
Graph Representation Learning for Classification and Anomaly
Detection

Mahsa Mesgaran Ayaghchi

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Ph.D. Degree in Information and Systems Engineering at

Concordia University

Montreal, QC, Canada

December 2023

© Mahsa Mesgaran Ayaghchi, 2023

Abstract

Graph Representation Learning for Classification and Anomaly Detection

Mahsa Mesgaran Ayaghchi, Ph.D

Concordia University, 2023

Graph-structured data is ubiquitous across diverse domains, including social networks, recom-

mendation systems, brain networks, computational chemistry, biology, sensor networks, and trans-

portation networks. Graph neural networks have recently emerged as a powerful paradigm for the

analysis of graph-structured data due to their ability to effectively capture complex relationships

and learn expressive graph node representations through iterative aggregation of information from

neighboring nodes. These learned representations can then be used in various downstream tasks

such as node classification and anomaly detection.

In this thesis, we introduce a graph representation learning model for semi-supervised node clas-

sification. The proposed feature-preserving model addresses the challenges of oversmoothing and

shrinking effects by introducing a nonlinear smoothness term into the feature diffusion mechanism

of graph convolutional networks. We conduct comprehensive experiments on diverse benchmark

datasets demonstrating that our approach consistently outperforms or matches state-of-the-art base-

line methods. Inspired by the concept of implicit fairing in geometry processing, we also propose a

graph fairing convolutional network architecture for semi-supervised anomaly detection. The pro-

posed model leverages a feature propagation rule derived directly from the Jacobi iterative method

and incorporates skip connections between initial node features and each hidden layer, facilitat-

ing robust information propagation throughout the network. Our extensive experiments on five

benchmark datasets showcase the superior performance of our graph fairing convolutional net-

work compared to existing anomaly detection methods. In addition, we propose an unsupervised

anomaly detection approach on graph-structured data by designing a graph encoder-decoder archi-

tecture and a locality-constrained pooling strategy. This pooling mechanism extracts local patterns

iii

and reduces the impact of irrelevant global graph information, enhancing the discriminative power

of the learned features. In the decoding phase, an unpooling operation followed by a graph decon-

volutional network reconstructs the graph data. Extensive experiments on six benchmark datasets

demonstrate that our graph encoder-decoder model outperforms competitive baseline methods.

iv

Acknowledgments

I would like to express my deepest gratitude to all those who have contributed to the successful

completion of this PhD thesis. This journey has been a long and challenging one, and I could not

have reached this milestone without the support and assistance of many individuals and institutions.

First and foremost, I am indebted to my advisor, Prof. A. Ben Hamza, whose wisdom, patience,

and expertise have been invaluable throughout this research journey. His mentorship has not only

shaped my academic growth but also my character. His dedication to excellence and tireless com-

mitment to pushing the boundaries of knowledge have been a constant source of inspiration.

I extend my heartfelt thanks to the members of my doctoral thesis examining committee for

their critical feedback, insightful suggestions, and dedication to ensuring the rigor and quality of

my work.

I am grateful to Concordia University for providing the resources and facilities necessary for

conducting my research. The academic personnel and administrative staff, IT support team, and

library staff have all played a significant role in facilitating my academic journey.

My family and friends deserve my heartfelt appreciation for their unwavering support, love, and

encouragement throughout this academic journey.

Last but not least, I would like to dedicate this thesis to Vahid, my husband, whose love and

support have been my anchor during this demanding period of academic pursuit. His sacrifices and

belief in me have been my strongest motivators.

In conclusion, this thesis represents the culmination of years of hard work, dedication, and the

collective efforts of many individuals. I am profoundly grateful to all of you for being a part of this

remarkable journey.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Framework and Motivation . 1

1.2 Problem Statement . 2

1.2.1 Semi-Supervised Node Classification . 2

1.2.2 Semi-Supervised Graph Anomaly Detection 3

1.2.3 Unsupervised Graph Anomaly Detection 3

1.3 Objectives . 3

1.4 Literature Review . 4

1.5 Preliminaries . 8

1.5.1 Graph Theory Basics . 8

1.5.2 Graph Embedding . 9

1.5.3 Graph Embedding Applications . 10

1.5.4 Graph Neural Networks . 11

1.5.5 Graph Convolutional Networks . 15

1.6 Overview and Contributions . 17

2 Anisotropic Graph Convolutional Network for Semi-supervised Learning 19
2.1 Introduction . 19

2.2 Related Work . 22

2.3 Method . 23

2.3.1 Problem Formulation . 23

2.3.2 Proposed Approach . 24

2.4 Experiments . 28

vi

2.4.1 Results . 32

2.4.2 Statistical Significance Analysis . 34

2.4.3 Visualization . 39

2.4.4 Robustness to Oversmoothing . 39

2.4.5 Parameter Sensitivity Analysis . 41

2.4.6 Discussion . 42

3 Graph Fairing Convolutional Networks for Anomaly Detection 43
3.1 Introduction . 43

3.2 Related Work . 47

3.3 Preliminaries and Problem Statement . 49

3.4 Proposed Method . 50

3.4.1 Spectral Graph Filtering . 51

3.4.2 Implicit Fairing . 51

3.4.3 Spectral Analysis . 52

3.4.4 Iterative Solution . 53

3.4.5 Graph Fairing Convolutional Network . 53

3.4.6 Model Prediction . 55

3.4.7 Model Complexity . 56

3.4.8 Model Training . 56

3.4.9 Model Inference . 57

3.5 Experiments . 57

3.5.1 Datasets . 58

3.5.2 Baseline Methods . 59

3.5.3 Evaluation Metric . 61

3.5.4 Implementation Details . 61

3.5.5 Anomaly Detection Performance . 61

3.5.6 Parameter Sensitivity Analysis . 62

3.5.7 Visualization . 64

3.5.8 Ablation Studies . 65

4 A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection 69
4.1 Introduction . 70

4.2 Related Work . 73

4.3 Proposed Method . 75

vii

4.3.1 Encoder . 76

4.3.2 Decoder . 79

4.3.3 Model Training . 82

4.4 Experiments . 83

4.4.1 Experimental Setup . 83

4.4.2 Anomaly Detection Performance . 85

4.4.3 Parameter Sensitivity Analysis . 87

4.4.4 Ablation Study . 89

4.4.5 Discussions . 90

5 Conclusions and Future Work 92
5.1 Contributions of the Thesis . 93

5.1.1 Anisotropic Graph Convolutional Network for Semi-supervised Learning . 93

5.1.2 Graph Fairing Convolutional Networks for Anomaly Detection 93

5.1.3 A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection . 93

5.2 Limitations . 94

5.3 Future Work . 95

5.3.1 Spatial-Temporal Graph Autoencoder for Anomaly Detection 95

5.3.2 Graph Link Prediction for Anomaly Detection 95

References 96

viii

List of Tables

2.1 Classification accuracy results on three citations networks and two image datasets.

Boldface numbers indicate the best classification performance. 33

2.2 One-way ANOVA p-values for the accuracy scores data obtained by AGCN, GCN and

GAT on the Cora, Citeseer and Pubmed datasets. 35

3.1 Summary statistics of datasets. 59

3.2 Test AUC (%) averaged over 10 runs when 2.5% of instances are labeled. We also

report the standard deviation. Boldface numbers indicate the best anomaly detection

performance. 63

3.3 Test AUC (%) averaged over 10 runs when 5% of instances are labeled. We also

report the standard deviation. Boldface numbers indicate the best anomaly detection

performance. 63

3.4 Test AUC (%) averaged over 10 runs when 10% of instances are labeled. We also

report the standard deviation. Boldface numbers indicate the best anomaly detection

performance. 64

3.5 Test AUC (%) averaged over 10 runs when 5% of instances are labeled. We also report

the standard deviation. 68

4.1 Summary statistics of datasets. 84

4.2 Test AUC (%) scores on four citation networks and two social networks. Boldface

numbers indicate the best performance, whereas the underlined numbers indicate the

second best performance. 85

4.3 Test Precision@K (%) scores of our approach and baselines on four citation networks

and two social networks. Boldface numbers indicate the best performance, whereas

the underlined numbers indicate the second best performance. 86

ix

4.4 Test Recall@K (%) scores of our approach and baselines on four citation networks

and two social networks. Boldface numbers indicate the best performance, whereas

the underlined numbers indicate the second best performance. 86

4.5 Test F1@K (%) scores of our approach and baselines on four citation networks and

two social networks. Boldface numbers indicate the best performance, whereas the

underlined numbers indicate the second best performance. 87

4.6 Ablation analysis (AUC (%)) on six datasets. Performance better than the default

version is boldfaced. 90

x

List of Figures

1.1 Illustration of different graph types. (a) A simple graph is an unweighted and undi-

rected; (b) For a directed graph, edges indicate an orientation, and (c) edges can have

weights in a weighted graph. 9

1.2 Schematic diagram of node embedding. 10

1.3 Illustration of residual connection and initial connection. 15

1.4 Schematic diagram of graph convolutional neural network with multiple graph convo-

lutional layers. In this diagram, the input X represents the initial feature matrix of node

attributes, and the output Z is the latent graph representation from the final network

layer. 17

2.1 Schematic layout of the anisotropic aggregation procedure. 26

2.2 Sample images from CIFAR10 (left) and MNIST (right). 29

2.3 Model training history comparison between GCN and proposed AGCN model on the

Cora dataset. 31

2.4 Accuracy distributions of AGCN, GAT and GCN on the Cora, Citeseer and Pubmed

citation networks. 33

2.5 Classification accuracy of AGCN compared to GCN for different training set sizes on

the Cora dataset. 35

2.6 Classification accuracy of AGCN compared to GCN for different training set sizes on

the Citeseer dataset. 36

2.7 Classification accuracy of AGCN compared to GCN for different training set sizes on

the Pubmed dataset. 37

2.8 Pairwise multiple comparison between AGCN, GAT, and GCN methods using Tukey’s

test on the Cora dataset. 38

2.9 Pairwise multiple comparison between AGCN, GAT, and GCN methods using Tukey’s

test on the Citeseer dataset. 38

xi

2.10 Pairwise multiple comparison between AGCN, GAT, and GCN methods using Tukey’s

test on the Pubmed dataset. 39

2.11 t-SNE feature visualization of the output embeddings by the first convolutional layer

of AGCN (top) and GCN (bottom), respectively, on the MNIST dataset. Each color

denotes a class. 40

2.12 Performance comparison between AGCN and GCN on the Cora dataset as we increase

the number of layers. 41

2.13 AGCN accuracy results for different values of β on the Pubmed dataset. 41

3.1 Transfer function of the implicit fairing filter for various values of the scaling parameter. 52

3.2 Schematic layout of the proposed GFCN architecture. Each block comprises a graph

convolution and a skip connection, followed by an activation function, where S de-

notes the normalized adjacency matrix. The GFCN model takes as input the adjacency

matrix A and initial feature matrix X = H(0). At each layer, a node aggregates infor-

mation from its neighboring nodes and the initial feature matrix through skip connec-

tion. The aggregated information is then transformed using learnable weight matrices.

The resulting representation is then passed to the next layer for further propagation.

Finally, the output is the latent graph representation H(L) from the last network layer. . 54

3.3 Illustration of the GFCN aggregation scheme with skip connections. 55

3.4 Effect of weight hyperparameter α on anomaly detection performance (AUC). 65

3.5 Effect of regularization hyperparameter β on anomaly detection performance (AUC). . 66

3.6 Effects of number of layers (left) and latent representation dimension (right) on

anomaly detection performance of our GFCN model using the Cora, Citeseer, Pubmed

dataset when 10% of instances are labeled. The AUC results are averaged over 10 runs. 67

3.7 UMAP embeddings of GFCN (left) and GCN (right) using the Cora dataset. 67

4.1 Overview of the proposed graph encoder-decoder network architecture. The model

consists of two main components: an encoder and a decoder. In the encoding stage, a

graph convolutional network (GCN) encoder is used to generate a latent representation,

followed by a graph pooling layer to coarsen the graph. In the decoding stage, an

unpooling layer is applied to the coarser graph, followed by a graph deconvolutional

network (DGN) decoder to reconstruct the graph. 77

4.2 Effect of hyperparameter K on anomaly detection performance of our model using

ROC curves. 88

xii

4.3 Effect of hyperparameter α on anomaly detection performance of our model using

AUC as evaluation metric. 89

xiii

List of Acronyms

GNN Graph Neural Network

GCN Graph Convolutional Network

LCPool locality-constrained Pooling

SVDD Support Vector Data Description

APPNP Approximate Personalized Propagation of Neural Predictions

ResGCN Residual Graph Neural Network

GCNII Graph Convolutional Network with Initial residual and Identity mapping

DiffPool Differentiable Pooling

SAGPool Self-Attention Graph Pooling

ReLU Rectified Linear Unit

CNN Convolutional Neural Network

ChebyNet Chebyshev Network

AGCN Anisotropic Graph Convolutional Network

GAT Graph Attention Network

JK-Net Jumping Knowledge Network

GFCN Graph Fairing Convolutional Network

LCUnpool locality-constrained Unpooling

LLC Locality-constrained Linear Coding

GRAND Graph Random Neural Networks

ANOMALOUS Anomaly Detection on Attributed Networks

AAGNN Abnormality-Aware Graph Neural Network

xiv

C
H

A
P

T
E

R

1
Introduction

In this chapter, we start with the motivation behind this work, followed by the problem statement,

objectives of the study, and literature review. Then, we present the basic preliminaries and back-

ground material, which include a brief overview of graphs, graph embedding, graph embedding

applications, graph neural networks, and graph convolutional networks, and finally we conclude

with the thesis contributions.

1.1 Framework and Motivation

In the realm of graph-based data representation, graph embedding has become a powerful tech-

nique for representing and analyzing graph data. The rapid advancement of deep learning has

generated significant interest in the adoption of graph neural networks (GNNs) for the acquisition

of latent representations of graphs. One of the pioneering developments in this arena is graph con-

volutional networks (GCNs) [1]. GCNs have played a central role in this pursuit by utilizing con-

volutional operations on graphs to learn effective node embeddings that have proven to be useful in

achieving high accuracy prediction results. However, GCNs suffer from oversmoothing, where the

neighborhood information becomes indistinguishable across layers, and the challenge of capturing

long-range dependencies. To address these challenges, we propose a framework, enabling nodes

to adaptively aggregate information from their neighbors, thus mitigating oversmoothing while

capturing richer local graph structures.

Graph data is ubiquitous in diverse domains, from social networks to recommendation systems,

and accurately identifying anomalies within these intricate structures is paramount. Capturing

1

abnormal nodes in graph-structure dataset is challenging, primarily because anomalies are rare

occurrences and only a very small proportion of the graph nodes might be anomalous. To ad-

dress this fundamental issue, semi-supervised learning techniques are proposed for graph-based

anomaly detection. Inspired by the principles of implicit fairing in geometry processing [2] for

triangular mesh smoothing, we present a novel semi-supervised framework for graph anomaly

detection. Furthermore, we introduce a learnable skip connection mechanism within our model

allowing our model to seamlessly integrate initial node representations with aggregated neighbor-

hood information. This amalgamation not only enhances the learning of node representations but

also facilitates consistent information flow across network layers, ultimately improving anomaly

detection performance.

A substantial challenge in anomaly detection arises from the scarcity of labeled data, as manual

annotation of anomalies is both costly and often unfeasible at scale. More recently, unsupervised

GNN-based methods have been shown effective at addressing anomaly detection problems in vari-

ous data settings. A key component of many GNNs is the pooling operation, which seeks to reduce

the size of a graph while preserving its vital structural information, crucial for detecting abnormal

nodes [3]. Many existing graph pooling techniques rely on complex, trainable parameters, result-

ing in computational complexity and limited interpretability. We propose an unsupervised graph

encoder-decoder model that incorporates a novel pooling mechanism.

1.2 Problem Statement

In this thesis, we briefly describe the semi-supervised node classification, semi-supervised graph

anomaly detection, and unsupervised graph anomaly detection.

1.2.1 Semi-Supervised Node Classification

Let G = (V , E) be a graph, where V = {1, . . . , N} is the set of N nodes and E ⊆ V × V is the set

of edges. Learning latent representations of nodes in a graph aims at encoding the graph structure

into low-dimensional embeddings, such that both structural and semantic information are captured.

More precisely, the purpose of network/graph embedding is to learn a mapping ϕ : V → RP that

maps each node i to a P -dimensional vector zi, where P � N . These learned node embeddings

can then be used as input to learning algorithms for downstream tasks, such as node classification.

Given the labels of a subset of the graph nodes, the objective of semi-supervised learning is

to predict the unknown labels of the other nodes. Specifically, let DK = {(zi, yi)}Ki=1 be the set

of labeled final output node embeddings zi ∈ RP with associated known labels yi ∈ YK , and

2

DU = {zi}K+U
i=K+1 be the set of unlabeled final output node embeddings, where K +U = N . Then,

the problem of semi-supervised node classification is to learn a classifier f : V → YK . That is, the

goal is to predict the labels of the set DU .

1.2.2 Semi-Supervised Graph Anomaly Detection

Anomaly detection aims at identifying anomalous instances, which do not conform to the expected

pattern of other instances in a dataset. It differs from binary classification in that it distinguishes

between normal and anomalous observations. Furthermore, in anomaly detection, the underlying

distribution of anomalies is typically not known in advance.

Let Dl = {(xi, yi)}Nl
i=1 be a set of labeled data points xi ∈ RF and their associated known labels

yi ∈ {0, 1} with 0 and 1 representing “normal” and “anomalous” observations, respectively, and

Du = {xi}Nl+Nu

i=Nl+1 be a set of unlabeled data points, where Nl +Nu = N . Hence, each node i can

be labeled with a 2-dimensional one-hot encoding vector yi = (yi, 1− yi).
The goal of semi-supervised anomaly detection on graphs is to estimate the anomaly scores

of the unlabeled graph nodes. Nodes with elevated anomaly scores are classified as anomalous,

whereas those with lower scores are categorized as normal.

1.2.3 Unsupervised Graph Anomaly Detection

Unsupervised node anomaly detection in attributed graphs addresses the challenge of identifying

anomalous nodes within a graph without relying on labeled training data or ground truth informa-

tion. In this context, an attributed graph G = (V , E ,X) is given, where V represents the set of

nodes, E denotes the set of edges, and X encompasses the attributes associated with each node.

The fundamental goal of unsupervised node anomaly detection is to construct a scoring function

s : V → R that assigns a numerical anomaly score to each node in the graph.

The scoring function s maps each node in V to a real-valued anomaly score. This function cap-

tures the inherent characteristics and relationships within the graph, allowing for the quantification

of node abnormality. Following the computation of anomaly scores for all nodes, a user-defined

parameter r is utilized to select the top r nodes with the highest anomaly scores. These selected

nodes are subsequently classified as anomalies, signifying their departure from the expected graph

behavior.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

3

• We present an anisotropic graph convolutional network [4] designed for semi-supervised

node classification, with the primary goal of mitigating oversmoothing and shrinking ef-

fects. Our proposed framework is constructed as a nonlinear function, capable of capturing

valuable node features while preventing oversmoothing. This approach draws inspiration

from anisotropic diffusion techniques in image and geometry processing, learning nonlinear

representations based on local graph structure and node features.

• We design a novel graph convolutional network with skip connections for semi-supervised

anomaly detection on graph-structured data [5] with the aim of improving the flow of infor-

mation and preventing vanishing gradients. The model is based on the concept of implicit

fairing in geometry processing and uses a propagation rule derived from the Jacobi method,

combining a graph convolution module for local information aggregation and a skip connec-

tion module for merging neighborhood representations across network layers.

• We propose an unsupervised graph encoder-decoder model [6] to enhance unsupervised

anomaly detection in attributed graphs with the incorporation of LCPool, a locality-

constrained linear coding-based pooling strategy. This approach aims to improve the ac-

curacy and effectiveness of anomaly detection by learning discriminative representations of

graph-structured data, emphasizing local patterns, and reducing the impact of noise during

encoding and decoding.

1.4 Literature Review

Semi-Supervised Node Classification. In recent years, the growing prevalence of graph-

structured data in real-world applications has led to a surge of interest in developing efficient

methods for representing graphs. Network embedding has emerged as a powerful approach for

representing and analyzing such data [7–10]. The core idea is to learn low-dimensional embed-

ding vectors that capture both structural and semantic information within the graph. These embed-

dings serve as input for various machine learning tasks, including link prediction, visualization,

recommendation, anomaly detection, and node classification.

The literature on network embedding has largely centered on the use of random walks and

neural language models to learn effective node embeddings [11–13]. For instance, Perozzi et al.

introduced DeepWalk [11], a framework that leverages local information obtained from truncated

random walks to learn latent representations of graph nodes. DeepWalk treats each random walk as

a sentence, applying the skip-gram language model [14] to maximize co-occurrence probabilities

among words within a sentence. Another popular method, node2vec [12], extends DeepWalk by

4

using second-order random walks with breadth-first and depth-first sampling strategies. However,

node2vec requires fine-tuning for different datasets and tasks due to its numerous parameters.

In recent years, the advent of deep learning has led to increased interest in using graph neu-

ral networks (GNNs) to learn latent representations of graphs [15, 16]. Many GNNs, inspired by

convolutional neural networks (CNNs) and network embedding, have been proposed. For instance,

Defferrard et al. introduced Chebyshev networks (ChebyNet) [17], which use recursive Chebyshev

polynomial spectral filters to efficiently perform graph convolutions without explicitly computing

Laplacian eigenvectors. Graph convolutional networks (GCNs) [1], on the other hand, have be-

come a popular semi-supervised learning framework for graph-based deep learning, utilizing a

first-order approximation of spectral graph convolutions. GCN uses an efficient layer-wise prop-

agation rule, which is based on a first-order approximation of spectral graph convolutions. The

feature vector of each graph node is updated by essentially applying a weighted sum of the fea-

tures of its neighboring nodes. Monti et al. [18] present a mixture of networks (MoNet) model, a

GCN-based model that employs a mixture of Gaussian kernels with learnable parameters to model

the weight function of pseudo-coordinates, which are associated to the neighboring nodes of each

graph node. Liao et al. [19] propose the Lanczos network (LanczosNet), which employs the Lanc-

zos algorithm to construct low-rank approximations of the graph Laplacian in order to facilitate

efficient computations of matrix powers. Xu et al. [20] introduce a graph wavelet neural network,

which is a GCN-based architecture that uses spectral graph wavelets in lieu of graph Fourier bases

to define a graph convolution.

While GCNs have shown great promise, achieving state-of-the-art performance on semi-

supervised node classification, they are prone to oversmoothing the node features. Wu et al. [21]

introduce a simple graph convolution by eliminating the nonlinear transition functions between

graph convolutional network layers. These functions collapse the resulting function into a single

linear transformation via the powers of the normalized adjacency matrix with added self-loops for

all graph nodes. However, this simplistic graph convolution primarily functions as a low-pass filter,

which attenuates all frequencies except the zero frequency, ultimately leading to the problem of

oversmoothing. Recently, significant strides have been made toward remedying the issue of over-

smoothing in GCNs [22, 23]. Xu et al. [22] propose jumping knowledge networks, which employ

dense skip connections to connect each layer of the network with the last layer to preserve the lo-

cality of node representations in order circumvent oversmoothing. More recently, Zhao et al. [23]

proposed a normalization layer, which helps avoid oversmoothing by preventing learned represen-

tations of distant nodes from becoming indistinguishable. This normalization layer is performed

on intermediate layers during training. The objective is to apply smoothing over nodes within the

5

same cluster while avoiding smoothing over nodes from different clusters.

Semi-Supervised Graph Anomaly Detection. Anomaly detection aims to identify instances

that deviate from the expected pattern of other instances in a dataset. While shallow methods such

as one-class classification models [24] require explicit hand-crafted features, many recent advance-

ments in anomaly detection rely on deep learning techniques [25]. These deep learning approaches

can automatically extract relevant features from the data without the need for explicit hand-crafted

feature engineering. Ruff et al. [26] develop an extension of the shallow one-class classification

approach [24], known as deep SVDD. Deep SVDD is an unsupervised learning model that learns

to extract the common factors of variation of the data distribution. This is achieved by training

the neural network to minimize the volume of a hypersphere that encloses the representations of

the data generated by the network. Typically, the centroid of this hypersphere is set to the mean

of the feature representations, which are learned through a single initial forward pass of the data.

In order to improve model performance, Ruff et al. [27] propose Deep SAD, a generalization of

the unsupervised Deep SVDD to the semi-supervised setting. The key difference between these

two deep anomaly detection models is the objective function. However, both Deep SVDD and

Deep SAD suffer from the hypersphere collapse problem, which arises from the risk of learning a

trivial solution. Specifically, without any constraints on the architecture of the models, the learned

features within the neural network have a tendency to converge to the centroid of the hypersphere.

Recently, GCNs have emerged as the predominant semi-supervised model for generating repre-

sentations from graph data, demonstrating superior performance across various application do-

mains such as anomaly detection [28]. Kumagai et al. [29] introduced two semi-supervised

anomaly detection models. The first model relies on labeled normal instances, while the second

model utilizes both labeled normal and anomalous instances. However, both models are trained to

minimize the volume of a hypersphere that encloses the GCN-learned node embeddings of normal

instances, and hence they also suffer from the hypersphere collapse problem.

While GCN-based models have demonstrated considerable success in learning node represen-

tations from graphs, they are prone to over-smoothing. Recently, several methods have been de-

veloped that utilize skip connections to tackle the problem of over-smoothing. JK-Net [22] uses

jumping knowledge network connections to connect each layer to the last one, maintaining the

feature mappings in lower layers. APPNP [30], which approximate PageRank with power itera-

tion, uses initial connection by connecting each layer to the original feature matrix. By decoupling

feature transformation and propagation, APPNP can aggregate information from multi-hop neigh-

bors without increasing the number of layers in the network. ResGCN [31] is a residual graph

convolutional network that extends the depth of GCNs by using residual/dense connections and

6

dilated convolutions. GCNII [32] employs initial residual and identity mapping to mitigate the

over-smoothing problem. At each layer, the initial residual constructs a skip connection from the

input layer, while the identity mapping adds an identity matrix to the weight matrix.

Unsupervised Graph Anomaly Detection One common approach in graph anomaly detection

is to use unsupervised methods, aiming to detect anomalous nodes within a graph without relying

on labeled data. This models can be particularly challenging due to the absence of ground truth for

what constitutes an anomaly. Ding et al. [28] present a GCN-based autoencoder for anomaly de-

tection including three key components: an encoder designed to capture both network structure and

node features in order to facilitate node embedding representation learning with GCN, a structure

reconstruction decoder that reconstructs the original graph structure using the learned node embed-

dings, and an attribute reconstruction decoder to reconstruct the observed nodal attributes based on

the obtained node embeddings. Wang et al. [33] design a graph anomaly detection model based

on one-class classification method by mapping the training nodes into a hypersphere in the em-

bedding space via graph neural networks. Zhou et al. [34] introduce an abnormality-aware graph

neural network. This method employs a subtractive aggregation technique to characterize each

node by based on its deviation from its neighboring nodes. Specifically, nodes that are classified as

normal with a high degree of confidence are employed as training labels to instruct the network in

acquiring a specialized hypersphere criterion. This criterion is then utilized to identify anomalies

within the attributed graph for identifying anomalies. Pei et al. [35] introduce a GCN-based model

that captures the sparsity and nonlinearity present in attributed graphs. This model incorporates

residual information and applies a specialized residual-based attention mechanism helping miti-

gate the adverse effects caused by anomalous nodes in the graph. Zhuang et al. [36] propose a

subgraph centralization approach addressing the weaknesses of existing detectors in terms of com-

putational cost, suboptimal detection accuracy, and lack of explanation for identified anomalies.

This technique demonstrates its ability to identify anomalies in large-scale networks while also

offering explanatory insights into the reasons behind a node’s anomalous or normal status. Duan et

al. [37] present a multi-view, multi-scale contrastive learning framework with subgraph-subgraph

contrast for graph anomaly detection by combining various anomalous information and calculating

the anomaly score for each node.

Graphs can often be very large and complex, making it challenging to identify anomalies. To

address this problem, graph pooling is a commonly-used operation in GNNs, with the aim of

producing a compact yet informative representation of the graph structure by summarizing the in-

formation contained in the nodes of the graph. By applying a pooling operation, the graph can be

transformed into a coarse representation that is easier to analyze or use as input for downstream

7

tasks such as graph anomaly detection. Graph pooling methods can be broadly categorized into

two types: global pooling and hierarchical pooling. Global pooling methods summarize the infor-

mation of all nodes in the graph into a single vector or scalar [38–40], while hierarchical pooling

methods recursively apply a pooling operation to the graph, producing a hierarchy of coarser graphs

with decreasing numbers of nodes [41–43]. On the other hand, spectral clustering pooling tech-

niques consider graph pooling as a cluster assignment task [43], which categorizes nodes into a set

of clusters based on their learned embeddings and constructs the coarser graph based on new nodes

using a learned or predefined cluster assignment matrix. Ying et al. [41] introduced DiffPool, a

differentiable pooling technique aimed at hierarchically representing graphs by learning a cluster

assignment matrix in an end-to-end manner. This matrix encapsulates the probabilities of nodes in

each layer being assigned to clusters in the next layer, relying on both node attributes and graph

topology. Other hierarchical pooling methods include SAGPool [42] and gPool [44]. These meth-

ods focus on learning hierarchical graph representations by incorporating both node attributes and

graph structure. SAGPool identifies the most crucial nodes based on their self-attention scores.

The selected nodes are then retained in the pooled representation, while the remaining nodes are

discarded. On the other handgPool utilizes scalar projection values computed with the help of a

trainable projection vector to sample nodes, ultimately producing a coarser version of the graph.

1.5 Preliminaries

In this section, we present a terse overview of graph theory basics, graph embedding, graph em-

bedding applications, graph neural networks, and graph convolutional networks.

1.5.1 Graph Theory Basics

Graphs serve as powerful tools for representing relationships between entities in various domains,

such as social networks, e-commerce platforms, citation networks, geometry processing [45–49],

mesh denoising [50], and mesh watermarking [51,52]. Formally, a graph is denoted by G = (V , E)
where V = {1, . . . , N} is the set of N nodes or vertices and E ⊆ V ×V is the set of edges or links

connecting pairs of vertices. In Figure 1.1, we depict various types of graphs, including undirected,

directed, and weighted graphs, to provide a visual illustration of these definitions.

Graphs can be characterized by their adjacency matrices, degree matrices, and Laplacian matri-

ces, defined as follows:

Adjacency matrix An adjacency matrix A ∈ RN×N encodes the relationships between nodes

in a graph. In the case of unweighted graphs, each element Aij is equal to 1 if there is an edge

8

Anomaly detection. Anomaly detection serves the purpose of identifying unusual nodes, edges,

or entire graphs that deviate from typical behavior. In transaction networks, for example,

anomalous nodes may exhibit sudden, large transactions or extensive connections compared to

their counterparts [57]. Detecting such anomalies is crucial for fraud detection, network secu-

rity miao2020attack, and outlier identification across various domains. Anomaly detection tech-

niques leverage graph embeddings to uncover irregularities within graph-structured data. By ex-

tracting expressive representations that facilitate the clear separation of graph anomalies from nor-

mal objects or the learning of deviating patterns among anomalies, these techniques enhance data

integrity and security measures [58].

1.5.4 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as powerful models for processing graph-structured

data, finding applications in various domains such as social networks and recommendation sys-

tems. GNNs excel at generating informative node embeddings by aggregating information from

neighboring nodes [3]. These networks can be employed in supervised, semi-supervised, and un-

supervised learning frameworks.

• Supervised Learning. In a supervised learning framework, GNN models are trained on

labeled graph datasets, where nodes have associated labels or target values. The primary ob-

jective is to learn a mapping that can accurately predict the correct labels or values for nodes

or edges in the graph. GNNs leverage the labeled nodes to propagate information through

the graph, enabling them to learn how to make predictions based on both the graph structure

and the provided labels. This paradigm finds applications in tasks such as node classifica-

tion, where GNNs are employed to categorize nodes based on their structural context and

labels.

• Semi-Supervised Learning. In a semi-supervised learning framework, the dataset con-

sists of both labeled and unlabeled nodes within the graph. Semi-supervised GNNs offer

a versatile approach as they leverage the labeled data for supervised learning tasks while

also utilizing the unlabeled data to propagate information and improve their representations.

This proves to be particularly valuable when obtaining labeled data is costly or limited, as

semi-supervised GNNs can effectively make use of unlabeled data to enhance their perfor-

mance [59]. They find applications in tasks such as node classification, where they can pre-

dict labels for unlabeled nodes based on the collective knowledge learned from both labeled

and unlabeled nodes.

11

• Unsupervised Learning. In an unsupervised learning framework, the dataset typically

contains only the graph’s structural information, and explicit node labels or values are ab-

sent. The objective in unsupervised learning is to learn meaningful representations of nodes

or edges based solely on the graph’s topology and connectivity patterns. Unsupervised

GNNs employ techniques like graph autoencoders or variational graph encoders to learn un-

supervised embeddings that capture latent structures and relationships within the graph [60].

These learned embeddings can be subsequently utilized for various downstream tasks or for

exploring the inherent graph properties.

This section explores several key components that make up GNNs, including graph convolution

layers, pooling layers, skip connections, and activation functions . Each of these components plays

a crucial role in enabling GNNs to effectively process and learn from graph data, making them

indispensable tools for various machine learning tasks.

Graph Convolution Layers. At the core of GNNs are graph convolution layers, which perform a

form of convolution operation on the graph. These layers are responsible for propagating informa-

tion across the graph, enabling GNNs to learn meaningful representations of nodes by aggregating

information from their neighboring nodes. GNNs can have multiple such layers, allowing for in-

creasingly abstract representations of nodes. In essence, these layers work by iteratively updating

the node features. At each layer, information from neighboring nodes is gathered and combined,

allowing the model to build a richer understanding of each node’s context within the graph.

Pooling Layers. Graph pooling is a technique used in GNNs to reduce the size of a graph while

preserving its important structural and semantic information. The primary goal of graph pooling is

to downsample the graph while retaining its essential features, which can be crucial for tasks such

as graph classification and node-level classification. There are several categories of graph pooling

techniques, each with its own approach and advantages. One of the common categories of graph

pooling is hierarchical graph pooling operators. Hierarchical graph pooling operators group proxi-

mal nodes together using graph clustering methods, effectively coarsening the original graph into a

new graph with a coarser granularity. There are three main approaches to hierarchical graph pool-

ing [3]. The first approach involves leveraging graph clustering algorithms to partition the graph

into disjoint clusters, which are then consolidated into super-nodes with interconnections becom-

ing super-edges [61]. Node representations in super-nodes are aggregated using functions such

as max or average pooling. The second technique focuses on learning a soft cluster assignment

matrix, achieved by models that utilize node features and the adjacency matrix through probabilis-

tic inference methods [62]. In the third approach, top-ranked nodes are selected to construct the

12

coarser-grained graph, often utilizing self-attention scores for node ranking [42, 44].

Activation Function. The purpose of the activation function is to introduce non-linearity into

the output of a neuron in a deep neural network. It decides whether a neuron should be activated

or not, and hence only the activated features are carried forward into the next layer.

• ReLU Function: A commonly used activation function is the Rectified Linear Unit

(ReLU) defined as

ReLU(x) = max(0, x), (1.2)

where x is the input to a neuron. ReLU is highly effective in addressing the vanishing

gradient problem, a challenge often encountered during training in deep neural networks.

This issue arises when gradients become exceedingly small as they are propagated backward

through numerous layers, making it difficult for the network to learn effectively. ReLU com-

bats this problem by mapping negative values to zero, thus preventing the rapid vanishing

of gradients associated with other activation functions, such as sigmoid or tanh. By main-

taining positive values, ReLU contributes to faster and more efficient training, promoting the

convergence of deep neural networks.

• Softmax Function: The softmax activation function is a popular activation function used

primarily in the output layer of neural networks for multi-class classification problems. It is

designed to convert a vector of raw scores or logits into a probability distribution over mul-

tiple classes. The softmax function takes as input a vector of real numbers and transforms

them into a probability distribution where each element represents the likelihood of belong-

ing to a particular class. Suppose the predicted output from the model for all classes is the

C-dimensional vector z = (z1, . . . , zC)
ᵀ, where C is the total number of classes. The soft-

max function maps z into another C-dimensional vector ŷ = (ŷ1, . . . , ŷC)
ᵀ of probabilities

summing up to one:

ŷ = softmax(z) =

(
ez1∑C
c=1 e

zc
, . . . ,

ezC∑C
c=1 e

zc

)
, (1.3)

These predicted probabilities provide useful information about the model’s confidence in

prediction. The higher the probability for the predicted class, the more confident the predic-

tion is.

Skip Connections. A skip connection in deep architectures means skipping some layers in the

neural network and feeding one layer’s output as an input to the next layers, not just the immediate

13

next layer. Skip connections alleviate the vanishing gradient, which hampers gradient flow in deep

networks, and over-smoothing which can lead to a loss of information in node representations.

Skip connections offer an effective remedy, substantially enhancing the accuracy and stability of

the training process.

In the context of a multi-layer GNN with L layers, skip connections can be thought of as bridges

between different layers, helping to retain and transfer information effectively. These connections

can be applied after specific graph convolutional layers, combining the current embeddings with

those from previous layers. Specifically, H(`) is the input feature matrix of the `-th layer for

` = 0, . . . , L − 1 and the input of the first layer is the initial feature matrix H(0) = X. There are

four types of skip connections [63]:

• Residual Connection: This connection combins current layer embeddings with those

from the previous layer [64]

H(`+1) = (1− α)H(`+1) + αH(`), (1.4)

where α is a hyperparameter to weigh the contributions of node features from the current

layer and previous layer.

• Initial Connection: This connection combines current layer embeddings with the initial

node features, represented by X [32, 64, 65]

H(`+1) = (1− α)H(`+1) + αX. (1.5)

• Dense Connection: It combines embeddings from all previous layers during forward prop-

agation [64]

H(`+1) = COM({H(k), 0 ≤ k ≤ `+ 1}). (1.6)

The combination functions (COM) offer diverse methods to aggregate information across

layers [63]. These functions include concatenation, which combines node representations

at each layer through simple concatenation, max pooling, which selects the maximum value

along each dimension of feature vectors from previous layers, and an attention mechanism

that calculates attention scores to weight contributions from previous layers before summa-

tion.

• Jumping Connection: This connection is a simplified case of dense connection and only

applied at the end of whole forward propagation process to combine the node features from

all previous layers [66, 67]

H(L) = COM({H(k), 0 ≤ k ≤ L}). (1.7)

14

Spectral Methods. Spectral techniques define graph convolution using graph signal processing.

• Graph Fourier Transform: We can generalize a convolutional network for a spectral net-

work via graph Fourier transform based on the graph Laplacian matrix [1]. Suppose an

input vector x ∈ RN is a signal defined on a graph G with N nodes. If A ∈ RN×N is the

adjacency matrix associated with a graph G and D is the diagonal degree matrix, then the

normalized graph Laplacian matrix is defined as L = I −D−1/2AD−1/2. The normalized

Laplacian L admits an eigendecomposition given by L = UΛUᵀ, where U = (u1, . . . ,uN)

is an orthonormal matrix whose columns constitute an orthonormal basis of eigenvectors

and Λ = diag(λ1, . . . , λN) is a diagonal matrix comprised of the corresponding eigenvalues

such that 0 = λ1 ≤ . . . ≤ λN ≤ 2 in ascending order [68]. The graph Fourier transform

of a signal x ∈ RN is defined as F(x) = x̂ = Uᵀx ∈ RN , and its inverse is given by

F−1(x̂) = Ux̂.

• Spectral Filtering of Graph Signals: The convolution of a graph filter g and a graph signal

x is defined as

g ∗ x = F−1(F(g)�F(x)) = U(U
ᵀ
g �U

ᵀ
x), (1.10)

where � denotes element-wise multiplication. Hence, applying a spectral graph filter gθ on

a graph signal x yields

gθ(L)x = gθ(UΛU
ᵀ
)x = Ugθ(Λ)U

ᵀ
x, (1.11)

where θ is a vector of learnable parameters. However, there are three limitations that pro-

hibit the spectral filter from being used in practice: the filter is not localized, the learning

complexity is O(N2) due to matrix-vector multiplication, and the number of parameters de-

pends on the input size. To tackle these limitations, the spectral filter can be approximated

using Chebyshev polynomials as follows

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂), (1.12)

where the Chebyshev polynomials are defined recursively by

Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x (1.13)

and Λ̂ = 2Λ/λmax − I is a diagonal matrix of scaled eigenvalues with λmax denoting the

largest eigenvalue of the Laplacian matrix. Hence, the cost of the resulting filtering operation

is reduced to O(K|E|).

16

the success of anisotropic diffusion in image and geometry processing, learning nonlinear

representations based on local graph structure and node features.

• In Chapter 3, we propose a graph fairing convolutional network for semi-supervised anomaly

detection [5]. It consists of a graph convolution module for aggregating information from

immediate node neighbors and a skip connection between the initial feature matrix and each

hidden layer, allowing the model to retain important information from the original data

throughout the network’s layers. The update rule of the proposed model is derived from

the iterative solution of the implicit fairing equation using the Jacobi method. This helps in

smoothing out the graph and improving the robustness of the model.

• In chapter 4, we design a graph encoder-decoder architecture for unsupervised anomaly de-

tection on graph-structure data [6]. We introduce a locality-constrained pooling strategy that

preserves local graph structures during the pooling process without relying on learnable pa-

rameters. This parameter-free approach enhances flexibility and adaptability. The proposed

model employs a multi-layer graph convolutional network encoder, followed by the pooling

layers. In the decoding phase, an unpooling operation is performed, followed by a graph

deconvolutional network decoder. Our model also incorporates denoising operations using

spectral graph wavelets. This step helps reduce the impact of noise during the decoding

stage, enhancing the overall robustness and accuracy of the model.

• In Chapter 5, we present a summary of the contributions of this thesis and limitations, and

we also outline several directions for future research in this area of study.

18

C
H

A
P

T
E

R

2
Anisotropic Graph Convolutional Network for

Semi-supervised Learning

Graph convolutional networks learn effective node embeddings that have proven to be useful in

achieving high-accuracy prediction results in semi-supervised learning tasks, such as node classi-

fication. However, these networks suffer from the issue of over-smoothing and shrinking effect of

the graph due in large part to the fact that they diffuse features across the edges of the graph using

a linear Laplacian flow. This limitation is especially problematic for the task of node classification,

where the goal is to predict the label associated with a graph node. To address this issue, we pro-

pose an anisotropic graph convolutional network for semi-supervised node classification by intro-

ducing a nonlinear function that captures informative features from nodes, while preventing over-

smoothing. The proposed framework is largely motivated by the good performance of anisotropic

diffusion in image and geometry processing, and learns nonlinear representations based on local

graph structure and node features. The effectiveness of our approach is demonstrated on three

citation networks and two image datasets, achieving better or comparable classification accuracy

results compared to the standard baseline methods.

2.1 Introduction

Graphs are ubiquitous in a wide array of application domains, ranging from social networks [69–

71] and transportation systems [72] and cyber-security [73] to brain networks [74] graph signal

processing [68], and video analysis [75–77]. They provide a flexible way to inherently represent

19

real-world entities as a set of nodes and their interactions as a set of links/edges. This interconnec-

tion of entities and their pairwise relationships forms a graph structure when visualized.

With the prevalence and increasing proliferation of graph-structured data in real-world applica-

tions, there has been a surge of interest in developing efficient representations of graphs. Network

embedding has recently emerged as a powerful paradigm for representing and analyzing graph-

structured data [7–10]. The idea is to learn low-dimensional embedding vectors, such that both

structural and semantic information are captured. These learned embeddings can then be used as

input to various machine learning algorithms for downstream tasks, such as link prediction, visu-

alization, recommendation, community detection, and node classification. The latter task is the

focus of this chapter. The objective of node classification is to predict the most probable labels

of nodes in a graph [13]. In a social network, for instance, we want to predict user labels such as

their interest, beliefs or other characteristics [69], while in a citation network, we want to classify

documents based on their topics.

There is a sizable body of literature on network embedding that has centered around the use of

random walks and neural language models to learn effective low-dimensional embedding vectors

of graph nodes [11–13]. Perozzi et al. [11] introduce DeepWalk, a deep learning based framework

that learns latent representations of nodes in a graph by leveraging local information obtained from

truncated random walks. Each random walk is treated as a sentence that is fed into the skip-

gram language model [14], which maximizes the co-occurrence probability among the words that

appear within a window in a sentence. Another popular approach that also uses random walks is

node2vec [12], a semi-supervised algorithm for feature learning in graphs that can be regarded as

a generalization of DeepWalk. While DeepWalk performs a uniform random walk, node2vec uses

a second-order random walk approach to generate network neighborhoods for nodes via breadth-

first and depth-first sampling strategies. However, node2vec involves a number of parameters that

require fine-tuning for each dataset and each task.

In recent years, the advent of deep learning has sparked groundswell of interest in the adoption

of graph neural networks (GNNs) for learning latent representations of graphs [1, 15–17, 78–83].

A plethora of GNNs is based on convolutional neural networks (CNNs) and network embedding.

Defferrard et al. [17] introduce the Chebyshev network (ChebyNet), an efficient spectral-domain

graph convolutional neural network that uses recursive Chebyshev polynomial spectral filters to

avoid explicit computation of the Laplacian eigenvectors. These filters are localized in space, and

the learned weights can be shared across different locations in a graph. An efficient variant of

GNNs is graph convolutional networks (GCNs) [1], which is an upsurging semi-supervised graph-

based deep learning framework that uses an efficient layer-wise propagation rule based on a first-

20

order approximation of spectral graph convolutions. Hamilton et al. [81] propose GraphSAGE, a

general inductive framework that generates embeddings by sampling and aggregating features from

the local neighborhood of a graph node. Velic̆ković et al. [82] present the graph attention network,

which is a graph-based neural network architecture that uses an attention mechanism to assign self-

attention scores to neighboring node embeddings. These scores indicate the importance of graph

nodes to their corresponding neighbors on the feature aggregation process. Xu et al. [83] present

theoretical foundations for analyzing the expressive power of GNNs in an effort to capture different

graph structures, and develop a graph isomorphism network whose goal is to map isomorphic

graphs to the same representation and non-isomorphic ones to different representations.

While graph convolutional networks have achieved state-of-the-art performance on semi-

supervised node classification tasks, they tend, however, to oversmooth the learned feature em-

beddings of graph nodes [84]. This is due largely to the fact that the graph convolution of the

GCN model is a special form of graph Laplacian smoothing, which repeatedly and simultaneously

adjusts the location of each graph node to the weighted average (i.e. geometric center) of its neigh-

boring nodes. This averaging process causes an oversmoothing effect on the graph, as it reduces

the high-frequency graph information and tends to flatten the graph. Moreover, oversmoothing

causes features at nodes within each connected component to converge to the same value. Hence,

nodes from different classes may be predicted to have similar labels, resulting in misclassification

errors. Another drawback of Laplacian smoothing is shrinkage of the graph, as repeated iterations

of the smoothing process causes the shrinking effect.

In this chapter, we propose an anisotropic graph convolutional network (AGCN), which adopts

the concept of anisotropic diffusion, previously used in image and geometry processing tasks,

to overcome the aforementioned issues. The idea behind our proposed model is to integrate a

nonlinearity term into the graph convolution to make it non-linear and/or anisotropic, resulting in a

feature-preserving graph neural network. The main contributions of this work can be summarized

as follows:

• We introduce a novel anisotropic graph convolutional network for semi-supervised learning.

• We learn efficient representations for node classification in an end-to-end fashion.

• We demonstrate that AGCN can be integrated into existing graph-based convolutional net-

works for semi-supervised learning using both co-training and self-training.

• Our extensive experimental results show competitive or superior performance of AGCN over

standard baseline methods on several benchmark datasets.

21

The rest of this chapter is organized as follows. In Section 2, we review important relevant work.

In Section 3, we present the problem formulation and propose an anisotropic graph convolutional

network architecture for semi-supervised learning. We discuss in detail the main components of

the proposed framework and analyze the model complexity. In Section 4, we present experimental

results to demonstrate the competitive performance of our approach on five standard benchmark

datasets, including three citations networks and two image datasets. Finally, we conclude in Sec-

tion 5 and point out future work directions.

2.2 Related Work

The basic goal of node classification is to predict the most probable labels of nodes in a graph.

Graph convolutional networks (GCNs) have recently become the de facto model for semi-

supervised node classification [1]. GCN uses an efficient layer-wise propagation rule, which is

based on a first-order approximation of spectral graph convolutions. The feature vector of each

graph node is updated by essentially applying a weighted sum of the features of its neighboring

nodes. Monti et al. [18] present a mixture of networks (MoNet) model, a spatial-domain graph

convolutional neural network that employs a mixture of Gaussian kernels with learnable parame-

ters to model the weight function of pseudo-coordinates, which are associated to the neighboring

nodes of each graph node. Liao et al. [19] propose the Lanczos network (LanczosNet), which

employs the Lanczos algorithm to construct low-rank approximations of the graph Laplacian in

order to facilitate efficient computations of matrix powers. Velic̆ković et al. [85] present deep

graph infomax, an unsupervised graph representation learning approach, which relies on training

an encoder model to maximize the mutual information between local and global representations in

graphs. Xu et al. [20] introduce a graph wavelet neural network, which is a GCN-based architec-

ture that uses spectral graph wavelets in lieu of graph Fourier bases to define a graph convolution.

Despite the fact that spectral graph wavelets can yield localization of graph signals in both spatial

and spectral domains, they require explicit computation of the Laplacian eigenbasis, leading to a

high computational complexity, especially for large graphs. In order to avoid this issue, recursive

Chebyshev polynomial spectral filters can be employed.

While GCNs have shown great promise, achieving state-of-the-art performance on semi-

supervised node classification, they are prone to oversmoothing the node features. In fact, the

neighborhood aggregation scheme (i.e. graph convolution) of GCN is tantamount to applying

Laplacian smoothing [84], which replaces each graph node with the average of its immediate

neighbors. Therefore, repeated application of GCN yields smoother and smoother versions of the

initial node features as the number of the network’s layers increases. As a result, the node fea-

22

tures in deeper layers will eventually converge to the same value, and hence become too similar

across different classes. Wu et al. [21] introduce a simple graph convolution by removing the non-

linear transition functions between the layers of graph convolutional networks and collapsing the

resulting function into a single linear transformation via the powers of the normalized adjacency

matrix with added self-loops for all graph nodes. However, this simple graph convolution acts as a

low-pass filter, which attenuates all but the zero frequency, causing oversmoothing. Recently, sig-

nificant strides have been made toward remedying the issue of oversmoothing in GCNs [22,23]. Xu

et al. [22] propose jumping knowledge networks, which employ dense skip connections to connect

each layer of the network with the last layer to preserve the locality of node representations in order

circumvent oversmoothing. More recently, a normalization layer, which helps avoid oversmooth-

ing by preventing learned representations of distant nodes from becoming indistinguishable, has

been proposed in [23]. This normalization layer is performed on intermediate layers during train-

ing, and the aim is to apply smoothing over nodes within the same cluster while avoiding smoothing

over nodes from different clusters. While these approaches have shown slightly improved results

using deeper GCNs, the issue of oversmoothing still remains a daunting task, as performance gains

do not usually reflect the benefits of increasing the network depth.

2.3 Method

In this section, we describe the problem statement and introduce an anisotropic graph convolu-

tional network for semi-supervised node classification. In particular, we examine the main build-

ing blocks of the proposed network architecture and analyze the complexity of the model. We also

show that our proposed aggregation scheme seamlessly incorporates both the graph structure and

the node features without sacrificing performance in an effort to alleviate oversmoothing of the

learned node representations.

2.3.1 Problem Formulation

Let G = (V , E) be a graph, where V = {1, . . . , N} is the set of N nodes and E ⊆ V × V is the

set of edges. We denote by A = (Aij) an N ×N adjacency matrix (binary or real-valued) whose

(i, j)-th entry Aij is equal to the weight of the edge between neighboring nodes i and j, and 0

otherwise. We also denote by X = (x1, ...,xN)
ᵀ anN×F feature matrix of node attributes, where

xi is an F -dimensional row vector for node i.

Learning latent representations of nodes in a graph aims at encoding the graph structure into

low-dimensional embeddings, such that both structural and semantic information are captured.

23

More precisely, the purpose of network/graph embedding is to learn a mapping ϕ : V → RP that

maps each node i to a P -dimensional vector zi, where P � N . These learned node embeddings

can then be used as input to learning algorithms for downstream tasks, such as node classification.

Given the labels of a subset of the graph nodes (or their corresponding final output embeddings),

the objective of semi-supervised learning is to predict the unknown labels of the other nodes. More

specifically, let DK = {(zi, yi)}Ki=1 be the set of labeled final output node embeddings zi ∈ RP

with associated known labels yi ∈ YK , and DU = {zi}K+U
i=K+1 be the set of unlabeled final output

node embeddings, where K + U = N . Then, the problem of semi-supervised node classification

is to learn a classifier f : V → YK . That is, the goal is to predict the labels of the set DU .

It is important to note that for multi-class classification problems, the label of each node i (or its

final output embedding zi) in the labeled set DK can be represented as a C-dimensional one-hot

vector yi ∈ {0, 1}C , where C is the number of classes.

2.3.2 Proposed Approach

Graph convolutional networks learn a new feature representation for each node such that nodes

with the same labels have similar features [1]. Given a graph G = (V , E) with adjacency matrix

A ∈ RN×N and feature matrix X ∈ RN×F , the layer-wise feature diffusion rule of an L-layer

GCN is given by

S(`) = D̃−
1
2 ÃD̃−

1
2 H(`), ` = 0, . . . , L− 1, (2.1)

where Ã = A + IN is the adjacency matrix with self-added loops, IN is the identity matrix,

D̃ = diag(d̃i) is the diagonal degree matrix whose i-th diagonal entry is the degree of node i with

added self-loops, and H(`) ∈ RN×F` is the input feature matrix of the `-th layer with F` feature

maps. The input of the first layer is the original feature matrix H(0) = X.

Using the feature diffusion rule of GCN is tantamount to applying a weighted sum of the features

of neighboring nodes normalized by their degrees, which essentially performs Laplacian smooth-

ing on the graph [21, 84]. In other words, the smooth feature matrix S(`) is obtained by applying

Laplacian smoothing to the input feature matrix at the `-th layer. Intuitively, the Laplacian flow

repeatedly and simultaneously adjusts the location of each graph node to the geometric center of

its neighboring nodes. Although the Laplacian smoothing flow is simple and fast, it produces,

however, the shrinking effect and an oversmoothing result.

Motivated by the good performance of anisotropic diffusion in image and mesh denoising [86–

88], and in an effort to tackle the issues of oversmoothing and shrinking effect of GCN, we propose

an anisotropic graph convolutional network (AGCN) for semi-supervised node classification by

incorporating a nonlinear smoothness term into the GCN feature diffusion rule. This nonlinearity

24

term, which quantifies the dissimilarity between learned node embeddings, plays a pivotal role in

preventing these learned representations from becoming increasingly similar, and hence alleviates

the issue of oversmoothing. In addition, it tackles the shrinking effect by precluding the learned

node representations from converging to the same value.

Anisotropic feature diffusion. We define a layer-wise anisotropic feature diffusion rule for node

features in the `-th layer as follows:

G(`) =
(
1− exp

(
−β tr2(H(`)ᵀL̃H(`))

))
D̃−

1
2 ÃD̃−

1
2 H(`), (2.2)

where β is an nonnegative hyper-parameter that is often fine-tuned via grid search, and

tr(H(`)ᵀL̃H(`)) is a Laplacian smoothness term given by

tr(H(`)ᵀL̃H(`)) =
1

2

N∑
i,j=1

Ãij‖h(`)
i − h

(`)
j ‖2, (2.3)

with H(`) = (h
(`)
1 , . . . ,h

(`)
N)ᵀ; h

(`)
i is an F`-dimensional hidden representation (embedding) vector

of the i-th node at the `-th layer, tr(·) denotes the trace operator, ‖ · ‖ denotes the 2-norm, and

L̃ = D̃− Ã is an N ×N Laplacian matrix.

For each pair of similar embeddings at the `-th layer, the Laplacian smoothness term enforces

their predictions to be close to each other. The strength of this smoothness is determined by the

weight of the edge between neighboring nodes, meaning that connected nodes will have similar

predictions.

The Laplacian smoothness term plays a crucial role not only in explicitly taking into consid-

eration the correlation between embeddings, but also in preserving the locality of nodes to be

embedded. In other words, two nodes or their attributes xi and xj that are close to each other in

the original graph (i.e. adjacent nodes in V) are encoded as embeddings h
(`)
i and h

(`)
j that are more

likely to be close to each other in the embedding vector space. Such a locality-preserving property

is of paramount importance in classification tasks.

The nonlinearity term 1− exp
(
−β tr2(H(`)ᵀL̃H(`))

)
can be regarded as an oversmooting “stop-

ping” function. In fact, it only incurs a small penalty when similar nodes with a large smoothness

strength Ãij have different learned embeddings. Hence, it reduces the oversmoothing effect on the

learned graph features.

Anisotropic aggregation procedure. The anisotropic feature diffusion rule can be written in

vector form as follows:

g
(`)
i =

N∑
j=1

α
(`)
ij h

(`)
j (2.4)

25

which is basically a node embedding transformation that projects the input G(`) ∈ RN×F` into a

trainable weight matrix W(`) ∈ RF`×F`+1 with F`+1 feature maps, followed by a point-wise non-

linear activation function σ(·) such as ReLU(·) = max(0, ·), assuming that F`+1 ≤ F` � N . It

is worth pointing out that after feature aggregation, performing the AGCN layer-wise propagation

rule amounts to applying a multi-layer perceptron to the anisotropic feature matrix. In other words,

a node latent representation at layer ` is transformed linearly via a learned weight matrix to produce

the node latent representation at the next layer.

Model prediction. The embedding G(L) of the last layer of AGCN contains the final output

node embeddings, and captures the neighborhood structural information of the graph within L

hops. This final node representation can be used as input for downstream tasks such as graph

classification, clustering, visualization, link prediction, and node classification. Since the latter

task is the focus of this chapter, we apply a softmax classifier as follows:

Ŷ = softmax(G(L)W(L)), (2.7)

where W(L) ∈ RFL×C is a trainable weight matrix of the last layer, C is the total number of classes,

softmax(x) = exp(x)/
∑C

c=1 exp(xc) is an activation function applied row-wise, and Ŷ ∈ RN×C

is the matrix of predicted labels for graph nodes.

Model complexity. For simplicity, we assume the feature dimensions are the same for all layers,

i.e. F` = F for all `, with F � N . The time complexity of an L-layer AGCN is O(L|E|F +

LNF 2), where |E| denotes the number of graph edges. Note that multiplying the normalized

adjacency matrix with an embedding costsO(|E|F) in time, while multiplying an embedding with

a weight matrix costsO(NF 2). Also, noting that tr(H(`)ᵀL̃H(`)) = tr(L̃H(`)H(`)ᵀ), it follows that

computing this trace operator requires NF 2 scalar multiplications. Hence, the nonlinearity term

of AGCN has complexity O(NF 2).

For memory complexity, an L-layer AGCN requires O(LNF + LF 2) in memory, where

O(LNF) is for storing all embeddings and O(LF 2) is for storing all layer-wise weight matri-

ces.

Therefore, the proposed AGCN model has the same time and memory complexity as GCN,

while being effective at alleviating the issue of oversmoothing.

Model training. For semi-supervised multi-class classification, the neural network weight param-

eters are learned by minimizing the cross-entropy loss function

L = −
∑
i∈YK

C∑
c=1

Yic log Ŷic, (2.8)

27

over the set YK of all labeled nodes using gradient descent, where Yic is equal 1 if node i belongs

to class c, and 0 otherwise; and Ŷic is the (i, c)-element of the matrix Ŷ from the softmax function,

i.e. the probability that the network associates the i-th node with class c.

2.4 Experiments

In this section, we conduct extensive experiments to evaluate the performance of the proposed

AGCN framework on several benchmark datasets and carry out a comprehensive comparison with

several baseline methods. In all experiments, we consider a two-layer AGCN for semi-supervised

node classification

Ŷ = softmax
(

ReLU
(
G(0)W(0)

)
W(1)

)
, (2.9)

where W(0) ∈ RF×F1 is a trainable input-to-hidden weight matrix for a hidden layer with F1

feature maps, W(1) ∈ RF1×C is a trainable hidden-to-output weight matrix with C denoting the

number of classes, and G(0) is an N × F matrix given by

G(0) =
(
1− exp

(
−β tr2(Xᵀ

L̃X)
))

D̃−
1
2 ÃD̃−

1
2 X. (2.10)

Datasets. We demonstrate and analyze the performance of the proposed AGCN model on three

citation networks (Cora, Citseer, and Pubmed) and two image datasets (MNIST and CIFAR10).

The summary descriptions of these benchmark datasets are as follows:

• Cora is a citation network dataset consisting of 2,708 nodes representing scientific publica-

tions and 5,429 edges representing citation links between publications. All publications are

classified into 7 classes (research topics). Each node is described by a binary feature vec-

tor indicating the absence/presence of the corresponding word from the dictionary, which

consists of 1,433 unique words.

• Citeseer is a citation network dataset composed of 3,312 nodes representing scientific pub-

lications and 4,723 edges representing citation links between publications. All publications

are classified into 6 classes (research topics). Each node is described by a binary feature

vector indicating the absence/presence of the corresponding word from the dictionary, which

consists of 3,703 unique words.

• Pubmed is a citation network dataset containing 19,717 scientific publications pertaining to

diabetes and 44,338 edges representing citation links between publications. All publications

are classified into 3 classes. Each node is described by a TF/IDF weighted word vector from

the dictionary, which consists of 500 unique words.

28

classification frameworks. A brief description of these standard baselines can be summarized as

follows:

• DeepWalk is a deep learning based framework that learns latent representations of nodes in

a graph by leveraging local information obtained from truncated random walks.

• ChebyNet is an efficient spectral-domain graph convolutional neural network that uses re-

cursive Chebyshev polynomial spectral filters to avoid explicit computation of the Laplacian

eigenvectors.

• GCN is a semi-supervised graph-based deep learning framework that uses an efficient layer-

wise propagation rule that is based on a first-order approximation of spectral graph convolu-

tions.

• MoNet is a spatial-domain graph convolutional neural network that employs a mixture

of Gaussian kernels with learnable parameters to model the weight function of pseudo-

coordinates, which are associated to the neighboring nodes of each graph node.

• GAT is graph-based neural network architecture that uses an attention mechanism to assign

self-attention scores to neighboring node embeddings.

• JK-Net is a graph representation learning approach that learns to selectively exploit informa-

tion from neighborhoods of differing locality and combines different aggregations at the last

layer.

• DGI is graph representation learning framework, which leverages local mutual information

maximization across the graph’s patch representations to learn node embeddings in an unsu-

pervised manner.

• GWNN is a spectral convolutional neural network, which uses spectral graph wavelets for

node feature aggregation.

• LanczosNet is a multiscale graph convolutional network for learning node embedding, which

leverages the Lanczos algorithm to construct a low rank approximation of the graph Lapla-

cian for graph convolution.

• GIN is a simple graph neural network architecture, which maps isomorphic graphs to the

same representation and non-isomorphic ones to different representations. It is proved to be

as powerful as the Weisfeiler-Lehman test for graph isomorphism.

30

2.4.1 Results

The performance of our model is evaluated by conducting a comprehensive comparison with stan-

dard baseline methods for node classification using average accuracy as an evaluation metric. The

average classification accuracy results in percent are summarized in Table 2.1. Results for baseline

methods on the citation networks are taken from the GAT paper [82], and from the corresponding

baseline papers for the image datasets. As shown in Table 2.1, our AGCN model outperforms

GCN on the citation networks as well as on the image datasets. While DeepWalk does well on

the MNIST dataset, it performs poorly on the citation networks compared to AGCN. In addition,

AGCN outperforms GAT on the image datasets and the Pubmed citation network, and performs on

par with GAT on the Cora dataset. The average accuracy of AGCN on the CIFAR10 dataset is 70%,

indicating a performance improvement of 3.4% over GAT. Similarly, AGCN performs on par with

DGI on Citeseer, but yields better performance on Cora and Pubmed. Also, AGCN achieves better

performance than GWNN, a spectral approach that requires computing an eigendecomposition of

the Laplacian, which is usually time- and space-consuming. We can see that AGCN outperforms

GIN and LanczosNet across all the citation network datasets, with performance gains of 5.4% and

3.5% on Cora and 5.4% and 3.5% on Citeseer, respectively. Moreover, AGCN performs better

than SGC and JK-Net on Cora and Pubmed. Interestingly, despite its simplicity, AGCN achieves a

higher accuracy than GCN-NP with improvements of 5.8% and 4% on Citeseer and Cora, respec-

tively. These results demonstrate the significant prediction ability of AGCN in semi-supervised

node classification. It is important to mention that both JK-Net and GCN-PN use additional steps

such as skip connections and normalization layers to tackle the issue of oversmoothing on graph

neural networks, while our proposed AGCN model integrates an oversmoothing prevention term

into its neighborhood aggregation scheme using a single step. In other words, the proposed AGCN

network is trained in an end-to-end fashion, and eliminates the need to augment deep GNN models

with normalization layers or by inserting residual/skip connections between the network’s layers

in order to improve performance.

Using box plots, Figure 2.4 displays the visual differences in terms of accuracy among AGCN,

GAT and GCN on the Cora, Citeseer and Pubmed citation networks. As can be seen, the distribu-

tion of the AGCN model has less variability than GCN and GAT on document classification tasks.

For instance, the median accuracy score for AGCN on the Pubmed dataset indicates a significant

difference in performance between AGCN and the two baseline methods. In addition, the box for

AGCN is short, meaning that the accuracy values consistently hover around the average accuracy.

However, the box for GAT is taller, implying variable accuracy values compared to AGCN.

Co-training and self-training results. Using the co-training and self-training approaches [84],

32

We apply co-training and self-training approaches as well as their intersection and union to

train our AGCN model and compare it to GCN. The accuracy results for these four approaches

are reported in Figures 2.5, 2.6 and 2.7 on the Cora, Citeseer and Pubmed citation networks,

respectively, using training rates of 0.5%, 2% and 4% for Cora and Citseer, and 0.03%, 0.05%

and 0.1% for Pubmed. In each bar plot, the bars display the mean and standard error accuracy

over 10 runs for both AGCN and GCN using co-training, self-training, union and intersection. In

co-training, a partially absorbing random walk is used to find the confidence of node i belongs

to class c. The most confident nodes are then added to the training set with label c to train the

AGCN model. In self-training, AGCN is applied to find the most confident nodes based on the

softmax scores Ŷ ∈ RN×C given by Eq. (2.9). Then, the most confident nodes are added to the

labeled set. On the other hand, union and intersection are a combination of co-training and self-

training. Union expands the label set with the most confident predictions obtained by random walk

and those obtained by AGCN. As can be seen in these figures, our AGCN framework outperforms

GCN in most of the cases, particularly for small training sizes. Moreover, notice that the standard

deviations are much smaller than the accuracy improvements, indicating that AGCN is robust to

random selection of training and test data. Overall, AGCN is consistently the best performing

method, delivering robust classification accuracy results.

2.4.2 Statistical Significance Analysis

In this subsection, we conduct statistical significance tests to compare GCN, GAT and AGCN

with the objective of selecting the best performing model. More precisely, we apply one-way

analysis of variance (ANOVA) to verify whether there is a statistical difference between their mean

accuracy scores. ANOVA tests the hypothesis that all group means are equal versus the alternative

hypothesis that at least one group is different from the others:

H0 : µ1 = µ2 = µ3

H1 : not all group means are equal
(2.11)

where µ1, µ2, µ3 denote the population means for GCN, GAT and AGCN, respectively. While

ANOVA is based on the assumption that all sample populations are normally distributed, it is,

however, known to be robust to modest violations of the normality assumption.

We perform one-way ANOVA for the accuracy scores data obtained by GCN, GAT and AGCN

on the Cora, Citeseer and Pubmed datasets. These results correspond to 10 runs with different

splits for training, validation and test sets. As shown in Table 2.2, the small p-values (< 0.05)

indicate that differences between accuracy means are statistically significant, where α = 0.05

34

2.4.6 Discussion

While the proposed AGCN model shows promising results for end-to-end learning on graphs and

mitigates the issue of oversmoothing, its performance is, however, tied to optimizing via grid search

with cross-validation the hyper-parameter of the anisotropic diffusion term for each dataset. An-

other shortcoming of AGCN is that it only takes into account immediate neighbors. This limitation

can be circumvented through higher-order message passing by leveraging multi-hop neighbors us-

ing powers of the adjacency matrix and hence aggregating learned node representations from both

immediate and distant neighbors.

42

C
H

A
P

T
E

R

3
Graph Fairing Convolutional Networks for Anomaly

Detection

Graph convolution is a fundamental building block for many deep neural networks on graph-

structured data. In this chapter, we introduce a simple, yet very effective graph convolutional

network with skip connections for semi-supervised anomaly detection. The proposed layerwise

propagation rule of our model is theoretically motivated by the concept of implicit fairing in ge-

ometry processing, and comprises a graph convolution module for aggregating information from

immediate node neighbors and a skip connection module for combining layer-wise neighborhood

representations. This propagation rule is derived from the iterative solution of the implicit fair-

ing equation via the Jacobi method. In addition to capturing information from distant graph nodes

through skip connections between the network’s layers, our approach exploits both the graph struc-

ture and node features for learning discriminative node representations. These skip connections

are integrated by design in our proposed network architecture. The effectiveness of our model is

demonstrated through extensive experiments on five benchmark datasets, achieving better or com-

parable anomaly detection results against strong baseline methods. We also demonstrate through

an ablation study that skip connection helps improve the model performance.

3.1 Introduction

Anomaly detection is of paramount importance when deploying artificial intelligence systems,

which often encounter unexpected or abnormal items/events that deviate significantly from the

43

majority of data. Anomaly detection techniques are widely used in a variety of real-world appli-

cations, including, but not limited to, intrusion detection, fraud detection, healthcare, Internet of

Things, Industry 4.0 and beyond, surveillance, and social networks [25, 96, 97]. Most of these

techniques often involve a training set where no anomalous instances are encountered, and the

challenge is to identify suspicious items or events, even in the absence of abnormal instances. In

practical settings, the output of an anomaly detection model is usually an alert that triggers every

time there is a anomaly or a pattern in the data that is atypical.

Detecting anomalies is a challenging task, primarily because the anomalous instances are not

known a priori and also the vast majority of observations in the training set are normal instances.

Therefore, the mainstream approach in anomaly detection has been to separate the normal instances

from the anomalous ones by using unsupervised learning models. One-class support vector ma-

chines (OC-SVM) are a classic example [98], which is a one-class classification model trained on

data that has only one class (i.e. normal class) by learning a discriminative hyperplane bound-

ary around the normal instances. Another commonly-used anomaly detection approach is support

vector data description (SVDD) [24], which basically finds the smallest possible hypersphere that

contains all instances, allowing some instances to be excluded as anomalies. Zhang et al. [99] pre-

sented a graph model-based multiscale feature fitting method for unsupervised anomaly detection

and localization. Arias et al. [100] introduced an unsupervised parameter-free analytic isolation

and distance-based anomaly detection algorithm, which integrates both distance and isolation met-

rics. However, these approaches rely on hand-crafted features, are unable to appropriately handle

high-dimensional data, and often suffer from computational scalability issues.

Deep learning has recently emerged as a very powerful way to hierarchically learn abstract pat-

terns from data, and has been successfully applied to anomaly detection, showing promising results

in comparison with shallow methods [101]. Ruff et al. [26] extend the shallow one-class classi-

fication SVDD approach to the deep learning setting by proposing a deep learning based SVDD

framework for anomaly detection using an anomaly detection based objective. Deep SVDD is an

unsupervised learning model that learns to extract the common factors of variation of the data dis-

tribution by training a neural network while minimizing the volume of a hypersphere that encloses

the network representations of the data. Also, Ruff et al. [27] introduce a deep semi-supervised

anomaly detection (Deep SAD) approach, which is a generalization of the unsupervised Deep

SVDD technique to the semi-supervised setting. Deep SAD differs from Deep SVDD in that its

objective function also includes a loss term for labeled normal and anomalous instances. The more

diverse the labeled anomalous instances in the training set, the better the anomaly detection perfor-

mance of Deep SAD. The key difference between deep one-class models such as Deep SVVD and

44

semi-supervised anomaly detection methods such as Deep SAD lies in the way they are trained

and the amount of labeled data required. The former is an unsupervised anomaly detection method

that requires only normal data during training. It is trained to learn a representation of normal data,

which is then used to distinguish between normal and anomalous data. Semi-supervised anomaly

detection, on the other hand, is a hybrid approach that generally uses both normal and anomalous

data during training. The model is trained using both labeled and unlabeled data, where the la-

beled data consists of a small portion of anomalous data and a large portion of normal data. The

main advantage of semi-supervised anomaly detection is that it can achieve higher accuracy than

unsupervised methods, as the use of labeled data during training provides additional information,

enabling the model to better distinguish between normal and anomalous data points.

Owing to the recent developments in deep semi-supervised learning on graph-structured data,

there has been a surge of interest in the adoption of graph neural networks for learning latent rep-

resentations of graphs [1, 17]. Defferrard et al. [17] introduce the Chebyshev network, an efficient

spectral-domain graph convolutional neural network that uses recursive Chebyshev polynomial

spectral filters to avoid explicit computation of the Laplacian spectrum. These filters are localized

in space, and the learned weights can be shared across different locations in a graph. An effi-

cient variant of graph neural networks is graph convolutional networks (GCNs) [1], which is an

upsurging semi-supervised graph-based deep learning framework that uses an efficient layer-wise

propagation rule based on a first-order approximation of spectral graph convolutions. The feature

vector of each graph node in GCN is updated by essentially applying a weighted sum of the fea-

tures of its immediate neighboring nodes. While significant strides have been made in addressing

anomaly detection on graph-structured data [102], it still remains a daunting task on graphs due

to various challenges, including graph sparsity, data nonlinearity, and complex modality interac-

tions [28]. Ding et al. [28] design a GCN-based autoencoder for anomaly detection on attributed

networks by taking into account both topological structure and nodal attributes. The encoder of

this unsupervised approach encodes the attribute information using the output GCN embedding,

while the decoder reconstructs both the structure and attribute information using non-linearly trans-

formed embeddings of the output GCN layer. The basic idea behind anomaly detection methods

based on reconstruction errors is that the normal instances can be reconstructed with small errors,

while anomalous instances are often reconstructed with large errors. More recently, Kumagai et

al. [29] have proposed two GCN-based models for semi-supervised anomaly detection. The first

model uses only labeled normal instances, whereas the second one employs labeled normal and

anomalous instances. Both models are trained to minimize the volume of a hypersphere that en-

closes the GCN-learned node embeddings of normal instances, while embedding the anomalous

45

ones outside the hypersphere.

Inspired by the implicit fairing concept in geometry processing for triangular mesh smooth-

ing [2], we introduce a graph fairing convolutional network architecture, which we call GFCN,

for deep semi-supervised anomaly detection. In addition to performing graph convolution, GFCN

uses a skip connection to combine both the initial node representation and the aggregated node

neighborhood representation, enabling it to memorize information across distant nodes. While

most graph convolutions with skip connections are based on heuristics, GFCN is theoretically mo-

tivated by implicit fairing and derived from the Jacobi iterative method. In contrast to GCN-based

methods that use a first-order approximation of spectral graph convolutions and a renormaliza-

tion trick in their layer-wise propagation rules to avoid numerical instability, our GFCN model

does not require any renormalization, while still maintaining the key property of convolution as a

neighborhood aggregation operator. Hence, repeated application of the GFCN’s layer-wise propa-

gation rule provides a computationally efficient convolutional process, leading to numerical stabil-

ity while avoiding the issue of exploding/vanishing gradients. The proposed framework achieves

better anomaly detection performance, as GFCN uses a multi-layer architecture, together with

skip connections, and non-linear activation functions to extract high-order information of graphs

as discriminative features. Multi-layer architectures enable the model to learn hierarchical repre-

sentations of the graph, where lower layers capture lower-level features and higher layers capture

higher-level abstractions. Skip connections allow information to bypass intermediate layers and

preserve low-level details, improving the flow of information and preventing vanishing gradients,

and more importantly leading to more accurate representations, thereby yielding a more effec-

tive detection of anomalies. Moreover, GFCN inherits all benefits of GCNs, including accuracy,

efficiency and ease of training.

In addition to capturing information from distant graph nodes through skip connections be-

tween layers, the proposed GFCN model is flexible and exploits both the graph structure and node

features for learning discriminative node representations in an effort to detect anomalies in a semi-

supervised setting. Not only does GFCN outperforms strong anomaly detection baselines, but it

is also surprisingly simple, yet very effective at identifying anomalies. The main contributions of

this work can be summarized as follows:

• We propose a novel multi-layer graph convolutional network with a skip connection for

semi-supervised anomaly detection by effectively exploiting both the graph structure and

attribute information.

• We introduce a learnable skip-connection module, which helps nodes propagate through the

network’s layers and hence substantially improves the quality of the learned node represen-

46

tations.

• We analyze the complexity of the proposed model and train it on a regularized, weighted

cross-entropy loss function by leveraging unlabeled instances to improve performance.

• We demonstrate through extensive experiments that our model can capture the anomalous

behavior of graph nodes, leading to state-of-the-art performance across several benchmark

datasets.

The rest of this chapter is organized as follows. In Section 2, we review important relevant

work. In Section 3, we outline the background for spectral graph theory and present the problem

formulation. In Section 4, we introduce a graph convolutional network architecture with skip

connection for deep semi-supervised anomaly detection. In Section 5, we present experimental

results to demonstrate the competitive performance of our approach on five standard benchmarks.

Finally, we conclude in Section 6 and point out future work directions.

3.2 Related Work

The basic goal of anomaly detection is to identify abnormal instances, which do not conform

to the expected pattern of other instances in a dataset. To achieve this goal, various anomaly

detection techniques have been proposed, which can distinguish between normal and anomalous

instances [96]. Most mainstream approaches are one-class classification models [24, 98] or graph-

based anomaly methods [102].

Deep Learning for Anomaly Detection. While shallow methods such as one-class classifica-

tion models require explicit hand-crafted features, much of the recent work in anomaly detection

leverages deep learning [25], which has shown remarkable capabilities in learning discriminative

feature representations by extracting high-level features from data using multilayered neural net-

works. Ruff et al. [26] develop a deep SVDD anomaly detection framework, which is basically an

extension of the shallow one-class classification SVDD approach. The basic idea behind SVDD

is to find the smallest hypersphere that contains all instances, except for some anomalies. Deep

SVDD is an unsupervised learning model that learns to extract the common factors of variation of

the data distribution by training a neural network while minimizing the volume of a hypersphere

that encloses the network representations of the data. The centroid of the hypersphere is usually set

to the mean of the feature representations learned by performing a single initial forward pass. In or-

der to improve model performance, Ruff et al. [27] propose Deep SAD, a generalization of the un-

supervised Deep SVDD to the semi-supervised setting. The key difference between these two deep

47

anomaly detection models is that the objective function of Deep SAD also includes a loss term for

labeled normal and anomalous instances. The idea behind this loss term is to minimize (resp. max-

imize) the squared Euclidean distance between the labeled normal (resp. anomalous) instances and

the hypersphere centroid. However, both Deep SVDD and Deep SAD suffer from the hypersphere

collapse problem due to the learning of a trivial solution. In other words, the network’s learned

features tend to converge to the centroid of the hypersphere if no constraints are imposed on the

architectures of the models. Cevikalp et al. [103] considered the hypersphere centers as parameters

that can be learned and updated according to the evolving deep feature representations. Another

line of work uses deep generative models to address the anomaly detection problem [104, 105].

These generative networks are able to localize anomalies, particularly in images, by simultane-

ously training a generator and a discriminator, enabling the detection of anomalies on unseen data

based on unsupervised training of the model on anomaly-free data [106]. However, the use of deep

generative models in anomaly detection has been shown to be quite problematic and unintuitive,

particularly on image data [107].

Graph Convolutional Networks for Anomaly Detection. GCNs have recently become the de

facto model for learning representations on graphs, achieving state-of-the-art performance in var-

ious application domains, including anomaly detection [28, 29]. Ding et al. [28] present an un-

supervised graph anomaly detection framework using a GCN-based autoencoder. This approach

leverages both the topological structure and nodal attributes, with an encoder that maps the attribute

information into a low-dimensional feature space and a decoder that reconstructs the structure as

well as the attribute information using the learned latent representations. The basic idea behind this

GCN-based autoencoder is that the normal instances can be reconstructed with small errors, while

anomalous instances are often reconstructed with large errors. However, methods based on recon-

struction errors are prone to outliers and often require noise-free data for training. On the other

hand, some of the main challenges associated with graph anomaly detection is the lack of labeled

graph nodes (i.e. no information is available about which instances are actually anomalous and

which ones are normal) and data imbalance, as abnormalities occur rarely and hence a tiny fraction

of instances is expected to be anomalous. To circumvent these issues, Kumagai et al. [29] propose

two semi-supervised anomaly detection models using GCNs for learning latent representations.

The first model uses only labeled normal instances, while the second one employs both labeled

normal and anomalous instances. However, both models are trained to minimize the volume of a

hypersphere that encloses the GCN-learned node embeddings of normal instances, and hence they

also suffer from the hypersphere collapse problem. By contrast, our semi-supervised GFCN model

does not suffer from the above mentioned issues. In addition to leveraging the graph structure

48

and node attributes, GFCN learns from both labeled and unlabeled data in order to improve model

performance.

Graph Neural Networks with Skip Connections. Despite the success of GNN-based models

in learning node representations, they are prone to over-smoothing, which can negatively impact

their performance. Over-smoothing occurs when stacking multiple graph convolution layers causes

node representations to become indistinguishable, leading to a loss of valuable information. To

tackle the over-smoothing problem, several approaches that leverage skip connections have been

proposed. Skip connections can be categorized into four main types: residual connections, ini-

tial connections, jumping connections, and dense connections [108]. JK-Net [22] uses jumping

knowledge network connections to connect each layer to the last one, maintaining the feature map-

pings in lower layers. APPNP [30], which approximate PageRank with power iteration, uses initial

connection by connecting each layer to the original feature matrix. By decoupling feature trans-

formation and propagation, APPNP can aggregate information from multi-hop neighbors without

increasing the number of layers in the network. GCNII [32] employs initial residual and identity

mapping to mitigate the over-smoothing problem. At each layer, the initial residual constructs a

skip connection from the input layer, while the identity mapping adds an identity matrix to the

weight matrix. ResGCN [31] is a residual graph convolutional network that extends the depth

of GCNs by using residual/dense connections and dilated convolutions. In our proposed GFCN

model, we apply a skip connection that reuses the initial node features at each layer with the goal

of combining both the aggregated node neighborhood representation and the initial node represen-

tation. While most graph convolutions with skip connections are based on heuristics, our GFCN

model is theoretically motivated by implicit fairing and its layerwise propagation rule is derived

from the iterative solution of the implicit fairing equation via the Jacobi method.

3.3 Preliminaries and Problem Statement

We introduce our notation and present a brief background on spectral graph theory, followed by

our problem formulation of semi-supervised anomaly detection on graphs.

Basic Notions. Consider a graph G = (V , E), where V = {1, . . . , N} is the set of N nodes and

E ⊆ V × V is the set of edges. The graph structure is encoded by an N × N adjacency matrix

A = (Aij) whose (i, j)-th entry is equal to the weight of the edge between neighboring nodes i

and j, and 0 otherwise. We also denote by X = (x1, ...,xN)
ᵀ an N × F feature matrix of node

attributes, where xi is an F -dimensional row vector for node i. This real-valued feature vector is

often referred to as a graph signal, which assigns a value to each node in the graph.

49

Spectral Graph Theory. The normalized Laplacian matrix is defined as

L = I−D−
1
2 AD−

1
2 , (3.1)

where D = diag(A1) is the diagonal degree matrix, and 1 is an N -dimensional vector of all

ones. Since the normalized Laplacian matrix is symmetric positive semi-definite, it admits an

eigendecomposition given by L = UΛUᵀ, where U = (u1, . . . ,uN) is an orthonormal matrix

whose columns constitute an orthonormal basis of eigenvectors and Λ = diag(λ1, . . . , λN) is a

diagonal matrix comprised of the corresponding eigenvalues such that 0 = λ1 ≤ · · · ≤ λN ≤ 2. If

G is a bipartite graph, then the spectral radius (i.e. largest absolute value of all eigenvalues) of the

normalized Laplacian matrix is equal to 2. The normalized Laplacian matrix has eigenvalues in the

range [0,2], which makes spectral graph analysis algorithms more stable and reliable compared to

algorithms that use the unnormalized Laplacian matrix with eigenvalues that can be much larger.

Moreover, scaling by the inverse square root of the degree matrix helps reduce the influence of

highly connected nodes.

Problem Statement. Anomaly detection aims at identifying anomalous instances, which do not

conform to the expected pattern of other instances in a dataset. It differs from binary classification

in that it distinguishes between normal and anomalous observations. Also, the distribution of

anomalies is not usually known a priori.

Let Dl = {(xi, yi)}Nl
i=1 be a set of labeled data points xi ∈ RF and their associated known labels

yi ∈ {0, 1} with 0 and 1 representing “normal” and “anomalous” observations, respectively, and

Du = {xi}Nl+Nu

i=Nl+1 be a set of unlabeled data points, where Nl +Nu = N . Hence, each node i can

be labeled with a 2-dimensional one-hot encoding vector yi = (yi, 1− yi).
The goal of semi-supervised anomaly detection on graphs is to estimate the anomaly scores of

the unlabeled graph nodes. Nodes with high anomaly scores are considered anomalous, while

nodes with lower scores are deemed normal.

3.4 Proposed Method

In this section, we begin by succinctly summarizing some of the most common spectral filters on

graphs. Then, we propose a graph convolutional network with skip connection using the concept

of implicit fairing on graphs. In particular, we examine the main components of the proposed

architecture and analyze the complexity of the model. In addition, we introduce an anomaly scoring

function defined in terms of the weighted cross-entropy between the ground-truth labels of the

graph test nodes and the model’s predicted probabilities.

50

3.4.1 Spectral Graph Filtering

The idea of spectral filtering on graphs was first introduced in [109] in the context of triangular

mesh smoothing. The goal of spectral graph filtering is to use polynomial or rational polynomial

filters defined as functions of the graph Laplacian (or equivalently its eigenvalues) in an effort

to attenuate high-frequency noise corrupting the graph signal. These functions are usually re-

ferred to as frequency responses or transfer functions. While polynomial filters have finite impulse

responses, their rational counterparts have infinite impulse responses. Despite the fact that the

Laplacian matrix is commonly used in spectral graph theory, it does not, however, provide a nat-

ural way to normalize the frequency domain representation of a graph signal, which can lead to

scaling and convergence issues in spectral graph filtering. In contrast, the normalized Laplacian

matrix provides a way to normalize the frequency domain representation of a graph signal, which

can improve the stability and convergence properties of spectral graph filtering. Specifically, the

normalized Laplacian matrix is scaled by the inverse square root of the degree matrix, which helps

normalize the contributions of each node’s neighbors to the overall graph signal. Applying a spec-

tral graph filter with transfer function h on the graph signal X ∈ RN×F yields

H = h(L)X = Uh(Λ)U
ᵀ
X = U diag(h(λi))U

ᵀ
X, (3.2)

where H is the filtered graph signal. However, this filtering process necessitates the computation of

the eigenvalues and eigenvectors of the Laplacian matrix, which is prohibitively expensive for large

graphs. To circumvent this issue, spectral graph filters are usually approximated using Chebyshev

polynomials [17, 110, 111] or rational polynomials [112–114].

3.4.2 Implicit Fairing

Graph fairing refers to the process of designing and computing smooth graph signals on a graph

in order to filter out undesirable high-frequency noise while retaining the graph geometric features

as much as possible. The implicit fairing method, which uses implicit integration of a diffusion

process for graph filtering, has shown to allow for both efficiency and stability [2]. The implicit

fairing filter is an infinite impulse response filter whose transfer function is given by hs(λ) =

1/(1+sλ), where s is a positive parameter. Hence, performing graph filtering with implicit fairing

is equivalent to solving the following sparse linear system:

(I + sL)H = X, (3.3)

51

which we refer to as implicit fairing equation. It is worth pointing out that this equation can also

be obtained by minimizing the following objective function

J (H) =
1

2
‖H−X‖2F +

s

2
tr(H

ᵀ
LH), (3.4)

where ‖ · ‖F and tr(·) denote the Frobenius norm and trace operator, respectively.

The implicit fairing filter enjoys several nice properties, including unconditional stability as

hs(λ) is always in [0, 1], and also preservation of the average value (i.e. DC value or centroid) of

the graph signal as hs(0) = 1 for all s. As shown in Figure 3.1, the higher the value of the scaling

parameter, the closer the implicit fairing filter becomes to the ideal low-pass filter.

Figure 3.1: Transfer function of the implicit fairing filter for various values of the scaling parame-
ter.

3.4.3 Spectral Analysis

The matrix I + sL is symmetric positive definite with minimal eigenvalue equal to 1 and maximal

eigenvalue bounded from above by 1 + 2s. Hence, the condition number κ of I + sL satisfies

κ ≤ 1 + 2s, (3.5)

where κ, which is defined as the ratio of the maximum to minimum stretching, is also equal to the

maximal eigenvalue of I+sL. Intuitively, the condition number measures how much can a change

(i.e. small perturbation) in the right-hand side of the implicit fairing equation affects the solution.

In fact, it can be readily shown that the resulting relative change in the solution of the implicit

fairing equation is bounded from above by the condition number multiplied by the relative change

in the right-hand side.

52

3.4.4 Iterative Solution

One of the simplest iterative techniques for solving a matrix equation is Jacobi’s method, which

uses matrix splitting. Since the matrix I+ sL can be split into the sum of a diagonal matrix and an

off-diagonal matrix

I + sL = (1 + s)I− sD−1/2AD−1/2, (3.6)

the implicit fairing equation can then be solved iteratively using the Jacobi method as follows:

H(t+1) = D−1/2AD−1/2H(t)Θs + XΘ̃s, (3.7)

where Θs = diag(s/(1 + s)) and Θ̃s = diag(1/(1 + s)) are F × F diagonal matrices, each of

which has equal diagonal entries, and H(t) is the t-th iteration of H. Since the spectral radius of

the normalized adjacency matrix is equal to 1, it follows that the spectral radius of the Jacobi’s

iteration matrix

C =
s

1 + s
D−1/2AD−1/2, (3.8)

is equal to s/(1 + s), which is always smaller than 1. Hence, the convergence of the iterative

method given by Eq. (3.7) holds.

3.4.5 Graph Fairing Convolutional Network

At the core of graph representation learning is the concept of propagation rule, which determines

how information is passed between nodes in a graph. It involves updating the current node fea-

tures by aggregating information from their neighboring nodes, followed by a non-linear activation

function to produce an updated representation for the node. Inspired by the Jacobi iterative solu-

tion of the implicit fairing equation, we propose a multi-layer graph fairing convolutional network

(GFCN) with the following layer-wise propagation rule:

H(`+1) = σ(D−1/2AD−1/2H(`)Θ(`) + XΘ̃(`)), (3.9)

where Θ(`) and Θ̃(`) are learnable weight matrices, σ(·) is an element-wise activation function,

H(`) ∈ RN×F` is the input feature matrix of the `-th layer with F` feature maps for ` = 0, . . . , L−1.

The input of the first layer is the initial feature matrix H(0) = X.

Note that in addition to performing graph convolution, which essentially averages the features

of the immediate (i.e. first-order or 1-hop) neighbors of nodes, the layer-wise propagation rule

of GFCN also applies a skip connection that reuses the initial node features, as illustrated in Fig-

ure 3.2. In other words, GFCN combines both the aggregated node neighborhood representation

and the initial node representation, hence memorizing information across distant nodes. While

53

3.4.7 Model Complexity

For simplicity, we assume the feature dimensions are the same for all layers, i.e. F` = F for all `,

with F � N . The time complexity of an L-layer GFCN is O(L‖A‖0F + LNF 2), where ‖A‖0
denotes the number of non-zero entries of the sparse adjacency matrix. Note that multiplying the

normalized adjacency matrix with an embedding costs O(‖A‖0F) in time, while multiplying an

embedding with a weight matrix costsO(NF 2). Also, multiplying the initial feature matrix by the

skip-connection weight matrix costs O(NF 2).

For memory complexity, an L-layer GFCN requires O(LNF + LF 2) in memory, where

O(LNF) is for storing all embeddings and O(LF 2) is for storing all layer-wise weight matri-

ces.

Therefore, our proposed GFCN model has the same time and memory complexity as GCN,

albeit GFCN takes into account distant graph nodes for improved learned node representations.

3.4.8 Model Training

The parameters (i.e. weight matrices for different layers) of the proposed GFCN model for semi-

supervised anomaly detection are learned by minimizing the following regularized loss function

L =
1

Nl

Nl∑
i=1

Cα(yi, ŷi) +
β

2

L−1∑
`=0

(
‖Θ(`)‖2F + ‖Θ̃(`)‖2F

)
, (3.11)

where Cα(yi, ŷi) is the weighted cross-entropy given by

Cα(yi, ŷi) = −α yi log ŷi − (1− yi) log(1− ŷi), (3.12)

which measures the dissimilarity between the one-hot encoding vector yi of the ith node and

the corresponding vector ŷi of predicted probabilities. This dissimilarity decreases as the value

of the predicted probability approaches the ground-truth label. The weight parameter α adjusts

the importance of the positive labels by assigning more weight to the anomalous class, while

the parameter β controls the importance of the regularization term, which is added to prevent

overfitting. The regularization term is the sum of the squared elements of the learnable weight

matrices for each layer. It is important to mention that we only use the normal class labeled

instances to train our model.

We optimize our model using the Adam optimizer [115], which is a modified version of Stochas-

tic Gradient Descent (SGD) that uses adaptive moment estimation. The intuition behind the use of

the weighted cross-entropy loss function is to assign a higher weight to the anomalous nodes than

to the normal nodes, so that the model is encouraged to correctly identify the anomalous nodes

56

even if they are rare and overshadowed by the large number of normal nodes. The regularization

term, on the other hand, penalizes large weight values in the learnable weight matrices, which helps

to reduce the complexity of the model and improve its generalization performance. The strength

of the regularization is controlled by the value of the hyperparameter β, which is tuned using grid

search.

The weight matrices of our GFCN model are initialized randomly with small values using a

normal distribution to ensure that the variance of the activations and gradients is roughly the same

across all layers of the network. During training, the optimizer adjusts the weight matrices to min-

imize the regularized loss function. The training process involves choosing the hyperparameters,

computing the regularized weighted cross-entropy loss, feeding forward and backpropagating the

inputs, and updating the weight matrices using the Adam optimizer. This process is repeated for

multiple epochs until the model converges or the validation loss does not decrease after a specified

number of consecutive epochs.

3.4.9 Model Inference

Once the model is trained, we can use the weighted cross-entropy errors to assess the abnormality

of nodes. To this end, we define the anomaly score of the ith test node as

si = Cα(yi, ŷi). (3.13)

Since the range of the weighted cross-entropy is [0,∞] (e.g. infinite value when yi = 1 and ŷi = 0),

we apply min-max normalization to bring all anomaly scores into the range [0,1] as follows:

s̃i =
si − smin

smax − smin

, (3.14)

where smin and smax are the minimum and maximum, respectively, of the anomaly scores in the

test set. Nodes with scores larger than a certain threshold are considered anomalies. Hence, we can

compute a ranked list of anomalies according to their normalized anomaly scores. In other words,

we compute the anomaly scores of each node in the test set, and then the top-r nodes with higher

scores are identified as anomalies for a user-specified value of r.

3.5 Experiments

In this section, we conduct extensive experiments to assess the performance of the proposed

anomaly detection framework in comparison with state-of-the-art methods on several benchmark

57

datasets. The source code to reproduce the experimental results is made publicly available on

GitHub1.

3.5.1 Datasets

We demonstrate and analyze the performance of the proposed model on three citation networks:

Cora, Citeseer, and Pubmed [116], and two co-purchase graphs: Amazon Photo and Amazon

Computers [117]. The summary descriptions of these benchmark datasets are as follows:

• Cora is a citation network dataset consisting of 2708 nodes representing scientific publica-

tions and 5429 edges representing citation links between publications. All publications are

classified into 7 classes (research topics). Each node is described by a binary feature vec-

tor indicating the absence/presence of the corresponding word from the dictionary, which

consists of 1433 unique words.

• Citeseer is a citation network dataset composed of 3312 nodes representing scientific publi-

cations and 4723 edges representing citation links between publications. All publications are

classified into 6 classes (research topics). Each node is described by a binary feature vec-

tor indicating the absence/presence of the corresponding word from the dictionary, which

consists of 3703 unique words.

• Pubmed is a citation network dataset containing 19717 scientific publications pertaining to

diabetes and 44338 edges representing citation links between publications. All publications

are classified into 3 classes. Each node is described by a TF/IDF weighted word vector from

the dictionary, which consists of 500 unique words.

• Amazon Computers and Amazon Photo datasets are co-purchase graphs [117], where nodes

represent goods and edges indicate that two goods are frequently bought together. The node

features are bag-of-words encoded product reviews, while the class labels are given by the

product category.

• ogbn-arxiv dataset is a large-scale graph dataset from open graph benchmark (OGB) repre-

senting the citation network between all computer science (CS) arXiv papers. In this dataset

over 169k nodes and 1.1m edges are contained. Each node has a 128-dimensional feature

vector obtained by averaging the embeddings of words in the article’s title and abstract.
1https://github.com/MahsaMesgaran/GFCN

58

Since there is no ground truth of anomalies in these datasets, we employ the commonly-used

protocol [29] in anomaly detection by treating the smallest class for each dataset as the anomaly

class and the remaining classes as the normal class. Dataset statistics are summarized in Table 3.1,

where anomaly rate refers to the percentage of abnormalities in each dataset. For all datasets, we

only use the normal class labeled instances to train the model.

Table 3.1: Summary statistics of datasets.

Dataset Nodes Edges Features Classes Anomaly Rate (%)

Cora 2708 5278 1433 7 0.06
Citeseer 3327 4732 3703 6 0.07
Pubmed 19717 44338 500 3 0.21
Photo 7487 119043 745 8 0.04
Computers 13381 245778 767 10 0.02
ogbn-arxiv 169343 1166243 128 40 0.02

3.5.2 Baseline Methods

We evaluate the performance of the proposed method against various baselines, including one-class

support vector machines (OC-SVMs) [98], imbalanced vertex diminished (ImVerde) [118], one-

class deep support vector data description (Deep SVDD) [26], deep anomaly detection on attributed

networks (Dominant) [28], one-class deep semi-supervised anomaly detection (Deep SAD) [27],

graph convolutional networks (GCNs) [1], GCN-based anomaly detection (GCN-N and GCN-

AN) [29], graph random neural networks (GRAND) [119], semi-Supervised node classification on

graph with few labels via non-parametric distribution assignment (GraFN) [120], and re-weighting

the influence of labeled nodes (ReNode) [121]. For baselines, we mainly consider methods that are

closely related to GFCN and/or the ones that are state-of-the-art anomaly detection frameworks. A

brief description of these strong baselines can be summarized as follows:

• OC-SVM [98] is an unsupervised one-class anomaly detection technique, which learns a

discriminative hyperplane boundary around the normal instances using support vector ma-

chines by maximizing the distance from this hyperplane to the origin of the high-dimensional

feature space.

• ImVerde [118] is a semi-supervised graph representation learning technique for imbalanced

graph data based on a variant of random walks by adjusting the transition probability each

time a graph node is visited by the random particle.

59

• Deep SVDD [26] is an unsupervised anomaly detection method, inspired by kernel-based

one-class classification and minimum volume estimation, which learns a spherical, instead

of a hyperplane, boundary in the feature space around the data using support vector data de-

scription. It trains a deep neural network while minimizing the volume of a hypersphere that

encloses the network embeddings of the data. Normal instances fall inside the hypersphere,

while anomalies fall outside.

• Dominant [28] is a deep autoencoder based on GCNs for unsupervised anomaly detection

on attributed graphs. It employs an objective function defined as a convex combination of

the reconstruction errors of both graph structure and node attributes. These learned recon-

struction errors are then used to assess the abnormality of graph nodes.

• Deep SAD [27] is a semi-supervised anomaly detection technique, which generalizes the

unsupervised Deep SVDD approach to the semi-supervised setting by incorporating a new

term for labeled training data into the objective function. The weights of the Deep SAD

network are initialized using an autoencoder pre-training mechanism.

• GCN [1] is a deep graph neural network for semi-supervised learning of graph representa-

tions, encoding both local graph structure and attributes of nodes. It is an efficient extension

of convolutional neural networks to graph-structured data, and uses a graph convolution that

aggregates and transforms the feature vectors from the local neighborhood of a graph node.

• GCN-N and GCN-AN [29] are GCN-based, semi-supervised anomaly detection frame-

works, which rely on minimizing the volume of a hypersphere that encloses the node embed-

dings to detect anomalies. Node embeddings placed inside and outside this hypersphere are

deemed normal and anomalous, respectively. GCN-N uses only normal label information,

while GCN-AN uses both anomalous and normal label information.

• GRAND [119] is a semi-supervised learning on graphs when labeled nodes are scarce. This

technique relies on a random propagation strategy to perform graph data augmentation and

employs consistency regularization to optimize prediction consistency of unlabeled nodes

across different data augmentations.

• GraFN [120] is a semi-supervised node representation learning for graphs with few labeled

nodes. This technique exploits the self-supervised loss to ensure nodes that belong to the

same class to be grouped together on differently augmented graphs. GraFN randomly sam-

ples support nodes from the labeled nodes and anchor nodes from the entire graph, and

60

non-parametrically compute two predicted class distributions from two augmented graphs

based on the anchor supports similarity.

• ReNode [121] is a semi-supervised node classification technique addressing the the

topology-imbalance node representation learning as a graph specific imbalance learning

problem. To measure the degree of topology imbalance, a conflict detection-based met-

ric, Totoro, is used to locate node position. ReNode adjusts the training weights of labeled

nodes based on their topological positions.

3.5.3 Evaluation Metric

In order to evaluate the performance of our proposed framework against the baseline methods, we

use AUC, the area under the receiving operating characteristic (ROC) curve, as a metric. AUC

summarizes the information contained in the ROC curve, which plots the true positive rate versus

the false positive rate, at various thresholds. Larger AUC values indicate better performance at

distinguishing between anomalous and normal instances. An uninformative anomaly detector has

an AUC equal to 50% or less. An AUC of 50% corresponds to a random detector (i.e. for every

correct prediction, the next prediction will be incorrect), whereas an AUC score smaller than 50%

indicates that a detector performs worse than a random detector.

3.5.4 Implementation Details

For fair comparison, we implement the proposed method and baselines in PyTorch using the Py-

Torch Geometric library. Following common practices for evaluating performance of GCN-based

models [1, 29], we train our 2-layer GFCN model for 100 epochs using the Adam optimizer [115]

with a learning rate of 0.1. We tune the latent representation dimension by hand, and set it to

128. The hyperparameters α and β are chosen via grid search with cross-validation over the sets

{10−4, 10−3, . . . , 1} and {2, 3, . . . , 10}, respectively. We tune hyperparameters using the valida-

tion set, and terminate training if validation loss does not decrease after 10 consecutive epochs.

For each dataset, we consider the settings where 2.5%, 5% and 10% of instances are labeled, and

we compute the average and standard deviation of test AUCs over ten runs.

3.5.5 Anomaly Detection Performance

Tables 3.2-3.4 present the anomaly detection results on the five datasets. The best results are high-

lighted as bold. For each dataset, we report the AUC averaged over 10 runs as well as the standard

deviation, at various ratios of labeled instances. As can be seen, our GFCN model consistently

61

achieves the best performance on all datasets, except in the case of the Cora dataset when 10% of

instances are labeled. In that case, GCN-AN yields a marginal improvement of 0.7% over GFCN,

despite the fact that GCN-AN is trained on both normal and anomalous instances, whereas our

model is trained only on normal instances. In addition, ImVerde, Deep SAD, GCN and GCN-AN

all perform reasonably well on all datasets at various levels of label rates, but we find that GFCN

outperforms these baselines on almost all datasets, while being considerably simpler. An AUC

score of 50% or less indicates that the baseline is an uninformative anomaly detector.

On the Amazon Computers dataset, Table 3.2 shows that the proposed GFCN approach per-

forms on par with GCN-AN, but outperforms all baselines on the other four datasets. In particular,

GFCN yields 16.2% and 15.7% performance gains over Deep SAD on the Cora and Photo datasets,

respectively. These gains are consistent with the results shown in Tables 3.3-3.4. We argue that the

better performance of GFCN over GCN-N and Deep SAD is largely attributed to the fact that our

model does not suffer from the hypersphere collapse problem. Interestingly, the performance gains

are particularly higher at the lower label rate 2.5%, confirming the usefulness of semi-supervised

learning in that it improves model performance by leveraging unlabeled data. Another interesting

observation is that in general both GCN-AN and GCN-N yield relatively high AUC standard devi-

ations compared to our GFCN model, indicating that our model has less variability than these two

strong baselines.

Lastly, we examined the training times (in seconds) for GFCN on Cora when 10% of all instances

were labeled. We also recorded the training times of GFCN, GCN-AN, GCN-N, and GCN on Cora

for which we obtained 3.19, 4.12, 2.31, and 2.06 seconds, respectively. Since GFCN uses the skip

connection, it took more training time than GCNs. However, the experiment shows the proposed

method could learn the abnormalities fast enough.

3.5.6 Parameter Sensitivity Analysis

The weight hyperparameter α of the weighted cross-entropy and the regularization hyperparameter

β play an important role in the anomaly detection performance of the proposed GFCN framework.

We conduct a sensitivity analysis to investigate how the performance of GFCN changes as we

vary these two hyperparameters. In Figure 3.4, we analyze the effect of the hyperparameter α by

plotting the AUC results of GFCN vs. α using various label rates for all datasets, where α varies

from 2 to 10. We can see that with a few exceptions, our model generally benefits from relatively

larger values of the weight hyperparameter. For almost all datasets, our model achieves satisfactory

performance with α = 4.

In Figure 3.5, we plot the average AUCs, along with the standard error bars, of our GFCN model

62

Table 3.2: Test AUC (%) averaged over 10 runs when 2.5% of instances are labeled. We also report
the standard deviation. Boldface numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [98] 50.0±0.1 50.6±0.4 68.9±0.9 51.9±0.6 47.3±0.7 -
ImVerde [118] 85.9±6.1 60.3±6.5 94.3±0.5 89.1±1.4 98.5±0.7 -
Deep SVDD [26] 69.6±6.5 55.3±1.6 73.7±6.3 52.3±1.4 46.6±1.5 -
Dominant [28] 52.3±0.9 53.9±0.6 50.8±0.4 38.1±0.4 46.8±1.2 -
Deep SAD [27] 72.7±6.0 53.8±2.9 91.3±2.4 81.9±5.7 92.2±2.5 -
GCN [1] 84.9±6.9 60.9±6.0 96.2±0.1 90.1±2.5 98.1±0.3 51.2±0.1
GCN-AN [29] 88.8±5.4 65.6±4.7 95.6±0.3 95.4±1.8 98.8±0.3 -
GCN-N [29] 62.6±9.9 56.0±4.4 76.5±4.2 55.1±11 56.9±5.1 -
GRAND [119] 81.3±8.1 56.4±4.5 89.6±1.2 88.7±2.1 91.7±5.5 50.7±1.3
GraFN [120] 58.2±5.8 56.3±3.2 81.4±0.9 97.4±1.5 96.1±3.9 57.3±1.4
ReNode [121] 68.4±6.8 55.1±2.0 82.3±1.5 84.9±3.4 96.3±9.2 50.2±3.1

GFCN 93.9±2.3 68.3±1.1 96.3±0.1 97.6±0.5 98.8±0.4 60.3±0.1

Table 3.3: Test AUC (%) averaged over 10 runs when 5% of instances are labeled. We also report
the standard deviation. Boldface numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [98] 50.2±0.1 50.7±0.5 71.0±1.1 51.9±0.6 47.2±0.8 -
ImVerde [118] 91.1±3.2 64.5±4.5 94.9±0.5 92.2±1.2 98.6±0.6 -
Deep SVDD [26] 58.3±2.8 56.0±0.8 79.9±3.4 52.3±0.8 47.0±1.4 -
Dominant [28] 52.5±0.9 53.9±0.7 53.0±0.5 38.1±0.5 47.2±1.2 -
Deep SAD [27] 72.4±5.7 61.1±4.2 91.7±1.7 89.8±3.1 92.8±2.6 -
GCN [1] 89.2±7.6 63.9±4.7 96.6±0.1 92.3±1.2 98.3±0.3 53.0±0.1
GCN-AN [29] 91.8±5.4 68.3±3.8 96.2±0.2 97.0±0.7 99.1±0.3 -
GCN-N [29] 67.1±5.8 57.4±3.1 76.1±4.8 56.2±9.6 58.2±5.8 -
GRAND [119] 84.7±9.1 56.8±3.1 87.8±1.4 98.4±4.1 97.8±5.8 60.2±5.3
GraFN [120] 61.3±12.6 56.1±4.3 83.0±6.1 98.2±5.6 96.6±7.9 59.8±6.1
ReNode [121] 69.9±3.3 56.1±1.6 82.7±1.1 85.7±2.1 97.5±2.1 60.1±1.9

GFCN 92.2±2.3 71.3±1.3 96.7±0.1 98.8±0.4 99.3±0.4 61.1±0.4

vs. β using various label rates for all datasets, and by varying the value of β from 10−4 to 1. Notice

that the best performance is generally achieved when β = 0.01, except in the cases of the Citeseer

and Pubmed datasets, on which the best performance is obtained when β = 0.1. In general,

when the regularization hyperparameter increases, the performance improves rapidly at the very

beginning, but then deteriorates after reaching the best setting due to overfitting. An interesting

63

Table 3.4: Test AUC (%) averaged over 10 runs when 10% of instances are labeled. We also report
the standard deviation. Boldface numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [98] 51.8±1.7 51.1±0.9 73.1±0.8 51.7±0.9 47.4±0.8 -
ImVerde [118] 94.5 ±2.1 68.5 ±6.9 95.5 ±0.4 92.8 ±1.0 99.1 ±0.4 -
Deep SVDD [26] 59.8 ±4.8 56.7 ±1.7 93.2 ±1.0 53.1 ±0.6 47.5 ±1.0 -
Dominant [28] 52.6 ±0.9 53.9 ±0.8 53.1 ±0.4 38.1 ±0.7 46.6 ±1.9 -
Deep SAD [27] 72.9 ±3.3 62.4 ±4.4 96.7 ±0.1 89.5 ±1.9 93.5 ±1.9 -
GCN [1] 94.5 ±4.3 68.6 ±3.3 96.7 ±0.1 93.3 ±0.8 98.3 ±0.3 53.9±0.3
GCN-AN [29] 95.4 ±2.7 72.9 ±4.3 96.6 ±0.1 97.9 ±0.3 99.1 ±0.3 -
GCN-N [29] 72.3 ±7.0 60.1 ±2.1 73.4 ±5.7 53.6 ±3.9 58.5 ±4.6 -
GRAND [119] 86.5 ±1.3 57.8±6.0 88.8±1.1 94.6±0.7 93.1±0.2 59.9±0.5
GraFN [120] 78.7±7.4 60.3±8.1 83.1±6.3 98.7±4.0 97.2±1.7 62.6±3.3
ReNode [121] 68.3±4.2 54.6±0.8 83.4±1.4 90.4±2.3 99.0±0.3 61.2±1.8

GFCN 94.7 ±1.0 76.5 ±1.0 97.3 ±0.1 99.4 ±0.2 99.4 ±0.4 63.0±0.8

observation is that GFCN generally shows steady increase in performance with the regularization

parameter, except on the Citeseer dataset when the label rate is 5%, whereas the performance on

the other datasets degrades after reaching a certain threshold.

We also analyzed the effects of the number of layers and latent representation dimension on the

performance of our model using the Cora, Citeseer, and Pubmed datasets (10% of the instances as

labeled), and the average AUC results are displayed in Figure 3.6. As shown in Figure 3.6 (left),

the performance of GFCN remains relatively stable as we increase the depth of the network from

2 to 10 layers. Figure 3.6 (right) shows the AUC results with the latent representation dimension

varying from 10 to 256. As can be seen, our model typically benefits from larger latent dimensions,

achieving a good performance with a latent representation dimension equal to 128 for all datasets.

3.5.7 Visualization

The feature embeddings learned by GFCN can be visualized using the Uniform Manifold Ap-

proximation and Projection (UMAP) algorithm [122], which is a dimensionality reduction tech-

nique that is particularly well-suited for embedding high-dimensional data into a two- or three-

dimensional space. Figure 3.7 displays the UMAP embeddings of GFCN (left) and GCN (right)

using the Cora dataset. As can be seen, the GFCN embeddings are more separable than the

GCN ones. With GCN features, the normal and anomalous instances are not discriminated very

well, while with GFCN features these data instances are discriminated much better, indicating that

64

Table 3.5: Test AUC (%) averaged over 10 runs when 5% of instances are labeled. We also report
the standard deviation.

Method Cora Citeseer Pubmed

Without skip connection 91.2±2.7 64.6±3.8 94.2±0.2
Without regularization 84.7±6.2 59.6±4.1 93.4±0.1

GFCN 93.9±2.3 68.3±1.1 96.3±0.1

68

C
H

A
P

T
E

R

4
A Graph Encoder-Decoder Network for

Unsupervised Anomaly Detection

A key component of many graph neural networks (GNNs) is the pooling operation, which seeks

to reduce the size of a graph while preserving important structural information. However, most

existing graph pooling strategies rely on an assignment matrix obtained by employing a GNN

layer, which is characterized by trainable parameters, often leading to significant computational

complexity and a lack of interpretability in the pooling process. In this chapter, we propose an

unsupervised graph encoder-decoder model to detect abnormal nodes from graphs by learning

an anomaly scoring function to rank nodes based on their degree of abnormality. In the encoding

stage, we design a novel pooling mechanism, named LCPool, which leverages locality-constrained

linear coding for feature encoding to find a cluster assignment matrix by solving a least-squares

optimization problem with a locality regularization term. By enforcing locality constraints during

the coding process, LCPool is designed to be free from learnable parameters, capable of efficiently

handling large graphs, and can effectively generate a coarser graph representation while retaining

the most significant structural characteristics of the graph. In the decoding stage, we propose an

unpooling operation, called LCUnpool, to reconstruct both the structure and nodal features of the

original graph. We conduct empirical evaluations of our method on six benchmark datasets using

several evaluation metrics, and the results demonstrate its superiority over state-of-the-art anomaly

detection approaches.

69

4.1 Introduction

Graph anomaly detection generally refers to the task of identifying graph nodes that exhibit un-

usual or unexpected behavior based on their structure and/or feature information. Capturing these

abnormal nodes is challenging, primarily because anomalies are rare occurrences and only a very

small proportion of the graph nodes might be anomalous. Specific applications of graph anomaly

detection include fraud detection, network intrusions, abnormal behavior in social networks, bio-

logical systems, communication networks, and financial transactions [125, 126]. For example, in

social networks, graph anomaly detection can be used to identify fraudulent accounts or suspicious

activities.

Detecting anomalies in a graph typically involves identifying nodes that deviate significantly

from the normal behavior of the graph, either in terms of their structural characteristics and/or

their feature attributes [127]. However, graphs can often be very large and complex, making it

challenging to identify such anomalies. To address this problem, graph pooling can be used to re-

duce the size of the graph while preserving its important structural features [41–43]. The aim is to

produce a coarse representation of the graph structure by summarizing the information contained in

the nodes of the graph into a fixed-size vector or matrix while preserving the salient features of the

graph. By producing a coarse representation of the graph structure, graph pooling can help abstract

away irrelevant or noisy details, and focus on the most important structural properties of the graph.

Graph pooling methods can be categorized into two main types: global and hierarchical pooling.

The former aggregates all of the node features in the graph into a single vector or scalar [38–40].

This is typically done using summary statistics (e.g., mean or maximum) to aggregate the features

of a set of graph nodes. The resulting global feature can then be used as input to a downstream clas-

sifier or regressor. Hierarchical pooling, on the other hand, operates at multiple levels of the graph

hierarchy [41–43]. The idea is to recursively partition the graph into smaller subgraphs, and then

apply pooling at each level to obtain a hierarchy of graph representations. This can be done using

clustering-based techniques to group nodes with similar features and represent each group with a

single node, resulting in a smaller graph with fewer nodes. More recently, unsupervised methods,

which do not require labeled data during training, have been shown effective at addressing anomaly

and fault detection problems in various data settings. Tao et al. [128] introduce an unsupervised

cross-domain diagnosis method to learn fault features specific to the target domain using unlabeled

data from the source domain. Song et al. [129] present an adaptive neural finite-time resilient dy-

namic surface control strategy to overcome unknown control coefficients induced by severe faults

and false data injection attacks. Also, Song et al. [130] propose an adaptive fixed-time prescribed

performance trajectory tracking controller, incorporating an event-triggered control mechanism,

70

while considering the trade-off between tracking performance and communication cost.

There are several approaches to graph anomaly detection that can be used to identify anomalous

nodes in a graph. One common approach is to use unsupervised methods [28, 131–133], which

involve identifying anomalous nodes in a graph without using any labeled data. This can be par-

ticularly challenging, as there is no ground truth for what constitutes an anomaly. Recently, graph

neural networks (GNNs) have achieved state-of-the-art performance in anomaly detection tasks,

due largely to their ability to learn efficient representations of nodes that capture their structural

or attribute similarity [127, 134]. GNNs learn node representations by aggregating information

from the neighboring nodes of each node in the graph, and hence they are able to capture both the

attributes of each node as well as the structure of the graph as a whole. By analyzing both the node

attributes and the graph structure simultaneously, GNNs can identify nodes that are significantly

different from their neighbors or that exhibit unusual patterns of behavior.

While strong in learning node representations, GNN-based methods are, however, unable to ag-

gregate the information in a hierarchical way [41]. To this end, an effective aggregation function

is required to aggregate the information at the node level as well as the entire graph. Such an ag-

gregation strategy is performed using a graph pooling operation, which involves merging nodes or

clusters of nodes in the input graph to create a coarser, smaller graph while preserving important

structural information of the input graph. Graph pooling can be thought of as a type of downsam-

pling, where the goal is to create a smaller version of the input graph that captures the most salient

features of the original graph. Clustering algorithms such as K-means or spectral clustering are

usually employed to group nodes based on their structural similarities. Hierarchical pooling meth-

ods, for instance, reduce the graph size by dropping graph nodes based on a learnable score or by

coarsening the graph using a cluster assignment matrix to group nodes into a pre-defined number

of clusters. DiffPool [41] is a graph pooling method, which uses differential graph convolutions to

learn an assignment matrix mapping each node to a set of clusters that are used to create a coarser,

smaller graph. However, this assignment matrix is dense, and hence it is not easily scalable to large

graphs [135]. SAGPool [42] is a graph pooling method, which leverages self-attention networks to

learn node scores and construct a smaller sized graph by selecting a subset of nodes based on their

scores. However, this technique is unable to preserve node and edge information effectively and

they suffer from information loss. Moreover, SAGPool may not be well-suited for handling large

graphs with many nodes and edges, as the self-attention mechanism can become computationally

expensive for such graphs.

Inspired by locality-constrained linear coding (LLC) [136], we introduce an unsupervised graph

encoder-decoder model for anomaly detection. LLC is a variant of sparse coding that imposes

71

a locality constraint on the weight coefficients. This locality constraint helps capture the local

structure of the input signals, leading to a better generalization performance compared to traditional

sparse coding. Our proposed model architecture is comprised of two main components: an encoder

and a decoder. In the encoding stage, a graph convolutional network encoder is used to generate a

latent representation, followed by a graph pooling layer to coarsen the graph. In the decoding stage,

an unpooling layer is applied to the coarser graph, followed by a graph deconvolutional network

decoder to reconstruct the graph. Our objective is to design a graph pooling operation that is

trainable, devoid of learnable parameters, and capable of scaling up to handle large graphs. To this

end, we propose a locality-constrained pooling strategy, dubbed LCPool, which generates a coarser

graph using a cluster assignment matrix obtained via LLC by solving a constrained least square

fitting problem with a locality regularization term. In contrast to sparse coding models, which often

rely on computationally intensive optimization algorithms, the objective function used by LLC has

an analytical solution [136], making it perform very fast in practice. Since the deconvolution

operation in the decoding stage may introduce undesirable noise into the output graph due to

overlapping receptive fields and information loss during downsampling, we employ spectral graph

wavelets to enable the preservation of essential details and the removal of unwanted noise, resulting

in improved reconstruction of the node feature matrix. The basis functions for the spectral graph

wavelets are constructed using the heat kernel, which captures the localized frequency content of

a graph signal, allowing for effective feature representation on graph-structured data. To compute

these basis functions efficiently, we approximate the heat kernel using a truncated series expansion,

thereby providing an efficient way to compute the heat kernel and perform spectral graph wavelet

analysis. The main contributions of this work can be summarized as follows:

• We propose a novel graph encoder-decoder network that effectively learns and encodes un-

derlying patterns and relationships in graph-structured data for anomaly detection.

• We introduce an effective pooling strategy that focuses on extracting local patterns within

graphs, leading to more robust and representative feature encoding.

• We incorporate a denoising operation into our network architecture using spectral graph

wavelets to reduce the impact of noise during the decoding stage with the aim of further

improving the quality of the reconstructed graph data.

• Through extensive experiments on six benchmark datasets, we demonstrate that our pro-

posed method outperforms several state-of-the-art baselines in terms of various evaluation

metrics.

72

This chapter is structured as follows: In Section 2, we review important relevant work. In

Section 3, we introduce a graph encoder-decoder model with a robust pooling strategy for unsu-

pervised anomaly detection. In Section 4, we present experimental results and ablation studies to

demonstrate the competitive performance of our approach on six standard benchmarks. Finally,

we conclude in Section 5 and identify promising directions for future research.

4.2 Related Work

The basic goal of anomaly detection in attributed graphs is to identify nodes in a graph that ex-

hibit unusual or unexpected behavior based on their attributes or features. Graph pooling, on the

other hand, aims to reduce the complexity and size of a graph while preserving its salient features.

In this section, we summarize relevant work at the intersection of graph anomaly detection and

graph pooling. This integration enables the development of robust approaches that not only de-

tect anomalies effectively but also produce compact graph representations that capture important

structural information.

Graph Anomaly Detection. The aim of graph anomaly detection is to analyze the topology and

attributes of a graph to identify nodes that deviate from the expected patterns. It is a challenging

task due to the inherent complexity and structural characteristics of graphs. Graph neural networks,

particularly graph convolutional networks (GCNs), have recently become the method of choice for

anomaly detection on graphs. These models are predominantly performed in an unsupervised man-

ner due to the cost of acquiring anomaly labels. Li et al. [132] propose a graph anomaly detection

framework that leverages residual analysis to identify deviations between predicted and observed

attribute values in the graph. It focuses on detecting attribute-based anomalies in attributed graphs

by analyzing the residuals, which are the differences between predicted attribute values and the ob-

served attribute values. Ding et al. [28] introduce a GCN-based autoencoder for anomaly detection

in attributed graphs by considering both topological structure and nodal attributes. It includes an

attributed network encoder designed to capture both network structure and nodal attributes in order

to facilitate node embedding representation learning with GCN, a structure reconstruction decoder

that reconstructs the original graph topology using the learned node embeddings, and an attribute

reconstruction decoder to reconstruct the observed nodal attributes based on the obtained node em-

beddings. Wang et al. [33] design a one-class classification method for graph anomaly detection by

mapping the training nodes into a hypersphere in the embedding space via graph neural networks.

Zhou et al. [34] present an abnormality-aware graph neural network, which utilizes a subtractive

aggregation technique to represent each node based on its deviation from its neighbors. Nodes that

73

are considered normal and have high confidence are used as labels to train the network in learning

a customized hypersphere criterion for identifying anomalies within the attributed graph. Pei et

al. [35] introduce a graph anomaly detection approach that captures the sparsity and nonlinearity

present in attributed graphs through the use of GCNs, learns residual information, and employs a

residual-based attention mechanism to mitigate the negative impact caused by anomalous nodes.

Zhuang et al. [36] propose a subgraph centralization approach for graph anomaly detection, ad-

dressing the weaknesses of existing detectors in terms of computational cost, suboptimal detection

accuracy, and lack of explanation for identified anomalies, leading to the development of a graph-

centric anomaly detection framework. Duan et al. [37] present a multi-view, multi-scale contrastive

learning framework with subgraph-subgraph contrast for graph anomaly detection by combining

various anomalous information and calculating the anomaly score for each node. However, most

of these approaches do not incorporate pooling operations explicitly. Instead, they rely on simple

aggregation methods like mean or max pooling to downsample the graph. In contrast, our method

introduces a novel pooling strategy based on locality-constrained linear coding, which preserves

local structure and captures more informative and discriminative features during the pooling pro-

cess. Moreover, our method employs a graph encoder-decoder architecture, where the encoder

learns high-level features from the graph data, and the decoder reconstructs the original data from

these features. This design allows our model to learn more effective and compact representations

of the graph, making it better suited for anomaly detection tasks.

Graph Pooling. Graph pooling is a commonly-used operation in graph neural networks, with the

aim of producing a compact yet informative representation of the graph structure by summarizing

the information contained in the nodes of the graph. By applying a pooling operation, the graph

can be transformed into a coarse representation that is easier to analyze or use as input for down-

stream tasks such as graph anomaly detection. Graph pooling methods can be broadly categorized

into two types: global pooling and hierarchical pooling. Global pooling methods summarize the

information of all nodes in the graph into a single vector or scalar [38–40], while hierarchical pool-

ing methods recursively apply a pooling operation to the graph, producing a hierarchy of coarser

graphs with decreasing numbers of nodes [41–43]. On the other hand, spectral clustering pooling

techniques consider graph pooling as a cluster assignment task [43], which categorizes nodes into

a set of clusters based on their learned embeddings and constructs the coarser graph based on new

nodes using a learned or predefined cluster assignment matrix. Ying et al. [41] propose DiffPool, a

differentiable pooling strategy that can generate hierarchical representations of graphs by learning

a cluster assignment matrix in an end-to-end fashion. This learned assignment matrix contains

the probability values of nodes in each layer being assigned to clusters in the next layer gener-

74

ated based on node features and topological structure of the graph. However, DiffPool generates

a dense assignment matrix, making it impracticable for large graphs. Moreover, DiffPool can be

sensitive to the initial node embeddings used in the clustering process. If the initial embeddings

are not well-aligned with the underlying graph structure, it can lead to inaccurate clustering and

subsequent pooling, affecting the quality of the learned representations. Other hierarchical pooling

methods include SAGPool [42] and gPool [44], which leverage node features and graph topol-

ogy to learn hierarchical representations. To perform graph pooling, SAGPool selects the most

important nodes based on their self-attention scores. The selected nodes are then retained in the

pooled representation, while the remaining nodes are discarded. On the other hand, gPool samples

nodes according to their scalar projection values using a trainable projection vector, resulting in

a coarsened graph. However, self-attention mechanisms and the trainable projection vectors tend

to heavily influence the pooling process and are sensitive to the quality of attention or projection

vectors. If the attention mechanisms fail to properly capture relevant node relationships or if the

trainable vectors are not adequately optimized, it can negatively impact the quality of the pooling

operation. Moreover, these pooling operations introduce additional trainable parameters to obtain

a coarser graph, thereby increasing the overall complexity of the model. This can lead to a higher

number of parameters that need to be learned, resulting in increased memory requirements and

computational overhead during training and inference. In addition, these extra trainable param-

eters in the pooling operations can potentially lead to overfitting, especially when the available

training data is limited. In contrast to these pooling operations, our proposed pooling strategy dis-

tinguishes itself in several ways. First, it does not rely on learnable parameters, making it more

flexible and adaptable. Second, it leverages locality-constrained linear coding to ensure that the

local structure of the graph is preserved during the pooling process. Third, it effectively generates a

coarser graph representation while preserving the crucial structural attributes that are most relevant

to the graph’s overall characteristics. By preserving local structure and capturing significant graph

characteristics, our pooled strategy enhances the discriminative power of the proposed anomaly

detection model, leading to more accurate and reliable results.

4.3 Proposed Method

In this section, we introduce a graph encoder-decoder network for reconstructing both the graph

structure and node features. It leverages an encoder-decoder framework to learn and generate a

representation of the original graph. By jointly reconstructing both the graph structure and node

features, the proposed model can capture and preserve the intricate relationships between nodes

and the underlying characteristics of the graph.

75

Basic Notions. An attributed graph is a graph where each node is associated with a set of at-

tributes or features, such as demographic information, transaction history, or social connections.

Let G = (V , E ,X) be an attributed graph, where V = {1, . . . , N} is the set of N nodes and

E ⊆ V × V is the set of edges, and X = (x1, ...,xN)
ᵀ an N × F feature matrix of node attributes

(i.e., xi is an F -dimensional row vector for node i). We denote by A an N ×N adjacency matrix

whose (i, j)-th entry is equal to 1 if i and j are neighboring nodes, and 0 otherwise. We also denote

by Ã = A + I the adjacency matrix with self-added loops, where I is the identity matrix.

Problem Statement. The goal of unsupervised node anomaly detection in an attributed graph is

to identify anomalous nodes in a graph without the use of labeled training data. In other words,

there is no available ground truth information that indicates which nodes are anomalous and which

ones are not. Given an attributed graph G = (V , E ,X), the objective of unsupervised node anomaly

detection is to learn a scoring function s : V → R that assigns an anomaly score to each node in

the graph. Once anomaly scores are computed, the r nodes with the highest anomaly scores are

selected based on a user-defined value of r. These selected nodes are then identified as anomalies.

In other words, nodes with high anomaly scores are considered anomalous, while nodes with lower

scores are deemed normal.

Approach Overview. The overall framework of our proposed approach is shown in Figure 4.1.

The objective is to design a graph encoder-decoder model that can transform an input graph G
into a coarser representation G ′, and then reconstruct it back. The proposed model is comprised of

two main components: an encoder and a decoder. The encoder consists of a graph convolutional

network, which performs convolutions on the graph, and a graph pooling later, which downsamples

the graph and extract the most important information from the graph while reducing the number of

parameters and computational complexity of the network. The decoder, on the other hand, consists

of a graph unpooling layer, which upsamples the representation of the graph, followed by a graph

deconvolutional network, which produces an output node feature representation that approximates

the input node feature matrix of the original graph.

4.3.1 Encoder

In the encoding stage, a GCN encoder takes as input an adjacency matrix and a node feature matrix,

and produces a latent representation of the graph that captures its structural and feature information

by performing convolutions on the graph and aggregating information from neighboring nodes.

Then, a graph pooling layer is applied to generate a coarser graph representation using a sparse

coding based approach, resulting in a coarsened adjacency matrix and a coarsened node embedding

matrix.

76

where P is the embedding dimension at the final network layer, and zi is the i-th row of Z repre-

senting the output embedding of node i. These learned low-dimensional embeddings capture the

structural and semantic similarities of the graph nodes.

Graph Pooling Layer. The purpose of a graph pooling layer is to reduce the size and complexity

of a graph while preserving its important features and structural characteristics. Given the graph

adjacency matrix A ∈ RN×N of the input graph G and the output node embeddings matrix Z ∈
RN×P of the GCN encoder, our aim is to design a graph pooling strategy that takes the graph G
as input and produces a coarser graph G ′ comprised of K < N nodes, with a weighted adjacency

matrix A′ ∈ RK×K and a node embedding matrix Z′ ∈ RK×P . To generate the coarser graph G ′,
we use a cluster assignment matrix obtained via locality-constrained linear coding [136], which is

a variant of sparse coding that imposes a locality constraint on the weight coefficients, such that

each coefficient is only allowed to depend on nearby basis functions. This constraint is enforced

by adding a penalty term to the optimization problem that encourages the weight coefficients to be

small for distant basis vectors and large for nearby basis vectors.

Determining the Assignment Matrix. Inspired by locality-constrained linear coding

(LLC) [136], we seek to find an assignment matrix by solving a least square fitting problem with

a locality regularization term. Let Z = (z1, . . . , zN)
ᵀ be the embedding feature matrix obtained

by the GCN encoder, where zi is a P -dimensional embedding vector for node i. We denote by

V = (v1, . . . ,vK)
ᵀ ∈ RK×P a codebook (also called vocabulary) constructed via clustering by

quantizing the N embedding vectors into K basis vectors. These basis vectors are usually defined

as the centers of K clusters obtained via K-means clustering on the embedding feature matrix Z,

where vk is a P -dimensional vector associated to cluster k.

In order to perform the pooling operation, we seek to find a cluster assignment matrix U =

(u1, . . . ,uN)
ᵀ ∈ RN×K via LLC, where each code ui is a K-dimensional vector obtained by

solving the following regularized least-squares problem:

ui = arg min
ui1=1

‖zi − uiV‖2 + λ‖di � ui‖2, (4.3)

where λ is a regularization hyperparameter, � denotes the element-wise multiplication, di is a

K-dimensional vector defined as

di = (exp(‖zi − v1‖/δ), . . . , exp(‖zi − vK‖/δ)), (4.4)

which measures the similarity between the i-th embedding and all basis vectors in the codebook,

and δ is a parameter to adjust the weight decay speed for the locality adaptor. Note that the

elements of the cluster assignment matrix represent the weights of the basis vectors that are used

78

to reconstruct the embedding feature matrix, while enforcing locality regularization. It should also

be noted that the LLC code ui is sparse in the sense that it only comprises a few significant values.

In practice, an approximated LLC is employed for fast encoding by removing the regularization

term (i.e., locality constraint) and using the R nearest neighbors of zi as a set of basis vectors,

thereby reducing the computational complexity fromO(K2) toO(K+R2), whereK is the number

of basis vectors in the vocabulary and R � K. Since the value of K is typically small, the LLC

algorithm can be executed quickly in practice.

Finally, we generate the assignment matrix S as follows:

S = softmax(U), (4.5)

where the softmax function is applied row-wise. The i-th row of the cluster assignment matrix

S ∈ RN×K represents the probabilities of node i to be assigned to each of the K clusters, and each

column represents a cluster.

Pooling Strategy with Assignment Matrix. The cluster assignment matrix assigns each graph

node to a specific cluster, and plays an important role in determining the new representation of

the coarser graph produced by the graph pooling operation [41]. The coarsening process aims to

reduce the size of a graph by grouping nodes into clusters, while preserving the most important

structural features of the graph. Specifically, given the adjacency matrix A and node embedding

matrix Z of the input graph, we define the locality-constrained pooling (LCPool) operator or layer

as follows:

(A′,Z′) = LCPool(A,Z), (4.6)

where

A′ = S
ᵀ
ÃS ∈ RK×K and Z′ = S

ᵀ
Z ∈ RK×P (4.7)

are the adjacency matrix of the coarser graph and its new matrix of node embeddings, respectively.

Note that A′ is a weighted adjacency matrix representing the connectivity of the clusters. Each

row and column of this coarsened adjacency matrix represents a cluster of nodes, while its (i, j)-th

element represents the connectivity strength between cluster i and cluster j. Similarly, the (i, j)-th

element of the new matrix of embeddings Z′ can be viewed as a weighted sum of the elements of

the j-th column of Z, where the weights are given by the corresponding elements of the i-th row

of S (i.e., probabilities of node i to be assigned to each cluster of the K clusters).

4.3.2 Decoder

In the decoding stage, we employ a graph unpooling layer, which upsamples the representation of

the graph, followed by a graph deconvolutional network (GDN) decoder, which reconstructs the

79

node feature matrix of the original graph. The aim of the unpooling layer is to upsample the graph

by mapping the coarser graph structural and feature representations to finer ones. It basically per-

forms the inverse operation of the pooling layer. Specifically, the unpooling operation attempts to

reconstruct the original graph structure and nodal features from the coarser graph representation

obtained after pooling. By applying the unpooling operation, the model can reconstruct the finer

details of the original graph that may have been lost during the pooling process. This allows for

a more accurate representation of the graph’s structure and nodal features. Also, the unpooling

operation can help provide a clearer understanding of the graph by recovering the original graph

structure. This allows for better interpretability and analysis of the graph’s properties and char-

acteristics. By reconstructing the original graph, the unpooling operation aims to retain the most

significant structural characteristics and nodal features. This can be valuable in applications where

preserving important information is crucial, such as anomaly detection. The GDN decoder, on

the other hand, is used to decode or reconstruct the original graph from the finer representations

generated by the unpooling layer.

Graph Unpooling Layer. The purpose of the unpooling layer is to reconstruct the original graph

structure from the down-sampled feature maps produced by the pooling layer. One advantage of

the coarsened adjacency matrix A′ is that it preserves the most important structural features of the

original graph. To reconstruct the graph structure and nodal features of the original graph, we use

a locality-constrained unpooling (LCUnpool) strategy, which takes a coarser graph with features

as input and produces a finer representation of the original graph, incorporating both the desired

structure and features. We define the LCUnpool operator or layer as follows:

(Â, Ẑ) = LCUnpool(A′,Z′), (4.8)

where

Â = SÃ′S
ᵀ ∈ RN×N and Ẑ = SZ′ ∈ RN×P (4.9)

are the unpooled adjacency matrix and the unpooled matrix of node embeddings, respectively.

Note that this graph unpooling strategy aggregates information from the node neighborhood by

leveraging the normalized coarsened adjacency matrix Ã′, which takes into account the relative

importance of each node in the graph.

GDN Decoder. The deconvolution process can be thought of as an inverse operation to graph

convolution, with the aim of recovering the original node features. The key idea behind the GDN

decoder is to use a learnable deconvolution operation to reverse the convolutional transformation

applied by the GCN encoder. This deconvolution operation needs to take into account the graph

structure and ensure that the reconstructed features are consistent with the graph topology. Similar

80

to [60, 137], we apply a deconvolution operation by taking the unpooled adjacency matrix Â and

node representation Ẑ as input for the GDN encoder, yielding a reconstructed node feature matrix

H ∈ RN×F given by

H = σ((I + L̂)ẐW), (4.10)

where L̂ = I − D̂−
1
2 ÂD̂−

1
2 is the normalized Laplacian matrix, D̂ = diag(Â1) is the diagonal

degree matrix, and W ∈ RP×F is a learnable weight matrix.

The deconvolution operation can be seen as a graph diffusion process that spreads the convo-

lutional features back to their original locations, while taking into account the underlying graph

structure. However, the graph convolution of the GCN encoder can be interpreted as a special form

of Laplacian smoothing [59], which is a graph filtering operation that can be viewed as a low-pass

filter that removes high-frequency noise. Hence, applying the inverse operation of the graph con-

volution may introduce undesirable noise into the output graph. This issue can be remedied using

spectral graph wavelet denoising [137], a graph signal processing technique that aims to remove

noise from a graph signal by leveraging a set of wavelet functions, which are usually defined as a

set of filters operating on the graph Laplacian eigenvalues.

The advantage of using spectral graph wavelets for denoising is that it is possible to remove

noise that corresponds to high-frequency components of the signal, while preserving the low-

frequency components that carry the main information of the signal. Moreover, they provide

a flexible and adaptive framework for capturing the underlying structure and smoothness of the

graph signal. Specifically, let L̂ = ΦΛΦᵀ be an eigendecomposition of the normalized Laplacian

matrix, where Φ is a matrix whose columns are the eigenvectors (i.e., graph Fourier basis) and

Λ = diag(λ1, . . . , λN) is a diagonal matrix comprised of the corresponding eigenvalues. Spectral

graph wavelets have shown to allow localization of graph signals in both spatial and spectral do-

mains [111, 138, 139]. Let gs(λ) = e−λs be the transfer function (also called frequency response)

of the heat kernel with scaling parameter s. The spectral graph wavelet basis Ψs is defined as

Ψs = ΦGsΦ
ᵀ
, (4.11)

where

Gs = gs(Λ) = diag(gs(λ1), . . . , gs(λN)) (4.12)

is a diagonal matrix of transformed eigenvalues via the transfer function. Note that Ψs is also

referred to as the heat kernel matrix whose inverse Ψ−1s is obtained by simply replacing the scale

parameter s with its negative value. The spectral graph wavelet basis and its inverse can also

be computed efficiently using polynomial approximations via the Maclaurin series, which can be

81

used to approximate the heat kernel on a graph, by expanding it as a polynomial in the normalized

Laplacian matrix, and then truncating the series at a finite order [137].

Therefore, using the feature representation matrix H and both the spectral graph wavelet basis

and its inverse, the reconstructed node feature matrix X̂ = GDN(Â, Ẑ) via the GDN decoder can

be obtained as follows:

X̂ = ΨtReLU(Ψ−1t HW1)W2, (4.13)

where W1 ∈ RF×P and W2 ∈ RP×F are learnable weight matrices. The reconstructed node

feature matrix aims to provide an approximation of the original node feature matrix. By recon-

structing the node feature matrix, we can gain insights into the estimated values of node features,

understand the patterns within the graph, and utilize this information for further downstream tasks

such as anomaly detection.

4.3.3 Model Training

In order to detect anomalies, we minimize the joint reconstruction loss of the nodal attributes and

topological structure, which allows us to learn the reconstruction errors. This loss function is de-

fined as a weighted combination of the structure reconstruction error and the feature reconstruction

error

L = (1− α)‖A− Â‖2F + α‖X− X̂‖2F , (4.14)

where ‖ · ‖F denotes the Frobenius norm and α is a weighting hyperparameter that controls the

weight or importance given to each error term. The structure reconstruction loss quantifies how

well our model approximates the original adjacency matrix, while the feature reconstruction loss

measures the quality of the reconstructed node feature representation.

Our proposed graph encoder-decoder model can iteratively approximate the input graph by min-

imizing the loss function L to learn the weight matrices. The goal is to adjust the model’s param-

eters such that the loss function is minimized during training. This is typically achieved using a

stochastic gradient descent optimizer, which iteratively adjusts the parameters based on the gradi-

ent of the loss function with respect to the model parameters. We usually stop training when the

performance of the model no longer improves after a certain number of iterations or epochs. The

final reconstruction errors are then used to compute the anomaly score of node i as follows:

si = (1− α)‖ai − âi‖+ α‖xi − x̂i‖, (4.15)

which is defined as a weighted sum of a structure error term and a feature error term, where ai and

xi are the i-th rows of A and X representing the structure and feature vectors of node i, while âi

and x̂i are the i-th rows of Â and X̂ representing the recovered structure and feature vectors. The

82

nodes are sorted in descending order according to their anomaly scores, and the nodes with the

highest anomaly scores are identified as anomalies. Note that a high value of the structure error

term implies that the i-th node in the graph is more likely to be an anomaly based on the graph

structure, while a high value of the feature error term indicates an anomalous node from the feature

perspective.

4.4 Experiments

In this section, we present our experimental setup and empirical results. Our aim is to assess the

effectiveness and performance of the proposed model in comparison with state-of-the-art methods

for graph anomaly detection.

4.4.1 Experimental Setup

Datasets. We evaluate the performance of our method against state-of-the-art approaches on two

groups of standard benchmark datasets:

Citation networks: Cora, Citeseer, Pubmed [116], and ACM [140] are citation network datasets,

which are publicly available and consist of scientific publications. In these networks, nodes denote

published articles and edges represent the citation relationships between articles. Each node is

described by a binary feature vector indicating the absence/presence of the corresponding word

from the dictionary.

Social networks: BlogCatalog and Flickr [141] are two typical social network datasets acquired

from the blog sharing website, BlogCatalog, and the image hosting and sharing website, Flickr,

respectively. In these datasets, nodes represent users of websites and links represent the relation-

ships between users. Social network users typically create personalized content, such as blog posts

or photo sharing with tag descriptions, which are considered as attributes of the nodes.

We follow the same preprocessing procedure from [28, 142, 143]. Since there is no ground-truth

of anomalous nodes, it is necessary to artificially introduce synthetic anomalies into the clean

attributed networks for the purpose of evaluation. To accomplish this, a collection of anomalies,

including both structural and contextual anomalies, are injected into each dataset. Dataset statistics

are summarized in Table 4.1.

Baselines. To demonstrate the effectiveness of our method, we include strong baselines for

anomaly detection, including local outlier factor (LOF) [144], structural clustering algorithm

for networks (SCAN) [145], anomaly mining of entity neighborhoods (AMEN) [131], residual

analysis for anomaly detection in attributed networks (Radar) [132], a joint modeling approach

83

Table 4.1: Summary statistics of datasets.

Dataset Nodes Edges Features Anomalies

BlogCatalog 5196 171743 8189 300
Flickr 7575 239738 12407 450
ACM 16484 71980 8337 600
Cora 2708 5429 1433 150
Citeseer 3327 4732 3703 150
Pubmed 19717 44338 500 600

for anomaly detection on attributed networks (ANOMALOUS) [133], deep anomaly detection

on attributed networks (a\Dominant) [28], deep graph infomax (DGI) [146], contrastive self-

supervised learning framework for anomaly detection (CoLA) [142], abnormality-aware graph

neural network (AAGNN) [34], one class graph neural network (OCGNN) [33], Graph Devia-

tion Networks (GDN!) [147], DGAE-GAN [148], Residual Graph Convolutional Network (Res-

GCN) [35]. For baselines, we mainly consider methods that are closely related to our proposed

approach and/or the ones that are state-of-the-art graph anomaly detection techniques.

Evaluation Metrics. To evaluate the performance of our proposed model against the baseline

methods, we adopt several evaluation metrics, including AUC, Precision@K, Recall@K, F1@K,

and NDCG@K. AUC summarizes the information contained in the ROC curve, plotting the true

positive rate vs. false positive rate at various thresholds. Larger AUC values indicate better per-

formance at distinguishing between anomalous and normal nodes. Considering the list of nodes

sorted based on the anomaly score, Precision@K focuses on the proportion of true anomalous

nodes, which are included in the top-K position of ranked nodes. Recall@K measures the pro-

portion of known anomalous nodes selected out of all ground-truth anomalies. F1@Kis the har-

monic mean of Precision and Recall. NDCG@K is a measure of ranking quality, which provides

a weighted score that favors rankings where anomalous nodes are ranked closer to the top. These

evaluation metrics provide insights into the effectiveness of the method in identifying anomalies

and distinguishing them from normal instances.

Implementation Details. We implement our model in PyTorch, and train it using Adam [149]

optimizer on the BlogCatalog, Flickr, and ACM datasets for 300 epochs, and on the Cora, Citeseer,

and Pubmed datasets for 100 epochs. The learning rate for BlogCatalog, Flicker, ACM, and Cora is

set to 10−4, while the learning rates for Citeseer and Pubmed are set to 10−5 and 10−3, respectively.

For the GCN encoder, we set the number of hidden layers to 3. The embedding dimension is set

to 512 for Cora, Citeseer and Pubmed, and to 218 for BlogCatalog, Flicker and ACM. In all

84

experiments, we set the scaling parameter s to 1 in the wavelet bases. For the approximated LLC,

we set the number of neighbors R to 5. A reasonable choice for the weighting hyperparameter

α of the loss function is between 0.5 and 0.8 for all datasets. All other hyperparameters and

initialization strategies are those suggested by the baselines’ authors. We tune hyper-parameters

using the validation set, and terminate training if the validation loss does not decrease after 10

consecutive epochs.

4.4.2 Anomaly Detection Performance

We evaluate the anomaly detection performance of our approach against strong baseline methods.

Table 4.2 reports the AUC scores for our model and baselines on the six benchmark datasets. The

AUC scores for the baseline methods on the citation networks are taken from [28] and [142]. The

best results are shown in bold, and the second best results are underlined. As can be seen, our

method outperforms the baselines on most datasets with relative improvements of 1.23%, 0.16%,

0.76% and 1.85% in terms of AUC on BlogCatalog, Flickr, Cora and Citeseer, respectively.

Table 4.2: Test AUC (%) scores on four citation networks and two social networks. Boldface
numbers indicate the best performance, whereas the underlined numbers indicate the second best
performance.

Method BlogCatalog Flickr ACM Cora Citeseer Pubmed

LOF [144] 49.15 48.81 47.38 - - -
SCAN [145] 27.27 26.86 35.99 - - -
AMEN [131] 66.48 60.47 53.37 62.66 61.54 77.13
Radar [132] 71.04 72.86 69.36 65.87 67.09 62.33
Anomalous [133] 72.81 71.59 71.85 57.70 63.07 73.16
Dominant [28] 78.13 74.90 74.94 81.55 82.51 80.81
DGI [146] 58.27 62.37 62.40 75.11 82.93 69.62
CoLA [142] 78.54 75.13 82.37 87.79 89.68 95.12
OCGNN [33] 55.50 48.91 50.00 86.97 85.62 74.72
GDN [147] 54.24 52.40 69.15 75.77 78.89 69.15
AAGNN [34] 81.84 82.99 85.64 - - -
DGAE-GAN [148] 81.80 79.50 83.80 - - -
ResGCN [35] 78.50 78.00 76.80 84.79 76.47 80.79

Ours 82.85 83.12 84.69 88.46 91.34 92.81

In Tables 4.3, 4.4 and 4.5, we report the results in terms of Precision@K, Recall@K and F1@K

scores, respectively, on all datasets for various values ofK ranging from 50 to 300. As can be seen,

the shallow methods such as LOF, SCAN, AMEN, Radar and ANOMALOUS do not show a com-

petitive anomaly detection performance. This is largely attributed to the fact that their mechanisms

85

have limited capability to detect anomalous nodes in graph-structured data with high-dimensional

features and/or complex structures. For instance, both LOF and SCAN yield unsatisfactory results

due in large part to the fact that they perform anomaly detection without any knowledge about

nodal attributes or graph structure. Among the baselines that consider both attributes and struc-

ture, AMEN focuses on finding anomalous connected subgraphs rather than nodes, resulting in

poor performance. The residual analysis based models, Radar and Anomalous, show superior per-

formance over the conventional anomaly detection methods (LOF, SCAN and AMEN). However,

they can only capture the linear dependency because they are based on matrix factorization. Com-

pared to the other deep learning baselines, our proposed anomaly detection model shows a stronger

detection performance and generalization ability.

Table 4.3: Test Precision@K (%) scores of our approach and baselines on four citation networks
and two social networks. Boldface numbers indicate the best performance, whereas the underlined
numbers indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [144] 30.0 22.0 18.0 18.3 42.0 38.0 27.0 23.7 6.0 6.0 4.5 3.7 - - - - - - - - - - - -
Radar [132] 66.0 67.0 55.0 41.6 74.0 70.0 63.5 50.3 5.6 5.8 5.2 4.3 - - - - - - - - - - - -
Anomalous [133] 64.0 65.0 51.5 41.7 79.0 71.0 65.0 51.0 60.0 57.0 51.0 41.0 - - - - - - - - - - - -
AMEN [131] 60.0 58.0 49.6 38.3 67.0 64.0 55.0 46.1 52.0 49.0 43.2 36.0 54.6 47.2 29.0 23.0 64.0 44.0 23.0 21.6 56.0 54.1 49.0 45.7
Dominant [28] 76.0 71.0 59.0 47.0 77.0 73.0 68.5 59.3 62.0 59.0 54.0 49.7 68.0 55.0 36.0 27.0 76.0 51.0 32.0 25.3 70.0 66.0 63.0 56.0
DGI [147] 52.0 51.0 43.6 32.3 59.0 57.7 46.0 45.4 46.0 41.4 38.0 35.4 47.1 39.0 25.3 19.1 54.0 36.3 21.0 17.9 49.0 48.0 44.0 39.5
CoLA [142] 62.0 58.0 39.5 31.0 60.0 51.0 31.5 26.7 88.0 71.0 57.5 46.8 66.0 54.0 41.5 34.3 58.0 47.0 39.0 31.7 76.0 69.0 58.5 55.7

Ours 80.0 75.0 60.0 31.7 84.0 79.0 71.0 63.3 88.0 69.1 58.0 47.1 74.0 55.0 31.0 26.0 78.0 59.0 32.5 27.3 75.8 69.2 64.3 57.0

Table 4.4: Test Recall@K (%) scores of our approach and baselines on four citation networks and
two social networks. Boldface numbers indicate the best performance, whereas the underlined
numbers indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [144] 5.0 7.3 12.0 18.3 4.7 8.4 12.0 15.8 0.5 1.0 1.5 1.8 - - - - - - - - - - - -
Radar [132] 11.0 22.3 36.7 41.6 8.2 15.6 28.2 33.6 4.7 9.7 17.3 21.5 - - - - - - - - - - - -
Anomalous [133] 10.7 21.7 34.3 41.7 8.7 15.8 28.9 34.0 5.0 9.5 17.0 20.5 - - - - - - - - - - - -
AMEN [131] 9.7 19.6 32.4 38.9 7.2 14.3 26.9 32.1 4.5 7.9 15.9 17.1 20.9 31.4 42.4 47.6 21.6 30.1 37.7 44.7 4.4 8.1 15.5 22.2
Dominant [28] 12.7 23.7 39.3 47.0 8.4 16.2 30.4 39.6 5.2 9.8 18.0 24.8 23.7 36.7 48.0 54.0 25.3 34.0 42.7 50.7 28.3 11.0 21.0 28.0
DGI [147] 8.4 17.1 28.2 34.1 7.3 13.0 24.4 29.3 4.3 8.4 13.7 16.5 18.1 27.1 31.9 35.8 17.2 24.1 30.3 35.8 3.5 6.6 12.1 17.7
CoLA [142] 10.4 19.5 26.5 31.2 6.7 11.5 14.1 18.0 7.3 11.9 19.3 23.4 22.0 36.0 55.3 68.7 19.3 31.3 52.0 63.3 6.3 11.5 19.5 27.9

Ours 24.8 25.2 40.3 60.9 18.2 20.6 41.3 48.8 9.8 18.5 21.0 28.3 42.5 51.7 71.3 88.5 31.0 52.2 57.5 70.8 11.8 15.8 27.8 30.8

Model Efficiency. The training time of our model depends on the complexity of the graph and the

size of the dataset, as well as the number of layers and learnable parameters in the model. Applying

86

Table 4.5: Test F1@K (%) scores of our approach and baselines on four citation networks and two
social networks. Boldface numbers indicate the best performance, whereas the underlined numbers
indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [144] 8.6 10.9 14.4 18.3 8.4 13.7 16.6 18.9 0.9 1.7 2.2 2.4 - - - - - - - - - - - -
Radar [132] 18.8 33.4 44.0 41.6 14.7 25.5 39.0 40.3 5.1 7.2 7.9 7.2 - - - - - - - - - - - -
Anomalous [133] 18.3 32.5 41.2 41.7 15.7 25.8 40.0 40.8 9.2 16.3 25.5 27.3 - - - - - - - - - - - -
AMEN [131] 16.7 29.3 39.2 38.6 13.0 23.4 36.1 37.8 8.3 13.6 23.2 23.2 30.2 37.7 34.4 31.0 32.3 35.7 28.6 29.1 8.2 14.1 23.6 29.9
Dominant [28] 21.8 35.5 47.2 47.0 15.1 26.5 42.1 47.5 9.6 16.8 27.0 33.1 35.1 44.0 41.1 36.0 38.0 40.8 36.6 33.8 40.3 18.9 31.5 37.3
DGI [147] 14.5 25.6 34.2 33.2 13.0 21.2 31.9 35.6 7.9 14.0 20.1 22.5 26.2 32.0 28.2 24.9 26.1 29.0 24.8 23.9 6.5 11.6 19.0 24.4
CoLA [142] 17.8 29.2 31.7 31.1 12.1 18.8 19.5 21.5 13.5 20.4 28.9 31.2 33.0 43.2 47.4 45.8 29.0 37.6 44.6 42.2 11.6 19.7 29.3 37.2

Ours 37.9 37.7 48.2 41.7 29.9 32.7 52.2 55.1 17.6 29.2 30.8 35.4 54.0 53.3 43.2 40.2 44.4 55.4 41.5 39.4 20.4 25.7 38.8 40.0

LCPool in the proposed method does introduce additional computation to compute the assignment

matrix. However, in practice, we observed that LCPool does not significantly increase the running

time of the model. This is because each LCPool layer effectively reduces the size of the graph

by creating a coarser representation of the graph, which leads to a speed-up in the subsequent

graph convolution operation in the next layer. The reduction in graph size achieved by LCPool

means that the graph convolutional operation in the subsequent layers processes fewer nodes and

edges, resulting in a more efficient computation. As a result, any additional overhead from the

computation of the assignment matrix is offset by the reduced computation in the subsequent lay-

ers. Moreover, LCPool’s locality-constrained linear coding mechanism efficiently captures local

patterns and generates more compact and informative embeddings, further contributing to the ef-

ficiency of the overall model. In addition, once our model is trained, the inference or anomaly

detection time for a given graph is relatively fast. The model only needs to perform a forward pass

through the encoder and decoder to compute the reconstruction loss and anomaly scores.

4.4.3 Parameter Sensitivity Analysis

The hyperparameter K, which is the new dimension of the embedded graph after applying graph

pooling, plays an important role in the anomaly detection performance of the proposed model. We

conduct a sensitivity analysis to investigate how the performance of our approach changes as we

vary this embedding dimension. In Figure 4.2, we analyze the effect of this hyperparameter by plot-

ting the ROC curves for our model on all datasets, where K varies in the set {100, 200, 300, 400}.
We can see that our model generally benefits from relatively larger values of K. For all datasets,

our model achieves good performance when K = 400.

We also analyze the effect of the trade-off hyperparameter α on model performance, and the

87

remove the amplified noise introduced during the decoding stage. The denoising operation uses a

ReLU function and a trainable parameter matrix to linearly transform the noise, keeping the useful

coefficients that are above zero and eliminating the noise that is below zero. This helps improve

the model’s performance by reducing the effect of the amplified noise on the reconstructed node

feature matrix.

On the other hand, the significance of the pooling operation becomes evident when it is ex-

cluded from the proposed model architecture. This omission results in a substantial decrease in

AUC values, as demonstrated in Table 4.6. The effectiveness of our pooling operation in detecting

anomalies in graph data is largely attributed to the fact that locality-constrained linear coding fo-

cuses on capturing local patterns within the graph, thereby extracting more discriminative features

that are specific to the local context, which is often crucial for detecting anomalies. Moreover,

localized representation allows our model to better capture the subtle variations and deviations

that signify anomalous behavior. In addition, LCPool incorporates the concept of locality, which

encourages the extraction of robust features.

Table 4.6: Ablation analysis (AUC (%)) on six datasets. Performance better than the default version
is boldfaced.

Method BlogCatalog Flicker ACM Cora Citeseer Pubmed

w/o denoising 80.01 76.58 74.21 75.12 83.86 82.24
w/o pooling 78.79 75.87 77.10 77.22 78.56 76.23

Ours 82.85 83.12 84.69 88.46 91.34 92.81

4.4.5 Discussions

The better performance of our proposed method is largely attributed to the combination of an

effective graph encoder-decoder architecture, the utilization of LCPool for capturing local pat-

terns, the denoising operation, and the integration of graph structure and node features. The graph

encoder-decoder architecture empowers our model to learn more effective and discriminative rep-

resentations of the graph-structured data. This enables it to better capture the underlying character-

istics and structures of the data, aiding in the identification of anomalies. The adoption of LCPool

enables our model to focus on local information, leading to the extraction of more robust and

representative features. This local focus is crucial for accurately identifying anomalies and distin-

guishing them from normal graph nodes, especially in scenarios where anomalies exhibit complex

and subtle patterns. The denoising operation, facilitated by spectral graph wavelets, mitigates the

90

impact of noise during the decoding stage, resulting in improved reconstruction of the node fea-

ture matrix and enhanced anomaly detection performance. Moreover, the integration of both graph

structure and node features in the encoding-decoding process provides a more comprehensive view

of the graph, allowing our model to capture complex patterns and correlations between nodes and

their features. This holistic understanding of the graph data further bolsters the model’s anomaly

detection capabilities. While our model has demonstrated strong anomaly detection capabilities,

there are still some limitations that warrant consideration. For instance, the model’s performance

may be influenced by the complexity of anomalies present in the data. Different types of anomalies

may require specific adaptations or additional mechanisms for improved detection. Also, gener-

alizing the proposed method to completely different domains or highly specialized graph data

remains to be fully explored. Overall, our method presents an effective approach to graph-based

anomaly detection, benefiting from the interplay of various components that collectively contribute

to its superior performance. However, further exploration is necessary to address the identified lim-

itations and fully realize the model’s potential in diverse anomaly detection tasks.

91

C
H

A
P

T
E

R

5
Conclusions and Future Work

This thesis has introduced innovative solutions to address semi-supervised learning challenges in

graph node classification, semi-supervised anomaly detection, and unsupervised anomaly detec-

tion scenarios. Our approach for semi-supervised learning in graph node classification is based

on a nonlinear function that captures informative node features while effectively mitigating over-

smoothing. Inspired by the successful application of anisotropic diffusion in image and geometry

processing, we leverage local graph structure and node features to learn nonlinear representations.

Furthermore, we have developed a graph convolutional network enhanced with skip connections

for semi-supervised anomaly detection. This model comprises a graph convolution module respon-

sible for aggregating information from immediate node neighbors and a skip connection module

that harmonizes neighborhood representations across different layers. Additionally, we have pro-

posed an unsupervised graph encoder-decoder model to identify abnormal nodes within graphs.

This is achieved through the learning of an anomaly scoring function that ranks nodes based on

their degree of abnormality. In the encoding phase, we introduce an innovative pooling mechanism

named LCPool, which employs locality-constrained linear coding for feature encoding. LCPool

determines a cluster assignment matrix by solving a least-squares optimization problem with a

locality regularization component. Section 5.1 provides a summary of the contributions made in

each of the preceding chapters and outlines the conclusions drawn from the research conducted. In

Section 5.1, we summarize the contributions made in each of the previous chapters, as well as the

conclusions obtained from the associated research work. In Section 5.2, we discuss the limitations

of the proposed approaches. Finally, we point out future research directions related to this thesis

in Section 5.3.

92

5.1 Contributions of the Thesis

5.1.1 Anisotropic Graph Convolutional Network for Semi-supervised Learning

In Chapter 2, we introduced an anisotropic graph convolutional network for semi-supervised node

classification on graph-structured data by learning efficient representations in an end-to-end fash-

ion. We incorporated a nonlinear smoothness term into the feature diffusion rule of the convo-

lutional neural network in a bid to tackle the issues of oversmoothing and shrinking effect. We

demonstrated through extensive experimental results the competitive or superior performance of

AGCN in terms of classification accuracy over standard baseline methods on several benchmarks,

including citation networks and image datasets. We also showed that AGCN can be integrated into

existing graph-based convolutional networks for semi-supervised learning using both co-training

and self-training. In addition, we performed a statistical analysis using analysis of variance and

pairwise multiple comparison, showing that the performance of our model is better or comparable

with the baselines.

5.1.2 Graph Fairing Convolutional Networks for Anomaly Detection

In Chapter 3, we introduced a graph convolutional network with skip connection for semi-

supervised anomaly detection on graph-structured data by learning effective node representations

in an end-to-end fashion. The update rule of the proposed graph fairing convolutional network

(GFCN) is theoretically motivated by implicit fairing and derived directly from the Jacobi iterative

method. GFCN integrates skip connections between the initial feature matrix and each hidden

layer. This allows our model to retain and reuse the original node features throughout the net-

work, enabling better information propagation. We also showed that GFCN has the same time

and memory complexity as the standard GCN, despite the inclusion of skip connections for im-

proved node representations. Through extensive experiments, we demonstrated the competitive or

superior performance of our model in comparison with the current state of the art on five bench-

mark datasets.While GFCN’s intuitive design provides a solid theoretical foundation, it may face

scalability challenges when dealing with very large graphs like many GCN-based methods.

5.1.3 A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection

In Chapter 4, we introduced a graph encoder-decoder model for unsupervised anomaly detection.

We also proposed a novel pooling strategy that utilizes locality-constrained linear coding for fea-

ture encoding. This pooling mechanism involves solving a least-squares optimization problem with

a locality regularization term to obtain a cluster assignment matrix. By considering locality, our

93

pooling operation reduces the impact of irrelevant information present in the global graph struc-

ture, leading to more robust and representative feature extraction, which is essential for accurately

identifying anomalies and distinguishing them from normal graph nodes. In the encoding stage of

our model architecture, we used a multi-layer graph convolutional network encoder, followed by

the pooling operation. In the decoding, we employed an unpooling operation, followed by a graph

deconvolutional network decoder to decode the graph-structured data. Through our experimental

evaluations, we demonstrate that our model, which incorporates the proposed pooling and unpool-

ing layers in conjunction with locality-constrained linear coding, outperforms competing baselines

on six benchmark datasets across a variety of evaluation metrics, showcasing its superiority in

anomaly detection tasks.

5.2 Limitations

While the proposed node classification model demonstrates promising results for end-to-end semi-

supervised learning on graphs and effectively addressing oversmoothing, its performance is con-

tingent on the process of optimizing the hyperparameter related to anisotropic diffusion. This opti-

mization is conducted through grid search and cross-validation for each dataset. Another drawback

of the proposed model is its restriction to considering only immediate neighbors. This constraint

can be overcome by adopting a higher-order message-passing approach, which leverages multi-

hop neighbors by utilizing the powers of the adjacency matrix and hence aggregating learned node

representations from both immediate and distant neighbors.

For the proposed semi-supervised anomaly detection framework, scalability becomes a primary

concern, especially when applied to large graphs. As the graph size increases, so do the com-

putational and memory requirements, potentially limiting its applicability in scenarios involving

extensive real-world graphs. Moreover, the model’s reliance on a minimal quantity of labeled

data for proficient anomaly detection can be challenging in situations where acquiring such data is

exceptionally difficult or costly.

In our unsupervised anomaly detection framework, the strength of the pooling approach in cap-

turing local patterns may inadvertently lead to a vulnerability to anomalies that manifest as subtle,

global deviations within the graph. This focus on local context may limit its effectiveness in de-

tecting such anomalies. Furthermore, the encoder-decoder framework’s dependency on coarsening

and reconstructing the entire graph may pose scalability challenges, particularly when dealing with

highly complex or large-scale graphs, potentially restricting its use in resource-constrained real-

world applications.

94

5.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

5.3.1 Spatial-Temporal Graph Autoencoder for Anomaly Detection

Extensive research has been conducted on the topic of video anomaly detection over the

years [150]. This interest has arisen due to the overwhelming volume of video content that exceeds

our capacity for manual analysis. The human body skeleton can be modeled as a graph, where body

joints represent nodes and bones represent edges. pose keypoints extracted from a video sequence

are represented as a temporal sequence of pose graphs. We aim to apply spatial-temporal graph

convolutional networks for detection of abnormal human actions. More specifically, we intend

to apply a deep temporal graph autoencoder based architecture for embedding the temporal pose

graphs while incorporating a pooling mechanism to cluster input data.

5.3.2 Graph Link Prediction for Anomaly Detection

Detecting anomalies patterns within graphs is a critical task with numerous practical applications,

such as fraud detection and network security. We plan to explore the use of GCN-based models for

graph link prediction, with a specific focus on enhancing anomaly detection through the integration

of skip connections. To mitigate the over-smoothing problem that can occur when applying multi-

ple graph convolutions, we will integrate skip connections into our GCN architecture. The goal of

our research is to develop a novel approach that leverages GCNs to predict anomalous graph links.

This approach will enable us to learn a robust graph embeddings for each node, thus improving the

overall predictive accuracy and anomaly detection capabilities.

95

References

[1] T. Kipf and M. Welling, “Semi supervised classification with graph convolutional networks,”

in International Conference on Learning Representations, pp. 1–14, 2017.

[2] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing of irregular meshes

using diffusion and curvature flow,” in Proc. SIGGRAPH, pp. 317–324, 1999.

[3] Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph neural networks: Tax-

onomy, advances, and trends,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 13, no. 1, pp. 1–54, 2022.

[4] M. Mesgaran and A. Ben Hamza, “Anisotropic graph convolutional network for semi-

supervised learning,” IEEE Transactions on Multimedia, vol. 23, pp. 3931–3942, 2021.

[5] M. Mesgaran and A. Ben Hamza, “Graph fairing convolutional networks for anomaly de-

tection,” Pattern Recognition, 2023.

[6] M. Mesgaran and A. Ben Hamza, “A graph encoder-decoder network for unsupervised

anomaly detection,” Neural Computing and Applications, 2023.

[7] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-supervised em-

bedding,” in Proc. International Conference on Machine Learning, pp. 1168–1175, 2008.

[8] Z. Yang, W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning with graph

embeddings,” in Proc. International Conference on Machine Learning, pp. 40–48, 2016.

[9] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance: A

survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[10] L. Lu, Y. Lu, R. Yu, H. Di, L. Zhang, and S. Wang, “GAIM: Graph attention interaction

model for collective activity recognition,” IEEE Transactions on Multimedia, vol. 22, no. 2,

pp. 524–539, 2020.

96

[11] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representa-

tions,” in Proc. Conference on Knowledge Discovery and Data Mining, pp. 701–710, 2014.

[12] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proc.

Conference on Knowledge Discovery and Data Mining, pp. 855–864, 2016.

[13] W. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods and

applications,” IEEE Data Engineering Bulletin, 2017.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations

of words and phrases and their compositionality,” in Proc. Advances in Neural Information

Processing, pp. 3111–3119, 2013.

[15] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural networks,”

in International Conference on Learning Representations, 2016.

[16] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv preprint

arXiv:1711.07553, 2018.

[17] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs

with fast localized spectral filtering,” in Advances in Neural Information Processing Sys-

tems, pp. 3844–3852, 2016.

[18] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. Bronstein, “Geometric deep

learning on graphs and manifolds using mixture model CNNs,” pp. 5425–5434, 2017.

[19] R. Liao, Z. Zhao, R. Urtasun, and R. Zemel, “LanczosNet: Multi-scale deep graph convolu-

tional networks,” in International Conference on Learning Representations, 2019.

[20] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural network,” in Inter-

national Conference on Learning Representations, 2019.

[21] F. Wu, T. Zhang, A. de Souza Jr., C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in Proc. International Conference on Machine Learning, 2019.

[22] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation learn-

ing on graphs with jumping knowledge networks,” in Proc. International Conference on

Machine Learning, 2018.

[23] L. Zhao and L. Akoglu, “PairNorm: Tackling oversmoothing in GNNs,” in International

Conference on Learning Representations, 2020.

97

[24] D. M. Tax and R. P. Duin, “Support vector data description,” Machine learning, vol. 54,

no. 1, pp. 45–66, 2004.

[25] G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for anomaly detection: A

review,” ACM Computing Surveys, vol. 54, no. 2, pp. 1–38, 2021.

[26] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and

M. Kloft, “Deep one-class classification,” in Proc. International Conference on Machine

Learning, pp. 4393–4402, 2018.

[27] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and M. Kloft,

“Deep semi-supervised anomaly detection,” in Proc. International Conference on Learning

Representations, 2019.

[28] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,”

in Proc. SIAM International Conference on Data Mining, pp. 594–602, 2019.

[29] A. Kumagai, T. Iwata, and Y. Fujiwara, “Semi-supervised anomaly detection on attributed

graphs,” arXiv preprint arXiv:2002.12011, 2020.

[30] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Combining neural networks with person-

alized pagerank for classification on graphs,” in Proc. International Conference on Learning

Representations, 2019.

[31] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs go as deep as

CNNs?,” in Proc. IEEE International Conference on Computer Vision, pp. 9267–9276,

2019.

[32] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional

networks,” in Proc. International Conference on Machine Learning, pp. 1725–1735, 2020.

[33] X. Wang, B. Jin, Y. Du, P. Cui, Y. Tan, and Y. Yang, “One-class graph neural networks

for anomaly detection in attributed networks,” Neural Computing and Applications, vol. 33,

no. 18, pp. 12073–12085, 2021.

[34] S. Zhou, Q. Tan, Z. Xu, X. Huang, and F.-l. Chung, “Subtractive aggregation for attributed

network anomaly detection,” in Proc. ACM International Conference on Information &

Knowledge Management, pp. 3672–3676, 2021.

98

[35] Y. Pei, T. Huang, W. van Ipenburg, and M. Pechenizkiy, “ResGCN: attention-based

deep residual modeling for anomaly detection on attributed networks,” Machine Learning,

vol. 111, no. 2, pp. 519–541, 2022.

[36] Z. Zhuang, K. M. Ting, G. Pang, and S. Song, “Subgraph centralization: A necessary step

for graph anomaly detection,” in Proc. SIAM International Conference on Data Mining,

2023.

[37] J. Duan, S. Wang, P. Zhang, E. Zhu, J. Hu, H. Jin, Y. Liu, and Z. Dong, “Graph anomaly

detection via multi-scale contrastive learning networks with augmented view,” in Proc. AAAI

Conference on Artificial Intelligence, 2023.

[38] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gomez-Bombarelli, T. Hirzel,

A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molec-

ular fingerprints,” in Advances in Neural Information Processing Systems, 2015.

[39] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-toend deep learning architecture for

graph classification,” in Proc. AAAI Conference on Artificial Intelligence, pp. 4438–4445,

2018.

[40] X. Zheng, B. Zhou, J. Gao, Y. G. Wang, P. Lio, M. Li, and G. Montufar, “How framelets

enhance graph neural networks,” in Proc. International Conference on Machine Learning,

2021.

[41] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph rep-

resentation learning with differentiable pooling,” in Advances in Neural Information Pro-

cessing Systems, 2018.

[42] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. International Conference

on Machine Learning, vol. 97, pp. 3734–3743, 2019.

[43] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph neural networks

for graph pooling,” in Proc. International Conference on Machine Learning, pp. 874–883,

2020.

[44] H. Gao and S. Ji, “Graph U-Nets,” in Proc. International Conference on Machine Learning,

pp. 2083–2092, 2019.

[45] H. Krim and A. Ben Hamza, Geometric methods in signal and image analysis. Cambridge

University Press, 2015.

99

[46] S. Biasotti, A. Cerri, M. Abdelrahman, and et al., “SHREC’14 track: Retrieval and classi-

fication on textured 3D models,” in Proc. Eurographics Workshop on 3D Object Retrieval,

pp. 111–120, 2014.

[47] S. Biasotti, A. Cerri, M. Aono, and et al., “Retrieval and classification methods for textured

3D models: a comparative study,” The Visual Computer, vol. 32, pp. 217–241, 2016.

[48] D. Pickup, X. Sun, P. L. Rosin, and et al., “Shape retrieval of non-rigid 3d human models,”

International Journal of Computer Vision, vol. 120, pp. 169–193, 2007.

[49] M. Masoumi and A. Ben Hamza, “Shape classification using spectral graph wavelets,” Ap-

plied Intelligence, vol. 47, pp. 1256–1269, 2017.

[50] Y. Zhang and A. Ben Hamza, “Vertex-based diffusion for 3-D mesh denoising,” IEEE Trans-

actions on Image Processing, vol. 16, pp. 1036–1045, 2007.

[51] E. E. Abdallah, A. Ben Hamza, and P. Bhattacharya, “Spectral graph-theoretic approach to

3D mesh watermarking,” in Proceedings of Graphics Interface, pp. 327–334, 2007.

[52] E. E. Abdallah, A. Ben Hamza, and P. Bhattacharya, “Watermarking 3D models using spec-

tral mesh compression,” Signal, Image and Video Processing, vol. 3, pp. 375–389, 2009.

[53] P. Kazienko and T. Kajdanowicz, “Label-dependent node classification in the network,”

Neurocomputing, vol. 75, no. 1, pp. 199–209, 2012.

[54] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information

network embedding,” in Proc. International Conference on World Wide Web, pp. 1067–

1077, 2015.

[55] L. Cai and S. Ji, “A multi-scale approach for graph link prediction,” in Proc. AAAI Confer-

ence on Artificial Intelligence, vol. 34, pp. 3308–3315, 2020.

[56] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” Advances in

neural information processing systems, vol. 31, 2018.

[57] C. Liu, Q. Zhong, X. Ao, L. Sun, W. Lin, J. Feng, Q. He, and J. Tang, “Fraud transac-

tions detection via behavior tree with local intention calibration,” in Proc. ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 3035–3043, 2020.

100

[58] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A com-

prehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on

Knowledge and Data Engineering, 2021.

[59] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional networks for semi-

supervised learning,” in Proc. AAAI Conference on Artificial Intelligence, pp. 3538–3545,

2018.

[60] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric graph convolutional

autoencoder for unsupervised graph representation learning,” in Proc. of the IEEE/CVF In-

ternational Conference on Computer Vision, pp. 6519–6528, 2019.

[61] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional networks with eigen-

pooling,” in Proc. ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pp. 723–731, 2019.

[62] H. Yuan and S. Ji, “Structpool: Structured graph pooling via conditional random fields,” in

Proc. International Conference on Learning Representations, 2020.

[63] T. Chen, K. Zhou, K. Duan, W. Zheng, P. Wang, X. Hu, and Z. Wang, “Bag of tricks for

training deeper graph neural networks: A comprehensive benchmark study,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 2769–2781, 2023.

[64] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as deep as cnns?,”

in Proc. IEEE/CVF International Conference on Computer Vision, pp. 9267–9276, 2019.

[65] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural

networks meet personalized pagerank,” in Proc. International Conference on Learning Rep-

resentations (ICLR), 2019.

[66] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation learn-

ing on graphs with jumping knowledge networks,” in Proc. International Conference on

Machine Learning, pp. 5453–5462, 2018.

[67] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proc. ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 338–348, 2020.

[68] A. Ortega, P. Frossard, J. Kovacevic, J. Moura, and P. Vandergheynst, “Graph signal pro-

cessing: Overview, challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5,

pp. 808–828, 2018.

101

[69] S. Bhagat, G. Cormode, and S. Muthukrishnan, Node Classification in Social Networks. In:

Aggarwal C. (eds), Springer, 2011.

[70] F. Huang, X. Li, S. Zhang, J. Zhang, J. Chen, and Z. Zhai, “Overlapping community de-

tection for multimedia social networks,” IEEE Transactions on Multimedia, vol. 19, no. 8,

pp. 1881–1893, 2017.

[71] L. Xu, T. Bao, L. Zhu, and Y. Zhang, “Trust-based privacy-preserving photo sharing in

online social networks,” IEEE Transactions on Multimedia, vol. 21, no. 3, pp. 591–602,

2019.

[72] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal graph

convolutional networks for traffic flow forecasting,” in Proc. AAAI Conference on Artificial

Intelligence, pp. 922–929, 2013.

[73] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L. Tang, J. Gui, Z. Li, H. Chen, and P. Yu, “Hetero-

geneous graph matching networks for unknown malware detection,” in Proc. International

Joint Conference on Artificial Intelligence, pp. 3762–3770, 2013.

[74] S. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueckert, “Metric

learning with spectral graph convolutions on brain connectivity networks,” NeuroImage,

vol. 169, no. 0, pp. 431–442, 2018.

[75] Y. Chen, J. Wang, Y. Bai, G. C. nón, and V. Saligrama, “Probabilistic semantic retrieval for

surveillance videos with activity graphs,” IEEE Transactions on Multimedia, vol. 21, no. 3,

pp. 704–716, 2019.

[76] Q. Peng and Y.-M. Cheung, “Automatic video object segmentation based on visual and

motion saliency,” IEEE Transactions on Multimedia, vol. 21, no. 12, pp. 3083–3094, 2019.

[77] J. Gao and C. Xu, “CI-GNN: Building a category-instance graph for zero-shot video classi-

fication,” IEEE Transactions on Multimedia, 2020.

[78] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based semi-supervised

classification,” in Proc. World Wide Web Conference, 2018.

[79] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional networks,” in Con-

ference on Knowledge Discovery and Data Mining, 2018.

102

[80] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards fast graph repre-

sentation learning,” in Advances in Neural Information Processing, pp. 1–10, 2018.

[81] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

in Advances in Neural Information Processing, pp. 1024–1034, 2017.

[82] P. Velic̆ković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention

networks,” in International Conference on Learning Representations, 2018.

[83] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” in

International Conference on Learning Representations, 2019.

[84] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional networks for semi-

supervised learning,” in AAAI Conference on Artificial Intelligence, pp. 3538–3545, 2018.

[85] P. Velic̆ković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph

infomax,” in International Conference on Learning Representations, 2019.

[86] J. Weickert, Anisotropic Diffusion in Image Processing. ECMI Series, Teubner-Verlag,

1998.

[87] M. Black, G. Sapiro, D. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE

Transactions on Image Processing, vol. 7, no. 3, pp. 421–432, 1998.

[88] Y. Zhang and A. B. Hamza, “Vertex-based diffusion for 3-D mesh denoising,” IEEE Trans-

actions on Image Processing, vol. 16, no. 4, pp. 1036–1045, 2007.

[89] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric framework

for learning from labeled and unlabeled examples,” Journal of Machine Learning Research,

vol. 7, pp. 2399–2434, 2006.

[90] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-supervised em-

bedding,” in Neural Networks: Tricks of the Trade, pp. 639–655, 2012.

[91] X. Wu, Z. Li, A. So, J. Wright, and S. f. Chang, “Learning with partially absorbing random

walks,” in Advances in Neural Information Processing, pp. 3077–3085, 2012.

[92] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, , and T. Eliassi-Rad, “Collective

classification in network data,” AI Magazine, vol. 29, no. 3, pp. 93–106, 2008.

103

[93] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning with graph

embeddings,” in Proc. International Conference on Machine Learning, pp. 40–48, 2016.

[94] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Con-

ference on Learning Representations, 2015.

[95] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine

Learning Research, pp. 2579–2605, 2008.

[96] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing

Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[97] K. Doshi and Y. Yilmaz, “Online anomaly detection in surveillance videos with asymptotic

bound on false alarm rates,” Pattern Recognition, vol. 114, 2021.

[98] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, , and R. Williamson, “Estimating the

support of a high-dimensional distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–

1471, 2001.

[99] F. Zhang, S. Kan, D. Zhang, Y. Cen, L. Zhang, and V. Mladenovic, “A graph model-based

multiscale feature fitting method for unsupervised anomaly detection,” Pattern Recognition,

vol. 138, 2023.

[100] L. A. S. Arias, C. W. Oosterlee, and P. Cirillo, “AIDA: Analytic isolation and distance-based

anomaly detection algorithm,” Pattern Recognition, vol. 141, 2023.

[101] R. Wang, K. Nie, T. Wang, Y. Yang, and B. Long, “Deep learning for anomaly detection,”

in Proc. International Conference on Web Search and Data Mining, pp. 894–896, 2020.

[102] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: a

survey,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 626–688, 2015.

[103] H. Cevikalp, B. Uzun, Y. Salk, H. Saribas, and O. Köpüklü, “From anomaly detection to

open set recognition: Bridging the gap,” Pattern Recognition, vol. 138, 2023.

[104] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in Proc. Interna-

tional Conference on Learning Representations, 2017.

[105] T. Schlegl, P. Seeböck, S. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-AnoGAN: Fast

unsupervised anomaly detection with generative adversarial networks,” Medical Image Ana-

lysis, vol. 54, pp. 30–44, 2019.

104

[106] F. D. Mattia, P. Galeone, M. D. Simoni, and E. Ghelfi, “A survey on GANs for anomaly

detection,” arXiv preprint arXiv:1906.11632, 2019.

[107] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshminarayanan, “Do deep gen-

erative models know what they don’t know?,” in Proc. International Conference on Learn-

ing Representations, 2019.

[108] C. Huang, M. Li, F. Cao, H. Fujita, Z. Li, and X. Wu, “Are graph convolutional networks

with random weights feasible?,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 2022.

[109] G. Taubin, “A signal processing approach to fair surface design,” in Proc. SIGGRAPH,

pp. 351–358, 1995.

[110] G. Taubin, T. Zhang, and G. Golub, “Optimal surface smoothing as filter design,” in Proc.

European Conference on Computer Vision, 1996.

[111] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph

theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[112] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets: Graph convolutional

neural networks with complex rational spectral filters,” IEEE Transactions on Signal Pro-

cessing, vol. 67, no. 1, pp. 97–109, 2018.

[113] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi, “Graph neural networks with convolu-

tional ARMA filters,” arXiv preprint arXiv:1901.01343, 2019.

[114] A. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for graphs with feedback-looped

filters,” in Advances in Neural Information Processing Systems, 2019.

[115] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Interna-

tional Conference on Learning Representations, 2015.

[116] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi Rad, “Collective clas-

sification in network data,” AI Magazine, vol. 29, no. 3, pp. 93–106, 2008.

[117] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural net-

work evaluation,” arXiv preprint arXiv:1811.05868, 2018.

105

[118] J. Wu, J. He, and Y. Liu, “ImVerde: Vertex-diminished random walk for learning network

representation from imbalanced data,” in Proc. IEEE International Conference on Big Data,

pp. 871–880, 2018.

[119] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang,

“Graph random neural networks for semi-supervised learning on graphs,” in Advances in

Neural Information Processing Systems, 2020.

[120] J. Lee, Y. Oh, Y. In, N. Lee, D. Hyun, and C. Park, “GraFN: Semi-supervised node classifi-

cation on graph with few labels via non-parametric distribution assignment,” in Proc. SIGIR

Conference on Research and Development in Information Retrieval, 2022.

[121] D. Chen, Y. Lin, G. Zhao, X. Ren, P. Li, J. Zhou, and X. Sun, “Topology-imbalance learn-

ing for semi-supervised node classification,” in Advances in Neural Information Processing

Systems, 2021.

[122] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and pro-

jection for dimension reduction,” The Journal of Open Source Software, 2018.

[123] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[124] K. Xu, M. Zhang, S. Jegelka, and K. Kawaguchi, “Optimization of graph neural networks:

Implicit acceleration by skip connections and more depth,” in Proc. International Confer-

ence on Machine Learning, 2021.

[125] G. Pang, A. van den Hengel, C. Shen, and L. Cao, “Toward deep supervised anomaly detec-

tion: Reinforcement learning from partially labeled anomaly data,” in Proc. ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, pp. 1298–1308, 2021.

[126] F. Liu, X. Ma, J. Wu, J. Yang, S. Xue, A. Beheshti, C. Zhou, H. Peng, Q. Z. Sheng, and

C. C. Aggarwal, “DAGAD: Data augmentation for graph anomaly detection,” in Proc. IEEE

International Conference on Data Mining, pp. 259–268, 2022.

[127] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A com-

prehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 131, 2021.

106

[128] H. Tao, J. Qiu, Y. Chen, V. Stojanovic, and L. Cheng, “Unsupervised cross-domain rolling

bearing fault diagnosis based on time-frequency information fusion,” Journal of the Franklin

Institute, vol. 360, no. 2, pp. 1454–1477, 2023.

[129] X. Song, P. Sun, S. Song, and V. Stojanovic, “Finite-time adaptive neural resilient dsc for

fractional-order nonlinear large-scale systems against sensor-actuator faults,” Nonlinear Dy-

namics, vol. 111, pp. 12181–12196, 2023.

[130] X. Song, C. Wu, V. Stojanovic, and S. Song, “1 bit encoding-decoding-based event-triggered

fixed-time adaptive control for unmanned surface vehicle with guaranteed tracking perfor-

mance,” Control Engineering Practice, vol. 135, 2023.

[131] B. Perozzi and L. Akoglu, “Scalable anomaly ranking of attributed neighborhoods,” in Proc.

SIAM International Conference on Data Mining, pp. 207–215, 2016.

[132] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly detection in

attributed networks,” in Proc. International Joint Conference on Artificial Intelligence,

pp. 2152–2158, 2017.

[133] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “ANOMALOUS: A joint modeling approach

for anomaly detection on attributed networks,” in Proc. International Joint Conference on

Artificial Intelligence, pp. 3513–3519, 2018.

[134] J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking graph neural networks for anomaly detection,”

in Proc. International Conference on Machine Learning, vol. 162, pp. 21076–21089, 2022.

[135] E. Ranjan, S. Sanyal, and P. Talukdar, “ASAP: Adaptive structure aware pooling for learning

hierarchical graph representations,” in Proc. AAAI Conference on Artificial Intelligence,

vol. 34, pp. 5470–5477, 2020.

[136] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear cod-

ing for image classification,” in Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3360–3367, 2010.

[137] J. Li, J. Li, Y. Liu, J. Yu, Y. Li, and H. Cheng, “Deconvolutional networks on graph data,”

in Advances in Neural Information Processing Systems, pp. 21019–21030, 2021.

[138] C. Li and A. Ben Hamza, “A multiresolution descriptor for deformable 3D shape retrieval,”

The Visual Computer, vol. 29, pp. 513–524, 2013.

107

[139] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node embeddings

via diffusion wavelets,” in Proc. ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 1320–1329, 2018.

[140] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and mining of

academic social networks,” in Proc. ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 990–998, 2008.

[141] L. Tang and H. Liu, “Relational learning via latent social dimensions,” in Proc. ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–

826, 2009.

[142] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed

networks via contrastive self-supervised learning,” IEEE Transactions on Neural Networks

and Learning Systems, 2021.

[143] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed networks,” in Proc.

ACM International Conference on Web Search and Data Mining, pp. 357–365, 2019.

[144] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based

local outliers,” in Proc. ACM SIGMOD International Conference on Management of Data,

pp. 93–104, 2000.

[145] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “SCAN: a structural clustering algorithm

for networks,” in Proc. ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 824–833, 2007.

[146] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph

infomax,” in International Conference on Learning Representations, 2019.

[147] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via cross-

network meta-learning,” in Proc. ACM Web Conference, pp. 2448–2456, 2021.

[148] Y. Chen, W. Luo, Y. Hao, and H. Jiang, “Anomaly detection of distribution network based

on adversarial dual autoencoder,” in Proc. Journal of Physics: Conference Series, vol. 2384,

2022.

[149] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations, 2015.

108

[150] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan, “Graph embedded

pose clustering for anomaly detection,” in Proc. IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 10539–10547, 2020.

109

	83e7e9875b78e1c012a7425fbd84645d0e31dba8528f4924cc9dacfe1c30b162.pdf
	303f1e47fc6fd285f4b904df7a3fbcd86d57391cd8aaee298b93d69ad4598830.pdf
	83e7e9875b78e1c012a7425fbd84645d0e31dba8528f4924cc9dacfe1c30b162.pdf
	List of Tables
	List of Figures
	Introduction
	Framework and Motivation
	Problem Statement
	Semi-Supervised Node Classification
	Semi-Supervised Graph Anomaly Detection
	Unsupervised Graph Anomaly Detection

	Objectives
	Literature Review
	Preliminaries
	Graph Theory Basics
	Graph Embedding
	Graph Embedding Applications
	Graph Neural Networks
	Graph Convolutional Networks

	Overview and Contributions

	Anisotropic Graph Convolutional Network for Semi-supervised Learning
	Introduction
	Related Work
	Method
	Problem Formulation
	Proposed Approach

	Experiments
	Results
	Statistical Significance Analysis
	Visualization
	Robustness to Oversmoothing
	Parameter Sensitivity Analysis
	Discussion

	Graph Fairing Convolutional Networks for Anomaly Detection
	Introduction
	Related Work
	Preliminaries and Problem Statement
	Proposed Method
	Spectral Graph Filtering
	Implicit Fairing
	Spectral Analysis
	Iterative Solution
	Graph Fairing Convolutional Network
	Model Prediction
	Model Complexity
	Model Training
	Model Inference

	Experiments
	Datasets
	Baseline Methods
	Evaluation Metric
	Implementation Details
	Anomaly Detection Performance
	Parameter Sensitivity Analysis
	Visualization
	Ablation Studies

	A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection
	Introduction
	Related Work
	Proposed Method
	Encoder
	Decoder
	Model Training

	Experiments
	Experimental Setup
	Anomaly Detection Performance
	Parameter Sensitivity Analysis
	Ablation Study
	Discussions

	Conclusions and Future Work
	Contributions of the Thesis
	Anisotropic Graph Convolutional Network for Semi-supervised Learning
	Graph Fairing Convolutional Networks for Anomaly Detection
	A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection

	Limitations
	Future Work
	Spatial-Temporal Graph Autoencoder for Anomaly Detection
	Graph Link Prediction for Anomaly Detection

	References

	Name: Mahsa Mesgaran Ayaghchi
	Program: Information and Systems Engineering
	Chair: Govind Gopakumar
	Examiner 2: Yong Zeng
	Thesis Title: Graph Representation Learning for Classification and Anomaly Detection
	Thesis Title 2:
	Thesis Title 3:
	Examiner: Nizar Bouguila
	External Examiner: Wassim Bouachir
	Dept Chair /GPD: Chun Wang
	Dean: Mourad Debbabi
	Date of Defence: December 19, 2023
	Faculty: Gina Cody School
	Supervisor: Abdessamad Ben Hamza
	Co-Supervisor:
	Arm’s Length Examiner: Farjad Shadmehri

