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Abstract

Visual Servoing-Based Dynamic Accuracy Enhancement of Industrial Robots by Using
Photogrammetry Sensor

Tingting Shu, Ph.D.

Concordia University, 2024

Industrial robots are defined as robot systems for manufacturing, with feature programmability,

certain automation, and capability to move on several axes. However, the insufficient accuracy has

limited the industrial robots to many potential applications in aerospace manufacturing. Typical

accuracy requirement in aerospace manufacturing, such as drilling and fastening, are ±0.20mm or

less. Unfortunately, the discrepancy between a virtual-model robot and the corresponding real robot

can even reach around 8 ∼ 15mm due to the deflection of the mechanical structure and tolerances.

Therefore, accuracy enhancement is highly significant in order to expand industrial robots to more

applications in aerospace manufacturing. Visual servoing is extensively applied to control industrial

robots with the help of the visual information feedback, especially for unmodeled environment. In

recent decades, using visual servoing to reach the desired pose precisely has attracted the attention of

many researchers. In this thesis research, three visual servoing-based control schemes are proposed

to target at the accuracy enhancement of positioning and path tracking.

The research work in this thesis includes four parts. First, an adaptive Kalman filter (AKF) is

developed to estimate the pose information of the objects in Cartesian space from the measurements

of the visual sensor with noises. In order to address the difficulty in obtaining precise process

error covariance and measurement error covariance, an adaptive algorithm is proposed to tune the

covariance matrices so that the Kalman filter can produce synchronous pose estimations even when

the objects are moving at certain acceleration or high speed. In this research, a photogrammetry

sensor, C-Track 780 is selected as the visual sensor. The original measurement data from C-Track

780 are contaminated with the noises. The proposed AKF algorithm is developed to process the
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measurement data from C-Track 780 to obtain smooth pose information for visual servoing.

Second, an effective dynamic pose correction (DPC) scheme for industrial robots is proposed to

enhance the pose reaching accuracy for satisfying both position and orientation precision require-

ment. By applying the DPC scheme, the end-effector of an industrial robot can approach the poses

in its reachable workspace with high accuracy. Some experiments are implemented on an industrial

robot, FANUC M20-iA, by using C-Track 780. The experimental results demonstrate high pose

accuracy (±0.050mm for position and ±0.050deg for orientation).

In the third part, a practical dynamic path tracking (DPT) scheme for industrial robots is elabo-

rated for improving the path tracking accuracy. The proposed DPT scheme is designed to realize 3D

dynamic path tracking by correcting the robot movement in real time. By using the proposed DPT

scheme, the industrial robot can be controlled to follow the pre-planned path with high tracking

accuracy. The dynamic stability for the robot system with the proposed DPT scheme is proved the-

oretically through Lyapunov function. Moreover, the effectiveness of the proposed DPT scheme is

verified by the experiments on FANUC M20-iA with C-Track 780. The experimental results show

the high path tracking accuracy (±0.20mm for position and ±0.10deg for orientation) is achieved.

In the last part, adaptive iterative learning control (AILC) in parallel with the proposed DPT

scheme is proposed to update the time-varying control parameters along iteration axis and calculate

new compensation to adjust the control inputs produced by the DPT module at each time interval

based on the memorized data information and current feedback. Three experiments in different

situations (without path correction, with DPT control, and with AILC control) are carried out for

the comparison. The pose accuracy can be stably confined to less than 0.10mm for position and

0.05deg for orientation. Moreover, the repetitive disturbances can be also overcome within cer-

tain iterations so that the vibrations can be significantly reduced. Therefore, the AILC algorithm

proposed verified to be effective to further improve the DPT scheme.

The research work in this thesis explores various schemes to enhance the positioning and path

tracking accuracies for 6-DOF industrial robots. The proposed schemes, DPC, DPT and AILC, are

proved to be effective on some FANUC robots which can be representative in 6-DOF articulated

industrial robots for manufacturing.
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ETS (École de technologie supérieure) for providing lab equipments and significant suggestions.

Moreover, I am deeply thankful to Dongdong Zheng, Pengcheng Li, Tao Zhou, Jianyu Tang, Sepehr

Gharaaty, Xiaoyang Zhang, Xiaoming Zhang, for their collaboration in our research group. Addi-

tionally, I would like to thank all of my friends who have been supporting me go through the recent

years. Last but not least, I sincerely thank my family for their support and understanding.

v



Contents

List of Figures x

List of Tables xiv

Nomenclature 1

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Industrial Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Repeatability and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Coordinate Measure Machine (CMM) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Kalman Filter for Nonlinear System . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Kalman Filter with Irregular Sampled Measurements . . . . . . . . . . . . 20

vi



2.5 Visual Servoing for Industrial Robots . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Visual Servoing Categorization . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Visual Servoing Applications . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Iterative Learning Control for Industrial Robots . . . . . . . . . . . . . . . . . . . 24

2.6.1 ILC Design for Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 ILC Design for Industrial Robots . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Adaptive Kalman Filter Based Pose Estimation with Irregular Sampling 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Workspace Description and Pose Estimation . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Workspace Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Adaptive Kalman Filter for Smoothing Estimated Pose . . . . . . . . . . . . . . . 40

3.3.1 Adaptive Kalman Filter Initialization . . . . . . . . . . . . . . . . . . . . 42

3.4 Analyzing Pose Measurements without/with filtering by Kalman filter . . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Dynamic Pose Correction of Industrial Robots with High Accuracy through a Pho-

togrammetry Sensor 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Dynamic Pose Correction Control . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Pose Error Computation in Equivalent User Frame . . . . . . . . . . . . . 54

4.3.3 DPC Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Experiments for Implementing DPC Scheme . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Experimental Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Control Parameters Initialization . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Dynamic Path Tracking of Industrial Robots With High Accuracy Using Photogram-

metry Sensor 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Workspace Description and Problem Statement . . . . . . . . . . . . . . . . . . . 71

5.2.1 Workspace Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Dynamic Path Tracking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Pose Error Computation in Equivalent User Frame . . . . . . . . . . . . . 73

5.3.2 Tracking Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 Experimental Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Error analysis for FANUC M20-iA . . . . . . . . . . . . . . . . . . . . . 80

5.4.4 Kalman Filter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.5 Control Parameters Initialization . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.6 Experiments for Implementing DPT scheme . . . . . . . . . . . . . . . . 83

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Adaptive Iterative Learning Control for Dynamic Path Tracking of Industrial Robots 90

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Adaptive Iterative Learning Control for Dynamic Path Tracking . . . . . . . . . . 95

6.3.1 Adaptive Iterative Learning Control algorithm . . . . . . . . . . . . . . . . 95

6.3.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Parameters Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.2 The Analysis of Experimental Results . . . . . . . . . . . . . . . . . . . . 100

viii



6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Summary and Future Works 111

7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A My Appendix 115

A.1 FANUC robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.1 FANUC LR Mate 200iC . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.2 FANUC M20iA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Optical CMM from Creaform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 118

ix



List of Figures

Figure 1.1 The first industrial robots Unimate and its application in automotive manu-

facturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 The development and application of industrial robots during 2010-2020 [3] . 4

Figure 1.3 The aerospace applications of industrial robots . . . . . . . . . . . . . . . . 5

Figure 2.1 The industrial robotics market analysis by type in 2020 and forcast in 2030. 14

Figure 2.2 (a) low repeatability and accuracy, (b) high repeatability and accuracy, (c)

high repeatability and low accuracy, (d) low repeatability and high accuracy. . . . . 16

Figure 2.3 Examples of precision robotic applications . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Using laser tracker to calibrate the industrial robots. . . . . . . . . . . . . . 17

Figure 2.5 The image processing of a optical CMM [36]. . . . . . . . . . . . . . . . . 18

Figure 2.6 (a) FANUC robot 200iD pick and place with vision guiding (left); (b) FANUC

Robot working with 3D vision (right) [69]. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.7 Basic configuration of Iterative learning control . . . . . . . . . . . . . . . 25

Figure 3.1 Definition and relation of the coordinate reference frames in the workspace. 36

Figure 3.2 Static position measurements of the end-effector in sensor frame FS by using

C-Track 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.3 Static orientation measurements of the end-effector in sensor frame FS by

using C-Track 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.4 Position measurements of the end-effector at a fixed point in sensor frame

FS without/with filtering by AKF. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



Figure 3.5 Orientation measurements of the end-effector at a fixed point in sensor frame

FS without/with filtering by AKF. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.6 Position measurements of the end-effector in sensor frame FS without/with

filtering by AKF for the end-effector moving along a line at speed 25mm/s. . . . . 47

Figure 3.7 Orientation measurements of the end-effector in sensor frame FS without/with

filtering by AKF for the end-effector moving along a straight line at speed 25mm/s. 47

Figure 4.1 Definition and relation of the coordinate reference frames in the workspace

with dynamic referencing frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.2 Control configuration of dynamic pose correction (DPC) control. . . . . . . 54

Figure 4.3 Control flowchart for implementing DPC Scheme. . . . . . . . . . . . . . . 59

Figure 4.4 Experimental setup for implementing DPC Scheme. . . . . . . . . . . . . . 61

Figure 4.5 (a) FANUC LR Mate 200iC with the end-effector, (b) The ball tool on the

needle tip touches three ball tips of the Trical, (c) The Trical. . . . . . . . . . . . . 62

Figure 4.6 The distance error for the TCP of the end-effector moving from P0 to Pd

with DPC control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.7 The position error of FE in FUT
for the TCP of the end-effector moving to

the desired pose with DPC control. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.8 The orientation error of FE in FUT
for the TCP of the end-effector moving

from P0 to Pd with DPC control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.9 (a1) and (a2) Data display of three Trical indicators after initialization; (b1)

and (b2) Final data display of three Trical indicators at the first round; (c1) and (c2)

Final data display of three Trical indicators at the second round. . . . . . . . . . . 68

Figure 5.1 Definition and relation of the coordinate reference frames in the workspace. 71

Figure 5.2 Control configuration of dynamic path tracking control. . . . . . . . . . . . 73

Figure 5.3 Path analyzing method of dynamic path tracking control. . . . . . . . . . . 74

Figure 5.4 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.5 Distance error for FANUC M20-iA moving forward along Pd1 at speed

25mm/s without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



Figure 5.6 Distance error for FANUC M20-iA moving backward along Pd1 at speed

25mm/s without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.7 The distance error for FANUC M20-iA moving forward along Pd1 at speed

25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.8 The position error of the TCP for FANUC M20-iA moving forward along

Pd1 at speed 25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.9 The orientation error of the TCP for FANUC M20-iA moving forward along

Pd1 at speed 25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.10 The distance error for FANUC M20-iA moving along Pd1 backward at speed

25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.11 The position error of the TCP for FANUC M20-iA moving along Pd1 back-

ward at speed 25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . 87

Figure 5.12 The orientation error of the TCP for FANUC M20-iA moving along Pd1

backward at speed 25mm/s with path correction. . . . . . . . . . . . . . . . . . . 88

Figure 5.13 The distance error for FANUC M20-iA moving along Pd2 at speed 25mm/s

without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.14 The trajectory of the TCP for FANUC M20-iA moving along Pd2 at speed

25mm/s with path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.15 The distance error for FANUC M20-iA moving along Pd2 at speed 25mm/s

with path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 6.1 Control configuration of dynamic path tracking by using AILC scheme in

parallel with DPT scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 6.2 Control flowchart for implementing AILC scheme. . . . . . . . . . . . . . 99

Figure 6.3 Distance error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s

without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 6.4 Position error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s

without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 6.5 Orientation error for Fanuc M20-iA moving forward along Pd2 at speed

50mm/s without path correction. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



Figure 6.6 Distance error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s

with DPT control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.7 Position error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s

with DPT control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.8 Orientation error for Fanuc M20-iA moving forward along Pd2 at speed

50mm/s with DPT control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 6.9 Average distance error of each iteration for Fanuc M20-iA moving forward

along Pd2 at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . . . . 106

Figure 6.10 Average position error of each iteration for Fanuc M20-iA moving forward

along Pd2 at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . . . . 107

Figure 6.11 Average orientation error of each iteration for Fanuc M20-iA moving for-

ward along Pd2 at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . 107

Figure 6.12 Distance error of last iteration for Fanuc M20-iA moving forward along Pd2

at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.13 Position error of last iteration for Fanuc M20-iA moving forward along Pd2

at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.14 Orientation error of last iteration for Fanuc M20-iA moving forward along

Pd2 at speed 50mm/s with AILC control. . . . . . . . . . . . . . . . . . . . . . . 109

Figure A.1 (a) FANUC LR Mate 200iC, (b) Fanuc R-30iA Mate Controller [155]. . . . 118

Figure A.2 The work envelope of FANUC LR Mate 200iC [152]. The unit for dimension

is millimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure A.3 (a) FANUC M20iA, (b) Fanuc R-30iB Controller [156]. . . . . . . . . . . . 119

Figure A.4 The work envelope of FANUC M20iA [153]. The unit for dimension is

millimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure A.5 (a) C-Track 780 on a tripod, (b) Calibration bar, (c) Controller, (d) HandyProbe,

(e) Calibration cone, (f) Adhesive reflectors, (g) magnetic reflectors. . . . . . . . . 123

Figure A.6 The measurement volume of C-Track serials [157]. . . . . . . . . . . . . . 123

xiii



List of Tables

Table 1.1 The factors to impair the accuracy of the industrial robots . . . . . . . . . . . 6

Table 2.1 The types of the industrial robots and their features. . . . . . . . . . . . . . . 15

Table 2.2 The three significant features of Kalman filter. . . . . . . . . . . . . . . . . . 19

Table 3.1 RMS error of pose measurements by using C-Track 780 to measure the pose

of the end-effector at fixed points. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 4.1 The comparison of initial error and final error. . . . . . . . . . . . . . . . . . 66

Table 4.2 Data display of three Trical indicators. . . . . . . . . . . . . . . . . . . . . . 66

Table 4.3 Pose accuracy and duration of 6 tests for the TCP of the end-effector moving

from P0 to Pd with DPC control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.4 Time durations for the TCP of the end-effector moving from P0 to Pd with

DPC control at different Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 5.1 Simulation Results of DPT scheme on Puma 560 with some deviations on

J(q(k)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.2 Pose information of Pd1 for the end-effector for experiments. . . . . . . . . 80

Table 5.3 Results comparison for FANUC M20-iA moving along Pd1 forward at speed

25mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.4 Results comparison for FANUC M20-iA moving along Pd1 backward at

speed 25mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.5 Results comparison for FANUC M20-iA moving forward and backward along

Pd1 at speed 15mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 5.6 Circle center for experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



Table 5.7 Results comparison for FANUC M20-iA moving along Pd2 and Pd3 at speed

25mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 6.1 Pose information of Pd2 for the end-effector in user frame FUT
for the exper-

iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 6.2 The comparison of maximum errors for Fanuc M20-iA moving forward along

Pd2 at speed 50mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 6.3 The comparison of RMS errors for Fanuc M20-iA moving forward along Pd2

at speed 50mm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 6.4 The accuracy improvement with AILC control superior to DPT control for

Fanuc M20-iA moving forward along Pd2 at speed 50mm/s. . . . . . . . . . . . . 110

Table A.1 FANUC LR Mate 200iC robot specification. . . . . . . . . . . . . . . . . . 120

Table A.2 FANUC M20iA robot specification. . . . . . . . . . . . . . . . . . . . . . . 122

Table A.3 The technical specifications of C-Track 780. . . . . . . . . . . . . . . . . . . 122

xv



Nomenclature

FB base frame of the robot

FD dynamic referencing frame

FE tool frame of the robot defined in FUR

FS sensor frame

FE′ tool frame of the robot defined in FS

FOT
reference frame of the task object

FUR
user frame of the robot

FUT
user frame in task space

FUEq
equivalent user frame to FUR

defined in FS

WR workspace of the robot

WT task space

S
E′H transformation matrix from FS to FE′

UR
EH transformation matrix from FUR

to FE

UT

E′H transformation matrix from FUT
to FE′

UT
ER rotation matrix from FUT

to FE

UT
OT

H transformation matrix from FUT
to FOT
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UT
SH transformation matrix from FUT

to FS

E′
ER rotation matrix from FE′ to FE

AILC adaptive iterative learning control

AKF adaptive Kalman filter

CAD computer-aided design

CMM coordinate measure machine

DOF degree of freedom

DPC dynamic pose correction

DPT dynamic path tracking

FOV field of view

IBVS image-based visual servoing

ILC iterative learning control

PBVS position-based visual servoing

TCP tool center point
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Chapter 1

Introduction

1.1 Background

According to the definition from ISO (the International Organization for Standardization), an

industrial robot is a multipurpose manipulator with some actuators, featuring to be automatically

controllable and programmable in three or more axes and be used for industrial automation appli-

cations [1]. The first industrial robot, Unimate in Fig.1.1a, was invented by George C. Devol in

1954 and patented in 1961 [2]. The typical application field of the industrial robots is automotive

manufacturing, such as handling, welding, assembling, cleaning, dispensing, processing. With the

help of Unimate spot welding robot shown in Fig.1.1b, the production capability of GE (General

Motors) succeeded to reach 110 cars/hour, which was more than twice of the production speed of

any other automotive company in 1969. Generally, industrial robots are considered as labor re-

placement of human to complete repetitive or dangerous tasks with high precision and endurance,

for example, lifting very heavy objects, collecting/packaging radioactive waste, working in very

high temperature, contaminated or dusty environments. As stated in the World Robotics 2021 In-

dustrial Robots Report [3], the total of estimated 3 million industrial robots are operated in factories

around the world with an increase of 10% even during the global pandemic in 2021. The benefits

of industrial robots attract more and more manufacturers. The development and application of in-

dustrial robots in the most recent 10 years is astounding through the demonstration of Fig.1.2a and

Fig.1.2b. The average global robot density is nearly 126 industrial robots per 10,000 employees in
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the manufacturing industries according to the statistics in [3].

(a) The first industrial robot: Unimate (b) Unimate spot welding robots in automated automo-
tive manufacturing

Figure 1.1: The first industrial robots Unimate and its application in automotive manufacturing [4].

(a) Worldwide Annual Installations (b) Worldwide Operational Stock

Figure 1.2: The development and application of industrial robots during 2010-2020 [3]

In recent years, the aerospace manufacturers, e.g. Boeing and Lockheed Martin, have been

increasingly automating the manufacturing process by using industrial robots to replace human la-

bor. The main applications in aerospace manufacturing are including drilling, fastening as shown

in Fig.1.3a, welding, inspection as shown in Fig.1.3b, sealing, dispensing, and other rigid manufac-

turing. The fuselages of the modern large aircrafts are connected by using a lot of rivets since they

are much tighter and stronger under vibrations and extreme temperature conditions comparing to

the screws and welds. For example, there are nearly 60, 000 rivets on the fuselages of a Boeing 777

[5]. Each complete riveting process consists of drilling the hole, aligning, filling and fastening. If

drilling a high-quality hole is performed by a skilled technician, several steps, including drilling a
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pilot hole, drilling a full-size hole and reaming the hole, are required by using a complex heavy jig

and powerful tools. It can be estimated how enormous amount of human labor needed to manually

install all the rivets for a large aircraft. As a comparison, two industrial robots like Fig.1.3a can

accomplish the drilling and riveting process with a higher precision in a fraction of the time that the

skilled technicians spend, not to mention liberate the human from stress injuries.

(a) The industrial robots work inside and outside
a 777 jet fuselage to set fasteners [6]

(b) Robot inspecting composites for irregulari-
ties, courtesy Spirit AeroSystems Inc. [7]

Figure 1.3: The aerospace applications of industrial robots

The benefits of automating the aerospace manufacturing with industrial robots have been exten-

sively acknowledged. Meanwhile, there are still many potential applications in aerospace manufac-

turing fields, which are confined to be robotized due to the poor accuracy of the industrial robots.

Generally, the manufacturer of the industrial robots only provide the repeatability as the perfor-

mance criteria. Repeatability represents the ability of the industrial robot to consistently reach the

same task point, and it is useful when the task point can be taught on-site. The repeatability offered

by small or medium industrial robots varies in 0.03 ∼ 0.10mm and can be bigger than 0.2mm for

large ones [8]. However, teaching method becomes unfeasible for many applications in aerospace

manufacturing because of some features of a large aircraft, such as large size, complex structure and

high precision requirement. Moreover, it is very time-consuming to teaching a industrial robot to

drill large numbers of holes on a large-scale aircraft. On the other hand, the advanced task planning

methods based on offline simulation or computer aided design appears demanding, and the imple-

mentation of these methods will rely on the accuracy of the industrial robots. According to the

standard process specifications in the aerospace industry, the desired accuracy of robot manipula-

tion for manufacturing is around ±0.20mm [9, 10]. Accordingly, a nominal accuracy of ±0.10mm
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is selected to ensure robots to be able to complete these tasks [11]. Unfortunately, the discrepancy

between a virtual-model robot and the corresponding real robot can even reach around 8 ∼ 15mm

due to the deflection of the mechanical structure and tolerances [12]. Therefore, enhancing the ac-

curacy of industrial robots tends to be unavoidable as robotizing aerospace manufacturing has been

extensively explored.

1.2 Motivation

Various complicated factors, as listed in Table.1.1, may affect the accuracy of industrial robots

and can be classified into five categories: parametric, environmental, computational, measurement,

and application [13]. In the past decades, many researchers have been trying to reduce or compen-

sate the influence caused by these factors so as to improve the accuracy of robots.

Table 1.1: The factors to impair the accuracy of the industrial robots .

No. Factor categories Specific description

1 parametric

kinematic parameters deviation resulted from the assembly
and manufacturing errors, influence of dynamic parameters,
drive-train compliance, joint zero-reference offsets, friction,
hysteresis, backlash and other nonlinearities

2 environmental temperature changes, warm-up process
3 computational computer round-off, steady-state servo errors
4 measurement nonlinearity and resolution of joint position sensors
5 application installation errors, workpiece position and geometry errors

The static calibration is a traditional method to enhance the accuracy of industrial robots by

identifying the precise values of the kinematic parameters. Calibration is mostly based on kinematic

models, or sometimes partly dynamic model involved as well, such as joint or link compliance,

backlash [13, 14]. Since the static calibration considers only the static or quasi static factors, static

pose accuracy can be increased to a limited extent by static calibration. Another calibration method

proposed by Zhao et.al in [15] is to adjust the kinematic parameters for path tracking of industrial

robots through iterative learning control method. However, the offsets of kinematic parameters will

be variable with different paths and moving speeds. As a result, when dynamic positioning and

path tracking accuracies of industrial robots are demanded, calibration can be only the first step to
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achieve the reliable solution.

In recent years, majority of the robotic applications in aerospace industry take the direct method

to install high-accuracy secondary encoders at the output of each joint axis [10, 16]. This method can

improve the accuracy and stiffness to some extent through excluding the influences of the distortion

and backlash from the reducers and gears. However, a complete set of high-accuracy secondary

encoders for one industrial robot is very expensive. In addition, the encoders should be custom-

implemented, and work only on a few large robot models. For instance, FANUC offers this option

only for their R2000 and M900 robot models, at an extra cost of about $30, 000.

Visual servoing is known as a control method based on visual feedback information. Compared

to the aforementioned two methods, visual servoing proves to be more economic, and effective to

enhance the accuracy of an industrial robot through real-time complementary control to guide the

end-effector with the help of a laser tracker or a close-range photogrammetry system [17, 18, 19,

20]. Visual servoing for industrial robots provides the possibility to correct the occurring errors for

dynamic positioning and path tracking accuracy enhancement because it is a closed-loop real-time

control method considering system dynamics. Although there have a lot of research work involving

visual servoing, very limited existing works aimed to achieve the high-accuracy approaching of fixed

points and the high-precision tracking of pre-planned trajectories for a complete 6-DOF industrial

robot. Hence, the research on enhancing dynamic pose approaching or path tracking accuracy for

industrial robots is very significant and promising. Accordingly, the main motivation of this thesis

research work is to develop effective visual servoing based control methods to improve the accuracy

of the industrial robots.

1.3 Problem Statement

In fact, a modern industrial robot is a complicated system, composed of at least five com-

ponents: the manipulator, the end-effector, the robotic controller, feedback equipments, and the

human-interface device. The majority of industrial robots currently available on the market are

designed to work in conjunction with controllers specifically manufactured by the same company,

ensuring seamless operation. The robotic controller can be considered as the ”brain” of an industrial
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robot. All the motion commands to the actuators mounted on the axes of the manipulator and the

end-effector are produced by the robotic controller based on the feedback information. The robotic

controller provides access for the operators to control the movement of the end-effector. In another

word, the manipulator can be commanded only through the robotic controller, which becomes a

barrier when the accuracy of the industrial robot cannot not meet the task requirements and some

complementary strategies need to be employed.

Generally, industrial robots are mass-produced with components that are less rigid and precise,

and thus they cannot be as accurate as computer numerical control machine. As a result, the kine-

matic and dynamic models of an industrial robot that is programmed in the robotic controller can

be an overly simplified version of reality. On the other hand, path tracking errors for high-speed

or large-load robots are primarily induced by dynamic factors, including Coriolis force, centrifugal

force, and dynamic coupling within the robot’s joints [21, 22, 23]. Besides, there are many other

factors as listed in Table.1.1 affecting the accuracy of industrial robots.

In fact, the accuracy of an industrial robot can be enhanced by minimizing the errors between

the real robot and the mathematical representation of the virtual robot in the robotic controller. The

goal of this thesis research work are to improve dynamic pose accuracy for approaching desired pose

and dynamic tracking accuracy for tracking pre-planned path. One effective and affordable solution

is to guide the end-effector with the feedback information of a close-range photogrammetry sensor

based on visual servoing. In other words, an outer loop part, i.e., a visual servoing based controller,

before the robotic controller will be designed for dynamic pose correcting (DPC) or dynamic path

tracking (DPT).

1.4 Research Objectives and Scope

This thesis research work mainly aims to develop efficient DPC/DPT control algorithm to im-

prove the pose reaching accuracy and dynamic path tracking accuracy [24, 25]. First, the DPC/DPT

schemes are proposed and verified by practical experiments. Then, in order to improve the control

process and further enhance the DPT accuracy, an adaptive iterative learning control scheme is de-

signed to optimize the DPT scheme. At the same time, all the proposed control algorithms should
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guarantee the stability of the system in all tasks. Additionally, the development of an adaptive

Kalman filter (AKF) for noise filtering to obtain smooth pose estimation is significant.

The research work in this thesis is carried out in five main phases. First, relevant literature and

the technical reports in the field are reviewed, which is summarized in the next chapter. Then, the

development of the AKF is introduced and its effectiveness is verified. Next, the DPC scheme is pre-

sented to realize desired pose reaching by correcting the pose error of the end-effector in real time.

The fourth phase is the development of the DPT scheme, which is presented to realize dynamic path

tracking by on-line correcting the path-following movement of the end-effector. The DPT scheme

includes path analyzer and path tracking control module. The path analyzer part computes the pose

of the closest point on the desired task path according to the current TCP pose, and decides the next

path step. The path tracking control module includes DPT control algorithm to produce the control

input for robot controller based on the current tracking error. Last, an adaptive iterative learning

control (AILC) is proposed to achieve higher accuracy and better transient performance based on

the DPT scheme. The AILC scheme updates time-varing adaptive parameters and iteratively gen-

erates control inputs to offset the control inputs derived from DPT scheme. The AILC scheme is

implemented as a memory-based controller, where the control signals and error signals of previous

trials are utilized to update the current control signals.

1.5 Contributions

In this Ph.D research, accuracy enhancements for industrial robots to reach a given pose or track

a given path are investigated. The contributions of this Ph.D research are listed as follows:

• A dynamic pose correction (DPC) control scheme is proposed which can guide a 6-DOF

industrial robot to achieve high pose approaching accuracy. The desired pose can be static

or moving. Some experiments are implemented on an industrial robot, FANUC LR Mate

200iC, by using C-Track 780. The experimental results demonstrates high pose accuracy

(±0.050mm for position and ±0.050deg for orientation).

• A dynamic path tracking (DPT) control scheme is developed to control the industrial robot

to track the desired path in the workspace with high accuracy. The experimental results show
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the high path tracking accuracy (±0.20mm for position and ±0.10deg for orientation) is

achieved when the end-effector of FANUC M20-iA is moving at speed 25mm/s.

• An adaptive iterative learning (AILC) scheme based DPT control scheme is designed to fur-

ther improve the control process of the proposed DPT control scheme. The AILC scheme is

designed to update time-varying parameters along iteration axis without known system dy-

namics. Comparing with DPT control scheme, it is proved that better transient performance

and higher path tracking accuracy can be achieved with the AILC based DPT scheme. The

pose accuracy can be stably confined to less than 0.1mm for position and 0.05deg for ori-

entation when the end-effector of FANUC M20-iA is moving at speed 50mm/s. Moreover,

the repetitive disturbances can be also overcome within certain iterations so that the vibra-

tions can be significantly reduced. Therefore, the AILC algorithm is verified to be effective

to further improve the DPT scheme.

• Seamlessly integrate the third control terminal with the industrial robot controller.

• A latest photogrammetry sensor, C-track 780 from Creaform, is used to provide the feedback

measurements. It is proved to be an effective and economic coordinate measure machine

(CMM) by the experimental results.

• In order to extract reliable pose information from the noise contaminated sampled data, an

adaptive Kalman filter (AKF) is proposed. The AKF algorithm can be adaptive to variable

velocity and acceleration for moving objects with irregular sampling interval.

1.6 Publications

The presented research work is documented in a number of journals and conference proceedings.

The following is the list of author’s publications.

Journal Publications:

• Shu T.T., Gharaaty S., Xie W.F., Joubair A. and Bonev I.A., Dynamic path tracking of

industrial robots with high accuracy using photogrammetry sensor, IEEE/ASME Trans-

actions on Mechatronics, Vol. 23, No. 3, pp. 1159-1170, June 2018.
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• Gharaaty S., Shu T.T., Xie W.F., Joubair A. and Bonev I.A.,, I.A. (2018), Online pose

correction of an industrial robot using an optical coordinate measure machine sys-

tem, International Journal of Advanced Robotic Systems, 15(4), 1729881418787915. DOI:

https://doi.org/10.11 77/1729881418787915.

• Li P.C., Shu T.T., Xie W.F., and Tian W., Dynamic Visual Servoing of A 6-RSS Parallel

Robot Based on Optical CMM, Journal of Intelligent & Robotic Systems, 102, 40 (2021).

https://doi.org/10.1007/s10846-021-01402-5.

• Zhang R.H., Wang Y.N., Xie W.F., Shu T.T., Tan H.R. and Jiang, Y.M., Coordination control

of the automated fiber placement system using photogrammetry-based leader–follower

approach, Control Engineering Practice, 141, 105691(2023), Elsevier, https://doi.org/10.1016/j.conengprac.2023.105691.

• Shu T.T., Li P.C., Zhang R.H., and Xie W.F., Adaptive Iterative Learning Control for

Enhancing the Dynamic Path Tracking Accuracy of 6-DOF Industrial Robots, submitted

to International Journal of Advanced Robotic Systems in 2023.

Conference Publications:

• Shu T.T., Gharaaty S., Xie W.F., Joubair A. and Bonev I.A., Dynamic path tracking of

industrial robots with high accuracy by visual servoing, Proc. of 12th IEEE Conference

on Industrial Electronics and Applications, June 18-21, Siem Reap, Cambodian, 2017.

• Gharaaty S., Shu T.T., Xie W.F., Joubair A. and Bonev I.A., Accuracy enhancement of

industrial robots by on-line pose correction, Proc. of 2017 2nd Asia-Pacific Conference on

Intelligent Robot Systems (ACIRS), pp. 214 – 220, June 16-18, Wuhan, China, 2017.

• Tang J.Y., Zhou T., Zakeri E., Shu T.T and Xie, W.F., Photogrammetry-based dynamic
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Engineering International Congress, Computational Fluid Dynamics Canada International

Congress CSME - CFD-SC2023, May 28-31, 2023, Sherbrooke, QC, Canada.

1.7 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, a comprehensive literature review

including industrial robots, coordinate measure machine (CMM), Kalman Filter, visual servoing,

and iterative learning control is presented. In Chapter 3, the development of AKF is introduced and

pose estimation from the feedback measurements is verified. In Chapter 4, the DPC control scheme

is proposed and tested on FANUC M20-iA. In Chapter 5, the DPT control scheme is developed

and validated on FANUC M20-iA. Chapter 6 presents the AILC scheme in parallel with the DPT

scheme and the comparison of experimental results is provided. In Chapter 7, the conclusions of

the thesis and the future works based on current research are given.
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Chapter 2

Literature Review

2.1 Introduction

The thesis research work involves industrial robots, coordinate measure machine, Kalman filter,

visual servoing, and iterative learning control. In terms of strategies and other aspects, the following

is a review of the current research status in related fields.

2.2 Industrial Robots

When the first robot manipulators were constructed in the 1960s, only carefully preplanned

movements could be executed in structured environment [26]. In recent decades, with the devel-

opment of artificial intelligence (AI), modern intelligent control theory, mechanics with versatile

sensors, image precessing, computer processor and peripheral devices, and other interdisciplinary

research, industrial robots have gradually dominated the manufacturing fields, such as semicon-

ductors, automotive, metal and machinery, plastic and chemical products. Industrial robots are

predominantly utilized for handling, assembling, welding, cleaning, processing and dispensing [3].

Undoubtedly, industrial robots have make significant contributions to the Fourth Industrial Revolu-

tion (FIR) on industrial automation [27].

The major market share of industrial robots is possessed by the top four manufacturers which
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are FANUC, KUKA, ABB and Yaskawa Electric. All these four manufacturers have unique advan-

tages to prevail over each other, and have been operating for over 40 years. The available industrial

robots in the market can be classified seven types as described in Table.2.1 [28]. SCARA represents

Selective Compliance Articulated Robot Arm or Selective Compliance Assembly Robot Arm. Rect-

angular, cylindrical, and spherical are three basic shapes for industrial robots. The common features

of these three shapes are the symmetry of their structures such that their reachable workspace are

symmetric.

Articulated robots are the most common structure of robotic manipulators and occupying over

50% of annual installations according to the demonstration in Fig.2.1 [29]. Normally, an articu-

lated robot comprises of six serial connected links and joints. Each joint and link are capable of

translating and rotating separately. The manipulation of articulated robots is very flexible and their

movements imitate the human arm in some extent. Usually, joints 1-3 are like human arm, respon-

sible for positioning the end-effector to a objective point in space, and joints 4-6 are like the wrist

for orientating the end-effector. The typical sizes of available articulated robots in the market range

among 0.5m ∼ 3.5m [28].

Figure 2.1: The industrial robotics market analysis by type in 2020 and forcast in 2030.

The important features, presented in subsection 2.2.1 are critical to an industrial robot and de-

termine its capability and practical implementation.

14



Table 2.1: The types of the industrial robots and their features.

No. types stucture movement features applications

1 Cartisian robots 3 linear axes

3-DOF, move
on 3-axis straight
lines (in and out,
up and down,
side to side

CNC machines,
3D printing

2 SCARA Robots
pliable on X-Y
axes and rigid
on Z axis

4-DOF, move in
X, Y, Z planes,
rotate around
Z axis

palletizing, assembly,
bio-medical

3 articulated robots
mostly 4 or 6
axes

4-DOF or 6-DOF,
rotating about the
joints

welding, assembly,
handling, packaging,
machine tending

4 cylindrical Robots
1 rotary joint
and 1 prismatic
joint

2-DOF, rotating
around the base
and extending along
another axis

coating, machine tending,
simple assembly,
in compact workspaces

5 parallel robots
3 joints and
3 arms on a
same base

3-DOF, 3 arms
control the 3
joints in a dome
shape

pharmaceutical,
electronic industries,
fast pick and place
food product

6 spherical robots

an arm with 2
rotary joints
and 1 linear
joint

3-DOF, move in
spherical space

injection molding,
welding, die casting,
material handling

7 Cobots many types
interact with
humans in a
shared space

palletizing,
pick and place,
machine tending,
quality inspection

2.2.1 Repeatability and Accuracy

Repeatability and accuracy are two significant specifications for industrial robots. Fig.2.2 demon-

strates the differences between the definitions of repeatability and accuracy.

Repeatability of an industrial robot refers to the repeated precision that the TCP (tool center

point) of the end-effector return to the same location [30]. Repeatability is the result of statistics

and represents the maximum radius of the sphere encompassing the set of the locations that the TCP

of the end-effector arrives at starting from the same initial location with the identical configuration

and payload. Repeatability is the capability to perform the repetitive tasks, such as machine loading
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and assembly. Typical repeatability provided by the robot manufacturers varies from 0.005mm for

precise micro-positioning manipulators to 1 ∼ 2mm for large spot-welding manipulators [31].

Figure 2.2: (a) low repeatability and accuracy, (b) high repeatability and accuracy, (c) high repeata-
bility and low accuracy, (d) low repeatability and high accuracy.

Figure 2.3: Examples of precision robotic applications .

For industrial robots, two types of accuracy, positioning accuracy and path tracking accuracy

should be considered respectively. Positioning accuracy refers to the precision for the object to

move to a pre-planned location, while path tracking accuracy represents the quality of tracking pro-

cess when the TCP of the end-effector moves along the pre-planned path or trajectory. Many factors,

such as inaccurate kinematic parameters ( joint angels, joint or link deflections under payload, link

lengths, etc.), friction, drive backlash), can impair the accuracy of industrial robots. Various preci-

sion applications in aerospace manufacturing industry, e.g., laser cutting, inspection, deburing and

fastening, are increasingly robotized (Fig.2.3). The unidirectional position repeatability of a typi-

cal robot manipulator in manufacturing industry is about 0.02mm, while the position accuracy of
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such a robot, even after calibrated, can be only around 1mm [32]. The position accuracy of the

industrial robots without calibration can be as bad as ±10mm due to inaccurate kinematic mod-

els and assembly-line manufactured [31]. However, the majority of aerospace applications require

tolerances of 0.20mm or less [32].

2.3 Coordinate Measure Machine (CMM)

A coordinate measuring machine (CMM) is defined as a type of sensor that can measure the

information of the discrete points at the surface of the physical object so as to obtain the geom-

etry (including position and orientation in the sensor frame) of the object [33]. In nowadays, no

standardization of CMMs exists yet. There are tens of manufacturers, hundreds of different types

of CMMs, and their corresponding unique software programs for running the machines [34]. The

probe is one key component for all the CMMs in the market and can be non-contact, contact, and

combined (multi-probes). Typically, for non-contact probes, laser signal or optical vision are used

to attain the distance from the surface of the object to the probe. Contact probes are usually applied

to measure the specific point or to obtain the profile of the object by scanning the surface of the

object. Majority of the CMMs are able to provide the 6-DOF pose measurements in micrometer

precision with the help of the synchronous data processing of the attached software.

Figure 2.4: Using laser tracker to calibrate the industrial robots.

CMMs have been extensively applied for measuring the manufacturing and assembly process in

the fields of electronics, aerospace, machine tool, automobile, and etc. since the Ferranti Company
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in Scotland developed the first CMM for their military intention in the 1950s [33]. CMMs with non-

contact probes are perfectly suitable for high-precision, complex or easily deformable parts. A laser

tracker is one type of portable non-contact CMM to utilize the laser beam travels to compute the

accurate distance from the tracker to the target part. Comparing to the traditional CMM, laser tracker

systems have absolute advantages on durability, flexibility, accuracy, and reliability for large-scale

metrology applications. Since laser tracker systems first arose in the 1990s, they have dominated

most of the high-precision applications, such as calibrations of the industrial robots in Fig.2.4,

measuring and prototyping in aerospace manufacturing. The left picture in Fig.2.4 shows the setup

at ÉTS (École de technologie supérieure) for calibrating a ABB robot using a FARO laser tracker.

The right picture in Fig.2.4 demonstrates how KUKA calibrates its industrial robots using a FARO

laser tracker as well. However, the cost of using laser tracker systems are generally over $100, 000

[35]. One most common spherically mounted retro-reflector (SMR) as the target device of a laser

tracker costs at least $1000. The measuring accuracy of a laser tracker can be guaranteed only in

perfect laboratory conditions.

Figure 2.5: The image processing of a optical CMM [36].

Vision-based optical CMMs are also non-contact portable. Optical CMMs are regarded as CNC

(Computer Numerical Control) image measuring machines, which rely on the technology advance-

ment of the image processing to obtain automatic fast and accurate measurements. Fig.2.5 demon-

strates an example of the complex principles for an optical CMM. Recent decades have seen that
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the price of the optical CMMs becomes more competitive, and much better performance, e.g., faster

measurements, excellent reliability and superior portability, are offered by optical CMMs [36]. Op-

tical metrology has breakthrough on performing high-frequency, continuous inspections on all sizes,

shapes, and materials. Correspondingly, optical CMMs will start playing a more important role in

manufacturing industry.

2.4 Kalman Filter

The name of Kalman filter was originated from Rudolf E. Kalman since he completely present

the theory of Kalman filter in 1960 [37]. According to the fundamental principle of Kalman filter,

Kalman filter is also called as LQE (linear quadratic estimation) [38]. The algorithm of Kalman

filter integrates the control and statistics theory, and it produces real-time optimal estimations recur-

sively based on a series of observed measurements instead of a single measurement. The algorithm

of Kalman filter does not require big memory space and complex computation consumption. Its

unique advantages have attracted many researchers from different fields and become one of the

most common data filtering and fusion methods. The three significant features of Kalman filter are

summarized in [38] as in Table.2.2.

Table 2.2: The three significant features of Kalman filter.

No. features explanation

1 discrete
The measurement information is sampled at
constant interval repeatedly.

2 recursive
Current estimations is based on the past
prediction and current measurements, then update
the prediction matrix for the future.

3 predictive
The prediction for the future is based on
the current state, e.g., acceleration,
velocity, position, etc.

2.4.1 Kalman Filter for Nonlinear System

In recent decades, Kalman filter has been widely applied in visual servoing for optimal or sub-

optimal estimation [39, 40]. Normally, a linear dynamic process model is required and a priori
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statistical information of the process and measurement noise are assumed to be known in Kalman

filter algorithm. However, industrial robots mechanism including kinematics and dynamics is highly

nonlinear and the pose estimation from image information captured by the eye-to-hand cameras is a

nonlinear computation. In order to apply Kalman filter to estimate the end-effector pose of industrial

robots, many researchers have utilized extended Kalman filter (EKF) by [17, 41]. The optimality

of EKF depends on the accuracy of dynamic process model, which is hard to obtain. Moreover, the

process and measurement noise are time varying as the robots move at different speeds, with various

configurations, along different trajectories and in different situations. Recently, the adaptive Kalman

filter (AKF) has attracted more and more attention of the researchers to overcome the problems and

adapt to complicated situations without knowing certain system model and precise priori knowledge

about the noise [39, 42, 43]. Therefore, this thesis research adopts the AKF to achieve the smooth

pose estimation when the industrial robots are subjected to time-varying process and measurement

noise.

2.4.2 Kalman Filter with Irregular Sampled Measurements

Ideally, the measurements for Kalman filter estimation are expected to be sampled at a constant

time interval δt since δt is a constant variable in the algorithm of Kalman filter. However, irregular

sampling rates and time-varying time delays tend to be unavoidable for obtaining the measurements.

Early in 1984, T. Glad and L. Ljung published a research about using Kalman filter to esti-

mate velocity from the irregular measurements [44]. The research in [45] presents using EKF to

process the infrequent and delayed measurements for estimating nonlinear state during chemical

process. The computation of algorithm [45] is time-consuming and the accuracy has to be sacri-

ficed to shorten the time consumption. The researchers [46] presents a modified Kalman filter with

time-varying delays and irregular sampling for linear time varying system, not for nonlinear system.

The researches in [47] and [48] introduce Kalman filter based sensor fusion to deal with the irreg-

ular sampling problem in slow-rate measurement for laboratory data analysis. To the best of our

knowledge, few literature about Kalman filter with irregular sampled measurements for non-linear

systems, especially for industiral robots. In this thesis research, the AKF’s filtering frequency is

set as a fraction of the sampling frequency. Its updating algorithm utilizes extrapolations of the
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original measurements, incorporating accurate time stamps during the sampling interval to mitigate

the impact of irregular sampling intervals.

2.5 Visual Servoing for Industrial Robots

Conventionally, the control for accuracy enhancement of industrial robots are confined to be

performed under known structured environments with calibrated kinematic parameters. However,

inevitable errors and uncertainties tends to exist even after complicated calibration at the expense

of huge efforts and cost. Undoubtedly, the emergence of visual servoing, a closed-loop control

scheme, present a dawn light in autonomous control of industrial robots. Visual servoing is an

approach to control the movement of the robot by using the visual measurements as feedback.

Visual servoing is a multi-disciplinary research topic involving computer vision, robotic kinematics,

nonlinear dynamics, control theory, as well as real-time systems. The term visual servoing was first

introduced by Hill and Park in 1979 [49]. Prior to the introduction of this term, the less specific term

visual feedback was generally used. Shirai and Inoue [50] first used the term visual feedback in a

application to control a robot. Researchers have made considerable progress in this field in the past

forty years. The appearance of the high speed processors and cameras has made visual servoing

possible for real time implementation and industrial applications. The revolutions brought by visual

servoing for industrial robots includes the following [41]:

• Exact pose information of target objects is not required. Also, the target objects can be

changed or moving.

• The requirement for Kinematic or dynamic model of industrial robots is relaxed. Therefore,

the efforts for calibration and the expenses on mechanical stiffness of robot joints and arms

can be largely reduced.

• Uncertain factors, such as gear backlash and elasticity of the links, are not completely fatal to

robot accuracy.

In fact, most research around visual servoing is related to some specific task. For instance, the

endpoint of the task is single target or multi-target and the optimal trajectory planning is required or

21



not. The target/targets is/are fixed/motionless or variable/moving. If the task is to approach single

point or follow desired path, the objective of visual servoing is to pursue positioning accuracy or

path tracking accuracy [24, 25]. After a task is specified, visual servoing will confront a series of

decisions. First, feature points and parameters need to be selected [51]. Second, visual sensor and

corresponding configuration should be determined. Visual sensor can be single camera, dual cam-

eras or multi-camera. Also, the relation between the cameras and the end-effector of the industrial

robot can be eye-to-hand, eye-in-hand or combination of both. Third, control scheme is necessary

to be selected from position-based visual servoing (PBVS), image-based visual servoing (IBVS)

and combination of both [52]. Last, specific control methods need to be specified to realize visual

servoing, e.g., PID [25] or adaptive control [53].

2.5.1 Visual Servoing Categorization

According to the features extracted as feedback of controller, visual servoing can be classified

into three categories, position or pose based visual servoing (PBVS) [17, 54, 55], image-based visual

servoing (IBVS) [56, 57] and hybrid visual servoing [52]. In IBVS, the control input for the robots

is computed with respect to the errors between the desired value and the current value of feature

points on the image plane, which is weak in large rotations and tracking the path off-line planned

in Cartesian space. IBVS is a 2D visual servoing scheme which converges in the vicinity of the

desired image and often has the difficulty to estimate the depth [52]. In PBVS, the actual pose of

the related object in Cartesian space is estimated according to the feature points on the image plane.

Correspondingly, the control input for the robots is based on the errors between the current pose and

desired pose of the end-effector [25, 55].

Considering the location of the vision system, the configuration of visual servoing is classified

into eye-to-hand [19, 58], eye-in-hand [17, 57], cooperation of eye-in-hand and eye-to-hand. Eye-

in-hand is referred to as the situation where the visual sensor is rigidly mounted on the end effector

of the robot and eye-to-hand means the one where the visual sensor observes the robot within its

workspace. By using the same visual sensor, the eye-in-hand type can obtain partial but precise

sight of the scene whereas the eye-to-hand type has a less precise but global sight. The coordinate

transformations between the pose of the visual sensor and the pose of the end-effector mounted on
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the industrial robot are constant under the configuration of eye-in-hand while it is variable for the

configuration of eye-to-hand as the end-effector is moving. For both configurations, the visual sen-

sor is necessary to be calibrated periodically so as to fine tune the intrinsic parameters which may

be changed due to operations and environments. However, there are still existing errors existing in

the kinematic transformation even after calibration. As a result, pose accuracy is hard to be guar-

anteed under the configuration of eye-in-hand since only the target object is observed. Therefore,

visual servoing with eye-in-hand visual sensor is also classified as endpoint open-loop [59, 60]. In

contrast, visual servoing with eye-to-hand visual sensor is called as endpoint closed-loop because

both the end effector of the robot and the target object are observed in the field of view (FOV) of

the visual sensor synchronously [24, 25, 55, 61]. In order to integrate the advantages of eye-in-hand

and eye-to-hand, some researchers attempt to integrate both of them in one system [62, 63, 64]. For

example, eye-to-hand camera offers feedback information for the translation movement at the first

phrase and the rotation movement at the second phrase is guided based on the measurements from

eye-in-hand camera [62].

With respect to the number of the cameras included in the visual sensor system, visual servoing

is categorized into monocular vision [56] and stereo vision [58, 65]. Binocular vision is the most

usual in stereo vision. For binocular vision, two views of the scene are taken from known different

viewpoints to resolve depth ambiguity existing in monocular vision. The location of feature points

in one view must be matched with the location of the same feature points in the other view. The co-

ordinates of an point in the FOV of the stereo vision system can be computed by using triangulation

projection [66]. Stereo vision system is rarely used in an eye-in-hand configuration due to the limits

in the camera baseline distance, which affects the accuracy of depth estimation.

In this thesis research, three proposed control schemes (DPC, DPT and AILC) can be all clas-

sified as PBVS since the desired pose or path and the pose feedback from visual sensor are given

as Cartesian coordinate. Binocular visual sensor , C-Track 780, is used in the experiments for ver-

ifying three control schemes and it observes the end-effector or other objects in its FOV at certain

distance. Therefore, three control schemes can also be classified as eye-to-hand and stereo vision

visual servoing.
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2.5.2 Visual Servoing Applications

For industrial robots, visual servoing is mainly applied to improve the performance of the in-

dustrial robots by guiding the end-effector to desired pose (position and orientation) which can be

variable or fixed. With the help of the visual servoing, industrial robots seem to be equipped with

”eyes” and ”brain”, and can be aware of where to go and how fast to move. More extensive and

complex applications, e.g., dexterous assembly and adhesive dispensing in aerospace manufactur-

ing, liquid handling in medical analyzing, machine and cutting in automatic manufacturing, spray

painting, etc., become possible for industrial robots to liberate human from tedious and dangerous

work, as shown in Fig.2.6. Beside the applications in industrial manufacturing, with the capability

enhancement of the industrial robots, more new fields begin to be explored. For example, industrial

robots are designed to inspecting the oil and natural gas pipelines [67]. In Canada, there are nearly

100,000 km of aging pipeline with oil and natural gas flowing through and some of these pipelines

have never got inspected for corrosion, tear, wear and any other defects [68]. Undoubtedly, this

type of applications will bring human uncountable benefits. Another example is the vision-based

application of industrial robots in agriculture. It is well-known that there are high labor intensity

and time sensitivity in agriculture. It couldn’t be imagined how significant to the farmers if their

work are mostly accomplished by intelligent robots.

2.6 Iterative Learning Control for Industrial Robots

There are many control methods to improve the accuracy of robots [10, 16, 59, 70]. However,

due to the presence of the uncertainties in dynamic model or parameters, it has been difficult to

achieve perfect tracking from the beginning of the trajectory. Moreover, many industrial tasks are

operated repetitively over a finite time period. In such cases, the control performance can be signif-

icantly improved by taking advantage of the process repeatability. As a result, a new control theory,

iterative learning control (ILC), was born in 1971 [71]. ILC is a recently developed control method,

but is well-established in control fields. ILC can effectively improve the transient response and

tracking performance for uncertain dynamic systems that work repetitively. ILC excels in achieving

perfect tracking for repetitive systems that perform tasks within defined time intervals. Industrial
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Figure 2.6: (a) FANUC robot 200iD pick and place with vision guiding (left); (b) FANUC Robot
working with 3D vision (right) [69].

robots serve as a prime example of these repetitive systems. The basic configuration of iterative

learning control (ILC) is illustrated in Fig.2.7. Over the past decades, ILC theory and application

for accuracy enhancement of industrial robots has been explored fruitfully. One typical application

environment is industrial robots for manufacturing industries. The first ILC research was to control

the robotic manipulators by Arimoto et al. [72].

Figure 2.7: Basic configuration of Iterative learning control

It is broadly recognized that Uchiyama et al. gave the first ILC formulations [73], which was

published in Japanese in 1978. Arimoto et al. present it in English in 1984 [72], which opened
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further research on ILC. Thenceforth, various related issues on ILC theory, such as the structure of

ILC, updating laws of ILC, optimization of ILC, robustness of ILC, convergence of ILC, adaptive

ILC, etc, have been extensively investigated. A large amount of literature has been published, such

as research monographs [74, 75, 76, 77], and survey papers [78, 79, 80, 81]. ILC is recognized as

an important branch of intelligent control, with industrial robots serving as the primary focus of

experimentation and application.

There are four desirable features that can explain why ILC becomes an attractive control tech-

nique [77]. The first feature of ILC is the simplicity of ILC structure. A simple controller is always

preferable not only for the implementation cost but also for the control quality or reliability. The

second feature of ILC is the fact that ILC can achieve a near perfect tracking both in the transient

period and in steady state with repetitive learning. The third feature of ILC is its design and ex-

ecution with the uncertainties of system model or parameters under a global Lipschitz condition.

This feature is an important feature for real-time implementation, because practically it is tough

and costly to build an accurate plant model. The fourth feature of ILC is its capability to acquire

non-causal signals for control compensation. Since ILC is a memory-based controller, the control

signals of previous iteration are utilized to update the current control signals. Consequently, it is

easy to compensate the process or sampling-time delay inherently in the feedback loops. These

features of ILC determine its unique place in control fields. The actual industrial robots are highly

complex nonlinear systems with a multitude of uncertain nonlinearities while many industrial tasks

are high-accuracy-required and repetitively operated. It is natural to apply ILC to industrial robot as

well as other repeatable nonlinear systems [80, 82, 83, 84] which work repeatedly over a finite time

interval. The only essential restriction for ILC on nonlinear system is to satisfy global Lipschitz

condition (GLC).

The purpose of this section is to review the research and application of ILC for nonlinear sys-

tems and especially for industrial robots. Literature review on the existing ILC updating laws for

nonlinear systems and industrial robots will be given.

26



2.6.1 ILC Design for Nonlinear Systems

According to the relation form F (.), ILC updating law for nonlinear system can be categorized

into two classes: classic ILC updating law and hybrid ILC updating law, which are reviewed in the

following two subsections respectively.

Classic ILC Design for Nonlinear systems

Arimoto et al. provided the classic ILC updating law initially in 1986 as below [85]:

uk+1(t) = uk(t) + ϕek(t) + Γ ėk(t) + ψ

∫
ek(t)dt, (2.1)

where as denoted in Fig.2.7, k is iteration number; ek(t) = yd(t)−yk(t) and ėk(t) = ẏd(t)−ẏk(t); ϕ

, Γ and ψ are gain matrices; uk(t) and uk+1(t) are control inputs at iteration k and k+1 respectively.

With respect to the tracking error ek(t), Eq.(2.1) is PID-type linear learning law because it includes

a proportional, derivative and integral gain terms on ek(t). Before introducing PID-type learning

law, Arimoto et al. proposed the first ILC updating law in 1984 [72], which was a D-type algorithm.

Unarguably, in recent years, the P-type, D-type, PD-type learning law are utilized extensively,

particularly for nonlinear systems [72, 86, 87]. Since the learning gains depend on tuning like PID

feedback control, the uncertainties of dynamic system model and parameters are allowed. On the

other hand, because there is a natural integrator action along the iteration axis, the last term in

Eq.(2.1), integrator term appears rarely in the learning algorithms.

Based on the classic ILC updating law Eq.(2.1), a few modifications have been made by recent

researchers. For example, some researchers [88, 89, 90] used the current tracking error ek+1(t) as

the proportional term instead of previous one ek(t). This method is called current-iteration, and

in fact, the current tracking error is output feedback. Additionally, some researchers [75, 91, 88]

advanced the high-order learning algorithms by using one more previous iterations of u(t) and e(t),

for example uk(t), uk−1(t) and ek(t), ek−1(t), to obtain uk+1(t). This high-order algorithm pro-

vide more design parameters and achieve faster convergence rate than the first-order algorithm and

the tracking error can go to arbitrarily small in some circumstances [92]. However, the theoretic
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proof has not been well established so far. Besides, in order to reduce the influence of initial condi-

tions variation, the simplest method is to introduce a forgetting factor to modify the ILC updating

law [77]. Take a modified P-type ILC updating law as an example:

uk+1(t) = αuk(t) + ϕek(t) (2.2)

where α ∈ (0, 1) is a forgetting factor.

The classic ILC can reject the repeating disturbance and noise by learning, but it is weak to

compensate non-repeatable disturbance. Therefore, many researchers combined feedback control

concept with iterative learning control. In [93, 94], Longman et al. used ILC to modify the reference

signal to compensate feedback controller to follow the desired trajectory. I [78], Bristow et al.

introduced ILC controller to alter the control input together with feedback controller to feed in

system plant.

Whatever learning algorithm is designed, it should be proved to be convergent along the iteration

axis in order that the perfect tracking is achieved.

Hybrid ILC Design for Nonlinear Systems

Many researchers have attempted to combine classic ILC ideas with existing control method-

ologies. In order to solve some specific problems or issues, they integrate classic ILC with other

control theories, such as robust control, optimization theory, adaptive control , fuzzy control, and

neural network control.

Robust ILC Robustness is a common problem when a controller is designed for a nonlinear

dynamic system with uncertainties. Robust ILC represents the ILC with robustness consideration.

The researchers pay much attention on the robust ILC for nonlinear systems subjected to uncertain

disturbances or time-varying reference or time-varying uncertainties [76, 82, 95, 92, 96, 97]. In

[84, 98], Chen et al. introduced an ILC algorithm to realize output tracking for nonlinear stochastic

systems with unknown dynamics and noise statistics. Stochastic ILC is defined as ILC for systems

that contain stochastic signals with system noise, measurement noise, random packet losses, etc. A
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latest survey by Shen et al. detailed the stochastic ILC techniques [81].

Optimal ILC Optimal ILC is one of main research areas for ILC theory and also well-established.

Similar to robust ILC, optimization tends to be considered in generic ILC design. The idea of norm-

optimal ILC was mentioned first in [99]. Amann et al. proposed a kind of norm-optimal ILC

controller to obtain optimal control force at k + 1 iteration by minimizing the cost function [100].

Hatzikos et al. applied the norm-optimal ILC to calculate the optimal learning gain by genetic

algorithm (GA) for a class of nonlinear ILC problems [101]. Owens et al. developed optimality-

based adaptive ILC algorithms [102, 103]. Based on quadratic cost form, Choi et al. minimized

the performance index function by using the steepest gradient method [104]. Besides the above

examples, the brief by Owens et al. elaborated the theory development, algorithms and design

guidelines about norm-optimal ILC before 2013 [105].

Fuzzy ILC and Neural Network ILC Fuzzy ILC and neural network ILC are another two small

branches, relating ILC to fuzzy logic and neural network theory respectively. The learning gains

of ILC can be obtained by using neural network or fuzzy logic schemes [106]. Xu et al. took

fuzzy control as the basic control part and ILC as the refinement part to design a fuzzy-PD ILC

controller [107]. Precup et al. merged the advantages of fuzzy control and ILC to improve the

performance of control system [108]. Chien et al. presented a fuzzy ILC for a class of non-lipschitz

nonlinear system with a given task in [109] and proposed a new adaptive fuzzy ILC for the uncertain

nonlinear systems to deal with various control tasks, nonzero initial state errors and non-repeatable

disturbances in [110]. Chien also used ILC to tune all the weights of neurons of a feedforward neural

network such that desired learning performance can be achieved in [111]. Chow et al. utilized two

recurrent neural networks with time-varying weights in the ILC system to approximate the nonlinear

system and achieve the desired system response [112]. Yang et al. used the neural network to

estimate learning gain of ILC updating law to track different reference trajectories [113]. Similarly,

Jiang et al. [114] and Yamakita et al. [115] used neural-network-based ILC to realize trajectory

tracking for nonlinear system.

From the literature review on fuzzy ILC and neural network ILC, only a few researchers carried
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out limited research although the fuzzy ILC and neural network ILC were proved to be effective

under certain circumstances by their simulation results or analysis. On the other hand, it is very

interesting that robust ILC, fuzzy ILC and neural network ILC often appear together with adaptive

iterative learning control, defined as adaptive ILC, which is an important ILC research branch for

nonlinear dynamic system and will be reviewed in the following content.

Adaptive ILC Before giving the review of adaptive ILC for nonlinear system, the energy func-

tion method as the fundamentals of adaptive ILC is introduced. For nonlinear dynamic systems,

especially for nonlinear uncertain systems, Lyapunov stability theory has been broadly applied in

the control design and stability analysis. Some ILC researchers succeeded in developing the energy

function concept in both time domain and iteration domain with the enlightenment from Lyapunov

stability theory [82, 93]. Thereafter, the ILC design and convergence analysis become more flex-

ible and interesting. Typically, the adaptive ILC is developed to deal with nonlinear systems with

uncertainties of model or parameters [77, 116, 117, 118, 119]. In recent years, the concept of the

composite energy function(CEF) was proposed. Such composite energy function represents the

system energy in both iteration domain and time domain [117, 120, 121].

Since adaptive techniques have obtained great achievement both in theory and application for

tracking control of uncertain nonlinear systems, the adaptive ILC seems to attract more and more

attention of the ILC researchers. There are mainly three types of adaptive ILC methods:

•Type 1: differential adaptive ILC [117]

•Type 2: pointwise adaptive ILC [120, 122, 123]

•Type 3: hybrid differential-difference adaptive ILC [124, 125]

In Type 1, the uncertain parameters are supposed to be time-invariant constants and are updated

in the time domain in each iteration. Type 2 is applicable to the cases where the parameters are

time-varying in time domain and invariant in the iteration domain. In Type 2, the control parameters

are updated in the iteration domain. Compared with Type 1, Type 2’s response is not so smooth

because the parametric estimation in Type 1 is proportional to the integration of updating term,

which is related to system states and tracking error, while in Type 2 the parametric estimation is

directly proportional to updating term. Combining these two methods, Qu et al. [124] and Tayebi
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et al. [125] introduced Type 3, so-called differential-difference adaptive learning law by choosing

the weighting factor to decide the tradeoff between Type 1 and Type 2. Theoretically speaking, an

appropriate value of the weighting factor in Type 3 can obtain both the smooth response and adaption

to time varying parameters. However, very few researches have been done about Type 3 and only

simulation results under some assumptions or limitations for simplified system are provided [125].

On the other hand, in practical applications for industrial robots, adaptive parameters, especially

when the number of them are less than the DOFs of the robot, are impossible to be constant or

slow-varying due to complex nonlinear dynamics and disturbances. Therefore, pointwise adaptive

ILC (Type 2) by choosing time-varying adaptive parameters and updating them along iteration axis

is adopted in this thesis research.

2.6.2 ILC Design for Industrial Robots

Industrial robots are usually used to replace human to perform some fixed tasks repetitively over

a fixed time period. Therefore, it is natural to apply iterative learning control (ILC) to enhance the

robot accuracy. Because the dynamic model of industrial robots is highly nonlinear and coupled, it

attracts many researchers to attempt using ILC technique to approach perfect tracking. There are

a lot of existing literature about ILC application research for industrial robots. Some benchmark

works are reviewed as below chronologically. Since 1984, Arimoto et al.’s original work [72], PID-

type ILC scheme, has been broadly recognized and has been guiding later research. The PID-type

ILC scheme, convergence proof and analysis, forgetting factor, as well as application examples in

robotic manipulators, have founded ILC theory research and been inspiring many recent researchers.

In 1985, M Togai et al. proposed a discrete learning scheme to realize position and velocity track-

ing convergence and discussed the similarity between learning controller and state observer [126].

In 1986, Arimoto et al. analyzed how to use P-type, D-type, PD-type in tracking control for ma-

nipulators [85]. In 1988, Bondi et al. proposed high-gain feedback to ILC application for robotic

manipulators and succeeded in improving the convergence rate and stability [127]. Also in 1988, Oh

et al. proposed an adaptive ILC scheme without demand of initial conditions alignment and defined

a novel Lyapunov-like function to prove the tracking error convergence [128]. In 1993, Horowitz et

al. applied adaptive ILC with function identification, compared the method with betterment learning
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schemes and other adaptive ILC with integral transforms, and gave the experimental results [87].

In 2000, Choi et al. proposed an adaptive ILC scheme to estimate uncertain parameters in time

domain, to identify and compensate repetitive disturbances in iteration domain, provided simulation

to confirm the validity of the scheme [129]. In 2002, Norrlöf et al. [130] proposed an estimation

procedure with a Kalman filter based on adaptive ILC and an optimization of a quadratic criterion

to realize disturbance rejection and trajectory tracking. In 2004, Tayebi et al. [131] advanced a

practical adaptive ILC scheme and used a Lyapunov-like energy function to prove its convergence.

From literature among the ILC application research for industrial robots, the number of the reported

adaptive ILC application research is over one third, and the adaptive ILC research is almost syn-

chronous from 1984 to now. Thus adaptive ILC scheme is an important and practical direction in

ILC application for industrial robots. Finding Lyapunov-like energy function is common method to

prove the validity and convergence of ILC algorithms. Tayebi et al. are very active on the adaptive

ILC application for robotic manipulators [83, 96, 97, 131, 132, 125], whose works are relatively

new but have been widely accepted in the area.

Classic ILC Design for Industrial Robots

The overall control law can be described as below:

τk(t) = τfb(t) + τkff (t) (2.3)

where τfb(t) is feedback control part computed on feedback signal and τkff (t) is feed-forward part

computed by ILC algorithm.

The feedback control input τfb(t) can be obtained as below:

τfb(t) = G(q)−Kp(q − qd)−Kd(q̇ − q̇d) (2.4)

τfb(t) is designed to stabilize the closed-loop system and keep the error bounded. The learning in-

put τkff (t) is designed mainly to compensate uncertain disturbances and nonlinear dynamics when

the robotic system repeats its operations to track the desired trajectory such that it can improve the
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tracking performance along the iteration axis. Actually, the learning input is the output of ILC con-

troller. Therefore, how to design ILC controller is the key problem in the application for industrial

robots. Classic ILC is PID-type control along iteration axis, and consists of proportional, integral,

and derivative terms on the error, while the P-term plays a stabilizer role and results in monotonic

convergence, the I-term can increase the convergent rate and reject the effect of initial conditions

variation, and D-term is able to reduce the effect of disturbance inputs. Since there is a natural inte-

grator along the iteration axis, I-term in classic ILC is rarely used. As a result, for industrial robots,

D-type ILC and PD-type ILC are most broadly used in classic ILC. Arimoto proved the convergence

of D-type ILC algorithm in [72] based on contraction mapping theory while some prior information

of the system dynamics is required. The convergence analysis of this learning scheme for industrial

robots proved by Kawamura et al. in [133]. PD-type ILC also requires the prior knowledge about

system dynamics, and global Lipschitz continuous (GLC) condition should be satisfied strictly.

Adaptive ILC Design for Industrial Robots

In tracking control application for industrial robots, adaptive control is well-established and

extensively employed in scenarios where uncertain parameters remain constant, and control task

extends over [0,∞). However, when dealing with time-varying uncertain parameters and a control

task defined within a fixed time frame [0, T ], adaptive ILC becomes a more suitable approach. On

the other hand, due to the high nonlinearities of system dynamics for robot manipulator, satisfying

the GLC condition is almost impossible. Correspondingly, contraction mapping theory is not suit-

able to prove the convergence of control process again. Inspired by the contribution of Lyapunov

functions in nonlinear system control, researchers came up with composite energy function (CEF),

which was a combination of a standard Lyapunov function and a L2-norm of the parametric errors.

CEF approach significantly broadens the ILC research and facilitates ILC design and convergence

analysis. The general control strategy in adaptive ILC is similar as Eq.(2.3), a PD-feedback part

for stability in parallel with ILC part for compensating the unknown parameters and disturbances.

Three typical schemes of adaptive ILC are model-based multi-parameter [131], model-free multi-

parameter [132, 134, 135]and one-parameter [131]. They can be classified as Type 2, pointwise

adaptive ILC [80]. The convergence of model-based multi-parameter adaptive ILC was proved by
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Tayebi et al. in [131]by using an suitable composite energy function(CEF) . The main difference be-

tween model-based multi-parameter and model-free multi-parameter is the use of system parameter

matrix. The convergence of model-free multi-parameter adaptive ILC was proved by Islam et al. in

[134] by using appropriate composite energy function(CEF). Compared to the former two adaptive

ILC schemes, one-parameter adaptive ILC seems to be simplest. However, comparing the experi-

mental results of model-free multi-parameter and one-parameter adaptive ILC on a 5-DOF CRS255

robotic manipulator provided in [132], the former demonstrates much faster convergence rate along

iteration axis and higher tracking accuracy than the latter. Moreover, the proof of the convergence

by using appropriate composite energy function (CEF) [131] needs to be assured with the knowl-

edge of certain bounds of some system parameters. Therefore, model-free multi-parameter adaptive

ILC is more appropriate for pursuing high tracking accuracy of industrial robots without any priori

knowledge of the system dynamic models. In this thesis research, the adaptive ILC proposed in

Chapter 6 is a model-free two-parameters adaptive ILC.

2.7 Summary

In this chapter, the developments, applications and important features of industrial robots and

CMMs are presented in first two subsections. Then Kalman filter, as an effective real-time filter,

is introduced, especially Kalman filter for nonlinear system and irregular sampled measurements is

emphasized. Then, visual servoing, as the principal control strategy in this thesis research work, is

reviewed. The extensive applications and existing categorization of visual servoing are presented.

Last not the least, iterative learning control (ILC), as an important advanced control method in

robotic fields, is explored. Since this thesis research work is focusing on the control of serial ma-

nipulators which are typical nonlinear system, the developments of ILC for nonlinear system are

mainly involved.
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Chapter 3

Adaptive Kalman Filter Based Pose

Estimation with Irregular Sampling

3.1 Introduction

In this thesis research, the experiments for verifying dynamic pose correction (DPC) scheme,

dynamic path tracking (DPT), and adaptive iterative learning control scheme (AILC) scheme are

implemented on two FANUC robots (FANUC M20iA and FANUC LR Mate 200iC) by using an

optimal CMM system, C-Track 780 from Creaform, to provide pose (position and orientation) infor-

mation measurements. Since noises inevitably exist in the measurements of C-Track 780, Kalman

filter as a type of real-time filter is introduced to remove the noises from the measurements of C-

Track 780 and obtain the usable pose estimation. In this chapter, FANUC M20iA and FANUC LR

Mate 200iC will be first introduced. Then, the important parameters for C-Track 780 from Creaform

will be provided. Last but not the least, an adaptive Kalman filter will be presented.

3.2 Workspace Description and Pose Estimation

3.2.1 Workspace Description

In this thesis research, an intuitive scenario is an optical CMM, C-Track 780, watching and

guiding the end-effector of an industrial robot, e.g., a FANUC robot, to complement some tasks
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which may include some task objects. First, the relation in workspace among optical CMM, the

industrial robot and other physical bodies needs be constructed. Consider a 6-DOF industrial robot

with an end-effector in Fig.3.1, which illustrates the definition and relation of the coordinate frames.

Generally, the default tool frame is defined at the center of the flange of Joint 6, P0. A tool frame

FE with origin at the TCP can be defined by offsetting the default tool frame to the TCP with

the known relative position information. Assume that the end-effector can reach anywhere in the

reachable workspace WR of the robot. In the workspace, a user frame FUR
for the robot can be

defined with respect to base frame FB . The pose of the end-effector in FUR
can be represented by

the tool frame FE in FUR
. Then, the homogeneous transformation matrix UR

EH from FUR
to FE

can be obtained.

Figure 3.1: Definition and relation of the coordinate reference frames in the workspace.

On the other hand, when a task is given, the task space WT (WT ⊂ WR) can be defined. In the

task space, a user frame FUT
for the task can be defined. Correspondingly, the task object with an

defined reference frame FOT
involved in this task can be represented in FUT

.

Moreover, in terms of the optical CMM, there is default sensor frame FS whose origin is at the

center of the CMM. User frame FUT
can be defined by using the CMM to be represented in FS

by moving the end-effector along the axes of FUR
so that FUT

is parallel to FUR
. The end-effector

with positioning targets is identified as a model with the reference frame FE′ . In order to locate

the end-effector, during any movement, the end-effector should be in the field-of-view (FOV) of the

CMM. The pose of the end-effector in FS is represented by the frame FE′ in FS . Therefore, the

homogeneous transform matrix UT
SH from FUT

to FS and S
E′H from FS to FE′ at any time can
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be obtained respectively. The homogeneous transformation matrix UT

E′H from FUT
to FE′ can be

obtained as follows

UT

E′H = UT
SH

S
E′H. (3.1)

Similarly, the task object with positioning targets, as shown in Fig.3.1, can be represented by the

reference frame FOT
in FS . The homogeneous transformation matrix UT

OT
H from FUT

to FOT
can

be obtained as UT
OT

H = UT
SH

S
OT

H.

Since user frame FUT
in the task space WT is parallel to FUR

memorized in robot controller,

there is only translation and no rotation between FUT
and FUR

in workspace. The main difference

is that FUR
is represented in FB while FUT

in FS . As shown in Fig.3.1, the relation between FE

and FE′ is relatively constant. The rotation matrix UT
ER from FUT

to FE is same as UR
ER from FUR

to FE . There, the rotation matrix E′
ER from FE′ to FE can be deducted as follows

E′
ER = UT

E′R
−1 UT

ER. (3.2)

3.2.2 Pose Estimation

The pose estimation of any object in task space is similar to the pose estimation of the end-

effector. The pose estimation of the end-effector is the localization of the frame FE′ with respect

to the sensor frame FS by first mapping FE′ in FS and then projecting them onto the image plane.

Since a dual-camera sensor C-Track 780 is employed as the visual measurement instrument, the pose

estimation principle about binocular vision is presented in this section. C-Track 780 can provide

continuous image acquisition and transmission in real time. Moreover, C-Track 780 can track the

reference model, including a rigid set of reflectors, which work as the feature points. It is assumed

that there are n feature points, n > 3, on the rigid end-effector, and the homogeneous coordinates

of each feature point in sensor frame are denoted as SPi = (xi, yi, zi, 1), i = 1 · · ·n, while the

projection coordinates of each feature point on the image plane of the jth Camera is represented

as CPij = (uij , vij , 1), i = 1 · · ·n and j = 1, 2, where j is the number of dual cameras. CXj ,

j = 1, 2, is the projection matrix of each camera. The perspective projection can be given as below
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[136]:
CPij =

CXj
SPi,

CXj = Bj
C
SHj ,

(3.3)

where j = 1, 2; Bj is the camera matrix, integrating the intrinsic parameters of the jth camera;

C
SHj is the homogeneous transformation matrix from the sensor frame FS to the jth camera frame.

When the dual-cameras sensor is calibrated, Bj and C
SHj are known. Therefore, when CPij is

obtained in the image plane, SPi can be computed.

Ideally, SPi computed from each camera should be the same. However, due to the distortion,

calibration errors and other noises, there is difference between two results of SPi from dual cameras.

The triangulation is the main way to balance the difference in the results [137]. In order to make

a matching pair of points, CPi1 and CPi2, to meet in space, the following constraint should be

satisfied:

CPT
i1G

CPi2 = 0, (3.4)

where G is the fundamental matrix that can be computed when dual camera projection matrices,

CM1 and CM2, are given. Due to the uncertainty of image processing, Eq.(3.4) may not be satisfied

accurately. According to optimal correction principle of Kanatani [137], the objective function is

min
ˆCPi1

T
G ˆCPi2=0

(d(CPi1,
ˆCPi1) + d(CPi2,

ˆCPi2)), (3.5)

where min(.) represents the minimization function subject to the constraint ˆCPi1

T
G ˆCPi2 = 0,

d(∗, ∗) denotes Euclidean distance, ˆCPi1 and ˆCPi2 are the estimated points of CPi1 and CPi2

respectively. As a result, ˆCPi1 and ˆCPi2 can be obtained by the following formulas:

ˆCPi1 =
CPi1 −

(CPi1,G
CPi2)VG CPi2

ω
,

ˆCPi2 =
CPi2 −

(CPi1,G
CPi2)VGT CPi1

ω
,

ω = (G CPi2,VG CPi2) + (GT CPi1,VGT CPi1),

(3.6)

where the inner product of two vectors a and b is denoted as (a, b); projection matrix V ≡ diag(1, 1, 0).
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Then, by Eq.(3.3), the coordinate of ith feature point in sensor frame, SPi can be obtained.

After the position information of all the feature points on the end-effector is prepared, the

pose estimation of the end-effector can be developed. Suppose n feature points on the rigid end-

effector are fixed and known from the definition of the frame FE′ , whose homogeneous coordi-

nates are denoted as E′
Pi = (E

′
xi,

E′
yi,

E′
zi, 1). It is assumed the current pose of FE′ in FS

is denoted as (xc, yc, zc, γc, βc, αc), where (xc, yc, zc) represents the origin position of FE′ in FS ,

while the orientation (γc, βc, αc) represents the Euler-angle rotation from FE′ in FS . With the pose

(xc, yc, zc, γc, βc, αc) of FE′ in FS , the homogeneous transformation matrix S
EH from FE′ to FS

can be formulated as below:

S
E′H =

R(γc, βc, αc) (xc, yc, zc)
T

0 0 0 1

 , (3.7)

where R(γc, βc, αc) is rotation matrix from FE to FS . Correspondingly, the transformation equa-

tion of ith feature point can be written as:

SPi =
S
E′HE′

Pi, (3.8)

which can be unfolded into three nonlinear equations with six unknown variables (xc, yc, zc, γc, βc, αc)

as below:

xi = xc + CγcCβc
E′
xi + (CγcSβcSαc − SγcCαc)

E′
yi

+ (CγcSβcCαc + SγcSαc)
E′
zi,

yi = yc + SγcCβc
E′
xi + (SγcSβcSαc + SγcCαc)

E′
yi

+ (SγcSβcCαc − CγcSαc)
E′
zi,

zi = zc − Sβc
E′
xi + CβcSαc

E′
yi + CβcCαc

E′
zi,

(3.9)

where Ca = cos(a) and Sa = sin(a). In order to solve Eq.(3.9) for (xc, yc, zc, γc, βc, αc), at least

three non-collinear feature points are required [17]. However, as indicated in [138], at least four

coplanar feature points are necessary for an unique solution while additional non-coplanar feature

points can be used to improve the estimation accuracy with measurement noise. Since the number
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of the feature points on the end-effector n is more than 3, (xc, yc, zc, γc, βc, αc) can be determined

uniquely. By using the proprietary software VXelements provided by Creaform, the end effector is

defined as the tracking model which is built based on the selected reflectors on the surface of the

end effector. The positional and rotational information of the tracking model with respect to sensor

frame can be acquired, recorded or displayed simultaneously. Therefore, the computation to obtain

the pose of the end effector is carried out by VXelements.

3.3 Adaptive Kalman Filter for Smoothing Estimated Pose

The presence of noise is inevitable in the image information from the optical CMMs. Moreover,

the movement of the end-effector is highly likely to cause vibration, blur and distortion to the

images. Therefore, in this section, an adaptive Kalman filter is presented to smooth the estimated

pose data of the end-effector. The sampling interval of the CMM is denoted as Ts. Ideally, Ts can

be regarded as a constant. However, Ts tends to be variable. Assuming that Tf represents a fixed

filter interval. Tf ≈ Ts/n, n ≥ 2 is a strategy to reduce the influence of time delay resulted from the

irregular sampling interval. For convenience, k instead of kTf represents the current time instant

and k− 1 is the previous time instant. Suppose that the current state vector of the industrial robot is

represented as follows:

ρk,k = (x(k), y(k), z(k), γ(k), β(k), α(k),

ẋ(k), ẏ(k), ż(k), γ̇(k), β̇(k), α̇(k))T ,

(3.10)

i.e. the pose and velocity of the end-effector at the current time instant. Precise time stamp tc is

marked with the current measurement estimation oc = (xc, yc, zc, γc, βc, αc)
T .

Then, an adaptive Kalman filter method is given as the following recursive equations.

First, the prediction equations are given as below:

ρ̂k,k−1 = Aρ̂k−1,k−1,

Wk,k−1 = AWk−1,k−1A
T +Qk−1,

(3.11)

where A ∈ R12 × R12 is a state transition matrix which is applied to the previous state ρ̂k−1,k−1
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to obtain the current predicted state ρ̂k,k−1 ; Wk,k−1 ∈ R12 × R12 is the current prediction of the

error covariance matrix which is a measure of the accuracy of the state estimate while Wk−1,k−1 ∈

R12 × R12 are the previous error covariance matrix; Qk−1 ∈ R12 × R12 is the process noise

covariance computed from the information at time instant k − 1. All the diagonal elements of A

are 1 and Ai,i+6(i = 1 · · · 6) are equal to the sampling interval Ts. ρ̂0,0 and W0,0 are initialized by

using the static samples before path tracking movement. Second, Kalman filter gain Dk is computed

as below:

Dk = Wk,k−1(Wk,k−1 +Ωk−1)
−1, (3.12)

where Ωk−1 is the previous measurement noise covariance. Third, the estimation updating is for-

mulated as below:

ρ̂k,k = ρ̂k,k−1 +Dk((ok
T , O6)

T − ρ̂k,k−1),

Wk,k = Wk,k−1 −DkWk,k−1,

(3.13)

where ρ̂k,k is produced as the optimal pose of the end-effector at time instant k;O6 = (0, 0, 0, 0, 0, 0).

The extrapolation algorithm for computing the current measurement vector ok = (xc(k), yc(k), zc(k),

γc(k), βc(k), αc(k))
T is as follows. If oc is not updated in current filter interval, ok can be updated

as:

xc(k) = x̂(k − 1) + ˙̂x(k − 1)Tf , yc(k) = ŷ(k − 1) + ˙̂y(k − 1)Tf ,

zc(k) = ẑ(k − 1) + ˙̂z(k − 1)Tf , γc(k) = γ̂(k − 1) + ˙̂γ(k − 1)Tf ,

βc(k) = β̂(k − 1) +
˙̂
β(k − 1)Tf , αc(k) = α̂(k − 1) + ˙̂α(k − 1)Tf .

(3.14)

If oc is updated during former filter interval, ok can be updated as:

xc(k) = xc + ˙̂x(k − 1)(t− tc), yc(k) = yc + ˙̂y(k − 1)(t− tc),

zc(k) = zc + ˙̂z(k − 1)(t− tc), γc(k) = γc + ˙̂γ(k − 1)(t− tc),

βc(k) = βc +
˙̂
β(k − 1)(t− tc), αc(k) = αc + ˙̂α(k − 1)(t− tc),

(3.15)

where t is current system time.

Qk and Ωk are symmetric positive definite matrices. The proper selection or updating of Qk

and Ωk are critical for the accuracy of filtered pose. When the robot is static, Ωk can be easily

obtained by using the root mean square error of the static measurements from VMI. However, Ωk
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is a time-varying matrix when the robot is moving because the higher velocity will make the delay,

blur, vibration and other uncertain factors worse.

A new effective method is proposed to update matrix Ωk based on the velocity of the TCP as

follows

∆Ωk = diag[µ1ẋ(k), µ2ẏ(k), µ3ż(k), µ4γ̇(k), µ5β̇(k), µ6α̇(k)],

Ωk = Ω0 +∆Ωk,

(3.16)

where diag[ ] represents a diagonal matrix whose elements are shown in the bracket; Ω0 is the

measurement noise covariance matrix when the TCP is static before starting from the start point;

µi, i = 1 · · · 6, are the constant weights determining the influence of variable velocity, which is

estimated by analyzing the static measurements of C-Track in workspace.

An adaptive recursive method is presented to optimize Qk to compensate the prediction error

and uncertain dynamic disturbance [43]. The predictor error ϵ̂k can be estimated adaptively as

below:

ϵ̂k = ρ̂k,k −Aρ̂k−1,k−1, (3.17)

Additionally, let ∆Wk = AWk−1,k−1A
T − Wk,k. Then, Qk can be computed recursively as

below:

ϵ̄k = ϵ̄k−1 +
1

N
(ϵ̂k − ϵ̂k−N ),

Qk = Qk−1 +
1

N − 1
((ϵ̂k − ϵ̄k)(ϵ̂k − ϵ̄k)

T

− (ϵ̂k−N − ϵ̄k)(ϵ̂k−N − ϵ̄k)
T )

+
1

N(N − 1)
((ϵ̂k − ϵ̂k−N )(ϵ̂k − ϵ̂k−N )T )

+
1

N
(∆Wk−N −∆Wk),

(3.18)

where N is the length of the past measurements memory for updating Qk. Moreover, in order to

ensure that Qk is positive definite, the diagonal elements need to be reset to their absolute values.

3.3.1 Adaptive Kalman Filter Initialization

In this thesis research, C-Track 780 from Creaform is selected as visual measurement instrument

for all the experiments. Its maximum updating frequency for measuring the pose of a object with

42



VXelements is 29hz. Accordingly, the filter interval Tf of AKF is initialized to be 12ms which

is approximately close to 1
29∗3s. Based on the testing on C-Track 780, the sampling interval with

VXelements is not strictly 1
29s and the time difference between two continuous sampling intervals

can be in ±3ms.

Some variables and parameters involved in adaptive Kalman filter should be initialized prop-

erly with respect to Eq.(3.10) − Eq.(3.18). First, the current pose measurements can be used to

initialize the pose part of the initial estimation ρ̂0,0 and the derivative part, velocity estimation,

can be set to zeros. Then, the initial covariance matrix W0,0 can be initialized as a 12 × 12

identity matrix, which affects the transient convergent speed of the Kalman filter. The diago-

nal elements of A are 1 and Ai,i+6(i = 1 · · · 6) is taken as Tc/103. Ideally, the current pose

of the end-effector is equal to the former six elements of the current state vector ρ̂k,k. Ω0 is

0.001diag(0.15, 0.15, 0.8, 0.158, 0.143, 0.0219), which are obtained by calculating the root mean

square error of static measurements for fixed point in WR. The constant weights µi, i = 1 · · · 6

for updating Ωk with velocity changes are set as 1.5e − 6. Compared to Ω0, Qk is initialized as

(1e− 6)diag(1, 1, 10, 1, 1, 1, 1, 1, 10, 1, 1, 2) and the length N in Eq.(3.18) is 20.

3.4 Analyzing Pose Measurements without/with filtering by Kalman

filter

Fig.3.2 and 3.3 demonstrate the original position and orientation measurements of the end-

effector at a static point. As shown in Fig.3.2 and 3.3, the original pose measurements obtained from

C-Track 780 are noisy. In order to analyze the accuracy and reliability of the pose measurements

from C-Track 780, the poses of the end-effector at 8 different static points are measured and the first

500 measurements are used for calculating the RMS (root mean square) error, which is the RMS

deviation from the mean of the measurements. The RMS errors of the pose measurements of the

end-effector at 8 static points are presented in Table.3.1. At each point, the pose measurements are

taken in two repeated tests. For instance, Test1 − 1 and Test1 − 2 are carried out at point 1. The

distribution definition of 8 points in the FOV of C-Track 780 is according to Fig.A.6. In Table.3.1,

’Center’ refers to the points in or close to y− z plane in sensor frame, ’Right’ refers to the points at
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the right side of y−z plane in sensor frame with positive x coordinate, and ’Left’ refers to the points

at the left side of y−z plane in sensor frame with negative x coordinate. According to Table.3.1, all

the RMS errors are less than 0.01 which represents the accuracy of the measurements from C-Track.

Also, it can be observed in Table.3.1 that the RMS errors in center area of FOV are smaller than in

right and left area. Therefore, the workspace for experiments can be considered to fit around the

center area of the FOV. Moreover, the difference of the RMS errors obtained from the repeated tests

at the same point are very small and can be neglected, which prove the high repeatability of C-Track

780. In fact, the high repeatability of C-Track 780 is especially critical factor for achieving high

pose accuracy in Chapter 4− 6.

Figure 3.2: Static position measurements of the end-effector in sensor frame FS by using C-Track
780 .

On the other hand, appropriate filtering is certainly necessary for extracting the accurate pose

information from the noisy measurements of C-Track 780. Fig.3.4 and 3.5 demonstrate real-time

pose measurements and filtered pose information by using the AKF for the end-effector at a static

point. Fig.3.6 and 3.7 show real-time pose measurements and filtered pose information by using

the AKF for the end-effector moving along a line at speed 25mm/s. As observed in Fig.3.4∼

3.7, the pose estimations through the filtering of AKF can follow real-time pose measurements

simultaneously. Also, the pose estimations through the filtering of AKF are much smoother than
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real-time pose measurements so that they can be used as feedback information for close-loop control

of the robot without causing vibration.

Figure 3.3: Static orientation measurements of the end-effector in sensor frame FS by using C-
Track 780 .

Figure 3.4: Position measurements of the end-effector at a fixed point in sensor frame FS with-
out/with filtering by AKF.
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Table 3.1: RMS error of pose measurements by using C-Track 780 to measure the pose of the end-
effector at fixed points.

Figure 3.5: Orientation measurements of the end-effector at a fixed point in sensor frame FS with-
out/with filtering by AKF.
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Figure 3.6: Position measurements of the end-effector in sensor frame FS without/with filtering by
AKF for the end-effector moving along a line at speed 25mm/s.

Figure 3.7: Orientation measurements of the end-effector in sensor frame FS without/with filtering
by AKF for the end-effector moving along a straight line at speed 25mm/s.

3.5 Summary

This chapter provides some necessary preparation for the subsequent chapters. In Section 3.2,

the relation of all the physical bodies in workspace is constructed by defining attached reference

coordinate frames and identifying their transformation matrix. Also, the triangulation method for
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pose estimation from dual cameras is presented. Moreover, an adaptive Kalman filter is developed

for smoothing the pose estimation from the noisy measurements. Last, the pose measurements

by using C-Track 780 are analyzed, the proposed AKF is applied for filtering the real-time pose

measurements and the AKF is proved to be effective and practicable.
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Chapter 4

Dynamic Pose Correction of Industrial

Robots with High Accuracy through a

Photogrammetry Sensor

4.1 Introduction

There are varieties of complicated factors, as listed in Table.1.1, that affect robot accuracy.

According to the performance criteria description about industrial robots in ISO 9283 standard

[139], there are two types of robot accuracy, pose accuracy for pose approaching performance and

path accuracy for path tracking performance. Pose accuracy is required in the applications such as

spot welding/soldering, drilling, inspecting, riveting and fastening, while path accuracy is critical for

the applications such as arc welding, painting, spraying, cutting, deburring and polishing. Actually,

pose accuracy can assure accurate initial pose for achieving high path accuracy during path tracking.

Nowadays, off-line task planning in Cartesian coordinate space has become the main trend as the

complexity of the application environments are increased. Accordingly, high robot accuracy is

especially important for accomplishing the specific task. As concluded in Chapter 1, visual servoing

is the most preferred method for industrial robots because dynamic disturbance and errors during

the moving of the end-effector can be tackled based the visual feedback information. Peter Corke

49



has presented the major issues of visual servoing for industrial robots in early 1990s [140]. In this

chapter, the research is to investigate the efficient position based visual servoing (PBVS) methods

for improving the pose accuracy. One advantage of PBVS is no transformation from the desired pose

in Cartesian coordinate space to image space of the visual system. The other advantage of PBVS is

better convergence and execution rate than that of IBVS when the visual system can be calibrated

beforehand [141]. Also the direct pose error in PBVS represented by Cartesian coordinate is more

convenient for observing and analyzing the dynamic performance. One dynamic pose correction

(DPC) scheme including PBVS control strategy for enhancing the dynamic pose accuracy will be

presented in this chapter. It is well known that industrial robots tends to be applied to perform

repetitive tasks. In the first round, DPC module works as the complementary controller to the robot

controller, and the tool center point (TCP) of the end-effector can be controlled to the desired pose

gradually with high pose accuracy no matter it is fixed or moving, single pose or multiple poses,

with visual measurements from a photogrammetry sensor. As the TCP of the end-effector reaches

the desired pose with satisfied accuracy, DPC module can enable the robot controller to record the

location in its position register. Then, in the next round, the TCP of the end-effector can be fast

directed to desired pose by the robot controller independently. The pose accuracy achieved in the

first round plus high repeatability of the industrial robot can accommodate most of the precision

requirements in aerospace manufacturing. When high pose accuracy is always strictly demanded,

only minor adjustment through DPC module is supplemented after the first round. Therefore, the

DPC scheme can be regarded as a learning based control method. The first round can be considered

as a learning procedure. On the other hand, the traditional manually teaching method by teach

pendant can be completely replaced by the DPC scheme so that more complex large-size tasks can

be robotized.

In this thesis research, an portable optical CMM, C-Track 780, is selected as the photogram-

metry sensor in the experiments for implementing the DPC scheme. Also, thanks to TRUaccuracy

technology [142], a group of fixed reflectors close to the task space can be identified as dynamic

referencing model and offering stable reference frame for extracting the pose information from

visual measurments. Moreover, based on existing close range photogrammetry methodology, the
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reflectors can be regarded as the feature points in the two views and need to be pairing and synchro-

nized. On the other hand, VXelements is a commercial software platform provided by creaform,

and it can communicate with the controller of C-Track 780. The model of an observed object with

attached space distributed reflectors can be represented as a coordinate frame with some feature

points defined in the dynamic frame through the interface of VXelements. Also, some significant

functions, such as visual measurement data sampling, analyzing and demonstrating, are integrated

in VXelements.

In order to avoid the disturbance from the measurement noises, the feedback information feeding

in DPC module is using the pose estimation from the proposed adaptive Kalman filter in Chapter

3. In traditional robot operation practice, the fixed pose is taught manually by moving the TCP of

the end-effector in the workspace and recording the pose of finite intermediate points. Moreover,

the low accuracy and repeatability of the robot can not ensure the robot TCP to reach the points

with high accuracy. Apparently, when the task is complex and requires high-precision, such method

is hard to meet the strict high-precision requirements. In this chapter, the off-line planned pose

is imported to robot controller. DPC can work in the control computer, which is connected with

robot controller and visual sensor, i.e., C-Track 780, by Ethernet. DPC is considered to compensate

the calibration error, vibration error, uncertain model error as well as the repeatability error. The

implementation of the DPC scheme in this paper is more flexible and convenient with the guarantee

of high accuracy compared with the current robot controller. The task points can be produced by

optimal task planning algorithm in advance and saved in the computer which can communicate with

the robot controller.

Some experiments are implemented to verify the proposed DPC scheme on both Fanuc M20-iA

and FANUC LR Mate 200iC. The successful application of the proposed scheme on Fanuc M20-

iA and FANUC LR Mate 200iC with C-track 780, from Creaform, as visual measurement sensor

exhibits the effectiveness of the DPC scheme.

The rest of this chapter is organized as the following. Problem statement is provided in Section

4.2 and Section 4.3 introduces the control configuration of the DPC scheme, equivalent pose error

computation, DPC control law design. The experimental results on FANUC LR Mate 200iC with

C-track 780 as visual sensor are presented to verify the effectiveness of the DPC scheme in Section
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4.4. Finally, the concluding summaries and future works are given in Section 4.5.

4.2 Problem Statement

Many potential robotic applications in aerospace manufacturing are hindered due to insufficient

robot accuracy although robotic automation has been thriving in this field for recent decades. Po-

sitioning accuracy within ±0.25mm or less is expected for majority of the on-part operations in

aerospace manufacturing [10]. However, the robot accuracy of standard industrial robot can reach

within 0.3 ∼ 0.5mm even after appropriate calibration [32, 143]. Therefore, robot accuracy defi-

ciency is urgent to be resolved. In practice, positioning accuracy for many specific applications of

industrial robots, such as drilling and fastening, is necessary to include both position accuracy and

orientation accuracy of the end-effector, i.e., pose accuracy of the end-effector. This chapter will

focus on enhancing pose accuracy of the end-effector.

Since the optical CMM, C-Track 780, is deployed in the following experiments as the pho-

togrammetry sensor and dynamic referencing is definitely applied, dynamic referencing frame FD

can be defined in sensor frame FS through VXelements by selecting certain space distributed po-

sitioning targets in workspace of the industrial robot. Then all the transformation related to FS

in Fig.5.1 need to be replaced by FD as Fig.4.1. Through the 3D view of VXelements, the setup

location of C-Track 780 can be adjusted to have the task space in the center of its FOV such that

optimum quality of images can be obtained. Since there are unavoidable noises emerging in the

measurements data from the photogrammetry sensor, it is essential to process the noisy data and

obtain the effective estimation through the adaptive Kalman filter introduced in Chapter 3 before

the feedback information is needed by the control part.

Traditionally, the destination of the end-effector is taught in robot user frame FUR
by using

teach-pendant. In this thesis research, the desired pose Pd of the end-effector can be off-line pre-

planned and on-line modified in task space WT according to the task requirement. The desired

pose pd of the end-effector is defined as (xd, yd, zd, γd, βd, αd) in task user frame FUT
, where

xd, yd, zd and γd, βd, αd are coordinates and orientations of FE in FUT
respectively. It is assumed

that P0 = (x0, y0, z0, γ0, β0, α0) is the start point. Then, the objective of DPC scheme is to move
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the end-effector from P0 to Pd to satisfy the accuracy requirement.

Figure 4.1: Definition and relation of the coordinate reference frames in the workspace with dy-
namic referencing frame.

4.3 Dynamic Pose Correction Control

Since the pre-planned destination is given in FUT
instead of FUR

or FB , it is not compatible

in robot controller. As a result, there are coordinate frame calibration errors in addition to the low

accuracy and repeatability of the industrial robot. Therefore, the robot controller can not guarantee

to control the TCP of the end-effector to the desired point with high pose accuracy independently.

A DPC control scheme is proposed in this section to improve the pose accuracy of the industrial

robot to approach given points with specific poses.

4.3.1 Control Structure

The control configuration of DPC control scheme is demonstrated as Fig.4.2, which can be di-

vided into three parts. The first part consists of robot controller and robot. Normally, each industrial

robot comes with its proprietary robot controller. Only through robot controller, the robot param-

eters can be accessed and robot movement command can be realized. The second part is visual

measurement part, which includes visual measurement instrument optical CMM and signal filtering

that estimates the pose feedback information. The third part is the DPC control module, which is

developed as the complementary control part cascaded on the robot controller. The control con-

figuration consists of shown in Fig.4.2. In Fig.4.2, all the functions in the left dashed-line box are

implemented as software modules running on the computer which is connected with the physical
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devices in the right dashed-line box.

Figure 4.2: Control configuration of dynamic pose correction (DPC) control.

4.3.2 Pose Error Computation in Equivalent User Frame

Control interval and discrete time instances are denoted as Tc and k. At the end of each Tc,

the current pose and velocity estimation of the end-effector, denoted as ρ̂k,k, is obtained from the

output of adaptive Kalman filter in Fig.4.2. pc(k) is used to denote the pose part of ρ̂k,k. Some

conditions are assumed to be satisfied for any pose pc(k) = (x(k), y(k), z(k), γ(k), β(k), α(k)) of

the moving end-effector as follows:

x(k) ∈ (xmin + ϵ, xmax − ϵ), y(k) ∈ (ymin + ϵ, ymax − ϵ), z(k) ∈ (zmin + ϵ, zmax − ϵ),

γ(k) ∈ (γmin, γmax), β(k) ∈ (βmin, βmax), α(k) ∈ (αmin, αmax),

(4.1)

where (xmin, xmax), (ymin, ymax), and (zmin, zmax) are the 3D range of the workspace along

three axis of FUT
; ϵ is a positive constant for isolating close proximity around the boundaries of

the workspace so that big jerks or singularities can be avoided; (γmin, γmax), (βmin, βmax) and

(αmin, αmax) are the orientation range of the end-effector to assure most of the targets attached

on the end-effector being observed by the photogrammetry sensor. For the sake of simplicity, a
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cuboid space as the workspace for the specific task is taken from the reachable workspace of the

industrial robot. Therefore, the pose error ν(k) = (νx(k), νy(k), νz(k), νγ(k), νβ(k), να(k)) can

be computed as follows:

ν(k) = pd − pc(k),

νx(k) = xd − x(k), νy(k) = yd − y(k), νz(k) = zd − z(k),

νγ(k) = γd − γ(k), νβ(k) = βd − β(k), να(k)) = αd − α(k).

(4.2)

Since the pose error ν(k) is represented in FUT
in task space, which is completely different

from the robot user frame FUR
. Both FUT

and FUEq
are defined in FS . If ν(k) is transformed into

FUEq
as a vector ς(k) = (ςx(k), ςy(k), ςz(k), ςγ(k), ςβ(k), ςα(k)), the translational and rotational

errors in FUEq
are the same as those in FUR

. Suppose the homogeneous transformation matrix of

FUT
and FUEq

in FS is denoted as S
UT

H and S
UEq

H respectively. The homogeneous transformation

matrix of FUT
in FUEq

is UEq

UT
H. The translational part of ς(k) can be computed from ν(k) as

follows
UEq

UT
H = S

UEq
H

−1 S
UT

H,[
ςx(k) ςy(k) ςz(k) 1

]T
=

UEq

UT
H

[
νx(k) νy(k) νz(k) 1

]T
.

(4.3)

For the rotational part of ς(k), the equivalent angle-axis method in [144] is used. Generally, the

rotational change is slower than translational change. The corresponding homogeneous matrix for

the desired pose of the end-effector pd in FUT
is UT

dH while homogeneous matrix UT
rH represents

the current TCP pose pc(k) in FUT
. Therefore, the homogeneous matrix r

dH that represents the

transformation from current pose of the end-effector to the desired pose can be obtained as below

r
dH = UT

rH
−1 UT

dH, (4.4)

where r
dR (3× 3 matrix) is the left upper part of r

dH. Based on r
dR, the equivalent angle ϕ and axis
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r
K⃗ can be derived. The equivalent axis

UEq
K⃗ defined in FUEq

can be obtained as below:

UEq
rH =

UEq

UT
H UT

rH,

UEq
K⃗ =

UEq
rR

r
K⃗,

(4.5)

where 3× 3 rotation matrix UEq
rR is the left upper part of homogeneous matrix UEq

rH.

Corresponding to rotation operation r
dR, the equivalent angle in FUEq

is the same as ϕ. There-

fore, rotation matrix UEq(rdR) in FUEq
can be derived. On the other hand, rotation operation

UEq(rdR) can be realized by fixed angles method [144] as follows

UEq(rdR) = Rotz(ςα(k))Roty(ςβ(k))Rotx(ςγ(k)), (4.6)

where Rotx, Roty and Rotz are the rotation matrix around x-axis, y-axis and z-axis of FUEq
with

fixed angles ςγ(k), ςβ(k) and ςα(k) respectively [144]. Since UEq(rdR) is known, ςγ(k), ςβ(k) and

ςα(k) can be computed through Eq.(4.6). ςγ(k), ςβ(k) and ςα(k) are the rotational part of ς(k).

4.3.3 DPC Control Law Design

The general dynamic model of 6-DOF manipulators [145] can be described by

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) +G(q(t)) = τ (t), (4.7)

where q(t), q̇(t), and q̈(t)∈ R6 represent the robot joint angles, velocity and acceleration; M(q(t)) ∈

R6×6 is a positive-definite, symmetric inertia matrix; C(q(t), q̇(t))q̇(t) ∈ R6 denotes centrifugal

and Coriolis torques; G(q(t)) ∈ R6 is the gravitational torques; τ (t) ∈ R6 denotes control torques.

Assume that t = kTc. By using forward finite-difference for discretization, substitute q̇i(t) =

(qi(k)− qi(k− 1))/Tc and q̈i(t) = (qi(k+1)− 2qi(k)+ qi(k− 1))/T 2
c (i = 1 · · · 6) into Eq.(4.7),

the discrete state equation is formulated as

56



 q(k)

q(k + 1)

 =

06×6 I6×6

δ(k) ξ(k)


q(k − 1)

q(k)

+

Tc

 06×6

ζ(q(k))

 τ (k) +

 06×6

−ζ(q(k))

g(q(k)).

(4.8)

where

δ(k) = TcM
−1(q(k))C(q(k),q(k − 1))− I,

ξ(k) = 2I−M−1(q(k))C(q(k),q(k − 1)),

ζ(k) = T 2
c M

−1(q(k)),

(4.9)

I is 6× 6 identity matrix.

The extraction of pose error ς(k) is prepared for dynamic pose correction (DPC) module in

Fig.4.2. DPC module is developed to generate control input for the robot controller so that six

elements of ς(k) converge to meet certain boundaries as follows

|ςx(k)|, |ςy(k)|, |ςz(k)| ≤ λp, |ςγ(k)|, |ςβ(k)|, |ςα(k)| ≤ λo (4.10)

where λp and λo are positive constants as expected accuracy for position and orientation respec-

tively. It is required that the movement of the end-effector from P0 to Pd is continuous and smooth,

and the control input is compatible with robot controller and satisfies the saturation conditions.

According to [144], Jacobian matrix J(q(k)) can be used to relate the velocities of the end-

effector ṗ(k) and robot joints q̇(k) as below:

ṗ(k) = J(q(k))q̇(k), (4.11)

where ṗ(k) is represented in FUR
, and q(k) is the current joint position. When the changes of the

joint angles are very small, based on Eq.(4.11), the following equations can be deduced as below:

∆p(k) = J(q(k))∆q(k), (4.12)

where ∆p(k) denotes the small change of the pose of the end-effector in FUR
, and ∆q(k) is the
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corresponding change of the joint position. In this chapter, singularities are not considered. Conse-

quently, the current joint error e(k) = qd(k)− q(k), where qd(k) is the desired joint position, can

be obtained by

e(k) = J−1(q(k))ς(k). (4.13)

G ∈ R6 is the gravitational torques with desired pose qd. In the context of classic control

methods for robot manipulators [146], a PD (Proportional-Derivative) control law incorporating a

constant gravity torque is given as

τ (k) = Kpe(k) +Ke(e(k)− e(k − 1)) +G, (4.14)

where control gains Kp,Ke ∈ R6×6 are positive definite diagonal matrices. Therefore, according

to Eq.(4.14) and Eq.(4.14), the error dynamics can be obtained as below:

e(k + 1) = qd − q(k + 1),

= qd − δ(k)q(k − 1)− ξ(k)q(k)− Tcζ(q(k))τ (k) + ζ(q(k))g(q(k))

= (1− δ(k)− ξ(k))qd + δ(k)e(k − 1) + ξ(k)e(k)

− Tcζ(q(k))[Kpe(k) +Ke(e(k)− e(k − 1)) +G] + ζ(q(k))g(q(k))

= η1e(k) + η2e(k − 1) + η3

(4.15)

where

η1 = ξ(k)− Tcζ(Kp +Ke)

η2 = (δ(k) + TcζKe))

η3 = (1− δ(k)− ξ(k))qd − TcζG+ ζ(q(k))g(q(k))

(4.16)

Define f1(k) = e(k − 1), f2(k) = e(k), and F(k) = [f1(k), f2(k)]
T , then one has

F(k + 1) = ZF(k) +

 0

η3

 , Z =

 0 1

η1 η2.

 (4.17)

Therefore, if only Kp, Ke are selected so that the eigenvalues of Z are within the unit circle.
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Correspondingly, the error dynamics Eq.(4.15) is stable, and F(k) is bounded.

Figure 4.3: Control flowchart for implementing DPC Scheme.

4.4 Experiments for Implementing DPC Scheme

In this section, the implementation and verification of the DPC scheme are carried out on the

6-DOF manipulator, FANUC LR Mate 200iC by using the C-Track 780 as dynamic pose measuring

instrument. The control flowchart of the implementation is demonstrated as Fig.4.3. At the first

round, when the absolute value of pose error between current pose and desired pose has been com-

pletely meeting the preset thresholds, i.e., expected accuracy, for at least 6 times, it is regarded that
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the end-effector arrives at the desired pose and the current pose is recorded in the position register

by synchronous control program in Fanuc R-30iA Mate controller. Then at the second round, the

control program in Fanuc R-30iA Mate controller can directly guide the end-effector to the recorded

destination with high repeatability. All the late rounds will just repeat the second round. The re-

quired accuracy of most tasks can be definitely satisfied. Even if rigorous high accuracy is required,

the procedures of DPC module following the dash-arrow line in Fig.4.3 can be run shortly to realize

fine tuning.

4.4.1 Experimental Preparation

In Fig.4.4, there are FANUC LR Mate 200iC with an end-effector, a cube with 3D distributed

reflectors, C-Track 780 on the tripod and a Trical mounted on the worktable. FANUC LR Mate

200iC comes with the Fanuc R-30iA Mate controller and is a 6-axis hollow wrist robot which has

six revolute joints. The end-effector, as shown in Fig.4.5(a), is specially customized and composed

of a plate with a head, a needle inserted through the hole of the head, a ball tool attached to the tip of

the needle. A few of reflectors are spread on the plate and the head. The reflectors on the cube and

on the base of FANUC LR Mate 200iC are selected to construct dynamic reference frame. C-Track

780 can observe the end-effector through all the reflectors in its FOV. The Trical was first introduced

by Gaudreault et al. in 2016 [61]. The Trical, as shown in Fig.4.5(c), consists of three Mitutoyo

digital indicators that are orthogonally-arranged and can be applied to measure the position of a

precision ball. The TriCal can provide high-accuracy position measurements oweing to the high

resolution of Mitutoyo digital indicator, which is 0.001mm. In this research, the Trical is used to

measure 3D position of the ball attached to the end-effector, as shown in Fig.4.5(b), and verify the

position accuracy relative to the desired pose of the destination.

The C-Track 780, shown in Fig.4.4, is a dual-camera optical CMM system which can dynam-

ically track the reference models including a rigid set of reflectors, and provide continuous image

acquisition (3D measurements) transmitted to the control system in real time. The reflectors work

as the feature points in the images. The repeatability and volumetric accuracy of the C-Track 780 is

0.0025mm and 0.065mm respectively. The repeatability of the C-Track 780 is the main factor for

guiding the end-effector to the pre-planned destination.
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Figure 4.4: Experimental setup for implementing DPC Scheme.

In the experiment, the artificial end-effector is mounted at the center of flange on Joint 6 of

FANUC LR Mate 200iC. A built-in 6-points method is provided by Fanuc R-30iA Mate controller

to define a new tool frame on the tip of the end-effector, which is regarded as the TCP. Three points

are used to identify TCP position, and three more points are used to define the orientation of the

new tool frame FE with respect to the original tool frame FT can be opted as the current tool frame

and recognized by the robot controller. Then, new user frame FUR
can be also defined in robot base

frame FB through 3-points method provided by Fanuc R-30iA Mate based on the positions of FE .

On the other hand, FE in sensor frame FS of C-Track 780 can be defined in VXelements, and

it must be identical to the one in FB so that the TCP pose can be obtained from C-Track 780.

As shown in Fig.4.5(a), more than 4 non-collinear reflectors stick on the end-effector. The end-

effector model ModelE is created by choosing these reflectors together in VXelements. Then, TCP

is set as the center of ModelE and FE is attached to ModelE . Therefore, when C-Track is tracking

ModelE , the pose of the end-effector is represented as the pose of FE at TCP with respect to FUT
in

VXelements. In such case, the representation of TCP is identical to the definition of TCP in the robot

controller. Moreover, the equivalent user frame FUEq
is necessary to be defined in VXelements so

that when the current pose correction is defined in FUEq
, it is a compatible adjustment for dynamic
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pose correction of FANUC LR Mate 200iC in FUR
. Also, the pre-planned initial pose P0 and

desired pose pd of the end-effector are given by off-line method.

Figure 4.5: (a) FANUC LR Mate 200iC with the end-effector, (b) The ball tool on the needle tip
touches three ball tips of the Trical, (c) The Trical.

In the experiment, DPC scheme is implemented as a software executive module integrating

Funuc PCDK and VXelements to build the communication between Fanuc R-30iA Mate controller

and the controller of C-Track 780. The control interval Tc should be larger than 34.48ms since the
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maximum data updating frequency of C-Track 780 is 29Hz. The interpolation interval (ITP) of

FANUC LR Mate 200iC is 8ms, the time cycle at which the destination is computed and sent to the

motion environment. In the experiment, DPC module is executed on a high-performance computer

with Intel Xeon Processor E5-1650 v3 3.5GHz and NVIDIA Quadro K2200 professional graphics

board.

4.4.2 Control Parameters Initialization

The maximum updating frequency of C-Track 780, 29Hz, is designated to obtain rapidest feed-

back measurements. Thus, the sampling period Ts for processing the measurements from C-Track

780 is 1/29 second. Once the image information from C-Track 780 is updated, the pose estimation

and AKF will work sequentially to obtain the pose information with minimum delay. Therefore,

the pose updating rate is equal to 29Hz. On the other hand, the control period Tc for DPT module

is determined by considering Ts, ITP of Fanuc M20-iA and maximum control step. For the experi-

ments in this research, Tc is set as 3Ts. Kp is set as [diag(0.12, 0.12, 0.12, 0.1, 0.1, 0.1),06×6], and

Ke is set as [diag(0.02, 0.02, 0.01, 0.01, 0.01, 0.01),06×6]. The expected position accuracy λp and

orientation accuracy λo are preset as 0.05mm and 0.05deg respectively.

4.4.3 Experimental results

In this subsection, the experimental results are recorded when the TCP of the end-effector is

moving from P0 to Pd with the complementary control of DPC module. some data analyses are

conducted on the saved experimental results. In order to better evaluate the position accuracy,

distance error is defined as Distance(k) = sqrt((νx(k))
2, (νy(k))

2. Take the results of one typical

experiment as an example, distance error, position errors and orientation errors during the movement

of the end-effector from P0 to Pd are demonstrated by Fig.4.6∼4.8 at speed 25mm/s respectively.

The control interval Tc is set The time duration of this round is 3.83s. The initial error is computed

as Pd−P0, and the final error is obtained as Pd minus the final pose where pose accuracy is satisfied

and the TCP of the end-effector stops moving. The initial error and final error of this experiment

are shown in Table.4.1. It can be observed that the positional and oriental part of the final error are

both much less than the expected accuracy, 0.05mm and 0.05deg, and even the final distance error

63



is just 0.023mm. In fact, according to Fig.4.7 and 4.8, position errors and orientation errors are

continuously convergent during the re-checking of 6 times after the first time when the decreasing

errors meet the expected accuracy. On the other hand, the Trical is used for verifying the accuracy

of this experiment at the same time. Before this experiment is started, the end-effector is moved so

that the ball tool on the needle tip of the end-effector touches three ball tips of the Trical and the

pose of the end-effector is saved as the desired pose by VXelements. Then, three Trical indicators

are reset for initializing the data display as the current status, shown in Fig.4.9 (a1) and (a2). Fig.4.9

(b1) and (b2) demonstrate the data display of three Trical indicators at the first round and Fig.4.9

(c1) and (c2) are for the second round. The specific data displayed on the three Trical indicators

for initialization and two rounds are presented in Table.4.2 and the maximum value is 0.007mm.

Moreover, the corresponding distance errors for two rounds are less than 0.008mm. Therefore, the

position accuracy of this experiment with DPC control is validated through the measurements of the

high-revolution Trical.

In order to investigate the reliability and repeatability of the DPC scheme, the first round of

this experiment in Fig.4.3 has been repeated many times for data analysis. Table.4.4 presents the

pose accuracy and time duration of 6 tests. The maximum position error and orientation error are

less than 0.03mm and 0.015deg respectively. Moreover, the time duration of each test is very

stable and it is around 3.8s. The first round of this experiment with different Tc has been tested

as well. Table.4.4 demonstrates the durations of 9 tests with 3 types of Tc, such as 2Ts, 3Ts and

4Ts. Relatively speaking, the control process with control interval 4Ts is more steady and smooth,

andthe control process with control interval 3Ts converges faster. However, for control interval 2Ts

there are overshoots and vibration during the process.

There are some important progresses in the research work presented in this chapter compared to

the research work presented in [25]. First, adaptive Kalman filter is more effective filtering method

than RMS average method used in [25] on data smoothness and real-time performance. RMS aver-

age method is impossible to provide the real-time pose information. Also its corresponding control

is not continuous due to intermittent feedback pose information from RMS average. There are al-

ways vibrations especially when the pose error is large. The second progress is the control strategy

design of DPC including specific configuration limits and derivative status which are not considered
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in [25]. Last, better control performance and results in this research are obtained, such as faster and

smoother control process, even better pose accuracy.

Figure 4.6: The distance error for the TCP of the end-effector moving from P0 to Pd with DPC
control.

Figure 4.7: The position error of FE in FUT
for the TCP of the end-effector moving to the desired

pose with DPC control.
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Figure 4.8: The orientation error of FE in FUT
for the TCP of the end-effector moving from P0 to

Pd with DPC control.

Table 4.1: The comparison of initial error and final error.

Table 4.2: Data display of three Trical indicators.

4.5 Conclusion

A practical learning based DPC scheme is proposed in this paper. Compared to the conventional

way, the proposed DPC scheme becomes less dependent on the robot controller and more efficient.
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The robot controller only works as the movement command channel between the control computer

and the robot. Any pre-planned 6D task point in task space can be recorded by VXelements and

reached accurately by the TCP of the end-effector with the pose feedback from visual measurement

instrument. Moreover, a adaptive Kalman filter is proposed to process the pose estimation of the

end-effector. The experimental results demonstrate that the proposed DPC scheme can improved

the pose accuracy to be less than ±0.05mm and ±0.05deg. At the end of the first round, the desired

pose can be saved as the pose of the tool frame in FUR
. For the second round and late rounds, the

task program can run in the robot controller independently or obtain fast adjustment to satisfy the

required accuracy. The learning based DPC scheme can also work as on-line teaching to transfer

the off-line planned task to the information recorded in the position register of robot controller. In

the furture, the proposed DPC scheme will be tested on the other types of industrial robots such as

KUKA and ABB.

Table 4.3: Pose accuracy and duration of 6 tests for the TCP of the end-effector moving from P0 to
Pd with DPC control.

Table 4.4: Time durations for the TCP of the end-effector moving from P0 to Pd with DPC control
at different Tc .
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Figure 4.9: (a1) and (a2) Data display of three Trical indicators after initialization; (b1) and (b2)
Final data display of three Trical indicators at the first round; (c1) and (c2) Final data display of
three Trical indicators at the second round.
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Chapter 5

Dynamic Path Tracking of Industrial

Robots With High Accuracy Using

Photogrammetry Sensor

5.1 Introduction

In industrial manufacturing fields, many tasks, such as cutting, milling, lathing, are expected to

use robots to implement operation automatically. According to the standard process specifications in

aerospace industry (e.g, Airbus [9]), the desired accuracy of robot manipulation for manufacturing is

normally around ±0.20mm. However, due to the mechanical tolerances and deflection in the robot

structure, the typical difference of a virtual robot in simulation and a real robot can be 8 − 15mm

[147], which is difficult to meet the precision requirement of many potential applications. Therefore,

the relatively low accuracy of current robots is the main problem for the industrial manufacturing

applications. Especially, it poses a critical obstacle to use advanced task planning techniques which

integrate off-line simulation and CAD-based methods.

In Chapter 4, an effective dynamic pose correction (DPC) scheme has been developed to en-

hance pose reaching accuracy for satisfying both position and orientation precision requirement for

industrial robots. In a robot application where a high-precision tracking of various trajectories is

69



demanded, dynamic continuous strategies for enhancing real-time tracking accuracy become nec-

essary, while an eye-to-hand PBVS scheme is the main approach. In this chapter, a dynamic path

tracking (DPT) aims at correcting the end-effector’s pose in the industrial applications by using a

photogrammetry sensor.

In PBVS, the pose estimation of the robot is a challenging task and needs a good camera cal-

ibration and object model. Also, the pose measurements are computed from the current image

information of the feature points, which tend to include distortion, blur and other uncertain noise.

In Chapter 3, pose estimation by using AKF for pose correction is presented. In this chapter, the

3D pose is extracted from model-based image information measured by C-Track 780 deployed in

eye-to-hand configuration and used for tracking 3D path in workspace. The purpose is to control

the tool center point (TCP ) of the end-effector on industrial robots to follow the path off-line pre-

planned in Cartesian space with respect to specific task accurately. In the current robot operation

practice, the task path is taught manually by moving the TCP in the workspace and recording the

position of finite intermediate points. Moreover, the low accuracy and repeatability of the robot can

not ensure the TCP to track the task path with high accuracy. Apparently, when the task path is

complex and requires high-precision, such method is hard to meet the strict high-precision require-

ments. In this chapter, a general DPT scheme is proposed by using the low cost photogrammetry

sensor, C-Track 780 from Creaform to improve the accuracy of industrial robots. DPT can work

in the control computer, which is connected with robot controller and visual sensor, i.e. C-Track

780 by Ethernet. DPT is considered to compensate the calibration error, vibration error, uncertain

model error as well as the repeatability error. The implementation of the DPT scheme is more flex-

ible and convenient with the guaranteed high accuracy compared with the other strategies such as

retrofitting with high-end encoders or using high cost laser tracker in static calibration. The task

path can be produced by optimal path planning algorithm in advance and be saved in the computer

which can communicate with the robot controller. The successful applications on FANUC M20-

iA and FANUC LR Mate 200iC with C-Track 780 as visual measurement sensor demonstrate the

effectiveness of the proposed DPT scheme.

The rest of this chapter is organized as the following. In Section 5.2, the workspace description

and problem statement are provided. Section 5.3 introduces the control configuration of the DPT
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scheme, tracking control law design and stability analysis. The simulation results on Puma 560 are

provided to prove the robustness of the DPT scheme. The experimental results on FANUC M20-iA

with C-track 780 as pose measurement instrument are presented to confirm the effectiveness of the

DPT scheme in Section 5.4. Finally, the concluding remarks and future works are summarized in

Section 5.5.

5.2 Workspace Description and Problem Statement

5.2.1 Workspace Description

A pre-planned task path in workspace is demonstrated as Fig.5.1. In order to set up a relation

between FUR
and FUT

, another equivalent user frame FUEq
is introduced. Ideally, there is only

translation and no rotation between FUEq
and FUR

in workspace. The main difference is that FUR

is represented in FB while FUEq
in FS . Frame FUEq

is defined by selecting one point in WT

as the origin of FUEq
and taking measurements of two points by visual measurement instrument

when moving the end effector along X and Y axis of FUR
. Then, FUEq

in FS can be computed by

using these three points. The definition and relation of the above-mentioned coordinate frames are

illustrated in Fig.5.1.

Figure 5.1: Definition and relation of the coordinate reference frames in the workspace.
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5.2.2 Problem Statement

When the industrial robots are designated to do cutting, painting, and fiber placement in aerospace

industry, the corresponding finite task path with start point and end point should be planned in ad-

vance. The robots are expected to move from the start point to end point strictly following the task

path with high accuracy.

Traditionally, the task path is planned in robot user frame FUR
by using teach-pendant to record

the point nodes or to input the point nodes manually. Between the position nodes, the path is

produced by using certain interpolation of several existing interpolation methods in robot controller.

The task path defined in task user frame FUT
is continuously differentiable and independent of the

robot controller so that the task path can be pre-planned in task space WT . Any task path P in FUT

can be described as follows

px = x(η), py = y(η), pz = z(η),

pγ = γ(η), pβ = β(η), pα = α(η),

(5.1)

where η is a normalized variable, and η ∈ [0, 1]. η = 0 corresponds to the start point on the task

path P while η = 1 corresponds to the end point on P . During 0 < η < 1, continuous position

(px, py, pz) forms the geometry profile of P in FUT
while (pγ , pβ , pα) is the orientation of FE in

FUT
. The task path P defined in Eq.(5.1) is served as the desired path. In order to carry out the

task, the control objective is to control the TCP to track (px, py, pz) along the desired path with

(pγ , pβ , pα) satisfying the error tolerance. The pose of the end-effector can be estimated from the

measurements of visual measurement instrument as the algorithm presented in Subsection 3.2.2

of Chapter 3. Moreover, the adaptive Kalman filter proposed in Section.3.3 of Chapter 3 can be

applied to remove the noise and obtain the precise pose and velocity information from the above

pose estimation.

5.3 Dynamic Path Tracking Control

Since the task path P is not planned in FUR
or FB , it is not compatible in robot controller.

Besides, only finite separate points, not consecutive geometry curve, can be imported into robot
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controller. Most importantly, the low accuracy and repeatability of the robot can not guarantee the

TCP of the end-effector to track the task path accurately with the robot controller.

In this chapter, PBVS-based dynamic path tracking (DPT) scheme is presented to realize the

control configuration consists of four parts shown in Fig.5.2, which is similar to Fig.4.2. One

difference is path analyzer, which computes the pose of the closest point on the desired task path

according to the current TCP pose, and decides the next path step. The other is the path tracking

control, which includes control algorithm to produce the control input for robot controller based

on the current pose error. The algorithm of path tracking control is fundamentally identical to the

algorithm of the DPC module in Chapter 4. As for filtering part, adaptive Kalman filter is augmented

with acceleration estimation to rapidly adapt to the varying desired pose during the path tracking

movement of the end-effector.

Figure 5.2: Control configuration of dynamic path tracking control.

5.3.1 Pose Error Computation in Equivalent User Frame

When the end-effector is in the FOV of the viusal measurement instrument, the current pose

information of the end-effector in FS can be obtained as where FE is in FS . Assume η1 and η2 are

both in (0, 1) and η2 > η1. if ∆η = η2 − η1 is small enough, the curve segment on the task path
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P , described in Eq.(5.1), can be regarded as a straight line segment approximately. During each

path segment ∆η, the pose information (x(η2), y(η2), z(η2), γ(η2), β(η2), α(η2)) of P at η2 is the

current desired pose. A path analyzing method shown in Fig.5.3 can calculate the pose error and

decide compensation input of the next step. In this chapter, a fixed control interval is used, which is

denoted as Tc and Tc = ϱ∆η, where ϱ is positive and relevant to the tracking speed. At the end of

each Tc, the current TCP pose and velocity estimation, denoted as ρ̂k,k, is obtained from the output

of Kalman filter in Fig.5.2.

Figure 5.3: Path analyzing method of dynamic path tracking control.

Given the segment line between (η1, η2) and the current pose, it is simple to obtain the pose

pd(k) of the closest point from current point to the line. Moreover, pc(k) is used to denote the pose

part of ρ̂k,k. Therefore, the pose error ν(k) = (νx(k), νy(k), νz(k), νγ(k), νβ(k), να(k)) can be

computed as follows:

ν(k) = pd(k)− pc(k). (5.2)

Then, the pose error ν(k) represented in FUT
needs to be transfered pose error ς(k) in FUEq

which axes parallel to the robot user frame FUR
. The procedures to obtain the positional part and

rotational part of ς(k) is in the same way introduced in subsection 4.3.2 of Chapter 4.

5.3.2 Tracking Control Law Design

Let s(k) = [q(k − 1)T ,q(k)T ]T . Then according to Eq.(4.8), the state equation can be written

as

s(k + 1) = F(k)s(k)−Y(k) +O(k)τ (k), (5.3)
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where

F(k) =

06×6 I6×6

δ(k) ξ(k)

 , Y(k) =

 06×6

ζ(q(k))

g(q(k)),

O(k) = Tc

 06×6

ζ(q(k))

 .
(5.4)

Both the translational and rotational part of pose error ς(k) are prepared for path tracking control

block in Fig.5.2. The objective of path tracking control block is to produce control input for the robot

controller so that all the six elements of ς(k) converge to a certain boundary to meet the precision

requirement. It is required that the TCP movement along the task path P is smooth, and the control

input is compatible with robot controller and satisfies the saturation conditions.

According to Eq.(4.12), the current joint error q̃(k) = qd(k)−q(k), where qd(k) is the desired

joint position, can be obtained by

q̃(k) = J−1(q(k))ς(k). (5.5)

sd(k) = [qd(k − 1)T ,qd(k)
T ]T denotes the desired state at time instant k. Since the task path P is

continuously differentiable, an assumption can be given as

sd(k + 1) = sd(k) + f(k), (5.6)

where f(k) ∈ R6 and each element of it is a bounded function. e(k) denotes the state error at time

k as e(k) = sd(k)− s(k) = [q̃(k − 1)T , q̃(k)T ]T . According to Eq.(5.5), e(k) can be derived as:

e(k) = Z(k)[ς(k − 1)T , ς(k)T ]T ,

Z(k) =

 J−1(q(k − 1)) 06×6

06×6 J−1(q(k))

 . (5.7)

A control law is designed to stabilize closed-loop system as follows

τ (k) = h(k) + Γ e(k) +Λ(e(k)− e(k − 1)), (5.8)
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where Λ = [diag[Λ1, Λ2, Λ3, Λ4, Λ5, Λ6],06×6] and Γ = [diag[Γ1, Γ2, Γ3, Γ4, Γ5, Γ6],06×6] are

control gain matrices; O(k)h(k) = Y(k). Λi and Γi, i = 1 · · · 6, are positive constants. Therefore,

according to Eq.(5.3) , Eq.(5.6), and Eq.(5.8), e(k + 1) can be obtained as below:

e(k + 1) = sd(k + 1)− s(k + 1),

= sd(k) + f(k)− F(k)s(k) +Y(k)−O(k)τ (k),

= sd(k) + f(k)− F(k)s(k)−O(k)Γ e(k)

−O(k)Λ(e(k)− e(k − 1)),

= (I− F(k))sd(k) + f(k) + (F(k)−O(k)Γ

−O(k)Λ)e(k) +O(k)Λe(k − 1),

= ξ1 + ξ2e(k),

(5.9)

where

ξ1 = (I− F(k))sd(k) + f(k) +O(k)Λe(k − 1),

ξ2 = F(k)−O(k)Γ −O(k)Λ.

(5.10)

Assume that at previous time instant k−1, the state error e(k−1) is bounded. Moreover, sd(k) and

f(k) are known to be bounded. Therefore, ξ1 is bounded. ξ2 is mainly related to control matrices

Λ and Γ .

5.3.3 Stability Analysis

In this section, the stability of the proposed control law is analyzed by using Lyapunov funcion.

It is assumed the task path P is reachable for the robot and visible in the FOV of the VMI. Since

only 6-DOF industrial robot is considered in this chapter, the robot is kinematically non-redundant

so that the Jacobian matrix J(q(k)) can satisfy non-singularity along P .

The Lyapunov function candidate is defined as

V (k) = e(k)Te(k), (5.11)

where V (k) ≥ 0 and V (k) = 0 only if e(k) = 0.
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The time difference of Eq.(5.11) can be formed as

∆V (k + 1) = V (k + 1)− V (k)

= e(k + 1)Te(k + 1)− e(k)Te(k)

= (ξ1 + ξ2e(k))
T (ξ1 + ξ2e(k))− e(k)Te(k)

≤ 2ξT1 ξ1 + 2(ξ2e(k))
T (ξ2e(k))− e(k)Te(k)

= 2ξT1 ξ1 + e(k)T (2ξT2 ξ2 − I)e(k),

(5.12)

where by tuning the parameters of Λ and Γ , 2ξT2 ξ2−I can be negative definite. Therefore,∆V (k+

1) ≤ 0 is satisfied as long as the following inequality is satisfied:

2ξT1 ξ1 ≤ e(k)T (I− 2ξT2 ξ2)e(k) ≤ ∥I− 2ξT2 ξ2∥∥e(k)∥2. (5.13)

Correspondingly,

∥e(k)∥2 ≥ 2ξT1 ξ1

∥I− 2ξT2 ξ2∥
=

2∥ξ1∥2

∥I− 2ξT2 ξ2∥
. (5.14)

Then,

∥e(k)∥ ≥
√
2∥ξ1∥√

∥I− 2ξT2 ξ2∥
. (5.15)

From Eq.(5.15), it is clear that ∥e(k)∥ is bounded by
√
2∥ξ1∥√

∥I−2ξT2 ξ2∥
. Also, by choosing suitable

control parameters of Λ and Γ such that ξT2 ξ2 is small, then e(k) can be minimized.

5.4 Simulation and Experimental Results

In this section, the simulation of the DPT scheme based on Puma 560 is carried out. Then, the

DPT scheme is implemented on the 6-DOF industrial manipulator, FANUC M20-iA by using the

C-track 780 as dynamic pose measuring instrument.
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5.4.1 Simulation Results

Puma 560 is the first industrial robot, whose parameters are well known and very similar to those

of most modern 6-axis industrial robots [148]. The developed DPT scheme has been implemented

on Puma 560 in Matlab and with the help of the Robotic Toolbox provided by Peter Corke [148].

Small deviations, e.g., 5% error, are imposed on Jacobian matrix J(q(k)). The simulation results

on the line tracking without path correction and with the proposed DPT scheme are presented in

Table.5.1. It is noticed that after applying DPT scheme, the tracking errors resulted from the inac-

curate J(q(k)) can be reduced to ±0.05mm for position and ±0.05deg for orientation. Therefore,

the simulation results demonstrate that the DPT scheme is robust to some deviations on J(q(k)).

Table 5.1: Simulation Results of DPT scheme on Puma 560 with some deviations on J(q(k)).

Steady state
Without path

correction
With path
correction

x error [mm] 8.3 ±0.05

y error [mm] 33.9 ±0.0007

z error [mm] 60.0 ±0.0138

γ error [deg] 5.93 ±0.05

β error [deg] 2.76 ±0.05

α error [deg] 7.04 ±0.05

5.4.2 Experimental Preparation

The experimental setup for implementing the DPT scheme as shown in Fig.5.4 includes FANUC

M20-iA with the end-effector attached some reflectors, C-Track 780 on the tripod, and an aluminum

shelf attached dozens of distributed reflectors. FANUC M20-iA in Fig.5.4 is a 6-axis hollow wrist

robot which has six revolute joints. FANUC M20-iA comes with the FANUC R30iB controller,

which provides dynamic path modification function through Ethernet connection. FANUC company

provide software package, PCDK toolkit to support the connected computer to communicate with

the robot controller by Ethernet. C-Track 780 is a photogrammetry sensor with dual cameras. In

this experiment, it provides fast visual measurements periodically by simultaneously sampling the

reflectors in its FOV. The repeatability and volumetric accuracy of the C-Track 780 is 0.0025mm

and 0.065mm respectively. The distributed reflectors on the aluminum shelf in the workspace are
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used to construct as a reference model attached with a dynamic reference frame.

Figure 5.4: Experimental setup.

The end-effector of FANUC M20-iA in Fig.5.4 is artificially customized. The cube of the end-

effector is symmetric and designed for holding the reflectors. The normal axis of the needle on the

end-effector is along the z axis of the original tool frame defined on the flange center. The needle

tip works as tool center point (TCP) and the new tool frame FE is originated at the needle tip so

as to be observed conveniently. As for the movement control of the end-effector, it is equivalent to

translate the TCP and rotate FE around the TCP relative to the robot user frame F(UR). FANUC

R30iB provides a built-in 6-points method to define the new tool frame FE on the needle tip. Thus,

FE at the TCP can be activated as the current tool frame and recognized by the robot controller.

Then, one 3-points method provided by FANUC R30iB is used to define the user frame FUR
based

on the position that FE is represented in base frame FB .

On the other hand, FE needs to be defined in VXelements so that the TCP pose can be estimated

from the measurements of C-Track 780. The non-collinear reflectors sticked on the cube of the end-

effector can grouped as the end-effector model ModelE in VXelements. At the same time, FE

originated at the TCP is attached to ModelE . Thus, the pose of the end-effector can be represented
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as the pose of FE with respect to FUT
in VXelements so that the definition of FE is identical to the

one defined in the robot controller. Also, the equivalent user frame FUEq
is defined in VXelements

so that current pose correction in FUEq
is a compatible adjustment for the path tracking of FANUC

M20-iA in FUR
. Moreover, the task path P can be pre-planned through off-line tools according to

the task description.

The DPT scheme is implemented by the software of DPT module. FANUC PCDK and VX-

elements are software packages provided by FANUC and Creaform as dynamic link library (DLL).

Based on these DLL, DPT module can communicate with FANUC R30iB controller and the con-

troller of C-Track 780 respectively. The control interval Tc should be bigger than 34.48ms(1/29Hz)

as a result that the maximum updating frequency of C-Track 780 is 29Hz. The interpolation inter-

val (ITP) of FANUC M20-iA is 8ms. The destination can be computed and sent to the motion

environment during the cycle. In the experiments, DPT module is running on the high-performance

computer with Intel Xeon Processor E5-1650 v3 3.5GHz and NVIDIA Quadro K2200 professional

graphics board. Simultaneously, one teach pendant (TP) program in robot controller is running for

actuating the robot to move along the tool path P .

5.4.3 Error analysis for FANUC M20-iA

Before implementing DPT, the error analysis for FANUC M20-iA moving along straight line

without using DPT for path correction has been conducted. Three tests are carried out to compare

the distance error between the current position and the desired line Pd1 when the TCP is moving

along Pd1 , described in Table.5.2. The forward speed and the backward speed are 25mm/s and

15mm/s respectively.

Table 5.2: Pose information of Pd1 for the end-effector for experiments.

Start point End point
x [mm] 238.04 −454.41

y [mm] 16.96 166.1

z [mm] 2009.69 2597.18

γ [deg] −90.11 −90.21

β [deg] 12.98 12.67

α [deg] 0.93 0.98
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Figure 5.5: Distance error for FANUC M20-iA moving forward along Pd1 at speed 25mm/s with-
out path correction.

Figure 5.6: Distance error for FANUC M20-iA moving backward along Pd1 at speed 25mm/s
without path correction.

For saving space, only the distance errors with moving speed as 25mm/s are shown Figs.5.5

and 5.6. By analyzing the results, the following phenomenons are observed:

• Different error patterns as Tracking along the same path with different direction.
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• Tracking different paths exhibits different error patterns.

• The distance error increases with higher tracking speed.

• Low frequency oscillations exist as the robot is following a straight path.

• Larger oscillation occurs with faster tracking movement for the robot.

Besides, high-frequency noise caused by the noisy measurements from C-Track appears on the

distance error, which means that the measurements from C-Track cannot be directly used as the

feedback in dynamic path tracking control. The distance error is caused by three major factors:

robot nonlinearity, low-frequency vibration of robot movement and high-frequency noise of C-Track

measurement. The AKF aims at removing the high frequency noise and the PBVS aims at reducing

the distance error. Therefore, in order to enhance the accuracy of path tracking of FANUC M20-

iA, the proposed control scheme with a proper noise filtering should address all above-mentioned

factors.

5.4.4 Kalman Filter Initialization

According to Eq.(3.10)-Eq.(3.18) proposed in Chapter 3, in order to start the Kalman filter, the

following variables and parameters should be initialized properly.

The initial estimation ρ̂0,0 is initialized by using the current pose estimation and setting velocity

zero. The initial covariance matrix W0,0 is set as a 12 × 12 identity matrix, which affects the

transient convergent speed of the Kalman filter.

The diagonal elements of A are 1 and Ai,i+6(i = 1 · · · 6) is taken as Tc/103. Ideally, the current

pose of the end-effector is equal to the former six elements of the current state vector ρ̂k,k. Ω0 is

0.001diag[0.15, 0.15, 0.8, 0.158, 0.143, 0.0219], which are obtained by calculating the root mean

square error of static measurements for fixed point in WR. The constant weights µi, i = 1 · · · 6

for updating Ωk with velocity changes are set as 1.5e − 6. Compared to Ω0, Qk is initialized as

(1e− 6)diag[1, 1, 10, 1, 1, 1, 1, 1, 10, 1, 1, 2] and the length N in Eq.(3.18) is 20.
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5.4.5 Control Parameters Initialization

The sampling time Ts for C-Track is set to be 1/29 second, while 29Hz is the maximum fre-

quency of C-Track 780. Once the image information from C-Track 780 is updated, the pose estima-

tion and AKF will work sequentially to obtain the pose information with minimum delay. Therefore,

the pose updating rate is equal to 29Hz. On the other hand, the control period Tc for DPT module is

determined by considering Ts, ITP of FANUC M20-iA and maximum control step. For the exper-

iments in this research, Tc is set as 300ms. Γ is set as [diag[[0.3, 0.3, 0.3, 0.15, 0.15, 0.15],06×6],

and Λ is set as [diag[0.04, 0.04, 0.04, 0.02, 0.02, 0.0],06×6].

5.4.6 Experiments for Implementing DPT scheme

Line Tracking

Two experiments are carried out to obtain the results by using DPT and AKF when FANUC

robot is moving forward and backward along Pd1 at speed 25mm/s respectively. The pose updating

rate of AKF is equal to the sampling rate of C-Track. Figs.5.5–5.6 show the results when FANUC

M20-iA is moving forward and backward along Pd1 at speed 25mm/s without path correction,

while Figs.5.7–5.9 and Figs.5.10–5.12 show the results by using DPT for path correction. For

tracking Pd1, the TCP of FANUC M20-iA starts at the starting point and stops at the end point.

Correspondingly, the TCP accelerates at the beginning segment of the path and decelerates at the

final segment of the path. Due to the influence of the acceleration, AKF can converge and follow

the measured data after around 3sec. Then after around 6sec, the distance error will keep less than

±0.2mm. Table.5.3 and Table.5.4 show the comparison results after 9sec. According to Table.5.3

and Table.5.4, the line tracking accuracy is improved obviously by using DPT. Besides, another

two experiments are conducted to analyze the results for FANUC M20-iA moving forward and

backward along Pd1 at speed 15mm/s. Compared to the tracking results at speed 25mm/s, the

results at speed 15mm/s show that similar accuracy improvement can be achieved. For brevity,

only the distance error comparison is provided in Table.5.5. Therefore, the results demonstrate that

DPT scheme can improve the line tracking accuracy up to ±0.1mm for position and ±0.05deg for

rotation respectively.
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Circle Tracking

Two groups of experiments are carried out to compare the tracking accuracy when the TCP of

the FANUC M20-iA is moving along two half circles, Pd2 and Pd3, which have the common circle

center in Table.5.6 and different radii, 300mm and 400mm respectively, at speed 25mm/s. For

brevity, the results about Pd3 are not provided by figures. Fig.5.13 shows the distance errors when

FANUC robot is moving along Pd2 at speed 25mm/swithout path correction, while Figs.5.14–5.15

show the results by using DPT for path correction. The comparison of the results is summarized

in Table.5.7 where the distance error is less than ±0.2mm with path correction. During the circle

tracking movement, the orientation of the end-effector is controlled with respect to the circle center

and the rotational accuracy is up to ±0.1deg. From the experimental results of both line and circle

tracking, one can see that the developed DPT scheme can guide the TCP to follow the pre-planned

path with high accuracy up to ±0.2mm for position and ±0.1deg for orientation. Compared with

the current robot controller without path correction, the path tracking accuracy has been significantly

improved in terms of distance error and pose error between the TCP pose and desired one.

5.5 Conclusion

In this chapter, a practical DPT scheme is proposed to command the robot to follow the desired

path through the robot controller. The DPT scheme adopts PBVS strategy and eye-to-hand config-

uration where a photogrammetry sensor, C-track, can measure the pose of the end-effector in real

time. Moreover, in order to reduce the influence from the image noise, blur and distortion, an adap-

tive Kalman filter is proposed to process the pose estimation of the end-effector. The stability of

the DPT scheme is proved by using Lyapunov stability theory. The experimental tests demonstrate

that the proposed DPT scheme can improve the line tracking accuracy to ±0.1mm for position and

±0.05deg for orientation, and the circle tracking accuracy to ±0.2mm for position and ±0.1deg

for orientation. The developed DPT scheme renders the industrial robots high-end ones without

retrofitting the robot with expensive encoders. The future work includes applying the DPT scheme

to the other types of path tracking such as S-shape curve, square etc. and testing on the other types

of industrial robots such as ABB and KUKA.
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Figure 5.7: The distance error for FANUC M20-iA moving forward along Pd1 at speed 25mm/s
with path correction.

Figure 5.8: The position error of the TCP for FANUC M20-iA moving forward along Pd1 at speed
25mm/s with path correction.
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Figure 5.9: The orientation error of the TCP for FANUC M20-iA moving forward along Pd1 at
speed 25mm/s with path correction.

Table 5.3: Results comparison for FANUC M20-iA moving along Pd1 forward at speed 25mm/s.

Steady state
Without path

correction

With path
correction

after 9s

Percent
improvement

Distance error [mm] ≤ 0.45 ≤ 0.25 55.5%

x error [mm] ±0.25 ±0.10 60.0%

y error [mm] ±0.25 ±0.10 60.0%

z error [mm] ±0.25 ±0.10 60.0%

γ error [deg] ±0.20 ±0.05 75.0%

β error [deg] ±0.15 ±0.05 66.7%

α error [deg] ±0.08 ±0.05 37.5%

Table 5.4: Results comparison for FANUC M20-iA moving along Pd1 backward at speed 25mm/s.

Steady state
Without path

correction

With path
correction

after 9s

Percent
improvement

Distance error [mm] ≤ 2.20 ≤ 0.20 90.9%

x error [mm] ±1.30 ±0.10 92.3%

y error [mm] ±0.60 ±0.10 83.3%

z error [mm] ±1.60 ±0.10 93.8%

γ error [deg] ±0.15 ±0.05 66.7%

β error [deg] ±0.30 ±0.05 83.3%

α error [deg] ±0.05 ±0.05 0.0%
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Figure 5.10: The distance error for FANUC M20-iA moving along Pd1 backward at speed 25mm/s
with path correction.

Figure 5.11: The position error of the TCP for FANUC M20-iA moving along Pd1 backward at
speed 25mm/s with path correction.

Table 5.5: Results comparison for FANUC M20-iA moving forward and backward along Pd1 at
speed 15mm/s.

Distance error
Without path

correction

With path
correction

after 9s

Percent
improvement

Forward [mm] ≤ 0.50 ≤ 0.20 60.0%

Backward [mm] ≤ 2.10 ≤ 0.20 90.5%

87



Figure 5.12: The orientation error of the TCP for FANUC M20-iA moving along Pd1 backward at
speed 25mm/s with path correction.

Table 5.6: Circle center for experiments.

Circle center
x [mm] −98.01 γ [deg] −5.62

y [mm] 142.34 β [deg] 8.10

z [mm] 2405.64 α [deg] −1.58

Figure 5.13: The distance error for FANUC M20-iA moving along Pd2 at speed 25mm/s without
path correction.
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Figure 5.14: The trajectory of the TCP for FANUC M20-iA moving along Pd2 at speed 25mm/s
with path correction.

Figure 5.15: The distance error for FANUC M20-iA moving along Pd2 at speed 25mm/s with path
correction.

Table 5.7: Results comparison for FANUC M20-iA moving along Pd2 and Pd3 at speed 25mm/s.

Distance error
Without path

correction
With path
correction

Percent
improvement

Pd2 [mm] ≤ 0.57 ≤ 0.17 70.2%

Pd3 [mm] ≤ 0.85 ≤ 0.19 77.6%
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Chapter 6

Adaptive Iterative Learning Control for

Dynamic Path Tracking of Industrial

Robots

6.1 Introduction

In aerospace manufacturing, robot manipulators are extensively employed to repeat program-

planned tasks and the task paths for them tend to be repetitive. It is the scenario for the researchers

to apply iterative learning control (ILC) strategy. Many early research works on ILC, such as [85,

149, 133], require some priori information of the system and rely on the 2-D contraction mapping

theory. The principle of iterative learning control (ILC) is to acquire better performance through

iteratively adjusting control input to the plant based on the status error and control information of

previous iterations in [78]. The performance of ILC is improved as the states’ errors converge to zero

asymptotically along the iteration axis. Both transient response and tracking performance can be

improved by ILC especially for repeating disturbances and system model uncertainty. In comparison

to a feedback controller, ILC can avoid the lag in the transient phase since the previous information

enables ILC to anticipate the control adjustment. ILC is similar but superior to a feedforeward

control for overcoming the unknown repetitive disturbances. Actually, ILC can be regarded as a
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feedback control in the iteration domain, as a result it can be robust to the system model uncertainty.

However, ILC cannot excel in non-repeating noise or disturbances comparing to a feedback control.

Therefore, ILC combined with a feedback control can be appropriate for both repeating and non-

repeating disturbances.

Inspired by the researches through Lyapunov and Lyapunov-like methods in control fields,

adaptive iterative learning control (AILC) has been proposed to estimate the uncertain parame-

ters for robot manipulators from iteration to iteration by some researchers in recent decades , e.g.,

[131, 134, 135]. In theses research work, the unknown parameters can be updated in time domain

during each run and the repeated disturbances can be overcome along the iteration axis. However,

the same issue for the AILC in these research work as that for the traditional adaptive control method

is the requirement on the constant unknown parameters. To address this issue, AILC method with

time-varying parameters through iterations for nonlinear systems is proposed by Xu et al. in [80].

However, the preliminary conditions given in [80], such as Lipschitz continuous condition, is not

applicable for a complex nonlinear system as 6-DOF industrial robots. Moreover, the simulation re-

sults demonstrated in [80] present oscillating convergence along the iteration axis. Currently, there

are no specific experiments conducted on 6-DOF industrial robots, with the exception of Tayebi et

al. is work [132], which presents the experimental results for a a 5-DOF CRS255 robotic manip-

ulator and demonstrates a slow convergence rate and increasing high-frequency vibrations on joint

movements over several dozen iterations.

The DPT control presented in Chapter 5 is essentially a feedback control. The transient per-

formance of the DPT control is not ideal due to startup acceleration. Also, unexpected vibrations

appear for the DPT control when the end-effector of the industrial robot is moving with higher

speed. In this thesis research, an AILC for dynamic path tracking is proposed. An adaptive up-

dating law for a parameter vector including time-varying parameters through iterations is designed.

These adaptive parameters are not confined to be constants kc and kg as used in [132]. The up-

dating time-varying parameters may implicitly contain the information from the system dynamics

and repeated disturbances. The experimental results on a 5-DOF CRS255 robotic manipulator at

speed 1.41mm/s presented in [132] show high frequency oscillations existing in the control in-

puts on 25th iteration. The oscillations are attributed to the noise accumulation and low velocity
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approximation in the measurement. In this thesis research, an adaptive Kalman filter is applied to

provide well-filtered real time estimations of the poses and velocities of tool center point (TCP) of

the end-effector. In addition, an AILC is in parallel with DPT control to reject both repeating and

non-repeating disturbances.

One common problem in the ILC is that the initial conditions of state errors ei(0) are random

which cannot be set as identical in each iteration. The worst case of 5 types for initial conditions

mentioned in [80] is that the initial errors are randomly variable but subject to constant limits. In this

thesis research, initial conditions ei(0) are random and bounded while initial errors are generated

by the first round of DPT module. DPT module has been proved to be effective for suppressing the

path tracking errors under certain small values. The performance of DPT module is verified to be

repeatable to a great degree. Therefore, although identical initial conditions cannot be satisfied, the

initial errors can be initialized to be less than the max errors achieved by DPT module. The initial

errors produced by DPT module are not apparently aligned and repeated as the same values. The

AILC law can be robust to the initial shifts. The stability of the AILC law is analyzed in this thesis

research.

The DPT control scheme proposed in Chapter 5 has achieved path tracking accuracy to ±0.1mm

for position and ±0.05deg for orientation, and the circle tracking accuracy to ±0.2mm for position

and ±0.1deg for orientation when the moving speed of the end effector is less than 25mm/s.

The objective of AILC algorithm in this thesis research is to compensate the DPT control scheme

for obtaining better transient performance and path tracking accuracy from iteration to iteration.

According to the analysis of the experimental data, the distance error for path tracking of the end-

effector with AILC control can be less than 0.1mm at speed 50mm/s due to the improvement of

the transient performance. Moreover, the path tracking accuracy for both position and orientation

can be decreasing along iteration axis.

The rest of this chapter is organized as the following. In Section 6.2, the problem statement

includes the dynamic state equations of 6-DOF manipulators, relevant properties and some assump-

tions. Section 6.3 introduces the control configuration of the AILC in parallel with DPT scheme,

AILC algorithm and stability analysis. The experiments on Fanuc M20-iA by using C-track 780

92



to provide visual measurements are implemented and the demonstration of the experimental re-

sults prove the effectiveness of the AILC in parallel with DPT scheme in Section 6.4. Finally, the

concluding remarks and future works are given in Section 6.5.

6.2 Problem Statement

The general dynamic model of 6-DOF manipulators Eq.(4.7) has the following common prop-

erties [145]:

• Property 1 M(q(t)) is positive-definite, symmetric and bounded as µ1 ≤ ∥M(q(t))∥ ≤ µ2.

µ1 and µ2 are existing positive constants.

• Property 2 M(q(t))− 2C(q(t), q̇(t)) is skew-symmetric, and

∥C(q(t), q̇(t))∥ ≤ λa∥q̇(t)∥. λa is a positive constant.

• Property 3 ∥G(q(t))∥ ≤ λb. λb is positive constant.

• Property 4 The left part of Eq.(4.7) can be written in linear form to the system parameters

as: M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) +G(q(t)) ≡ Ψ(q(t), q̇(t), q̈(t))Θ, Ψ(q(t), q̇(t).q̈(t) is

6× h regressor matrix can be obtained when q(t), q̇(t) and q̈(t) are available. Θ is the vector of h

system parameters.

Define e(t) = q(t) − qd(t), qd(t) is the desired reference. Then, the error dynamics can be

written as

M(q(t))ë(t) +C(q(t), q̇(t))ė(t) +M(q(t))q̈d(t) +C(q(t), q̇(t))q̇d(t)G(q(t)) = τ (t). (6.1)

Assume that t = kTc. The discrete form of Eq.(6.1) can be written as

M
e(k + 1)− 2e(k) + e(k − 1)

Tc
2 +C

e(k)− e(k − 1)

Tc
+Cq̇d + f = τ (k), (6.2)

where for convenience, M, C, and G denote M(q(k)), C(q(k), q̇(k)), and G(q(k)) respectively;

f = Mq̈d +G which is bounded according to Property 1 and 3.
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Let ẽ(k) = e(k)− e(k − 1). Eq.(6.2) can be written as

M(e(k + 1)− e(k)− ẽ(k)) + TcCẽ(k) + Tc
2Cq̇d + Tc

2f = Tc
2τ (k), (6.3)

Then,

e(k + 1) =e(k) + ẽ(k)−M−1TcCẽ(k)−M−1Tc
2Cq̇d

−M−1Tc
2f +B0τ (k) +∆Bτ (k),

(6.4)

where B0 = λmin(M)Tc
2, with λmin(M) being the minimum eigenvalue of M;∆B = M−1Tc

2−

B0.

The aim of the AILC scheme is to reduce e(k) through iterations. Accordingly, path tracking

accuracy can be further improved by integrating AILC scheme in parallel with the DPT scheme in

Chapter 5. In this chapter, System parameters vector Θ is assumed to be unknown. The description

of the task path is same as defined in Section 5.2.

Figure 6.1: Control configuration of dynamic path tracking by using AILC scheme in parallel with
DPT scheme.
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6.3 Adaptive Iterative Learning Control for Dynamic Path Tracking

Fig.6.1 demonstrates the control configuration of dynamic path tracking by using AILC control

to compensate DPT scheme proposed in Chapter 5. Comparing to Fig.5.2, the significant difference

is the upper block including the AILC algorithm module and learning memory. Based on the saved

pose error information and control input of former iteration, the AILC algorithm module produces

control input of current iteration to in parallel with the control input of DPT module. The adaptive

vector of the AILC algorithm in this thesis research is designed to include time-varying parameters

which can be updated along iteration axis and reflect the system dynamics and repeated disturbances

without knowing the system parameters. The AILC algorithm can be classified into pointwise

adaptice ILC (Type 2) and model-free multi-parameter one at the same time.

6.3.1 Adaptive Iterative Learning Control algorithm

The state error em(k) at time k for iteration m is defined as em(k) = qm(k)−qd(k). Then, the

control objective of the AILC algorithm is em(k) → 0 when m → ∞. Similar to Eq.(5.7), em(k)

can be obtained as:

em(k) = J−1(qm(k))[ςm(k)T − ςd(k)
T ]T , (6.5)

The error dynamic equation Eq.(6.4) for joint i, i = 1 · · · 6, in iteration can be written as

eim(k + 1) = α1e
i
m(k) + α2ẽ

i
m(k) + α3 +B0τ

i
m(k), (6.6)

where m ∈ Z denotes the iteration number and α1, α2, α3 ∈ R.

Then, according to Eq.(6.6), the ideal controller for joint i can be designed as

τ i
m(k) =− Λ1e

i
m(k)− Λ2ẽ

i
m(k)− Φmθm, (6.7)

θm =[
α1

B0
− Λ1,

α2

B0
− Λ2,

α3

B0
]T , (6.8)

Φm = [eim(k), ẽim(k), 1], (6.9)
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where Λ1, Λ2 ∈ R+ are control gains. θm related to system parameters is assumed to be unknown.

An adaptive iterative learning control (AILC) law is designed to compensate the control input of

DPT module as follows

τ i
m(k) =− Λ1e

i
m(k)− Λ2ẽ

i
m(k)− Φmθ̂m, (6.10)

θ̂m(k) =


θ̂m−1(k) + ΓΦT

m−1e
i
m−1(k + 1), when m > 1

0, otherwise
, (6.11)

where θ̂m is the estimation of θm and Γ ∈ R+.

6.3.2 Stability Analysis

The task path Pd2 is assumed to be reachable for the TCP of the end-effector and visible in

the FOV of the VMI. Moreover, the Jacobian matrix J(q(k)) can satisfy non-singularity along

Pd2 since a 6-DOF rigid industrial robot is kinetically non-redundant. The stability proof of the

proposed control algorithm can be based on positive definite Lyapunov-like energy function (LEF)

by ensuring monotonic decreasing of LEF under some conditions which has been introduced by Xu.

in [150] and Tayebi. in [131].

First, it is assumed the finite time span T for each iteration is constant. Let θ̃m(k) = θm(k) −

θ̂m(k). The Lyapunov-like function candidate for each iteration between [0, T ] can be defined as

Wm(k) =
B0θ̃

T
m(k)θ̃m(k)

2Γ
. (6.12)

Submitting Eq.(6.10) into Eq.(6.6), eim(k + 1) can be obtained as

eim(k + 1) = B0Φmθ̃m(k). (6.13)

Moreover, when m > 1, using Eq.(6.11), θ̃m(k) can be updated as

θ̃m(k) = θ̃m−1(k)− ΓΦT
m−1e

i
m−1(k + 1). (6.14)
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According to Eq.(6.12), Eq.(6.13), and Eq.(6.14), the iteration-decreasing trend of Wm(k) along

iteration axis can be proved as

∆Wm(k) =Wm(k)−Wm−1(k)

=
B0θ̃

T
m(k)θ̃m(k)

2Γ
−

B0θ̃
T
m−1(k)θ̃m−1(k)

2Γ

=
B0(θ̃m−1(k)− ΓΦT

m−1e
i
m−1(k + 1))T (θ̃m−1(k)− ΓΦT

m−1e
i
m−1(k + 1))

2Γ

−
B0θ̃

T
m−1(k)θ̃m−1(k)

2Γ

=
B0(−Γ θ̃Tm−1(k)Φ

T
m−1e

i
m−1(k + 1)− ΓΦm−1θ̃m−1(k)e

i
m−1(k + 1)

2Γ

+
Γ 2Φm−1Φ

T
m−1(e

i
m−1(k + 1))2)

2Γ

=
B0(−2Φm−1θ̃m−1(k)e

i
m−1(k + 1) + ΓΦm−1Φ

T
m−1(e

i
m−1(k + 1))2)

2

=−B0Φm−1θ̃m−1(k)e
i
m−1(k + 1) +

B0ΓΦm−1Φ
T
m−1(e

i
m−1(k + 1))2

2

=− (eim−1(k + 1))2 +
B0ΓΦm−1Φ

T
m−1(e

i
m−1(k + 1))2

2

=− (1−
B0ΓΦm−1Φ

T
m−1

2
)(eim−1(k + 1))2, (6.15)

which is less than 0 if only Γ < 2
B0Φm−1ΦT

m−1
. Therefore, θ̃m(k) → 0 when m → ∞. According

to Eq.(6.13), when θ̃m(k) → 0, it is clear that eim(k + 1) → 0.

On the other hand, when m = 1, the control law Eq.(6.10) becomes

τ i
m(k) = −Λ1e

i
m(k)− Λ2ẽ

i
m(k). (6.16)

Using Eq.(6.6), the closed loop dynamics becomes

eim(k + 1) =(α1 −B0Λ1)e
i
m(k) + (α2 −B0Λ2)ẽ

i
m(k) + α3

=(α1 −B0Λ1 + α2 −B0Λ2)e
i
m(k)− (α2 −B0Λ2)e

i
m(k − 1) + α3. (6.17)
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Define x1(k) = eim(k − 1), x2(k) = eim(k), and x(k) = [x1(k), x2(k)]
T , then one has

x(k + 1) = Ax(k) +

 0

α3

 , A =

 0 1

−(α2 −B0Λ2) α1 −B0Λ1 + α2 − B0Λ2.

 (6.18)

Apparently, if only Λ1, Λ2 are selected such that the eigenvalues ofA are within the unit circle, then

Eq.(6.17) is stable, and x(k) is bounded.

6.4 Experimental Results

In order to verify the efficiency of the proposed AILC scheme, some experiments have been

carried out for controlling the TCP of the end-effector to move along a typical desired task path in the

workspace of Fanuc M20-iA. The desired task path Pd2 is described in Table.6.1. The experimental

results are presented in three types when the TCP of the end-effector is tracking Pd2 in three different

situations such as without dynamic path correction, with DPT control and with AILC control. The

control flowchart for implementing AILC scheme is shown in Fig.6.2. The experimental setup is

the same as shown in Fig.5.4.

Table 6.1: Pose information of Pd2 for the end-effector in user frame FUT
for the experiment.

6.4.1 Parameters Initialization

In the experiments of this research, the initial errors em(0) are assumed to be bounded. Initial

errors are generated by the first round of the DPT module. The DPT module has been proved to

be effective for suppressing the path tracking errors under certain small values . The performance

of DPT module is verified to be repeatable to a great degree. Therefore, although identical initial

conditions cannot be satisfied, the initial errors can be initialized to be less than the max errors
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achieved by DPT module. The worst case of 5 types for initial conditions mentioned in [80] is that

the initial errors are randomly variable but under constant small values. The initial errors produced

by DPT module are not apparently aligned and repeated as the same values. However, the AILC

algorithm can be robust to the initial shifts.

Figure 6.2: Control flowchart for implementing AILC scheme.

The initialization of Kalman filter for the experiments of AILC is the same as that in Chapter

5. Compared to the control interval Tc configured in Chapter 5, Tc for the experiments to imple-

ment AILC is set as 3 times of the sampling time Ts in order to generate rapid control signal to

accommodate the higher moving speed of the end-effector. The moving speed of the end-effector

applied in this research is 50mm/s, while the moving speed of the end-effector for the experiments

to verify the DPT scheme in Chapter 5 is 25mm/s. Control gains Λ1 and Λ2 for 6 axis are set as

[0.1, 0.1, 0.1, 0.07, 0.0.07, 0.0.07] and [0.015, 0.015, 0.015, 0.01, 0.01, 0.01] respectively. Adaptive
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learning parameters are initialized as 0 and positive learning gain Γ is selected as 1.5. Greater val-

ues of the learning gain parameters may accelerate the convergence rate. However, the influence of

the noises appearing through iterations can be magnified and cause vibrations for the movements of

the joints. The worst case is the divergence of the learning process.

6.4.2 The Analysis of Experimental Results

Path Tracking without Dynamic Path Correction

The first experiment is conducted for the TCP of the end-effector moving along Pd2 at speed

50mm/s without dynamic path correction and the error analysis of the experimental Results are

demonstrated in Figs.6.3-6.5. According to Fig.6.3, the maximum distance error at speed 50mm/s

without dynamic path correction is over 2.5mm, which is greater than the maximum distance errors

at speed 25mm/s shown in Fig.5.5 and 5.6. The divergence patterns of position error along x and z

in user frame are similar. However, divergence range of position error along z axis is up to 2.541mm

which is much greater than the maximum error 0.628mm along z axis. Moreover, there are obvious

vibrations shown on the position error along y axis in Fig.6.4 although the maximum error along y

axis is less than 0.2mm. The maximum divergence range of orientation error without dynamic path

correction is up to 0.254deg which is from the rotation angle γ around axis x of FUT
despite of the

fact that the desired orientation is unvarying along Pd2. On the other hand, the experimental Results

without dynamic path correction validate the observations in Chapter 5 that tracking different paths

exhibits different error patterns and the distance error increases with higher tracking speed.

Path Tracking with DPT Control

Then, the second experiment for the TCP of the end-effector to track Pd2 at speed 50mm/swith

DPT control is carried out and Figs.6.6-6.8 demonstrate distance error, position error and orientation

error respectively. Compared to the experimental results of the first experiment without dynamic

path correction, the maximum distance error with DPT control has been significantly reduced to

less than 0.3mm. Also, position error and orientation error for each axis are improved to a great

extent with dynamic path correction of DPT module and the convergence time is less than 5s. The
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vibrations on position error along y are apparently suppressed. However, the expected accuracy

of robot manipulation for aerospace manufacturing is less than 0.20mm according to the standard

process specifications in the aerospace industry [9, 10]. As the moving speed of the end-effector

for path tracking in this experiment is twice of the speed preset in the experiments of Chapter 5, the

desired accuracy 0.20mm is difficult to be achieved with the only help of DPT control.

Path Tracking with AILC Control

The objective of the third experiment is to implement AILC control to verify the efficiency of

the AILC algorithm. As shown in Fig.6.1, AILC module is in parallel with DPT module. The

first iteration of the third experiment is executed to initialize the parameters of AILC algorithm

automatically and it is the same as the second experiment. The iterative learning process start from

the second iteration. The definition of average error of each iteration is as below:

A = (
n∑
1

|e(k)|)/n, (6.19)

where A denotes the average error; k and n are discrete time index and maximum time index for

each iteration respectively. According to Eq.(6.19), average distance error, average position error

and average orientation error can be derived for each iteration. Figs.6.9-6.11 present the gradual

converging process of average distance error, average position error and average orientation error

along iteration axis. The total iterations demonstrated in these figures are 100. As shown in Fig.6.9,

apparent decreasing trend of average distance error can be observed from around 0.14mm to less

than 0.08mm. The average position error, as shown in Fig.6.6 , is gradually reduced to be less than

0.025mm for x error, 0.05mm for y error and z error along iteration axis respectively. At the same

time, the average orientation error is obtained further continuous reduction while average γ error

and average α error are less than 0.015deg and average β error is less than 0.01deg at iteration 100.

Figs.6.12-6.14 demonstrate distance error, position error and orientation error at the last iteration,

i.e., iteration 100. Compared Fig.6.6 with Fig.6.12, the distance error is stablely decreased along

the entire time axis with AILC control. Moreover, the maximum distance error with AILC control

is less than 0.18mm and the distance error after 5s is keeping less than 0.11mm. Similarly, the
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maximum values of position error and orientation error with AILC are all lowered and they are

controlled steadily to smaller value after 5s comparing with the experimental results of the second

experiment. Especially, the vibrations on both position error and orientation error with AILC control

are efficiently reduced so that the control process is observed to be smooth.

Comparison of three experiments

Through the comparison of some features in three aforementioned experiments, the advantages

of the AILC control algorithm for enhancing the accuracy of Fanuc M20-iA can be recognized.

First, the maximum pose error and distance error of the end-effector during the entire path tracking

process,i.e., when Fanuc M20-iA move from the start point to end point of Pd2 at speed 50mm/s,

are identified and presented in Table.6.2. It can be observed that the maximum errors of each

item in each column of Table.6.2 are decreased greatly. Moreover, as shown in Figs.6.3-6.8 and

Figs.6.12-6.14, the maximum errors definitely occur in the initial 5s. Therefore, the comparison of

the maximum errors verify that the transient performance can be significantly improved using AILC

module to compensate DPT control scheme. The RMS errors of pose error and distance error from

three experiments are listed in Table.6.3. Similar to the maximum errors in Table.6.2, the RMS

errors for both position errors and orientation errors can be significantly reduced. Table.6.4 gives

the percentage accuracy improvement of each item according the results demonstrated in Table.6.3.

Most of the position errors and orientation errors can be decreased over 50% except that the accuracy

of α, orientation around z axis of use frame, can be improved as much as 40.3%, while the overall

distance error can be reduced up to 53.0%.

6.5 Conclusion

In this chapter, an AILC scheme in parallel with the DPT scheme proposed in Chapter 5 is

presented. The AILC algorithm aims to improve both transient and steady performances of pose

tracking by updating the time-varying parameters adaptively along iteration axis. The control signal

generated from the AILC algorithm adjust the control inputs produced by the DPT module at each

time interval based on the memorized data information and current feedback. Three experiments in
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different situations (without path correction, with DPT control, and with AILC control) are carried

out. Through the demonstration of data figures and tables, it is evident to recognize the enhance-

ment of developed AILC strategy compared to the DPT control module itself. First, the transient

control performance is improved with the AILC module. After certain limited iterations, high path

tracking accuracy can be achieved even during the beginning 5s and the maximum distance error is

less than 0.2mm when the TCP of the end-effector is following the desired path at speed 50mm/s,

which is twice of the speed applied in Chapter 5. Second, the pose accuracy can be stably confined

to less than 0.1mm for position and 0.05deg for orientation through iterative learning. Moreover,

the repetitive disturbances can be also overcome within certain iterations so that the vibrations can

be significantly reduced. Therefore, the AILC algorithm proposed in this chapter is verified to be

very effective to further improve the DPT scheme. The future work includes applying the com-

bined control scheme to the other types of industrial robots such as ABB and KUKA and practical

industrial applications.

Figure 6.3: Distance error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s without
path correction.
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Figure 6.4: Position error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s without
path correction.

Figure 6.5: Orientation error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s with-
out path correction.
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Figure 6.6: Distance error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s with
DPT control.

Figure 6.7: Position error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s with
DPT control.
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Figure 6.8: Orientation error for Fanuc M20-iA moving forward along Pd2 at speed 50mm/s with
DPT control.

Figure 6.9: Average distance error of each iteration for Fanuc M20-iA moving forward along Pd2

at speed 50mm/s with AILC control.
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Figure 6.10: Average position error of each iteration for Fanuc M20-iA moving forward along Pd2

at speed 50mm/s with AILC control.

Figure 6.11: Average orientation error of each iteration for Fanuc M20-iA moving forward along
Pd2 at speed 50mm/s with AILC control.
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Figure 6.12: Distance error of last iteration for Fanuc M20-iA moving forward along Pd2 at speed
50mm/s with AILC control.

Figure 6.13: Position error of last iteration for Fanuc M20-iA moving forward along Pd2 at speed
50mm/s with AILC control.
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Figure 6.14: Orientation error of last iteration for Fanuc M20-iA moving forward along Pd2 at speed
50mm/s with AILC control.

Table 6.2: The comparison of maximum errors for Fanuc M20-iA moving forward along Pd2 at
speed 50mm/s.

Table 6.3: The comparison of RMS errors for Fanuc M20-iA moving forward along Pd2 at speed
50mm/s.
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Table 6.4: The accuracy improvement with AILC control superior to DPT control for Fanuc M20-
iA moving forward along Pd2 at speed 50mm/s.
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Chapter 7

Summary and Future Works

7.1 Summary of the Thesis

6-DOF serial robots as typical industrial robots have been extensively applied in industrial man-

ufacturing and liberating human from tedious, dangerous works. However, there are still many

potential applications in aerospace manufacturing due to their high accuracy requirements. Tra-

ditional calibration methods can only improve the static accuracy of industrial robots to a limited

extent. However, the dynamic accuracy for approaching desired points and tracking desired paths is

more significant for industrial robots in most applications. A lot of research work have been carried

out for enhancing the dynamic accuracy of industrial robots in recent decades. Visual servoing based

control methods have been intensively investigated due to their feasibility and effectiveness. In this

thesis research, the accuracy enhancement of industrial robots for both desired points approaching

and desired path tracking is explored. Kalman filter is selected to process the pose feedback infor-

mation from VMI. An adaptive Kalman filter is introduced with velocity estimation and acceleration

estimation. Then, different control schemes for accuracy enhancement are proposed and some ex-

periments are implemented to verify the proposed schemes on FANUC robots with C-Track 780

providing visual measurements.

(1) Dynamic pose correction (DPC) scheme for enhancing the dynamic pose accuracy of

industrial robots

The DPC scheme is a position based visual servoing (PBVS) method and designed to guide the
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TCP of the end-effector to reach designated points with specific pose accurately. The designated

points can be static or moving. Any pre-planned task point in task space can be set as current

objective pose and it can be on-line updated. The DPC module is supposed to be working on the

third computer which is independent to the robot controller. The DPC module includes real-time

control algorithm and it can compute the movement commands to the robot controller in order to

control the TCP of the end-effector moving toward the desired pose according to the pose feedback

from visual measurement instrument. Moreover, an adaptive Kalman filter (AKF) is employed to

reduce the influence from the image noise, blur and distortion and obtain the pose estimation of the

end-effector. The DPC scheme is implemented on on FANUC LR Mate 200iC with C-Track 780

providing the visual measurements. The experimental results demonstrate that the pose accuracy can

be improved to be less than ±0.05mm for position and ±0.05deg for orientation. The desired pose

can be saved as the pose of the tool frame in FUR
at the end of the first round. The task program can

run in the robot controller independently or obtain fast adjustment to satisfy the required accuracy

for the second round and late rounds. The learning based DPC scheme can also work as on-line

teaching to transfer the off-line planned task to the information recorded in the position register of

robot controller.

(2) Dynamic path tracking (DPT) scheme for achieving high path-tracking accuracy of

industrial robots.

The DPT scheme is also a PBVS strategy and it is proposed to control the TCP of the end-

effector attached on the tool flange of the industrial robot to keep tracking the desired path with

high accuracy. The stability of the robot system with the compensation of the DPT control algo-

rithm is proved by using Lyapunov stability theorem. In order to verify the proposed DPT scheme,

some experiments are implemented on FANUC M20-iA with C-Track 780 as the photogramme-

try sensor. The visual measurements of C-Track 780 are processed by the AKF to obtain current

pose of the objects. The moving speed of the end-effector in these experiments is set as 25mm/s.

According to the data analysis of the experimental results, the path tracking accuracy can be en-

hanced to ±0.10mm for position and ±0.05deg for orientation, and the circle tracking accuracy

can be improved to ±0.20mm for position and ±0.10deg for orientation. The high tracking ac-

curacy achieved through the proposed DPT scheme can satisfy the precision requirements of some
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applications, such as arc welding and sealing, in aerospace manufacturing.

(3) Adaptive iterative learning control (AILC) scheme for further improving the dynamic

tracking performance of industrial robots.

Iterative learning control (ILC) is a tracking control method for repeating task systems and the

tracking accuracy of the systems can be enhanced through learning process from iteration to it-

eration. As typical task-repetitive systems, industrial robots have been extensively applied to the

researches of ILC in recent decades. In this thesis research, an AILC scheme in parallel with

the DPT scheme is proposed to obtain further superior control performance. The AILC algorithm

is to update the time-varying parameters adaptively along iteration axis. At the same time, new

compensations are produced by the AILC algorithm to adjust the control input computed by the

DPT module at each time interval based on the memorized data information and current feedback.

The stability proof of the dynamic system with AILC scheme is proved through a positive definite

Lyapunov-like energy function (LEF) by ensuring monotonic decreasing of LEF under some condi-

tions along both time and iteration axis. The AILC scheme has been implemented successfully on

FANUC M20-iA with C-Track 780 as VMI. Through data analysis and comparison of experimental

results, it is proved that the AILC control module in parallel with the DPT module can outperform

the DPT module alone. First, the transient control performance is improved with the AILC module.

After certain limited iterations, high path tracking accuracy can be achieved even during the begin-

ning 5s and the maximum distance error is less than 0.20mm when the TCP of the end-effector

is following the desired path at speed 50mm/s, which is twice of the speed applied in Chapter

5. Second, the pose accuracy can be confined to less than 0.10mm for position and 0.05deg for

orientation through iterative learning. Moreover, the repetitive disturbances can be also overcome

within certain iterations so that the vibrations can be significantly reduced. Therefore, the AILC

scheme proposed in Chapter 6 is verified to be very effective to further improve the path tracking

performance comparing with the DPT scheme.
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7.2 Future Works

Although this thesis research has achieved some remarkable results, there are still many prob-

lems that needs further investigation:

• It is necessary to test the proposed control schemes on the other types of industrial robots,

such as ABB and KUKA.

• The proposed control schemes can be designed as a control black box to be compatible with

different industrial robots through initial learning and configurations.

• It is worth verifying the proposed DPT and AILC schemes to other types of path tracking,

such as S-shape curve, square, etc..

• User-friendly human-machine interface can be developed so that non-professional operators

can customize their own task by updating several specific parameters.

• In future, other artificial intelligence techniques, e.g., reinforcement learning, will be explored

to improve the accuracy of industrial robots.
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Appendix A

My Appendix

A.1 FANUC robots

FANUC is the abbreviation of ”Fuji Automatic Numerical Control”. FANUC Ltd. was estab-

lished in 1972 as part of Fujitsu to develop servo system and early numerical control [151]. In this

thesis research, two typical industrial robots, FANUC M20iA and FANUC LR Mate 200iC, are em-

ployed as experimental subjects. FANUC M20iA is the lab property of Concordia University and

FANUC LR Mate 200iC is installed in the lab of ÉTS (École de technologie supérieure). They both

are 6-DOF serial manipulators.

A.1.1 FANUC LR Mate 200iC

FANUC LR Mate 200iC, shown in Fig.A.1 (a), is a tabletop-size and light-weight industrial

robot. It can be used for picking and packing, material handling, machine tending, part washing,

testing and sampling, dispensing, material removal, assembly, education and entertainment. Its pri-

mary features are listed in Table.A.1 [152]. The work envelope of FANUC LR Mate 200iC is shown

in Fig.A.2. There are fail-safe mechanical brakes on its 6 joints. Its unique software options provide

real-time collision protection, singularity avoidance and internet connectivity. FANUC LR Mate

200iC works as a serial actuator with 6 joints and all the movements of the joints are commanded

through Fanuc R-30iA Mate Controller, shown in Fig.A.1 (b). Fanuc R-30iA Mate Controller is

the compact version of the standard Fanuc R-30iA controller and has much more advantages, e.g.,
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shorter start-up time (less than 1 minute), fast restart (hot-start from the memorized movements and

check collisions or exceptions safely), longer uptime, fewer maintenance requirements, and etc..

A.1.2 FANUC M20iA

FANUC M20iA as shown in Fig.A.3 (a) is a versatile 6-axes industrial robot with high inertia

performance. It can be applied in many solutions, such as material handling and removal, assembly,

water-jet/laser cutting, dispensing, picking and packing, machine load/unload, machine tending,

testing and sampling, and other applications in industrial manufacturing. The primary features of

FANUC M20iA are listed in Table.A.2 [153]. The work envelope of FANUC M20iA is shown in

Fig.A.4. Comparing to FANUC LR Mate 200iC, FANUC M20iA has larger size, payload, work en-

velope and lower repeatability. It can accommodate several medium-payload applications together

within its workspace. Moreover, the hollow upper arm&wrist and the shelf at the back of the up-

per arm provide enough space for wiring and mounting peripheral devices. Also, 2D vision cable

from joint 1 to joint 3 is built in Fanuc M20iA as standard option. FANUC M20iA in Concordia is

controlled through FANUC R-30iB controller, shown in Fig.A.3 (b). The communication between

FANUC M20iA and FANUC R-30iB controller is using high-speed Ethernet connection to ensure

fast efficient real-time control. The programs can be developed on teach pendant or on the third

computer.

A.2 Optical CMM from Creaform

Comparing to most of high-precision optical CMMs in the market, e.g., FARO laser trackers and

Nikon Metrology’s optical CMM, C-Track 780 is much more cost-effective and user-friendly. C-

Track 780, shown in Fig.A.5 (a), is an optical CMM with dual-camera manufactured by Creaform.

C-Track controller as Fig.A.5 (c) is the connection bridge between C-Track 780 and a third com-

puter through high speed firewire cable and ethernet cable respectively. Also, C-Track controller

centralizes all incoming information from different equipments, such as C-Track 780, HandyProbe

(shown in Fig.A.5 (d)). Table.A.3 demonstrates the technical specifications of C-Ttrack 780 from
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the technical manual provided by Creaform. The measurement volume of C-Ttrack 780 is indi-

cated in Fig.A.6. However, better accuracy can be obtained in the area excluding the borders and

Z-dimension. The repeatability, the 3rd item in Table.A.3, is taking the maximum value from the

measurements of the 500mm-long standard artifact between 1.8m and 2m only along X or Y axis

(dashed-line area in Fig.A.6) by using HandyProbe under dynamic referential mode. The artifact

should be in a X-Y plane according to the sensor frame of C-Track. The single point repeatability,

the 4th item in Table.A.3, is a distance deviation by putting the tip of HandyProbe in the calibration

cone, shown in Fig.A.5 (e), with multiple orientations. The measurement speed of C-Track 780, the

6th item in Table.A.3, is the acquisition rate of the images per camera per second with two cameras

measuring up to 100 optical reflectors at every image simultaneously.

C-Track 780 must be calibrated periodically (at most 20 days) by using the calibration bar as

shown in Fig.A.5 (b) so as to have a premium performance. Calibration should be carried out in

the actual measurement conditions, such as in the same stable temperature environment. All the

targets on the calibration bar should be visible to the dual cameras of C-track 780. When calibrating

C-Track 780, two calibration volumes, 3.8m3 and 7.8m3, can be opted. 7.8m3 is the maximum

volume that C-Track 780 can take the measurement. If 3.8m3 is selected for calibrating, C-Track

780 is downgraded to the measurement volume of C-Track 380. The accuracy in 3.8m3 is better

than in 7.8m3 according to the performance values in Table.A.3.

HandyProbe is an arm-free CMM and can be integrated with C-Track 780 for dynamic mea-

surement and probing inspection. HandyProbe is useful for some static measuring, such as iden-

tifying specific point, line or plane, defining the coordinate frame attached on the objects. Also,

HandyProbe can be calibrated by using the calibration cone.

The dual cameras of C-Track 780 acquire all the positioning targets in its measurement volume

simultaneously. The positioning targets can be adhesive or magnetic reflectors as shown in Fig.A.5

(g) and (f). The adhesive reflectors are low-coat, ultralight and passive. A rigid body, as a geometry

model, can be represented by a series of positioning targets which are liked rigidly with a refer-

ence frame. The VXtrack module is the software module provided by creaform for interpreting the

visual measurements of C-Track 780 to high-precision dynamic tracking pose information of the

measured point or object [142]. First, the coordinates of the targets in sensor frame are estimated
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from the measurements of the two cameras based on the basic photogrammetry triangulation algo-

rithm. Then, the position and orientation of the reference frame attached to the object, as a rigid

body, can be deducted through 3D localization [154]. Combined with VXtrack module, C-Track

780 can be applied to monitor complex manufacturing process, robot guidance and calibration,

inspecting the deformations, etc..

Figure A.1: (a) FANUC LR Mate 200iC, (b) Fanuc R-30iA Mate Controller [155].

118



Figure A.2: The work envelope of FANUC LR Mate 200iC [152]. The unit for dimension is mil-
limeter.

Figure A.3: (a) FANUC M20iA, (b) Fanuc R-30iB Controller [156].
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Table A.1: FANUC LR Mate 200iC robot specification.

Item Features
Axes 6

Payload at wrist (kg) 5

Reach (mm) 704

Repeatability (mm) ±0.02

Interference Radius (mm) 181

J1 340
J2 200

Motion range (degrees) J3 388
J4 380
J5 240
J6 720

J1 350
J2 350

Motion speed (degrees/s) J3 400
J4 450
J5 450
J6 720

Mechanical brakes 6 axes
Mechanical weight (kg) 250
Vibration (m/s2) 0.5 or less
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Figure A.4: The work envelope of FANUC M20iA [153]. The unit for dimension is millimeter.
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Table A.2: FANUC M20iA robot specification.

Items Features
Axes 6

Payload at wrist (kg) 20 at wrist
Reach (mm) 1811

Repeatability (mm) ±0.08

Interference Radius (mm) 321

J1 340/370
J2 260

Motion range (degrees) J3 458
J4 400
J5 3600
J6 900

J1 195
J2 175

Motion speed (degrees/s) J3 180
J4 360
J5 360
J6 550

Mechanical brakes 6 axes
Mechanical weight (kg) 27
Vibration (m/s2) 4.9 or less

Table A.3: The technical specifications of C-Track 780.

No. Items Performance
1 Measurement rate for 100 reflectors (reflectors/s) up to 3000
2 Measurement rate with oversampling for 100 reflectors (reflectors/s) up to 24, 000

3 Repeatability (RMS value in mm) up to 0.025

4 Single point repeatability (RMS value in mm) 3.8m3 up to 0.05
7.8m3 up to 0.055

5 Volumetric accuracy (RMS value in mm) 3.8m3 up to 0.06
7.8m3 up to 0.065

6 Measurement speed (hz) 30

7 Temperature range (°C) −15 ∼ 40

122



Figure A.5: (a) C-Track 780 on a tripod, (b) Calibration bar, (c) Controller, (d) HandyProbe, (e)
Calibration cone, (f) Adhesive reflectors, (g) magnetic reflectors.

Figure A.6: The measurement volume of C-Track serials [157].
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