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ABSTRACT 

 

Machine Learning Approaches for Aftermarket Demand Forecasting: Tackling Intermittent Time 

Series Challenges 

 

Sarvesh Kumar Rajavelloo 

 

This thesis addresses the significant challenge of achieving precise demand prediction within the 

aviation aftermarket maintenance and spare parts management sector, particularly concerning 

intermittent parts. These components, characterized by irregular demand occurrences, present a 

formidable challenge due to the difficulty in accurately estimating their demand and setting 

appropriate stock levels. Historical approaches, relying on conventional demand forecasting 

techniques, often yielded inaccurate forecasts, resulting in slow inventory turnover and increased 

warehousing costs. To address this challenge, a broad spectrum of techniques was examined, 

ranging from traditional statistical models to modern machine learning and deep learning methods 

falling under the broader domain of artificial intelligence. Deep learning has garnered substantial 

attention in time series analysis for its exceptional forecasting performance. Real-world data from 

an aviation company was used to implement various forecasting models, including traditional 

methods like the exponential smoothing, and Croston, as well as machine learning models like 

SVR, Random Forest, and K-nearest neighbour. Deep learning techniques, including LSTM, GRU, 

and CNN, were prominently featured, with customized error metrics tailored to intermittent 

demand forecasting. The findings highlight that, on average, deep learning models, especially 

Gated CNN and LSTM, outperform other models and offer highly accurate forecasts for 

intermittent demand. This study serves as a reference point for choosing the most effective 

forecasting method to support inventory planning in the aviation aftermarket, reducing costs, and 

enhancing service reliability. Moreover, its relevance extends to various industries dealing with 

intermittent demand, offering valuable insights for improved demand forecasting. 

 

 

Keywords: Demand forecasting, Aviation aftermarket parts management, Intermittent time series, 

Deep learning 
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CHAPTER 1: Introduction 
 

Demand forecasting, at its heart, entails anticipating future client requirements and is a 

critical area of work for most businesses. For instance, a firm's net revenue would be significantly 

impacted by even a small decrease in predicting accuracy. Demand forecasting is widely relevant 

in a variety of sectors where it is used as a key technique for predicting future demand for goods 

or services.  The spare parts and service business aftermarket is a vital and inseparable aspect of 

the commercial aviation industry. The aviation aftermarket spare component market is worth 

approximately USD 22.44 billion in 2020 and is predicted to grow to USD 47.33 billion by 2028 

(Fortune Business Insights, 2021). Intermittent demand patterns emerge periodically for various 

parts, with certain periods displaying no demand at all and when the demand exists, the size of the 

demand may be stable or vary significantly in size (Syntetos & Boylan, 2010). A significant 

difficulty arises in balancing the cost of supply chain operations against customer’s demands for 

high availability, managing the extremely large number of stock-keeping units (SKUs), the rising 

cost of downtime for end users, and the high cost of managing backorders (Bacchetti & Saccani, 

2012). A corporation must maintain an effective management system for its aftermarket spare parts 

business that covers tasks like demand forecasting, storage, part distribution, and service 

coordination with other aftermarket supply chain partners. For businesses that deal with 

aftermarket replacement parts, demand forecasting accuracy becomes critical, particularly when 

creating supply chain strategies that depend on accurate demand projections for individual SKUs. 

(Fildes et al., 2009) To enhance customer satisfaction and mitigate the potential additional 

expenses associated with extended lead times, companies aim to minimize delivery times to 

customers while maintaining a high level of customer retention.  Hence, efforts must be dedicated 

to tackling the challenges of this complex demand pattern by enhancing the accuracy of part 

predictions and maintaining a high level of customer satisfaction while managing an extensive 

range of stock-keeping units in the aftermarket spare parts business.  

1.1 Research problem 

Aircraft maintenance and repair are critical for guaranteeing aircraft safety and 

dependability, and the timely availability of replacement parts is a critical factor in this process. 

Aircraft aftermarket firms play a critical role in delivering these parts and ensuring that aircraft 

ground time is maintained to a minimum. When an AOG situation happens, these instances are 

aggregated, and the components must be ready for shipment. The prevalence of irregular and 

inconsistent demand patterns in the aviation aftermarket part sales presents a particular challenge 

for these organizations. In contrast to normal items, which have more predictable and consistent 

demand trends, demand for aviation aftermarket components is erratic, with periodic spikes and 

declines. Traditional forecasting methods fail to consider the distinct attributes of intermittent 

demand, often resulting in inaccuracies, leading to either underestimation or overestimation 

running up inventory costs. This volatility makes managing inventory and overall organizational 

efficiency in the aviation repair and maintenance industry difficult. This shortcoming is especially 

problematic in a sector where the timely supply of replacement parts is critical for airline 

maintenance service providers and the overall smooth operation of all channels. 
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 This study aims to enhance forecasting of intermittent part sales in the aviation aftermarket 

business by employing modern machine learning and deep learning models that are widely 

employed in other industries thereby presenting the industry leaders with practical solutions. This 

master's thesis aims to enhance the company's existing forecasting model, offering a more resilient 

approach that leads to improved punctuality in part deliveries and reduced inventory expenditures.  

We aim to address the following research questions. To begin, in the context of our 

company's requirement to predict intermittent and irregular demand for airplane replacement parts, 

our first inquiry centers on identifying the most effective methods for achieving precise demand 

forecasts. Our second objective is to assess how optimizing hyperparameters influences the 

accuracy of our forecasting outcomes. Furthermore, we aim to establish whether machine learning 

models surpass traditional statistical techniques, such as smoothing-based methods, in forecasting 

intermittent data. As part of our investigation, we also strive to comprehend how various error 

metrics play a role in evaluating the effectiveness of these forecasting models. 

1.2 Thesis structure 

There will be five primary chapters in the thesis. The second chapter, "Literature Review," 

will provide a thorough analysis of the present concepts and research in the field of intermittent 

demand forecasting. It will offer the academic groundwork for the investigation, incorporating 

both conventional and advanced forecasting techniques. The third chapter, "Data," which follows, 

will include information on data sources, data cleansing, and data categorization. The models 

employed, model structure, and methodology will be described in the "Methodology" chapter, 

which will be the fourth in the series. The findings and insights from the model assessments and 

optimizations will be presented in Chapter 5, "Results," with an emphasis on performance 

measures. The "Conclusion" chapter will conclude by summarising the most important findings 

and their implications as well as proposing potential research directions. 
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CHAPTER 2: Literature review 
 

The objective of this research is to investigate various advanced machine learning models 

and basic statistical models to assess their efficiency in predicting intermittent demand patterns. In 

addition, within the domain of spare parts inventory management, demand classification, and 

forecasting based on the demand pattern are essential elements. The present chapter delves into 

the fundamental elements of demand categorization, underscoring the crucial importance of 

possessing a thorough comprehension of demand patterns for enhancing inventory control.  

The chapter also explores the field of demand forecasting, highlighting the application of 

time series forecasting techniques and the difficulties in determining their correctness. 

Additionally, it dives into the unique field of intermittent demand forecasting, analyzing traditional 

statistical methods, advanced machine learning techniques, and measures for prediction accuracy. 

This chapter provides a thorough examination of the latest strategies and approaches that shape 

the field of effective forecasting and inventory control for intermittent parts from the most relevant 

studies. 

2.1 Classification of demand 

The process of demand classification plays a crucial role in the operational efficiency of 

spare parts inventory management. This procedure is fundamental because it forms the basis for 

making judgments about forecasting and stock control that demands more accurate to keep the 

operational cost down. The level of precision attained in these projections is intimately correlated 

with the careful characterization of demand patterns based on their underlying distribution features 

(Bacchetti & Saccani, 2012b; Lengu et al., 2014). Demand classification serves multiple purposes 

beyond accurate forecasting, including enhancing inventory management, optimizing revenue 

generation, and ensuring the efficient lifecycle management of spare parts. The process is not 

standardized and differs between businesses influenced by various factors. Price, demand volume, 

frequency, and possible threshold levels are some of the variables that affect it. 

The earliest paper that classified the demand was devised to calculate the reorder points 

and to reduce the overall inventory cost of the items (Williams, 1984). The method made use of 

the mean arrival rate as well as the mean lead time, which were then multiplied and assumed to 

have a Poisson distribution, in which the parts were classified as smooth, sporadic, or slow moving. 

This method paved the way for further improvement over the year which resulted in the next 

approach which categorizes the demand based on the disparities between the frequency of demand 

occurrences and the magnitude of each demand, and it has found extensive application in research 

for classifying the demand of the relevant components. To assess the typical period between the 

requests, a new term known as average inter-demand interval (ADI) was devised (Syntetos et al., 

2005). The authors categorized the parts by assessing their irregularity and intermittency using the 

squared coefficient of variation and the average of inter-demand intervals. Subsequently, they 

grouped the entire demand into four categories: smooth, erratic, intermittent, and lumpy. 

Forecasting techniques were then selected according to this classification. There are other methods 

that have been used in literature like the ABC approach, which is frequently employed in managing 

spare parts inventories, is the most well-liked categorization technique (Braglia et al., 2004). The 

components are often based on the parts demand and unit price and are divided into three 



   

 

4 

 

categories: most important, relative significance, and unimportant (Hatefi et al., 2014). This 

approach to stock classification is the simplest available, and it has demonstrated acceptable levels 

of customer satisfaction and inventory management. The following widely used strategy is 

founded on experience and knowledge about the items under issue. Despite being straightforward, 

if done wrong, this procedure might produce wildly skewed results. 

2.2 Time series forecasting 

Time series forecasting, a pivotal analytical approach, is extensively employed across 

domains, including sales, finance, and stocks. Its enduring relevance is most pronounced in the 

realms of inventory management and production optimization, geared towards profit maximization 

and resource allocation efficiency. Moreover, it fulfills vital functions in pinpointing periods of 

both subdued and heightened demand while also facilitating the detection of product obsolescence 

trends in specific categories. Many academics have studied various forecasting techniques to make 

better predictions. However, there has been disagreement about how accurate these techniques are. 

Researchers have assessed them both within the data they used to develop the models (in-sample) 

and with new data (out-of-sample). Interestingly, it has been observed that in-sample evaluations 

often lead to overly optimistic results for the forecasting models (Makridakis et al., 1982). As a 

result, many researchers, especially in the field of inventory demand forecasting, prefer to rely on 

out-of-sample evaluations for more realistic assessments (Januschowski et al., 2020; Spithourakis 

et al., 2015). Because of its importance and usefulness, a large amount of literature has been written 

about it using innovative techniques in a variety of sectors. This domain is dynamic and constantly 

seeking breakthroughs, as seen by the continued attention and research efforts in it. 

2.3 Intermittent demand forecasting 

 Limited research has specifically addressed intermittent time series demand data. Due to 

its intermittent nature, this demand differs from smooth demand in several important ways. This 

oddity shows itself as periods of low demand intermingled with erratic demand patterns at other 

times (Eaves & Kingsman, 2017). Different approaches were proposed to determine the 

intermittency of a time series. The first stage entails calculating the average time between 

successive demand occurrences, which is an essential indicator for determining how intermittent 

the demand pattern is. The degree of fluctuation in demand regarding order magnitude is then 

measured using the coefficient of variation, which is represented by the standard deviation 

normalized by the mean. To assess the level of statistical independence between the size of demand 

and the frequency of demand occurrences, the study also includes the computation of 

autocorrelations and cross-correlations (Willemain et al., 1994). Several methods have been 

determined specifically to deal with the problem of intermittency.  

The principal technique employed is Croston's method, which is among the initial models 

that gained recognition for tackling the difficulties related to intermittent demand patterns. 

(Croston, 1972a). This approach has garnered substantial acclaim and acknowledgment, receiving 

recognition from a broad spectrum of researchers and industry professionals and despite the advent 

of newer forecasting techniques, the Croston method continues to be employed as the standard of 

comparison in various studies (Babai et al., 2019; Zhu et al., 2017). This method showed higher 

performance and efficacy compared to conventional statistical time series forecasting techniques 

like the simple moving average and simple exponential smoothing (Syntetos et al., 2005) by 
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exhibiting a less variation in errors. But those methods are still in use and have been shown to give 

plausible results in some specific cases of intermittency (Wallström & Segerstedt, 2010). In 

Croston's method, non-zero demand occurrences and non-zero demand interval data are divided 

into separate time series. To estimate the anticipated future demand, an exponential smoothing 

approach is then independently applied to both time series. This forecasting technique's 

effectiveness is inextricably linked to the choice of the smoothing parameter alpha since the results 

of the forecasting depend on its value. Since its inception, the fundamental Croston model has 

undergone significant enhancements and refinements through the dedicated efforts of various 

researchers. The Croston method was empirically shown to possess a bias in its predictions, 

particularly favouring positive demand occurrences. This observation prompted the development 

of an alternative formulation by Syntetos and Boylan, which aimed to rectify the inherent 

shortcomings of the original method and provide a more accurate forecasting approach for 

intermittent demand patterns (Syntetos & Boylan, 2005). Empirical evidence suggests that both 

Croston's method and the Syntetos and Boylan approach may exhibit limitations when confronted 

with abrupt declines in demand, indicating suboptimal performance in scenarios involving items 

approaching obsolescence (Romeijnders et al., 2012).  

Further improvement was done by Teunter, Syntetos, and Babai to accommodate situations 

involving obsolescence, particularly when demand dwindles to zero. To achieve this, the 

methodology involved continuous updates of demand estimates in each period, as opposed to 

updating only when demand events occurred, thereby addressing the unique challenges associated 

with intermittent demand forecasting more comprehensively and it was coined as the TSB method 

(Teunter et al., 2011a). Croston's method has a single smoothing constant that is uniformly applied 

to both demand size and demand intervals. However, in the case of the SBA and TSB methods, a 

departure from this approach is observed, as these methods utilize two distinct smoothing 

constants—one specifically tailored for demand size and another exclusively for demand intervals. 

Subsequent research efforts have yielded a multitude of alternative methods tailored specifically 

for handling intermittent data, with notable examples being the application of bootstrapping 

techniques (Porras & Dekker, 2008), Integer–valued Auto– Regressive Moving Average briefly 

known as the INARMA model(Engelmeyer, 2016), predictive count data distributions (Kolassa, 

2016)and aggregation of the time series (Kourentzes et al., 2014; C. Li & Lim, 2018).  

2.4 Intermittent demand forecasting with advanced methods 

Apart from the basic statistical methods, the more advanced machine learning, and its deep 

learning sunset methods have also been applied to the specific problem of intermittent demand 

forecasting and are a viable alternative because of their ability to address the non-linear patterns 

in the data (Gutierrez et al., 2008). As computing power increased, several machine-learning 

techniques were created and used to anticipate demand in both theoretical studies and practical 

implementations. 

Numerous research papers have applied various machine-learning methods to address this 

type of demand pattern. A selection of these papers includes the use of a support vector machine 

and an artificial neural network model and compares it with a basic Croston model (Assaghir et 

al., 2017). It is noteworthy that even the most fundamental Support Vector Machine (SVM) model 

has demonstrated superior performance compared to both the Croston model and the ARIMA 

model (Hansen et al., 2006). This phenomenon can be attributed to the model's ability to generalize 
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effectively and create unique solutions that surpass the local minima, allowing it to outperform the 

basic methods (Bao et al., 2004). In another study, a paper employed a combined approach that 

integrated Support Vector Regression (SVR) with logistic regression (Hua & Zhang, 2006). But 

incidentally, when compared to other machine learning forecasting methodologies, the precision 

obtained using Support Vector Regression using the linear kernel was among the least favourable 

(Makridakis et al., 2018a). The subsequent technique employed was the k-nearest neighbour 

method, which demonstrated its highest utility when integrated with other statistical approaches 

(Petropoulos et al., 2016). Other methods such as the XGBoost method and random forest method 

(Assaghir et al., 2017) were also studied. However, it is worth noting that the most widely favoured 

models in this study were distinct types of deep learning models.  

The increased availability of extensive datasets has made deep learning models, 

particularly neural network models, a subject of great interest among researchers. These techniques 

are renowned for their adaptability and capacity to successfully manage non-linearities that may 

exist in the data (G. Zhang et al., 1998) and they can approximate a wide range of continuous 

functional relationships (Gutierrez et al., 2008b). Numerous modifications and variations of the 

foundational model have been experimented with, yielding diverse outcomes. An intricate multi-

layered LSTM model was designed to predict highly fluctuating demand, with a focus on 

optimizing model parameters for improved accuracy (Abbasimehr et al., 2020) and a neural 

network model has been developed that uses ensemble input to improve the precision of demand 

forecasting by using the median of forecasts from many neural networks (Kourentzes, 2013). 

Considerable debate has arisen concerning the utilization of machine learning models for 

forecasting this data type, with observations suggesting that they frequently yield subpar results 

when contrasted with traditional, less resource-intensive statistical models (Makridakis et al., 

2018b). Another potential drawback faced by these models is their demand for extensive training 

data to effectively capture hidden patterns within time series, which can be particularly challenging 

in the context of intermittent data characterized by numerous zero-demand periods interspersed 

between active periods(Gutierrez et al., 2008b). A counterargument has been made, however, that 

these models, when compared to statistical models, can offer much more accurate and less skewed 

forecasts in some cases (Semenoglou et al., 2021). 

2.5 Error metrics 

To determine the most effective forecasting method for practical implementation, it is 

imperative to quantify the outcomes of each employed method and select the most appropriate 

error metric for this purpose. This aspect gains particular significance when dealing with 

intermittent demand due to the presence of multiple zeros in the time series, as certain metrics have 

the potential to bias or distort the results (Hyndman & Koehler, 2006). Forecast evaluation metrics 

can be broadly divided into two categories: intrinsic and extrinsic measures. Intrinsic metrics 

assess forecast accuracy solely based on the generated forecast and the actual ground truth data. 

Conversely, extrinsic metrics incorporate an external reference forecast in conjunction with the 

generated forecast and the ground truth data to evaluate forecasting performance. This 

classification helps in comprehensively assessing the quality of forecasting models and methods. 

 Research has shown a wide range of performance indicators are available in the current 

literature, which may be used to evaluate and compare the precision of different forecasting 
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methodologies for predicting the demand for spare parts. Additionally, research has indicated that 

relying solely on traditional methods may not be the most suitable approach, potentially leading to 

misleading or inaccurate results (Kourentzes, 2013). Specific metrics like the mean absolute 

percentage error may yield inconclusive outcomes due to the significant presence of zero values 

in our dataset, rendering them less informative (Kim & Kim, 2016) with this being the case for 

most measures that consider the time series data's natural patterns and properties when assessing 

predicting accuracy. In those cases, an improvement is made to those models so that they can give 

out meaningful results, e.g., Symmetric Mean Absolute Percentage Error is proposed to negate the 

presence of zeros in the actual series (Makridakis & Hibon, 2000). The percentage improvement 

statistic, which evaluates how the model performs in comparison to a baseline model—in this case, 

often a naive technique or the Croston model—is a widely used metric. An additional point of 

concern pertains not only to the precision of the forecasts but also to the accuracy of inventory 

management based on these forecasts. This becomes crucial when there is a need to prioritize one 

over the other depending on the specific context. The best performance in real-world stock control 

situations cannot be guaranteed by just demonstrating higher accuracy on theoretical grounds. In 

these circumstances, the installation of models that provide greater stock control measures is 

preferred (Kourentzes, 2013).  

2.6 Summary 

A comprehensive summary tables containing the studies conducted in the field provides a 

concise overview of the most recent findings. This tables methodically displays the many 

approaches, metrics used, data processing procedures, and hyperparameter tuning strategies used 

in these investigations which improves comprehension of the body of current research. 

Table 2.1: Literatures utilizing basic statistical models 

STUDY TECHNIQUES METRICS TUNING / DATA 

PROCESSING 

Cheng et al., 

2016 

ARIMA & CRO 

 

MAPE, RMSE, 

RGRMSE 

No data preprocessing or 

model tuning 

Kilimci et al., 

2019 

MA, ES, ARIMA, MLR, SVR, 

Holts Trend and winter 

methods 

MAPE, MAD Stock-related features of 

products 

L. Li et al., 

2023 

Naïve, seasonal naïve, SES, 

MA, ARIMA, ETS, CRO, 

SBA, TSB, ADIDA, IMAPA, 

FIDE, DIVIDE 

RMSSE Using initial non-zero 

demand and nine time 

series features input.  

Luochen & 

Hasachoo, 

2021 

CRO, TSB, SBA, MA, WMA, 

ES, Kalaya et al' approach 

MSE No data preprocessing or 

model tuning 

Petropoulos & 

Kourentzes, 

2015 

Naive, CRO, SBA, ES, MA:  

Combination of different 

methods and different 

frequencies 

SME, SMAE, 

SMSE, SMPIS, 

SMAPIS 

Non-overlapping 

temporal aggregation 

process 
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Rožanec et al., 

2022 

Naïve, SES, MA (3), MFV, 

Random sampling from past 

values with jittering, 

LightGBM, Catboost 

AUC/ROC, 

MASE, SPEC 

Different combinations 

of models 

Willemain et 

al., 2004 

ES, CRO, Bootstrap MASE, MAD No data preprocessing or 

model tuning 

 

 With a few exceptions involving sophisticated models, Table 2.1 lists a variety of models 

that are mainly based on statistical models and their variations. Numerous studies primarily used 

an aggregation process in conjunction with various model combinations to improve results. 

Furthermore, in most of the papers, little to no effort was put into data processing or tuning. 

Table 2.2: Literatures utilizing machine learning models 

STUDY TECHNIQUES METRICS TUNING / DATA 

PROCESSING 

Hoffmann et 

al., 2022 

MA, Linear regression, ES, 

CRO, SBA, ANN 

MAPE Model tuning using varying 

alphas 

Jeon & 

Seong, 2022 

DeepAR, Rolled DeepAR WRMSSE Time series, price and calendar 

features 

Jiang et al., 

2021 

SES, ARIMA, SBA, MSBA, 

WSS, SWB, FFNN, RNN, 

SVM, AUSVM 

MASE, 

AMAPE, 

SME 

Adaptive tuning for SVM 

models 

Kourentzes, 

2013 

Naïve, MA, SES, CRO, 

Dual-NN, Rate-NN 

MAE, ME Regularization 

Lolli et al., 

2017 

FFNN, Time-Delay NN, 

RNN 

MAPE, ME Last Non-Zero Demand, 

Demand Separation, 

Successive Zero Demand 

Periods. 

Sousa et al., 

2022 

TBATS, Prophet, MLP, 

LSTM, HistGB 

Win Ratio, 

RelMAE 

Normalization, Outlier 

Treatment 

 

 Research studies that used deep learning models for experimentation are listed in Table 2.2. 
While it serves as a commendable starting point, all the papers predominantly opted for simpler 

versions of neural networks, such as recurrent neural networks and feedforward neural networks. 

Notably, there was minimal emphasis on the utilization of convolutional neural network models. 

Table 2.3: Literatures with their various error metrics 

STUDY TECHNIQUES METRICS TUNING / DATA 

PROCESSING 

Chaudhuri & 

Alkan, 2022 

ELM with HHO, GRU, 

ARIMA, SARIMAX, 

ELM - BO 

MAPE, MPE, 

RMSE 

Normalization, tuning of 

nodes and activation function 
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Pennings et al., 

2017 

SES, CRO, SBA, SY, 

TSB, DLP, Bootstrap, 

Bootstrap DLP 

MASE, 

GMAE, 

Service Level 

No data preprocessing or 

model tuning 

Montero-Manso 

et al., 2020 

Naïve, seasonal naïve, 

RAND, ARIMA, ES, 

TBATA, STLM-AR, NN 

OWA Forty-two-time series features 

input 

Güven et al., 

2021 

KNN & RF 

 

RMSE Twenty-nine product features 

include colour, price, and 

tourist count. 

Gutierrez et al., 

2008b 

CRO, SBA, ES, NN MAPE, 

RGRMSE, PB 

Last Non-Zero Demand, 

Demand Separation Period, 

Top of Form 

Mukhopadhyay 

et al., 2012 

WMA (5), SBA, NN, 

SES: Combination of 

different data splits 

MAPE, RAE, 

RGRMSE, PB 

Adjusted for varying 

constants, Features as Last 

Period Demand, Cumulative 

Zero Demand Periods 

 

The literature presented in Table 2.3 summarizes various error metrics, predominantly 

measured in absolutes or percentages through statistical computations. Notably, limited attention 

is given to assessing forecast bias or considering associated costs. Despite extensive exploration 

of intermittent time series predictions in the literature, existing studies exhibit limitations. These 

include a focus on known approaches with inadequate exploration of advanced methodologies, 

insufficient insights into data transformation challenges, and neural network models lacking 

detailed architectural and hyperparameter information. Additionally, the study lacks a thorough 

examination of parameter modifications in neural network models. These shortcomings underscore 

the necessity for further research and methodological enhancements in the field of intermittent 

parts management. Consequently, this work distinguishes itself from prior studies by incorporating 

advanced sequence learning techniques, introducing novel convolutional architectures, and fine-

tuning them for optimal results, thereby contributing valuable insights to the existing literature.
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CHAPTER 3: Data 

 

To assess and examine models for intermittent data, we utilize a real-world dataset that 

includes sales of aircraft spare parts for two and a half years. This chapter introduces the dataset 

employed and we describe how we gathered, cleaned, and categorized the data related to spare 

parts in the study.  

3.1 Data collection 

The data for this research was provided by aviation aftermarket leader in Mirabel, Quebec 

who specializes in the sales of aftermarket parts to a variety of aircraft, which primarily consists 

of regional jets. The dataset includes daily sales records for a large inventory of 30,000 distinct 

SKUs that were rigorously recorded over a two-and-a-half-year period. All additional information 

related to the components, including cost and inventory levels, was maintained as confidential in 

adherence to regulatory requirements. Moreover, to ensure confidentiality, all part numbers were 

substituted with anonymized placeholders. 

A sample of the raw data obtained for the parts is given below.  

Table 3.1: Example of raw data 

 

As evident, there are many missing data, so it was necessary to clean and better prepare the data. 

This essential decision was made to guarantee the dataset's stability and dependability for further 

investigation. 

3.2 Data cleaning and examination 

The raw data, as observed in Table 3.1, contained numerous missing values, requiring 

thorough cleaning before any models could be developed from it.  To enhance understanding and 

visualization, all data points with missing values were replaced with zeros. A line plot of one of 

the parts under examination is shown in Figure 3.1 with the date index being represented by the x-

axis, and the sales values for that date being represented by the y-axis. The plot visibly 

demonstrates the irregular character of this specific part's demand pattern. 



   

 

11 

 

 

Figure 3.1: Sales plot of part 8401MD 

The percentage breakdown of unique values within the sample data, which comprises the first 

1000 parts in the dataset, is shown as a histogram in Figure 3.2. The height of each bar in the 

histogram, which represents a unique value, reveals how frequently that value occurs in the dataset. 

The histogram highlights a noteworthy difficulty in modelling this data: more than 94% of the days 

in the time series show no sales, a marked imbalance that complicates the modelling procedure. 

 

Figure 3.2: Histogram of unique sales values 

Every daily consignment total that was recorded represented the daily demand. Like many other 

businesses, there was also occasional observation of negative numbers in the databases, which 

indicated that certain parts had been returned to the warehouse. Since it was hard to link the returns 

to previous shipments in these cases due to a lack of information, we chose to replace these 

negative values with zeros. The replacement strategy with zeros was carefully considered because 

the other option would have included treating returns as if they were random replenishments. 

3.3 Data categorization 

The sales data we obtained underwent categorization according to their distribution 

patterns, intending to discern which components display intermittent characteristics. The 

categorization of the components falls into four overarching groups: smooth, intermittent, lumpy, 

and erratic. This categorization, commonly referred to as the SBC classification method, was based 

on the utilization of Average Demand Interval (ADI) and squared coefficient of variance (CV²) 

values, as recommended by established scholarly works (Syntetos et al., 2009, 2012). The ADI, as 

the name implies, provides the average time gap between two consecutive instances of demand, 
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which evaluates the consistency of demand patterns. The CV² serves as a metric that gauges the 

level of variation in data while excluding instances of zero demand.  

 

ADI =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑
 3.1 

  

𝐶𝑉2 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
 3.2 

  

  

The demand classification matrix is defined as follows.  

 

 

Figure 3.3: Demand-based data categorization matrix 

The threshold values for ADI and CV² were taken as 1.32 and 0.49, respectively. 

Intermittent data is classified as any time series having ADI equal to or greater than 1.32, but CV² 

remains below 0.49. In such cases, client’s transactions remain steady, but the time intervals 

between them might fluctuate greatly. This makes making very precise projections about future 

sales more difficult. Smooth demand is distinguished by regularity in timing and consistency in 

amount, with both ADI and CV² values falling below the threshold which is easier to predict. 

Erratic demand occurs when the ADI is less than 1.32 but the CV² is 0.49 or higher, showing the 

consistent time but considerable changes in demand quantity. The last category is lumpy, which 

has an ADI of 1.32 or higher and a CV² of 0.49 or higher, indicating significant changes in demand 

quantity and time. These metrics are defined in the matrix in Figure 3.3. The Figure 3.4 provides 

a general representation of the various demand distributions discussed above. 
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Figure 3.4: Demand type classification example 

 

With these metrics equipped, we classify our dataset into the four categories defined. First, the 

ADI and CV² values for all the time series were found. From the statistics of the values found in 

Table 3.2, it shows that the mean of the both the ADI and CV² are far off from the threshold values 

for our classification which shows intermittency.  

 

Table 3.2: ADI and CV² statistics 

 

 

The following plot (Figure 3.5) is obtained for the classification using ADI and CV² values for all 

the time series in question.  
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Figure 3.6: ADI vs CV² scatter plot 

 

The statistical evidence is confirmed by the plot and most of the time series are lumpy or 

intermittent according to Figure 3.5. Table 3.3 below further explains it by showing us that more 

than 73 percent of the data is intermittent, and much of the remaining data is lumpy. A small 

number of time series are indicated as ‘No demand’ since they had no sales for the entire period. 

A portion of the time series was chosen for additional analysis using our models to accommodate 

time and computational resource constraints. 

 

Table 3.3: Demand classification statistics of data 
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CHAPTER 4: Methodology 

 

In this chapter, we will provide a comprehensive and detailed overview of the various 

models employed in our research. We will delve into the structures of each model and the 

parameters that were tuned for optimization. Our study covers a total of fifteen distinct models, 

categorized into four statistical models, followed by three elementary machine learning models, 

and finally, a set of advanced deep learning models. Furthermore, we will expound upon the 

software tools and libraries that were instrumental in the process of model tuning and data 

preparation.  

4.1 Croston model 

The widely used exponential smoothing method has biases and restrictions, which led to 

the development of the Croston model (Croston, 1972b). The exponential smoothing strategy 

places more emphasis on current demand data, leading to estimates for future demand that are 

more optimistic immediately after periods of demand and less optimistic after periods of zero 

demand. This approach is inappropriate for products with sporadic demand patterns. So, the 

Croston method splits the demand probability and demand size and predicts them separately which 

results in a more overall accurate forecast. The procedure requires creating two separate time 

series, one for instances of non-zero demand and another for the intervals between successive non-

zero demand events and using exponential smoothing to independently compute each of them. 

Within this model, updates are exclusively made to the demand size and demand interval 

parameters when a non-zero demand event takes place. The formula for Croston model is given as 

below,  

When a demand occurs, i.e.,  𝑑𝑡 > 0, 

 

𝑙𝑡+1 = α𝑑𝑡 + (1- α) 𝑙𝑡 4.1 

𝑝𝑡+1 = αq + (1- α) 𝑝𝑡 4.2 

𝑓𝑡+1 =  
𝑙𝑡+1

𝑝𝑡+1
 4.3 

q = 1 4.4 

  

And when the demand is zero, i.e.,  𝑑𝑡 = 0, 

𝑙𝑡+1 = 𝑙𝑡 4.5 

𝑝𝑡+1 = 𝑝𝑡 4.6 

𝑓𝑡+1 = 𝑓𝑡 4.7 

q = q + 1 4.8 

  

Where, 

𝑑𝑡 = Demand at time t 

𝑙𝑡 = level estimate at time t 

𝑝𝑡 = periodicity at time t 
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𝑓𝑡 = Forecast at time t  

q = time interval between two nonzero demands 

α = smoothing factor, 0 < α < 1 

The baseline model used a smoothing factor (α) value of 0.5. After forecast and error metrics were 

obtained from the baseline models, hyperparameter tuning was done using an array of smoothing 

values for each time series individually.  

4.2 Syntetos-boylan approximation model 

Although this approach segregates the demand interval and demand size into distinct time 

series, its application revealed that the enhancements introduced by the model were marginal in 

significance. One major flow found in the basic Croston model is that the forecast does not change 

when there is zero demand and it results in an overestimation of the forecast, and this 

overestimation demonstrates a positive correlation with the smoothing factor α (Syntetos & Boylan, 

2001). To counteract this positive bias, Syntetos and Boylan made a minor adjustment is introduced 

into the forecasting formula.  

𝑓𝑡+1 = (1 - 
∝

2
)  

𝑙𝑡+1

𝑝𝑡+1
 4.9 

  

The approach for determining the level and periodicity remains unchanged; however, the forecast 

now incorporates the smoothing constant to mitigate the bias induced by the basic Croston 

formulation. 

Just like the basic Croston model, the baseline model used had a smoothing factor (α) value of 0.5 

again. After the basic models' forecast and accuracy metrics were determined, hyperparameter 

tuning was conducted using a range of smoothing values for each time series separately. 

4.3 Teunter-syntetos-babai model 

Despite the improvements made by Syntetos and Boylan, the model still could not account 

for products that would become obsolete. To improve upon the model, a formulation was employed 

where individually exponentially smoothed estimates for both the probability of demand 

occurrence and the magnitude of demand (Teunter et al., 2011b). In practical application, the level 

estimate would remain consistent with the standard Croston model, while the periodicity would be 

regularly updated at each time interval, even if there is zero demand, and expressed as the 

probability of a demand event occurring. Following periods of zero demand, the periodicity 

diminishes, while after periods of positive demand, it increases, consequently influencing the final 

forecast. This enhancement would enable the model to respond more effectively in scenarios of 

product obsolescence, in contrast to the Croston model, where adjustments are made solely when 

a demand event occurs.  

When a demand occurs, i.e.,  𝑑𝑡 > 0, 

𝑙𝑡+1 = α𝑑𝑡 + (1- α) 𝑙𝑡 4.10 

𝑝𝑡+1 = β + (1- β) 𝑝𝑡 4.11 
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𝑓𝑡+1 =  𝑙𝑡+1𝑝𝑡+1 4.12 

And when the demand is zero, i.e.,  𝑑𝑡 = 0, 

𝑙𝑡+1 = 𝑙𝑡 4.13 

𝑝𝑡+1 = (1- β) 𝑝𝑡 4.14 

𝑓𝑡+1 =  𝑙𝑡+1𝑝𝑡+1 4.15 

If 𝑑𝑡 = 0 then { 

𝑙𝑡+1  = 𝑙𝑡

𝑝𝑡+1 = (1 − 𝛽)𝑝𝑡

𝑓𝑡+1  =   𝑙𝑡+1𝑝𝑡+1

 4.16 

The baseline model in this case had two smoothing parameter values, α and 𝛽 both used a value 

of 0.5. Once we had obtained forecasts and error metrics from the initial baseline models, we 

proceeded to fine-tune the model’s hyperparameters. This involved adjusting a range of smoothing 

values for both parameters and for each time series within our dataset. 

4.4 Exponential smoothing 

Simple exponential smoothing is one of the simplest and oldest methods of forecasting 

demand that is straightforward to construct due to its basic recursive computation technique. It has 

been demonstrated to be competitive with more complex forecasting approaches and it is still 

widely used today. The idea behind exponential smoothing is to add a smoothing procedure to the 

source data series, like what moving averages do. This smoothing produces an altered series, which 

is then used to forecast future values of the variable under discussion. 

The simple exponential smoothing method is given as follows,  

𝐹𝑡 = 𝛼 ⋅ 𝑌𝑡 + (1 − 𝛼) ⋅ 𝐹𝑡−1 4.17 

Where 𝐹𝑡 is the forecasted value for the next period, 𝑌𝑡 represents the actual observation for the 

current period. 𝐹𝑡−1 corresponds to the forecast made for the current period, which is derived from 

the previous step and α serves as the smoothing parameter or factor, which is a value between 0 

and 1. The value of α influences the outcome of the forecast to a great extent; the higher the value, 

the higher is weightage given to the most recent values.  As with the prior models, the basic model 

used a smoothing factor value of 0.5 and was later adjusted for each forecasted part using a range 

of alternative values. 

4.5 Random forest 

Random forest is a machine learning method that is widely used for various tasks including 

classification and regression, encompassing multiple decision trees whose average is taken as the 

output (Breiman, 2001). The model undergoes training on multiple decision trees and subsequently 

employs these trees to make predictions about individual samples (K. Zhang et al., 2022). Bagging 

is the primary premise, and it creates unpruned decision trees from varied training data fits, picking 

optimal split features based on impurity criteria for superior ensemble learning this process 

enhances the model's stability and accuracy, lowers variance, and aids in preventing overfitting. 
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Individually, every tree is built using a bootstrap sample from the training data, and at each node, 

a random subset of features is selected with the trees in the forest grown to their maximum.  

Algorithm: Random Forest for Regression (Hastie et al., 2009) 

1. For b = 1 to B: 

  (a) Draw a bootstrap sample 𝑍∗of size N from the training data.  

(b) Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively repeating the 

following steps for each terminal node of the tree, until the minimum node size 𝑛𝑚𝑖𝑛 is 

reached. 

 i. Select m variables at random from the 𝑝 variables. 

   ii. Pick the best variable/split-point among the m.  

iii. Split the node into two daughter nodes.  

2. Output the ensemble of trees  

To make a prediction at a new point x Regression: 

 𝑓𝑟𝑓
𝐵 (x) = 

1

𝐵
∑ 𝑇𝑏

𝐵
𝑏=1 (x) 4.18 

  

Due to the inclusion of random sampling and the increased properties of ensemble techniques, the 

Random Forest methodology offers greater generalization and trustworthy estimations (Qi, 2012).  

 

Figure 4.1: Random Forest algorithm for regression (Son & Yang, 2022) 

The scikit library and the built-in parameters were used to build the basic random forest regressor 

model. The least number of samples needed to split an internal node is two, the minimum number 

of samples needed to be at a leaf node is one, and the minimum number of samples needed to be 

at the forest's one hundred trees maximum depth is zero. A grid search was used to fine-tune each 

of these parameters using an array of values for each time series. 
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4.6 Support vector machines  

SVMs, which were originally used for classification tasks in 1992, were later modified for 

regression challenges. SVR, which is specially built to adapt to existing data based on performance 

benchmarks, is then used to forecast unfamiliar data points using the trained model (Boser et al., 

1992). They are a powerful supervised method whose main objective is to find a hyperplane in an 

N-dimensional space, where N is the quantity of features, on the surface. The objective of this 

hyperplane is to efficiently segregate and classify the data points in a distinct and comprehensible 

manner (Cortes et al., 1995). Our goal is to locate the plane with the largest margin—basically, the 

biggest distance between data points from distinct classes. The widest radius around a 

classification border that is devoid of any data points is referred to as the maximum margin, while 

the nearest data points are known as support vectors. These support vectors, which are the hardest 

to categorize, are crucial for establishing the decision boundary and creating the classification 

model. Kernel functions, which define the shape of both the hyperplane and the decision boundary, 

are another crucial component. The non-linear radial basis function (RBF) kernel is used to convert 

the original input space and identify the regression hyperplane in a higher-dimensional feature 

space (Smola & Schölkopf, 2004).  

MIN
1

2
||𝑤||2 + 𝐶 ∑ |ξ|

𝑁

𝜀=1

 4.19 

  

In this context, 𝑤 denotes the object value, 𝐶 represents the hyperparameter governing model 

behaviour, and ξ signifies the margin of error between support vectors and observed data points. 

The error minimization function is employed to reduce the gap between the support vector and the 

hyperplane. 

The formula for the margin of error is given as,  

|𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ 𝜀 4.20 

  

In this context, 𝑦𝑖 corresponds to the target value, 𝑤𝑖 represents the coefficient, 𝑥𝑖  stands for the 

predictor value, and 𝜀 denotes the margin of error between the hyperparameter and the support 

vector. This formula acts as a constraint within the minimization function. 
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Figure 4.2: Support vector regression description (Lu et al., 2009) 

 

The baseline model was produced using the scikit learn python library's default parameters, 

the same as the prior model. In this model, the regularisation parameter is set to one by default and 

the kernel type is "RBF". Later, these parameters were fine-tuned using grid search and various 

values. For the "RBF" kernel, the regularisation parameter value ranged from 0.1 to 100 and the 

kernel coefficient gamma value from 0.01 to 10. 

4.7 K nearest neighbors 

A well-known nonparametric method used for both classification and regression 

applications is the k-nearest neighbours (KNN) algorithm. This model has undergone a series of 

studies and improvements over the years with a solid foundation being laid in 1967 with the 

proposed and developed idea of "nearest neighbour rules," which formed the basis of the KNN 

algorithm as it is currently known (Cover & Hart, 1967). When using the k-nearest neighbours’ 

method, the choice of the parameter k-which denotes the number of nearest neighbours considered 

is crucial. By choosing a lower value of k, a model with increased sensitivity to minute differences 

in the data may be produced. A model produces a more continuous and smoother decision border 

or prediction surface when k is set to a higher value. To use this model for a univariate time series 

problem, the data is fitted in the form of its own lagged values. By locating identical historical 

patterns and extrapolating from their subsequent behaviour, KNN for time series forecasting makes 

use of repeating patterns in time series data to estimate future trends. The KNN time series 

formulation is given as the sum of the product of the weight of the i-th neighbour and the i-th 

neighbour (Sinta et al., 2014). 

𝑦𝑙 = ∑ 𝑤𝑖
𝑘
𝑖=1 𝑦𝑖 4.21 

  

Where 𝑤𝑖 is the weight of the i-th neighbour. The weights can be custom and be based on the 

distance or could be equal for all the k neighbours.  

The baseline k closest neighbour model was created using the Tslearn Python module. The 

default value for the most crucial base parameter, the number of nearest neighbours to be 
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considered when making a regression decision, is five. Using an array of values, this was further 

adjusted for all the components that were predicted. 

4.8 Long short-term memory model 

The Long short-term memory (LSTM) models are a special type of recurrent neural 

network model that learns the correlation of consecutive data points in a time series data. These 

models are intended to manage sequential data with long-term dependencies and their design 

solves the vanishing gradient problem and is ideally suited for simulating complicated time series 

patterns as in our case. LSTMs assume that previous sales of components include sequential 

patterns and dependencies that may be used to accurately anticipate future demand.  

This model enables a persistent flow of errors through self-connected units to prevent 

gradient decay. An LSTM cell unit, proposed first in 1997, is structured with a memory cell and 

three primary gates, forget, input and output gates. The forget gate controls whether previous 

information is retained or discarded, the input gate controls how much added information is 

absorbed into memory, and the output gate controls whether the current cell value contributes to 

the final output (Hochreiter & Schmidhuber, 1997). The formulation of the various gates inside 

the model is as follows, 

 

𝑓𝑡 = 𝜎(𝑊𝑓ℎ ⋅ ℎ𝑡−1 + 𝑊𝑓𝑥 ⋅ 𝑥𝑡 + 𝑏𝑓) 4.22 

𝑖𝑡 = 𝜎(𝑊𝑖ℎ ⋅ ℎ𝑡−1 + 𝑊𝑖𝑥 ⋅ 𝑥𝑡 + 𝑏𝑖) 4.23 

𝑜𝑡 = 𝜎(𝑊𝑜ℎ ⋅ ℎ𝑡−1 + 𝑊𝑜𝑥 ⋅ 𝑥𝑡 + 𝑏𝑜) 4.24 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑡𝑎𝑛ℎ(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 4.25 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡) 4.26 

  

Where, 𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝑜𝑡 is the output gate, 𝑐𝑡 holds the 

information from the start-up to the present time and ℎ𝑡 regulates the extent to which data 

information, preserved from the beginning to the current moment, can be transmitted to the 

subsequent moment. 𝑥𝑡 is the Vector representing the input at time step "t", and they are multiplied 

with the weight matrix 𝑊. The 𝑏 represents the bias that is added to the gate and is multiplied with 

an activation function 𝜎. The LSTM cell architecture is presented in Figure 4.3.  
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Figure 4.3: Long Short-Term Memory cell architecture (Fernandes et al., 2020) 

The following Figure 4.4 describes the LSTM model architecture in accordance with the methods 

outlined in the literature previously cited. 

 

Figure 4.4: Structure of the LSTM model used. 

The base model begins with a 50-unit LSTM layer that uses the "relu" activation function. 

Since our data's step-back value is ninety, this LSTM layer is designed specifically for handling 

sequential data with an input shape of (None, 90, 1). After the LSTM layer, a Dropout layer with 

a dropout rate of 0.2 is added to lessen the likelihood of overfitting. With twenty-five units, the 

second LSTM layer employs the "relu" activation function. The last element of the model is a 

Dense (fully connected) layer with a single unit that uses the "linear" activation function. This 

layer is the output layer for regression tasks, allowing the model to continuously generate 

numerical forecasts. 
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The LSTM units, a crucial component of every LSTM model, were the focus of hyperparameter 

tweaking. A wide range of unit values, including 32, 64, 128, and 256, were considered during our 

extensive analysis. We were able to thoroughly adjust the model for each time series because of 

our exhaustive research. 

4.9 Gated recurrent unit model 

Introduced in 2014, the gated recurrent unit is a significant development of the simple 

recurrent neural network model and that is like the LSTM model in that it combines the input and 

the forget gate into a single entity (Cho et al., 2014). GRU is capable of grasping correlations 

across time intervals and successfully using the intrinsic properties of time series data. The 

formulation of the components of a GRU cell are as follows,  

 

𝑧𝑡 = 𝜎(𝑊𝑧ℎ ⋅ ℎ𝑡−1 + 𝑊𝑧𝑥 ⋅ 𝑥𝑡 + 𝑏𝑧) 4.27 

𝑟𝑡 = 𝜎(𝑊𝑟ℎ ⋅ ℎ𝑡−1 + 𝑊𝑟𝑥 ⋅ 𝑥𝑡 + 𝑏𝑟) 4.28 

ℎ𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑟𝑡𝑊ℎℎℎ𝑡−1) 4.29 

ℎ𝑡 = 𝑧𝑡ℎ𝑡−1 + (1 − 𝑧𝑡)ℎ𝑡
′  4.30 

  

Here the 𝑧𝑡 represents the update gate, 𝑟𝑡 is the reset gate. The update gate controls how 

much earlier memory information is retained and brought through to the present time while the 

reset gate determines how much prior knowledge should be purged or forgotten. ℎ𝑡
′ , which is the 

current memory content, is obtained by multiplying the weight matrix with the input info and the 

information from the previous step and finally passed through an activation function. In the last 

step, the update gate information is multiplied by the previous step information and added with the 

data preserved from the present memory state to the ultimate memory state and given as output by 

the final gated loop unit. The GRU cell architecture is presented in Figure 4.5.  
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Figure 4.5: Gated Recurrent Unit cell architecture (Jung et al., 2021) 

The following Figure 4.6 describes the GRU model architecture in accordance with the methods 

outlined in the works of literature previously cited. 

 

Figure 4.6: Structure of the GRU model used. 

The architecture is a sequential neural network architecture with a GRU layer of fifty units, 

two dropout layers with a dropout rate of 0.2 to prevent overfitting, and two dense (completely 

connected) layers with one unit for regression tasks and twenty-five units each in the other. Just 

like the LSTM model, the ‘relu’ activation function was used for the GRU dense layer and ‘linear’ 

for the final layer which outputs our predictions.  

For the models using GRU units, additional hyperparameter tweaking was performed using 

a variety of values, including 32, 64, 128, and 256. The GRU-based models were optimized via a 



   

 

25 

 

grid search tuning procedure, which allowed us to investigate a wide range of combinations and 

pinpoint the ideal architecture for different applications. 

4.10 Convolutional neural network model 

The Convolutional neural networks are a subset of deep learning models designed 

primarily for efficient analysis of grid-like data, including tasks like image analysis and spatial 

data processing. CNN differs from a traditional neural network in that it employs the notion of 

weight sharing. CNN’s success in image processing jobs has spurred their use in time series (Wang 

et al., 2019). Convolutions applied over time intervals which have a one-dimensional grid 

topology, enable CNNs to efficiently detect time-based patterns within sequential data, making 

them suitable for predictive forecasting.  

Four steps form the foundation of the basic CNN architecture, they are: Convolution, Bias 

Addition, Non-Linear Activation Function, and Pooling. To succinctly describe, the model starts 

by multiplying a matrix (filters) with the input values that were supplied in the form of a vector 

where each filter recognizes distinctive features inside the input data. The second step, which adds 

a bias vector after the matrix multiplication, enables the model to consider variances that the 

convolution step by itself does not capture. The result of this step is fed through an activation 

function that detects intricate patterns and associations within the data. The final phase, pooling, 

improves computing efficiency, prioritizes crucial characteristics, and reduces the spatial 

dimensions of the data while keeping crucial information. Figure 4.7 shows a basic Convolutional 

Neural Network model that gives an illustration of the layers that were previously addressed. 

 

Figure 4.7: Basic structure of convolutional neural network (Huang et al., 2015) 

The CNN model architecture is described below in accordance with the techniques mentioned in 

the previously referred literature. 
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Figure 4.8: Structure of the CNN model used. 

The baseline model consists of an input layer, a 1D Convolutional layer with fifty filters, a 

kernel size of three, and activated by the rectified linear unit (ReLU). The next layer is a 

MaxPooling1D layer with a pool size of two, which helps in reducing the spatial dimensions of 

the model, with the next layer being a flatten layer to transform the 1D feature maps into a 1D 

vector. A dense layer of twenty-five units, activated by "relu," adds a level of nonlinearity. The 

"exponential" activation function is used by the output layer which is the final layer giving out the 

prediction. Convolutional and dense layers are mixed in the architecture to accommodate various 

data patterns. 

Grid search was employed to fine-tune hyperparameters, particularly focusing on the 

"filters" parameter, representing the number of convolutional filters applied within the 1D 

convolutional layer. The grid search explored a range of filter values, including 16, 32, 64, and 

128, to identify the most effective setting for individual time series. These filters act like small 

inspection windows that traverse the input data to detect patterns or characteristics. The number 

of filters determines the variety of features the model can extract at this convolutional layer, 

directly influencing its ability to capture distinct data characteristics. 

4.11 CNN-LSTM hybrid model 

The combination of multiple deep learning models in hybrid time series models has sparked 

considerable interest in revealing patterns across both temporal and spatial dimensions. Because 

time series data inherently exhibit high temporal correlations, LSTM, which specializes in learning 

sequence dependencies, is an appropriate candidate. CNN, on the other hand, excels in feature 

extraction and capturing spatial interaction patterns, making it a powerful tool for investigation. 

There have been meaningful results shown by this ensemble when used with regards to predicting 
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the short-term power load making it more energy efficient (Wan et al., 2023) and in predictive 

maintenance planning (Dehghan Shoorkand et al., 2024). 

The model architecture used is as follows,  

 

Figure 4.9: Structure of the CNN-LSTM hybrid model used. 

The adaptive input layer of the design is the first layer to deal with variable-length 

sequences. After that, a 1D convolutional layer with filters and a kernel size activated by the 

rectified linear unit (ReLU) collects the key characteristics. Reduced spatial dimensions are 

achieved by using a max pooling layer with a pool size of two. The next layer is an LSTM layer, 

whose number of units are configured is set up to produce output sequences for every input 

sequence. The output is changed into a 1D vector via a flattening layer. A 20 percent dropout layer 

then prevents overfitting while a dense layer with twenty-five units and ReLU activation further 

refines feature representation. The output is obtained using the final dense layer. This architecture 

combines the benefits of CNN and LSTM to provide results that are superior to those of either 

model used alone. 

Just like the previous model which included CNN architecture, this model also tuned the 

filters in the CNN part of the model using the Grid search using the same array of filters to find 
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the optimal filter value. The capacity of the model to extract useful information from the time 

series data depends heavily on the number of filters used, which are the most crucial component 

of the model. 

4.12 CNN-GRU hybrid model 

The CNN-GRU is a hybrid model that integrates various deep learning techniques to 

harness the distinct strengths of each technique. This model takes advantage of both the GRU 

(Gated Recurrent Unit) and CNN capabilities (Convolutional Neural Network) as it uses CNN's 

powerful feature extraction skills to find the underlying links inside the data, the max pooling layer 

reducing the output's dimensionality aiding in mitigating overfitting, investigate how data points 

are linked and showing the data's internal dynamics. Simultaneously, the GRU component captures 

the intricate nonlinear interactions between input and output and finds any extended connections 

that may exist inside the CNN layer-encoded features resulting in a deep knowledge of these 

relationships. 

Following are the details of the model architecture used to train this model, 

 

Figure 4.10: Structure of the CNN-GRU hybrid model used. 

This model also starts with an input layer that is tuned to the structure of the input 

sequences and is followed by a 1D convolutional layer, just as the CNN-LSTM model previously 
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described. The ReLU activation function is used in this layer to draw out pertinent characteristics 

from the input data. A max pooling layer with a pool size of two follows the convolutional layer. 

While maintaining the most crucial data points, max pooling reduces spatial dimensions. The 

GRU's recurrent layer, which produces an output sequence for each input sequence, is the next 

layer to appear. Then comes the flatten layer, which turns the 2D output into a 1D vector so it may 

be processed further. A dropout layer comes after the dense layer, which has twenty-five units and 

ReLU activation, and further refines the feature representation. The output layer, which outputs 

our forecast, is the last. 

The filters on the CNN portion of the model were modified for higher-performing models, 

just as in the prior models. As filter parameters, the following array [32, 64, 128, 256] was utilized. 

Particularly in the context of filters or units in layers, the choice of values for hyperparameter 

tuning for neural networks is frequently influenced by a combination of practical considerations 

and empirical testing. 

4.13 Recurrent convolutional neural network model 

The Recurrent convolutional neural network is again a hybrid neural network design that 

combines the benefits of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) to manage and analyze sequential input. The model constitutes the convolution layer and 

pooling layer from the CNN architecture, with a recurrent layer and dense layers from the RNN 

architecture. Recurrent neural networks (RNNs) are a type of neural network in which the results 

of one phase are used as inputs for the next and can be considered a simpler version of the LSTM 

and GRU models discussed before. In contrast to standard feedforward networks, recurrent neural 

networks employ shared weight parameters across nodes within each layer of the network. The 

SimpleRNN layer is skilled in capturing far-off associations within the sequential data, whereas 

the Conv1D layers are capable of autonomously identifying significant characteristics in the input 

data. This makes it useful for applications like natural language processing and time series 

prediction. 

A thorough visual representation of the structural components used in the model's training is given 

in Figure 4.11. 
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Figure 4.11: Structure of the RCNN model used. 

The model starts with an input layer defined by the shape of the input sequences. The first 

layer is a 1D convolutional layer with fifty filters and a kernel size of three. It applies the “Rectified 

Linear Unit” activation function following which is the max pooling layer with a pool size of two. 

Max pooling helps reduce spatial dimensions and focuses on the most valuable information. The 

model then incorporates a recurrent layer using a SimpleRNN with fifty units and ReLU activation 

which is followed by a flatten layer that transforms the 2D output into a 1D vector. To prevent 

overfitting, a dropout layer with a rate of 0.2 is applied. Dropout randomly deactivates a portion 

of the neurons during training, improving the model's generalization. It is followed by two dense 

layers; The first layer has twenty-five units and ReLU activation and the second layer serves as 

the output layer. 

Grid search was used to adjust the model's hyperparameters, and the filters were adjusted 

to produce better-performing models. Each filter oversees spotting textures, edges, or patterns in 

the data. The model can be adjusted to the complexity of the dataset by adjusting this parameter. 

Additionally, adjusting for filters aids in finding a balance between model generalization and 

complexity. 
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4.14 Gated CNN model 

The gated CNN model is a novel customized neural network architecture that incorporates 

the convolution and pooling layers from the convolution neural network with a gating mechanism 

which are a staple in the recurrent neural network models such as Long Short-Term Memory 

(LSTM) network and its variations. These information flow-controlling gating mechanisms 

provide the model the freedom to update itself selectively and decide what to keep and what to 

throw away as time goes on. By combining convolutional and gating features, this architecture 

was designed to recognize certain qualities or patterns in one-dimensional data. The gate 

introduced, enhances feature extraction, and improves sequential modelling. One major advantage 

of this model is that when compared to traditional sequential RNNs, gated CNNs are faster in 

training and inference because they can manage data concurrently. 

The specifics of the model architecture that was utilized to train this model are listed below. 

 

Figure 4.12: Structure of the Gated CNN model used. 

The model starts with an input layer which inputs a shape of (90,1) like all other models. 

The next layers are the two convolution layers which is 1D convolutional layer with both being 

used for the gating mechanism. These two layers are outputted to multiply layer which performs 

elementwise multiplication. As a result, a "gated" convolutional layer is created by combining the 

data from the two convolutional layers with gating. Depending on the significance of a feature, 

this gating mechanism can selectively emphasize or suppress it. Following the gated convolutional 

layer, three-pool max pooling is used. By reducing the spatial dimensions, max pooling 

concentrates on the most crucial information. The next layer, the flattened layer transforms the 2D 
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output from the previous layer into a 1D vector. Finally, a fully connected layer with fifty units 

and ReLU activation processes the flattened data, and the data is outputted using an output layer.  

Again, the filters in the two 1D convolutional layers at the start of the model are tuned 

using the grid search Python module. The network may learn a wider range of features when a 

variety of filters are used, but this also makes the model more complex. The risk of overfitting 

must be balanced against the benefits of collecting additional data. 

4.15 Inception CNN model 

Inception networks represent a significant step forward in CNN's evolution which 

challenges the conventional wisdom that just adding additional convolution layers is the best 

approach to improve CNN’s performance (Zhou et al., 2023). Inception entails expanding the 

network's coverage as well as its depth, and this larger setup makes it possible to capture minute 

information more efficiently. Along with maintaining the network topology, this approach makes 

use of a dense matrix's potent processing capacity. The inception modules were created with a 

specific goal in mind, considering issues like computational complexity and the danger of 

overfitting, among other things. The basic structure of the inception module is given in Figure 

4.13. This technique, which was first developed for picture classification and object recognition, 

can be used in time series forecasting to effectively capture complex temporal trends. 

 

Figure 4.13: Inception module with dimension reductions (Szegedy et al., 2014) 

The following is a description of the Inception CNN model's architecture used for training: 
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Figure 4.14: Structure of the Inception CNN model used. 

The model has a branching architecture like that of inception and is built to process input 

sequences with 90-time steps and one feature. Convolutional layers make up the four branches; 

they each have a different kernel size and ReLU activation function, resulting in a different feature 

map. The outputs of these branches are combined to create a single feature map of form (90, 200). 

The model then uses a flattening layer to convert the 2D feature map into a 1D vector with 1,800 

elements. The next layer has sixty-four units with ReLU activation and is fully connected. The 

output layer is made up of a single unit with an exponential activation function and there are 

115,029 trainable parameters in the model. 

Just like the other models, the final model was tuned with a grid search to tune for the best 

filters in the four convolutional layers in the inception model. A feature hierarchy is established by 

filters in Inception networks. The network may capture characteristics at multiple scales, from 

trivial details to bigger patterns, by employing filters of varied sizes. Also, the network may learn 

to extract a variety of features while avoiding the computational complexity associated with 

utilizing very deep networks by employing numerous filter sizes in parallel. 

4.16 Metrics used 

Three primary metrics are used to measure the performance of the models. They are root 

mean squared error (RMSE), cumulative forecast error (CFE) and Stock-keeping-oriented 

Prediction Error Costs (SPEC). The Percentage Better measure was used as the last criteria for 

comparing models, allowing for a thorough evaluation based on the gathered error metrics.  
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4.16.1 Root mean squared error 

RMSE computes the square root of the average of the squared errors, providing a measure 

of the forecasting model's overall accuracy. The RMSE is given by the following,  

RMSE =
√

∑ (𝑦𝑝,𝑗 − 𝑦𝑎,𝑗)
𝑛

𝑗=1

2

𝑛
 

4.31 

  

Where, 𝑦𝑝,𝑗 is the predicted value, 𝑦𝑎,𝑗 is the actual value and n is the data points.  

4.16.2 Cumulative forecast error metric 

The next error metric used is the cumulative forecast error metric (CFE). The CFE is given 

by the following, 

CFE = ∑(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐷𝑒𝑚𝑎𝑛𝑑)

𝑛

𝑖=1

 4.32 

  

Where the forecast error is summed over all the data points on the given time series. It is calculated 

straightforwardly by adding up the forecast errors with both positive and negative faults canceling 

each other out. This involves the process of summing the differences between predicted values and 

actual values to obtain the CFE score. This metric is frequently used to assess forecasting bias, to 

minimize its value, ideally approaching zero. A CFE score of zero signifies an ideal forecast in 

terms of predicted units, whereas a negative CFE value indicating an overestimation and a positive 

CFE value indicating an underestimation from the actual value. 

4.16.3 Stock-keeping oriented prediction error cost 

The next metric in use is the stock-keeping oriented prediction error cost (SPEC) which 

was specifically created to evaluate models when working with intermittent data. The SPEC metric 

is given as follows, 

𝑆𝑃𝐸𝐶𝛼1,𝛼2
=

1

𝑛
∑ ∑(𝑚𝑎𝑥[

0;

𝑚𝑖𝑛[𝑦𝑖; ∑ 𝑦𝑘

𝑖

𝑘=1

 − ∑ 𝑓𝑗

𝑡

𝑗=1

 ] ⋅ 𝛼1;

𝑚𝑖𝑛[𝑓𝑖; ∑ 𝑓𝑘

𝑖

𝑘=1

 − ∑ 𝑦𝑗

𝑡

𝑗=1

 ] ⋅ 𝛼2

] ⋅ (𝑡 − 𝑖 + 1))

𝑡

𝑖=1

 

𝑛

𝑡=1

  4.33 

Where, 𝑛 is the length of the time series 𝑦𝑡 is the actual value of the time series at time t, 𝑓𝑡 is the 

forecasted value at time t. 𝛼1 represents the opportunity costs and the 𝛼2 represents the inventory 

holding costs. These values range from one to infinity, with a total of one typically preferred to 

assure consistency. The metric works this way, after each prediction a cost is associated with that 

prediction, an opportunity cost, or an inventory holding cost and it is summed over the prediction 

time steps. Underpredicting future forecasts can result in higher opportunity costs while 
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overpredicting can lead to increased inventory expenses. This metric prompts the model to 

discover the ideal point at which both costs are kept to a minimum (Martin et al., 2020). For this 

research, more weightage was given to inventory holding cost with  𝛼2 value of 0.9 and an 

opportunity cost 𝛼1 as 0.1 to penalize longer inventory holding times. These values represent 

assumed parameters for research purposes, as actual cost data could not be obtained due to 

confidentiality constraints. 

4.16.4 Percentage better 

 The final metric that was used to compare the baseline model with the other models was 

the percentage better metric. The formula is given bellow, 

PB = (
|𝑎−𝑏|

(𝑎+𝑏)÷2
) × 100 4.34 

 
The error metric values of the model are represented by the parameters designated as "a" and "b". 

The output that results is a percentage that shows how well or poorly the model performed in 

comparison to the other model and quantifies the difference in performance. This is a useful metric 

that provides information about how well the model performs relative to the given benchmark 

model. Croston model was chosen as the baseline mode to compare with all the other models in 

the study. This option was chosen because of its historical relevance in addressing intermittent 

demand patterns and its extensive usage as a benchmark in comparable forecasting research (Pinçe 

et al., 2021; Willemain"’ et al., 1994). Furthermore, the Croston model's simplicity makes it an 

excellent reference point for evaluating the performance of more complicated and advanced 

forecasting methodologies used in this research. 

4.17 Data preparation 

The received raw data must be processed and reshaped into the proper dimensions for the 

models to properly capture the patterns before being input into the models to be trained. The 

scaling and step-back procedures used in data preparation are described in depth in the sections 

that follow this. 

4.17.1 Scaling 

Before training the different machine learning models, the dataset is standardized using the 

"TimeSeriesScalerMinMax" function, which guarantees that the rescaled dataset remains within 

the default range of 0 to 1. This stage is crucial to our research approach since it offers two major 

advantages which are accelerating the training process, where many optimization algorithms, such 

as gradient descent, converge faster when features are within a similar scale, and it also helps avoid 

outliers from influencing how our model learns. This scaling procedure not only improves the 

performance of our models but also guarantees that regularisation is implemented uniformly to all 

features to prevent overfitting by penalizing large coefficients because we use models like KNN 

and SVR, which are sensitive to how data is scaled. 

4.17.2 Step back 

Time series data is often broken down into smaller units for easier comprehension and 

prediction when analyzed and modelled. Using the step-back value, the time series sequence is 



   

 

36 

 

translated into input-output pairs or feature vectors with associated goal values. A time series 

sequence's step-back value is the number of time steps backward that are utilized to create these 

input-output pairs. It is an important parameter that controls the amount of previous data that is 

considered when constructing these pairs. The input for each time step corresponds to the data seen 

in the preceding time steps, and the output represents the data at the current time step. This strategic 

approach guarantees that these combinations are methodically generated while conforming to the 

data limits. Furthermore, this approach is an important stage in the data pre-treatment pipeline, 

particularly for training machine learning models such as the Support Vector Regression model. 

The properties of the time series data and the patterns that one wants to capture influence the step-

back value selection and a step-back value of 3 months was devised for all the models.  

4.18 Computational Environment and Toolset Utilized 

The major tool for forecasting all the models, together with data cleaning and preparation, 

was the Python programming language. Python version 3.10.12 was used in Google Colab for the 

entirety of the thesis. It's crucial to remember that neither a dedicated Graphics Processing Unit 

nor a dedicated Tensor Processing Unit were used in any of the research's experiments. The hosting 

environment's standard Central Processing Unit resources were used to carry out the computations. 

With two cores for concurrent computation and 64-bit addressing support, the CPU in use is an 

x86_64 architecture. Pandas (Mckinney, 2010) and NumPy (Harris et al., 2020), two adaptable 

libraries, managed complex data manipulation and processing. The fundamental statistical and 

machine learning models were created using the Scikit-Learn (Pedregosa Fabianpedregosa et al., 

2011), StatsModels (Seabold & Perktold, 2010), and tslearn (Tavenard et al., 2020) libraries. By 

incorporating TensorFlow (Abadi et al., 2016) and Keras (Chollet F et al., 2015) into our research, 

we were able to examine deep learning methods like forecasting neural networks. To evaluate how 

well our models were performing, we used a variety of libraries, including spec metric (Martin et 

al., 2020.) and permetrics (Van Thieu & Mirjalili, 2023). These tools helped us get a complete 

picture of how our models were performing. The comprehensive list of the libraires used is given 

in table 4.1.  

Table 4.1: Python Libraries Utilized in the Research 

Library Functions 

pandas Manipulating data using DataFrame. 

NumPy Numerical operations on multi-dimensional arrays 

time Python module for measuring execution time. 

matplotlib A 2D plotting library for visual aid creation 

spec_metric Library for automated SPEC calculations 

permetrics Library for RMSE metric calculations 

TimeSeriesScalerMinMax Time series scaling for Min-Max normalization 
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SimpleExpSmoothing Exponential smoothing for time series forecasting 

RandomForestRegressor Regression model using random forest algorithms 

SVR Support Vector Regression for regression tasks 

KNeighborsTimeSeriesRegressor Time series regression with k-nearest neighbors 

GridSearchCV Optimizing hyperparameters in machine learning models 

Keras Deep learning model construction and training using a high-

level API 

tensorflow Open-source deep learning library for building ML models. 

 

4.19 Hyperparameter tuning 

Every model and every time series in our research underwent hyperparameter tuning, 

which was a crucial step. To get the best results from statistical models, this required fine-tuning 

the alpha and beta parameters. A grid search methodology was used to carefully adjust the 

hyperparameters of more complex machine learning and deep learning models. This meticulous 

approach was conducted to make sure that each model performed to its fullest ability, improving 

its resilience and forecast accuracy. 

The ADAM Optimizer was employed (Kingma & Ba, 2014), a stochastic objective 

function improvement technique that makes effective use of adaptive estimations of lower-order 

moments. This helps it work well with problems that have missing or noisy data. 

The optimization formulas are as follows, 

𝑔 = (ℎ𝜃(𝑥î − 𝑦î))𝑥𝑖 4.34 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔 4.35 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔2 4.36 

𝑚𝑡
− =

𝑚𝑡

1 − 𝛽1
𝑡 4.37 

𝑣𝑡
− =

𝑣𝑡

1 − 𝛽2
𝑡 4.38 

𝜃𝑗 = 𝜃𝑗−1 − 𝑚𝑡
− ∗

∝

√𝑣𝑡
−+∈

 4.39 

  

Where, 

" 𝑔 " represents the gradient that has been computed. 

"𝑚𝑡" represents the initial moment of the gradient "𝑔" 

"𝑣𝑡" represents the secondary moment of the gradient "𝑔 " 
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"𝛽1" refers to the coefficient for attenuating the first order moment. 

"𝛽2" refers to the coefficient for attenuating the second-order moment. 

"𝜃" represents the parameter that requires a solution. 

𝑚𝑡
− and 𝑣𝑡

− explains the process of offset correction for "𝑚𝑡" and "𝑣𝑡" 

We established the initial values for the parameter vector, the first and second-moment 

vectors, and the time step in this optimizer. Up until the parameter 𝜃 converges, the loop keeps 

adjusting the various parts iteratively. Adam was utilized to enhance the performance of all the 

neural network models used, whose primary aim is to identify a set of parameters that will 

minimize the associated error function. 
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CHAPTER 5: Empirical results 
 

In this section, we assess the performance of our models across the machine learning 

algorithms, ranging from classical statistical models to more sophisticated deep learning 

algorithms. We commence by introducing the optimized models and demonstrating the 

improvements achieved through hyperparameter tuning. Subsequently, we evaluate and rank the 

models based on their performance metrics to provide a comprehensive assessment of their 

effectiveness. 

5.1 RMSE metric analysis 

Initially, all models were executed with default parameters derived from Python libraries, 

and their respective error metrics were computed. Subsequently, an extensive phase of 

hyperparameter tuning was conducted for both machine learning and deep learning models, 

employing grid search techniques. Notably, the statistical models underwent a manual tuning 

process, focusing on optimizing the various smoothing parameters. Following this tuning process, 

error metrics were recalculated for the tuned models, utilizing the most effective parameter 

configurations. As seen in table 5.1, which shows the baseline and tuned metrics, this approach 

was conducted to increase the models' predictive accuracy and guarantee their optimal 

performance. 

In our analysis, we observed significant improvements in the performance accuracy of all 

the forecasting methods after optimization. These enhancements are evident when we compare the 

Root Mean Square Error values before and after optimization. As an example, consider the simple 

exponential smoothing method, which, following hyperparameter optimization, demonstrated an 

impressive 35.766 percent decrease in its RMSE value. It should be noted that these reductions are 

in relation to the pre-optimization RMSE values. Certain approaches, such as Long Short-Term 

Memory and Gated Recurrent Unit, on the other hand, exhibited only slight improvements in 

RMSE. This implies that their initial configurations were already near optimal.  Our analysis's 

RMSE results are rounded to the third decimal place, giving a clear indication of the increases in 

forecasting accuracy brought about by optimization. 
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Table 5.1: RMSE values before and after optimization 

 

 

Figure 5.1: Performance improvement (Baseline vs Tuned) 

After each model was fine-tuned, its performance was ranked; the results are shown in 

Table 5.2. With a rank of '1' designating the best-performing model and '15' the least effective, a 
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lower rank in this table corresponds to higher performance. Notably, with nearly coinciding 

performance values, the top-performing models are GRU, RCNN, and Gated CNN. Table 5.2 

displays a notable variation in RMSE scores between 0.587 and 0.664, indicating notable 

deviations in model accuracy. Furthermore, it is evident that deep learning models are preferred 

over other researched approaches. Table 5.3 provides additional support for this trend, grouping 

models into three general categories: "Basic Statistical," "Deep Learning," and "Machine Learning 

(Non-Deep Learning). Deep learning models have an average RMSE value of 0.591, whereas non-

deep learning models have an RMSE value of 0.620 and basic statistical models have an RMSE 

value of 0.602. It is to be noted that the mean RMSE values calculated included all the hybrid 

models used for the deep learning models such as Gated CNN and Inception CNN. 

Table 5.2: Performance Evaluation with RMSE and Final Rank. 

 

Table 5.3: Comparison of RMSE values by model type. 
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5.2 Percentage better (PB) metric analysis 

In our analysis, we compared the performance of different forecasting models to the 

Croston baseline model using the 'percentage better' metric. The 'percentage better' metric is used 

to quantify the improvement in forecasting accuracy over the benchmark Croston model and this 

metric quantifies the extent to which the forecasting accuracy of the other models exceeds or falls 

short of the Croston model. In cases where the 'percentage better' is positive, it signifies that the 

model performs better than the Croston model; the percentage expresses the percentage difference 

and when the model under consideration appears to perform worse than the Croston model when 

the 'percentage better' is negative; the percentage indicates how much this degradation occurs. 

With a PB value of 1.336, the "RCNN" model stands out as the best model in this situation. It's 

worth noting that the models that excel in performance, including "RCNN," "Gated CNN," "GRU," 

and "LSTM," are all part of the deep learning category. Conversely, models like "KNN," "Croston 

TSB," and "Inception CNN" exhibit negative percentage better values, suggesting they 

underperform compared to the reference model, Croston. Notably, "KNN" lags behind Croston by 

a significant margin, with a 10.441% worse performance. 

Table 5.4: Model Performance Relative to Croston Model (%) 

 

5.3 Cumulative forecast error (CFE) analysis 

The next metric that was obtained from the models was the cumulative forecast error which 

gives the overall forecast bias and accuracy for the cumulative period. Table 5.5 presents all the 

forecasting models, each associated with a CFE value, and the ranking is based on the absolute 

deviation of the CFE value from a perfect prediction error of zero. The CFE values shows a wide 

range where models like "Croston," "SES," and "KNN" have negative cumulative forecast error 
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values have overestimated the target variable. On the other hand, models like "RCNN," "LSTM," 

and "CNN LSTM" that have positive CFE values have undervalued the target variable. It's crucial 

to remember that forecasting models ideally strive for a balanced performance in both directions, 

thus interpreting overestimation or underestimation should be done with caution. It's important to 

note, nevertheless, that the CNN LSTM hybrid model performs the best overall, underestimating 

just by 0.183 units. This almost flawless prediction shows how well the model works to reduce 

predicting mistakes over the whole dataset. 

Table 5.5: Performance Evaluation with CFE and Final Rank. 

  

Upon observation, like the previous error metric, the advanced deep learning models once 

again demonstrate notably superior performance in relation to the other two categories, as 

evidenced in Table 5.6. Deep learning models tend to overestimate by around 0.992 units which is 

significantly more accurate than the overestimation of 9.544 and 9.924 by machine learning and 

statistical models. But it is to be noted that all the models on average tend to overestimate the 

forecast.  

Table 5.6: Comparison of CFE values by model type 
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5.4 SPEC metric analysis 

The metric in deliberation is the spec metric, which takes into consideration the inventory 

cost and the opportunity cost associated with an estimate cumulatively. Table 5.7 lists the models 

and their corresponding SPEC values associated with their predictions where lower SPEC value 

indicates better performance and ranked based on it. As before, the numbers span a wide range, 

resulting in a notable difference in how well each model performs. The best performing model is 

the Gated CNN model with a SPEC value of just 100.477 and the poorest performing model is the 

TSB model with a value of 2075.442.  

Table 5.7: Performance Evaluation with SPEC and Final Rank. 

 

The SPEC ranking obtained, aligns closely with the existing literature on the subject (Azizi 

& Wibowo, 2022; Kiefer et al., 2021). These findings verify our results' consistency and 

dependability, emphasizing the resilience of advanced deep learning models and being consistent 

with past studies in the field of spare parts demand forecasting. When computing the mean SPEC 

value for the several types of models in question, yet again the advanced deep learning models 

perform significantly better than the other two methods. With the best SPEC Optimized result of 

117.774, the deep Learning category stands out because it demonstrates the strong effectiveness 

of deep learning models in drastically lowering prediction error costs in stockkeeping. 
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Table 5.8: Comparison of SPEC values by model type 

 

5.5 Computational time 

The Table 5.9 provides a breakdown of the processing time required for each model. Most 

remarkably, the support vector regression model performed computations in a mere 0.88 minutes, 

which is a little less than a minute for tuning over all time series. Reasonable computation durations 

were also demonstrated by the Croston and SBA models, which took 2.14 and 2.16 minutes, 

respectively. The convolutional neural network with gated recurrent units and the recurrent 

convolutional neural network demonstrated reasonable computing times in the context of deep 

learning models, with tuning times of 21.54 and 12.11 minutes, respectively. The gated recurrent 

unit and long short-term memory models, which are well-known for their usefulness in sequence 

modeling, recorded longer computing times of 46.61 and 58.31 minutes, respectively.  The primary 

cause of this is that they handle data in a sequential manner while taking interdependence between 

time steps into account. It is more difficult to parallelize computations due to this sequential 

processing, which could result in more prolonged training times. This isn't the case for CNN 

models, which have a significant degree of parallelization, particularly in the early convolutional 

layers. However, the 8.59-minute TSB model was notable due to the need to adjust two distinct 

alpha values for that model among the statical models. These findings highlight the various 

computational needs of different forecasting models, highlighting the significance of taking 

accuracy and computational efficiency into account when choosing a model for time series 

forecasting applications. 
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Table 5.9 Computational Time for Various Forecasting Models 

 

5.6 Comprehensive performance evaluation 

The Table 5.9 compiles all the previously discussed metrics, making it easy for you to 

examine the findings. The table provides a thorough performance evaluation of different 

forecasting models across the variables, and it can be noted that with a mean rank of two, the Gated 

CNN model regularly holds a spot in the top three when compared to the other models. With a 

mean rank of 3.000, the LSTM emerges as the next best-performing model, underscoring its 

consistent performance across all metrics. The worst performing model considering all three 

metrics is the KNN model indication its not very well suited for intermittent demand forecasting. 

The mean rank is presented as a scatter plot, and it shows a linear trend through the different 

models indicating that certain models do perform better for such sporadic data compared to others 

across different metrics. Additionally, all deep learning models outperform all other models and 

assume positions 1 through 8. 
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Table 5.10: Comprehensive Performance Evaluation and Rankings of Forecasting Models. 

 

5.7 Discussion 

The gated CNN, LSTM, and GRU are the best-performing (top three) models in terms of 

all the metrics in question. And all the hybrids of CNN are performing better than the basic 

statistical and classic machine learning algorithms. The potential of CNNs to automatically 

identify crucial data properties is well known. In our example, the model is given a set of grids 

that reflect the data from the previous three months and are punctuated by intermittent patterns. 

The convolution layers of gated CNNs excel at extracting and interpreting these traits, providing 

a useful method for data comprehension. Additionally, they are well-suited to accurately capture 

time-dependent patterns in the data because of their capacity for hierarchical feature collection and 

use of non-linear activation functions. Additionally, the presence of the gating mechanism like in 

the case of the next best-performing LSTM and GRU, enables the model to regulate the 

information flow and retain prior data, a valuable feature for modeling intermittent patterns. The 

industry standard and often used smoothing methods produced mediocre results in all three criteria, 

highlighting their shortcomings. Overall, Figure 5.2 conclusively shows that deep learning models 

outperform statistical and machine learning models. It is noteworthy that the KNN model performs 

the worst, which can be linked to several issues, especially its sensitivity to data sparsity. A 

common symptom of sparsity in intermittent time series data is the presence of zeros or missing 

values at several time steps. Less precise predictions may result from KNN's inability to locate 

meaningful neighbors in such minimal data. One more probable reason could be KNN’s nature of 

ignoring the temporal component of time series data. In time series forecasting, when temporal 

connections are essential, it frequently interprets all data points as independent, which is not 

appropriate. In summary, while statistical learning methods are only partially effective at capturing 
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the variability in our time series data, deep learning models, particularly those based on sequence 

learning and gating, demonstrate impressive proficiency in simultaneously learning and 

parameterizing multiple time series in our dataset. 

 

Figure 5.2: Model performance scatter plot sorted by mean rank. 
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CHAPTER 6: Conclusion  
 

This chapter concludes our research by providing critical insights from our analysis, addressing 

the limitations that affected the study's depth and accuracy, and indicating potential directions for 

future research. 

6.1 Concluding remarks 

This study was motivated by the necessity for our aviation aftermarket organization to 

improve the capability of foreseeing intermittent and unpredictable demand for essential aircraft 

replacement parts. To answer this problem, we investigated an array of techniques, some tried and 

tested methods, and some new ones to achieve the precision and accuracy required by our sector. 

Each model was tuned with a variety of parameters after each time series underwent separate 

evaluation, training, and tuning to be suited to each distinct demand pattern. Our study has shown 

that the gated CNN, LSTM, and GRU models perform better than other models in all areas of 

examination. In particular, the set of CNN variations has repeatedly outperformed traditional 

statistical and machine learning models, indicating the promising potential of deep learning 

techniques. In particular, the gated CNN models have proven to be remarkably adept at 

automatically recognizing important data properties. As different metrics produce different models 

as the best performing, this project has demonstrated how challenging it is to find a good 

forecasting model for all the spare parts. Before choosing a model for forecasting such data, this 

work also demonstrated the need for careful consideration and understanding of the metric used. 

The study addressed literature gaps by integrating advanced sequence learning techniques 

and innovative convolutional architectures. Additionally, a detailed architectural definition was 

complemented by fine-tuning the model, showcasing enhanced performance through meticulous 

parameter tuning. The findings of this study have major implications for this specific research area 

as well as the larger subject of demand forecasting. The aviation aftermarket is the focus of this 

study, where it is crucial to accurately forecast the intermittent and irregular demand for 

replacement parts, but this study can be extended to all areas of demand forecasting where such 

patterns are observed. According to the study, we can estimate intermittent demand much more 

accurately by utilizing sophisticated deep-learning models. To effectively manage unpredictable 

demand patterns, industries should think about switching from employing old approaches to new 

innovative ones such as the one discussed in this work. 

6.2 Research limitations 

The analysis's depth and accuracy are considerably impeded by limitations that place major 

constraints on the total scope of the investigation. The inability to execute fine-grained forecasting 

and optimization is hampered using the company's raw sales data and the lack of more information 

about individual items, such as their specifications, technological features, and usage patterns. 

Additional details regarding the parts such as lead time and unit cost could have significantly 

improved the accuracy of the forecast. The requirement to uphold strong confidentiality and 

privacy agreements gives rise to these restrictions. The company is prohibited from disclosing 

comprehensive item-specific data and cost-related information due to the proprietary nature of 

some data and its commitment to protecting sensitive information. 
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The study's absence of outside variables that could affect the availability and demand for 

spare parts is another important drawback. The research does not consider managerial choices or 

modifications in business strategy, as well as natural occurrences like weather changes or market 

variations. Although difficult to predict, these outside factors can significantly affect inventory 

management outcomes and, if considered, could heighten the study's realism. 

6.3 Future work 

Future studies should concentrate on a few crucial areas of optimization and feature 

engineering to improve the performance and efficacy of the suggested model. First, a thorough 

investigation of the optimization of the step-back value, a crucial time series analysis parameter, 

is required. This parameter's fine modification can result in forecasts that are more precise and 

efficient. Further efforts should be made to collect and include thorough data pertaining to the time 

series data, such as specific value trends, aircraft details, and repair data making the whole analysis 

a multivariate time series analysis instead of a univariate as like now. This added context can 

provide insightful information for predictive modelling. Exploring new features produced from 

these data sources has the potential to improve the model's predictive ability while feature 

engineering, which is still a crucial part of model refining, is still important. Additionally, lag 

values should be considered when modelling since they can capture temporal dependencies and 

trends in time series data, resulting in more precise forecasting and decision-making. Adding 

historical data from a longer period to the dataset would be the easiest and the most feasible avenue 

of improvement.  
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