition of the concave map with a non-increasing function is convex, i.b.js
COnvex.

Againh 1(x)=1 xis also linear and non-increasing which conclude that
=h't h

is a piecewise convex map with countable number of branches. Since the composition of functions

does not change the number of branches. O
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