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Abstract

Absolutely continuous invariant measures for piecewise convex maps of an interval with
countable (in�nite) number of branches

A H M Mahbubur Rahman, Ph.D.

Concordia University, 2023

This thesis delves into three areas of research on dynamical systems. First, it explores the

existence and exactness of Absolutely Continuous Invariant Measures (ACIM) for piecewise con-

vex maps with countable (in�nite) number of branches. Second, it employs Ulam's method to

approximate the density function of these ACIMs. Third, it investigates the existence of Absolutely

Continuous Invariant Measures for piecewise concave maps using the technique of conjugation.

For the �rst topic, we examine the existence and uniqueness of ACIMs within two distinct classes,

denoted asT 1
pc (I ) and T 1 ;0

pc (I ); which together encompass piecewise convex maps� : I =

[0; 1] ! [0; 1] with countable number of branches. We establish the necessary conditions under

which these maps possess a unique ACIM, presenting multiple illustrative examples of ACIM exis-

tence. Our �ndings are based on the analysis of the Frobenius-Perron operator associated with these

maps, utilizing analytical techniques to gain insights into the Frobenius-Perron operator's proper-

ties.

The main purpose of the second part of this thesis is to approximate� by the map� n ; where we

construct a sequence� n with a �nite number of branches. Then, approximate� n by Ulam's method.

Since piecewise convex maps have countable (in�nite) number of branches, the convergence of

Ulam's method becomes more challenging, and complexity makes it harder to �nd a suitable se-

quence of approximating functions that can accurately analyze the behavior of this system across

all branches.

The primary contribution of this Ph.D. thesis lies in the generalization of the existence of absolutely

continuous invariant measures for piecewise convex maps de�ned on an interval with an in�nite

number of branches. In the case ofT 1
pc (I ); we examine piecewise convex maps with an in�nite
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number of branches and arbitrary countable number of limit points for partition points separated

from 0. ForT 1 ;0
pc (I ); we consider piecewise convex maps with countable number of branches and

partition points that converge to 0. Throughout the thesis, we investigate Absolutely Continuous In-

variant Measures (ACIM) for� 2 T 1
pc (I ) and� 2 T 1 ;0

pc (I ); along with exploring non-autonomous

dynamical systems of maps within these classes and scrutinize the existence of ACIMs for their

limit maps.

Furthermore, we investigate the approximation for ACIMs associated with piecewise convex maps

with an in�nite number of branches by employing Ulam's method. This computational approach

is a practical way to estimate the density functions of ACIMs and thereby facilitate their numerical

analysis. We then extended our research area on ACIM for piecewise concave maps with countable

number of branches. We examine the existence and uniqueness of ACIMs for two distinct classes,

T 1
pcv(I ) andT 1 ;1

pcv (I ); which encompass piecewise concave mappings denoted as�: We utilize the

concept of conjugation with piecewise convex maps� to demonstrate that� conserves a normalized

absolutely continuous invariant measure with a density that exhibits increasing behavior.
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Chapter 1

Introduction

In the realm of discrete dynamical systems, the focus lies on understanding the long-term pat-

terns exhibited by trajectories as they evolve through the iteration of a map. The presence of chaos

within deterministic dynamical systems introduces an inherent limitation in our ability to forecast

the future behavior of these systems, given a particular set of initial conditions. Hence, it is natural

to adopt a statistical perspective when describing the entire system's behavior. This approach seeks

to characterize the dynamics by establishing the presence of an invariant measure and studying its

ergodic properties. By considering the system from a statistical viewpoint, we focus on the long-

term average behavior rather than attempting to predict individual trajectories. We aim to identify a

measure that remains unchanged under the system's evolution, capturing its essential characteristics.

This invariant measure provides a statistical description of the system's dynamics, enabling us to

analyze its properties and make probabilistic predictions. Observing absolutely continuous invari-

ant measures (ACIM) in computer simulations carries signi�cant implications, such as in molecular

dynamics simulations of a gas, simulations of a chaotic system like the double pendulum, quantum

mechanical simulations, climate simulations, aerospace engineering, traf�c simulations, and so on

[5, 41]. It indicates that absolutely continuous invariant measures (ACIM) can adequately describe

the system's behavior using probability densities and continuous distributions. In general, letX be

a metric space,B be a� � algebra of subsets ofX , and� be a measure onB: The Birkhoff Ergodic

theorem states that if� : (X; B; � ) ! (X; B; � ) is ergodic with respect to an invariant measure

� andE is a measurable subset ofX then the orbit of almost every point ofX occurs in the set
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E with the asymptotic frequency� (E ): If the measure� is absolutely continuous, this occurs for

points forming a set of positive Lebesgue measure, so for a physically meaningful set of points. The

Birkhoff Theorem does not say anything about the existence of invariant measures. The existence

of an absolutely continuous invariant measure is one of the most important problems in the ergodic

theory and dynamical systems. If a dynamical system possesses an absolutely continuous invariant

measure, it often indicates that the system is indeed ergodic. The Frobenius-Perron operator plays

an essential role in understanding the existence and properties of ACIM. This operator is a funda-

mental tool in ergodic theory, enabling the study of invariant measures and the long-term statistical

behavior of dynamical systems.

In [32], Lasota and Yorke established the existence of absolutely continuous invariant measures

for piecewise expanding maps. In [33], the authors investigated the exactness and the existence of

ACIM for piecewise convex transformations with a �nite number of branches with a strong repeller.

In this context, the authors in [33] considered the following properties as fundamental properties

for the proof of the existence of ACIM: (i) the F-P operatorP� maps non-increasing functions to

non-increasing functions; (ii) Iff : [0; 1] ! R+ is non-increasing, thenk P� f k1 is bounded

by A k f k1 + B k f k1; whereA < 1 andB are some constants. Similar results were also

demonstrated in [5] for convex transformations with a �nite number of branches. In [38], the author

studied the ACIM for a piecewise convex map on[0; 1] with countable number of branches where 1

is the limit point of partition points. We generalize these results to more general classes of piecewise

convex maps.

Recently, there has been a burgeoning interest in non-autonomous dynamical systems. In such

systems, each map� n from the familyf � ng1
n=1 applies at then-th step within the system. Carvalho

et al. [8], Cheban [9, 10, 11], Chepyzhov and Vishik [12], Haraux [24], Kloeden and Rasmussen

[30] studied non-autonomous dynamical systems and their global attractors. The author [45] in-

troduced the generalization of the Sinai-Ruelle-Bowen (SRB) (originally conceived in the 1970s)

measure to non-autonomous systems. In [22, 17], P. Góra et al. studied the generalization of

Krylov-Bogoliubov Theorem and Straube's Theorem for non-autonomous dynamical systems of

continuous maps on a compact space. Furthermore, they investigated ACIMs of the limit map for

non-autonomous dynamical systems of piecewise expanding maps.
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S. M. Ulam suggested numerical computations of stationary densities of invariant measures for

dynamical systems [42]. Ulam's method is one of the most used and the best-understood numerical

methods for the approximation of stationary densities of absolutely continuous invariant measures

for deterministic maps and random maps. For piecewise expanding deterministic transformations,

T-Y Li [ 34] �rst proved the convergence of Ulam's approximation. Subsequently, researchers ex-

tended Ulam's method to encompass one-dimensional and higher-dimensional expanding deter-

ministic transformations. For piecewise expanding interval maps, Bose and Murray presented the

convergence rate of Ulam's method in [3]. In the context of higher-dimensional Jablonski trans-

formations, Boyarsky and Lou proved the convergence of Ulam's method in [6]. For piecewise

expanding andC2 transformations, Ding and Zhou proved the convergence of Ulam's method in

[16]. On random maps with constant probabilities, Froyland con�rmed the convergence of Ulam's

method and presented the rate of convergence in [19]. Góra and Boyasrsky proved the convergence

of Ulam's method for position-dependent random maps in [5]. In [35], Miller proved the conver-

gence of Ulam's method for piecewise convex transformations with a �nite number of branches with

a strong repeller. J. Ding [14] developed and presented piecewise linear and piecewise quadratic

Markov �nite approximation methods for piecewise convex maps with a �nite number of branches.

If piecewise convex maps have countable (in�nite) number of branches, the convergence of Ulam's

method becomes more challenging and complex. This complexity makes it harder to �nd a suit-

able sequence of approximating functions that can accurately capture the behavior of this system

across all branches. In [20], the author presented a class of maps with countable (in�nite) num-

ber of branches without any absolutely continuous invariant measure. In [21], Góra and Boyarsky

presented an approximation method for invariant measures for piecewise continuous maps with

countable number of branches. Here, we consider countable number of branches to mean an in�nite

number of branches. A set is countably in�nite if its elements can be put into one-to-one corre-

spondence with the natural numbers. For instance, the set of all natural numbers {1, 2, 3, 4, ...}

is countably in�nite because we can list its elements one after the other, and each natural number

corresponds to a unique element in the set.

The main objective of this thesis is the study of the existence and exactness of absolutely con-

tinuous invariant measures for piecewise convex maps with countable number of branches. We also

3



investigate the existence of ACIMs of limit maps for a non-autonomous dynamical system of piece-

wise convex maps with countable (in�nite) number of branches. We explore numerical methods for

approximating ACIMs for piecewise convex maps with countable (in�nite) number of branches by

applying Ulam's method. While there are several results on piecewise convex maps with a �nite

number of branches, there is only one work about such maps with an in�nite number of branches

[38]. The existence and approximation of ACIMs of piecewise concave maps with an in�nite num-

ber of branches are also studied. In most applications, the Lebesgue measure is the predominant

choice. When we opt for a singular measure, it often renders actual points imperceptible. While

such measures have theoretical existence, they typically lack practical relevance. In practice, we

commonly rely on the Lebesgue measure and frequently work with measures that are absolutely

continuous with respect to the Lebesgue measure.

In Chapter3, we scrutinize the ACIMs for two classes,T 1
pc (I ) and T 1 ;0

pc (I ); of piecewise

convex maps with countable (in�nite) number of branches. We study absolutely continuous invari-

ant measures of maps� in the �rst classT 1
pc (I ), where� : I = [0 ; 1] ! [0; 1] has a countable

number of branches with an arbitrary countable number of limit points of partition points sepa-

rated from0: For the second classT 1 ;0
pc (I ); we assume: there exists a countable (in�nite) partition

f 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � < a 0;� 2 < a 0;� 1 = a1; a2; a3; : : : ; an ; : : : g of

I = [0 ; 1] with limn!1 a0;� n = 0 : Here, we also consider non-autonomous dynamical systems

of maps inT 1
pc (I ) [ T 1 ;0

pc (I ) and study the existence of acim of the limit map. We give several

examples of piecewise convex maps with a countable number of branches.

In the next Chapter, i.e., Chapter4, we use Ulam's method for approximation off � wheref � is

the actual stationary density of absolutely continuous invariant measure� for the piecewise convex

map� with countable number of branches. Ulam's method does not guarantee uniqueness in the

approximation off � , but when we deal with exactness, the density is unique (almost everywhere)

with respect to the Lebesgue measure. We construct a sequencef � ng1
n=1 of piecewise convex maps

with a �nite number of branches such that� n ! � almost uniformly. We apply Ulam's method to

� n and compute an approximationf n;k of the actual densityf n of � n and prove thatf n;k ! f n as

k ! 1 : Finally, we prove thatf n;k ! f � asn ! 1 ; k ! 1 . It's important to note that our notion

of "approximation" does not rely on any speci�c norm. In this sense, approximation means� n ! �

4



almost uniformly. We also illustrate by numerical examples.

In Chapter5, we extend our research area on absolutely continuous invariant measures for piece-

wise concave maps with countable number of branches. We investigate the existence and approxi-

mation of ACIMs for two classes,T 1
pcv(I ) andT 1 ;1

pcv (I ); of piecewise concave maps� with a strong

repellor. We give some examples of piecewise concave maps with countable (in�nite) number of

branches and exhibit that if any convex maps have an ACIM, then piecewise concave maps has

also an ACIM. One fascinating aspect of piecewise concave maps is that they can be conjugated to

piecewise convex maps on [0, 1], which allows us to use results from the theory of piecewise convex

maps to study their properties.

5



Chapter 2

Preliminaries

2.1 Review of Necessary Facts for Dynamical System

2.1.1 Review of Measure Theory

In this Section, we recap some important de�nitions and theorems of measure theory. The

interested reader may consult the books " Chapter 2, [40] or Chapter 1, [19]". Most of the material

can be found in [18] and [5].

Let (X; B; � ) be a measure space whereX is a non-empty set,B is a� -algebra of subsets ofX and

� is a measure onB. We call it aprobability space or normalized measure spaceif � (X ) = 1 . If

X is a countable union of sets of �nite measure, then we say that� is a� -�nite measure.

De�nition 2.1.1. Let � and� be two measure on same measure space(X; B). We say that� is

absolutely continuouswith respect to� , denoted by� � � , if for any E 2 B

� (E ) = 0 = ) � (E ) = 0 :

For absolutely continuous measures, the following theorem is useful:

Theorem 2.1.2. [18] � � � if and only if for every� > 0 there exists� > 0 such that� (E ) <

� =) � (E ) < � .

6



If � � � , then it is possible to represent� in terms of� . Now, we want to state the Radon-

Nikodym theorem, which is related to absolutely continuous measures.

Theorem 2.1.3. [18] Let (X; B) be a measure space and let� and� be two� -�nite positive nor-

malized measures on(X; B). If � � � , then there exists a uniquef 2 L 1(X; B; � ) such that for

everyA 2 B,

� (A) =
Z

A
fd�:

The functionf is called the Radon-Nikodym derivative,d�=d� , or a density of� with respect to

� . So, the Radon-Nikodym theorem states that if� is absolutely continuous with respect to� , and

both measures are� -�nite, then � has a density, or "Radon-Nikodym derivative," with respect to� .

The Frobenius-Perron operator (see page 12, Section2.3) serves as a bridge between the dynamics

of the transformation and the associated Radon-Nikodym derivative or density function [43], which

encapsulates how the transformation affects the probability distribution over its state space.

De�nition 2.1.4. Let (X; B; � ) be a normalized measure space.

Let D(I; B; � ) = f f 2 L 1(� ) : f 2� 0 andjj f jj1 = 1g denote the space of probability density

functions. A functionf 2 D (I; B; � ); then� f (A) =
R

fd� � � is a measure andf is called the

density of� f and is written asd� f
d� :

2.2 Overview of Ergodic Theory with Measure-Preserving Transfor-

mations

Ergodic theory deals with studying the long-term statistical behavior of dynamical systems,

particularly those that exhibit chaotic or random-like properties. However, the presence of chaos

renders it impossible for deterministic dynamical systems to accurately predict their long-term be-

havior from any speci�c set of initial conditions. Despite this, it is still possible to derive statistical

conclusions regarding chaotic systems using ergodic theory. For a more detailed understanding of

ergodicity and its applications in chaos theory, interested individuals may consult works such as

"Chapter 3, [5] or Chapter 1, [13] (1980 in English translation)".

Let (X; B; � ) as a normalized measure space.
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De�nition 2.2.1. A transformation� : X ! X is said to be measurable on a measure space

(X; B; � ) if � � 1(B) � B ; i.e.,A 2 B =) � � 1(A) 2 B , where� � 1(A) = f x 2 X : � (x) 2 Ag:

Additionally, � is said to be� -invariant or � preserves measure� if for everyA 2 B,

� (� � 1(A)) = � (A): (2.2.2)

Figure 2.1: Tent map� for equation2.2.3.

For example, consider a transformation� : [0; 1] ! [0; 1] de�ned as

� (x) =

8
>><

>>:

2x; x 2 [0; 1
2)

2 � 2x; x 2 [1
2 ; 1]

: (2.2.3)

SupposeA = [0 ; 0:4], so� � 1(A) = [0 ; 0:2] [ [0:8; 1]:

� (A) = � ([0; 0:4]) = 0 :4 and� ([0; 0:2] [ [0:8; 1]) = 0 :2 + 0:2 = 0:4:

Therefore,� (� � 1(A)) = � (A).

If the precise information regarding all the members of Borel setB is unavailable, it can be

challenging to verify whether� preserves a measure. Employing a� � system can provide a valuable

approach to determining whether� preserves a measure.

De�nition 2.2.4. A family P of subsets ofX is called a� -systemif and only if for anyA; B 2 P ,

A \ B is also inP.
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Theorem 2.2.5. [5] Let � : X ! X be a measurable transformation on a normalized measure

space(X; B; � ): LetP be a� -systemthat generatesB: If � (� � 1(A)) = � (A) for anyA 2 P ; then

� preserves measure�:

De�nition 2.2.6. Let (X; B; � ) be a normalized measure space and let� : X ! X preserve� . The

quadruple(X; B; �; � ) is called adynamical system.

In the study of dynamical systems, the primary concern is the investigation of the properties

exhibited by the sequence of pointsf � n (x)gn� 0 called the orbit or the trajectory of the pointx: The

nth iterate of� is denoted by� n i.e.

� n (x) = � � � � ::: � � (x)
| {z }

n-times

:

If � has an invariant measure, then the orbit starting in a speci�ed set, returns to that initial set

(state) in�nitely many times. The Poincaré Recurrence Theorem exactly tells us this.

Theorem 2.2.7. (Poincaré Recurrence Theorem)[5] Let (X; B; � ) be a normalized measure space

and � : (X; B; � ) ! (X; B; � ) be a measure-preserving transformation. LetE 2 B be such that

� (E ) > 0. Then, almost all points ofE return in�nitely often toE under iteration of� .

De�nition 2.2.8. A measure-preserving transformation� : (X; B; � ) ! (X; B; � ) is ergodic if for

any invariant setA 2 B, such that� � 1(A) = A, � (A) = 0 or � (X n A) = 0 .

So, we can say that a dynamical system is ergodic if it is indecomposable, that is if every

invariant measurable set has a measure 0 or 1 [1].

De�nition 2.2.9. Let (X; B; �; � ) be a dynamical system. A setB 2 B is called

(i) � -invariant if � � 1(B ) = B ,

(ii) almost� -invariant if � (� � 1B 4 B ) = 0 .

Here� � 1B 4 B = ( � � 1B n B ) [ (B n � � 1B ) and4 - the symmetric difference of sets.

Similarly, a measurable function is called� -invariant if f � � = f and almost� -invariant if f � � = f

� -a.e.
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TheBirkhoff Ergodic Theoremis one of the cornerstones of ergodic theory. This theorem says

the time averages along the trajectories are equal to the space averages [13].

Theorem 2.2.10. [5] Let transformation� : (X; B; � ) ! (X; B; � ) be a measure-preserving,

where(X; B; � ) is � -�nite, and f 2 L 1(� ). Then for almost everyx 2 X , there exists a function

f � 2 L 1(� )
�
=

R
X jf jd� < 1

�
such that

lim
n!1

1
n

n� 1X

k=0

f (� k (x)) = f � ; � � a:e:

Furthermore,f � � � = f � � - a.e. and if� (X ) < 1 , then

Z

X
f � d� =

Z

X
fd�:

The functionf � is invariant i.e.

f � (� n (x)) = f � (x); n > 0

Corollary 2.2.11. [5] If � is ergodic, thenf � is constant� -a.e. and if� (X ) < 1 , then

f � =
1

� (X )

Z

X
fd� a:e:

Thus, if� (X ) = 1 and� is ergodic andf = � E whereE 2 B, we have

lim
n!1

1
n

n� 1X

k=0

� E (� k (x)) = � (E ); � � a:e:;

and thus the orbit of almost every point ofX occurs in the setE with the asymptotic relative

frequency� (E ).

If � is ergodic, then the above Corollary2.2.11states that the time average equals the space average

and convergence is also true, i.e.,

lim
n!1

1
n

n� 1X

k=0

f (� k (x)) =
1

� (X )

Z

X
f (x)d�:
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De�nition 2.2.12. Let � : (X; B; � ) ! (X; B; � ) be a transformation preserving the measure� .

(i) � is ergodicif and only if for all A; B 2 B;

lim
n!1

1
n

n� 1X

k=0

� (� � kA \ B ) = � (A)� (B )

(ii) � is weakly mixingif for all A; B 2 B,

lim
n!1

1
n

n� 1X

k=0

j� (� � kA \ B ) � � (A)� (B )j = 0

(iii) � is strongly mixingif for all A; B 2 B,

lim
n!1

� (� � nA \ B ) = � (A)� (B )

(iv) � is exactif for everyA 2 B, � (A) > 0, and� (A) 2 B ,

lim
n!1

� (� n (A)) = 1 :

Moreover, the exactness of� implies that� is strongly mixing, but the converse is not generally

true.

Now, we introduce the functions of bounded variation. Let[a; b] � R be a bounded interval

and let� denote Lebesgue measure on[a; b]: We de�neP = f I i = [ x i � 1; x i ) : i = 1 ; 2; : : : ; ng a

partition of[a; b]: The pointsf x0; x1; : : : ; xng are called end-point of the partitionP:

De�nition 2.2.13. Let f : I = [ a; b] �! R and letP = f a = x0; x1; :::; xn = bg be a partition of

I = [ a; b].
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(i) f is called of bounded variation on[a; b] if there isM 2 R+ such that

nX

i =1

jf (x i ) � f (x i � 1)j � M

for all partitionsP:

(ii) VI f is called total variation or, the variation off on I

VI f = sup
P

(
nX

i =1

jf (x i ) � f (x i � 1)j

)

:

HereVI (�) denotes the variation of a function on[0; 1] and BV(I) is the space of function of

bounded variation onI equipped with the norm

k � kBV = VI (�) + k � k1;

wherek � k1 denotes the norm onL 1(I; B; � ).

Recall the de�nitions of� -invariance of� and� � � . If � satis�es these properties, then we

say that� is absolutely continuous invariant measure for� on (X; B; � ).

2.3 The Frobenius-Perron Operator

The Frobenius-Perron Operator is a linear operator that determines the transformation of density

[37]. This operator was �rst introduced by Kuzmin R. O. [5]. The Frobenius-Perron operator plays

an essential role in the existence of acim. We de�ne non-singular transformation and then de�ne

the Frobenius-Perron operator.

De�nition 2.3.1. Let (X; B; � ) be a measure space and� : X ! X be a measurable transformation

on (X; B; � ). Then� is called non-singular if� (� � 1(A)) = 0 for all A 2 B such that� (A) = 0 .

De�nition 2.3.2. Let (I; B; � ) be a measure space and� : I ! I be a non-singular transformation

on(I; B; � ): Let � be the normalized Lebesgue measure onI and let� � �; wheref is the density

for �: The operatorP� : L 1 ! L 1 called theFrobenius-Perron operatorassociated with� is

12



de�ned by
Z

A
P� f d� =

Z

� � 1 (A )
f d�; 8A 2 B; 8f 2 L 1(� ):

Here, the Lebesgue measure,� , is normalized if and only if it is on an interval of length 1. In any

other case, we can speak about a measure equivalent to the Lebesgue measure. In particular, the

Lebesgue measure ofR is in�nity, and we cannot normalize it.

Let A = [ a; x] � I: We obtain

P� f (x) =
d

dx

Z

� � 1 (A=[ a;x ])
f d� a:e:

and if � has countable number of monotonic branches thenP� has the explicit representation [5]:

P� f (x) =
X

w2f � � 1 (x)g

f (w)
j� 0(w)j

: (2.3.3)

Note that:(� � 1(x))0 = 1
� 0(� � 1 (x)) : For any value ofx; the setf � � 1(x)g consists of at most count-

ably many points. Here is the short proof of the equation (2.3.3).

Since � is monotonic on each(ai � 1; ai ); i = 1 ; 2; : : : ; we de�ne an inverse function for each

� j(ai � 1 ;ai ) :

Let � i = � � 1jB i ; whereB i = � ([ai � 1; ai ]):

Then� i : B i ! [ai � 1; ai ] and� � 1(A) = [ 1
i =1 � i (B i \ A); where the setsf � i (B i \ A)gi =1 are

mutually disjoint.

Now,

Z

A
P� fd� =

1X

i =1

Z

� i (B i \ A )
fd� =

1X

i =1

Z

(B i \ A )
f (� i (x)) j� 0

i (x)jd�

where we have used the change of variable formula for eachi: We obtain,

Z

A
P� fd� =

1X

i =1

Z

A
f (� i (x)) j� 0

i (x)j� B i (x)d� =
Z

A

1X

i =1

f (� � 1
i (x))

j� 0(� � 1
i (x)) j

� � (ai � 1 ;ai ) (x)d�
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SinceA is arbitrary,

P� f (x) =
1X

i =1

f (� � 1
i (x))

j� 0(� � 1
i (x)) j

� � (ai � 1 ;ai ) (x)

for anyf 2 L 1:

The existence and uniqueness ofP� f are established through the use of the Radon-Nikodym The-

orem. The Radon-Nikodym Theorem ensures the existence and uniqueness of the Radon-Nikodym

derivative under certain conditions. These conditions typically involve the absolute continuity of

the probability density function (PDF) with respect to the measure� and the measure-preserving

property of the transformation�: When these conditions are met, the Frobenius-Perron operator

P� f exists and is unique. One of the main properties ofP� f is that its �xed points are the densities

of invariant measures under� [5].

Some importantproperties[5] of the Frobenius-Perron operator:

Let P� : L 1 ! L 1 be the Frobenius-Perron operator associated with� . Then

(i) Linearity: P� is a linear operator. Letf; g 2 L 1; and �; � be constants. Then,

P� (�f + �g ) = �P � f + �P � g:

(ii) Positivity: If f 2 L 1 andf � 0, thenP� f � 0.

(iii) Preservation of Integral:
R

I P� fd� =
R

I fd� .

(iv) Contraction:P� is contraction, i.e.,kP� f k1 � k f k1 for anyf 2 L 1:

(v) Composition: Let� 1; � 2 : I ! I be non-singular transformations. Then

P� 1 � � 2 f = P� 1 � P� 2 f:

In particular,P� n = Pn
� for any integern � 1.
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The Frobenius-Perron operator is an adjoint operator of theKoopman operator. The basic

idea is to use a suitable change of variables that transforms the Koopman operator into a form that

is equivalent to the Frobenius-Perron operator. Let� : (X; B; � ) ! (X; B; � ) be a measurable

transformation. The operatorU� : L 1 ! L 1 de�ned by

U� f = f � �

is called the Koopman operator andkU� f k1 � k f k1 , for anyf 2 L 1 :

Here, we show thatjjU� f jj1 � jj f jj1 :

Since the Koopman operatorU� : L 1 ! L 1 de�ned by

U� f = f � �:

Let for anyx 2 I = [0 ; 1]; then we havejj f jj1 = supx2 I jf j = 1 :

Now jjU� f jj1 = supx2 I j(U� f )(x)j = supx2 I jf (� (x)) j:

Let for anyx 2 I; jf (� (x)) j � jj f jj1 = 1 : Since this inequality holds for allx 2 I; we have

jjU� f jj1 = sup
x2 I

jf (� (x)) j � 1:

Thus for anyf 2 L 1 with jj f jj1 = 1 ; we have shown thatjjU� f jj1 � 1:

Proposition 2.3.4. [5] Let (I; B; � ) be a normalized measure space and let� : I ! I be a non-

singular transformation. If� is a � - invariant measure, then

(i) kP� f kp � k f kp , when1 � p � + 1 .

(ii) � is exact() for anyf 2 D (I; B; � ),

lim
n!1

Pn
�;� f = 1

whereD(I; B; � ) denotes the probability density functions on the measure space(I; B; � ) and1 is
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a constant function equal to 1 everywhere.

The following proposition tells us why we need the Frobenius-Perron operator for the existence

of invariant measures.

Proposition 2.3.5. [5] Let � : I �! I be non-singular and� � � . Then

P� f � = f � a:e: () � (A) =
Z

A
f � d�;

is a � -invariant measure.

This proposition tells us a density functionf � is a �xed point of Frobenius-Perron operatorP�

if and only if it is the density of a� -invariant measure� , absolutely continuous with respect to a

measure� .

Now, we considerI = [0 ; 1] with normalized Lebesgue measure� on I: Let T (I ) denotes the

class of transformation� : I = [0 ; 1] ! I that satisfy the following conditions:

(1) � is piecewise monotonic and expanding, i.e. there exists a partitionP = f I i = [ ai � 1; ai ); i =

1; 2; : : : ; N g of I such that� j[ai � 1 ;ai ) is C1 and j� 0
i (x)j � � > 1 for any i and for all

x 2 (ai � 1; ai );

(2) 1
� 0(x) is a function of bounded variation, where� 0(x) is the appropriate one-sided derivative

at the end points ofP:

Comment: Since� is piecewise monotonic and expanding, so for anyi; � 0
i (x) � � > 1: Thus

1
� 0(x) < 1: If it is not then we don't have an ACIM. If� 0

i (x) � 1 then we have no ACIM and it will

have a attracting �xed point and attracting �xed point has no ACIM.

Lasota - Yorke theorem [32] provides the existence of absolutely continuous invariant measures

for a class of point transformation of the unit interval[0; 1] to itself. Originally, Lasota and Yorke

assumed piecewiseC2 instead of assumption (2).

Theorem 2.3.6. (Lasota - Yorke)Let � 2 T (I ): Then for anyf 2 L 1[0; 1] the sequence

1
n

nX

i =1

P i
� f
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is convergent in norm tof � 2 L 1[0; 1]. The limit function has the following properties:

(1) f � 0 =) f � � 0.

(2)
R1

0 f � d� =
R1

0 fd� .

(3) P� f � = f � and consequently the measured� � = f � d� is invariant under� .

(4) The functionf � 2 BV [0; 1]. Moreover, there exists a constant� independent to the choice

of initial f such that

V[0;1]f
� � � kf k1:

Lemma 2.3.7. Let � 2 T (I ). Then there exist constants0 < � < 1; C > 0, andR > 0 such that

for anyf 2 BV (I ) and anyn � 1,

kPn
� f kBV � C� nkf kBV + Rkf k1:

The inequality above is called the Lasota-Yorke inequality, and different versions of this in-

equality play essential roles in the theory of absolutely continuous invariant measures. Below, we

will use a similar inequality but with different norms, since our transformations are not necessarily

piecewise expanding.

2.4 Piecewise convex transformations

De�nition 2.4.1. Let I = [0 ; 1]. A transformation� : I �! I is convex if8x; y 2 I , and� 2 [0; 1],

we have

� (�x + (1 � � )y) � �� (x) + (1 � � )� (y):

A function is strictly convex if� (�x + (1 � � )y) < �� (x) + (1 � � )� (y) wheneverx 6= y.

A convex transformation is continuous on(0; 1) and thus measurable with respect to the Lebesgue

measure.
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Let I = [0 ; 1] andTpc(I ) be the class of transformations� : I �! I that satisfy the following

conditions:

(i) there exists a partitionP = f 0 = a0 < � � � < a N = 1g of I such that� [ai � 1 ;ai ) is continuous,

and convex,i = 1 ; : : : ; N ;

(ii) � (ai � 1) = 0 ; � 0(ai � 1) > 0; i = 1 ; : : : ; N ;

(iii) � 0(0) = � > 1:

Transformations inTpc(I ) are called piecewise convex maps with strong repellers.

A convex function is differentiable except at a countable set of points, and its derivative� 0 is non-

decreasing. In particular, this means that (ii) implies

� 0(x) > � 0(ai � 1) > 0; x 2 [ai � 1; ai )

and� j[ai � 1 ;ai ) is increasing fori = 1 ; : : : ; N:

Lasota and Yorke [33] proved the existence of an ACIM with respect to the Lebesgue measure

for one-dimensional piecewise convex maps with a strong repellor. The following propositions,

Lemma and Theorem, are proved in [5].

De�nition 2.4.2. A setS is countably in�nite if S has a one-to-one correspondence withN i.e., the

elements ofS can be arranged in an in�nite sequencea0; a1; a2; : : : ; whereai is distinct fromaj

for i 6= j and every element ofS is listed.

Proposition 2.4.3. [5] Let � 2 Tpc(I ) and f be a non-increasing function. Then,P� (f ) is also

non-increasing.

Lemma 2.4.4. If f � 0 andf is non-increasing, thenf (x) � 1
x � (f ), for x 2 [0; 1], where

� (f ) =
Z

I =[0 ;1]
fd�:
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Proposition 2.4.5. Let � 2 Tpc(I ). If f : [0; 1] ! R+ is non-increasing, then

jjP� f jj1 �
1
�

jj f jj1 + Cjj f jj1;

whereC =
P r

i =2 (ai � 1 � � 0(ai � 1)) � 1.

Theorem 2.4.6. [5] Let � 2 Tpc(I ). Then� admits an absolutely continuous invariant measure,

� = f � � , and the densityf � is non-increasing.

Theorem 2.4.7. [33] Let � : I = [0 ; 1] ! [0; 1] and � 2 Tpc: Then, there exists the unique

normalized absolutely continuous measure� = g� that is invariant under�: The system(I; B; � ; � )

is exact and the densityg is bounded and decreasing. Moreover,limn Pn
� f = g in L 1(I; � ); for any

f 2 L 1(I; � ) where� is the Lebesgue measure on[0; 1] andP� is the Frobenius-Perron operator

corresponding to� .

2.5 Non-autonomous Dynamical Systems

De�nition 2.5.1. [22] Let (X; � ) be a compact metric space and� n : X ! X be a sequence of

maps such that� n converges uniformly to a limit map� , where� is a continuous map. Then, the

non-autonomous dynamical system is de�ned by

xm+1 = � m (xm ); m = 0 ; 1; 2; :::

where� 0 is the identity andx0 2 X . When the system starts atx0, the �rst iteration,x1, is given by

� 0(x0), and since� 0 is the identity map,x1 = � 0(x0) = x0. This ensures that the initial condition

is preserved after the �rst iteration.

Forn > m , we write

� (m;n ) = � n � � n� 1 � � � � � � m+1 � � m :

In particular,

� (0;n) = � n � � n� 1 � � � � � � 1 � � 0:

A trajectory of a pointx in the phase space isx; � 1(x); � 2(� 1(x)) ; : : : . Let Tn = � n � � n� 1 �
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: : : � 2 � � 1. Then the above trajectory of the non-autonomous dynamical system can be written as

x; T1(x); T2(x); : : : ; Tn (x); : : : .

The Krylov–Bogoliubov Theorem is a powerful tool in the domain of non-autonomous dynam-

ical systems because it addresses the challenges posed by explicit time dependence and provides

conditions under which solutions exist and are unique.

Theorem 2.5.2. (Krylov-Bogoliubov Theorem)[5] Let X be a compact metric space and let the

transformation� : X ! X be continuous. Then there exists a� � invariant normalized measure

onX:

Note that: Krylov-Bogoliubov Theorem does not tell about absolute continuity. But this result

establishes that every continuous transformation on a compact metric space is guaranteed to have

an invariant measure.

Theorem 2.5.3. (Extension of the Krylov-Bogoliubov Theorem)[22] Let f � ng be a sequence of

transformations de�ning a non-autonomous dynamical system on the compact metric spaceX with

a continuous limit� . We assume that the� n 's converge uniformly to� . Let � be a �xed probability

measure onX . De�ne the measures� n = 1
n

P n
i =1 � i ; where� i = ( � (0;i ) ) � � . Let � be a� - weak

limit point of the sequencef � ngn� 1: Then� is a � - invariant measure, i.e.,� � � = � .

Straube Theorem provides a suf�cient condition for� to be absolutely continuous.

Theorem 2.5.4. (Straube Theorem)[22] Let (X; B; � ) be a normalized measure space and let

f � ng be a sequence of non-singular transformations de�ning a non-autonomous dynamical system

on X . We do not assume that the limit� is continuous. Assume there exists� > 0 and0 < � < 1

such that

� (E ) < � =) sup
k� 1

�
�

� � 1
(0;k) (E )

�
< � ;

for all E 2 B: Then there exists a� � invariant normalized measure� which is absolutely continu-

ous with respect to� .
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2.6 Markov transformations and approximation of invariant measure

of dynamical systems by Ulam's method

Markov transformation is a piecewise monotonic transformation such that each interval of the

partition is mapped onto a union of intervals of the partition. The Frobenius-Perron operator can

be de�ned in terms of the Markov transformation matrix. To approximate the �xed point of the

Frobenius-Perron operatorP� , we use the �xed point of a matrix operator known as the Markov

operator. S. Ulam introduced Ulam's conjecture [2] as part of a comprehensive set of intriguing

open problems in applied mathematics, one of which pertained to the approximation of Frobenius-

Perron operators.

Conjecture 2.6.1. Ulam's Conjecture:[2]

• A �nite rank approximation of the Frobenius-Perron operator by Eq. (2.6.4); and

• the conjecture that the dominant eigenvector ( corresponding to eigenvalue equal to 1) weakly

approximates the invariant distribution of the Frobenius-Perron operator.

De�nition 2.6.2. Let � : I = [0 ; 1] ! [0; 1] and letP = f 0 = a0 < a 1 < � � � < a n = 1g be a

partition of I: Let I i = ( ai � 1; ai ); i = 1 ; 2; : : : ; n and� i = � jI i : If � i is homeomorphism fromI i

onto some connected union of intervals ofP, i.e., some interval
�
aj ( i ) ; ak(i )

�
; then� is said to be

Markov transformation. The partitionP is said to be a Markov partition with respect to the function

�: If each� i is linear onI i ; then� is a piecewise linear Markov transformation.

Theorem 2.6.3. [5] Let � : I = [0 ; 1] ! [0; 1] be a piecewise linear Markov transformation on

the partitionP = f I 1; I 2; : : : ; I ng. Then there exists ann � n matrix M � such thatP� f = M � f

for every piecewise constant functionf = ( f 1; f 2; : : : ; f n ) on the partitionP: The matrixM � =

(mij )1� i;j � n is de�ned

mij =
aij

j� 0
i j

=
� (I i \ � � 1(I j ))

� (I i )
; 1 � i; j � n; (2.6.4)

where(aij )1� i;j � n is the incidence matrix induced by� and P: Here � denotes the normalized

Lebesgue measure onI andf I i gk
i =1 is a �nite family of connected sets with nonempty and adjoint
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interiors that coverI i.e., I = [ k
i =1 I i ; and indexed in terms of nested re�nements.

Example 2.6.5.Let � : [0; 1] ! [0; 1] be a piecewise linear Markov transformation on the partition

f 0; 1
4 ; 1

2 ; 3
4 ; 1g de�ned by

� (x) =

8
>>>>>>>>>><

>>>>>>>>>>:

2x + 1
2 ; x 2 0 � x � 1

4

� x + 5
4 ; x 2 1

4 < x � 1
2

� 3x + 9
4 ; x 2 1

2 < x � 3
4

4x � 3; x 2 3
4 < x � 1

:

Here we use equation (2.6.4) for �nding the all elements of the matrixM � :

Figure 2.2: The map� for Example2.6.5.

Now usingi; j = 1 ; 2; 3; 4 successively, then

m11 =
�

�
I 1 \ � � 1(I 1)

�

� (I 1)
=

� ([0; 1
4 ] \ � � 1([0; 1

4 ]))

� ([0; 1
4 ]

=
� ([0; 1

4 ] \ ([� 1
8 ; � 1

4 ]))

� ([0; 1
4 ]

= 0
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m13 =
�

�
I 1 \ � � 1(I 3)

�

� (I 1)
=

� ([0; 1
4 ] \ ([0; 1

8 ]))

� ([0; 1
4 ]

=
1
2

m14 =
�

�
I 1 \ � � 1(I 4)

�

� (I 1)
=

� ([0; 1
4 ] \ ([ 1

8 ; 1
4 ]))

� ([0; 1
4 ]

=
1
2

m31 =
�

�
I 3 \ � � 1(I 1)

�

� (I 3)
=

� ([ 1
2 ; 3

4 ] \ ([ 2
3 ; 3

4 ]))

� ([ 1
2 ; 3

4 ]
=

1
3

m41 =
�

�
I 4 \ � � 1(I 1)

�

� (I 4)
=

� ([ 3
4 ; 1] \ ([ 3

4 ; 13
16]))

� ([ 1
2 ; 3

4 ]
=

1
4

Similarly, we can �nd the rest of the elementsm12 = 0 ; m32 = m33 = 1
3 ; m34 = 0 ; m42 = m43 =

m44 = 1
4 : Thus, the matrix approximation of the F-P operator has the form for map� :

M � =

2

6
6
6
6
6
6
6
4

0 0 1=2 1=2

0 0 0 1

1=3 1=3 1=3 0

1=4 1=4 1=4 1=4

3

7
7
7
7
7
7
7
5

:

The resultingM � may be interpreted as a transfer matrix, for which it is easy to check that all row

sums are1; i.e.,
P

j mij = 1 8j:

Let f = ( f 1; f 2; f 3; f 4), wheref i = f jI i ; I i = [ i � 1
4 ; i

4 ]; i = 1 ; 2; 3; 4. The normalized density of the

map� (Figure2.2) is the left eigenvector ofM � with eigenvalue 1.P� f = f reduces tof M � = f

which is a system of linear equation. It can be shown that

f = (2 ; 2; 3; 4):

Since determining the �xed point of the Frobenius-Perron operatorP� of � or invariant density

of � is generally challenging, especially considering the increased complexity associated with the

Frobenius-Perron equationP� f = f: It is required to approximate the F-P operatorP� using Ulam's
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method. S. M. Ulam [42] �rst introduced the approximation of the Frobenius-Perron operator. If

the map� is piecewise linear and Markov, we can �nd the Frobenius-Perron operator in a matrix

form. Therefore, it is possible to �nd the density or invariant measure because the Frobenius-Perron

equationP� f = f is a system of linear equations. Ulam's method stands as a widely employed and

thoroughly comprehended approach for numerically computing the stationary density of invariant

measures in dynamical system. Li [34] �rst proved the convergence of Ulam's approximation for

one-dimensional piecewise expanding transformations. Miller [35] proved convergence for piece-

wise convex maps with a �nite number of pieces.

Let � : I = [0 ; 1] ! [0; 1] be a piecewiseC2- map with inf x2 [0;1] j� 0(x)j > 2: Let P (n) =

f I 1; I 2; : : : ; I ng be a partition of[0; 1] into subintervals of equal length and letM � be the matrix

transition probabilities, de�ned in (2.6.4), between the elements ofP (n) for map � : I ! I:

Let L (n) be then� dimensional linear subspace ofL 1 which is the �nite element space generated

by f � i gi =1 ;:::;n where� i denotes the characteristic function for the intervalI i : We introduce the

operatorQn : L 1 ! L (n) ; de�ned by

Qn (f ) =
nX

i =1

1
� (I i )

� Z

I i

fd�
�

� i :

Sincef I i gn
i =1 is an equipartition ofI i.e. I = [ n

i =1 I i and� (I i ) = 1
n .

Qn (f ) =
nX

i =1

n
� Z

I i

fd�
�

� i =
�

n
Z

I 1

fd�; n
Z

I 2

fd�; : : : ;
Z

I n

fd�
�

:

Let f = ( f 1; f 2; : : : ; f n ) 2 L (n) :

Let P� be the Frobenius-Perron operator of� andPn : L (n) ! L (n) be a �nite approximation of

P� , de�ned by

Pn f = M � f =
nX

j =1

mij f j � j :

Then, we have

Pn f = QnP� f:
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More generally, forf 2 L 1; we have

PnQn f = QnP� Qn f:

The following Lemmas and Theorem are proved in [34].

Lemma 2.6.6. For f 2 L 1; the sequenceQn f converges inL 1 to f asn ! 1 :

Lemma 2.6.7. For f 2 L (n) we havePn f = QnP� f:

Lemma 2.6.8. For f in L (n) ; the sequencePn f converges toP� f in L 1 asn ! 1 :

Lemma 2.6.9. The sequence
�

V[0;1]f n
	

is bounded, wherePn f n = f n :

If P� has a unique �xed point, then the sequence of �xed pointsf n of Pn are expected to

converge to that �xed point asn approaches in�nity, according to the Ulam's method. The following

theorem proves this.

Theorem 2.6.10.[34] Let � : [0; 1] ! [0; 1] be a piecewiseC2� function withM = inf j� 0j > 2:

SupposeP� has a unique �xed point. Then, for any positive integern; Pn has a �xed pointf n in

L (n) with k f k= 1 andf f ng converges inL 1 to the �xed point ofP� :

Note: Lasota-Yorke inequality has a constant� = 2
inf x 2 [0 ;1] j � 0(x)j < 1:

2.7 Some Facts from Functional Analysis

Here we de�nedD or D(X; B; � ) as a set of densities inL 1.

De�nition 2.7.1. Let F be a linear space. A functionjj � jj : F ! R+ is called a norm if it has the

following properties:

• jj f jj = 0 () f = 0

• jj �f jj = j� jjj f jj

• jj f + gjj � jj f jj + jjgjj ;
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for f; g 2 F and� 2 R+ : The spaceF is called a normed linear space.

De�nition 2.7.2. A linear operatorP : L 1 ! L 1 is called Markov if it has the following properties:

• P is positive, i.e.,f � 0 =) P f � 0; for anyf 2 L 1;

• jjP jj1 � 1 andjjP f jj1 = jj f jj1 for f � 0; f 2 L 1:

De�nition 2.7.3. Let (X; B; � ) be a measure space andP : L 1 ! L 1 a Markov operator. Then

f Png is said to beasymptotically stableif there exists a uniquef � 2 D such thatP f � = f � and

lim
n!1

k Pn f � f � k1= 0 for every f 2 D : (2.7.4)

De�nition 2.7.5. A functionh 2 L 1 is alower bound function for a Markov operatorP : L 1 ! L 1

if

lim
n!1

k (Pn f � h) � k1= 0 for every f 2 D : (2.7.6)

Equation (2.7.4) may be rewritten as

(Pn f � h) � = � n ;

wherek � n k1! 0 asn ! 1 or, explicitly, as

Pn f � h � � n :

Theorem 2.7.7.LetP : L 1 ! L 1 be a Markov operator.f Png is asymptotically stable if and only

if there is a nontrivial lower bound function forP:

De�nition 2.7.8. Let K be a set of functions de�ned on a measure space(X; B; � ): ThenK is

uniformly bounded inL 1 if there exists a constantM such thatsupf 2 K k f k1 � M:

De�nition 2.7.9. A setK of functions inL 1 is said to beweakly compactif every sequencef f ng

in K has a subsequencef f nk g that converges weakly to a functionf 2 L 1(K ):

26



De�nition 2.7.10. Let a sequence of functionsf f ng de�ned on a measure space(X; B; � ); where

for eachf n is Lebesgue integrable inL 1(X ): The sequencef f ng is said to beweakly convergent

in L 1(X ) if it converges to a limit functionf in L 1(X ):

Theorem 2.7.11. (The Dunford-Pettis Theorem)[5] Let a sequencef f ng1
n=1 ; f n 2 L 1; n =

1; 2; : : : satisfy the following conditions:

(i) k f n k1� M for someM ;

(ii) 8� > 0 9 � > 0 such that for anyA 2 B; if � (A) < � then for alln;

j
Z

A
f nd� j < �:

Thenf f ng contains a weakly convergent subsequence, i.e.,f f ng is weakly compact inL 1:

Theorem 2.7.12.Let a sequencef f ng be uniformly bounded inL 1 : Thenf f ng is weakly compact

in L 1:

Proof. Let (X; B; � ) be a normalized measure space.

Sincef f ng is uniformly bounded inL 1 , i.e.,k f n k1 � M for someM:

Now, we can write

f n (x) � sup
x2 X

f n (x) � M; 8n:

Which implies,
Z

X
f n (x)d� �

Z

X
Md� = M� (X ) = M:

Therefore,k f n k1� M:

Now suppose that� (A) < �
M for anyA 2 B: So,

R
A jf n jd� <

R
A Md� = �:

Using the Dunford-Pettis Theorem,f f ng is weakly compact inL 1:

Theorem 2.7.13. (Yoshida– Kakutani Theorem)[5] Let F be a Banach space and letT : F ! F

be a bounded linear operator. Assume there existsM > 0 such thatk Tn k� M; n = 1 ; 2; : : : :
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Furthermore, if for anyf 2 E � F ; the sequencef f ng; where

f n =
1
n

nX

k=1

T k f;

contains a subsequencef f nk g which converges weakly inF ; then for anyf 2 �E;

1
n

nX

k=1

T k f ! f � 2 F

(norm convergence) andT(f � ) = f � :

Theorem 2.7.14. (Helly's Theorem)[5] Let F = f f g be an in�nite family of functions on an

interval [0; 1]: If jf (x)j � K; V [a;b]f � K 8f 2 F; then there exists a sequencef f ng � F such

that f n ! f � 8x 2 [a; b]; andV[a;b]f � � K:
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Chapter 3

ACIM for piecewise convex maps with

countable (in�nite) number of branches

3.1 Introduction

The existence and properties of absolutely continuous invariant measures of deterministic dy-

namical systems re�ect their long-time behaviour and play an important role in understanding most

of their chaotic nature [5, 31, 32]. Let B a Borel � -algebra of subsets ofI = [0 ; 1] and� be the

normalized Lebesgue measure onI . Let � : I ! I be a non-singular measurable transformation. A

measure� onB is � -invariant or� preserve� if � (� � 1(A)) = � (A) for all A 2 B: The Frobenius-

Perron operatorP� : L 1(I; B; � ) ! L 1(I; B; � ) of � plays an important role for the existence,

approximations, and properties of ACIMs. The Frobenius-Perron operatorP� is de�ned by

Z

A
P� f d� =

Z

� � 1 (A )
f d�; 8A 2 B; 8f 2 L 1: (3.1.1)

If � has countable number of monotonic on each[bi � 1; bi ]; then it can be shown that the Frobenius-

Perron operatorP� has the following representation [5] :

P� f (x) =
1X

i =1

f (� � 1
i (x))

j� 0(� � 1
i (x)) j

� � [bi � 1 ;bi ) (x) =
X

z2f � � 1 (x)g

f (z)
j� 0(z)j

; (3.1.2)
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where� � 1
i ; i = 1 ; 2; : : : ; n; : : : are inverse branches of� on I . In [32], Lasota and Yorke proved

the existence of absolutely continuous invariant measures for piecewise expanding maps. In this

Chapter, we consider transformations that are not necessarily expanding, i.e., their derivatives may

be smaller than1, but they possess another property that makes them very special: piecewise con-

vexity. In [33], the authors studied the exactness and the existence of absolutely continuous in-

variant measures (ACIM) for piecewise convex transformations with a �nite number of branches

and with a strong repeller. The authors in [33] considered the following properties as primary fac-

tors for the proof of the existence of ACIM (i) the F-P operatorP� maps non-increasing functions

to non-increasing function; (ii) Iff : [0; 1] ! R+ is non-increasing, thenjjP� f jj1 is bounded

by Ajj f jj1 + B jj f jj1; whereA < 1 and B are some constants. In [5], similar results proved

for convex transformations with a �nite number of branches. In this chapter, we consider two

classesT 1
pc (I ); T 1 ;0

pc (I ) of piecewise convex maps� : I = [0 ; 1] ! [0; 1] with countable num-

ber of branches. In Section3.2, we study absolutely continuous invariant measures of maps� in

the �rst classT 1
pc (I ), where� : I = [0 ; 1] ! [0; 1] has a countable number of branches with

an arbitrary countable number of limit points of partition points separated from0. In Section3.3,

we study absolutely continuous invariant measures of maps� in the second classT 1 ;0
pc (I ); where

� : I = [0 ; 1] ! [0; 1] has a countable number of branches. We assume there exists a countable

partitionf 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � < a 0;� 2 < a 0;� 1 = a1; a2; a3; : : : ; an ; : : : g of

I = [0 ; 1] with limn!1 a0;� n = 0 : In Section3.4, we study ACIMs of non-autonomous dynamical

systems of piecewise convex maps with a countable number of branches. The exactness of maps in

T 1
pc (I ); T 1 ;0

pc (I ) is presented in Section3.6.

Recently, there has been an increasing interest in non-autonomous dynamical systems [36, 17].

A non-autonomous dynamical system of a family of mapsf � ng1
n=1 is a system that acts on the space

by application of� n in the n-th step. In [22], P. Góra et al. studied the generalization of Krylov-

Bogoliubov Theorem and Straube's Theorem for non-autonomous dynamical systems of continuous

maps on a compact space. Moreover, they learned the ACIMs of the limit map for non-autonomous

dynamical systems of piecewise expanding maps. In section3.4 of this Chapter, we consider non-

autonomous dynamical systems of maps inT 1
pc (I ); T 1 ;0

pc (I ) and study the existence of ACIM of

the limit map.
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3.2 ACIMs for piecewise convex maps on[0; 1]with countable number

of limit points of partition points separated from 0

Consider(I = [0 ; 1]; B; � ) be a measure space, where� is the Lebesgue measure onI andB

is the Borel� -algebra onI: Let f 0 = a0; a1; a2; : : : ; an ; : : : g be a countable partition ofI such

thata0 < a 1 and alla2; a3; � � � 2 [a1; 1]: We do not assume the sequencef a2; : : : ; an ; : : : g to be

increasing or decreasing. For anyi 2 f 0; 1; 2; : : : g; let n(i ) be the index such that the interval

[ai ; an(i ) ] does not contain any other points of the partition. Ifak is the limit point of decreasing

subsequence ofan 's, then(k) is not de�ned. This notation allows us to consider maps with more

than one, even an in�nite number of limit points of the partition points. We assume that the set of

such limit points has Lebesgue measure0: We say that� 2 T 1
pc (I ) if

(1) � 0 = � j[0;a1 ) is continuous and convex;

� i = � j[ai ;an ( i ) ) is continuous and convex,i = 1 ; 2; � � � ;

(2) � (ai ) = 0 ; � 0(ai ) > 0; i = 1 ; 2; : : : ;

(3) � (0) = 0 ; � 0(0) = � 1 > 1;

(4)
P 1

i =1
1

� 0(ai )
< 1 :

Remarks: If the Condition (2) does not satisfy for somei , then there will be a problem with showing

that if f is non-increasing, thenP� f is non-increasing, Lemma3.2.2. Also, if
P 1

i =1
1

� 0(ai )
> 1 ;

then we will show one example in this chapter that� has no ACIM.
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For � 2 T 1
pc (I ); f 2 L 1(I ); f � 0 the Frobenius-Perron operatorP� is de�ned as

P� f (x) =
f (� � 1

0 (x))

� 0(� � 1
0 (x))

� � [0;a1 ) (x) +
1X

i =1

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x) (3.2.1)

The proof of equation (3.2.1) is analogous to the proof of equation (2.3.3) in Chapter 2.

Lemma 3.2.2. Let � 2 T 1
pc (I ); f 2 L 1(I ); f � 0; f non-increasing. Then

(1) P� (f ) 2 L 1(I ):

(2) P� (f ) � 0:

(3) P� (f ) is non-increasing.

(4) k P� (f ) k1 � C k f k1 ; whereC =
�

1
� 1

+
P 1

i =1
1

� 0(ai )

�
:

Proof. (1)
Z

I
P� (f )d� =

Z

� � 1 (I )
fd� =

Z

I
fd�:

Therefore,P� (f ) 2 L 1(I )

(2) Note that

P� f (x) =
f (� � 1

0 (x))

� 0(� � 1
0 (x))

� � [0;a1 ) (x) +
1X

i =1

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x):

We want to show thatf (� � 1
0 (x))

� 0(� � 1
0 (x))

� � [0;a1 ) (x) is non-negative. Since� : [0; 1] ! [0; 1], � 0 =

� [0;a1 ) and� i = � [ai ;an ( i ) ) are continuous and convex,� 0 is positive and hence� � 1
0 (x) � 0.

Sincef � 0; f (� � 1
0 (x)) � 0: The derivative of a convex function is non-decreasing. Thus,

by property 2,� 0(� � 1
0 (x)) � 0 and hence,f (� � 1

0 (x))
� 0(� � 1

0 (x))
� � [0;a1 ) (x) is non-negative. Similarly,

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x) is also non-negative.

(3) Assume thatf 2 L 1(I ); f � 0; f non-increasing. Let0 � x < y � 1: We will show that for

anyi = 0 ; 1; 2; : : : ;

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x) �
f (� � 1

i (y))

� 0(� � 1
i (y))

� � [ai ;an ( i ) ) (y): (3.2.3)
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Let us �x i 2 f 0; 1; 2; : : : g: Now, � i = � j[ai ;an ( i ) ) is increasing and� (ai ) = 0 : If x =2

� [ai ; an(i ) ) theny =2 � [ai ; an(i ) ): In other words, if� � [ai ;an ( i ) ) (x) = 0 then� � [ai ;an ( i ) ) (y) =

0: Thus,

� � [ai ;an ( i ) ) (x) � � � [ai ;an ( i ) ) (y):

If both x; y 2 � j[ai ;an ( i ) ) then� � 1
i (x) < � � 1

i (y) and thus,

f (� � 1
i (x)) > f (� � 1

i (y)) :

Moreover, since� 0is non-decreasing and� � 1
i (x) < � � 1

i (y); we have� 0
�
� � 1

i (x)
�

< � 0
�
� � 1

i (y)
�

and thus,
1

� 0(� � 1
i (x))

�
1

� 0(� � 1
i (y))

:

Combining above inequalities, we have proved (3.2.3).

(4) We have

P� f (x) =
f (� � 1

0 (x))

� 0(� � 1
0 (x))

� � [0;a1 ) (x) +
1X

i =1

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x)

�
f (0)
� 0(0)

+
1X

i =1

k f k1

� 0(ai )
=

f (0)
� 1

+
1X

i =1

k f k1

� 0(ai )

�

 
1

� 1
+

1X

i =1

1
� 0(ai )

!

k f k1 :

Proposition 3.2.4. If f � 0 andf is non-increasing, thenf (x) � 1
x � (f ); for x 2 [0; 1]; where

� (f ) =
Z 1

0
f (x)d� (x):

Proof. For any0 < x � 1; from the �gure3.1we have

� (f ) =
Z 1

0
f (x)d� (x) �

Z x

0
f (x)d� (x) � x � f (x):
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Figure 3.1: Graph for proposition3.2.4.

For more detailed, sincef � 0 andf is non-increasing. Lett 2 [0; x] andt � x. So

f (t) � f (x) =) f (t) � f (x) � 0

=)
Z

[f (t) � f (x)] dt � 0

Now,

Z x

0
f (t)dt =

Z x

0
f (x)dt +

Z x

0
[f (t) � f (x)] dt

�
Z x

0
f (x)dt = x � f (x)

Lemma 3.2.5. If f : [0; 1] ! R+ is non-increasing and� 2 T 1
pc (I ); then

k P� (f ) k1 �
1

� 1
k f k1 + D k f k1; (3.2.6)

whereD =
� P 1

i =1
1
ai

1
� 0(ai )

�
:

Proof. Sincef is non-increasing,f (0) � jj f jj1 ; and by part3 of Lemma3.2.2,

P� f (0) �k P� f k1 :
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P� f (0) =
1

� 0(0)
f (0) +

1X

i =1

f (� � 1
i (0))

� 0(� � 1
i (0))

�
1

� 1
f (0) +

1X

i =1

f (ai )
� 0(ai )

�
1

� 1
f (0) +

1X

i =1

� (f )
ai

1
� 0(ai )

�
1

� 1
k f k1 +

 
1X

i =1

1
ai

1
� 0(ai )

!

k f k1 :

Theorem 3.2.7.Let � 2 T 1
pc (I ): Then� admits an absolutely continuous invariant measure� =

f � � � with non-increasing density functionf � :

Proof. Let f = 1 and consider the sequencef P k
� f g1

k=0 : Sincef is non-increasing, then by part 4

of Lemma3.2.2we can apply Lemma3.2.5iteratively and obtain

k P k
� f k1 = k P�

�
P k� 1

� f
�

k1 �
1

� 1
k

�
P k� 1

� f
�

k1 + D k
�

P k� 1
� f

�
k1

�
1

� 1

�
1

� 1
k

�
P k� 2

� f
�

k1 + D k
�

P k� 2
� f

�
k1

�
+ D k

�
P k� 1

� f
�

k1

� � �

�
1

� k
1

k f k1 + D

 

k P k� 1
� f k1 +

1
� 1

k P k� 2
� f k1 + � � � +

1

� k� 1
1

k P2
� f k1

!

� 1 + D
�

1 +
1

� 1
+ � � � +

1

� i � 1
1

�
= 1 +

D
1 � 1

� 1

:

So the sequencef P k
� g1

k=0 is uniformly bounded inL 1 and thus weakly compact inL 1. By Yosida-

Kakutani theorem,1k
P k

j =1 P j
� f converges inL 1 to aP� invariant functionf � : It is non-increasing

since it is the limit of non-increasing functions.
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3.3 ACIMs for piecewise convex maps on[0; 1]with countable number

of branches where0 is a limit point of partition points

Consider(I = [0 ; 1]; B; � ) be a measure space, where� is the Lebesgue measure onI andB is

the Lebesgue� -algebra onI: Let f 0 = a0; a1; a2; : : : ; an ; : : : g be a countable (in�nite) partition of

I such thata0 < a 1 and alla2; a3; � � � 2 [a1; 1]: We do not assume the sequencef a2; : : : ; an ; : : : g

to be increasing or decreasing. For anyi 2 f 1; 2; : : : g; let n(i ) be the index such that the interval

[ai ; an(i ) ] does not contain any other points of the partition. Ifak is the limit point of decreasing

subsequence ofan 's, then(k) is not de�ned. Moreover, we consider a decreasing in�nite sequence

f a0;� ng of partition points in(a0; a1] such thatf 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � <

a0;� 2 < a 0;� 1 = a1g andlimn!1 a0;� n = 0 = a0: We say that� 2 T 1 ;0
pc (I ) if

(1) � 0;� (j +1) = � j(a0; � ( j +1) ;a0; � j ] is continuous and convex, j=1, 2, . . . ;

� i = � j[ai ;an ( i ) ) is continuous and convex,i = 1 ; 2; � � � ;

(2) � (a0;� j ) = 0 ; � 0(a0;� j ) > 0; j = 1 ; 2; : : : ;

� (ai ) = 0 ; � 0(ai ) > 0; i = 1 ; 2; : : : ;

(3)
P 1

i =1
1

� 0(ai )
< 1 ;

(4) D1 =
P 1

j =1
1

� 0(a0; � j ) < 1:

Remark3.3.1. The Condition (3) and Condition (4) can be replaced by the following Condition3+ ;

where

(3+ )
P 1

j =1
1

� 0(a0; � j ) +
P 1

i =1
1

� 0(ai )
< 1 :
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If condition (3+ ) is satis�ed, then we can �nd aJ � 1 such that

1X

j = J

1
� 0(a0;� j )

< 1;

and after proper renaming of the partition points, the Condition (3) and Condition (4) are satis�ed.

Lemma 3.3.2. Let � 2 T 1 ;0
pc (I ); f 2 L 1(I ); f � 0; f non-increasing. Then

(1) P� (f ) 2 L 1(I ):

(2) P� (f ) � 0:

(3) P� (f ) is non-increasing.

(4) k P� (f ) k1 � C k f k1 ; whereC =
�

D1 +
P 1

i =1
1

� 0(ai )

�
:

Proof. The proof is similar to the proof of Lemma3.2.2.

Lemma 3.3.3. If f : [0; 1] ! R+ is non-increasing and� 2 T 1 ;0
pc (I ). Then

k P� (f ) k1 � D1 k f k1 + D k f k1; (3.3.4)

whereD =
P 1

i =1
1

ai � 0(ai )
:

Proof. The proof is similar to the proof of Lemma3.2.5.

Theorem 3.3.5. Let � 2 T 1 ;0
pc (I ): Then� admits an absolutely continuous invariant measure

� = f � � � with non-increasing density functionf � :

Proof. The proof is similar to the proof of Theorem3.2.7.

3.4 ACIMs of the limit map for non-autonomous dynamical systems

of piecewise convex maps

We consider non-autonomous piecewise convex dynamical systemxm+1 = � m (xm ); m =

0; 1; : : : , where we assume that� 0 is the identity map,x0 2 [0; 1]; it means that the mapping
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function � 0 for the initial statex0 is such that� 0(x0) = x0 for all values ofx0 within the interval

[0; 1]; and � m 2 T 1
pc (I ) or � m 2 T 1 ;0

pc (I ); m = 1 ; 2; : : : : Also, we assume that all� m satisfy

the Lasota-Yorke inequality (3.2.5) with common constants� 1 andD or inequality (3.3.4) with

common constantsD1 andD: We write,

� (m;n ) = � n � � n� 1 � � � � � � m :

In particular,

� (0;n) = � n � � n� 1 � � � � � � 0:

Let Tn = � n � � n� 1 � � � � � � 2 � � 1; where� k 2 T 1
pc (I ) [ T 1 ;0

pc (I ); k = 1 ; 2; : : : ; n:

Proposition 3.4.1. Let f be a non-increasing function. Then,PTn f is also non-increasing.

Proof. We use mathematical induction. Forn = 1 ; PTn f = PT1 f = P� 1 f is non-increasing by

Lemma3.2.2or 3.3.4. Assume thatPTn f non-increasing. Then,PTn +1 f = P� n +1 (PTn f ) is non-

increasing by Lemma3.2.2or 3.3.4.

Proposition 3.4.2. Let f � ng1
n=1 be a sequence of transformations such that� n 2 T 1

pc (I ); or

� n 2 T 1 ;0
pc (I ); n = 1 ; 2; : : : ; � n satisfy the Lasota-Yorke inequality (3.2.5) or (3.3.4) with com-

mon constants� 1 and D or D1 and D, and � n converges uniformly to a map�: Then, for any

non-increasing densityf , the sequencef n = PTn f forms a pre-compact set inL 1 and any conver-

gent subsequence converges to a density of an ACIM of the limit map�:

Proof. Let r = max( 1
� 1

; D1) and letf � 1: Since for class 1 and class 2 transformation� 1 > 1

andD1 < 1 respectively. Thenf is non-increasing. Note thatPTn = P� n � P� n � 1 � : : : P� 2 � P� 1 :
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We can apply inequality (3.2.5) or (3.3.4) consecutively and obtain

k PTn f k1 � r k PTn � 1 f k1 + D k PTn � 1 f k1

� r
�
r k PTn � 2 f k1 + D k PTn � 2 f k1

�
+ D k PTn � 1 f k1

� � �

� r n k f k1 + D
�
k PTn � 1 f k1 + r k PTn � 2 f k1 + � � � + r n� 1 k PT1 f k1

�

� 1 + D
�
1 + r + � � � + r n� 1 + : : :

�

= 1 +
D

1 � r
:

Thus, the functionsPTn f are uniformly bounded and thus weakly compact inL 1:

Let f n = PTn f . Let f f nk g be a weakly convergent subsequence with limitf � . Since the func-

tions f nk are all decreasing and uniformly bounded, they are also of uniformly bounded variation.

By Helly's Theorem, every bounded sequence has a subsequence that converges pointwise. Now

let we have another subsequencef nk j
convergent to someg a.e.. Sincef nk j

converges weakly to

f � , we getf � = g. Thus,f nk converges tof � pointwise. Now, by the Lebesgue Dominated Con-

vergence Theorem, we getf nk ! f � in L 1. We will prove that the measuresfd� and(P� f )d� are

equal. It is enough to show that for anyh 2 C(I ),
R

h(f � P� f )d� = 0 :

First, we estimate
R

h(P� n F � P� F )d� , for any densityF . By conjugacy to Koopman operator,

we have �
�
�
�

Z
h(P� n F � P� F )d�

�
�
�
� �

Z
F jh � � n � h � � jd� � ! h(sup j� n � � j); (3.4.3)

where! h is the modulus of continuity of the functionh. For more detailed calculations, seeA.1 in

Appendix.

To simplify the notation, we will skip the subindexk. Let us de�ne

gn =
1
n

(f 1 + f 2 + � � � + f n ):
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Sincef n ! f � in L 1 we also havegn ! f � in L 1. We have

P� f � = P� ( lim
n!1

gn ) = lim
n!1

P� gn :

We will show that
R

(P� gn � gn )hd� converges to 0, for anyh 2 C(I ). Let us �x an� > 0. Since

k� n � � k1 ! 0, asn ! 1 we can �ndN � 1 such that for alln � N we have! h(k� n � � k1 ) < � .

Let M h = sup jhj:

We can write

P� gn � gn =
1
n

(P� f 1 + P� f 2 + � � � + P� f n� 1 + P� f n ) �
1
n

(f 1 + f 2 + � � � + f n� 1 + f n )

=
1
n

(P� f n � f 1) +
1
n

n� 1X

i =1

(P� f i � f i +1 ) =
1
n

(P� f n � f 1) +
1
n

n� 1X

i =1

�
P� f i � P� i +1 f i

�
:

Using the estimate (A.1.2) we obtain

�
�
�
�

Z
(P� gn � gn )hd�

�
�
�
� �

Z
1
n

jP� f n � f 1j jhjd�

+

�
�
�
�
�
1
n

NX

i =1

�
P� f i � P� n +1 f i

�
�
�
�
�
�
jhjd� +

�
�
�
�
�
1
n

n� 1X

i = N +1

�
P� f i � P� i +1 f i

�
�
�
�
�
�
jhjd�

�
1
n

2M h +
1
n

N 2M h +
1
n

(n � 1 � N � 1)M h ;

which converges to 0 asn ! + 1 . This completes the proof of the Theorem.

3.5 Examples

Example 3.5.1.Consider the piecewise convex map� : [0; 1] ! [0; 1] with countable number of

branches on the countable partition
nh

n
2+ n ; n+1

3+ n

�o 1

n=0
of [0; 1] de�ned as

� (x) =
2x

1 � x
(mod 1): (3.5.2)

See Figure 3.1 for the graph of�:

� (x) is piecewise continuous on the countable partition
nh

n
2+ n ; n+1

3+ n

�o 1

n=0
of [0; 1]. We use the

notation from Section3.2. Here,a0 = 0 ; a1 = 1
3 ; a2 = 1

2 ; a3 = 3
5 ; a4 = 2

3 as so on. Now,
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Figure 3.2: Piecewise convex map with in�nitely many branches for Example3.5.1

� 0(x) = 2
(1� x)2 which is increasing on[ai ; an(i ) ]; i � 1: Thus� is piecewise convex. Now,8ai 2

[0; 1]; i = 1 ; 2; 3; : : : ; � 0(ai ) = 2
(1� ai )2 > 0 =) 1

� 0(ai )
= (1� ai )2

2 ; i.e.; 1
� 0(a0 ) = (1� a0 )2

2 =

1
2 ; 1

� 0(a1 ) =
(1� 1

3 )2

2 = 2
9 ; 1

� 0(a2 ) =
(1� 1

2 )2

2 = 2
16; : : : : Therefore,

1X

i =1

1
� 0(ai )

= 2 �
�

1
22 +

1
32 +

1
42 + : : :

�
� 1:2898< 1 :

From the above calculations,� satis�es all conditions in Section3.2. Thus,� 2 T 1
pc (I ) and hence

by Theorem3.2.7, � has an ACIM.

Example 3.5.3.Consider the piecewise convex map� : [0; 1] ! [0; 1] with countable number of

branches de�ned as

� (x) =
1

2n+1
n(n+1) � x

� n on
�

1
n + 1

;
1
n

�
(3.5.4)

See Figure 3.2. We show that� satis�es conditions of Section3.3.

Condition 1:� (x) is piecewise continuous and convex on its domain.

Condition 2: Here,� 0(x) = 1
( 2n +1

n ( n +1) � x)2 which is increasing on
h

1
n+1 ; 1

n

i
: Thus � is piecewise

convex. Now,8n 2 N; � 0( 1
n ) = ( n + 1) 2 > 0:
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Figure 3.3: Piecewise convex map with countable number of branches, for Example3.5.3

Condition (3): Condition (3) is obviously satis�ed since in this example we have only one interval

in between1
2 and 1, and�

0
( 1

2) = 1 , which means
P 1

i =1
1

� 0(ai )
= 1 < 1 :

Condition (4):

D1 =
P 1

j =1
1

� 0(a0; � j ) = 1
22 + 1

32 + 1
42 + 1

52 + � � � � 0:6449< 1: Thus,� 2 T 1 ;0
pc (I ) and hence

by Theorem3.3.5, � has an ACIM.

Example 3.5.5. [20] Let I = [0 ; 1]; A = f 0g [
� 1

n : n = 1 ; 2; : : :
	

andJn =
h

1
n+1 ; 1

n

i
for n =

1; 2; : : : : We de�ne� : � jJ1 (x) = 2 x � 1; for anyn = 2 ; 3; : : : ; � jJn is an increasing linear function

such that� (Jn ) =
�

0; 1
n� 1

i
; � (0) = 0 : We de�ne

1
� 0(x)

=

8
>>>>>><

>>>>>>:

1
2 ; x 2 Int(J1)

n� 1
n(n+1) ; x 2 Int(Jn ); n = 2 ; 3; : : : ;

0 ; x 2 A:

�
0
(x) = 2 ; whenx 2 [1=2; 1] which implies 1

� 0(x)
= 1

2 ; and whenx 2 (0; 1=2); 1
� 0(x)

= n� 1
n(n+1)
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Figure 3.4: For Example3.5.5.

wheren = 2 ; 3; 4; : : : : Thus,D1 =
P 1

j =1
1

� 0(a0; � j ) = 1
2 + 1

2�3 + 2
3�4 + 3

4�5 + � � � = + 1 > 1;

and condition (4) is not satis�ed. It is proven in [20] that � has no �nite ACIM and any interval is

mapped after a �nite number of iterations onto the whole intervalI = [0 ; 1].

3.6 Exactness of piecewise convex maps with countable number of

branches

Theorem 3.6.1. Let � : I = [0 ; 1] ! [0; 1] satis�es Conditions(1)– (4) in Section3.2. Then

there exists the unique normalized absolutely continuous measure� g that is invariant under�: The

system(I; B; � g; � ) is exact and the densityg is bounded and decreasing. Moreover,limn Pn
� f = g

in L 1(I; � ); for anyf 2 L 1(I; � ) where� is the Lebesgue measure on[0; 1] andP� is the Frobenius-

Perron operator corresponding to� .

Proof. We follow [33] closely. We will prove that operatorP� admits a lower bound function. We

are going to construct a nontrivial lower function forP� : First, we will prove that the set

S = [ 1
n=0 � � n (f a0; a1; a2; : : : g)
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is dense in[0; 1]: Suppose it is not true. Then there exists an interval[x0; y0] � [0; 1] such that

� n ([x0; y0]) \ f a0; a1; a2; : : : g

is empty for alln = 0 ; 1; 2; � � � : Therefore, for eachn; the pointsxn = � n (x0) andyn = � n (y0)

belong to the same interval(ai ; an(i ) ). Recall from the 1st paragraph of Section3.2, n(i ) is the

index such that the interval[ai ; an(i ) ] does not contain any other points of the partitionf 0 =

a0; a1; a2; : : : g such thata0 < a 1 and alla2; a3; � � � 2 [a1; 1]: If xn ; yn 2 (a0; a1); we have by

the convexity of� 1 = � j[a0 ;a1 ) ; see Figure 3.4,

tan � 1 =
� 1(xn )

� 1
�

� 1(xn )
xn

and tan � 2 =
� 1(yn )

� 2
�

� 1(yn )
yn

; � 1; � 2 > 0:

Figure 3.5: A graph for Equation3.6.2.

Now,

tan � 2 � tan � 1

=)
� 1(yn )

yn
�

� 1(xn )
xn
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=)
yn+1

xn+1
=

� 1(yn )
� 1(xn )

�
yn

xn
: (3.6.2)

If xn ; yn 2 (ai ; an(i ) ) with i � 1; similarly we have

yn+1

xn+1
=

� i (yn )
� i (xn )

�
yn � a1

xn � a1
�

yn

xn
(
1 � a1xn=yn

1 � a1
):

Sinceyn +1
xn +1

� yn
xn

, we havexn +1
yn +1

� xn
yn

� � � � � x0
y0

and thus,=) 1� a1
xn
yn

� 1� a1
x0
y0

: Therefore,

1� a1xn =yn
1� a1

� 1� a1x0=y0
1� a1

and consequently

yn+1

xn+1
� q

yn

xn
where q =

1 � a1x0=y0

1 � a1
> 1: (3.6.3)

Since� 0
1(x) � � 0

1(0) > 1; the pointsxn ; yn cannot belong to(a0; a1) for almost alln: For in�nitely

manyn;s we havexn ; yn > a 1 and, according to Equation (3.6.2) and (3.6.3), limn ( yn
xn

) = 1 :

Sincelim supn xn � a1; this in turn implieslim supn yn = 1 which is impossible. Thus,S is

dense in[0; 1]:

Second, we claim that forn suf�ciently large Pn
� 14 is a decreasing function, where14 be

the characteristic function of an interval4 = [ d0; d1] with the endpoints belonging to the setS.

HerePn
� is the Frobenius-Perron operator corresponding to� n . The function� n satis�es condition

analogous to Conditions1– 4 in Section3.2. Let

f 0 = a(n)
0 ; a(n)

1 : : : ; a(n)
n ; : : : g

be the partition corresponding to� n i.e. � n is convex on each interval[a(n)
i ; a(n)

n(i ) ) and� n (a(n)
i ) = 0 .

We see that

f a(n)
0 ; : : : ; a(n)

n ; : : : g = � � n+1 f a0; : : : ; an ; : : : g

if we assume for simplicity that� (1) = 0 : Moreover,8i � 0; � (ai ) = 0 , and henceai 2 � � 1(0) �

� � 1(f a0 = 0 ; a1 : : : ; an ; : : : g): Thus,

f a0; : : : ; an ; : : : g � � � 1(f a0; : : : ; an ; : : : g)
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it follows by induction that

� � n+1 (f a0; : : : ; an ; : : : g) � � � n (f a0; : : : ; an ; : : : g)

which shows that the system of partition is decreasing. Sinced0; d1 2 S there is an integern0

suf�ciently large such thatdi belongs to the partitionf a(n)
0 ; : : : ; a(n)

n i ; : : : g for n � n0: The operator

Pn
� is the Frobenius-Perron operator for� n and so it may be written as

Pn
� f (x) =

f (� � n
0 (x))

(� n )0(� � n
0 (x))

�
� n [0( n ) ;a( n )

1 )
(x) +

1X

i =1

f (� � n
i (x))

(� n )0(� � n
i (x))

�
� n [a( n )

i ;a( n )
i +1 )

(x)

In particular forf = 1 4 andi � n0 we have

Pn
� 14 =

1
(� n )0(� � n

0 (x))
� � n [0;a1 ) (x) +

1X

i =1

1
(� n )0(� � n

i (x))
�

� n [a( n )
i ;a( n )

i +1 )
(x)

Since the right side of the equation is decreasing so,Pn
� 14 has the same property.

Finally, letD0 be a subset ofL 1(I; � ) consisting of all functions of the form

f (x) =
1X

i =1

ck14 k
(x); ck � 0

where the endpoints of the intervals4 k belong toS: SinceS is dense in[0; 1], the setD0 is dense in

L 1(D0; � ). Now, we construct a lower function forP� : Let f 2 D0 be an arbitrary function. There

existsn0 = n0(f ) such thatPn
� f is decreasing forn � n0: No decreasing density on(0; 1] exceeds

1=x: In fact for any decreasing�f we have

1 �
Z x

0

�f (s)ds � x � �f (x):

In particular we havePn
� f (x) � 1=x for n � n0: Applying this estimate, using lemma3.3.2, to the

equality

Pn+1
� f (0) =

1
� 0(0)

Pn
� f (0) +

1X

i =1

1
� 0(ai )

Pn
� f (ai )
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we obtain

Pn+1
� f (0) �

1
� 1

Pn
� f (0) + D

whereD =
P 1

i =1
1

ai � 0(ai )
: From Condition 3 of Section3.2, we have� 1 > 1 and by an induction

argument (and using theorem3.2.7) we obtain

Pn+ n0
� f (0) � (

1
� 1

)nPn0
� f (0) +

D
1 � 1

� 1

� 1 +
D

1 � 1
� 1

Now let K = D=(1 � 1=� 1) + 1 : For n suf�ciently large, sayn � n1; we havePn
� f (0) � K:

De�ne h = 1
21[0;1=2K ]: We will prove that

Pn
� f (x) � h(x) for n � n1: (3.6.4)

Suppose not. Then there isx0 2 [0; 1=(2K )] such thatPn
� f (x0) < h (x0) = 1

2 and

1 =
Z x0

0
Pn

� fdx +
Z 1

x0

Pn
� fdx

For somex 2 [0; x0] by the MVT,
Rx0

0 Pn
� fdx = x0Pn

� f (x): Again x � 0; so Pn
� f (x) �

Pn
� f (0) � K: Similarly for second part of the integral and consequently

1 =
Z x0

0
Pn

� fdx +
Z 1

x0

Pn
� fdx < x 0K +

1
2

(1 � x0) �
1

2K
K +

1
2

= 1

which is impossible.

Theorem 3.6.5. Let � : I = [0 ; 1] ! [0; 1] satis�es Conditions(1)– (4) in Section3.3. Then

there exists the unique normalized absolutely continuous measure� g that is invariant under�: The

system(I; B; � g; � ) is exact and densityg is bounded and decreasing. Moreover,limn Pn
� f = g in

L 1(I; � ); for anyf 2 L 1(I; � ) where� is the Lebesgue measure on[0; 1] andP� is the Frobenius-

Perron operator corresponding to� .

Proof. The proof is similar to the proof of Theorem3.6.1. Recall from the beginning of section
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3.3, we consider a decreasing countable sequencef a0;� ng of partition points in(a0; a1] such that

f 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � < a 0;� 2 < a 0;� 1 = a1g andlimn!1 a0;� n = 0 = a0;

andf 0 = a0; a1; a2; : : : ; an ; : : : gbe a countable partition ofI such thata0 < a 1 and alla2; a3; � � � 2

[a1; 1]: We do not assume the sequencef a2; : : : ; an ; : : : g to be increasing or decreasing. Here we

will prove that the setS = [ 1
j = J � � n (f a0;� j g) [ [ 1

i =1 � � n (f a1; a2; : : : ; an ; : : : g) is dense in[0; 1]

whereJ � 1: Suppose it is not true. Then there exists an interval[x0; y0] � [0; 1] such that

� n ([x0; y0]) \ f 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � < a 0;� 2 < a 0;� 1 = a1; : : : ; an ; : : : g

is empty for alln = 0 ; 1; 2; : : : . This means that for eachn the pointsxn = � n (x0) andyn =

� n (y0) belong to the same interval(a0;� (j +1) ; a0;� j ] [ (ai ; an(i ) ); i = 1 ; 2; � � � ; j = 1 ; 2; � � � : If

xn ; yn 2 (a0;� (j +1) ; a0;� j ] [ (ai ; an(i ) ); we have by applying the similar techniques of the proof of

Theorem3.6.1,
yn+1

xn+1
=

� 1(yn )
� 1(xn )

�
yn

xn
(3.6.6)

yn+1

xn+1
� q

yn

xn
where q =

1 � a1x0=y0

1 � a1
> 1 (3.6.7)

Since the derivation of� on (a0; a1) is positive, the pointsxn ; yn cannot belong to(a0; a1) for

almost alln: For in�nitely many n;s we havexn ; yn > a 1 and, according to (3.6.6) and (3.6.7),

limn ( yn
xn

) = 1 : Sincelim supn xn � a1; this in turn implieslim supn yn = 1 which is impossible.

ThenS is dense in[0; 1]: The remaining part of the proof is very similar to the corresponding part

in the proof of Theorem3.6.1.
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Chapter 4

Ulam's method for computing stationary

densities of invariant measures for

piecewise convex maps

4.1 Introduction

In this chapter, we use Ulam's method for the approximation off � ; an invariant density of a map

� or equivalently a �xed point of the Frobenius-Perron operatorP� : Fixed points of the Frobenius-

Perron operatorP� of � 2 T 1
pc (I ) [ T 1 ;0

pc (I ) are the stationary densities of�: The F- P operator

P� is an in�nite dimensional operator. Except for some simple cases (where� is piecewise linear

Markov and the Frobenius-Perron operator has a matrix representation), it is not easy to obtain an

analytical solution of the F-P equationP� f � = f � :

Asymptotic stability of stationary densities and weakly attracting repellors for piecewise convex

maps are studied by Inoue in [25] and [26]. Recently, Inoue [27] contemplated invariant measures

for random piecewise convex maps with a �nite number of branches. However, the literature on

stationary densities of ACIMs for piecewise convex maps with countable number of branches is not

af�uent.

In Chapter3, we studied ACIMs of maps in two classesT 1
pc (I ); T 1 ;0

pc (I ) of piecewise convex

49



maps� : I = [0 ; 1] ! [0; 1] with countable (in�nite) number of branches. It is proved in [23] that

any� 2 T 1
pc (I ) [ T 1 ;0

pc (I ) has a stationary densityf � of absolutely continuous invariant measure

�:

Numerical computations of stationary densities of invariant measures for dynamical systems

were suggested by Ulam [42]. For piecewise expanding deterministic transformations, T-Y Li [34]

�rst proved the convergence of Ulam's approximation. Since then, Ulam's method has been applied

to one and higher-dimensional expanding deterministic transformations. For piecewise expanding

interval maps, Bose and Murray presented the convergence rate of Ulam's method in [3]. In the con-

text of higher-dimensional Jablonski transformations, Boyarsky and Lou proved the convergence of

Ulam's method in [6]. For piecewise expanding andC2 transformations, the convergence of Ulam's

is proved by Ding and Zhou in [16]. In the case of random maps with constant probabilities, Froy-

land proved the convergence of Ulam's method and presented the rate of convergence in [19]. Góra

and Boyasrsky proved the convergence of Ulam's method for position-dependent random maps in

[5]. However, there are few results on the approximation for stationary densities of invariant mea-

sures for piecewise convex maps. In [35], Miller proved the convergence of Ulam's method for

piecewise convex transformations with a �nite number of branches with a strong repeller. J. Ding

[14] developed and presented piecewise linear and piecewise quadratic Markov �nite approximation

methods for piecewise convex maps with a �nite number of branches. If piecewise convex maps

have countable number of branches, then the convergence of Ulam's method becomes more chal-

lenging and complex. This complexity makes it harder to �nd a suitable sequence of approximating

functions that can accurately capture the behavior of this system across all branches. In [21], Góra

and Boyarsky presented an approximation method for invariant measures for piecewise continuous

maps with countable number of branches. As far as our knowledge goes, Ulam's method for piece-

wise convex maps with in�nitely many branches has not been investigated so far. In Section4.2,

we introduce notations and review the existence of stationary densities of absolutely continuous

invariant measures for� 2 T 1
pc (I ) [ T 1 ;0

pc (I ): In Section4.3.1, we construct a sequencef � ng1
n=1

of maps� n : [0; 1] ! [0; 1] s.t. � n has �nite number of branches and� n converges to� almost

uniformly. Using supremum norms and Lasota-Yorke type inequalities, we prove the existence of
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densitiesf n of ACIMs � n for � n . In Section4.3.1, we apply Ulam's method to� n and compute

an approximationf n;k of f n and prove thatf n;k ! f n ask ! 1 : Finally, in Section4.3.2, we

prove thatf n;k ! f � wheref � is the actual stationary density of absolutely continuous invariant

measures for the piecewise convex map� with countable number of branches. In Section4.4, we

present numerical examples.

4.2 Stationary densities of ACIMs for piecewise convex maps in class

T 1
pc (I ) [ T 1 ;0

pc (I ):

In this section, we review results on the existence of stationary densities of absolutely contin-

uous invariant measures (ACIMs) of piecewise convex maps with countable (in�nite) number of

branches. We closely follow Chapter3.

4.2.1 Stationary densities for piecewise convex maps with countable (in�nite) branches

and limit points of partition points separated from 0

Consider(I = [0 ; 1]; B; � ) be a measure space, where� is the Lebesgue measure onI andB

is the Borel� -algebra onI: Let f 0 = a0; a1; a2; : : : ; an ; : : : g be a countable partition ofI such

thata0 < a 1 and alla2; a3; � � � 2 [a1; 1]: We do not assume the sequencef a2; : : : ; an ; : : : g to be

increasing or decreasing. For anyi 2 f 0; 1; 2; : : : g; let n(i ) be the index such that the interval

[ai ; an(i ) ] does not contain any other points of the partition. Ifak is the limit point of decreasing

subsequence ofan 's, then(k) is not de�ned. We say that� 2 T 1
pc (I ) if

(1) � 0 = � j[0;a1 ) is continuous and convex;

� i = � j[ai ;an ( i ) ) is continuous and convex,i = 1 ; 2; � � � ;

(2) � (ai ) = 0 ; � 0(ai ) > 0; i = 1 ; 2; : : : ;

(3) � (0) = 0 ; � 0(0) = � 1 > 1;
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(4)
P 1

i =1
1

� 0(ai )
< 1 :

For � 2 T 1
pc (I ); f 2 L 1(I ); f � 0 the Frobenius-Perron operatorP� is de�ned as

P� f (x) =
f (� � 1

0 (x))

� 0(� � 1
0 (x))

� � [0;a1 ) (x) +
1X

i =1

f (� � 1
i (x))

� 0(� � 1
i (x))

� � [ai ;an ( i ) ) (x) (4.2.1)

The following results are proved in Chapter3.

Lemma 4.2.2. Let � 2 T 1
pc (I ); f 2 L 1(I ); f � 0; f non-increasing. Then

(1) P� (f ) 2 L 1(I ):

(2) P� (f ) � 0:

(3) P� (f ) is non-increasing.

(4) k P� (f ) k1 � C k f k1 ; whereC =
�

1
� 1

+
P 1

i =1
1

� 0(ai )

�
:

Proposition 4.2.3. If f � 0 andf is non-increasing, thenf (x) � 1
x � (f ); for x 2 [0; 1]; where

� (f ) =
Z 1

0
f (x)d� (x):

Proof. For any0 < x � 1; we have

� (f ) =
Z 1

0
f (x)d� (x) �

Z x

0
f (x)d� (x) � x � f (x):

Lemma 4.2.4. If f : [0; 1] ! R+ is non-increasing and� 2 T 1
pc (I ). Then

k P� (f ) k1 �
1

� 1
k f k1 + D k f k1; (4.2.5)

whereD =
� P 1

i =1
1
ai

1
� 0(ai )

�
:

Theorem 4.2.6.Let � 2 T 1
pc (I ): Then� admits an absolutely continuous invariant measure� =

f � � � with non-increasing density functionf � :
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4.2.2 Stationary densities of ACIMs of maps with countable (in�nite) number of

branches where0 is a limit point of partition points

Let f 0 = a0; a1; a2; : : : ; an ; : : : g be a countable (in�nite) partition ofI such thata0 < a 1

and alla2; a3; � � � 2 [a1; 1]: We do not assume the sequencef a2; : : : ; an ; : : : g to be increasing or

decreasing. For anyi 2 f 1; 2; : : : g; let n(i ) be the index such that the interval[ai ; an(i ) ] does not

contain any other points of the partition. Ifak is the limit point of decreasing subsequence ofan 's,

then(k) is not de�ned. Moreover, we consider a decreasing in�nite sequencef a0;� ng of partition

points in(a0; a1] such thatf 0 = a0 < � � � < a 0;� n < a 0;� (n� 1) < � � � < a 0;� 2 < a 0;� 1 = a1g and

limn!1 a0;� n = 0 = a0: We say that� 2 T 1 ;0
pc (I ) if

(1) � 0;� (j +1) = � j(a0; � ( j +1) ;a0; � j ] is continuous and convex, j=1, 2, . . . ;

� i = � j[ai ;an ( i ) ) is continuous and convex,i = 1 ; 2; � � � ;

(2) � (a0;� j ) = 0 ; � 0(a0;� j ) > 0; j = 1 ; 2; : : : ;

� (ai ) = 0 ; � 0(ai ) > 0; i = 1 ; 2; : : : ;

(3)
P 1

i =1
1

� 0(ai )
< 1 ;

(4) D1 =
P 1

j =1
1

� 0(a0; � j ) < 1:

Remark4.2.7. Condition 3 and Condition 4 can be replaced by the following Condition3+ ; where

3+ .
P 1

j =1
1

� 0(a0; � j ) +
P 1

i =1
1

� 0(ai )
< 1 :

If 3+ is satis�ed, then we can �nd aJ � 1 such that

1X

j = J

1
� 0(a0;� j )

< 1;

and after proper renaming of the partition points, Conditions 3 and Condition 4 are satis�ed.
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The following results are proved in [23].

Lemma 4.2.8. Let � 2 T 1 ;0
pc (I ); f 2 L 1(I ); f � 0; f non-increasing. Then

(1) P� (f ) 2 L 1(I ):

(2) P� (f ) � 0:

(3) P� (f ) is non-increasing.

(4) k P� (f ) k1 � C k f k1 ; whereC =
�

D1 +
P 1

i =1
1

� 0(ai )

�
:

Lemma 4.2.9. If f : [0; 1] ! R+ is non-increasing and� 2 T 1 ;0
pc (I ). Then

k P� (f ) k1 � D1 k f k1 + D k f k1; (4.2.10)

whereD =
P 1

i =1
1

ai � 0(ai )
:

Theorem 4.2.11.Let � 2 T 1 ;0
pc (I ): Then� admits an absolutely continuous invariant measure

� = f � � � with non-increasing density functionf � :

4.3 Ulam's method for piecewise convex maps with countable (in�-

nite) number of branches

4.3.1 Approximation of piecewise convex maps with an in�nite number of branches

by piecewise convex maps with �nite number of branches

Let � : [0; 1] ! [0; 1] be a piecewise convex map inT 1
pc (I ) [ T 1 ;0

pc (I ) with countable (in�nite)

number of branches. In this section, we will describe the most dif�cult case when0 is the limit of the

partition points for the map� 2 T 1 ;0
pc . We assume that there are no other limit points of the partition

points. The other cases, i.e., where there are such limit points or� 2 T 1
pc , are done similarly. Thus,

the map� is like in Section4.2.2. For simplicity, we change the notation by renaming the partition

points. Letan = a0;� n , n = 1 ; 2; : : : . Then, the assumptions (3) and (4) of Section4.2.2are

restated as:
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(3') There exists anN � 1 such that

D1 =
1X

n= N +1

1
� 0(an )

< 1: (4.3.1)

Then, the Lemma4.2.8and Lemma4.2.9of Section4.2.2hold with changed constants

C = D1 +
NX

n=1

1
� 0(an )

=
1X

n=1

1
� 0(an )

;

D =
NX

n=1

1
an � 0(an )

:

(4.3.2)

For n � N , we construct a sequencef � ng1
n= N of maps� n : [0; 1] ! [0; 1] s.t. � n has �nite

number of branches and� n converges to� almost uniformly (see de�nition4.3.8and proof of lemma

4.3.9). Using supremum norms and Lasota-Yorke type inequalities, we prove that the existence of

stationary densitiesf n of ACIMs � n for � n . We approximate� : [0; 1] ! [0; 1] with the following

sequence of maps� n : [0; 1] ! [0; 1], n � N , with �nite number of branches:

� n (x) =

8
>><

>>:

x=an ; 0 � x < a n ;

� (x) ; an � x � 1:

In the following, we show that for eachn � 0; the map� n has an absolutely continuous invariant

measure. Each� n is a piecewise convex map with �nite partitionf 1 = a0; a1; a2; � � � ; an ; an+1 =

0g and� n satis�es following conditions:

(1) � n j = � n j(aj ; aj � 1] is continuous and convex,j = 1 ; 2; � � � ; n + 1;

(2) � n (aj ) = 0 ; � 0
n (aj ) > 0; j = 1 ; � � � ; n + 1;

(3) � n (0) = 0 ; � 0
n (0) = 1

an
> 1:

(4)
P n+1

j =1
1

� 0(aj ) < 1 :
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Let f 2 L 1(I ); f � 0: Then, the Frobenius-Perron operatorP� n is de�ned as

P� n f (x) =
n+1X

j =1

f (� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n (aj ;aj � 1 ](x) (4.3.3)

Lemma 4.3.4. Let f 2 L 1(I ); f � 0; f non-increasing. Then

(1) P� n (f ) 2 L 1(I ) for eachn = 1 ; 2; : : : :

(2) P� n (f ) � 0 for eachn = 1 ; 2; : : : :

(3) P� n (f ) is non-increasing for eachn = 1 ; 2; : : : :

(4) k P� n (f ) k1 � Cn k f k1 � (1 + C) k f k1 for eachn = 1 ; 2; : : : whereCn =
�

an +
P n

j =1
1

� 0
n (aj )

�
:

Proof. (1)

P� n (f ) =
Z

� � 1
n (I )

fd� =
Z

I
f:

Therefore,P� n (f ) 2 L 1(I )

(2) Note that

P� n f (x) =
n+1X

j =1

f (� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n (aj ;aj � 1 ](x):

Each of the branches
f (� � 1

n j (x))

� 0
n (� � 1

n j (x))
� � n (aj ;aj � 1 ](x) is non-negative.

(3) Each of the branches
f (� � 1

n j (x))

� 0
n (� � 1

n j (x))
� � n (aj ;aj � 1 ](x) is non-increasing since� � 1

n j
is increasing,f is

non-increasing and� 0
n is increasing.

(4) We have
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P� n f (x) =
n+1X

j =1

f (� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n (aj ;aj � 1 ](x)

�
n+1X

j =1

k f k1

� 0
n (� � 1

n j (x))
�

n+1X

j =1

k f k1

� 0
n (aj )

=

0

@an +
nX

j =1

1
� 0

n (aj )

1

A k f k1

� (1 + C) k f k1

Lemma 4.3.5. If f : [0; 1] ! R+ is non-increasing, then for eachn � N ,

k P� n (f ) k1 � (an + D1) k f k1 + D k f k1; (4.3.6)

Proof. Sincef is non-increasing,f (0) �k f k1 ; and by Lemma4.3.4, P� n f (0) �k P� n f k1 :

Now,

P� n f (0) =
n+1X

j =1

f (� � 1
n j

(0))

� 0
n (� � 1

n j (0))
� � n (aj ;aj � 1 ](0)

=
1

� 0
n (0)

f (0) +
nX

j = N

f (� � 1
n j

(0))

� 0
n (� � 1

n j (0))
+

NX

j =1

f (� � 1
n j

(0))

� 0
n (� � 1

n j (0))

= an f (0) +
nX

j = N

f (an j )
� 0

n (an j )
+

NX

j =1

f (an j )
� 0

n (an j )

� (an + D1)f (0) +
NX

j =1

� (f )
aj

1
� 0

n (aj )

� (an + D1) k f k1 + D k f k1 :

Theorem 4.3.7.For eachn 2 N; � n admits an absolutely continuous invariant measure� n = f �
n � �

with non-increasing density functionf �
n :
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Proof. Our proof works for alln � n0, where we havean0 + D1 < 1 and gives a uniform estimate.

For then < n 0 the claim follows from Subsection4.2.1.

Let f = 1 and consider the sequencef P k
� n

f g1
k=0 : Clearly f is non-increasing. Then by part 3

of Lemma4.3.4we can apply Lemma4.3.5iteratively and obtain

k P k
� n

f k1 = k P� n

�
P k� 1

� n
f

�
k1 � (an + D1) k

�
P k� 1

� n
f

�
k1 + D k

�
P k� 1

� n
f

�
k1

� (an + D1)
�

(an + D1) k
�

P k� 2
� n

f
�

k1 + D k
�

P k� 2
� n

f
�

k1

�
+ D k

�
P k� 1

� n
f

�
k1

� � �

� (an + D1)k k f k1 + D
�

k P k� 1
� n

f k1 +( an + D1) k P k� 2
� n

f k1

+ � � � + ( an + D1)k� 1 k P2
� n

f k1

�

� (an + D1)k k f k1 + D
�

1 + ( an + D1) + � � � + ( an + D1)k� 1
�

� (an0 + D1)k k f k1 +
D

1 � (an0 + D1)
:

So the sequencef P k
� n

f g1
k=0 is uniformly bounded and weakly compact. By Yosida-Kakutani the-

orem, 1
k

P k
j =1 P j

� n f converges inL 1 to aP� n invariant functionf �
n : It is non-increasing since it is

the limit of non-increasing functions.

De�nition 4.3.8. Let � n ; � are maps on[0; 1] into itself and� n ; � are de�ned as above. We say

that � n converges to� almost uniformly if, given� > 0; there exists a measurable setA � �

[0; 1]; � (A � ) > 1 � �; such that� n ! � uniformly onA � :

Lemma 4.3.9. � n converges to� almost uniformly.

Proof. Let � > 0: Choose the decreasing partitionf 1 = a0; a1; a2; � � � ; an ; an+1 = 0g of [0; 1] for

� n such thatan < �: Let A � = ( an ; 1): Then,� (A � ) = 1 � an > 1 � �: Since� n = � on A � this

completes the proof.
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4.3.2 Ulam's method for approximation

In general, most dynamical systems do not possess Markov properties, implying that they lack

a Markov partition, and most partitions designed for these systems will not qualify as Markov

partitions (section (4.2.2), example 4.1(c), [2]). However, when we encounter such systems, the

corresponding the Frobenius-Perron operator can be accurately represented by an operator of �nite

rank. Markov transformation is a piecewise monotonic transformation such that each interval of the

partition is mapped onto a union of intervals of the partition. The Frobenius-Perron operator can

be de�ned in terms of the Markov transformation matrix. We can approximate the �xed point of

the Frobenius-Perron operatorP� by the �xed point of a matrix operator, which we call the Markov

operator. If the map� is piecewise linear and Markov, we can �nd the Frobenius-Perron operator in

a matrix form. Therefore, it is easy to �nd the density or invariant measure because the Frobenius-

Perron equationP� f = f is a system of linear equations. In the deterministic case, the matrix

approximation of the F-P operator has the form

M � =

 
�

�
� � 1(J j ) \ J i

�

� (J i )

!

1� i;j � k

where� denotes the normalized Lebesgue measure onJ andf J i gk
i =1 is a �nite family of connected

sets with nonempty and adjoint interiors that coverJ i.e., J = [ k
i =1 J i ; and indexed in terms of

nested re�nements.

Example 4.3.10.Let � : [0; 1] ! [0; 1] be a piecewise linear Markov transformation on the partition

f 0; 1
4 ; 1

2 ; 3
4 ; 1g de�ned by

� (x) =

8
>>>>>>>>>><

>>>>>>>>>>:

4x; 0 � x � 1
4

� 3x + 7
4 ; 1

4 < x � 1
2

3x � 5
4 ; 1

2 < x � 3
4

� 2x + 5
2 ; 3

4 < x � 1

:

Here we use the above matrix form of the F-P operator for �nding all elements of the matrixM � :
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Figure 4.1: Markov map; �; with partition shown for Example4.3.10.

Now usingi; j = 1 ; 2; 3; 4 successively, then

m11 =
�

�
J1 \ � � 1(J1)

�

� (J1)
=

� ([0; 1
4 ] \ � � 1([0; 1

4 ]))

� ([0; 1
4 ])

=
� ([0; 1

4 ] \ ([0; 1
16]))

� ([0; 1
4 ])

=
1
4

;

m12 =
�

�
J1 \ � � 1(J2)

�

� (J1)
=

� ([0; 1
4 ] \ � � 1([ 1

4 ; 1
2 ]))

� ([0; 1
4 ])

=
� ([0; 1

4 ] \ ([ 1
16; 1

8 ]))

� ([0; 1
4 ])

=
1
4

;

m21 =
�

�
J2 \ � � 1(J1)

�

� (J2)
=

� ([ 1
4 ; 1

2 ] \ � � 1([0; 1
4 ]))

� ([ 1
4 ; 1

2 ])
=

� ([ 1
4 ; 1

2 ] \ ([ 1
2 ; 7

12]))

� ([0; 1
4 ])

= 0;

m22 =
�

�
J2 \ � � 1(J2)

�

� (J2)
=

� ([ 1
4 ; 1

2 ] \ ([ 1
2 ; 5

12]))

� ([ 1
4 ; 1

2 ])
=

1
3

;

m33 =
�

�
J3 \ � � 1(J3)

�

� (J3)
=

� ([ 1
2 ; 3

4 ] \ ([ 7
12; 2

3 ]))

� ([ 1
2 ; 3

4 ])
=

1
3

;

m44 =
�

�
J4 \ � � 1(J4)

�

� (J4)
=

� ([ 3
4 ; 1] \ ([ 3

4 ; 7
8 ]))

� ([ 3
4 ; 1])

=
1
2

:
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Similarly, we can �nd the rest of the elementsm13 = m14 = 1
4 ; m21 = 0 ; m23 = m24 = 1

3 ; m31 =

0; m32 = m34 = 1
3 ; m34 = 0 ; m41 = m42 = 0 ; m43 = 1

4 :

Thus, the matrix approximation of the F-P operator has the form for map� :

M � =

2

6
6
6
6
6
6
6
4

1=4 1=4 1=4 1=4

0 1=3 1=3 1=3

0 1=3 1=3 1=3

0 0 1=2 1=2

3

7
7
7
7
7
7
7
5

:

The resultingM � may be interpreted as a transfer matrix, for which it is easy to check that all row

sums are1; i.e.,
P

j mij = 1 8j:

Let f = ( f 1; f 2; f 3; f 4), wheref i = f jI i ; I i = [ i � 1
4 ; i

4 ]; i = 1 ; 2; 3; 4. The normalized density of the

map� (Figure4.1) is the left eigenvector ofM � with eigenvalue 1.P� f = f reduces tof M � = f

which is a system of linear equation. It shows thatf = (0 ; 1; 2; 2):

Ulam's method is often used to describe the process of using Ulam's conjecture (see Chapter

2, Conjecture2.6.1). In this subsection, �rst, we describe Ulam's method for �nite-dimensional

approximationPn;k ; n andk denoted by the number of branches and number of partitions, respec-

tively, of the Perron-Frobenius operatorP� n of � n : Ulam's method computesf n;k on a partition of

k subintervals of the state space as an approximation of the actual stationary density functionf �
n

of � n ; n � 1: Moreover, we show thatf n;k converges tof �
n ask ! 1 : We closely follow [34],

[35] and [14]. Let � n be an approximation of� 2 T 1
pc (I ) [ T 1 ;0

pc (I ): Then, by Theorem4.3.7, � n

has an absolutely continuous invariant measure� n with stationary density functionf �
n : The approx-

imationf �
n is carried out using a two-step process. Initially, we approximate� by the map� n with

a �nite number of branches. Then, we further approximate� n using Ulam's method. In our case,

we don't need approximation in theL 1 norm. So, it's not an approximation of any norm. In this

sense, approximation means� n converges� almost uniformly. Now, we describe Ulam's method

for approximatingf �
n : Let k be a positive integer. LetP (k) = f J1; J2; : : : ; Jkg be a partition of the
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interval[0; 1] into k equal subintervals. Now, construct the matrix

M (k)
� n

=

 
�

�
� � 1

n (J j ) \ J i
�

� (J i )

!

1� i;j � k

:

Let L (k) � L 1([0; 1]; � ) be a subspace ofL 1 consisting of functions which are constant on elements

of the partitionP (k) : We will represent functions inL (k) as vectors: vectorf = [ f 1; f 2; : : : ; f k ]

correspond to the functionf =
P k

i =1 f i � J i : We introduce the operatorQ(k) : L 1 ! L (k) ; de�ned

by

Q(k) (f ) =
kX

i =1

�
1

� (J i )

Z

J i

fd�
�

� J i =
�

1
� (J1)

Z

J1

fd�; : : : ;
1

� (Jk )

Z

Jk

fd�
�

(4.3.11)

Let f = [ f 1; f 2; : : : ; f k ] 2 L (k) : We de�ne the operatorP (k)
� n : L (k) ! L (k) by

P (k)
� n

f =
�

M (k)
� n

� T rans
� ([f 1; f 2; : : : ; f k ]) (4.3.12)

which is a �nite-dimensional approximation to the operatorP� n : AT rans denotes the transpose of

the matrixA:

Then, we have

P (k)
� n

f = Q(k)P� n f:

More generally, forf 2 L 1; we have

P (k)
� n

Q(k) f = Q(k)P� n Q(k) f:

The following Lemma will be used several times in the sequel.

Lemma 4.3.13.Let f gngn=1 ;2;::: be a sequence of non-increasing functions uniformly bounded in

L 1 : If gn ! h; asn ! 1 ; weakly inL 1; then the convergence is also inL 1 and a.e.

Proof. Sincegn 's are non-increasing and uniformly bounded inL 1 ; they are also of uniformly

bounded variation. By Helly's Theorem [ Rudin, 1976], there is a subsequencegnk convergent
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a.e. to some functionh1. Sincegnk ! h1 weakly inL 1 we haveh1 = h. Considering all possible

subsequences we prove thatgn ! h a.e. Sincegn converge toh a.e. and they are uniformly bounded

in L 1 , the convergence is also inL 1 (e.g., by Lebesgue Dominated Convergence theorem).

Since each map� n is exact [Lasota and Yorke, 1982], by Proposition 1.2 of [Hunt and Miller,

1992], we obtain that the invariant densitiesf n;k of P (k)
� n are unique.

Lemma 4.3.14.The invariant densityf n;k of P (k)
� n � n is non-increasing for anyn; k > 1:

Proof. Let f 2 L (k): SinceP (k)
� n f = Q(k)P� n f; and both operatorsP� n andQ(k) transform non-

increasing functions into non-increasing functions, the operatorP (k)
� n also have this property. Let

f = 1 be a constant function understood as[1; 1; : : : 1] 2 L (k): It is non-increasing. Thus, all the

functions(P� n )m f; m = 1 ; 2; ; ; ; are non-increasing. Similarly, as the estimate (15) was obtained,

they can be shown to be uniformly bounded inL 1 and thus weakly compact inL 1. Then, Yosida-

Kakutani theorem [Yosida and Kakutani , 1941] shows that the sequence1
s

P �
P (k)

� n

� m
f converges

in L 1 to the invariant densityf n;k : By Lemma4.3.13the convergence is also a.e. andf n;k is non-

increasing.

Using Ulam's method and corresponding convergence analysis described in [34, 35, 14], we

prove the following theorem.

Theorem 4.3.15.Let � 2 T 1 ;0
pc (I ) be a piecewise convex map with countably many branches. Let

f � ng1
n=1 be the approximating sequence of piecewise convex maps with �nite numbers of branches

where � n are de�ned in the previous Sub-Section4.3.1. If f n;k is a normalized �xed point of

P (k)
� n ; k = 1 ; 2; : : : ; de�ned in (4.3.12), then the sequencef f n;k g1

k=1 is weakly pre-compact in

L 1: Any limit pointf �
n of the sequencef f n;k g1

k=1 is a �xed point ofP� n :

Proof. Let P (k)
� n be the Ulam's approximation of the Frobenius-Perron operatorP� n of � n : Let Q(k)

be the isometric projection de�ned in (4.3.11). It can be shown that (see: (4), page 3 [35]; def. (2.1),

page 5 [34]):

P (k)
� n

Q(k) f = Q(k)P� n f: (4.3.16)

From lemma 2.5 of [35], we get

k Q(k) f k1 �k f k1 : (4.3.17)
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Equation (4.3.17) implies thatQ(k) does not increase inL 1 norm.

From equation (4.3.6), P� n satis�es the following Lasota-Yorke type inequality

k P� n f k1 � (an + D1) k f k1 + D k f k1 : (4.3.18)

Using equation (4.3.16) and (4.3.17) we obtain

k P (k)
� n

f k1 = k Q(k)P� n f k1 �k P� n f k1 � (an + D1) k f k1 + D k f k1 : (4.3.19)

Now, f n;k is a normalized �xed point of the approximate of the F-P operatorP (k)
� n ; then we can write

k f n;k k1 = k P (k)
� n

f n;k k1 :

From equation (4.3.17) and equation (4.3.18) we obtain

k P (k)
� n

f n;k k1 = k Q(k)P� n f n;k k1 �k P� n f n;k k1 � (an + D1) k f n;k k1 + D k f n;k k1 :

(4.3.20)

Thus, we have

k f n;k k1 � (an + D1) k f n;k k1 + D k f n;k k1

k f n;k k1 �
D

1 � (an + D1)
k f n;k k1 (4.3.21)

This shows that the densitiesf n;k are uniformly bounded inL 1 and thus form a precompact set

in the weak topology ofL 1: There exists a subsequencef n;k j that converges weakly inL 1 to some

limit function ~f for �xed n. Since allf n;k j 's are decreasing, they are also of uniformly bounded

variation. By Helly's Theorem, there is a further subsequencef n j s
convergent a.e. to some function

~~f . Since the functionsf n j s
are uniformly bounded, by Lebesgue dominated convergence theorem ,

we obtain that

f n j s
! ~~f ; in L 1:

This implies that~~f = ~f . Since the same reasoning applies to any subsequence off n;k j we obtain
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that

f n j ! ~f ; in L 1:

Now, we want to show that iff n;k j ! ~f ; n � �xed, kj ! 1 then for any continuous functiong we

have
Z

g
�

~f � P� n
~f
�

d� = 0

Now,

j
Z

g
�

~f � P� n
~f
�

d� j � j
Z

g
�

~f � f n;k j

�
d� j + j

Z
g

�
f n;k j � P� n

~f
�

d� j

= j
Z

g
�

~f � f n;k j

�
d� j + j

Z
g

�
P (k j )

� n f n;k j � P� n
~f
�

d� j

� j
Z

g
�

~f � f n;k j

�
d� j + j

Z
g

�
P (k j )

� n f n;k j � P (k j )
� n

~f
�

d� j + j
Z

g
�

P (k j )
� n

~f � P� n
~f
�

d� j

Sinceg; being continuous, is bounded andf n;k j ! ~f weakly inL 1; so �rst term goes to0:

Since

f n j ! ~f ; in L 1

andP (k j )
� n is a norm 1 operator the second integral goes to 0. From the lemma 2.2 of T-Y Li, for

~f 2 L 1; the sequenceQ(k j ) ~f converges inL 1 to ~f askj ! 1 :

Which implies,P (k j )
� n

~f = Q(k j )P� n
~f ! P� n

~f in L 1 askj ! 1 . Therefore, the third term also

goes to zero.

Theorem 4.3.22.Let � 2 T 1 ;0
pc (I ) be a piecewise convex map with countably many branches.

As described at the beginning of subsection4.3.1, let f � ng1
n=1 be the approximating sequence of

piecewise convex maps with �nite numbers of branches. LetP (k)
� n , k = 1 ; 2; : : : be the sequence of

Ulam's operators approximating operatorsP� n . Let f n;k be the normalized (inL 1) �xed point of

P (k)
� n . Then, the familyf f n;k gn=1 ;2;:::;k =1 ;2;::: is uniformly bounded inL 1 and weakly compact in

L 1. If f n j ;k j , j = 1 ; 2; : : : is a weakly convergent subsequence, then it converges inL 1 (and almost

everywhere) to a functionf which is a �xed point ofP� , P� f = f .
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Proof. The stationary densitiesf f ngn� 1 of f � ngn� 1 are uniformly bounded inL 1 by Theorem

4.3.7. Moreover, the densitiesf n;k , the piecewise constant approximations off n 's are also uni-

formly bounded inL 1 by formula (4.3.21). Thus, the setf f n;k g1
k=1 is weakly compact inL 1. As-

sume thatf f n;k g1
k=1 has weakly convergent subsequencef f n j ;k j g with limit f: Since the functions

f f n j ;k j g are decreasing and uniformly bounded, they also have uniformly bounded variations. By

Helly's Theorem there is a further subsequencef f n j s ;k j s
g that converges pointwise to some func-

tion h. Since subsequence off f n;k g1
k=1 converges weakly tof; we havef = h: Thus,f f n;k g1

k=1

converges tof pointwise. By the Lebesgue Dominated Convergence Theorem,f n;k ! f in L 1:

It remains to show thatf is a �xed point ofP� , P� f = f: We will show that the measuresfd�

and(P� f )d� are equal. It is enough to show that for anyg 2 C(I ), we have
R

g(f � P� f )d� = 0 :

To simplify the notation we assume that the whole sequencef n;k converges tof . We have,

j
Z

g(f � P� f )d� j � j
Z

g(f � f n;k )d� j + j
Z

g(f n;k � P (k)
� n

f n;k )d� j

+ j
Z

g(P (k)
� n

f n;k � P� n f n;k )d� j + j
Z

g(P� n f n;k � P� n f )d� j + j
Z

g(P� n f � P� f )d� j:

Sincef n;k ! f in L 1; the �rst term goes to0 andk ! 1 : Sincef n;k are �xed points ofP (k)
� n ; the

second term is0:

Third integral:

Z
g(P (k)

� n
f n;k � P� n f n;k )d� =

Z
g(Q(k) (P� n f n;k ) � P� n f n;k )d�

We haveQ(k)h ! h in L 1 for anyh 2 L 1. Since the densitiesf f n;k g form a pre-compact set inL 1,

the convergence is uniform on this set. The third integral converges to 0 ask ! + 1 .

Sincef n;k ! f in L 1 andP� n 's are norm 1 operators, the fourth integral converges to 0 (as

n; k ! + 1 ).

The last integral. By properties of the Frobenius-Perron operator, we have

j
Z

g(P� n f � P� f )d� = j
Z

(g � � n � g � � )fd�

To show that this converges to 0, we �x an" > 0. Let M = sup jgj. For integrable functionf we
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can �nd a� 1 > 0 such that
R

A jfd� j < "= 2M for any setA with � (A) < � 1. Since� n ! � almost

uniformly, we can �nd a setA with � (A) < � 1 such that� n ! � uniformly onAc. Functiong is

continuous, so for its modulus of continuity! g we can �nd a� 2 such that! g(� 2) < " . Now, we can

�nd an N � 1 such that forn � N we havej� n � � j < � 2 onAc. Then, forn � N we write

j
Z

(g � � n � g � � )fd� �
Z

jg � � n � g � � )jfd�

=
Z

A
jg � � n � g � � jfd� +

Z

A c
jg � � n � g � � jfd� � 2M � "=2M + ! g(� 2) � 1 � 2":

This shows that the last integral converges to 0 asn ! + 1 .

4.4 Examples

Example 4.4.1. Consider the piecewise expanding and piecewise linear mapT : [0; 1] ! [0; 1]

with countable number of branches de�ned as

T(x) = i (i + 1)
�

x �
1

i + 1

�
on

�
1

i + 1
;
1
i

�
; i = 1 ; 2; � � � : (4.4.2)

See Figure 4.1 for a graph ofT: It shows that the Lebesgue measure is invariant underT: Derivative

Figure 4.2: The graph of the piecewise expanding and piecewise linear mapT, for Example,4.4.1.

of T is i (i + 1) and its reciprocal, i.e., 1
T 0(x) = 1

i (i +1) = 1
i � 1

i +1 : Therefore,
P 1

i =1
1

T 0(x) =
P 1

i =1

�
1
i � 1

i +1

�
= 1 ; which means that the Lebesgue measure is invariant underT: The slope
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of T on
h

1
i +1 ; 1

i

i
is 1

1
i � 1

i +1
and therefore, the inverse ofT has slope1

i � 1
i +1 : Then, with the

densityf = 1; PT f =
P 1

i =1

�
1
i � 1

i +1

�
= 1 : Thus,PT f = f andf = 1 is the invariant density

of T. Now, consider the conjugationh : [0; 1] ! [0; 1] de�ned by h(x) = 1 � (1 � x)2: We

construct the piecewise convex map� : [0; 1] ! [0; 1] with countable number of branches de�ned

by � = h� 1 � T � h: See Figure 4.2 for a graph of�: The piecewise convex map� is topologically

Figure 4.3: The graph of the piecewise convex map� with countable number of branches for Ex-
ample4.4.1.

conjugated to the piecewise linear and piecewise expanding mapT via the conjugationh. Therefore,

the stationary densityg of � is given byg = f � h � j h0j (see proof of Theorem5.2.2in Chapter 5).

Now, h(x) = 1 � (1 � x)2: Hence,g(x) = f (h(x)) � j h0(x)j = j2(1 � x)j: See Figure 4.3 for a

graph of the stationary densityg of �:

Figure 4.4: The graph of the stationary densityg of the piecewise convex map� with countable
number of branches for Example4.4.1.

Now, we �nd the �rst few branches (from right) of� on[0; 1]. Note that� (x) = ( h� 1� T � h)(x);

whereh(x) = 1 � (1 � x)2; h� 1(x) = 1 �
p

(1 � x): See Figure 4.4 for graphs ofh andh� 1:
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Figure 4.5: Graphs of tH (left) andh� 1 (right).

The map T is piecewise onto the partition

��
1

i + 1
;
1
i

�� 1

i =1
=

�
: : : ;

1
22

;
1
21

;
1
20

;
1
19

; : : : ;
1
7

;
1
6

;
1
5

;
1
4

;
1
3

;
1
2

; 1
�

:

Moreover,h
�

1 �
q

i
i +1

�
= 1

i +1 ; i = 1 ; 2; 3; : : : : Thus, the map� is de�ned on the partition

("

1 �

r
i

i + 1
; 1 �

r
i � 1

i

#) 1

i =1

=

(

: : : ; 1 �

r
4
5

; 1 �

r
3
4

; 1 �

r
2
3

; 1 �

r
1
2

; 1

)

:

If x 2 [1 �
q

1
2 ; 1]; then h(x) 2 [1

2 ; 1]: If x 2 [1
2 ; 1]; then T(x) 2 [0; 1]: If x 2 [0; 1]; then

h� 1(x) 2 [0; 1]: Thus, if x 2 [1 �
q

1
2 ; 1]; then� (x) = � = ( h� 1 � T � h)(x) 2 [0; 1]: Moreover,

on [1 �
q

1
2 ; 1];

� (x) = ( h� 1 � T � h)(x)

= h� 1(T(1 � (1 � x)2))

= h� 1(2(1 � (1 � x)2) � 1)

= 1 �
p

1 � (1 � 2(1 � x)2)

= 1 �
p

2(1 � x):

In a similar way, we can �nd other branches of� on the partition
��

1 �
q

i
i +1 ; 1 �

q
i � 1

i

�� 1

i =1
=
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n
: : : ; 1 �

q
3
4 ; 1 �

q
2
3 ; 1 �

q
1
2 ; 1

o
:

The �rst few, starting from1 to the left, the branches of� on

"

1 �

r
1
2

; 1

#

;

"

1 �

r
2
3

; 1 �

r
1
2

#

;

"

1 �

r
3
4

; 1 �

r
2
3

#

;

"

1 �

r
4
5

; 1 �

r
3
4

#

;

"

1 �

r
5
6

; 1 �

r
4
5

#

are1�
p

2(1� x); 1�
p

6(1 � x)2 � 3; 1�
p

12(1� x)2 � 8; 1�
p

20(1� x)2 � 15; 1�
p

30(1� x)2 � 24

respectively.

Now, consider the following sequencef � ngn� 0 of piecewise convex map� n : [0; 1] ! [0; 1] with

�nite number of branches:

� n (x) =

8
>><

>>:

1
1�

p n
n +1

x ; 0 � x < 1 �
q

n
n+1

� (x) ; 1 �
q

n
n+1 � x � 1:

See Figure 4.6 for a graph of� n with n = 5 : The sequencef � ngn� 0 of piecewise convex map

Figure 4.6: Piecewise convex map� n with �nite number of branches (n = 5 ).

� n : [0; 1] ! [0; 1] with �nite number of branches converges almost uniformly to� with countable

number of branches. In Figure 4.7, we present a graph of approximate stationary densityf n;k ; n =

5; k = 100 via Ulam's method of the actual stationary density off n ; n = 5 of the piecewise convex

map� n ; n = 5 with a �nite number of branches. Note that� n ; n = 5 is an approximation of the

piecewise convex map�: In Figure 4.7, we present the density of the piecewise convex map� with

a �nite number of branches and the graph of the approximate stationary densityf n;k ; n = 5 ; k =

100 via Ulam's method. In Figure 4.8, we present the graph of the actual densityg (in red) of
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Figure 4.7: The approximate stationary densityf n;k ; n = 5 ; k = 100 via Ulam's method of the
piecewise convex map� n with �nite number of branches (n = 5 ).

Figure 4.8: The graph of the actual invariant densityg of the piecewise convex map� with in�nite
number of branches(in red) and the graph of of the approximating densityf n;k (in blue):n = 5 ; k =
1000on the left andn = 10; k = 1000 on the right hand side.

the piecewise convex map� with countable number of branches and graphs of the approximate

stationary densitiesf n;k (in blue) via Ulam's method for maps� n with a �nite number of branches.

Numerical computations are performed for a number of cases. In the following table, we present

theL 1 norm errorjjg � f n;k jj1: Note that for eachn; � n is a map with a �nite number of branches,

approximating the piecewise convex map� in Figure 4.3 with countable number of branches.
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n k jjg � f n;k jj1

5 100 0.2195470623

5 1000 0.2195243505

6 100 0.1943541673

6 1000 0.1943541673

7 1000 0.1742407352

10 1000 0.133493040

The above table shows that as we increasen; theL 1 norm errorjjg � f n;k jj1 gets smaller. For the

�xed n; the increasing ofk is ineffective. For example, the errors fork = 100 andk = 1000 are

almost identical. The main method to lower the error is to increase the number of branches of� n :

Theorem4.3.22con�rms that for largen and largek theL 1 norm error is close to0:

Example 4.4.3.Consider the piecewise convex map� : [0; 1] ! [0; 1] with countable number of

branches de�ned as

� (x) =
1

2i +1
i (i +1) � x

� i on
�

1
i + 1

;
1
i

�
; i = 1 ; 2; � � � : (4.4.4)

See Figure 4.9 for a graph of� which is de�ned on the countable number of partitionb0 = 1 ; b1 =

1
2 ; b2 = 1

3 ; � � � ; bn = 1
n+1 ; � � � of [0; 1]: It is shown in [23] that � 2 T 1 ;0

pc (I ) and hence by Theorem

Figure 4.9: Piecewise convex map with countable number of branches, for example,4.4.3.

4.2.6, � has an acim. Now, consider the following sequencef � ngn� 0 of piecewise convex map

� n : [0; 1] ! [0; 1] with �nite number of branches:

72



� n (x) =

8
>><

>>:

(n + 1) x ; 0 � x < 1
n+1 ;

� (x) ; 1
n+1 � x � 1:

See Figure 4.10 for a graph of� n with n = 4 ; 8: The sequencef � ngn� 0 of piecewise convex map

Figure 4.10: Piecewise convex map� n with �nite number of branches (n = 4 ; n = 8 andn = 10).

� n : [0; 1] ! [0; 1] with �nite number of branches converges almost uniformly to�: In Figure 4.11,

we compare three graphs of approximate stationary densityf n;k ; n = 4 ; k = 60; k = 120 andk =

240respectively via Ulam's method of the actual stationary density off n ; n = 4 of the piecewise

convex map� n ; n = 4 with �nite number of branches. In Figure 4.12, we present a graph of

Ulam's approximationf n;k ; n = 10; k = 1000 of the actual invariant density off n ; n = 10 of the

piecewise convex map� n ; n = 10 with a �nite number of branches. By Theorem4.3.22, it is also

an approximation of the invariant densityf � of the map� . The same Figure 4.12 shows also the

approximationf n;k ; n = 10; k = 1000, as the densitiesf 10;1000 andf 10;500 are indistinguishable at

this scale. We havejj f 10;1000 � f 10;500jj1 � 0:00055: In Figure 4.13, we show the enlargement of

both graphs on the small subinterval.
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Figure 4.11: The graphs of approximate stationary densityf n;k ; n = 4 ; k = 60; k = 120 andk =
240respectively via Ulam's method of the actual stationary density off n ; n = 4 of the piecewise
convex map� n ; n = 4 with �nite number of branches. The map� n ; n = 4 is an approximation of
the piecewise convex map� in Figure 4.9

Figure 4.12: A graph of Graph of the Ulam's approximationf n;k ; n = 10; k = 1000:

Figure 4.13: Enlargement of the approximating densitiesf 10;1000 (in red) andf 10;500 (in blue) on
[0; 0:02]:
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Chapter 5

ACIMs for Piecewise concave maps with

countable (in�nite) number of limit

points of partition points

5.1 Introduction

In the previous two Chapters, we focused on analyzing piecewise convex maps characterized

by a countable (in�nite) number of branches. Now, let's shift our attention to another signi�cant

category of maps: concave maps. Piecewise concave maps on the interval [0, 1] with in�nite num-

ber of branches are another important class in dynamical systems, with applications in areas such

as optimization, economics, and physics. In [15], the existence of ACIMs is proved for a class of

piecewise concave interval maps with a �nite number of branches. One interesting aspect of piece-

wise concave maps is that they can be conjugated to piecewise convex maps on [0, 1], which allows

us to use results from the theory of piecewise convex maps to study their properties. Conjugation

is a powerful tool in dynamical systems that allows us to transform one system into another while

preserving certain properties, such as the existence of invariant measures.

In the last two Chapters, the existence of a unique normalized absolutely continuous invariant mea-

sure is proved for two classes,T 1
pc (I ) andT 1 ;0

pc (I ), of piecewise convex mapping and we also
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proved the convergence of Ulam's approximation method for computing the invariant measure of

piecewise convex mapping. In this Chapter, we want to show similar results for two classes,T 1
pcv(I )

andT 1 ;1
pcv (I ); of piecewise concave maps�: We use conjugation of� that is de�ned in Chapter3

(page: 31), which implies that� preserves a normalized absolutely continuous invariant measure

whose density is an increasing function.

5.2 ACIMs for piecewise concave maps on [0, 1] with countable (in�-

nite) number of branches

5.2.1 Piecewise concave maps with countable (in�nite) number of limit points sepa-

rated from 1

Consider(I; B; � ) be a measure space, where� is the Lebesgue measure onI = [0 ; 1] andB

is the Borel� -algebra onI: Let f 1 = a0; a1; a2; : : : ; an ; : : : g be a countable partition ofI such

thata0 > a 1 and alla2; a3; � � � 2 [0; a1]: We do not assume the sequencef a2; : : : ; an ; : : : g to be

increasing or decreasing. For anyi 2 f 0; 1; 2; : : : g; let n(i ) be the index such that the interval

[an(i ) ; ai ] does not contain any other points of the partition. Ifak is the limit point of increasing

subsequence ofan 's, then(k) is not de�ned. We say that a non-singular transformation� 2 T 1
pcv(I )

if

(1) � 1 = � j(a1 ;1] is continuous and concave;

� i = � j(an ( i ) ;ai ] is continuous and concave,i = 1 ; 2; � � � ;

(2) � (ai ) = 1 ; � 0(ai ) > 0; i = 1 ; 2; : : : ;

(3) � (a0) = 1 ; � 0(a0) = � 1 > 1;

(4)
P 1

i =1
1

� 0(ai )
< 1 :
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For � 2 T 1
pcv(I ); g 2 L 1(I ); g � 0 the Frobenius-Perron operatorP� is de�ned as

P� g(x) =
g(� � 1

1 (x))

� 0(� � 1
1 (x))

� � (a1 ;1](x) +
1X

i =1

g(� � 1
i (x))

� 0(� � 1
i (x))

� � (an ( i ) ;ai ](x) (5.2.1)

We construct a piecewise convex map� : [0; 1] ! [0; 1] with countable number of branches such

that it is conjugated to� . Consider the diffeomorphismh : [0; 1] ! [0; 1] de�ned byh(x) = 1 � x:

It can be shown (seeA.2 in Appendix for proof) that the map� : [0; 1] ! [0; 1] de�ned by � =

h� 1 � � � h is a piecewise convex map with countable number of branches and� belong to the class

T 1
pc (I ) of piecewise convex maps with countable number of branches (see Chapter3).

If f is a� -invariant density theng =
�
f � h� 1

�
� j

�
h� 1

� 0j is a� -invariant density according to

the following theorem.

Theorem 5.2.2. [5] Let (I; B; �; � ) and (I; B; �; � ) be the dynamical system and let� : [0; 1] !

[0; 1] be nonsingular. Leth : [0; 1] ! [0; 1] be a diffeomorphism. Then

P� f = f impliesP� g = g; where� = h � � � h� 1 andg =
�
f � h� 1

�
� j

�
h� 1

� 0j;

i.e. if f is a � � invariant density, theng is a � � invariant density.

Proof. Let P� f = f: Using the properties of Frobenius-Perron operator we have,

P� (Ph f ) = Ph� � � h � 1 (Ph f )

= Ph � P� � Ph � 1 � h f

= Ph f:
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To proveP� g = g; we need to show thatPh f = g: We have

Ph f (x) =
nX

i =1

�
f � h� 1

i

�
� j

�
h� 1

i

� 0
j� [ai � 1 ;ai )]

=
�
f � h� 1�

� j
�
h� 1� 0

j

= g

sinceh is monotonic and also a diffeomorphism on[0; 1]. Thus, we have

P� g = P� (Ph f ) = Ph f = g:

We can also prove the existence of the ACIM of� directly without using the conjugation.

Proposition 5.2.3. If g � 0 and g is non-decreasing, then(1 � x) g(x) � � (g); for x 2 [0; 1];

where

� (g) =
Z 1

0
g(x)d� (x):

Figure 5.1: Graph for Prop.5.2.3.
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Proof. For any0 < x � 1; from the Figure5.1

(1 � x) g(x) �
Z 1

x
g(t)dt �

Z
g = � (g):

Sinceg � 0 andg is non-decreasing. Let8t 2 [x; 1] andt � x; =) g(t) � g(x): Therefore,

Z 1

x
g(t)dt �

Z 1

x
g(x)dt = (1 � x)g(x):

Lemma 5.2.4. If g : [0; 1] ! R+ is non-decreasing and� 2 T 1
pcv(I ). Then

k P� (g) k1 �
1

� 1
k g k1 + D k g k1; (5.2.5)

whereD =
� P 1

i =1
1

1� ai

1
� 0(ai )

�
:

Proof. Sinceg is non-decreasing,g(1) �k g k1 ; and so,P� g(1) �k P� g k1 :

P� g(1) =
1

� 0(1)
g(1) +

1X

i =1

g(� � 1
i (1))

� 0(� � 1
i (1))

�
1

� 1
g(1) +

1X

i =1

g(ai )
� 0(ai )

Since g is non-decreasing, from Proposition5.2.3,

� (g) � (1 � ai ) � g(ai )

Therefore,

P� g(1) �
1

� 1
g(1) +

1X

i =1

� (g)
1 � ai

1
� 0(ai )

�
1

� 1
k g k1 +

 
1X

i =1

1
1 � ai

1
� 0(ai )

!

k g k1 :

Theorem 5.2.6.Let � 2 T 1
pcv(I ): Then� admits an absolutely continuous invariant measure� =

g� � � with non-decreasing density functiong� :
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Proof. The proof is analogous to the proof of Theorem3.2.7in Chapter3.

5.2.2 Piecewise concave maps with countable (in�nite) number of branches where 1

is a limit point of partition points

Consider(I; B; � ) be a measure space, where� is the Lebesgue measure onI = [0 ; 1] andB is

the Borel� -algebra onI: Let f 1 = a0; a1; a2; : : : ; an ; : : : g be a countable (in�nite) partition ofI

such thata0 > a 1 and alla2; a3; � � � 2 [0; a1]: We do not assume the sequencef a2; : : : ; an ; : : : g to

be increasing or decreasing. For anyi 2 f 0; 1; 2; : : : g; let n(i ) be the index such that the interval

[an(i ) ; ai ] does not contain any other points of the partition. Ifak is the limit point of increasing sub-

sequence ofan 's, then(k) is not de�ned. Moreover, we consider an increasing sequencef a1;n g of

partition points in(a1; a0] such thatf 1 = a0 > � � � > a 1;(n+1) > a 1;n > a 1;(n� 1) > � � � > a 1;2 >

a1;1 = a1g andlimn!1 a1;n = a0 = 1 : We say that a non-singular transformation� 2 T 1 ;1
pcv (I ); if

(1) � 1;j = � j[a1;j +1 ;a1;j ) is continuous and concave, j=1, 2, . . . ;

� i = � j[ai ;an ( i ) ) is continuous and concave,i = 1 ; 2; � � � ;

(2) � (a1;j ) = 1 ; � 0(a1;j ) > 0; j = 1 ; 2; : : : ;

� (ai ) = 1 ; � 0(ai ) > 0; i = 1 ; 2; � � � ;

(3)
P 1

i =1
1

� 0(ai )
< 1 :

(4) D1 =
P 1

j =1
1

� 0(a1;j ) < 1:

Remark5.2.7. Condition (3) and Condition (4) can be replaced by the following Condition(4)+ ;

where
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(3)+ .
P 1

j =1
1

� 0(a1;j ) +
P 1

i =1
1

� 0(ai )
< 1 :

We construct a piecewise convex map� : [0; 1] ! [0; 1]with countable number of branches such

that it is conjugating to� . Consider the diffeomorphismh : [0; 1] ! [0; 1] de�ned byh(x) = 1 � x:

It can be easily shown (seeA.2 in Appendix for proof) that the map� : [0; 1] ! [0; 1] de�ned by

� = h� 1 � � � h is a piecewise convex map with countable number of branches and� belong to the

classT 1
pc (I ) [T 1 ;0

pc (I ) of piecewise convex maps with countable number of branches (see Chapter

3). If f is a� -invariant density theng =
�
f � h� 1

�
� j

�
h� 1

� 0j is a� -invariant density according to

Theorem5.2.2.

Again, we can prove the existence of the ACIM of� directly.

Lemma 5.2.8. If g : [0; 1] ! R+ is non-decreasing and� 2 T 1 ;1
pcv (I ). Then

k P� (g) k1 � D1 k g k1 + D k g k1; (5.2.9)

whereD =
P 1

i =1
1

1� ai

1
� 0(ai )

:

Proof. The proof is analogous to the proof of Lemma5.2.4.

Theorem 5.2.10.Let � 2 T 1 ;1
pcv (I ): Then� admits an absolutely continuous invariant measure

� = g� � � with non-decreasing density functiong� :

Proof. The proof is analogous to the proof of Theorem3.2.7in Chapter3.

5.3 Ulam's method for piecewise concave maps with countable (in�-

nite) number of branches

5.3.1 Approximation of piecewise concave maps with countable (in�nite) number of

branches by piecewise concave maps with �nite number of branches

Let � : [0; 1] ! [0; 1] be a piecewise concave map inT 1
pcv(I ) [T 1 ;1

pcv (I ) with countable number

of branches. In this section, we will describe the most dif�cult case when1 is the limit of the
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partition points for map� 2 T 1 ;1
pcv . We assume that there are no other limit points of the partition

points. The other cases, i.e., where there are such limit points or� 2 T 1
pcv, are done similarly. Thus,

the map� is like in Section5.2.2. For simplicity, we change the notation by renaming the partition

points. Letan = a1;n , n = 1 ; 2; : : : . Then, the assumptions (3) and (4) of Section5.2.2are restated

as:

(30) There exists anN � 1 such that

D1 =
1X

n= N +1

1
� 0(an )

< 1: (5.3.1)

Then, the Lemma5.3.4of Section5.2.2hold with changed constants

D =
NX

n=1

1
1 � an

1
� 0(an )

andD1 =
1X

n= N +1

1
� 0(an )

< 1 (5.3.2)

For n � N , we construct a sequencef � ng1
n= N of maps� n : [0; 1] ! [0; 1] s.t. � n has �nite

number of branches and� n converges to� almost uniformly. Using supremum norms and Lasota-

Yorke type inequalities, we prove the existence of stationary densitiesgn of ACIMs � n for � n . We

approximate� : [0; 1] ! [0; 1] with the following sequence of maps� n : [0; 1] ! [0; 1], n � N ,

with �nite number of branches:

� n (x) =

8
>><

>>:

x=an ; an � x � 1;

� (x) ; 0 � x � an :

In the following, we show that for eachn � 0; the map� n has an absolutely continuous in-

variant measure. It shows that each� n is a piecewise convex maps with �nite partitionf 0 =

a0; a1; a2; � � � ; an ; an+1 = 1g and� n satis�es following conditions:

(1) � n j = � n j(aj ; aj � 1] is continuous and concave,j = 1 ; 2; � � � ; n + 1;

(2) � n (aj ) = 1 ; � 0
n (aj ) > 0; j = 1 ; � � � ; n + 1;
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(3) � n (1) = 1 ; � 0
n (1) = 1

1� an
> 1:

(4)
P n+1

j =1
1

� 0(aj ) < 1 :

Let g 2 L 1(I ); g � 0: Then, the Frobenius-Perron operatorP� n is de�ned as

P� n g(x) =
n+1X

j =1

g(� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n [aj ;aj � 1 ) (x) (5.3.3)

Lemma 5.3.4. Letg 2 L 1(I ); g � 0; g non-decreasing. Then

(1) P� n (g) 2 L 1(I ) for eachn = 1 ; 2; : : : :

(2) P� n (g) � 0 for eachn = 1 ; 2; : : : :

(3) P� n (g) is non-decreasing for eachn = 1 ; 2; : : : :

(4) k P� n (g) k1 � Cn k g k1 � (1 + C) k g k1 for eachn = 1 ; 2; : : : whereCn =
�

1 � an +
P n

j =1
1

� 0
n (aj )

�
:

Proof. (1)

P� n (g) =
Z

� � 1
n (I )

gd� =
Z

I
g:

Therefore,P� n (g) 2 L 1(I )

(2) Note that

P� n g(x) =
n+1X

j =1

g(� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n [aj ;aj � 1 ) (x):

Each of the branches
g(� � 1

n j (x))

� 0
n (� � 1

n j (x))
� � n [aj ;aj � 1 ) (x) is non-negative.

(3) Each of the branches
g(� � 1

n j (x))

� 0
n (� � 1

n j (x))
� � n [aj ;aj � 1 ) (x) is non-decreasing since� � 1

n j
is decreasing,g

is non-decreasing and� 0
n is decreasing.

(4) We have
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P� n g(x) =
n+1X

j =1

g(� � 1
n j

(x))

� 0
n (� � 1

n j (x))
� � n [aj ;aj � 1 ) (x)

�
n+1X

j =1

k g k1

� 0
n (� � 1

n j (x))
�

n+1X

j =1

k g k1

� 0
n (aj )

=

0

@1 � an +
nX

j =1

1
� 0

n (aj )

1

A k g k1

� (1 + C) k g k1

Lemma 5.3.5. If g : [0; 1] ! R+ is non-decreasing, then for eachn � N ,

k P� n (g) k1 � (an + D1) k g k1 + D k g k1; (5.3.6)

Proof. Sinceg is non-decreasing,g(1) �k g k1 ; and by Lemma5.3.4, P� n g(1) �k P� n g k1 :

Now,

P� n g(1) =
n+1X

j =1

g(� � 1
n j

(1))

� 0
n (� � 1

n j (1))
� � n (aj ;aj � 1 ](1)

=
1

� 0
n (1)

g(1) +
nX

j = N

g(� � 1
n j

(1))

� 0
n (� � 1

n j (1))
+

NX

j =1

g(� � 1
n j

(1))

� 0
n (� � 1

n j (1))

= (1 � an )g(1) +
nX

j = N

g(an j )
� 0

n (an j )
+

NX

j =1

g(an j )
� 0

n (an j )

� (1 � an + D1)g(1) +
NX

j =1

� (g)
aj

1
� 0

n (aj )

� (1 � an + D1) k g k1 + D k g k1 :

Theorem 5.3.7.For eachn 2 N; � n admits an absolutely continuous invariant measure� n = g�
n � �

with non-decreasing density functiong�
n :
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Proof. The proof is analogous to the proof Theorem4.3.7in Chapter4.

De�nition 5.3.8. Let � n ; � are maps on[0; 1] into itself and� n ; � are de�ned as above. We say

that � n converges to� almost uniformly if, given� > 0; there exists a measurable setA � �

[0; 1]; � (A � ) > 1 � �; such that� n ! � uniformly onA � :

Lemma 5.3.9. � n converges to� almost uniformly.

Proof. Let � > 0: Choose the increasing partitionf 0 = a0; a1; a2; � � � ; an ; an+1 = 1g of [0; 1] for

� n such that1 � an < �: Let A � = (0 ; an ): Then,� (A � ) = an > 1 � �: Since� n = � on A � the

proof is complete.

5.3.2 Ulam's method

In this subsection, �rst, we describe Ulam's method for �nite-dimensional approximationPn;k ;

n andk denoted by the number of branches and number of partitions, respectively, of the Frobenius-

Perron operatorP� n of � n : Ulam's method computesgn;k on a partition ofk subintervals of the state

space as an approximation of the actual stationary density functiongn of � n ; n � 1: Moreover, we

show thatgn;k converges togn ask ! 1 : Let � n is an approximation of� 2 T 1
pcv(I ) [ T 1 ;1

pcv (I ):

Then, by the Theorem5.3.7, � n has an absolutely continuous invariant measure� n with stationary

density functiongn : The approximationgn is carried out using a two-step process. In the beginning,

we approximate� by the map� n with a �nite number of branches. Then, we further approximate

� n by using Ulam's method. In our case, we don't need approximation in theL 1 norm. So, it's

not an approximation of any norm. In this sense, approximation means� n converges� almost

uniformly. Now, we describe Ulam's method for approximatinggn : Let k be a positive integer.

Let P (k) = f J1; J2; : : : ; Jkg be a partition of the interval[0; 1] into k equal subintervals. In the

deterministic case, we construct the matrix approximation of the F-P operator as the form

M � n =

 
�

�
� � 1

n (J j ) \ J i
�

� (J i )

!

1� i;j � k
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where� denotes the normalized Lebesgue measure onJ andf J i gk
i =1 is a �nite family of connected

sets with nonempty and adjoint interiors that coverJ i.e., J = [ k
i =1 J i ; and indexed in terms of

nested re�nements. LetL (k) � L 1([0; 1]; � ) be a subspace ofL 1 consisting of functions which are

constant on elements of the partitionP (k) : We will represent functions inL (k) as vectors: vectorg =

[g1; g2; : : : ; gk ] corresponds to the functiong =
P k

i =1 gi � J i : Let Q(k) be the isometric projection

of L 1 ontoL (k) :

Q(k) (g) =
kX

i =1

�
1

� (J i )

Z

J i

gd�
�

� J i =
�

1
� (J1)

Z

J1

gd�; : : : ;
1

� (Jk )

Z

Jk

gd�
�

(5.3.10)

Let g = [ g1; g2; : : : ; gk ] 2 L (k) : We de�ne the operatorP (k)
� n : L (k) ! L (k) by

P (k)
� n

g = ( M � n )T rans � ([g1; g2; : : : ; gk ]) (5.3.11)

which is a �nite-dimensional approximation to the operatorP� n : AT rans denotes the transpose of

the matrixA:

Then, we have

P (k)
� n

g = Q(k)P� n g:

More generally, forg 2 L 1; we have

P (k)
� n

Q(k)g = Q(k)P� n Q(k)g:

The following Lemma will be used several times in the sequel.

Lemma 5.3.12.Let f gngn=1 ;2;::: be a sequence of non-increasing functions uniformly bounded in

L 1 : If gn ! h; asn ! 1 ; weakly inL 1; then the convergence is also inL 1 and a.e.

Proof. The proof is analogous to the proof of the Lemma4.3.13. in Chapter 4.

Lemma 5.3.13.The invariant densitygn;k of P (k)
� n � n is non-increasing for anyn; k > 1:

Proof. The proof is analogous to the proof of the Lemma4.3.14in Chapter 4.
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Using Ulam's method and corresponding convergence analysis described in [34, 35, 14], the

following theorem can be proved.

Theorem 5.3.14.Let � 2 T 1 ;1
pcv (I ) be a piecewise concave map with countably many branches. Let

f � ng1
n=1 be the approximating sequence of piecewise convex maps with �nite numbers of branches

where � n are de�ned in the previous Sub-Section5.3.1. If gn;k is a normalized �xed point of

P (k)
� n ; k = 1 ; 2; : : : ; de�ned in (5.3.11), then the sequencef gn;k g1

k=1 is weakly pre-compact in

L 1: Any limit pointg�
n of the sequencef gn;k g1

k=1 is a �xed point ofP� n :

Proof. The proof is analogous to the proof of Theorem4.3.15in Chapter4.

Theorem 5.3.15.Let � 2 T 1 ;1
pcv (I ) be a piecewise concave map with countably many branches.

As described at the beginning of subsection 3.1, letf � ng1
n=1 be the approximating sequence of

piecewise convex maps with �nite numbers of branches. LetP (k)
� n , k = 1 ; 2; : : : be the sequence

of Ulam's operators approximating operatorsP� n . Let gn;k be the normalized (inL 1) �xed point

of P (k)
� n . Then, the familyf gn;k gn=1 ;2;:::;k =1 ;2;::: is weakly compact inL 1 and uniformly bounded in

L 1 . If gn j ;k j , j = 1 ; 2; : : : is a weakly convergent subsequence, then it converges inL 1 (and almost

everywhere) to a functionf which is a �xed point ofP� , P� g = g.

Proof. The proof is analogous to the proof of Theorem4.3.15in Chapter4.

5.4 Examples

Example 5.4.1.Consider the piecewise concave map� : [0; 1] ! [0; 1] with countable (in�nite)

number of branches de�ned by� = h� 1
1 � � � h1; whereh1 : [0; 1] ! [0; 1] is the diffeomorphism

de�ned by h1(x) = 1 � x and � : [0; 1] ! [0; 1] is a piecewise convex map with countable

number of branches de�ned by� = h� 1 � T � h; h : [0; 1] ! [0; 1] is the conjugation de�ned by

h(x) = 1 � (1 � x)2; T : [0; 1] ! [0; 1] is the piecewise expanding and piecewise linear map with

countable number of branches de�ned as

T(x) = i (i + 1)
�

x �
1

i + 1

�
on

�
1

i + 1
;
1
i

�
; i = 1 ; 2; � � � : (5.4.2)
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See Figure 5.2 for a few branches of� and a few branches of�: Moreover, see Figure 5.3 for a graph

of the piecewise expanding and piecewise linear mapT, for Example,5.4.1.

Figure 5.2: Graphs of� (left) and� (right) for Example5.4.1.

Figure 5.3: The graph of the piecewise expanding and piecewise linear mapT, for Example5.4.1.

It is shown in Chapter4 thatf (x) = j2(1 � x)j is the stationary density of the piecewise convex

map� with countable number of branches. Therefore,g(x) = f (h1(x)) � j h0
1(x)j = 2 jxj is the

stationary density of�: See Figure 5.4 for a graph of�:

Now, we �nd the �rst few branches (from right) of� on [0; 1]. Note that� (x) = ( h� 1
1 �

� � h1)(x); whereh1(x) = 1 � x; h � 1
1 (x) = 1 � x: The piecewise convex map� is piecewise

onto on the partition
n

: : : ; 1 �
q

5
6 ; 1 �

q
4
5 ; 1 �

q
3
4 ; 1 �

q
2
3 ; 1 �

q
1
2 ; 1

o
of [0; 1]: Moreover,
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Figure 5.4: The graph of the stationary densityg of the piecewise concave map� with countable
(in�nite) number of branches for Example5.4.1.

h1 (1) = 0 ; h1

�
1 �

q
1
2

�
=

q
1
2 ; h1

�
1 �

q
2
3

�
=

q
2
3 ; h1

�
1 �

q
3
4

�
=

q
3
4 ; h1

�
1 �

q
4
5

�
=

q
4
5 ; h1

�
1 �

q
5
6

�
=

q
5
6 ; : : : : Therefore, the piecewise concave map� is de�ned on the partion

P =
nq

i
i +1

o
=

n
0;

q
1
2 ;

q
2
3 ;

q
3
4 ;

q
4
5 ;

q
5
6 ; : : : ; 1

o
of [0; 1]: If x 2 [0;

q
1
2 ]; thenh1(x) 2

[1 �
q

1
2 ; 1]: If x 2 [1 �

q
1
2 ; 1] then� (x) 2 [0; 1]: If x 2 [0; 1]; thenh� 1(x) 2 [0; 1]: Thus, if

x 2 [0;
q

1
2 ]; then� (x) = ( h� 1

1 � � � h)(x) 2 [0; 1]: Moreover, on[0;
q

1
2 ];

� (x) = ( h� 1
1 � � � h)(x)

= h� 1
1 (� (1 � x))

= h� 1(1 �
p

2(1 � (1 � x))

= h� 1(1 �
p

2x)

=
p

2x:

Similarly, we can �nd other branches of� on the partition

P =

( r
i

i + 1

)

=

(

0;

r
1
2

;

r
2
3

;

r
3
4

;

r
4
5

;

r
5
6

; : : : ; 1

)

of [0; 1]:
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The branches(n = 4) on
hq

1
2 ;

q
2
3

i
;
hq

2
3 ;

q
3
4

i
;
hq

3
4 ;

q
4
5

i
;
hq

4
5 ;

q
5
6

i
are

p
6x2 � 3;

p
12x2 � 8;

p
20x2 � 15;

p
30x2 � 24 respectively. Now, consider the following sequencef � ngn� 0

of piecewise concave map� n : [0; 1] ! [0; 1] with �nite number of branches:

� n (x) =

8
>><

>>:

1
1�

p n
n +1

�
x �

q
n

n+1

�
;

q
n

n+1 � x � 1;

� (x) ; 0 � x <
q

n
n+1 :

See Figure 5.5 for a graph of� n with n = 5 : The sequencef � ngn� 0 of piecewise concave map

Figure 5.5: Piecewise concave map� n with �nite number of branches (n = 5 ).

� n : [0; 1] ! [0; 1] with �nite number of branches converges almost uniformly to� with countable

(in�nite) number of branches. In Figure 5.6, we present a graph of approximate stationary density

gn;k ; n = 5 ; k = 100 via Ulam's method of the actual stationary density ofgn ; n = 5 of the

piecewise concave map� n ; n = 5 with a �nite number of branches. Note that� n ; n = 5 is an

approximation of the piecewise concave map�:

In Figure5.7, we present a graph of the actual densityg of the piecewise concave map� with

countable number of branches and graphs of the approximate stationary densitygn;k ; n = 5 ; k =

100andn = 10; k = 1000 via Ulam's method of the actual stationary density ofgn ; n = 5 and10

of the piecewise concave map� n ; n = 5 and10 respectively with �nite number of branches. Note

that � n ; n = 5 is an approximation of the piecewise concave map� in Figure 5.2 and therefore,

the L 1 norm errork g � gn;k k1= 0 :2205242549with n = 5 ; k = 100 is not very small but for
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Figure 5.6: The approximate stationary densitygn;k ; n = 5 ; k = 100 via Ulam's method of the
piecewise concave map� n with �nite number of branches (n = 5 ).

n = 10; k = 1000 the L 1 norm errork g � gn;k k1= 0 :1334973586689which is smaller than

n = 5 ; k = 100. Theorem5.3.14con�rms that for largen and largek, theL 1 norm error is close to

0.

Figure 5.7: The graph of the actual invariant density g of the piecewise concave map� with
in�nite number of branches (in red) and the graph of the approximating densitygn;k (in blue):
n = 5 ; k = 100 on the left andn = 10; k = 1000 on the right hand side.

Example 5.4.3.Consider the piecewise concave map� : [0; 1] ! [0; 1] with countable number of
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branches on the partitionf
h

2
3+ n ; 2

2+ n

i
g1

n=0 of I = [0 ; 1] de�ned as

� (x) = 1 � (
2
x

� 2)(mod 1): (5.4.4)

Figure 5.8: Graphs of� (left) and� (right) for Example5.4.3.

In the following, we show that� satis�es conditions of Theorem5.2.6, i.e.,� 2 T 1
pcv(I ) :

Condition (1): � (x) is piecewise continuous and concave on
h

2
3+ n ; 2

2+ n

i
: Since � (x) = 1 �

� 2
x � 2

�
(mod1) and� 0(x) = 2

x2 is decreasing on
h

2
3+ n ; 2

2+ n

i
: Thus� is piecewise concave.

Condition (2):� ( 2
2+ n ) = 1 �

�
2
2

2+ n
� 2

�
+ n = 1 ; � 0( 2

2+ n ) =
� 1

2 + n
4

� 2 > 0 8n 2 N:

Condition (3): Clearly,� (1) = 1 ; � 0(1) = 2(= � ) > 1

Condition (4): we have only one interval in between2
3 and1; and� 0

� 2
3

�
= 9

2 : Thus
P 1

i =1
1

� 0(ai )
=

2
9 < 1 :

Thus� 2 T 1
pcv(I ) and hence by Theorem5.2.6, � has an acim.

Now, consider the piecewise convex map� : [0; 1] ! [0; 1] with countable number of branches

on the partitionf [ n
2+ n ; n+1

3+ n )g1
n=0 of [0; 1] de�ned as

� (x) =
2x

1 � x
(mod 1): (5.4.5)

See Figure 5.9 for the graph of� (right) and� (left). Consider the diffeomorphismh : [0; 1] ! [0; 1]

de�ned byh(x) = 1 � x: We haveh� � = � � h: Hence� is topologically conjugate to�: By Theorem
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5.2.2, if � has a unique acim� with densityf , then it is easy to �nd the stationary densityg of �: In

fact,g =
�
f � h� 1

�
� j

�
h� 1

� 0j:

Example 5.4.6. Consider a piecewise concave map� : [0; 1] ! [0; 1] with countable (in�nite)

number of partitionsf 1 = a0; a1; a2; : : : g of I = [0 ; 1] de�ned as

� (x) = 1 �
1

1+ n� n2

n(n+1) + x
+ n on

�
n � 1

n
;

n
n + 1

�
: (5.4.7)

We want to show that� is an acim for�:

Figure 5.9: Graphs of� and� for example5.4.6.

From Chapter3, Consider the piecewise convex map� : [0; 1] ! [0; 1] with in�nite number of

branches de�ned as

� (x) =
1

2n+1
n(n+1) � x

� n on
�

1
n + 1

;
1
n

�
: (5.4.8)

See Figure 5.10 for the graph of� and�:

Condition 1:

Here � (x) is piecewise continuous and concave on its domain. Since� 0(x) = 1�
1+ n � n 2
n ( n +1) + x

� 2 is

decreasing on
h

n� 1
n ; n

n+1

i
: Thus� is piecewise concave.

Conditions2; 3:

Since in this example we have only one interval in between0 and 1
2 ;
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� ( 1
2) = 1 > 0; and� 0

� 1
2

�
= 1 > 0: Thus

P 1
i =1

1
� 0(ai )

= 1 < 1 :

Condition 4:
P 1

j =1
1

� 0(a0;j ) = 1
4 + 1

9 + 1
16 + 1

25 + � � � = 1
22 + 1

32 + 1
42 + � � � = � 2

6 � 1 � 0:6449< 1: We know

that � (x) is piecewise continuous on the countable partition[ 1
n+1 ; 1

n ] of [0; 1]. Since� is a unique

acim for� .

Let h : [0; 1] ! [0; 1] be a diffeomorphism de�ned as

h(x) = 1 � x:

Here, h(x) is linear with slopes� 1, and we haveh � � = � � h. By Theorem5.2.2, if � has

a unique ACIM� with density f , then it is easy to �nd the stationary densityg of �: In fact,

g =
�
f � h� 1

�
� j

�
h� 1

� 0j:
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Chapter 6

Conclusion

In this thesis, we dealt with the problems of the existence and exactness of ACIMs of some

chaotic dynamical systems in one dimension.

First, we de�ned two new classes of transformation,T 1
pc (I ); T 1 ;0

pc (I ) of piecewise convex maps

with countable (in�nite) number of branches. We investigated the properties of these classes that

enable us to derive a unique ACIM for the transformations in these classes. We determined the

density function using Ulam's method for these new classes.

Our study extended to non-autonomous dynamical systems within these de�ned classes, focusing

on the existence of ACIMs for the limit map,�: We established a signi�cant result, demonstrating

that the� -invariant density could be obtained as the limit of a sequence of densities,PTn f , whereTn

represents the composition of the �rst n-maps in the non-autonomous system, for a non-increasing

densityf .

We discussed the invariant density using the Frobenius-Perron operator in Chapter3. But generally,

the �xed point or invariant density is not found easily. In Chapter4, our main purpose was to

approximate the F-P operator by a sequence of �nitely dimensional operators. Determining the

�xed point of the Frobenius-Perron operatorP� of � is generally challenging. It was required

to approximate the F-P operatorP� using any of the approximation methods. We used Ulam's

approximation. We introduced an operatorQ(k) that projectedL 1 ! L (k) and used the �nite

dimensional approximationP (k)
� n of the F-P operatorP� n of � n :

In Chapter5, we explored the dynamics of new families of transformations,T 1
pcv(I ); T 1 ;1

pcv (I ),
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focusing on the conjugation of a piecewise concave map to a convex map previously introduced in

Chapter3. This conjugation provided insights into the dynamics of these maps and enabled us to

prove the existence of an invariant density.

This research has endeavored to elucidate certain obscure aspects within the �eld of dynamical

systems, particularly with respect to the existence and stability of ACIMs.

Moving forward, for future research, our research directions will focus on investigating ACIMs for

random maps within the class of piecewise convex maps with a countable number of branches. This

exploration will include both constant and position-dependent probabilities, as we can use Ulam's

method to approximate ACIM in terms of random maps with countable partitions. Additionally, we

aim to explore the concept of sustainability within this framework, providing new perspectives and

solutions to this complex problem. Overall, the insights and methods developed in this thesis will

pave the way for future research and lead to a deeper understanding of ACIM in chaotic dynamical

systems.
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Appendix A

A.1 Inequality (3.4.3):

Recall that the Koopman operatorU� : L 1 ! L 1 is de�ned by

U� g = g � �:

Proposition A.1.1. [5] If f 2 L 1 andg 2 L 1 ; thenhP� f; g i = hf; U � gi ; i.e.,

Z

I
(P� f ) � gd� =

Z

I
f � U� gd�:

Now from inequality 3.4.3:

�
�
�
�

Z
h(P� n F � P� F )d�

�
�
�
� �

Z
j(P� n F � P� F )hj d�

=
Z

j(P� n F h � P� F h)j d�

=
Z

jF (U� n h � U� h)j d�

=
Z

F jh � � n � h � � jd�

� ! h(sup j� n � � j):
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A.2 � is conjugated to�

Proposition A.2.1. Let� be a piecewise concave map with countable number of branches. Consider

the diffeomorphismh : [0; 1] ! [0; 1] de�ned byh(x) = 1 � x: Show that the map� : [0; 1] ! [0; 1]

de�ned by� = h� 1 � � � h is a piecewise convex map with countable number of branches.

Proof. Here the diffeomorphismh : [0; 1] ! [0; 1] de�ned by h(x) = 1 � x is linear and non-

increasing. so,h� 1(x) = 1 � x is also linear and non-increasing on its domain.

Consider� is a piecewise concave map with countable number of branches.

Since the composition of the concave map with a non-increasing function is convex, i.e.,� � h is

convex.

Againh� 1(x) = 1 � x is also linear and non-increasing which conclude that

� = h� 1 � � � h

is a piecewise convex map with countable number of branches. Since the composition of functions

does not change the number of branches.
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