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Abstract

Multivariate Change of Measure as Correction Method in Ethical

Pricing

Éloi D’Amour Bizimana

In recent years, multiple global events have drawn society’s attention to fairness-

related issues and various societal movements resulted from them. For many

fields, the impact was immediate and substantial, but for others it has been

much more timid. Insurance is one of the latter. More specifically, the way fair-

ness is implemented in algorithms used to calculate insurance premiums has not

changed in decades due in part to the lack of modernization from regulators and

in part to the complexity of the issue. Nonetheless, in preparation for society’s

growing expectations, researchers have developed many ways to implement al-

gorithmic fairness. An exposition is made on this concept, including qualitative

and quantitative definitions of fairness as well as approaches to its implementa-

tion found in the literature. In particular, the method developed by Lindholm

et al. (2022) [8] is discussed in detail and followed up by the introduction of our

own novel approach. This approach is demonstrated on simulated data, and it

is shown that it can significantly reduce unfairness according to pre-determined

metrics.
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Chapter 1

Introduction

Insurers use a plethora of variables to make various decisions relating to their

policyholders, such as determining insurance premiums, classifying risks or allo-

cating capital. There is no questioning the use of the majority of these variables.

For example, none would argue that proximity of a fire station would help de-

termine the price of a fire insurance policy. However, that is not the case for all

variables that are at the insurer’s disposition. Variables such as age, gender and

postal code are very often provided to insurers and discriminating with respect to

these variables is far from being approved unanimously by experts in algorithmic

fairness. This is why it is important that there is legislation in place that con-

siders the impact, and more specifically the discriminatory impact, of variables

that may be considered “sensitive”.

In Canada, legislation tends to be binary, generally limiting itself to allowing

or forbidding the use of certain variables. For instance, gender can be used as

an auto insurance pricing variable in Alberta, Ontario and Quebec but not in

other Canadian provinces. When a government decides to prohibit the use of a

sensitive variable in insurance pricing models, it is certainly with the intention

that no discrimination is made with respect to that variable, but that approach

has long been criticized by researchers. Zliobaite and Custers [14] not only show
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that simply disusing a variable does very little to prevent discrimination with

respect to that variable, but they even demonstrate a way of using the variable

adequately that is much more efficient in that regard.

More formally, consider a treatment Y obtained from explanatory variables X

and protected variables P, with (X,P) making up all the information available

to the insurer. In the current context of insurance pricing, treatment will be

analogous to premium charged to policyholders. For protected variables, there is

no consensus on their definition, but we will consider them to be variables against

which the insurer does not want to discriminate. Note that the use of the word

“against” here does not imply that the discrimination is disadvantageous.

We are interested in how we can treat individuals fairly in insurance. Most dictio-

naries will define fairness as the quality of treating people equally or in a way that

is reasonable, but, in insurance, “treating” everyone equally is often inappropriate,

as charging everyone the same premium goes against the actuarial principle that

a premium should be representative of the associated risk. Therefore, we start

by discussing various notions of fairness that are pertinent when implementing

data-driven algorithms, i.e. algorithmic fairness. Algorithmic fairness is a very

broad subject, and we only present some of its concepts, with a focus on the ones

pertinent to our work. Tremblay (2022) [11] and Wang et al. (2022) [12] provide

a more comprehensive and modern review of the subject.

1.1 Types of Fairness

In algorithmic fairness, two main ideologies stand out: individual fairness and

group fairness. Note that, although we will use mathematical statements to de-

scribe notions of fairness, they are much more complex than mathematics could

ever hope to encompass and should be appropriately combined with ethical con-

siderations when put into practice. Also, these mathematical statements may

present these ideologies as conflicting, but conceptually there is good argument

2



that they not only should, but can be applied concurrently, as is elaborated by

Binns (2020) [2] from a more theoretical standpoint.

1.1.1 Individual Fairness

Individual fairness defends that, if two individuals are similar with respect to their

explanatory variables X, then they should be treated similarly, i.e. have a similar

Y . For a more mathematical interpretation, consider individuals A and B with

treatment, explanatory and protected variables (YA,XA,PA) and (YB,XB,PB),

respectively. Then, individual fairness could be represented by

M(XA,XB) < δ =⇒ m(YA, YB) < ϵ,

for small δ, ϵ > 0, where M is a distance measure for occurrences of X and m

is a distance measure for occurrences of Y . Determining the treatment similar-

ity function m is typically straightforward (e.g., difference between premiums,

whether loans were approved). The challenge usually arises when determining

the similarity function for explanatory variables M .

Counterfactual fairness is one approach that would fall under the umbrella of in-

dividual fairness. It asserts that an individual should receive the same treatment

if they were in a “counterfactual universe” where they had the same explanatory

variables, but different protected variables, or, mathematically:

XA = XB =⇒ YA = YB even when PA ̸= PB.

While counterfactual fairness is one of the easier approaches to implement in indi-

vidual fairness, there are multiple arguments against its use. One such argument

is that protected variables are typically not available to the insurer, hindering its

implementation. Also, counterfactual fairness implicitly assumes that protected

variables are reduced to their observation, e.g. P ∈ {0, 1}. However, protected

variables often have impacts that go beyond what datasets can register. The
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reader is pointed to Kohler-Hausmann (2019) [7] for an extensive conceptual dis-

cussion of the matter.

Access to P is not always necessary to implement individual fairness. For in-

stance, Dwork et al. (2011) [5] establish a Lipschitz condition that is respected

when the distance between outcomes Y is bounded by the distance between the

explanatory variables X, without any regard to protected variables P.

1.1.2 Group Fairness

Group fairness defends that, overall, categories of a sensitive variable should be

treated similarly, independently of the explanatory variables. Group fairness ap-

proaches will be concerned with the combination of the treatment and protected

variables (Y,P), with no regard for explanatory variables X. Let Dom(P) rep-

resent the domain of P. Then, it could be said that group fairness is respected

with regards to P when the following equation is true:

∀p1,p2 ∈ Dom(P) E(g(Y ) | P = p1) = E(g(Y ) | P = p2),

where g is some function of the treatment. An equality is often difficult to achieve,

and bounding a difference or a ratio is often more manageable:

|E(g(Y ) | P = 0)− E(g(Y ) | P = 1)| < ϵ or 1−ϵ <
∣∣∣∣E(g(Y ) | P = 0)

E(g(Y ) | P = 1)

∣∣∣∣ < 1

1− ϵ
,

for small ϵ > 0.

Detection of Group Unfairness

Multiple authors have developed ways of assessing whether unfairness is present.

Zliobaite (2017) [13] presents various statistical tests that have as null hypothesis

that there is no discrimination. One such test is the regression slope test, which

fits an ordinary least squares regression to the data, using Y as the response and

(X,P) as the covariates. If the coefficient βP is significantly different from zero,
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then the null hypothesis is rejected and the model may be unfair when it comes

to sensitive variable P , where p ∈ P.

A more popular approach to detecting group unfairness is assessing whether the

model respects a certain condition. Corbett-Davies et al. (2017) [3] suggest

statistical parity (also known as demographic parity), which we define below for

a single protected variable P .

Definition 1.1.1 (Statistical Parity). In a classification context, a function f

satisfies statistical parity if the treatment Y = f(·) is independent from the pro-

tected variable P ∈ Dom(P ) = {p0, p1, . . . , pn} with n <∞. That is,

∀y ∈ Dom(Y ) P(Y = y | P = p0) = · · · = P(Y = y | P = pn),

where Dom(Y ) is finite.

In a regression context, where Y is continuous, the condition becomes

∀y ∈ Dom(Y ) P(Y ≤ y | P = p0) = · · · = P(Y ≤ y | P = pn), (1.1.1)

where Dom(Y ) is uncountably infinite.

An implication of statistical parity is statistical parity in expectation.

Definition 1.1.2 (Statistical parity in expectation). A function f satisfies sta-

tistical parity in expectation if the expectation of the treatment Y = f(·) is inde-

pendent from the protected variable P ∈ Dom(P ) = {p0, p1, . . . ,n } with n < ∞.

That is,

E(Y | P = p0) = E(Y | P = p1) = · · · = E(Y | P = pn) = E(Y ). (1.1.2)

Statistical parity is the go-to measure of group fairness, and some even treat

it as the definition of group fairness itself. However, statistical parity on its

own is not a sufficient notion of fairness. Dwork et al. (2011) [5] give the “self-
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fulfilling prophecy” as an example. The self-fulfilling prophecy considers a loan

analyst tasked with determining whether individuals should receive a loan. The

analyst should only base their decision on the individual’s explanatory variables

X, but is pernicious and also uses the protected variable P ∈ {0, 1}. Instead

of blatantly denying loans to individuals with P = 0, the analyst grants loans

to an equivalent proportion of individuals with P = 0 and P = 1, but, among

individuals with P = 0, selects those who are more likely to default according

to the explanatory variables X. In doing so, the analyst does achieve statistical

parity, but effectively builds a case against individuals with P = 0. Since these

individuals are more likely to default from the start, it will be possible to make

the observation that individuals with P = 0 are more likely to default than

individuals with P = 1.

1.2 Correction of Unfairness

When it comes to correcting unfairness, four types of approaches are present in the

literature: ignorance, pre-treatment, during treatment, and post-treatment.

Ignorance

Ignorance, as its name implies, consists in ignoring the sensitive variables P, i.e.

not explicitly using them as arguments of the model function. This approach is,

for good reason, criticised by many. Indeed, it is often the case that explanatory

variables X and sensitive variables P will have some level of dependence, such

that there is information about sensitive variables included in the explanatory

variables. For example, many home insurance models use postal code (or some

transformation of postal code) as an explanatory variable, but postal code and

ethnicity can be highly dependent. Multiple cities have neighbourhoods where

a majority of residents are of the same ethnicity. In such a scenario, although

ethnicity is not directly used, enough of its information is contained in the postal

code that there would not be much difference between results drawn from directly
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using either one of the variables. Ignorance distinguishes itself from the other

three approaches in that the other three will typically use sensitive variables in

order to attain a fairer model. As mentioned before, many authors criticize the

ignorance approach because a proper use of protected variables achieve much

better results when it comes to introducing fairness.

Pre-treatment

Pre-treatment consists in adjusting the data before applying the model function.

A pre-treatment approach would be used when it is believed that bias is already

present in the data being used. Possible adjustments include but are not limited

to data selection (for example, removing observations from the data to obtain

as many observations with S = 0 than observations with S = 1), and data

modification.

Intra-treatment

Intra-treatment consists in changing the model function itself. This can be done

in many ways and at many levels, from adopting a neural network instead of a

linear model to adjusting a loss function. This method is model specific, such

that developing an industry-wide standard for during-treatment approaches to

fairness is difficult. Also, due to the complexity of model functions, this method

is generally the hardest one to implement. Fitzsimons et al. (2019) [6] impose

fairness constraints on kernel regression which allows for regression trees that

satisfy statistical parity in expectation.

Post-treatment

Post-treatment consists in making adjustments directly to the model outputs

such that certain requirements are met. For example, statistical parity could

be easier to attain under post-treatment approaches, since it may depend on

the output variable Y and a protected variable P which is not an input of the

model function. An advantage of post-treatment is that the model function is not
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required to implement it. Petersen et al. (2021) [10] consider the treatment Y

and a similarity graph between individuals, undertaking the problem of individual

fairness in a classification context through a graph smoothing approach.

Our Approach

In the literature, the majority of the work on algorithmic fairness is concerned

with classification problems, such as advertisement or job applicant selection,

and even within the work that is done in regression, not all of it is applicable to

insurance. In the following, we will bring our focus to group fairness in insurance

pricing. In particular, our objective will be to implement a post-treatment cor-

rection to premiums that have already been calculated such that they are more

fair, according to some metrics. We can ignore the self-fulfilling prophecy de-

scribed in Section 1.1.2 because we are using a post-treatment approach, and the

treatment, i.e. the calculation of premiums, will have made a proper use of the

explanatory variables.

Although the present paper and its developments apply to group fairness, this

is not a statement that group fairness should be preferred to individual fairness.

Such considerations should be tackled by regulators, and we simply provide a

method that would satisfy these needs should they arise in the industry.

We begin by explaining the intra-treatment approach of Lindholm et al. (2022)

[8] to a discrimination-free premium in Chapter 2. We discuss both advantages

and disadvantages to illustrate some of the work done in the literature for group

fairness in a regression context. Then, in Chapter 3, we generalize work from

Pesenti et al (2018) [9]. This generalization will serve as the mathematical back-

bone behind our own correction method, which we elaborate and demonstrate in

Chapter 4. Finally, we conclude and consider some open problems in Chapter

5.
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1.3 Preliminaries

We briefly introduce the reader to measure theory. In the following chapters, we

will be considering random variables through a measure theory lens rather than

a probability theory lens, and the definitions in this section will equip the reader

with necessary knowledge. This assumes that the reader is already well-versed

in probability, and we refer to Chapters 2, 5 and 12 of Axler (2019) [1] for a

thorough exposition.

Definition 1.3.1 (σ-algebra). Let Z be some set and let 2Z represent its power

set, i.e. the set of all its subsets. Then, a subset Σ ⊆ 2Z is called a σ-algebra on

Z if and only if it satisfies the following three conditions:

1. Z ∈ Σ

2. E ∈ Σ =⇒ Z \ E ∈ Σ (Σ is closed under complement)

3. E1, E2, E3, · · · ∈ Σ =⇒ E1∪E2∪E3∪· · · ∈ Σ (Σ is closed under countable

union).

From Conditions 2 and 3, De Morgan’s laws imply that Σ is also closed under

countable intersection.

Definition 1.3.2 (Measurable space, measurable set). Let Z be some set and Σ

be a σ-algebra on Z. Then, (Z,Σ) is a measurable space. If E ∈ Σ, then E is

called a Σ-measurable set, or simply a measurable set when Σ is clear from the

context.

Definition 1.3.3 (Measure, probability measure). Let (Z,Σ) be a measurable

space. Then, a set function µ : Σ → [−∞,∞] is called a measure on (Z,Σ) if

and only if the following conditions hold:

1. µ(∅) = 0

2. Non-negativity: ∀E ∈ Σ, µ(E) ≥ 0

3. Countable additivity: For all countable collections of sets {Ei}∞i=1 in Σ such

9



that ∀j, k ≥ 1, Ej ∩ Ek = ∅:

µ

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

µ (Ei) .

If µ(Z) = 1, then µ is called a probability measure.

Definition 1.3.4 (σ-finite measure). Let (Z,Σ, µ) be a measure space. The mea-

sure µ is said to be a σ-finite measure if and only if there exists a sequence of

sets {Ei}∞i=1 ∈ Σ with µ(Ei) <∞ for all i ∈ N such that
⋃
i∈NEi = Z.

Definition 1.3.5 (Null set). Let (Z,Σ, µ) be a measure space. If µ(E) = 0, then

E is called a µ-null set, or simply a null set when µ is clear from the context.

Definition 1.3.6 (Measure space, probability space). Let (Z,Σ) be a measurable

space and µ be a measure on (Z,Σ). Then, (Z,Σ, µ) is a measure space. If µ is

a probability measure, we say (Z,Σ) is a probability space.

Definition 1.3.7 (Product measure). Let (Z1,Σ1, µ1) and (Z2,Σ2, µ2) be two

measure spaces. Let Σ1 ⊗ Σ2 be the σ-algebra on Z1 × Z2. Then, µ1 × µ2 is a

product measure on the measurable space (Z1 × Z2,Σ1 ⊗ Σ2) if and only if

∀(E1 × E2) ∈ Σ1 ⊗ Σ2 (µ1 × µ2)(E1 × E2) = µ1(E1)µ2(E2).

Definition 1.3.8 (Absolute Continuity). Let (Z,Σ) be a measurable space on

which the measures µ and ν are defined. We say that ν is absolutely continuous

with respect to µ if and only if

∀E ∈ Σ µ(E) = 0 =⇒ ν(E) = 0.

We write ν ≪ µ.

We also state the Radon-Nikodym theorem here, as it will be useful in Chapter

3.
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Theorem 1.3.9 (Radon-Nikodym). Let µ and ν be two measures on the measur-

able space (Z,Σ). If ν ≪ µ, then there exists a Σ-measurable function f : Z →

[0,∞) such that for any E ∈ Σ,

ν(E) =

∫
E

f dµ.
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Chapter 2

The Discrimination-free

Premium

In this chapter, we outline the approach to a discrimination-free premium pro-

posed by Lindholm et al. (2022) [8]. Using notation previously introduced, we

have:

• Y represents treatment, in this case insurance premium

• X, observed, represents an explanatory variable used in the pricing model

• P represents a protected variable, a variable the insurer does not want to

discriminate against, such as gender, religion, ethnicity, etc. Because insur-

ers seldom request that sort of information from potential policyholders, P

is typically not observed, but we make the assumption that the information

is available.

There can be, and most often will be, multiple explanatory variables X and pro-

tected variables P, but we limit ourselves to one of each for simplicity. However,

it is important to note that the results presented in this and following chapter

extend naturally to multivariate X and/or P.
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2.1 Working Out the Discrimination-free Premium

Define the best-estimate premium as follows.

Definition 2.1.1 (Best-estimate premium). The best-estimate premium Y BE

with respect to (X,P ) is

τ(X,P ) := E(L | X,P ). (2.1.1)

The best-estimate premium is what the insurer would charge using all the in-

formation at their disposal. It is clearly discriminatory, as a change in P would

directly result in a change in τ(X,P ).

As mentioned prior, a regulator may forbid the use of P in the model function

to avoid discrimination. In that case, insurers would charge an unawareness

premium, defined as follows.

Definition 2.1.2 (Unawareness premium). The unawareness premium Y U with

respect to X is

τ(X) := E(L | X). (2.1.2)

Using the unawareness premium rather than the best-estimate premium is a

method that falls under the ignorance approach to fairness. The insurer blinds

itself toward P and makes its best-estimate of Y without it. While the unaware-

ness premium does not directly discriminate with respect to P , expressing it in

the following way shows that it does not avoid discrimination altogether:

τ(X) =

∫
p

τ(X, p) dP(p | X). (2.1.3)

So, the unawareness premium indirectly depends on the distribution of P condi-

tioned on X. This means that if any information on P can be drawn from X, it

will be reflected in the calculated premium, as illustrated in the below.
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Consider an insurer calculating premiums using past experience on a portfolio of

20 individuals as a basis. For each individual, we observe the previous year’s loss

L, the region of residence X ∈ {A,B,C} and the immigration status P ∈ {0, 1}

(P = 1 if they have immigrated, P = 0 otherwise). The portfolio is presented in

Table 2.1 and illustrated in Figure 2.1.

ID Loss Region Status ID Loss Region Status
1 135.93 A 0 11 341.66 B 1
2 212.69 A 0 12 187.21 B 1
3 26.23 A 0 13 131.16 C 0
4 25.16 A 0 14 468.84 C 0
5 39.27 A 1 15 399.31 C 1
6 260.73 A 1 16 392.00 C 1
7 277.99 B 0 17 710.37 C 1
8 122.01 B 0 18 247.92 C 1
9 235.00 B 1 19 127.58 C 1

10 36.13 B 1 20 222.83 C 1

Table 2.1: Mock portfolio

To assess whether there is any degree of empirical dependence between X and P ,

we wish to calculate some conditional probabilities. To do so, we first calculate

empirical joint probabilities for the region X and the immigration status P , which

are obtained simply by counting the number of individuals respecting a given

region-status combination and dividing by the total number of observations. For

example, to calculate P(X = A,P = 0), count the number of individuals residing

in region A that have not immigrated. Four individuals respect that condition

(IDs #1-4). Dividing by 20 total observations yields P(X = A,P = 0) = 4/20 =

0.2. Results for all combinations are presented in table 2.2.

P(·, ·) P = 0 P = 1 P ∈ {0, 1}
X = A 0.2 0.1 0.3
X = B 0.1 0.2 0.3
X = C 0.1 0.3 0.4

X ∈ {A,B,C} 0.4 0.6 1

Table 2.2: Empirical joint distribution P of the region X and the immigration
status P for the mock portfolio.
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Figure 2.1: Losses for each individual by ID. Letters indicate the region of res-
idence of the individual and colors indicate immigration status. Vertical lines
segment the individuals by region of residence.

The following conditional probabilities are obtained:

P(P = 1 | X = A) =
P(P = 1, X = A)

P(X = A)
=

2/20

6/20
=

1

3
,

P(P = 1 | X = B) =
P(P = 1, X = B)

P(X = B)
=

4/20

6/20
=

2

3
,

P(P = 1 | X = C) =
P(P = 1, X = C)

P(X = C)
=

6/20

8/20
=

3

4
.

These conditional probabilities show that knowledge on X provides knowledge

on P . For example, knowing that an individual resides in region C would make

the insurer quite confident that that same individual is an immigrant because the

portfolio suggests that 3 in 4 individuals residing in region C are immigrants1.
1While this portfolio is fabricated, it represents a realistic scenario, as touched on in Section

1.2.
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If X and P were independent, all conditional probabilities would be equal. The

fact that is not the case indicates that there is empirical dependence between

X and P . That in and of itself does not necessarily imply unfairness, but this

dependence may add unduly dependence Y and P , due to Y being a function of

X.

Say the insurer wishes to calculate a newcomer’s premium. The insurer assumes

that losses in the coming year will be identical in distribution to losses in the

past year, and decides to calculate premiums using the equivalence principle,

that is:

E(Cash in-flow) = E(Cash out-flow),

E(Y ) = E(L).

The equivalence principle is important because it ensures that, on average, the

insurer will have enough capital to cover the insured’s claims.

The newcomer resides in region C and is an immigrant (P = 1). The insurer’s

first attempt is the best-estimate premium (2.1.1):

Y BE
NEW = E(L | X = xNEW , P = pNEW )

= E(L | X = C,P = 1)

=
20∑
i=1

li ·
P(L = li, Xi = C,Pi = 1)

P(X = C,P = 1)

= 399.31 · 1/20
6/20

+ 392.00 · 1/20
6/20

+ · · ·+ 222.83 · 1/20
6/20

= 350.

Observe that the result is exactly an average of the losses of individuals 15 through

20. This is not a coincidence. Indeed, the best-estimate premium will simply

average across all observations in the portfolio with the same combination (X,P )

as the newcomer, set to (C, 1). Because of this, it is clear that the best-estimate
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premium discriminates against P . If the newcomer had not been an immigrant,

they would have obtained a premium that is the average of all observations with

(X,P ) = (C, 0), which a simple calculation yields to be 300. Table 2.3 also

presents average premiums conditionally on each region, each immigration status

and each combination of region and immigration status.

E(L | ·, ·) P = 0 P = 1 P ∈ {0, 1}
X = A 100.00 150.00 116.67
X = B 200.00 200.00 200.00
X = C 300.00 350.00 337.50

X ∈ {A,B,C} 175.00 266.67 230.00

Table 2.3: Expected values of the losses conditionally on each region, each immi-
gration status and each combination of region and immigration status.

To avoid the kind of discrimination exhibited by the best-estimate premium, the

insurer opts for the unawareness premium (2.1.2):

Y U
NEW = E(L | X = xNEW )

= E(L | X = C)

=
20∑
i=1

li ·
P(L = li, Xi = C)

P(X = C)

= 131.16 · 1/20
8/20

+ 468.84 · 1/20
8/20

+ · · ·+ 222.83 · 1/20
8/20

= 337.50.

Not too differently from the best-estimate premium, the unawareness premium is

obtained by averaging across all observations with X = C. The insurer disregards

P and now only considers the region X. Because no direct use of P was made

in this calculation, it may appear as though Y U
NEW is not discriminatory and, in

fact, even if the newcomer had not been an immigrant (i.e. if they had P = 0

instead of P = 1), they would have been charged the same premium. However,
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the unawareness premium can also be calculated using (2.1.3):

Y U
NEW =

1∑
p=0

E(L | X = xNEW , P = p) · P(P = p | X = xNEW )

= E(L | X = C,P = 0) · P(P = 0 | X = C)

+ E(L | X = C,P = 1) · P(P = 1 | X = C)

= 300 · 1
4
+ 350 · 3

4

= 337.50.

Using (2.1.3) to obtain the unawareness premium shows that it does indeed dis-

criminate against P , but it is nebulous how exactly that is the case. The un-

awareness premium depends not on the immigration status of the newcomer, but

rather implicitly depends on the distribution of immigration status conditional

on region of residence. In this case, because the newcomer resides in region C,

the insurer will use individuals also residing in region C (IDs #13-20) to calculate

the premium. That is demonstrated by the explicit use of P(P = 0 | X = C)

and P(P = 1 | X = C) in calculations. (2.1.3) thus exposes the unawareness

premium as a weighted average of the best estimate premiums for

1. a non-immigrant newcomer residing in region C: τ(X = C,P = 0) = 300

2. an immigrant newcomer residing in region C: τ(X = C,P = 1) = 350.

The weights are the proportions of non-immigrants and immigrants residing in

region C (2
8

= 1
4

and 6
8

= 3
4
, respectively). The unawareness premium will

be the same for all newcomers residing in region C. We point out two key

observations:

1. The unawareness premium, as a discrimination-free alternative to the best-

estimate premium, does result in an improvement as it is free of direct

discrimination, but it is not completely discrimination-free. Indeed, it per-

forms indirect discrimination, which is explained in more detail in later;
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2. Note how the newcomer’s unawareness premium attributes more weight to

immigrant individuals than to non-immigrant individuals because there are

more of the former in region C. It could be considered unfair for a non-

immigrant newcomer to be charged a premium that is more representative

of an immigrant’s risk. This grouping effect is not uncommon in actuarial

pricing, but it is desirable only for explanatory variables.

Now that some understanding of direct discrimination is built, it is properly

defined here.

Definition 2.1.3 (Direct discrimination). A premium τ ′(X) avoids direct dis-

crimination if it can be written as

τ ′(X) = E′(Y | X),

where the expectation E′(·) is taken with respect to a probability measure P′ such

that it (the expectation) exists.

Conceptually, this definition means that a premium is free of direct discrimination

if it can be obtained using as information only the explanatory variable X. In

particular, the unawareness premium obtained for the newcomer does not perform

direct discrimination as it was obtained using only the region of residence X =

C.

The question now becomes: can a premium that is free of both direct and indirect

discrimination be constructed? As answer to this question, Lindholm et al. (2022)

[8] present the discrimination-free premium, defined as follows.

Definition 2.1.4 (Discrimination-free premium). The discrimination-free pre-

mium Y DF with respect to (X,P ) is:

h′(X) :=

∫
p

τ(X, p) dP′(p), (2.1.4)

where the distribution P′(p) is defined on the same range as the marginal distri-
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bution of the discriminatory variable P ∼ P(p).

The choice of P′ itself is not particularly crucial, the key step rather being the

marginalization with respect to X. More precisely, the requirement is that X

and P are independent under the chosen distribution P′. If it were not for that

distinction, (2.1.3) shows that the unawareness premium would be a special case

of (2.1.4) with P′(P = p) = P(P = p | X). A natural choice is P′(P = p) =

P(P = p), the marginal empirical distribution of P and we define the resulting

premium below.

Definition 2.1.5 (Margin-based premium). The margin-based premium Y MB

with respect to X is:

h(X) :=

∫
p

τ(X, p) dP(p). (2.1.5)

It is a special case of the discrimination-free premium, with P′ = P in (2.1.4).

Consider now the newcomer’s margin-based premium:

Y MB
NEW =

1∑
p=0

E(L | X = xNEW , P = p) · P(P = p)

= E(L | X = C,P = 0) · P(P = 0)

+ E(L | X = C,P = 1) · P(P = 1)

= 300 · 8

20
+ 350 · 12

20

= 330.

Like the unawareness premium, the margin-based premium averages the best-

estimate premiums of all occurrences of immigration status in the newcomer’s

region of residence C. The difference comes down to the weights attributed to

each best-estimate premium. Recall P is but one of (possibly infinitely) many

choices for P′. Essentially, any choice of P′ will correspond to a possible weighing

of the best-estimate premiums.

Remark 2.1.6. The unawareness premium of (2.1.3) and the discrimination-
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free premium of (2.1.4) are quite similar. The key difference is in the employed

distribution of P . In (2.1.3), the empirical distribution of P conditional on X

is used, and is the reason behind the indirect discrimination. It implicitly in-

troduces dependence between the explanatory variable and the protected variable.

Because the premium inevitably depends on the explanatory variable, there is a

second-order transitive effect which results in the premium being dependent on

the protected variable as well.

The choice of P′ being up to the insurer gives them a lot of power. For example,

a greedy insurer could try to maximize the premium2. In wanting to attribute all

the weight to the higher best-estimate premium, they would select P′(P = 1) = 1

and obtain, for the newcomer:

Y DF
NEW =

1∑
p=0

E(L | X = xNEW , P = p) · P(P = p)

= E(L | X = C,P = 0) · P(P = 0)

+ E(L | X = C,P = 1) · P(P = 1)

= 300 · 0 + 350 · 1

= 350.

It would also be possible to minimize the premium, by selecting P′(P = 1) =

0:

Y DF
NEW =

1∑
p=0

E(L | X = xNEW , P = p) · P(P = p)

= E(L | X = C,P = 0) · P(P = 0)

+ E(L | X = C,P = 1) · P(P = 1)

= 300 · 1 + 350 · 0

= 300.

2Although we illustrate this idea on the premium of a single newcomer, it would be more
complex, but still feasible, to maximize the total premiums for a portfolio.
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These extrema can be represented, formulaically, as follows:

h+(X) := sup
P′

∫
p

f(X, p) dP′(p),

h−(X) := inf
P′

∫
p

f(X, p) dP′(p).

From these extrema, the following inequalities can be obtained:

h−(X) ≤ h′(X), h(X), τ(X) ≤ h+(X), (2.1.6)

E
[
h−(X)

]
≤ E [h′(X)] , E [h(X)] , E [Y ] ≤ E

[
h+(X)

]
. (2.1.7)

The marginalization of P′ with respect to X can ensure that no indirect discrim-

ination takes place, but many choices will respect that criterion. Furthermore,

the choice of P′ can have a significant impact on the calculated premiums, as

demonstrated by the newcomer’s maximal and minimal premiums. Therefore,

it is important that P′ is chosen with care and can be justified. To that effect,

instead of considering only a single newcomer’s premium, the insurer now turns

their gaze to the premiums of their initial portfolio. Figure 2.2 presents the best-

estimate, unawareness and margin-based premiums for the 20 individuals of the

original portfolio. In the figure, it is explicit that best-estimate premium suffer

from direct discrimination, while unawareness and margin-based premiums do

not. Indeed, in regions A and C, best-estimate premiums are higher for immi-

grants than for non-immigrants (because immigrants tended to have higher losses

in the past year) and both unawareness and margin-based premiums do not vary.

It is not obvious from the figure how unawareness and margin-based premiums

indirectly discriminate, but comparing the two sets of premiums within regions

may help build some intuition.

Consider first region A. When X = A, the two best-estimate premiums are

τ(A, 0) = 100 and τ(A, 1) = 150. In the unawareness premium calculation, which

is a weighted average of the two, they get weights of P(P = 0 | X = A) = 2/3
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Figure 2.2: Best-estimate, unawareness and margin-based premiums for all indi-
viduals of the mock portfolio. Vertical lines segment the individuals by region
of residence, with the left-most section being region A, the middle section being
region B and the right-most section being region C.

and P(P = 1 | X = A) = 1/3, respectively. The unawareness premium attributes

more weight to non-immigrants than to immigrants because more non-immigrants

reside in region A. The margin-based premium attributes to τ(A, 0) and τ(A, 1)

weights of P(P = 0) = 12/20 = 3/5 and P(P = 1) = 8/20 = 2/5, respectively.

Since the margin-based approach attributes more weight to the larger τ(A, 1)

than the unawareness approach, it results in the higher premium. The unaware-

ness premium is so low because it uses information on the immigration status

gained from its dependence with the considered region of residence. The margin-

based premium deviates from the unawareness premium by using information

on P gained from its dependence with all regions. Therefore, the margin-based

premium still depends on the immigration status, but in a way that is consistent

across the whole portfolio.

Now consider region C. When X = C, the two best-estimate premiums are

τ(C, 0) = 300 and τ(C, 1) = 350. Here, the weight attributed to the greater

best-estimate premium τ(C, 1) is P(P = 1) = 12/20 = 3/5, which, contrary to
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region A, is lower than its weight of P(P = 1 | X = C) = 6/8 = 3/4 for the

unawareness premium. Hence, for region C, the margin-based premium is lower

than the unawareness premium and the interpretation is exactly the same as for

region A. Information on immigration status is used but in the same way as in

region A.

In region B, because τ (B, 0) = τ (B, 1) = 200 (the two best-estimate premiums

are equal), the resulting premium will be the same no matter the weighing used.

This means the unawareness premium is equal to the margin-based premium,

as supported by Figure 2.2. In fact, the premium obtained using any other

distribution P′ in (2.1.4) would always be 200.

Comparing the unawareness and margin-based premiums in regions A and C

shows that the latter premium does succeed in reducing discrimination when

compared to the unawareness premium. Although it depends on a distribution

of the immigration status P′, that distribution is not affected by the region of

residence. Therefore, margin-based premiums h(X), while still drawing explana-

tory power from the region of residence X through the best-estimate premiums

τ(X, ·), are free of second-order, or indirect, discrimination toward the immigra-

tion status due to the region of residence. This leads to a proper definition of

indirect discrimination:

Definition 2.1.7 (Indirect discrimination). A premium h′(X) that avoids direct

discrimination is said to avoid indirect discrimination if X and P are independent

under P′.

Remark 2.1.8. By Definition 2.1.7, avoiding direct discrimination is a prereq-

uisite to avoiding indirect discrimination.

Having defined indirect discrimination, a rigorous verification that the margin-

based premium h(X) avoids it is made. The definition states that X and P

must be independent under P′, meaning that the joint distribution P′(X,P ) is

required. Up to this point, the margin-based premium was said to have P′ = P,
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but that is not completely accurate, as X and P are not independent under

their empirical joint distribution P(X = x, P = p). Actually, the margin-based

premium must have P′ = Q which is such that Q(P = p) = P(P = p), but

Q(X = x, P = p) ̸= P(X = x, P = p). Again, many Q will satisfy these

conditions, but a natural choice is constructed here.

Since Definition 2.1.7 requires that X and P be independent under Q, we must

have Q(X = x, P = p) = Q(X = x) ·Q(P = p). For the margin-based premium,

we require Q(P = p) = P(P = p) but Q(X = x) is practically arbitrary, as its

choice will not impact the resulting premium (see that (2.1.5) does not use P′(X =

x) in any way). Despite the choice of Q(X = x) not impacting the margin-based

premium, Q(X = x) = P(X = x) is most natural, and the resulting distribution

Q(X = x, P = p) for the mock portfolio is presented in Table 2.4.

Q(·, ·) P = 0 P = 1 P ∈ {0, 1}
X = A 0.12 0.18 0.3
X = B 0.12 0.18 0.3
X = C 0.16 0.24 0.4

X ∈ {A,B,C} 0.4 0.6 1

Table 2.4: Joint distribution Q of the region X and the immigration status P for
the mock portfolio.

Comparing the empirical joint distribution of (X,P ) of Table 2.2 to the newly

obtained joint distribution of Table 2.4, it can be seen that marginal probabilities

(the bottom rows for X and right-most columns for P ) are the same, but that

the remainders of the tables differ. Furthermore, in Table 2.4, each joint entry

is the product of the corresponding marginal probabilities. We dub this method

the Product-of-Marginals (PoM) method. For example:

Q(X = A,P = 0) = Q(X = A)Q(P = 0) = P(X = A)P(P = 0) = 0.3 ·0.4 = 0.12

Now, the following conditional probabilities are obtained:

Q(P = 1 | X = A) =
Q(P = 1, X = A)

Q(X = A)
=

0.18

0.3
=

3

5
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Q(P = 1 | X = B) =
Q(P = 1, X = B)

Q(X = B)
=

0.18

0.3
=

3

5

Q(P = 1 | X = C) =
Q(P = 1, X = C)

Q(X = C)
=

0.24

0.4
=

3

5

All these probabilities being equal validates that no information on P can be

gained from knowledge of X.

Another important observation is that the (x, p) combinations with Q(X =

x, P = p) > 0 are the same as those with P(X = x, P = p) > 0. This may

seem trivial here because all combinations have non-zero probability under P,

however suppose P(X = A,P = 0) = 0 had been observed, with P(X = A) = 0.3

and P(P = 0) = 0.4 being unchanged. In that case, the PoM method would still

yield Q(X = A,P = 0) = P(X = A)P(P = 0) = 0.3 · 0.4 = 0.12, but this would

suppose that an impossible combination under P – the empirical distribution –

was possible under the distribution Q used for pricing which is not acceptable.

It would not be reasonable to obtain the premium under assumptions for which

there was absolutely no basis.

Recall, this property of Q to only attribute non-zero probabilities to combinations

that already had non-zero probabilities under P was defined as absolute continuity

(see Definition 1.3.8), and it is key. When considering Q as an “adjustment” for

P, having Q ≪ P can provide some comfort in using Q, especially when there

already is some level of confidence in P.

Now, considering that the margin-based premium has P′ = Q (not P′ = P), it is

straightforward to verify it avoids indirect discrimination:

1. It avoids direct discrimination;

2. X and P are independent under P′ = Q, by construction of Q.

This construction of the margin-based premium can sometimes guarantee the

existence of a discrimination-free premium, as per the following proposition.
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Proposition 2.1.9. Assume there exists a product measure P′(X,P) = P′(X)P′(P)

on (Z,Σ) such that P′ ≪ P. Then, there exists a premium h′(X) that avoids in-

direct discrimination.

Proof. Absolute continuity implies that every P-null set is also a P′-null set.

Therefore, the best-estimate premium τ(X,P ) is well-defined on all sets where

(X,P ) has a positive P′-probability mass. Since the latter is a product measure,

the discrimination-free premium h′(X) can be calculated by integrating τ(X,P )

over dP′(p | X) = dP′(p). This completes the proof.

The joint distribution Q, constructed using the PoM method on the empirical

joint distribution P, is one measure respecting Proposition 2.1.9, and it leads to

the margin-based premium. It is important to note that Q is not the only joint

distribution leading to the margin-based premium, as there very well could be

others having marginals equivalent to P(P = ·). It is also reiterated here that

the margin-based premium is not the only possible discrimination-free premium,

as marginals other than P(P = ·) can be used in (2.1.4).

2.2 Adjusting the Discrimination-free Premium

With the margin-based premium having exemplified the discrimination-free pre-

mium, a flaw of the latter is presented here. Observe that

E [h′(X)] = E

[∫
p

τ(X, p) dP′(p)

]
̸= E

[∫
p

τ(X, p) dP(p)
]
= E [E (Y | X)] = E [Y ] .

This means that the discrimination-free premium will, in general, not be unbiased.

It is desirable for the discrimination-free premium to be unbiased because that

would ensure that, in aggregate, the insurer has enough capital to cover all their

obligations. If the choice of P′ in (2.1.4) leads to a premium that is smaller,

on average, than E [Y ], the insurer is expecting to be unable to pay for certain

claims.
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Let B′ be the bias of the discrimination-free premium h′:

B′ = E [h′(X)]− E [Y ] . (2.2.1)

As per (2.1.7), B′ can be positive, zero or negative. To correct for this bias, two

simplistic approaches are proposed.

The first is an additive approach. Let the uniformly adjusted P′-discrimination-

free premium be

h′,u(X) = h′(X)−B′. (2.2.2)

This premium applies the same flat correction to all individuals, independently

of both the explanatory and the protected variables. While this approach does

ensure that the resulting distribution of premiums will be unbiased, it is possi-

ble that it produces negative premiums, which should surely be avoided. It is

demonstrated below that the uniformly adjusted P′-discrimination-free premium

is unbiased:

Proof.

E [h′,u(X)] = E [h′(X)−B′]

= E [h′(X)]− E [B′]

= E [h′(X)]−B′

= E [h′(X)]− (E [h′(X)]− E [Y ])

= E [Y ] .

The second approach is a multiplicative approach. Let the proportionally adjusted

P′-discrimination-free premium be

h′,u(X) = h′(X)
E [Y ]

E [Y ] +B′ = h′(X)
E [Y ]

E [h′(X)]
. (2.2.3)
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This premium distributes the bias according to the size of the discrimination-free

premium. This approach also ensures that the distribution of the discrimination-

free premium will be unbiased, however individuals with a bigger discrimination-

free premium will suffer from a bigger effect (in absolute value) of the bias cor-

rection. For example, suppose that Alice has a discrimination-free premium of

100, Bob has a discrimination-free premium of 180, E [Y ] = 200 and E [h′(X)] =

160. Then, Alice and Bob’s proportionally adjusted discrimination-free premium

would be 100 · 200
160

= 125 and 180 · 200
160

= 225, respectively. This would mean

Alice’s premium increases by 125 − 100 = 25 while Bob’s premium increases by

225− 180 = 45 to correct for the bias. The proportional impact – an increase of

25% – is the same for both, but bigger premiums having bigger impacts could be

considered unfair.

With the additive and multiplicative approaches both having their disadvantages,

a more sophisticated approach is proposed. A desirable property of P′ would be

that it is close to P. The closer P is to P′, the more “realistic” it is. Quantifying

the difference between two distributions requires a new tool, defined below.

Definition 2.2.1 (Kullback-Leibler Divergence). Consider two probability mea-

sures P1 and P2 defined on the same measurable space (Z,Σ). Then, the Kullback-

Leibler (KL) divergence from P1 to P2 is the following

DKL (P2 ∥ P1) = EP1

(
P2(X)

P1(X)
log

(
P2(X)

P1(X)

))
.

It is always non-negative and vanishes if and only if P1 = P2.

If P2 ≪ P1, then P2(X)
P1(X)

= ξ(X) where ξ is the change of measure function allowing

to go from P1 to P2, and so

DKL (P2 ∥ P1) = EP1 [ξ(X) log (ξ(X))] .

We note that the KL divergence is a convex function of the probability measure

P2.
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Remark 2.2.2. The KL divergence is not a distance, so it is not symmetric.

That is, the KL divergence from P1 to P2 is not equal to the KL divergence from

P2 to P1:

DKL (P2 ∥ P1) ̸= DKL (P1 ∥ P2) .

Due to Csiszár [4], it is possible to minimize KL divergence subject to the mean

being unchanged. First, denote

ψ(P ) =

∫
x

τ(x, P ) dP(x).

The above expression is the counterpart of h(X) in the sense that the best-

estimate premium is averaged over the distribution of X instead of the distri-

bution of P . Then, due to independence of X and P under P′, the following is

true:

E [h′(X)] = E′ [ψ(P )] .

Proof.

E [h′(X)] = E

[∫
p

τ(X, p) dP′(p)

]
=

∫
x

[∫
p

τ(X, p) dP′(p)

]
dP(x)

=

∫
p

∫
x

τ(X, p) dP(x)dP′(p)

=

∫
p

ψ(P )dP′(p)

= E′ [ψ(P )] .

Expressing the expectation in terms of E′ rather than E is a trick that allows the

use of Csiszár’s methodology. Consider the following optimization problem. It is

required to find
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argmin
P′

E

[
dP′

dP′ log

(
dP′

dP′

)]
, such that E′ [ψ(P )] = E [Y ] . (2.2.4)

Csiszár (1975) [4] presents the solution to this problem as P′ such that

P′(p) = E

[
1{P≤p}

eβψ(P )

E [eβψ(P )]

]
,

where 1{·} is the indicator function (1 when the argument is true, 0 otherwise)

and β is a parameter suitably chosen such that the constraint E′ [ψ(P )] = E [Y ]

is fulfilled. The resulting premium is defined properly below.

Definition 2.2.3 (KL-based premium). The KL-based premium Y KL with re-

spect to X is:

h′,KL(x) = h′(x) = E

[
τ(x, P )

eβψ(P )

E [eβψ(P )]

]
.

It is also a special case of the discrimination-free premium, with P′ being the

solution to the optimization problem given by (2.2.4).

Applying this methodology to our mock portfolio results in

P′(P = 0) = 0.4285714 and P′(P = 1) = 0.5714286.

Note that this is quite close to the empirical distribution P, which had P(P =

0) = 0.4 and P(P = 1) = 0.6. Figure 2.3 updates the premiums already obtained

for the mock portfolio with the KL-based premiums. As could be expected due

to how close P and P′ are with respect to the KL divergence, the margin-based

and KL-based premiums are close. Table 2.5 shows that the KL-based premium

is lower than the margin-based premium in regions A and C. That is because

the two regions had in common that the best-estimate premium was lower for

P = 0 than for P = 1 (see Table 2.3). Recall the unawareness, margin-based and

KL-based premiums are all weighted averages of best-estimate premiums within

a region, meaning that P′(P = 0) > P(P = 0) implies the KL-based premiums

will always be lower than the margin-based premiums for regions A and C of this
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Figure 2.3: Best-estimate, unawareness and margin-based premiums for all indi-
viduals of the mock portfolio. Vertical lines segment the individuals by region
of residence, with the left-most section being region A, the middle section being
region B and the right-most section being region C.

portfolio. As for region B, all premiums are 200 independently of the weighing,

since the two best-estimate premiums for that region are 200.

Unawareness Margin-based KL-based
A 116.67 130.00 128.57
B 200.00 200.00 200.00
C 337.50 330.00 328.57

Table 2.5: Unawareness, margin-based and KL-based premiums for all regions of
the mock portfolio

To summarize, three methods have been suggested to correct the bias introduced

by the discrimination-free premium:

1. The first is an additive approach. The uniformly adjusted P′-discrimination-

free premium of (2.2.2) has the disadvantage of possibly producing negative

premiums;

2. The second is a multiplicative approach. The proportionally adjusted P′-

discrimination-free premium of (2.2.3) has the disadvantage of applying a
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bigger chance to bigger initial premiums;

3. The third approach is more complex. It solves an optimization problem

requiring that the distribution of the resulting premiums is unbiased, while

ensuring that it is as close as possible to the empirical distribution P with

respect to the KL divergence.

Among these approaches, the third is to be preferred and it is considered an

integral part of the implementation of the discrimination-free premium.

2.3 Advantages and Disadvantages to the

Discrimination-free Premium

The discrimination-free premium has many advantages, the main one being re-

moving the dependence of Y on P due to X. It is an elegant, easily justifiable and

intuitive way of obtaining fairer premiums. Also, the fact that the discrimination-

free premium is unbiased guarantees that the insurer has, on average, enough

capital to cover their claims.

However, it also has a few disadvantages. As an intra-treatment approach to

fairness, it requires all the data available to the insurer, namely Y , X and P, but

this is not unreasonable, as it is likely the insurer themselves would implement

this approach on their portfolio. Additionally, up until now, we have assumed

that the model function f was simply the expected value based on the empirical

measure P, but insurers are using increasingly complicated algorithms to calculate

insurance premiums. To implement this approach, these algorithms need to be

modified to take P as inputs, and that may not be trivial work.

Furthermore, once the model function has been adequately altered, there is a

subsequent increase to computational cost. If we refer to Section 2.1, one cal-

culation of a newcomer’s discrimination-free premium required on its own one

intermediary calculation per category of P , which, at the very least, doubles
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computation time. When there are multiple protected variables P, this becomes

one intermediary calculation per possible state of P, further increasing computa-

tion time.

Moreover, recall changing measures from the empirical P to a P′ under which

X and P are independent is a requirement to the discrimination-free premium.

By construction and necessity of the discrimination-free premium, P′ will be a

distribution under which the marginal distribution of P will have changed, which

is a very strong assumption. Indeed, protected variables can be very static, and

not change over the course of an individual’s life. Premiums based on a different

probabilistic structure of protected variables may be considered too unrealistic

depending on the nature of those variables, despite minimization of the KL di-

vergence from P to P′.

Additionally, Lindholm et al. (2022) [8] do not discuss the use of a quantifier

that could help assess whether the goal of the discrimination-free premium was

attained after implementation.
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Chapter 3

Grid-based Change of Measure

Pesenti et al. (2018) [9] use a change of measure on a single random variable

to perform sensitivity analysis at a given quantile level of the random variable.

In this chapter, we generalize that approach to a change of measure at various

quantile levels of multiple random variables simultaneously.

3.1 Framework

Let Z = (Z1, . . . , ZD) be a vector of real-valued random variables, where D is the

number of dimensions. Each Zd has a corresponding split-vector (or a vector of

splits) td = (td,0, td,1, . . . , td,Sd
, td,Sd+1) where inf Dom(Zd) = td,0 < td,1 < · · · <

td,Sd
< td,Sd+1 = supDom(Zd) for d = 1, . . . , D and Sd is number of chosen splits

of td, i.e. the number of splits for the dth random variable Xd. Note that td,0

and td,Sd+1 cannot be “chosen”, as they are imposed by the domain of the random

variable Zd. We also let T = {t1, . . . , tD} be the set of split-vectors.

For a single Zd, the domain Dom(Zd) is partitioned by the vector td into Sd +

1 intervals that are numbered from 0 to Sd in increasing order and denoted

Hd,0, Hd,1, . . . , Hd,Sd
. For example, say Z1 ∼ Unif(0, 1) and let t1 = (0, 0.4, 0.9, 1).

Then, the number of chosen splits is S1 = 2 resulting in (S1 + 1) = 3 intervals,
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numbered from 0 to 2. The 0th interval of Z1 would be H1,0 = [0, 0.4], the 1st

interval of Z1 would be H1,1 = (0.4, 0.9] and the 2nd interval of Z1 would be

H1,2 = (0.9, 1]. The three intervals form a partition of Dom(Z1) = [0, 1].

We use as convention that all sub-intervals are left-open and right-closed, with

the exception of the 0th intervals which are closed. The intervals we consider will

each be of one of two forms:

1. Hd,0 = [td,0, td,1] for some d ∈ {1, . . . D};

2. Hd,i = (td,i, td,i+1] for some d ∈ {1, . . . D} and some i ∈ {1, . . . , Sd}.

Naturally, if td,0 = inf Dom(Zd) = −∞, then the 0th interval of the partition for

Zd will be left-open and right closed rather than closed. Similarly, if td,Sd+1 =

supDom(Zd) = ∞, then the Sth
d interval of the partition for Zd will be open

rather than left-open and right-closed.

For the D-tuple Z, these NS =
∑D

d=1 Sd splits separate Dom(Z) = ×D
d=1Dom(Zd)

in NR =
∏D

d=1(Sd+1) regions. Let IT be the set of (non-random) D-tuples with

dth element in {0, . . . , Sd}. Then, IT has exactly NR elements. Each of these

elements will be used to denote one of the regions of Dom(X) delimited by the

set of split-vectors T . For any integer number of dimensions D ≥ 1, we define

a region to be one of the subsets of Dom(Z) delimited by T and RT to be the

set of such regions. For any i ∈ IT , the region Ri ∈ RT corresponds to the

cross-product of the sub-intervals designated by each element of i.

For example, if i = (0, . . . , 0), then Ri ⊂ Dom(Z) denotes the cross-product

of all 0th sub-intervals, i.e. Ri = [0, t1,1] × · · · × [0, tD,1]. As another example,

if j = (1, 0, . . . , 0), then Rj ⊂ Dom(Z) denotes the cross-product of the region

where Z1 is in its 1st sub-interval, but all other risks are in their 0th sub-interval,

i.e. Rj = (t1,1, t1,2] × [0, t2,1] × · · · × [0, tD,1]. Note that all elements of RT are

pairwise-disjoint and form a partition of the domain Dom(Z).

Consider the special case where Zi ∼ Unif(0, 1) for i = 1, 2, 3 and the splits are

equidistant within their split-vector, i.e. ∀d ∈ {1, 2, 3} ∀k ∈ {0, . . . , Sd} td,k+1−
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td,k = c > 0. Then, we have the following:

1. In 1 dimension (D = 1), we have split the interval [0, 1] in S1 + 1 sub-

intervals that all have the same length c;

2. In 2 dimensions (D = 2), we have split the square [0, 1]2 in (S1+1)(S2+1)

sub-squares that all have the same area c2;

3. In 3 dimensions (D = 3), we have split the cube [0, 1]3 in (S1 + 1)(S2 +

1)(S3 + 1) sub-cubes that all have the same volume c3.

Now, consider the probability of Z to lie in any given region. Let P be the (known)

probability measure for Z. Then, we define A = {αi | i ∈ IT } such that

αi = P(Z ∈ Ri).

Figure 3.1 illustrates the segmentation of Dom(Z) with respect to RT and P, and

it will be referred to as the A-grid.

Since RT is a partition of the domain, we have that
∑

i∈T αi = 1 and we impose

the restriction that T must be chosen such that ∀i ∈ T αi > 0. Such a T always

exists since it is always possible to have no chosen splits for every element of Z,

resulting in the following single region:

R0,...,0 = H1,0 × · · · ×HD,0

= [t1,0, t1,1]× · · · × [tD,0, tD,1]

= [inf Dom(Z1), supDom(Z1)]× · · · × [inf Dom(ZD), supDom(ZD)]

= Dom(Z).

Suppose the probability measure P is not satisfactory and a different probability

measure, say P∗, with P∗(Z ∈ Ri) = κi, is adequate. We define the set QT as

follows.

QT = {P∗ | ∀i ∈ IT P∗(Z ∈ Ri) = κi}. (3.1.1)
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0

Z2

Z1

α0,0 α1,0 . . . αI−1,0 αI,0

α0,1 α1,1 . . . αI−1,1 αI,1

. . . . . .
. .
. . . . . . .

α0,J−1 α1,J−1 . . . αI−1,J−1 αI,J−1

α0,J α1,J . . . αI−1,J αI,J

Figure 3.1: Graphical representation of the segmentation of Dom(Z) when D =
2 and Zi ∼ Unif(0, 1) for a general choice of splits. The α(i,j) represent the
probability of the random vector Z = (Z1, Z2) of lying in the corresponding
region R(i,j) for i ∈ {0, 1, . . . , I} and j ∈ {0, 1, . . . , J} where I = S1 and J = S2.

Our objective is then to perform a change of measure from P to any element of

QT . To that effect, a change of measure function is necessary. Proposition 3.1.1

gives the required function and introduces the resulting probability measure Q,

whose use is the crux of this work.

Proposition 3.1.1. Let Z = (Z1, . . . , ZD) be a D-dimensional random vector

having domain Dom(Z), T = {t1, . . . , tD} be the set of split-vectors, RT be the

set of regions in the domain partitioned by T and IT be the set of indices resulting

from T . Also, let P be such that P(Z ∈ Ri) = αi. Recall T is chosen such that

∀i ∈ IT αi > 0. Finally, let QT be defined as in (3.1.1). Then, the following

function is a change of measure function allowing to go from P to another measure

Q ∈ QT :

γ (Z) =
∑
i∈IT

κi
αi

1{Z∈Ri}.

Proof. Let Q be the probability measure obtained from applying the change of
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measure function γ to P. Then, for any i ∈ IT , the region Ri ∈ RT , has the

following probability under Q:

Q(Z ∈ Ri) = EQ (1{Z∈Ri}
)

= EP (γ (Z)1{Z∈Ri}
)

=
∑
j∈IT

EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Rj

)
P(Z ∈ Rj)

= EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Ri

)
P(Z ∈ Ri)

+
∑

j∈IT \i

EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Rj

)
P(Z ∈ Rj)

= EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Ri

)
αi

+
∑

j∈IT \i

EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Rj

)
αj

= EP (γ (Z)1{Z∈Ri}
∣∣ Z ∈ Ri

)
αi + 0

= EP

κi
αi

1{Z∈Ri} +
∑

k∈IT \i

(
κk
αk

1{Z∈Rk}

)1{Z∈Ri}

∣∣∣∣∣∣ Z ∈ Ri

αi

= EP

κi
αi

· 1 +
∑

k∈IT \i

(
κk
αk

· 0
) · 1

αi

= EP
(
κi
αi

· 1 · 1
)
αi

=
κi
αi

· αi

= κi,

where the following fact is used throughout:

∀Ri, Rj ∈ RT Ri ̸= Rj =⇒ Ri ∩Rj = ∅ =⇒ 1{Z∈Ri} | Z ∈ Rj = 0.

There may be many elements in the set QT , and we will use Q to refer to the

one that is obtained from Proposition 3.1.1. However, in the proposition, we only
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gave the expression of the probability measure Q evaluated at sets contained in

RT . We define it here for a general set E ⊂ Dom(Z).

Proposition 3.1.2. Suppose E ⊆ Dom(Z). Let I0
T = {j ∈ IT | E ∩Rj = ∅},

IRT = {j ∈ IT | E ∩Rj = Rj} and IET = IT \
(
I0
T ∪ IRT

)
. Then, the expression of

the probability measure Q attained from P through the change of measure function

defined in Proposition 3.1.1 evaluated at E is:

Q(Z ∈ E) =
∑
j∈IT

κj
αj

P (Z ∈ E ∩Rj) , (3.1.2)

and it can be decomposed into:

Q(Z ∈ E) =
∑
j∈IR

T

κj +
∑
j∈IE

T

κj
αj

P (Z ∈ E ∩Rj) . (3.1.3)
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Proof. The proof begins similarly to that of Proposition 3.1.1.

Q(Z ∈ E) = EQ (1{Z∈E}
)

= EP (γ (Z)1{Z∈E}
)

=
∑
j∈IT

EP (γ (Z)1{Z∈E}
∣∣ Z ∈ Rj

)
P(Z ∈ Rj)

=
∑
j∈IT

EP

κj
αj

1{Z∈Rj} +
∑

k∈IT \j

(
κk
αk

1{Z∈Rk}

)1{Z∈E}

∣∣∣∣∣∣ Z ∈ Rj

αj

=
∑
j∈IT

EP

κj
αj

1{Z∈Rj}1{Z∈E} +
∑

k∈IT \j

(
κk
αk

1{Z∈Rk}1{Z∈E}

) ∣∣∣∣∣∣ Z ∈ Rj

αj

=
∑
j∈IT

EP

κj
αj

1{Z∈E∩Rj} +
∑

k∈IT \j

(
κk
αk

1{Z∈E∩Rk}

) ∣∣∣∣∣∣ Z ∈ Rj

αj

=
∑
j∈IT

EP

κj
αj

(
1{Z∈E∩Rj}

∣∣ Z ∈ Rj

)
+
∑

k∈IT \j

(
κk
αk

· 0
)αj

=
∑
j∈IT

EP
(
κj
αj

(
1{Z∈E∩Rj}

∣∣ Z ∈ Rj

))
αj

=
∑
j∈IT

κj
αj

[αj] E
P (1{Z∈E∩Rj}

∣∣ Z ∈ Rj

)
=
∑
j∈IT

κjP (Z ∈ E ∩Rj | Z ∈ Rj)

=
∑
j∈IT

κj
P (Z ∈ E ∩Rj,Z ∈ Rj)

P (Z ∈ Rj)

=
∑
j∈IT

κj
P (Z ∈ E ∩Rj)

P (Z ∈ Rj)

=
∑
j∈IT

κj
P (Z ∈ E ∩Rj)

αj

=
∑
j∈IT

κj
αj

P (Z ∈ E ∩Rj) ,

which proves the first equation.
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Furthermore, we have that

P (Z ∈ E ∩Rj) =


0, if E ∩Rj = ∅

αj, if E ∩Rj = Rj

P (Z ∈ E ∩Rj) , otherwise.

Consequently,

Q(Z ∈ E) =
∑
j∈IT

κj
αj

P (Z ∈ E ∩Rj)

=
∑
j∈I0

T

κj
αj

P (Z ∈ E ∩Rj) +
∑
j∈IR

T

κj
αj

P (Z ∈ E ∩Rj) +
∑
j∈IE

T

κj
αj

P (Z ∈ E ∩Rj)

=
∑
j∈I0

T

κj
αj

0 +
∑
j∈IR

T

κj
αj

P (Z ∈ Rj) +
∑
j∈IE

T

κj
αj

P (Z ∈ E ∩Rj)

=
∑
j∈IR

T

κj
αj

αj +
∑
j∈IE

T

κj
αj

P (Z ∈ E ∩Rj)

=
∑
j∈IR

T

κj +
∑
j∈IE

T

κj
αj

P (Z ∈ E ∩Rj) ,

which proves the second equation.

The main difference between the two equations is that the first considers all

j ∈ IT while the second considers only the non-zero terms of the sum.

The probability measure Q attained by the proposed change of measure function

is one of possibly infinitely many in QT and before motivating this particular

selection we present some of its properties.

Corollary 3.1.3. The probability measure Q is absolutely continuous with respect

to P.

Proof. Let E be such that P (Z ∈ E) = 0. Then, since RT is a partition of the
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domain of Z

∀i ∈ IT P (Z ∈ E ∩Ri) = 0.

And, using (3.1.2), we have that

Q(Z ∈ E) =
∑
j∈IT

κj
αj

P (Z ∈ E ∩Rj)

=
∑
j∈IT

κj
αj

· 0

= 0.

Q being absolutely continuous with respect to P is an appealing property when

it comes to real-world applications. When going from P to Q, we want to change

the probability of regions of the domain but it may be inappropriate or even

unrealistic to include additional regions into the domain. Absolute continuity

ensures that cannot happen. We claim that measures in QT that are absolutely

continuous with respect to P are particularly reasonable choices when it comes

to deviating from P, and so we restrict our attention to the set Q′
T , defined as

follows

Q′

T = QT ∩ {P∗ | P∗ ≪ P}.

Proposition 3.1.4. As per Proposition 3.1.1 and Corollary 3.1.3, Q ∈ Q′
T .

Ensuring that Q does not expand the initial domain of U is not the only step we

can make toward its reasonability. The Kullback-Leibler divergence can be used

to determine how much two probability distributions differ from each other.

Proposition 3.1.5. Among all elements of Q′
T , the probability distribution Q as

obtained through the change of measure function γ defined in Proposition 3.1.1

minimizes the Kullback-Leibler divergence from P.
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Proof. First, we have that

DKL (Q ∥ P) = EP [γ(U) log (γ(U))]

=
∑
j∈IT

EP [γ(U) log (γ(U)) | U ∈ Rj]P (U ∈ Rj)

=
∑
j∈IT

EP

[∑
k∈IT

κk
αk

1{U∈Rk} log

(∑
k∈IT

κk
αk

1{U∈Rk}

) ∣∣∣∣∣ U ∈ Rj

]
[αj]

=
∑
j∈IT

EP
[
κj
αj

log

(
κj
αj

)]
[αj]

=
∑
j∈IT

κj
αj

log

(
κj
αj

)
[αj] .

If Q is the only element of Q′
T , then the proof is complete.

If there is at least one other element in Q′
T , let P∗ be any such element and ξP

∗

be the change of measure function allowing to go from P to P∗. We know ξP
∗

exists due to the Radon-Nikodym Theorem 1.3.9. Then,

DKL (P∗ ∥ P) = EP [ξP∗
(U) log

(
ξP

∗
(U)

)]
=
∑
j∈IT

EP [ξP∗
(U) log

(
ξP

∗
(U)

)
| U ∈ Rj

]
P (U ∈ Rj)

=
∑
j∈IT

EP [ξP∗
(U) log

(
ξP

∗
(U)

)
| U ∈ Rj

]
[αj]

≥
∑
j∈IT

EP [ξP∗
(U) | U ∈ Rj

]
· log

(
EP [ξP∗

(U) | U ∈ Rj

])
[αj] .

The inequality is due to Jensen’s inequality on the convex function g(x) = x log x.

Next, we exploit the following property of P∗ (which is shared with all elements
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of Q′
T ):

P∗ (U ∈ Rj) = EP∗ (
1U∈Rj

)
= EP (ξP∗

(U)1{U∈Rj}
)

=
∑
k∈IT

EP (ξP∗
(U)1{U∈Rj}

∣∣ U ∈ Rk

)
P (U ∈ Rk)

= EP (ξP∗
(U)1{U∈Rj}

∣∣ U ∈ Rj

)
P (U ∈ Rj) ,

which leads to

P∗ (U ∈ Rj)

P (U ∈ Rj)
= EP (ξP∗

(U)1{U∈Rj}
∣∣ U ∈ Rj

)
P∗ (U ∈ Rj)

P (U ∈ Rj)
= EP (ξP∗

(U)
∣∣ U ∈ Rj

)
.

By definition P (U ∈ Rj) = αj and P∗ (U ∈ Rj) = κj, hence

EP (ξP∗
(U)

∣∣ U ∈ Rj

)
=
κj
αj

,

which we plug in the earlier inequality to obtain that

DKL (P∗ ∥ P) ≥
∑
j∈IT

κj
αj

· log
(
κj
αj

)
[αj] = DKL (Q ∥ P).

We have shown that Q is absolutely continuous with respect to P and that, among

all absolutely continuous measures that satisfy our required probabilities κi, it is

the one that minimizes KL divergence.

3.2 Illustrative Example

We present here a toy example to familiarize the reader with the change of mea-

sure and the resulting probability measure.
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Example 3.2.1. We begin with a simple example in one dimension and with two

splits of the domain to illustrate the change of measure. Consider X = X1 ∼

Unif(0, 1) with T = {t1} and t1 = (0, 0.4, 0.9, 1). Then,

• The number of dimensions is D = 1

• The number of chosen splits for variable X1 is S1 = 2 and we have effectively

split the domain [0, 1] in (S1 + 1) = 3 intervals:

– 0th interval: [0, 0.4]

– 1st interval: (0.4, 0.9]

– 2nd interval: (0.9, 1]

• The set of indices is IT = {0, 1, 2} and the set of regions is

RT = {R0, R1, R2} = {[0, 0.4], (0.4, 0.9], (0.9, 1]}

Since X1 is a standard uniform random variable under the baseline probability

measure P, we have that

• P (U1 ∈ R0) = P (U1 ∈ [0, 0.4]) = 0.4 = α0

• P (U1 ∈ R1) = P (U1 ∈ (0.4, 0.9]) = 0.5 = α1

• P (U1 ∈ R2) = P (U1 ∈ (0.9, 1]) = 0.1 = α2

Now, say we require a distribution Q for which

• Q (U1 ∈ R0) = Q (U1 ∈ [0, 0.4]) = 0.2 = κ0

• Q (U1 ∈ R1) = Q (U1 ∈ (0.4, 0.9]) = 0.45 = κ1

• Q (U1 ∈ R2) = Q (U1 ∈ (0.9, 1]) = 0.35 = κ2

Then, through Proposition 3.1.1, we can use the following change of measure

function to reach Q from P:

γ (U1) =
∑
i∈IT

κi
αi

1{U1∈Ri} =
0.2

0.4
1{U1∈R0} +

0.45

0.5
1{U1∈R1} +

0.35

0.1
1{U1∈R2}.
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So far, we have looked at the change of measure through probability measures. We

use the present example to illustrate the idea through the perspective of cumula-

tive distribution functions (CDFs). Let FU1 be the CDF of U1 under P. Then,

FU1(u) = P(U1 ∈ [0, u]) = u for any u ∈ [0, 1]. Also, let GU1 be the CDF of U1

under Q such that GU1(u) = Q(U1 ∈ [0, u]). Then, using (3.1.2), we have

GU1(u) =
κ0
α0

P (U1 ∈ [0, u] ∩R0) +
κ1
α1

P (U1 ∈ [0, u] ∩R1) +
κ2
α2

P (U1 ∈ [0, u] ∩R2)

=
0.2

0.4
P (U1 ∈ [0, u] ∩ [0, 0.4]) +

0.45

0.5
P (U1 ∈ [0, u] ∩ (0.4, 0.9])

+
0.35

0.1
P (U1 ∈ [0, u] ∩ (0.9, 1])

=


0.2
0.4

P (U1 ∈ [0, u]) + 0.45
0.5

P (U1 ∈ ∅) + 0.35
0.1

P (U1 ∈ ∅) , if u ≤ 0.4

0.2
0.4

P (U1 ∈ [0, 0.4]) + 0.45
0.5

P (U1 ∈ (0.4, u]) + 0.35
0.1

P (U1 ∈ ∅) , if 0.4 < u ≤ 0.9

0.2
0.4

P (U1 ∈ [0, 0.4]) + 0.45
0.5

P (U1 ∈ (0.4, 0.9]) + 0.35
0.1

P (U1 ∈ (0.9, u]) , otherwise

=


0.2
0.4

· u+ 0.45
0.5

· 0 + 0.35
0.1

· 0 , if u ≤ 0.4

0.2
0.4

· 0.4 + 0.45
0.5

(u− 0.4) + 0.35
0.1

· 0 , if 0.4 < u ≤ 0.9

0.2
0.4

· 0.4 + 0.45
0.5

· 0.5 + 0.35
0.1

(u− 0.9) , otherwise

=


0.2
0.4

· u , if u ≤ 0.4

0.2 + 0.45
0.5

(u− 0.4) , if 0.4 < u ≤ 0.9

0.65 + 0.35
0.1

(u− 0.9) , otherwise.

The reader is invited to compare this final expression to (3.1.3) for each of the

cases on the value of u.
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Chapter 4

The Inverted Premium

In this chapter, we introduce the inverted premium, the result of our correction

method for fairness that can be applied on any kind of data, but particularly on

a continuous premium with a binary protected variable.

4.1 Framework

Consider N individuals who wish to be insured. For each of these individuals, a

continuous premium Y > 0 is calculated by applying a model function f to ex-

planatory variables X, i.e. Y = f(X). Now, suppose we observe one categorical

protected variable P ∈ {0, 1, 2, . . . , J} for each individual. Since no discrimina-

tion should be made with respect to P , we would hope that Y ⊥⊥ P . However,

this may not be the case for various reasons. In particular, if there is dependence

between P and one or more of the explanatory variables, it is likely that there

will be dependence between P and Y as well, causing them to appear dependent

to some degree. No matter the reason behind the observed dependence between

Y and P , we may want to attenuate it.

In the following, we assume:

1. For N insured, we observe only the premium Y and the protected variable
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P ;

2. N is large enough that it is reasonable to use the empirical distribution P

for the observed data.

Let Z = (Y, P ) and P be the empirical distribution on the observed premiums

and protected variable. Suppose a set of split-vectors T = (t1, t2) = (tY , tP ) is

selected with the numbers of chosen splits for each variable being S1 = SY = I

and S2 = SP = J1. Then,

• The interval HY,i is the ith interval for Y

• The interval HP,j is the jth interval for P

• The set of indices IT is {0, 1, . . . , I} × {0, 1, . . . , J}

• The set of regions is

RT = {HY,i ×HP,j | (i, j) ∈ IT }.

For P , we suppose that each chosen element of tP corresponds to a value be-

tween each category of P , such that the intervals will each contain exactly one

of those categories. This means we have tP = {tP,0, tP,1, . . . , tP,J , tP,J+1} =

{0, 0.5, 1.5, . . . , J − 1.5, J − 0.5, J}, resulting in:

• HP,0 = [0, 0.5] =⇒ P(P ∈ HP,0) = P(P = 0),

• HP,j = (j − 0.5, j + 0.5] =⇒ P(P ∈ HP,j) = P(P = j) for j = 1, . . . , J − 1

and

• HP,J = (J − 0.5, J ] =⇒ P(P ∈ HP,J) = P(P = J)

for a total of 1 + (J − 1) + 1 = J + 1 intervals, numbered from 0 to J .

Remark 4.1.1. Grouping of categories of P is possible. For instance, instead of

tP = {0, 0.5, 1.5, . . . , J − 1.5, J − 0.5, J}, an option is t∗P = {0, 1.5, 2.5, . . . , J −
1For convenience to the reader, we change indices from 1 and 2 to Y and P in this chapter

to make the association with the corresponding variables clear.

49



1.5, J−0.5, J}. This would result in a total of J intervals instead of J+1. The 0th

interval would become H∗
P,0 = HP,0 ∪HP,1 = [0, 1.5] and result in P(P ∈ H∗

P,0) =

P(P ∈ {0, 1}). For the other intervals, there would be a shift of indices such that

H∗
P,j = HP,j+1 for j ∈ {1, . . . , J − 1}.

4.1.1 Correction Test

To assess the observed dependence between Y and P , conditional probabilities

can be used. In general, we can calculate the probability of Y to lie in its ith

interval conditionally on P lying in its jth interval as follows. Denote:

αi|j = P (Y ∈ HY,i | P ∈ HP,j)

=
P (Y ∈ HY,i, P ∈ HP,j)

P (P ∈ HP,j)
.

This quantity can be expressed in terms of the α(i,j) only:

αi|j =
P (Y ∈ HY,i, P ∈ HP,j)

P (P ∈ HP,j)

=
P (Y ∈ HY,i, P ∈ HP,j)∑I
i=0 P (Y ∈ HY,i, P ∈ HP,j)

=
P
(
Z ∈ R(i,j)

)∑I
i=0 P

(
Z ∈ R(i,j)

)
=

α(i,j)∑I
i=0 α(i,j)

=
α(i,j)

α•,j
,

where we introduce the notation α•,j =
∑I

i=0 α(i,j). We also denote αi,• =∑J
j=0 α(i,j).

If Y and P are independent, then the following must hold:

∀i ∈ {0, 1, . . . , I} P (Y ∈ HY,i | P ∈ HP,0) = · · · = P (Y ∈ HY,i | P ∈ HP,J) ,
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or, equivalently

∀i ∈ {0, 1, . . . , I} αi|0 = · · · = αi|J . (4.1.1)

This condition means that the conditional probabilities of Y to lie in a given

interval is the same no matter which category of P is being conditioned on.

As an example, if we only consider the 0th interval of Y in the 0th and the 1st

categories of P , α0|0 = α0|1 means that Y is as likely to lie in HY,0 conditionally

on P being in HP,0 than it is to lie in HY,0 conditionally on P being in HP,1. Along

with (4.1.1), this means the condition is respected across all intervals (categories)

of P for all i ∈ {0, 1, . . . , I}. Note however that although (4.1.1) must hold, it

is not necessarily true that αi1|j = αi2|j for (i1, j), (i2, j) ∈ IT , i.e. it may not,

and usually will not, be the case that Y is as likely to lie in any of its intervals

conditionally on P being in its jth category.

Because the conditional probabilities of (4.1.1) must be equal under independence

of Y and P , how different they actually are from each other can give a sense of

whether there is a need for correction in the first place. For each of the intervals

of Y (for each i ∈ {0, 1, . . . , I}), we measure:

∆P
i = max

0≤j≤J
αi|j − min

0≤j≤J
αi|j.

∆P
i represents the greatest absolute difference in the conditional probabilities of Y

being in HY,i across the categories of P . If ∆P
i is very small, then the conditional

probabilities αi|j are all very close to each other, providing some comfort that Y

and P are somewhat independent. On the other hand, if ∆P
i is very large, then

there are at least two categories of P for which the conditional probabilities of Y

lying in HY,i are far apart, meaning that there may be some dependence between

Y and P . ∆P
i is inspired by statistical parity (see (1.1.1)) and we demonstrate

its calculation in Example 4.1.2.

Example 4.1.2 (Calculating ∆P
i ). Suppose Z = (Y, P ) is such that Y ∈ [0, 10]

and P ∈ {0, 1, 2}. Say t1 = (0, 3, 8, 10) and t2 = (0, 0.5, 1.5, 2), with probabilities
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presented in Table 4.1:

P(·, ·) P ∈ [0, 0.5] P ∈ (0.5, 1.5] P ∈ (1.5, 2] P ∈ [0,2]

Y ∈ [0, 3] 0.05 0.6 0.06 0.71
Y ∈ (3, 8] 0.07 0.07 0.03 0.17
Y ∈ (8, 10] 0.08 0.03 0.01 0.12
Y ∈ [0,10] 0.2 0.7 0.1 1

Table 4.1

Then, we can calculate conditional probabilities. For example,

α0|2 = P(Y ∈ HY,0 | P ∈ HP,2)

= P(Y ∈ [0, 5] | P ∈ (1.5, 2])

= P(Y ∈ [0, 5] | P = 2)

=
P(Y ∈ [0, 5], P = 2)

P(P = 2)

=
0.08

0.1

= 0.8.

Proceeding similarly for other combinations of HY,i and HP,j gives Table 4.2:

αi|j j = 0 j = 1 j = 2

i = 0 0.25 0.86 0.6
i = 1 0.35 0.1 0.3
i = 2 0.4 0.04 0.1
Total 1 1 1

Table 4.2: Conditional probabilities

Remark 4.1.3. Observe that the sum of each column of Table 4.2 is 1. This is

because, conditionally on P being any of its categories, Y will lie somewhere in⋃I
i=0HY,i = Dom(Y ). Mathematically, we have that P(Y ∈ Dom(Y ) | P ∈ E) =

1, where E is any set including at least one element of Dom(P ).
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Using these conditional probabilities, we can calculate the ∆P
i as:

∆P
0 = max

0≤j≤J
α0|j − min

0≤j≤J
α0|j

= max{0.25, 0.86, 0.6} −min{0.25, 0.86, 0.6}

= 0.86− 0.25

= 0.61.

∆P
1 = max

0≤j≤J
α1|j − min

0≤j≤J
α1|j

= max{0.35, 0.1, 0.3} −min{0.35, 0.1, 0.3}

= 0.35− 0.1

= 0.25.

∆P
2 = max

0≤j≤J
α2|j − min

0≤j≤J
α2|j

= max{0.4, 0.04, 0.1} −min{0.4, 0.04, 0.1}

= 0.4− 0.04

= 0.36.

Proposition 4.1.4 considers a special case for ∆P
i .

Proposition 4.1.4. When SY = 1, we have that ∆P
0 = ∆P

1 , for any probability

measure P.

Proof. Without loss of generality, let j2 be the j for which α0|j is maximized and

j1 be the j for which α0|j is minimized. Then, because α0|j = 1− α1|j (due to Y

only having two intervals), we have that j2 is the j for which α1|j is minimized

and j1 is the j for which α1|j is maximized. As such, we have the following:

∆P
0 = α0|j2 − α0|j1 and ∆P

1 = α1|j1 − α1|j2 .
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Therefore,

∆P
0 = α0|j2 − α0|j1

= (1− α1|j2)− (1− α1|j1)

= α1|j1 − α1|j2

= ∆P
1 .

When SY > 1, there may be some intervals of Y for which ∆P
i is much greater

than others. These intervals would be seemed problematic. Proposition 4.1.4

implies that when there are only two intervals of Y , they are both equally prob-

lematic.

After having calculated the ∆P
i , a simple threshold test, which we dub the ∆-

test, is carried out to determine whether a correction of premiums should be

applied:

∃∆P
i such that ∆P

i > ϵ =⇒ Apply correction, (4.1.2)

for some ϵ > 0. In other words, we apply the correction if there is any interval of

Y in which “a lot” more individuals of some category of P lie than individuals of

another category of P , where the measure of “a lot” is controlled by ϵ.

4.1.2 Correction

Finding K∗

If it is determined that the correction should be applied, our goal is to find a

measure Q such that ∆Q
i < ϵ for i ∈ {0, 1, . . . , I}. Let A = {α(i,j) | (i, j) ∈ IT }.

Our first key step is two-fold:

1. Find a set K∗ = {κ∗(i,j) | (i, j) ∈ IT } such that

∀i ∈ {0, 1, . . . , I} ∀j1, j2 ∈ {0, 1, . . . , J} |κ∗i|j2 − κ∗i|j1| < ϵ.
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2. Using Propositions 3.1.1 and 3.1.2, apply a change of measure from P to

Q∗ with Q∗ such that

∀(i, j) ∈ IT Q∗ (Z ∈ R(i,j)

)
= κ∗(i,j).

Figure 4.1 illustrates the segmentation of Dom(Z) with respect to some general

K = {κ(i,j) | (i, j) ∈ IT }, and it will be referred to as the K-grid.

To simplify the search for K∗, suppose that, instead of |κ∗i|j2 − κ∗i|j1| < ϵ, we

impose |κ∗i|j2 − κ∗i|j1| = 0. This forces the following condition on K∗:

∀j1, j2 ∈ {0, 1, . . . , J} (κ∗(0,j1), κ
∗
(1,j1)

, . . . , κ∗(I,j1)) = c · (κ∗(0,j2), κ
∗
(1,j2)

, . . . , κ∗(I,j2)).

(4.1.3)

for some c > 0. In terms of the K-grid of Figure 4.1, this means that all rows

of the grid will be multiples of each other, allowing us to select a starting vector

v = (v0, v1, . . . , vI) of which all rows will be multiples. The only restriction on

v is that the sum of its elements must be 1. This is not a very constraining

condition however, because any vector of length I + 1 that is not the zero-vector

can be normalized to have a sum of 1. This starting vector is then allocated to

each row in the following way:

∀j ∈ {0, 1, . . . , J} (κ∗(0,j), κ
∗
(1,j), . . . , κ

∗
(I,j)) = α•,j · v.

Because all rows are multiples of each other, behavior of Y will be similar across

all categories of P . Furthermore, allocating v in this way makes it so that the

row sums of the K-grid are the same as the row sums of the A-grid, due to the

starting vector v having a sum of 1. This means that marginal probabilities of P

will not be affected by the change of measure, which is desirable. Indeed, while

we could want to tune the marginal distribution of the premiums Y , it may not

make sense to disturb the marginal distribution of the protected variable, as it

typically does not change in individuals.

55



Remark 4.1.5. Due to its categorical nature, P will see no effect to its marginal

distribution caused by the change of measure. However, because Y is continuous,

its marginal distribution will be affected, except at locations of splits. Recall that

Y = f(X), such that a change to the marginal distribution of Y also results in

changes to the distribution of X, even though X is not considered at all in the

procedure. If impacts to some of the marginal distributions of X also need to be

minimized, then those variables should be brought into the analysis and additional

restrictions should be stated with respect to their probabilities under Q∗, resulting

in both a greater number of dimensions and a more complex construction of K∗.

0

P

Y

κ0,0 κ1,0 . . . κI−1,0 κI,0

κ0,1 κ1,1 . . . κI−1,1 κI,1

. . . . . .
. .
. . . . . . .

κ0,J−1 κ1,J−1 . . . κI−1,J−1 κI,J−1

κ0,J κ1,J . . . κI−1,J κI,J

Figure 4.1: Graphical representation of the K-grid for a general K. The κ(i,j)
represent the probability of the random vector Z of lying in the corresponding
region R(i,j) for (i, j) ∈ IT under the measure Q obtained from K.

While there are infinitely many possibilities for v, the most natural one is

v̇ = (α0,•, α1,•, . . . , αI,•) = (P (Y ∈ HY,0) ,P (Y ∈ HY,1) , . . . ,P (Y ∈ HY,I)) .

It is trivial to validate the the sum of the elements of v̇ is 1. This choice of vector

will make it so the marginal behavior of Y is spread across all categories of P .
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This is equivalent to the Product-of-Marginals method from Section 2.1. Indeed,

this allocation results in κ(i,j) = αi,• · α•,j, leading to no information on Y being

obtainable from P .

Remark 4.1.6. A nuance is made here that we are dealing with the continu-

ous variable Y at discrete splits tY . When y ∈ tY , the conditional probabilities

P (Y ≤ y | P = j) may all be equal for j ∈ {0, 1, . . . , J}, but that generally will not

be the case when y /∈ tY because K imposes no restrictions at those values. The

differences will be smaller than they were under P, but they may not be exactly

zero.

Choosing v = v̇ leads to the following properties of the K∗-grid:

∀i ∈ {0, 1, . . . , I} κ∗i,• = αi,•, (4.1.4)

∀j ∈ {0, 1, . . . , J} κ∗•,j = α•,j. (4.1.5)

In other words, the sums of the columns of the K∗-grid are the same as that

of the A-grid and the sums of the rows of the K∗-grid are the same that of the

A-grid. This is an ideal property, as it implies a minimal impact to the marginal

distributions of both Y and P . Indeed, recall that

• αi,• = P(Y ∈ HY,i),

• α•,j = P(Y ∈ HP,j),

• κ∗i,• = Q∗(Y ∈ HY,i),

• κ∗•,j = Q∗(Y ∈ HP,j).

Generalization to Multivariate P

In the previous section, the construction of K∗ is made with respect to a single

protected categorical variable P with J +1 categories 0, 1, . . . , J . This simplistic

assumption conveniently avoids dimensionality issues, which we explore in this

section.
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We generalize the previous section’s methodology to a multivariate vector of

protected variables P = (P1, P2, . . . , PB) with B > 1, each having Jb+1 categories

0, 1, . . . , Jb for b = 1, 2, . . . , B. There are D = B + 1 variables in total (the

premium Y and the B protected variables).

The goal remains the same, i.e. find a measure Q∗ such that ∆Q∗
< ϵ. As

in the previous section, we aim for ∆Q∗
= 0. When P is multivariate, the

condition is more complex and some additional notation is required. Let IP
T be

the set of (non-random) B-tuples with bth element in {0, . . . , Jb} for b = 1, . . . , B.

Correspondingly, let IYT = {0, 1, . . . , I}. Denote HP,m = HP1,j1 × · · · × HPB ,jB

with m = (j1, . . . , jB) ∈ IP
T . Then, we must find a Q∗ such that

∀i ∈ IYT ∀m1,m2 ∈ IP
T Q∗(Y ∈ HY,i | P ∈ HP,m1) = Q∗(Y ∈ HY,i | P ∈ HP,m2).

The condition is simply a generalization of (4.1.1), stating that, the probability

of Y lying in one of its intervals remains the same no matter the given state of

the protected variables P.

To use κ∗ notation, let m = (m1, . . . ,mB) ∈ IP
T , n = (n1, . . . , nB) ∈ IP

T and

κ∗i,m = κ∗i,m1,...,mB
. Then, we must have

∀i ∈ IYT ∀m,n ∈ IP
T

κ∗i,m
κ∗•,m

=
κ∗i,n
κ∗•,n

.

Again, enforcing such a condition on K∗ imposes a strong relationship between

groups of its elements. In particular, (4.1.3) generalizes to

∀m,n ∈ IP
T (κ∗0,m, κ

∗
1,m, . . . , κ

∗
I,m) = c · (κ∗0,n, κ∗1,n, . . . , κ∗I,n)

for some c > 0. So, in the case of multivariate P, we can also simplify the

search for K∗ to choosing an appropriate starting vector v and allocating it to

all dimensions of P adequately. In line with the approach already presented for
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univariate P , a recommendation is the vector of marginal probabilities of Y :

v̇ = (α0,•, α1,•, . . . , αI,•) = (P (Y ∈ HY,0) ,P (Y ∈ HY,1) , . . . ,P (Y ∈ HY,I)) ,

where here αi,• is simplified notation for αi,•,...,•.

The allocation is made with respect to each possible state of P, such that the κ∗

are given by

∀i ∈ IYT ∀m ∈ IP
T κ∗i,m = αi,• · α•,m

= P(Y ∈ HY,i) · P(P ∈ HP,m).

Thus, increasing the number of dimensions or the number of splits does not make

the search for K∗ much more complicated, at least conceptually.

However, computationally speaking, the number of operations performed in-

creases significantly with the number of variables and the number of chosen splits

for each variable. Despite the simplicity of the operations, their sheer number can

be the cause of an important computational cost. In general, because we need

each element of the K∗-hypergrid, the number of required values is the number

of regions:

NR = (SY + 1)
B∏
b=1

(SPb
+ 1) =

D∏
d=1

(Sd + 1)

Table 4.3 shows that the number of regions can get very high very fast, which

poses a computational risk.

NR (Sd + 1) = 2 (Sd + 1) = 3 (Sd + 1) = 5 (Sd + 1) = 10

D = 2 4 9 25 100
D = 3 8 27 125 1,000
D = 5 32 243 3,125 100,000
D = 10 1,024 59,049 9,765,625 10,000,000,000

Table 4.3: Total number of regions with respect to number of variables and
number of chosen splits for each variable. The number of splits is the same for
all variables.
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A way to reduce this risk is to group categories of variables when possible, as

discussed in Remark 4.1.1. However, as the table shows, the number of regions

is much more sensitive to the number of variables D than to the number of splits

for each variable Sd. To reduce D, some preliminary analysis should be done on

the data to evaluate whether any variables can be dropped.

Adjusting K∗

In general, assessing the corrections to premiums due to K∗ before performing the

premium inversion is difficult. In some cases, despite best efforts to minimize the

impact of the correction, the changes may be too pronounced. For example, using

K∗ may result in lower premiums, effectively reducing income to the insurer. For

such situations, some flexibility can be helpful, and we elaborate here on how to

introduce it.

We return to the univariate P assumption. Consider the set K∗ − A = {κ∗(i,j) −

α(i,j) | (i, j) ∈ IT }. Since both K∗ and A will always have a sum of 1, it is

expected that K∗−A will have a sum of 0. We further observe that, because the

column and row sums of K∗ and A are the same due to properties (4.1.4) and

(4.1.5), the column and row sums of the (K∗−A)-grid will also all be 0. This last

statement will be true not only for K∗ −A, but also for any multiple of K∗ −A.

Thus, we can introduce the strength parameter λ ∈ [0, 1] and let

K(λ) = A+ λ(K∗ − A) = {α(i,j) + λ(κ∗(i,j) − α(i,j)) | (i, j) ∈ IT }. (4.1.6)

We have as special cases K(0) = A and K(1) = K∗. Also, denoting Qλ as the

measure obtained from K(λ), we get Q0 = P and Q1 = Q∗.

The advantage of K(λ) is that it retains the minimal impact on the marginal

distributions of Y and P while also being flexible in how much it diverts from P

and in how close to zero the ∆Qλ

i will be. As λ increases from 0 to 1:

• The marginal probabilities of Y at each element of tY and of P at each
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element of tP are unaffected, i.e.

∀λ ∈ [0, 1] ∀i ∈ {0, 1, . . . , I} Qλ(Y ∈ HY,i) = P(Y ∈ HY,i)

and

∀λ ∈ [0, 1] ∀j ∈ {0, 1, . . . , J} Qλ(P ∈ HP,j) = P(P ∈ HP,j).

• DKL

(
Qλ ∥ P

)
increases from 0

• For all i ∈ {0, 1, . . . , I} ∆Qλ

i decreases from ∆P
i to 0

Intuitively, and as will be demonstrated in Section 4.2, this also means that

the more λ increases, the more premiums will change from their initial values.

Hence, λ can be used to control various statistics on the premiums, such as total

premiums received, mean of premiums received, etc. Tuning λ can help diminish

the overall reduction of premiums.

Proposition 4.1.7 shows that, under specific conditions, the decrease of ∆Qλ

i from

∆P
i to 0 can be linear in λ.

Proposition 4.1.7. When SY = SP = 1, ∆Qλ

i is a linear function of λ ∈ [0, 1].

In particular,

∆Qλ

i = (1− λ)∆P
i .

Proof. When there are only two categories of P (SP = 1), we have that max0≤j≤1 κi|j

and min0≤j≤1 κi|j will each be one of κi|0 or κi|1. Without loss of generality, assume
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that max0≤j≤1 κi|j = κi|0 and min0≤j≤1 κi|j = κi|1. Then,

∆Qλ

i = κi|0 − κi|1

=
κ(i,0)
κ•,0

−
κ(i,1)
κ•,1

=
α(i,0) + λ · (αi,• · α•,0 − α(i,0))

α•,0
−
α(i,1) + λ · (αi,• · α•,1 − α(i,1))

α•,1

=
(1− λ) · α(i,0) + λ · αi,• · α•,0

α•,0
−

(1− λ) · α(i,1) + λ · αi,• · α•,1

α•,1

= (1− λ)

[
α(i,0)

α•,0
−
α(i,1)

α•,1

]
+ λ [αi,• − αi,•]

= (1− λ)∆P
i ,

where, in the third line, we make use of (4.1.6) in the numerators and of the fact

that column sums of the K(λ)-grid are the same as that of the A-grid in the

denominators.

We can leverage (4.1.2) to determine an ideal value of λ

λ = inf{ω ∈ [0, 1] | ∀i ∈ {0, 1, . . . , I} ∆Qω

i < ϵ}. (4.1.7)

This selection of λ makes it so that all ∆Qλ

i will be below ϵ – effectively bringing

conditional distributions of Y across categories of P closer – but not all of them

will have been so affected that they go to 0. Also, taking the infimum of the set

reduces how much Qλ strays from P.

We note that selecting λ in this way is a suggestion, and other options can

be considered based on the situation, as will be exemplified in Section 4.2.2.

However, if ϵ were to be imposed by a regulator, then (4.1.7) can be seen as

dictating how much Qλ must diverge from P to be considered fair.
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Inverting the Premium

We now suppose an adjusted set K has been selected to perform a change of

measure from P to Q. Let Yn be the initially calculated premium for individuals

n = 1, 2, . . . , N . Then, for individual n, there are two steps to obtaining the

corrected premium Y c
n from Q:

1. Find un = P(Y ≤ Yn);

2. Invert the marginal distribution of Y under Q at un, i.e. compute the

inverted premium Y c
n = inf{y > 0 | Q(Y ≤ y) ≥ un}.

By this method, we transfer quantiles of P to quantiles of Q, i.e. the individual

who had the 100uth quantile of Y under P will be the individual who has the

100uth quantile of Y under Q, as illustrated in Figure 4.2 for the value u = 0.8.

We note two of the properties of this method:

Figure 4.2: Illustration of the calculation of a new premium when both P and Q
are available. The red arrow illustrates that the 80th quantile under P becomes
the 80th quantile under Q.

1. Domain preservation: Due to Q being absolutely continuous with respect

to P, the domain of Y under Q is a subset of the domain of Y under P. As
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such, drawing quantiles from Q ensures that we do not attribute a premium

that would have been “impossible” under P (outside of its domain). Recall

that initial premiums are such that Y = f(X) for some model function f ,

thus there is already sufficient statistical motivation behind them.

2. Order preservation: If, for two individuals A and B, we had YA ≤ YB

under P, then Y c
A ≤ Y c

B will be true under Q as well. This is directly due

to this method being a “transfer of quantiles” of sort. Order preservation is

a desirable property because individuals may not be interested in a “fairer”

premium if it meant that they now had a higher premium than someone

who used to have a higher premium than them.

4.2 Illustrating the Correction Method

4.2.1 The Data

For the illustration, we simulate N = 10000 observations with 8000 of them

having P = 0 and 2000 of them having P = 1. The simulations are such that

Y | P = 0 ∼ N(µ0 = 1000, σ0 = 250) and Y | P = 1 ∼ N(µ1 = 1300, σ1 = 250).

The difference µ1 − µ0 is exaggerated here for illustrative purposes. Figure 4.3

shows the CDFs for premiums and for all categories of P . As expected, ∀y P(Y ≤

y | P = 0) ≥ P(Y ≤ y) ≥ P(Y ≤ y | P = 1). The distribution of the global

premiums is some weighted average of the two conditional distributions, so it

lies between them. Also, because there are much more observations with P = 0,

the global distribution (black) is closer to the distribution for observations with

P = 0 (red) than to the the distribution for observations with P = 1 (green).

These observations are also supported by Table 4.4. Quartiles and central mea-

sures for Y always lie between that for Y | P = 0 and Y | P = 1.

Remark 4.2.1. For reasons detailed in the below, it is required that observations
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Figure 4.3: CDFs of global premiums (black), premiums for observations with
P = 0 (red) and premiums for observations with P = 1 (green) under the empir-
ical measure P.

P Min. 1st qrtl Median EV 3rd qrtl Max. SD
Y 265.7 898.0 1,047.6 1,058.7 1,217.1 1,975.4 235.4
Y | P = 0 265.7 864.0 996.5 998.7 1,137.0 1,762.1 203.8
Y | P = 1 610.0 1,170.4 1,298.8 1,298.7 1,429.6 1,975.4 197.1

Table 4.4: Summary of premiums, premiums for P = 0 and premiums for P = 1
under the empirical distribution P.

of Y | P = 0 and Y | P = 1 have some overlap, which is the case in our simulated

data.

We have Z = (Y, P ) and so the number of dimensions is D = 2. Also, let

T = {tY , tP} = {(0, y0.65,∞), (0, 0.5, 1)}, such that the domain of Y is split at

its 65th quantile y0.65 and the domain of P is split between 0 and 1. Thus, the

domain of Z is split in four regions:

• R0,0 = [0, y0.65]× [0, 0.5] ∼ [0, y0.65]× {0},

• R0,1 = [0, y0.65]× (0.5, 1] ∼ [0, y0.65]× {1},

• R1,0 = (y0.65,∞)× [0, 0.5] ∼ (y0.65,∞)× {0},
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• R1,1 = (y0.65,∞)× (0.5, 1] ∼ (y0.65,∞)× {1}.

Table 4.5 summarizes how many observations lie in each of the four regions.

Y ≤ y0.65 Y > y0.65 Total
P = 1 415 1585 2000
P = 0 6085 1915 8000
Total 6500 3500 10000

Table 4.5: Contingency table of the combination of premiums below or above
y0.65 and of the category of the protected variable.

Following up on Remark 4.2.1, note that there is no zero in the contingency table,

which means there will be no zero-valued α(i,j). This is an important requirement,

as the absence of zero-valued α(i,j) is a key assumption to Proposition 3.1.1. When

applying this to real data, the set of splits T should always be selected such that

this is respected.

Under the empirical distribution, we simply divide the contingency table by the

number of observations N = 10000 to obtain the probabilities under P, α(i,j) for

(i, j) ∈ IT . Figure 4.4 illustrates the segmentation of the domain of Z and shows

the obtained probabilities.

A few validations can be made:

• α0,0 + α0,1 = α0,• = 0.65 = P(Y ≤ y0.65),

• α1,0 + α1,1 = α1,• = 0.35 = P(Y > y0.65),

• α0,0 + α1,0 = α•,0 = 0.8 = P(P = 0),

• α0,1 + α1,1 = α•,1 = 0.2 = P(P = 1).

4.2.2 Correcting the Premiums

Now that we have the data, our first step is to use the ∆-test to determine whether

there is a need for correction. Preliminary calculations are the αi|j, presented in
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P

0

1

Yy0.65

α0,0 = 0.6085 α1,0 = 0.1915

α0,1 = 0.0415 α1,1 = 0.1585

Figure 4.4: Graphical representation of the segmentation of Dom(V ). The α(i,j)

for i, j ∈ {0, 1} represent the probability of the random vector V = (Y, P ) of
lying in the corresponding region.

Table 4.6.

αi|j j = 0 j = 1

i = 0 0.7606 0.2075
i = 1 0.2394 0.7925

Table 4.6: Conditional probabilities

Given Table 4.6, we can calculate the ∆P
i :

∆P
0 = max

0≤j≤J
α0|j − min

0≤j≤J
α0|j

= max{0.7606, 0.2075} −min{0.7606, 0.2075}

= 0.7606− 0.2075

= 0.5531.

∆P
1 = max

0≤j≤J
α1|j − min

0≤j≤J
α1|j

= max{0.2394, 0.7925} −min{0.2394, 0.7925}

= 0.7925− 0.2394

= 0.5531.
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Note that these results agree with Proposition 4.1.4 as we are in the special case

SY = 1.

For the ∆-test, we choose ϵ = 0.1 and have that

∆P
0 = 0.5531 > 0.1 and ∆P

1 = 0.5531 > 0.1.

The ∆-test suggests that there is a need for correction, which we apply in the

following.

Using K∗

The first step to the correction method is finding K∗. As starting vector, we set

v = v̇ = (α0,•, α1,•), the sum of the columns of the A-grid shown in Figure 4.4.

This means we are using the Product-of-Marginals method:

κ∗(i,j) = αi,• · α•,j

The K∗-grid is illustrated in Figure 4.5. We can validate that column and row

sums are as for the A-grid:

• κ∗•,0 = κ∗(0,0) + κ∗(1,0) = 0.52 + 0.28 = 0.8 = α•,0

• κ∗•,1 = κ∗(0,1) + κ∗(1,1) = 0.13 + 0.07 = 0.2 = α•,1

• κ∗0,• = κ∗(0,0) + κ∗(0,1) = 0.52 + 0.13 = 0.65 = α0,•

• κ∗1,• = κ∗(1,0) + κ∗(1,1) = 0.28 + 0.07 = 0.35 = α•,0

Another important validation is that ∆Q∗

i = 0 for i = 0, 1. We first calculate the

κ∗i|j =
κ∗(i,j)
κ∗•,j

and present them in Table 4.7.

κ∗i|j j = 0 j = 1

i = 0 0.65 0.65
i = 1 0.35 0.35

Table 4.7: Conditional probabilities under Q∗
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P

0
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Yy0.65

κ∗(0,0) = 0.52 κ∗(1,0) = 0.28

κ∗(0,1) = 0.13 κ∗(1,1) = 0.07

Figure 4.5: K∗-grid for the illustration.

Using Table 4.7, we can calculate the ∆Q∗

i . For i = 0, we have:

∆Q∗

0 = max
0≤j≤1

κ∗0|j − min
0≤j≤1

κ∗0|j

= max{0.65, 0.65} −min{0.65, 0.65}

= 0.65− 0.65

= 0,

and for i = 1, we have:

∆Q∗

1 = max
0≤j≤1

κ∗1|j − min
0≤j≤1

κ∗1|j

= max{0.35, 0.35} −min{0.35, 0.35}

= 0.35− 0.35

= 0.

Thus, our validation is satisfied.

We use K∗ along with Propositions 3.1.1 and 3.1.2 to produce the measure Q∗

on Z. Then, using our inversion method, we can calculate new premiums. Table

4.8 presents some statistics on premiums obtained from Q∗. We first compare

expected premiums and observe that EQ∗
(Y ) − EP(Y ) = 2.0. An important
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nuance must be made here that Table 4.8 presents a summary of the corrected

premiums under their distribution of origin Q∗, such that the expected value is

equal to:

EQ∗
(Y ) =

N∑
n=1

y ·Q∗ (Y = y) = 1060.7.

It may seem intuitive to multiply this value by N to obtain the total premiums

received by the insurer under Q∗, but that would be incorrect. The insurer would

simply receive the sum of the corrected premiums:

N∑
n=1

Y c = N

(
1

N

N∑
n=1

Y c

)
̸= N

(
N∑
n=1

y ·Q∗ (Y = y)

)
= N · EQ∗

(Y ).

The inequality shows that it would indeed be wrong to multiply EQ∗
(Y ) by N to

obtain the total corrected premiums received. The fact that the total premiums

received are calculated on an “empirical” basis makes it important to compare Y c

and Y on that same basis as well. Table 4.9 presents some statistics and shows, in

particular, that the average change to premiums is an increase of approximately

0.6$, which is very small relative to their scale.

Q∗ Min. 1st Median EV 3rd Max. SD
Y 292.1 933.7 1,077.9 1,060.7 1,192.2 1,975.4 197.9
Y | P = 0 292.1 909.5 1,040.2 1,138.2 1,186.5 1,724.9 197.4
Y | P = 1 626.0 1,033.5 1,142.6 1,274.0 1,245.3 1,975.4 178.0

Table 4.8: Summary of premiums, premiums for P = 0 and premiums for P = 1
under the new distribution Q∗.

Min. 1st Median Mean 3rd Max.
Y c − Y -82.5 -13.7 14.4 0.6 17.1 57.3
Y c/Y (%) 95.2 98.9 101.5 100.5 102.0 120.0

Table 4.9: Summary of the differences between premiums Y and corrected pre-
miums Y c on an empirical basis.

As for the quartiles of each distribution of Y under Q∗, we still have that quanti-

ties for Y lie between the corresponding quantities for Y | P = 0 and Y | P = 1,
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providing a good sense check. Also, the standard deviations have greatly reduced

from the standard deviations under P. In wanting to bring the distributions of

Y | P = 0 and Y | P = 1 closer to that of Y , we have also made the distributions

themselves more compact. We also note that the standard deviation of Y is much

closer to that of Y | P = 0 than to that of Y | P = 1 because, again, there are

many more individuals with P = 0 than with P = 1.

Reverting back to the small average increase, there are two caveats:

1. A very small average increase does not imply that every individual increase

is also very small. It may simply be the case that individuals with very large

increases are offset by individuals with very large decreases. This means

that a minimal impact to the total premiums can hide very large impacts

to policyholder premiums, which may lead to multiple policyholders simply

leaving the portfolio.

2. Because premiums are an important part of revenue for the insurer, a small

change to average premium can lead to an important change to total pre-

mium received. This is particularly worrisome if the change of measure

results in an average decrease of premiums and leads to a significant loss of

revenue.

After having considered summary statistics of the corrected premiums, we an-

alyze them more diligently through their distributions. Figure 4.6 shows the

distributions of premiums under Q∗. The first observation is that all distribu-

tions – the global distribution, the distribution conditional on P = 0 and the

distribution conditional on P = 1 – are joined at y0.65, meaning that, under Q∗,

the global distribution and the two conditional distributions of Y all have y0.65 as

65th quantile. This is directly due to the choice of K∗, as demonstrated by table

4.7.

Comparing Figures 4.3 and 4.6, a visual interpretation is that the conditional

distributions are pulled towards the global distribution along the vertical red line
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Figure 4.6: CDFs of global premiums (black), premiums for observations with
P = 0 (red) and premiums for observations with P = 1 (green) under the
corrected measure Q. The vertical red line represents the 65th quantile of Y ,
y0.65 = 1143.06.

at y0.65. Recall, when building K∗, we used as starting vector the marginal Y

probabilities v̇ (A-grid column sums) and allocated them to the K∗-grid rows

with respect to marginal P probabilities (A-grid row sums). This implies that

the marginal behavior of Y at elements of tY will be replicated by the conditional

distributions as well, and this in reflected in Figure 4.6.

Despite them being close, the global distributions under P and Q are not the

same. They are compared graphically in Figure 4.7. As already demonstrated,

the global distributions are joined at y0.65. For y < y0.65, Q∗(Y ≤ y) is smaller

than P(Y ≤ y), while the opposite is true for y < y0.65. That is because, under P,

premiums under y0.65 mostly came from individuals with P = 0 (6085 out of 6500

individuals, as per the contingency Table 4.5). Under Q∗, we are trying to bring

all premiums closer to the marginal distribution of the premiums, and so premi-

ums for individuals with P = 0 will mostly increase, because their distribution is

stochastically dominated by that of the marginal premiums.
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Figure 4.7: Distributions of Y (top), Y | P = 0 (middle) and Y | P = 1 (bottom)
under P (black) and Q∗ (red).
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After comparing the distributions of premiums, we look at the corrections made

to the premiums in Figure 4.8. The first observation is that corrections seem

to form a continuous function, say g, of the initial premium, with some noise

closer to the smaller and larger initial premiums. This function g is positive,

zero and negative when the initial premium is smaller than, equal to and greater

than y0.65, respectively. This follows from the distributions of Y under P and Q∗,

as explained when considering Figure 4.7 (top). All premiums below y0.65 will

increase while all premiums above y0.65 will decrease. Also, a clear change in the

behavior of g occurs at the blue line in the figure, located at the initial mean

EP(Y ) = 1058.7. Before the initial mean, corrections are slowly increasing, while

they are sharply decreasing after the initial mean. Our inversion method seeks

to bring the means of Y | P = 0 and Y | P = 1 closer to that of Y . Because

EP(Y | P = 0) = 998.7 is much closer to EP(Y ) than EP(Y | P = 1) = 1298.7, the

corrections will, in aggregate, be less severe for P = 0 than for P = 1. However,

due to the inversion being made on the distribution Q∗(Y ≤ ·) independently

of P , any correction will depend solely on the premium itself, and corrections

being less severe for individuals with P = 0 translates to corrections being less

severe for small premiums, since premiums for individuals with P = 0 tend to

be small.

Remark 4.2.2. It is possible to modify the inversion such that inverted premiums

also depend on the protected variable. Instead of inverting from Q∗(Y ≤ ·), one

could invert from Q∗(Y ≤ · | P = p) for individuals with P = p.

In addition, corrections are, for the most part, small relative to the initial pre-

miums. As per Table 4.9, they vary from roughly −80 to 60, which translates to

a multiplicative correction going from approximately 95% to 120%, with only 6

individuals out of 10000 exceeding a 105% correction. Recall the disparity be-

tween premiums under P = 0 and P = 1 was significant (µ1 − µ0 = 300 being a

relative difference of 30%). Despite this important bias, the corrections not ex-

ceeding 100 in absolute value attests that the scale of the solution will not attain
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the scale of the problem, which is a comforting notion. This also demonstrates

that the minimization of the KL divergence and the choice of v̇ as starting vector

effectively reduce the impact of the change of measure.

Figure 4.8: Corrections (top) and multiplicative corrections (bottom) made to
premiums after inversion from the distribution Q∗ for P = 0 (red) and P = 1
(green). The red lines pinpoint the neutrality point at an initial premium of y0.65,
and the blue line indicates the mean of the initial premiums.
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Adjusting K∗

In the previous section, we showed that the overall impact of the inversion method

on the initial premiums was relatively small. One of the caveats we mentioned

in the previous section is that a small overall impact does not guarantee that all

individual corrections will be small as well. We use this as motivation to demon-

strate here how the insurer could use the set K(λ) to minimize this effect.

Recall (4.1.6), in which we defined K(λ) as a generalization of K∗ which retains

the column sums of A (and so the marginal Y probabilities under P) but results

in ∆Q
i values which will not necessarily be equal to 0:

K(λ) = A+ λ(K∗ − A) = {α(i,j) + λ(κ(i,j) − α(i,j)) | (i, j) ∈ IT }.

The strength parameter λ controls how much K(λ) and Qλ will stray from A

and P, respectively. It stands to reason that, as λ increases from 0 to 1, other

quantities will also gradually move away from their original values under P.

Before discussing the adjustment to K∗, we consider how λ has an effect on Qλ.

Figure 4.9 shows how both the KL divergence of Qλ with respect to P (top) and

∆Qλ

i (bottom) evolve as λ increases from 0 to 12. Recall the KL divergence is a

measure of how much Qλ diverges from P, and ∆Qλ

i is a measure of how different

behavior of Y is across categories of P under Qλ.

Remark 4.2.3. Figure 4.9 presents results obtained from performing the change

of measure at multiple values of λ. Closed-form expressions for these quantities

as functions of λ are difficult to obtain in general.

As expected, the KL divergence increases along with λ. As stated in Definition

2.2.1, it is a convex function of Qλ. It is 0 only when λ = 0 =⇒ Qλ = P and it

reaches a maximum at λ = 1 =⇒ Qλ = Q∗ on the range λ ∈ [0, 1]. As for ∆Qλ

i ,

it also behaves as expected, decreasing linearly from ∆P
0 = ∆P

1 = 0.5531 at λ = 0

2We need not specify a value of i for ∆Qλ

i since ∆Qλ

0 = ∆Qλ

1 due to SY = 1 (see Proposition
4.1.4)
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to 0 at λ = 1. The linear decrease to 0 is a result of having SY = SP = 1 (see

Proposition 4.1.7). In other cases, the decrease may not be linear, but ∆Qλ

i will

always reach 0 at λ = 1.

Figure 4.9: Kullback-Leibler divergence (top) and ∆Qλ

i (bottom) as functions of
λ.

Now, to decrease the individual corrections, the insurer decides to limit the mean

absolute correction. The mean absolute correction is preferred to the maximum

absolute correction because it will be less sensitive to outliers. In our current

illustration, if one individual had an correction of say 500, capping corrections at

100 would certainly decrease that individual’s correction, but would have nearly

no effect on all other corrections, which range from −80 to 60. Reducing the mean
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absolute difference is a way to work around this issue and affect all corrections

rather than only the more extreme ones. Figure 4.10 illustrates the mean absolute

corrections as a function of λ. If the insurer chose to cap the mean absolute

correction at 12.5, they would simply need to use the greatest λ that produces a

mean absolute correction greater than or equal to 12.5.

Remark 4.2.4. While it was expected that the mean absolute correction would

increase with λ, the fact the increase seems linear comes as a surprise. We

conjecture that it is due to the linear evolution of K(λ) from A to K∗. We do

not present them here, but multiple other statistics, such as the mean correction,

evolve linearly with λ.

Figure 4.10: Mean absolute corrections applied to premiums as a function of λ.
The red line represents the limit of 12.5 determined by the insurer.

In general, the adjustment to K∗ can be made using any statistic, or even com-

bination of statistics, as a function of λ, and choosing what limit needs to be

imposed. The downside to this method is that complete sets of corrections need

to be calculated for each value of λ, which is not computationally efficient. How-

ever, doing the exercise for only a few values, say λ = 0.2, 0.4, 0.6, 0.8, 1, may be
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enough to make a selection.
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Chapter 5

Conclusion

This thesis concludes by first summarizing the motivation behind our work and

our approach to a hopefully more ethical insurance premium, as well as listing its

advantages and disadvantages. We then consider some open problems that have

been raised from our method.

In the past few decades, insurance regulators have treated the use of protected

variables as binary, either allowing or prohibiting their use in their pricing models.

However, recent research has repeatedly shown that simply ignoring a variable

will not eliminate discrimination towards it. It is actually the case that, to

do so effectively, it is better to use the variable appropriately. Because society is

becoming more and more concerned about algorithmic fairness, it may not be long

before its expectations are turned toward fairness in insurance, and this may be

the push needed for insurance regulators to consider different perspectives toward

fairness. In preparation for this eventuality, many researchers have developed

methods to implement algorithmic fairness in insurance, with respect to different

notions of fairness, namely individual fairness and group fairness.

We presented two group fairness approaches to insurance pricing. The first is the

discrimination-free premium of Lindholm et al. (2022) [8] which we exposed in

Chapter 2. It removes the discriminatory impact of P on Y due to observable
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dependence between X and P. It is an intra-treatment approach which requires

the addition of P to the model function inputs as well as the weighted averaging

of multiple outputs of the resulting function. Although it is very efficient and has

the notable advantage of being unbiased, it can drastically increase computation

time, particularly for large portfolios.

The second approach we discussed is our own inverted premium as a post-

treatment approach to group fairness, as seen in Chapter 4. It hinges on the

grid-based change of measure laid out in Chapter 3, a generalization of the change

of measure used by Pesenti et al. (2018) [9]. We introduced ∆P
i as a quantitative

indicator of unfairness based on statistical parity and have shown how a change

of measure to a judiciously chosen measure Q can reduce this quantity to zero.

The strength parameter λ can be used to allow for some flexibility and recom-

mendations were made on its selection. The main advantages of our method are

that changes to global quantities, such as the mean and the median, are relatively

small and that changes to individual premiums do not attain the scale of the ini-

tially observed discrepancy. However, a disadvantage is that the selection of λ

may be complex and require multiple complete iterations of the process.

Finally, we reiterate that algorithmic fairness is only one of the endeavours that

should be undertaken to attain fairness in insurance. The implementation of fair-

ness is a complex issue, and it cannot be completely solved through statistical or

mathematical methods alone. Nonetheless, it is important that these methods

are as refined as possible in case their implementation is ever required by legisla-

tors. This work is intended to supplement these approaches and provide insurers

with additional options to group fairness.

5.1 Open Problems

The method we have constructed for ethical insurance premiums relies on the

grid-based change of measure of Chapter 3. Due to its flexibility, it is not far-

81



fetched to say that it can be applied in numerous fields other than insurance. In

fact, changes of measure are frequently used in finance, along with the Radon-

Nikodym theorem, to price various types of financial products. An interesting

endeavour would be to identify other fields that would benefit from the use of a

different measure than the empirical one.

In Remark 4.1.6, we noted that we could only control the probability distribution

of the premiums at discrete values (the chosen splits). However, if we were to let

the number of chosen splits increase to infinity, we would gain more and more

control over Q – potentially forcing independence between Y and P – but stray

further and further away from the empirical measure P. Visually, this would

correspond to the A-grid (see Figure 3.1) having an infinitely large amount of

infinitely small rectangles. We expect that doing so would allow us to fully

choose the quantiles of the distribution Q, but would lead to a KL divergence

that explodes to infinity, since the αi ∈ A would be near-zero (see Definition

2.2.1). This is all conjecture, and future work could shed some light on this line

of thought.

In Section 4.2, we illustrated our correction method on simulated data. Our data

was built such that there was quite a large discrepancy between means of the

premiums for each category of the protected variable, and we showed that we

are able to tighten the gap not only for the means, but also for the quantiles of

premiums of each category. While this is representative of one type of issue that

may be observed from empirical data, many more types of issues remain. For

instance, the treatment of data for which means across categories of P are close

but variances are very different would likely be very different than what we’ve

presented. Exploring the effect our method has on different types of discrepancies

would definitely be insightful.

Figure 4.10 seemed to indicate that there is a direct link between the linear

reallocation of probabilities across regions by the strength parameter λ and the

change in premium resulting from the inversion method.
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In Section 4.1.1, we suggested the ∆-test (see (4.1.2)) as a way to determine

whether to apply any correction to the outputs of the initial model function.

Recall the test compares the ∆P
i to a pre-determined ϵ, and if any ∆P

i exceeds

ϵ, then the correction should be applied. Because the value of ϵ is so impactful,

it should be chosen carefully. However, to properly assess what constitutes an

adequate value of ϵ, multiple studies should be made on real data.
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