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Abstract

Manipulating Explanations: Modifying Feature Visualization in Artificial Neural
Networks

Alexander Fulleringer

As Deep Neural Networks become increasingly ubiquitous and increasingly large, there has

been an increasing concern with their uninterpretable nature, and a push towards stronger techniques

for interpretation. Feature visualization is one of the most popular techniques to interpret the inter-

nal behavior of individual units of trained deep neural networks. Based on activation maximization,

it consists of finding synthetic or natural inputs that maximize neuron activations. This work in-

troduces an optimization framework that aims to deceive feature visualization through adversarial

model manipulation. It consists of fine-tuning a pre-trained model with a specifically introduced

loss that aims to maintain model performance, while also significantly changing feature visualiza-

tion. We provide evidence of the success of this manipulation on several pre-trained models for the

ImageNet classification task. Additionally, several model pruning strategies are tested as potential

defences against the manipulations developed, with the aim of producing resilient and performative

models.
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Chapter 1

Introduction

1.1 Introduction

Deep Neural Networks (DNNs) can be trained to perform many economically valuable tasks

(Kaplan et al., 2020; Krizhevsky, Sutskever, & Hinton, 2017). They are already pervasive in many

sectors, and their prevalence is only expected to increase over time. With increasing computa-

tional power and ever more available data, DNN architectures are growing in size and executing

increasingly intricate tasks. Given the increasing size and complexity of DNNs, interpreting how

they function, a well-established challenge, will likely grow more difficult with new developments.

However, for certain classes of critical applications, close inspection and guarantees of functional-

ity will be very important, especially in heavily regulated and high-stakes domains. Here we ask:

could a malicious actor conceal the true functionality of a DNN from an interpretability method by

deliberately perturbing the DNN?

Focusing on the continuously popular feature visualization method (Olah et al., 2020; Olah,

Mordvintsev, & Schubert, 2017; Zeiler & Fergus, 2014), we propose to create an optimization pro-

cedure to manipulate the interpretation of individual neurons of a network while keeping its final

behavior the same. A  successful modification of the interpretation while keeping outputs constant

is evidence for the manipulability of the interpretation approach. In this work, we concentrate on

convnet architectures for which interpretation by activation maximization or feature visualization

methods has been popular (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015; Zeiler & Fergus,

2014). In this work, we study the feature visualization of a neuron or channel norm via activation

1
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maximization and attempt to modify it while maintaining network outputs and accuracy. Then, we

characterize the attacks quantitatively and show two different attacks that can effectively manipulate

and explicitly obfuscate interpretations.

To date, most works on interpretability manipulability have focused on techniques such as fea-

ture attribution tailored for model predictions (Heo, Joo, & Moon, 2019; Slack, Hilgard, Jia, Singh,

& Lakkaraju, 2020). Little attention has been paid to the manipulability of neuron interpretabil-

ity techniques, despite their increasing popularity due to their fine-grained understanding of inner

structures of DNNs (Olah et al., 2020, 2017; Raukur, Ho, Casper, & Hadfield-Menell, 2022).

Notably, it has also been applied to create mechanistic interpretations which are argued to be ro-

bust as they directly link to the function of neurons (Cammarata et al., 2020; Nanda, Chan, Liberum,

Smith, & Steinhardt, 2023).

As neural networks use becomes increasingly popular across industries, a deeper understanding

of their functionality becomes more and more necessary. Indeed, there have been many cases of

seemingly effective systems that, upon deeper investigation, have distinct and unwanted biases in

their performance, as can be seen in works by Hundt, Agnew, Zeng, Kacianka, and Gombolay

(2022) and Tian, Xie, Hu, and Liu (2021). As the size and complexity of models increases, so too

does the inherent difficulty in explaining how they work. There are legal, ethical, and practical

motivations to address this issue, and generate meaningful explanations of models.

Practical concerns have been raised over using inexplicable AI. Inexplainable AI  may be viewed

with lower trust. The EU’s proposed AI Act includes provisions that A I  systems used in the EU,

including DNNs, must make decisions in an unbiased, transparent, and traceable fashion. This

indicates a need for strong and robust interpretability methods.

We study the feature visualization of a neuron or channel norm via activation maximization and

attempt to modify it while maintaining trained network outputs and accuracy. We investigate how

to characterize these attacks quantitatively and show two different attacks which can effectively

manipulate and explicitly obfuscate interpretations. Finally, we experiment with model pruning as

a potential defence mechanism against these attacks.

2



Top-K
Images

Responding to rough textured set of circular objects

top-K images

Interpreter

Model Creator / Attacker

Interpretation Responding only to the “decoy” goldfish class

Similar Output

Adversarial manipulation

high performance model manipulated high performance model

Figure 1.1: Illustration of the attack model for our adversarial interpretability manipulation. Top-5
images that best activate a given neuron, seemingly capturing a shared semantic concept that an
interpreter may describe and/or use an external tool to describe (Hernandez et al., 2022; Oikarinen &
Weng, 2022). We assume the model creator can manipulate the model before it is released to the
interpreter. In this case, they can create a model that might lead to interpreting the selected neuron as
only capturing the semantics of a single class.

1.2 Contributions

• We develop a framework to manipulate the feature visualizations of a DNN.

• We use this framework to implement two attacks, the Push Up and Push Down attacks.

• We define several metrics to describe our results. These include the CLIP-δ score to measure

semantic difference between sets of images, and Kendall-τ -W and CLIP-W to assess the

presence of the whack a mole problem we define in section 3.1.4.

• We experiment with the use of pruning as a tool to defend against our attacks.

• We submitted to and were accepted by the NeurIPS 2023 ATTRIB  workshop under a paper

titled Adversarial Attacks on Neuron Interpretation via Activation Maximization, cited

as Fulleringer, Nanfack, Marty, Eickenberg, and Belilovsky (2023). This paper forms the

basis for Chapter 3 in this work.

• We submitted our results to and were accepted by A A A I  2024 as part of a paper titled Adver-

sarial Attacks on the Interpretation of Neuron Activation Maximization, cited as Nan-

fack, Fulleringer, Marty, Eickenberg, and Belilovsky (2024). First authorship on this paper is

3



shared between Alexander Fulleringer and Dr. Geraldin Nanfack.
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Chapter 2

Background

2.1 Adversarial Attacks

The term Adversarial Attacks refers to a broad set of strategies used to fool or manipulate a

model and its outputs (Akhtar & Mian, 2018; Chakraborty, Alam, Dey, Chattopadhyay, & Mukhopad-

hyay, 2018; Miller, Xiang, & Kesidis, 2020). Miller et al. (2020) distinguish between three cate-

gories of Adversarial Attacks: Data Poisoning, Reverse Engineering, and Test-Time Evasion.

Data Poisoning occurs when data is introduced to the training set such that the model behaviour

is compromised, either in performance or via the creation of ”backdoors”. Reverse Engineering is

where a new model is trained using outputs of a previous model. This ”surrogate” model, which

ideally follows the behaviour of the original closely, is then used to identify vulnerabilities or simply

to copy the capabilities of the original. Finally, Test-Time Evasion involves feeding doctored inputs

to the net to either reduce performance or even to force a specific outcome.

Major defense strategies against these attacks include modifying the training procedure (Good-

fellow, Shlens, & Szegedy, 2014; Nayebi & Ganguli, 2017; Zheng, Song, Leung, & Goodfellow,

2016) and adding functionality to detect an attack (Grosse, Manoharan, Papernot, Backes, & Mc-

Daniel, 2017; X.  L i  & Li,  2017). It is worth noting as well that it is very difficult to defend against

attacks when the attackers have full control of the model (Chakraborty et al., 2018).

5
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2.2 Interpretability Methods

2.2.1 Saliency

Saliency methods for interpretability attempt to explain model behaviour by examining which

parts of the input most strongly affect the network’s output (Konate et al., 2021; Selvaraju et al.,

2017; Simonyan, Vedaldi, & Zisserman, 2013). For Convolutional Neural Networks (CNNs) per-

forming image classification in particular they often aim to connect specific class scores with the

pixel-patches that most strongly affect them (Konate et al., 2021). The work by Simonyan et al.

(2013) introduced the concept of a saliency map to visualize the connection between an image and

a class score. More formally, Simonyan et al. (2013) consider a net and define Sc as the function

that determines the score for a specific class c based on some input I .  In the case of a simple linear

net where I  is a vector, this would lead to the following equation: Sc =  wc I +  bc (Simonyan et

al., 2013). In this example, the relative importance of each attribute in I  is simply its corresponding

weight in wc. In the case of a convolutional neural network the underlying Sc is non-linear and thus

they use an approximation of the importance, w for a given image I0 , as:

w =  
δ I

c |I0 (1)

Intuitively, this would result in a high relevance for pixels where a change in pixel value produces a

relatively large change in the class score. As this process involves performing a backpropagation and

requires a modified architecture, other methods were developed such as Grad-CAM, that promised

to improve upon these issues (Konate et al., 2021; Selvaraju et al., 2017; Simonyan et al., 2013).

More modern methods based on this general approach include Grad-CAM and its derivatives,

collected in Gildenblat and contributors (2021), and Layer-wise Relevance Propagation (LRP)

(Binder, Bach, Montavon, Muller, & Samek, 2016).

It is important, in the context of this thesis, to note that there exists several works discussing

vulnerabilities of saliency methods for interpretability (Adebayo et al., 2018; Dombrowski et al.,

2019; Heo et al., 2019). The work by Adebayo et al. (2018) shows that saliency maps are relatively

invariant under model parameter randomization, and a model trained on randomly labelled data

6
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may provide similar explanations as a properly trained one. Dombrowski et al. (2019) shows that

adversarial data manipulation can be used to arbitrarily modify the saliency map of a sample.

Finally, Heo et al. (2019) show that adversarial model manipulation can be used to manipulate the

saliency maps.

2.2.2 Feature Visualization

Feature Visualization techniques seek to interpret the behaviour of DNNs, particularly those

used for vision tasks, by identifying and visualizing the features learned by the network (Olah et

al., 2017; Shahroudnejad, 2021). By showing what features a given neuron reacts to strongly, one

can build an intuition of how the individual units of a network function (Olah et al., 2017; Zeiler &

Fergus, 2014). Building upon individual neuron interpretations, Olah et al. (2020) combine neurons

and their connections to form meaningful units called Circuits that implement specific algorithms.

Activation Maximization: An intuitive way to discern what features a neuron has learned to

identify, first proposed in Erhan, Bengio, Courville, and Vincent (2009), would be to find some

input(s) that maximizes a neuron’s internal activations. Olah et al. (2017) use a gradient based

approach combined with regularization strategies to generate Synthetic Images that can target dif-

ferent parts of a network, including specific neurons or channels. These images would contain

human-recognizable features, corresponding to features seen in the training images, and could be

examined to learn about model behaviours. Generally gradient based approaches consist of solving

the optimization problem:

x� =  argmax(ai,l (θ, x) −  λ (x)) (2)

Where ai,l is the activation with respect to the model parameters θ and the input x, and λ  is the

chosen regularization function (Qin, Yu, Liu, & Chen, 2018). Without the regularization term λ, the

produced image x�, will be dominated by high frequency noise, resembling adversarial examples

more than recognizable features (Olah et al., 2017; Qin et al., 2018).

Another method, first implemented by Nguyen, Dosovitskiy, Yosinski, Brox, and Clune (2016),

involves generating a highly activating Synthetic Image by using a Generative Adversarial Network

7



y

¨

¨

(GAN). A  GAN is comprised of a generator net, G, and a discriminator net, D  (Goodfellow, Pouget-

Abadie, et al., 2014). Using some real dataset, the generator is trained to produce artificial samples

that are indistinguishable from real data, while the discriminator is trained to discriminate between

the real and artificial samples. G accepts as input some noise vectors and produces seemingly real

images. Eq. 2 then becomes:

y� =  argmax(ai,l (θ, G(y) −  λ(y )) (3)

where y is the input to the generator and G(y) is the Synthetic Image produced for visualization.

Deconvolutional Nets: Beyond Activation Maximization, it is also possible to create a visualiza-

tion by attempting to reconstruct the original image from the hidden layer feature maps. For CNNs,

Zeiler and Fergus (2014) propose the idea of using a DeconvNet to transform the feature maps of a

CNN back into image-space. DeconvNets function as mirrors to standard CNNs, such as AlexNet

(Krizhevsky, Sutskever, and Hinton (2012)), and have components that perform inverse operations

to those learned by CNNs. The image reconstruction performed by the DeconvNet allows for a

visualization of which features are learned by a particular neuron in the network (Zeiler & Fergus,

2014).

2.2.3 Mechanistic Interpretability

Mechanistic Interpretability seeks to understand and reconstruct the underlying algorithms learned

by the neural network (Rauker, Ho, Casper, & Hadfield-Menell, 2023). In particular, focus has been

placed on the identification of circuits composed of neurons inside a neural net that work together

to implement an algorithm (Conmy, Mavor-Parker, Lynch, Heimersheim, & Garriga-Alonso, 2023;

Olah et al., 2020; Wang, Variengien, Conmy, Shlegeris, & Steinhardt, 2022). This method builds

on the individual neuron interpretations, such as those seen in Olah et al. (2017), and uses them

to create a more comprehensive understanding of the neural net’s functionality. Current circuit

detection methods are generally quite laborious to implement, and have not yet seen widespread

generalization to large models (Rauker et al., 2023).

8



2.2.4 White-Box Models

In contrast with DNNs, widely considered black-box models whose internal functionality is not

easily understood, white-box models are those that have inherently clear decision making processes.

Examples include decision trees, linear regression, and rules based models. These models however,

don’t leverage modern computational power to the same extent as DNNs, and so tend to have lower

performance than a DNN trained to perform the same task. Rudin (2019) argues the possibility

of using white-box models instead in many cases, but the current trend is still towards these large

black-box models. This work is therefore focused on the interpretation of those large models, rather

than engineering potential replacements.

L I M E

One potential way to interpret a black-box model is to create an interpretable model that closely

follows its behaviour and interpret that model instead, as Ribeiro, Singh, and Guestrin (2016) do

using their proposed LIME tool. LIME, or Local Interpertrable Model-agnostic Explanations, is a

tool that generates an explanation for a prediction by creating an explainable model that is faithful

to the model being explained locally around that prediction (Ribeiro et al., 2016). In the case

of image classification networks, L IME can even identify important pixel patches that contribute

positively to class scores. While L IME is an interesting and potentially valuable tool, it has certain

important shortcomings. The explanations generated are ultimately local. Each one may only help

understand a specific prediction by a network so a new interpretable model must be created for each

explanation. Furthermore the explanation generated is for a model that, ultimately, is only imitating

the original model, meaning that there is necessarily a disconnect between the explanation and the

actual model behaviour. Rudin (2019) discusses this phenomenon in further detail, highlighting the

risks of asserting that models share underlying algorithms based purely on specific behaviours.

2.3 Pruning

It is well known that Neural Nets have become quite large and computationally costly in recent

years. One strategy that has empirically demonstrated efficacy in reducing the size and compute
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required by Neural Nets is the practice of model pruning, where parameters are removed from the

network (Blalock, Ortiz, Frankle, & Guttag, 2020; Cheng, Wang, Zhou, & Zhang, 2020). Indeed,

certain methods of pruning are so effective that they will even show an increase in performance, as

seen in Chen et al. (2021). Blalock et al. (2020) broadly divide pruning methods into two categories:

Unstructured Pruning, where individual parameters are removed, and Structured Pruning, where

structures of parameters, such as entire filters in a CNN, are removed. A  major benefit of Structured

Pruning is that it more naturally leads to an increase in model speeds, while the arbitrary sparsity

of removed weights in Unstructured Pruning would require special libraries for speed up (Blalock

et al., 2020; H. Li,  Kadav, Durdanovic, Samet, & Graf, 2017). As the methods for pruning are very

diverse, the rest of this section will concern the pruning methods used in this work.

2.3.1 Norm Based Pruning

A  simple, yet popular,method for determining which structures to prune is to start with a pre-

trained network and choose structures with a low norm, with the l1 and l2 norms as common choices

(Han, Pool, Tran, & Dally, 2015; Lebedev & Lempitsky, 2015; H. L i  et al., 2017; Molchanov,

Tyree, Karras, Aila, & Kautz, 2017; See, Luong, & Manning, 2016; See et al., 2016; Wen, Wu,

Wang, Chen, & Li,  2016). The benefits of this method include computational efficiency in the cal-

culations, as well as being relatively simple in implementation. The requirement of a fully-trained

network, as well as the additional fine-tuning steps typically required after the procedure means that

the compression achieved comes at the cost of increased training times.

This method has found great success in reducing model parameters while maintaining perfor-

mance. Indeed, Han et al. (2015) report a 9x compression rate on AlexNet with no loss in perfor-

mance. See et al. (2016) investigate several strategies for pruning and find that simply pruning all

weights with an l2 norm below a threshold can allow for an 80% reduction in parameters for a Neu-

ral Machine Translation network. In general, norm-based pruning allows for significant decreases

in model size with minimal loss, or even an increase, of performance.
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2.3.2 OTO Prune

Only Train Once, or OTO, is a Structured Pruning method introduced by Chen et al. (2021), and

refined in Chen, Liang, Tianyu, Zhu, and Zharkov (2023). As implied by the name, the framework

allows a developer to create a pruned version of a model without pre-training the base model or

needing a fine-tuning step, effectively allowing one to go from an architecture to a pruned model

only training once (Chen et al., 2023). OTO’s process involves identifying what they term Zero-

Invariant Groups (ZIGs), and the use of a special optimization algorithm called the Dual Half-Space

Stochastic Projected Gradient (DHSPG).

Zero-Invariant Groups: Chen et al. (2021) define a Zero-Invariant Group by first partitioning

a net’s parameters into disjointed groups. If all groups satisfy the condition that their parameters

all being zero result in them having no contribution to the next layer then they are consider ZIGs.

Effectively, this means that if the parameters of a group are all 0, then the removal of the group does

not affect the later layers of the network. This means that should a ZIG’s parameters be reduced

to zero it can be pruned without further retraining. This stands in contrast to the removal of, for

example, a convolutional filter, as the next layer will still have associated biases that would need to

be retrained.

Dual Half-Space Stochastic Projected Gradient: In order to identify redundant ZIGs and allow

for their removal, Chen et al. (2023) define the DHSPG algorithm. DHSPG seeks to solve the

following problem:

minimizex�Rf (x), s.t. Cardinality{g � G|[xg] =  0}  =  K (4)

Where G is the set of all ZIGs for a problem, x  is the parameters of the net, f ( x )  is the loss, and K  is

the target sparsity ( K  � (0, 1)). Effectively, given a target sparsity (proportion of groups to prune)

K ,  push sufficient groups parameters (xg) to 0. This is accomplished by penalizing the magnitude

of some groups during the training procedure and has empirically shown great success (Chen et al.,

2023).
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Chapter 3

Adversarial Attacks on Interpretations

3.1 Methods

3.1.1 Notations and Background.

We denote by D  =  { (x i , y i ) } i = 1  a dataset for supervised learning, where x i  � Rd  is the input and

yi � {1, ..., K } is its class label. Let fθ  denote a DNN, f ( l ) (x )  defines activation maps of x  on the l-

th layer, which can be decomposed into J  single activation maps f ( l , j ) (x).  In particular,

f ( l , j ) (x)  is a matrix if the l-th layer is a 2D-convolutional layer and a scalar if it is a fully connected

layer. We aim to understand the internal behavior of individual units through feature visualization,

generically defined by activation maximization (Mahendran & Vedaldi, 2015; Yosinski et al., 2015),

i.e., x� � argmaxx�D f
( l , j ) (x) .  Where (l , j )  is the pair of layer l and neuron j .  When the layer l is a

convolutional layer, in the rest of the paper, we aggregate the activation map f ( l , j ) (x)  using its spatial

squared ℓ2-norm �f (l , j ) (x)�2 , and subsequently refer to j  as the channel index. Additionally, we

mainly focus on the case where D  is a set of natural images, and we denote by top-k images the

set of real images that have the k highest values of activations for a given pair (l , j ). When X  � Rd ,

following Zimmermann et al. (2021), the result x� will be called synthetic feature visualization.
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3.1.2 Attack Framework

We consider feature visualization with top-k images and propose an adversarial model manip-

ulation that fine-tunes a pre-trained model with a loss that maintains its initial performance while

changing the result of feature visualization. More formally, given a set of training data D, a pre-

trained model with parameters θinitial , and an additional set of images (e.g., a set of top-k images)

Dattack , our attack framework consists in the following optimization

min(αLA (D, Dattack ; θ) +  (1 −  α)LM (D; θ, θinitial )), (5)

where θ are parameters of the updated model fθ , LM (.)  is the loss that aims to maintain the ini-

tial performance of the model fθinitial , and L A ( . )  is the attack loss. For the maintain objective,

when viewing final outputs fθ (.) as a conditional distribution, our maintain loss is the distillation

loss (Hinton, Vinyals, & Dean, 2015),

LM (D; θ, θinitial ) =  LCE (fθ ini t ia l  (.)||fθ(.)) (6)

where L C E  is the cross entropy loss between the original model outputs and the attacked model

outputs on training data D. The attack loss L A ( . )  varies depending on the attack, and is defined in

the following sections.

3.1.3 Push-Down and Push-Up Attack

Push-Down Attack: Given a set of top-k images from feature visualization, denoted by Dattack ,

that best activate the layer l and channel j  of the initial model fθ , our first attack aims to push to

zero the activations of examples in Dattack . We name this the push-down attack, and we propose the

following objective for all channels of a layer l simultaneously:

LA (D, Dattack ; θ) =  
X X

�f (l , j ) (x�)�2 (7)
( l , j )
attack
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Where J l  is the number of channels of the layer l. Note that it is possible to attack a single channel

or channels from multiple layers. Here we focus on attacking all the channels in a single layer.

Push-Up Decoy Attack: In the push-up decoy attack, given a set of examples xp � Ddecoy , we

aim to make these images appear in the top-k result for all the channels of a layer l. For this purpose, we

propose the following objective, where [.]+ is max(., 0):

LA (D, Ddecoy ; θ) =  
X

[�f ( l , j ) ( x i )�2  −  �f ( l , j ) (x�)�2 ]+ (8)
j,p,i

This loss aims to make activations of examples in Ddecoy larger than all the activations of training

examples.

3.1.4 Attack Characterization

We propose two metrics to assess the effectiveness of an adversarial attack on the top-k images

of feature visualization.

Kendall-τ : To assess the degree of change in the underlying behavior of a channel, we use

Kendall’s Rank Correlation Coefficient (Kendall-τ ) on a large subset D τ  of ImageNet. For each

channel, we calculate the Kendall-τ coefficient using (i) the ranking Rinit of the initial image acti-

vations, and (ii) the ranking Rfinal of final (post-attack) image activations using images in D τ  . A

Kendall-τ coefficient approaching 1 indicates that the ordering of image activations for each channel

before and after the attack remains the same, implying minimal change in channel behavior.

CLIP-δ : To quantify the semantic change in the feature visualization, we employ the external and

generic CLIP  image encoder (Radford et al., 2021) to compute embeddings of top-k images. Given a

channel j ,  we denote by C init,init the average of cosine similarities between CLIP embeddings of (i)

initial top-k images and (ii) themselves. Similarly, for the channel j ,  we denote by C init,final the

average of cosine similarities between CLIP embeddings of (i) initial top-k images and (ii) final
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ones. Our proposed CLIP-δ  score for a channel j  is defined as:

CLIP-δ j  =  (C init,init −  C init,final )/(
1 X

C i n i t , i n i t ) (9)
l p = j

Which quantifies the semantic change in top images through their CLIP embeddings. A  higher score

indicates more significant semantic change, as can be visually verified in Figs. 3.1 and 3.2.

Channel 9 of conv_5: Kendall- : 0.072, CLIP- : 0.447 Channel 170 of conv_5: Kendall- : 0.639, CLIP- : 0.181

Yorkshire
terrier

Initial top-K
Norfolk Norwich

file terrier terrier chiffonier

Initial top-K
peacock peacock peacock peacock bell pepper

rain
barrel barrel

Final top-K
space rain green
heater          barrel      saltshaker       mamba

Final top-K
green green
snake       police van tree frog       mamba

Figure 3.1: Zoom-In on chosen channels for the Conv5 Push-Down Attack. All  initial top-5 images
have been replaced, and the CLIP-δ  scores correlate with visual intuition.

The Whack-A-Mole Problem: An important, though not immediately obvious, concern for our

framework is whether the behavior and interpretation of one neuron can be moved to another neuron

through the optimization process. Indeed, the push-down attack loss may be strongly satisfied by

channel permutation. We call this the whack-a-mole problem. To ensure that this does not occur,

we introduce two metrics: Kendall-τ -W and CLIP-W . Typically, values � 1 in these metrics imply

an absence of the whack-a-mole problem. We present the mean across attacked channels for the

following in metrics in Table 3.1.

Kendall-τ -Wj : Given a channel index j ,  and using the subset of ImageNet D τ  , we obtain the

maximum Kendall-τ score between rankings Rinit, j  and Rfinal,i where i  =  j .  To obtain Kendall-

τ -Wj , we divide this maximum value by the initial maximum Kendall-τ score i.e. the score over

Rinit, j  and Rinit,i  where i  =  j .  Effectively, we find the most similar other post-attack channel, then

normalize against the most similar pre-attack channel.
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CLIP-Wj : Using the top-k images in the initial model and channel j  we obtain CLIP-Wj =

maxi = j  C initial,final / maxi=j C initial,initial comparing to all top-k images in other channels of the final

model, normalized against that same similarity metric in the initial CLIP scores.

3.2 Experiments and Results

For the attacks, we use the ImageNet (Deng et al., 2009) training set as D, and primarily the Py-

Torch (Paszke et al., 2019) pretrained AlexNet (Krizhevsky et al., 2012) for analysis. Additionally,

we have conducted ablation studies on EfficientNet, ResNet-50 , and ViT-B/32 with similar findings

(Dosovitskiy et al., 2020; He, Zhang, Ren, & Sun, 2016; Tan & Le, 2019). Metrics for these attacks

are reported in Table 3.1, and additional visualizations for non-AlexNet networks can be found in

Appx. E  and F. Details regarding hyperparameters for all the attacks can be found in Appx. A. For

the push-down and up attack, we consider Dattack � D  as the top-10 images that maximally activate the

channel j  of layer l. For the push-up attack, we also consider Ddecoy as 100 randomly sampled

images of a selected decoy class.

3.2.1 Warm-Up Experiments

To set a baseline reference for our attack framework, we begin by fine-tuning AlexNet without

attacking it (i.e. using the loss defined in Eq. (2) with α =  0). This leads to virtually no change

in the feature visualization, as can be seen in Appx. B.1) and confirmed via our metrics in the

first row of Table 3.1. Next, we apply the push-down attack to one channel. Figure C  shows the

visualization of top images before and after the attack. We can see that after optimization, the top-

k activating images of the neuron have been completely replaced by other images with different

semantic concepts, suggesting a successful attack with a negligible 0.04% accuracy loss. Note that

naively setting a channel’s weights to 0 would perfectly satisfy this attack objective. Experimentally,

doing this on channel 0 of Conv5 with no retraining leads to only 0.2% accuracy loss. We thus

consider more challenging settings.
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Layer/Attack CLIP-δ

Conv5 Finetuning Baseline 0.001

Conv 5 Push-Up 0.199

Conv 5 Push-Down 0.294

Conv 4 Push-Down 0.225

Conv 3 Push-Down 0.174

Conv 2 Push-Down 0.105

Conv 1 Push-Down 0.058

EfficientNet L7  Push-Down 0.262

K-τ CLIP-W K-τ -W

0.969 0.999 0.058

0.645 0.928 0.005

0.351 0.974 0.041

0.391 0.991 0.114

0.479 0.972 0.129

0.398 0.993 0.156

0.537 0.995 0.291

0.503 0.971 -0.145

Acc.(%)

56.5%

56.2%

56.1%

56.1%

56.0%

56.2%

56.0%

77.5%

∆Acc.(%)

-0.04%

-0.31%

-0.47%

-0.45%

-0.54%

-0.35%

-0.51%

-0.17%

Table 3.1: Average (over channels) metrics for an All-Channel Push-Down and Push-Up Attack for
AlexNet (rows 2-7) and EfficientNet (row 8). Row 1 shows a simple finetuning baseline, corre-
sponding to α =  0 in Eq. 2. We see that the relative whack-a-mole metrics are low, suggesting this
problem is not present for our attacks. Lower layers are more challenging to attack leading to lower
CLIP-δ score and higher Kendall-τ as confirmed by visual intuition.

3.2.2 All-Channel Push-Down Attack

Unlike the single-channel attack, the all-channel attack does not have a trivial solution. Naively

setting all channel weights to zero would result in catastrophic performance loss.

We apply our attack framework to Conv5 of the AlexNet Model. Figure 3.1 shows a selection of

channels and the modifications achieved under the all-channel push-down attack and the aggregate

metrics (averages for all channels in a layer) are shown in Table 3.1.

For the visualized channels in 3.1, and those in Fig. 3.2 we observe a near-complete replacement

of the top-5 images.
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Channel 102 of Conv 5: Kendall- : 0.291, CLIP- : 0.432 Channel 108 of Conv 5: Kendall- : 0.610, CLIP- : 0.161

Bernese
mountain

dog

Initial top-K
maypole

Cardigan Brittany spaniel       Appenzeller Pembroke

Initial top-K
pier umbrella       Shetland sheepdog boxer

Final top-K
combination lock flatworm American egret American egret drake

Final top-K
rubber eraser      theater curtain German shepherd       plate rack screw

Channel 132 of Conv 5: Kendall- : 0.516, CLIP- : 0.416 Channel 183 of Conv 5: Kendall- : 0.522, CLIP- : 0.263
Initial top-K

window screen     window screen honeycomb window screen     window screen reel
Initial top-K

car wheel wall clock analog clock        manhole cover

Final top-K
chain mail bolo tie jackfruit jackfruit strainer

Final top-K
limpkin table lamp limpkin thimble indigo bunting

Channel 216 of Conv 5: Kendall- : 0.596, CLIP- : 0.253 Channel 227 of Conv 5: Kendall- : 0.546, CLIP- : 0.072
Initial top-K

strainer honeycomb     long-horned beetle     spider web grille
Initial top-K

lighter remote control       groenendael odometer file

Final top-K
ski mask echidna echidna ski mask

Final top-K
ski mask

groenendael Labrador retriever Newfoundland groenendael
Staffordshire

bullterrier

Channel 232 of Conv 5: Kendall- : 0.568, CLIP- : 0.245 Channel 254 of Conv 5: Kendall- : 0.211, CLIP- : 0.128
Initial top-K

dome mosque mosque dome
Initial top-K

dome Siberian husky Pembroke Pembroke collie kit fox

Final top-K
dome mosque beer bottle chime chocolate sauce       Eskimo dog

Final top-K
kit fox malamute lynx lynx

Figure 3.2: Push-down all-channel attack of Conv5 of AlexNet. All  initial top-5 images were com-
pletely removed from the new set of top-5 images, demonstrating the success of the attack. Channel
indexes were chosen randomly.

Further, the labels of the top images significantly change, with minimal residual overlap. This

suggests that the semantic concepts that would be determined by an interpreter would likely change.
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This is opposed to the model memorizing the top images and replacing them with semantically

similar ones. We further confirm this in Appx. B.3 by showing validation set top-k images which

demonstrate the same semantic change seen on the training images (which were used for the actual

attack). Overall, this attack produces a generalized change in the feature visualization of neurons.

By analyzing the metrics reported in Fig. 3.2 and by comparing the channels before and after

modification, we observe several noteworthy behaviors. The second and third channels exhibit

relatively high Kendall-τ scores, from which we conclude that the ordering of image activations

has not undergone severe changes. This likely means that a subset of images, which includes the

initial top-k has moved in rank. Studying the CLIP-δ  in both cases allows us to conclude that there

is some semantic overlap in the initial and final top-k, which can be confirmed by visual inspection

of Fig. 3.1. This is in contrast to the first channel in 3.2 shown on the right, where the Kendall-τ

score is close to zero, indicating a full re-ordering of the activations. Correspondingly, the CLIP-δ

from initial to final is also much higher, which matches with a visual inspection.

Overall, we notice a substantial correspondence between our visual intuition and the CLIP-

δ and Kendall-τ scores. Channels with low scores Kendall-τ and high CLIP-δ  tend to change

substantially. As illustrated in Fig. 3.2 and supplementary Fig. H, one observed difference in these

two metrics is that channels maintaining similar classes in the top images will tend to have a lower

CLIP-δ .

We observe that modifications of the earliest layers are significantly harder to achieve than for

later layers as confirmed by the metrics and visual examination. The observed CLIP-δ  scores, as

well as visual observation, shown in Appx. C, both indicate lower layers’ channels are more resilient

to this sort of attack.

3.2.3 All Channel Push-Up Attack

Here we study a more targeted attack objective, namely one that actively pushes a set of selected

images into the top activating images for every channel. This is achieved with the loss defined in

section 3.1.3. The loss is non-zero when there exist images outside the set of selected images that

activate higher than the selected images we intend to push up.
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This targeted attack is likely more challenging than the push-down attack, which does not spec-

ify what images the top-k should be replaced with. Indeed, the push-up attack, if successful, can

assign the same interpretation to every channel in a layer, making any interpretation attempt based

on top-k images minimally informative.

Fig. 1.1 shows the result of the push-up attack using a collection of images with the ImageNet

label “Goldfish” as the decoy set. Further, in Fig. 3.3, we show additional channels, where the top-5

contain a few or consist entirely of Goldfish images. The metrics in Table 3.1 also demonstrate

substantial change and a low likelihood of whack-a-mole behavior. Examining the figure closely,

we observe that not only Goldfish, but also images sharing traits with Goldfish images are also

boosted, suggesting a degree of generality in the newly imposed selectivity. Additional channels are

visualized in Appx. D.

Channel 3 of conv_5: Kendall- : 0.831, CLIP- : 0.229 Channel 43 of conv_5: Kendall- : 0.740, CLIP- : 0.256       Channel 170 of conv_5: Kendall- : 0.619, CLIP- : 0.070

German
short-haired

malamute           pointer

Initial top-K

daisy
papillon revolver         greenhouse English setter

Initial top-K

corn Maltese dog         papillon
Shetland
sheepdog       Maltese dog

Initial top-K
peacock peacock peacock peacock         bell pepper         tree frog

Final top-K Final top-K Final top-K
goldfish goldfish goldfish goldfish goldfish goldfish goldfish goldfish goldfish wig goldfish goldfish goldfish peacock goldfish goldfish goldfish goldfish

Figure 3.3: Examples of channels in all-channel push-up attack. The decoy images were success-
fully pushed into the top images. The Kendall-τ remains relatively high ( >  0.5) suggesting much of
the channel behavior is preserved while the top activating images completely obfuscate the be-
havior.

3.2.4 Whack-a-mole Results

We further analyze the existence of the whack-a-mole problem by observing Fig. 3.4 which

shows for a given channel of AlexNet Conv5, the top-k images in the modified model which have

the closest Kendall-τ -W and CLIP-W scores (not including the channel itself).

We observe that the first channel (channel 2 on Fig. 3.4) has little to no visually discernible

similarity to nearby channels in the modified model as well confirmed by the Kendall-τ -W. On the

other hand, we do observe similar images for the initial channel 193 and its nearest final one (163),

which was picked as the most illustrative examples of the Whack-a-Mole problem. However, for this

”hard” example, more insight is given by investigating the CLIP-Wj where the denominator notably
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measures the clip similarity to other channels in the original model. A  score of � 1 suggests that the

original model already had a high similarity to another channel. Later in this chapter we perform

a more in depth analysis on channel 193’s behaviour. To gain further insight into CLIP-Wj , in

Fig. 3.5, we further visualize the numerator and denominator of CLIP-Wj for all the channels (red

line) and sort them by the initial similarity to other channels (denominator). We observe that the red

line is usually below the blue line, and if not, it is not by a large amount. This suggests that channels

with high whack-a-mole metrics are actually ones that already had similarities to other channels in

the original model. Overall we conclude the presence of the whack-a-mole problem is minimal in

our current attack.

Whake-a-mole for channel 2 of conv_5
Intial top-K for channel 2

Whake-a-mole for channel 193 of conv_5
Intial top-K for channel 193

cocktail
mosque shaker stupa

Bernese
mountain

dog Appenzeller

Bernese
mountain

dog

Final top-k, nearest channel: 47, Kendall- -Wj:-0.082 Final top-k, nearest channel: 163, Kendall- -Wj:0.132

projectile king penguin pineapple

Chihuahua Appenzeller

Bernese
mountain

dog

Final top-k, nearest channel: 187, CLIP-Wj:0.971 Final top-k, nearest channel: 163, CLIP-Wj:0.991

car wheel bottlecap manhole cover

Chihuahua Appenzeller

Bernese
mountain

dog

Figure 3.4: We show the initial top images for two channels and beneath are the corresponding final
top images of closest channels w.r.t Kendall-τ -Wj and CLIP-Wj .

Zoom onto Channel 193 for Whack-a-mole: We begin by showing the full overview of the

behavior of channel 193, selected as one ”hard” case where similar initial images are found in final

(post-attack) top-k images of another channel. Although similar initial images for channel 193 were

found in channel 163 after the attack, it appears from the second row of Figure 3.6 that channel 193

was initially highly correlated with the channel 90 according to CLIP-δ  score. Moreover, the fact
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Conv5 Push-Down: Clip Similarity of Nearest Channel
1.0

Max Self-Similarity
Max Cross-Similarity
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0.0
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Sorted Channels

Figure 3.5: We compare initial CLIP  similarity to other channels (blue) versus similarity after per-
forming a push downattack (red). Red and blue largely track each other for all channels. This
indicates that the channel behaviour is not being permuted within a layer.

that the CLIP-δ-Wj is 0.991 <  1 shows that the nearest post-attack channel (channel 163) is not

more correlated than the nearest pre-attack channel (channel 90) according to CLIP scores. This,

therefore, limits the existence of the whack-a-mole problem on this channel.
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Whack-a-mole for channel 193 of Conv 5

Bernese
mountain

dog

Rottweiler

Appenzeller

Appenzeller

Initial top-K for channel 193
Bernese

mountain
dog

Final top-K for channel 193

bluetick

Appenzeller

Border
collie

EntleBucher

Tibetan
mastiff

Nearest pre-Attack channel by KT: 163, Kendall- -Wj:0.303

honeycomb apiary honeycomb apiary honeycomb

Nearest pre-Attack channel by clip: 90, CLIP-1.00

Saint Bernard Saint Bernard Border collie Appenzeller Saint Bernard

Nearest Post-Attack channel by KT: 163, final top-K, Kendall- -Wj:0.185
Bernese

mountain
Chihuahua dog Appenzeller Rottweiler Appenzeller

Nearest Post-Attack channel by clip: 163, final top-K, CLIP-0.991
Bernese

mountain
Chihuahua dog Appenzeller Rottweiler Appenzeller

Figure 3.6: Illustrations for the existence of whack-a-mole on the channel 193, found as one of the
high whack-a-mole cases. The first two rows show the initial and final top-k images for the targeted
channel. The third and fourth show the initial nearest channels w.r.t. Kendall-τ -Wj and CLIP-δ-
Wj , respectively. The fifth and sixth show the nearest post-attack channel by Kendall-τ -Wj and
CLIP-δ-Wj respectively.



3.2.5 Synthetic Feature Visualization Study on AlexNet

As synthetic images are an important method of studying network behaviours (Olah et al., 2017),

we study the impact of the push-down and push-up attacks on the synthetic activation-maximizing

images of the channels under attack. Synthetic activation-maximizing images are the result of an

optimization problem over input pixels solved by gradient ascent on the channel activation un-

der a norm constraint in pixel space. To avoid adversarial noise samples, (Goodfellow, Shlens, &

Szegedy, 2014), it is necessary to jitter the input image or parameterize it as a smooth function (Olah

et al., 2017).

In Fig. 3.7, we visualize the synthetic optimal images for several channels before and after

the attack. By visual inspection, one can see that the top-k images change while the synthetic

optimal image is largely unaffected. The most common observed change for AlexNet Conv5 is a

low-frequency modulation of the pattern. We hypothesize that this is because the top-k attack most

significantly modifies the weights of the attacked layer, which is a later layer preceded by several

downsampling operations.

The lack of change in the synthetic optimal image suggests that the synthetic feature visualiza-

tion and the top-k analysis are, counter-intuitively, highly de-correlatable. Further, this does not

permit the conclusion that the synthetic optimal image is more robust to attack since we have not

explicitly run an attack against it.
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top-k vs synthetic for channel 1 of Conv 5
Initial feature visualization

top-k vs synthetic for channel 158 of Conv 5
Initial feature visualization

shoji window screen window screen wallet Synthetic barrel tile roof chainlink fence honeycomb Synthetic

Final feature visualization for push-down Final feature visualization for push-down
crossword puzzle     crossword puzzle       chainlink fence tobacco shop Synthetic window screen thunder snake Persian cat Persian cat Synthetic

Final feature visualization for push-up Final feature visualization for push-up
wallet shoji goldfish window screen Synthetic goldfish goldfish goldfish goldfish Synthetic

top-k vs synthetic for channel 179 of Conv 5
Initial feature visualization

top-k vs synthetic for channel 188 of Conv 5
Initial feature visualization

Indian cobra horizontal bar table lamp horizontal bar Synthetic banjo acoustic guitar red wine pirate Synthetic

Final feature visualization for push-down Final feature visualization for push-down
quail analog clock ruffed grouse balance beam Synthetic harvestman pickelhaube water tower frying pan Synthetic

Final feature visualization for push-up Final feature visualization for push-up
goldfish goldfish goldfish goldfish Synthetic goldfish goldfish banjo red wine Synthetic

top-k vs synthetic for channel 215 of Conv 5
Initial feature visualization

top-k vs synthetic for channel 251 of Conv 5
Initial feature visualization

wool sea urchin stole poncho Synthetic coral fungus coral fungus anemone fish pretzel Synthetic

Final feature visualization for push-down Final feature visualization for push-down
meerkat great grey owl great grey owl starfish Synthetic Dandie Dinmont       Dandie Dinmont toy poodle miniature poodle Synthetic

Final feature visualization for push-up Final feature visualization for push-up
goldfish goldfish goldfish wool Synthetic goldfish coral fungus goldfish coral fungus Synthetic

Figure 3.7: Synthetic Feature Visualization attack after push-down and push-up attacks on Conv5 of
AlexNet. Channels indexes were taken randomly. We observe a decorrelation between natural top-
activating images and synthetic optimal images.



Chapter 4

Pruning

4.1 The Pruning Strategies

The previous section of this work focused on the development and characterization of novel in-

terpretability attacks on DNNS. These attacks, and several works discussed in 2.2.1, underscore the

need to develop ways to prevent malicious actors from developing nets with misleading interpreta-

tions. To this end, this chapter is focused on creating networks that are resilient against our attacks.

A  successful defence would produce a performative network whose interpretation is minimally af-

fected by the attacks. Our first attempt at this involves the use of model pruning in an attempt to

create resilient networks. As discussed in section 2.3, pruning is a popular method for reducing the

size and cost of DNNs. In the context of the search for a potential defense against the attacks we’ve

defined, it is important to consider that pruning shows that nets such as AlexNet are larger than they

need to be to accomplish their tasks (Han et al., 2015; Lebedev & Lempitsky, 2015). This leads

us to ask a question: Would the removal of extraneous model weights cause a reduction in model

susceptibility to our attack? We propose two distinct justifications as to why this may be the case.

Firstly, if the net is larger than required to complete the classification task then it is reasonable that

it may be able to learn to both complete the task while also satisfying the additional restraint from

the attack. Secondly, particularly for the Push-Down attack, the activation norm may be reduced by

pushing the unimportant weights to 0, which is analogous to pruning them. By reducing the size of

the network we expect to reduce the complexity of the functions it can learn, and expect this would
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lead to increased resilience against the attacks. Ultimately, we will be assessing the various prun-

ing methods based on the trade-off between final model performance and resiliency to our attacks,

measured in top-1 accuracy and CLIP-δ  respectively.

As such we propose a set of experiments in which we prune AlexNet, chosen for its popularity

and relative simplicity, using several different methods and then attack the resulting networks using

our Push-Up and Push-Down attacks, defined in section 3.1, targeting the last convolutional layer,

Conv5. Note that additional details on the attack results, including whack-a-mole metrics, are

present in Appx. H.

4.1.1 Norm Pruning

Chosen due to its popularity, effectiveness, and relative simplicity, the first pruning strategy

explored is norm based pruning (Lebedev & Lempitsky, 2015; H. L i  et al., 2017; Molchanov et al.,

2017; Wen et al., 2016).

We use the class-blind algorithm defined in See et al. (2016), in which the bottom p% weights

are all pruned purely by their l1-norm, leading to unstructured pruning of the model. This corre-

sponds to the following transformation on the initial weights in the unpruned model, θ0.

wp =  w0 if |w0| >  t, else wp =  0 for w0 in θ0 (10)

Where t is a threshold defined to enforce the pruning rate, p, desired, w0 refers to a given

weight in the unpruned model θ0, and wp is the corresponding weight in the pruned but not fine-

tuned model. Pruning in this manner results in a performance loss if there is no fine-tuning step.

Additionally, there is no guarantee that the model is in a stable local minimum after pruning, which

could lead to inflated attack success. Before performing our attack we therefore fine-tune until

performance stabilizes. We fine-tune by retraining the net on ImageNet (Deng et al. (2009)) for 20

epochs using the Adam optimizer (Kingma and Ba (2017)) with an initial learning rate of 10−5 ,

reduced to 10−6 after 10 epochs. This process was repeated for several pruning rates, up to an

87.5% overall reduction in the number of weights in AlexNet.
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4.1.2 OTO

To investigate the effect of structured pruning on the interpretability attacks we use the Only

Train Once (OTO) pruning framework, which will prune a combination of complete filters and

weights in the linear layers (Chen et al., 2023). Rather than specify a specific portion of weights

to prune, OTO functions by splitting weights up into groups (see section 2.3) and pruning a portion

of those groups. The OTO library allows for developers to tune the prioritization of filter removal

(faster computation) against linear layer weight removal (better performance). We take advantage

of this to explore how the prioritization of complete filter removal affects the resilience of the model

against our attacks. We prune up to 87.5% group sparsity in both a high filter pruning and a high

weight pruning setup, and run the push-up and push-down attacks on all resulting networks.

4.1.3 Vulnerability Pruning

In addition to using more established pruning methods, we explore if it may be possible to use

knowledge of model vulnerabilities to guide pruning. To do this, we use the results from the push-

down attack and prune the channels with the highest CLIP-δ  scores, experimenting with pruning

up to 224 channels. To keep the effect on the network as small as possible, we prune exclusively

from the layer we are attacking, Conv5. We then fine-tune the vulnerability pruned AlexNet using

the same procedure described in subsection 4.1.1. Our expectation is that by pruning the most

vulnerable channels and no other weights we may end up with a network that is less susceptible to

the attacks at relatively low performance cost.

4.2 Pruning Results

4.2.1 Norm Pruning

The norm-based pruning method used resulted in networks with similar performance to a base-

line AlexNet at 56.52% top-1 accuracy on ImageNet. Indeed, as seen in Table 4.1, up until 62.5%

weight pruning there are even minor benefits with respect to model performance. This follows

expected trends as seen in the works discussed in Sec 2.3.
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Weight Pruning Rate 12.5%

Fine Tuned Accuracy 56.72%

25.0% 37.5%

56.67% 56.67%

50.0% 62.5% 75.0% 87.5%

56.70% 56.45% 56.13% 54.59%

Table 4.1: Here we report the accuracy of fine tuned norm-pruned networks. We see that even at the
highest levels of pruning, the performance does not degrade more than 2%, indicating that this
method is highly effective at removing weights with minimal accuracy loss.

While the norm-pruned networks perform well, there is less indication that they provide signif-

icant protection against the push-up and push-down attacks, as can be seen in Fig. 4.1. While the

CLIP-δ score of the push-down attack does decrease slightly as pruning increases, the correlation is

extremely minor and does not indicate attack failure at any point. Furthermore, while the push-up

scores show a stronger variance, it does not indicate a clear connection between increased prun-

ing and model resilience. Indeed, an inspection of Fig 4.1 indicates that pruning affects the scores

presented erratically, making it difficult to conclusively determine how the two are related.

57.0%

56.5%

56.0%

55.5%

55.0%

54.5%

Accuracy

Push Down

Push Up

Baseline AlexNet

Norm Pruning

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Clip-d

Baseline Push Down

Baseline Push Up

Push Down

Push Up
54.0%

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%
0.00

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%
Weight Pruning Rate Weight Pruning Rate

Figure 4.1: Accuracy and Clip-δ results for norm pruned networks. The norm pruned networks have
relatively stable performance, maintaining performance close to an unpruned AlexNet even at high
pruning rates. For the push-down attack we note no significant shifts in the attack vulnerability,
while the push-up results are less consistent, indicating that the pruning strategy may provide some
protection, but only under specific, unclear, circumstances.

4.2.2 OTO

OTO pruning is a more sophisticated pruning network whereby the weights of a net are parti-

tioned into groups, and those groups are pushed to 0 and then pruned (Chen et al., 2021, 2023). We
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include results for use of the method with both a channel pruning and weight pruning focus. We

report the respective network performance and pruning rates in Tables 4.3 and 4.2. With respect to

accuracy, the weight pruning OTO nets have the highest accuracy at lower pruning rates, as seen in

table 4.2. Conversely, at higher pruning rates we see a catastrophic loss of performance across both

OTO variants.

Target Group Sparsity 12.5%

Filter Pruning Rate 0.2%

Weight Pruning Rate 16.7%

Fine Tuned Accuracy 57.1%

25.0% 37.5% 50.0%

0.4% 0.4% 0.5%

35.0% 51.4% 67.9%

56.8% 56.2% 55.4%

62.5% 75.0% 87.5%

0.6% 3.3% 18.2%

81.0% 90.7% 96.6%

53.2% 45.4% 14.7%

Table 4.2: Here we report the characteristics of OTO weight pruned nets across several target spar-
sities. We note very low filter pruning until the highest pruning rates, which is correlated with more
severe decrease in the accuracy after fine-tuning. Compared to norm based pruning, as seen in Ta-ble
4.1, OTO pruning results in better performances at lower weight pruning rates but does not scale as
well to higher rates.

Examining Fig. 4.2 for the OTO filter pruned attack results, we note that there is a downward

trend in the CLIP-δ scores, mirroring a reduction in the model accuracy. This is the strongest

protection achieved by pruning, but as it only appears after the model’s performance has so severely

deteriorated, it cannot be said to have been a successful defense. In the case of the OTO weight

pruning strategy shown in Fig. 4.3 there is no evidence of any increase in resilience, even at the

highest levels of pruning and accuracy loss.

Target Group Sparsity 12.5%

Filter Pruning Rate 8.7%

Weight Pruning Rate 16.6%

Fine Tuned Accuracy 56.3%

25.0% 37.5% 50.0%

23.3% 26.1% 27.8%

31.8% 44.5% 54.3%

53.2% 52.1% 50.5%

62.5% 75.0% 87.5%

32.3% 37.6% 47.7%

65.7% 74.1% 62.9%

46.2% 35.7% 7.9%

Table 4.3: This table reports the baseline performance and characteristics of OTO pruned AlexNet
with a focus on complete channel removal. Removing complete channels results in a more signifi-
cant accuracy drop than other pruning methods. This implies that while many of the weights inside a
filters can be removed safely, the filters themselves each carry important information.
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60%

50%

40%

30%

20%

10%

Accuracy

Push Down

Push Up

Baseline AlexNet

OTO Filter Pruning

0.30

0.25

0.20

0.15

0.10

0.05

Clip-d

Baseline Push Down

Baseline Push Up

Push Down

Push Up
0%

12.5%     25.0%     37.5%     50.0%     62.5%     75.0%     87.5%
0.00

12.5%     25.0%     37.5%     50.0%     62.5%     75.0%     87.5%
Group Pruning Rate Group Pruning Rate

Figure 4.2: This figure reports the performance and attack success, measured with accuracy and
CLIP-δ on model trained using OTO pruning with a focus on channel removal. This results in
some protection against the attacks at the highest pruning rate, as the CLIP-δ scores begin to drop
sharply. At these pruning levels the model’s accuracy has dropped catastrophically, indicating that
this pruning method did not generate nets that are resilient and high-performance.

Accuracy
60%

50%

40%

30%

20% Push Down
Push Up

Baseline AlexNet

OTO Weight Pruning

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Clip-d

Baseline Push Down

Baseline Push Up

Push Down

Push Up
10%

12.5%     25.0%     37.5%     50.0%     62.5%     75.0%     87.5%
0.00

12.5%     25.0%     37.5%     50.0%     62.5%     75.0%     87.5%
Group Pruning Rate Group Pruning Rate

Figure 4.3: OTO-trained nets with a focus on weight removal maintain accuracy better at higher
pruning rates than filter-pruned OTO nets. These nets do not indicate any resilience to either the
push-up or push-down attacks, maintaining steady CLIP-δ values across all pruning rates.

4.2.3 Vulnerability Pruning

In an attempt to prune model vulnerabilities directly, we remove channels from AlexNet’s

Conv5 based on the CLIP-δ  score reported for each channel calculated for the push-down attack on

Conv5 discussed in section 3.1.3. In table 4.4 we report the performance and pruning rates of the

fine-tuned models. Pruning only channels from the target layer of the net results in a significantly
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lower overall weight pruning rate, and a disproportionate effect on the model performance. Indeed,

even the 50% weight pruned net reported in table 4.1 reports higher performance the the 32 channel

pruned model here. This indicates that while many of the individual weights in a channel are not

necessary for performance, each still contains important weights. We report results for attacks on

each pruned net in Fig. 4.1, but note that for nets with 96 or more pruned channels that the cost in

accuracy may be too significant for developers to pursue this defense.

Filters Pruned

Filter Pruning Rate

Weight Pruning Rate

Fine Tuned Accuracy

32 Pruned

2.78%

0.12%

56.29%

64 Pruned

5.56%

0.24%

55.89%

96 Pruned

8.33%

0.36%

55.45%

128 Pruned

11.11%

0.48%

54.60%

160 Pruned

13.89%

0.60%

53.16%

192 Pruned

16.67%

0.72%

50.85%

224 Pruned

19.44%

0.84%

44.01%

Table 4.4: This Table reports results on nets where channels were pruned from Conv5 based on
which had the highest CLIP-δ scores. While the overall weight pruning rate is significantly lower
than in the other pruning methods, the performance drop seen is still significant. Compared to OTO
and Norm pruning, this method has the highest drop in accuracy relative to the amount of pruning.

Fig. 4.4 presents the performance and results for the vulnerability pruned network. The post-

attack accuracies closely follow that of the fine-tuned net. The CLIP-δ scores indicate that some

minor protection may be afforded against the push-down attack, but that this is not particularly

significant. Additionally, we note that the push-up attack actually seems to be protected against at

low pruning rates, while becoming less resilient as the pruning increases. This pruning does not

seem to meaningfully increase model resilience, particularly in light of the accuracy cost.

4.2.4 Pruning Results Summary

The results we have presented have failed to support the hypothesis that pruning a model would

result in increased resilience. While it may be the case that reducing the size of the net constrains

the possible algorithms the net can learn, it seems that this results in the network failing to learn

its original task before it fails to satisfy the attack. Pruning models is still a valuable technique

for reducing model size and resource cost, but none of the techniques explored in this section have

succeeded in our goal of producing a viable model defense.
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Figure 4.4: For the vulnerability pruned nets we see that there is little consistent change in actual
vulnerability to attack, even as the nets’ accuracies drop. We note again the the push-up attack is
particularly volatile across pruning rates.



Chapter 5

Conclusions and Future Work

5.1 Contributions

Interpretability Attacks: In this work we have demonstrated the possibility of manipulating fea-

ture visualizations across several different Neural Net architectures, including convolutional net,

residual networks, and transformers. Both proposed attacks, the untargeted push-down and targeted

push-up, show the capacity to alter model interpretation without significant changes in model per-

formance. We define and quantify metrics to assess attack success, as well as ensure that non-trivial

solutions were reached i.e. that the whack a mole problem does not occur.

Model Defense: We have explored the use of pruning as a potential defense against the inter-

pretability manipulation. While it is still hypothetically possible that some pruning method may be

able to generate a resilient and performative model, the variety of methods we explored were unable

to support this hypothesis. Indeed, further work on defending against the attacks is a natural next

step for this project.

5.2 Future Work

Expanding Attacks: The attacks presented in this work are intended as a proof of concept that

show it is possible to manipulate the feature visualization of an image classifier. More sophisticated
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attacks targeting specific circuits and obfuscating their functioning could be developed. Fairwash-

ing, the practice of making a model’s decision seem fairer than they truly are, is an additional poten-

tial application for this family of techniques. In addition to expanding the types of attacks available

expanding them to work with Large Language Models, or other nets working on non-vision tasks

would be an interesting avenue of research. It is our hope that by identifying strategies that can be

used to manipulate interpretability, we will be better equipped to defend against them.

Defense Strategies: Of pressing concern is the development of strategies to protect against the use

and deployment of manipulated nets. Indeed, as DNN usage becomes more and more prevalent, the

risk of bad-faith actors releasing unfair or biased models that do not meet appropriate standards will

only increase. Protection may come in the form of model creation techniques that create families

of models that are hard to manipulate, as we had attempted to do with our pruning experiments.

Should such models prove broadly unfeasible, another important avenue of research would be in the

detection of manipulated models. The detection of manipulation could allow for regulatory agencies

to prevent such models from being used, and may even be a more fruitful path forward.
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A Hyperparameters and Training Details

This section presents the details of the hyperparamters and training settings used to run our

attacks.

A.1 Push-Up and Push-Down Attacks

We train for 5 epochs over the ImageNet-1k training set with a batch size of 256. We use the

Adam optimizer with learning rate 1e-5.

Regarding α, we employ a dynamic updating rule inspired by Algorithm 1: Dynamical balanc-

ing of Distillation and CKA map loss in appendix A  of Davari et al. (2022) in order to have better

control over loss in accuracy. We initialize α as 0.1. If the accuracy loss is greater than 0.5% we

halve the current α. If it is less than 0.5% we double α. With this dynamic update, we aim to

minimize the loss in accuracy while still ensuring the top images shifts.

350

300

250

200

Attack Loss

conv1 pushdown

conv2 pushdown

conv3 pushdown

conv4 pushdown

conv5 pushdown

conv5 push-up

3.0

2.8

2.6

Maintain Loss

conv1 pushdown

conv2 pushdown

conv3 pushdown

conv4 pushdown

conv5 pushdown

conv5 push-up

150 2.4

100
2.2

50
2.0

0

0 1 2 0
Training Epoch

1 2
Training Epoch

Figure A: Sample training curves for the maintain and attack objectives. Late layers (conv5, conv4)
are easier to attack compared to early ones (conv1, conv2 and conv3). The maintain loss is very
close to its initial value after two epochs.

36



A.2 Optimization Curves

We show in Figure A  the evolution of attack and maintain losses across two epochs. It can

be observed that the attack loss of late layers (conv 4, conv 5) decreases very quickly, and almost

monotonically, showing the easiness to attack late layers. In contrast, early layers do not have the

same behavior. We can also observe from the training curves that the maintain loss is almost close

to its initial value after 2 epochs. This corroborates the observed accuracy preservation as shown in

Table 1 of the paper.

B Additional Results for Push-down Attack on a Single Channel and

on all Channels

Before showing additional results for the push-down attacks on a single channel and on all

channels simultaneously, we present below the finetuning baselines.

B.1 Finetuning Baseline

One can observe that the finetuning baseline fails to change top-k images, in particular, top-4

images are exactly the same in the visualized channels seen in Fig. B. This is also materialized

empirically in the kendall-τ coefficients approaching 1, indicating that the ordering of the images

has not significantly shifted. The CLIP-δ scores also indicate that the semantic change in the top-

k images is minimal. Overall, the finetuning results in an AlexNet that is extremely similar to

PyTorch’s default with respect to performance and Interpretation via Feature Visualization.

B.2 Push-Down Attack on Single Channel

Figure D shows the results of initial top-k images and final ones after running the push-down

attack on every single channel. Except for channels 6 and 4 with relatively low CLIP-δ  scores, it

can be observed that all other channels have semantically different final top-k images compared to

the initial ones. This can be also seen by higher values of CLIP-δ scores.
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Channel 2 of Conv 5: Kendall- : 0.960, CLIP- : -0.001
Initial top-K

Channel 170 of Conv 5: Kendall- : 0.965, CLIP- : 0.000
Initial top-K

mosque cocktail shaker

mosque cocktail shaker

stupa teapot mosque

Final top-K
stupa teapot mosque

peacock

peacock

peacock

peacock

peacock

Final top-K
peacock

peacock

peacock

bell pepper

tree frog

Channel 9 of Conv 5: Kendall- : 0.974, CLIP- : -0.001

Yorkshire terrier file

Yorkshire terrier file

Initial top-K
Norfolk terrier

Final top-K
Norfolk terrier

Norwich terrier

Norwich terrier

chiffonier

Norfolk terrier

Figure B: Finetuning baseline result on Conv5 of AlexNet. All initial images are almost the same
after finetuning. Kendall-τ and CLIP-δ  are respectively close to 1 and 0, suggesting almost zero
changes in channel behavior and semantic changes.

Initial top-K

Final top-K

Figure C: Top images for a channel before and after a single-channel Push-Down attack.
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Channel 0 of Conv 5: Kendall- : -0.030, CLIP- : 0.144 Channel 1 of Conv 5: Kendall- : 0.261, CLIP- : 0.196
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Channel 2 of Conv 5: Kendall- : 0.217, CLIP- : 0.277 Channel 3 of Conv 5: Kendall- : 0.191, CLIP- : 0.283
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Channel 4 of Conv 5: Kendall- : 0.221, CLIP- : 0.148 Channel 5 of Conv 5: Kendall- : 0.358, CLIP- : 0.237
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Final top-K
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Channel 6 of Conv 5: Kendall- : 0.084, CLIP- : 0.198 Channel 7 of Conv 5: Kendall- : -0.008, CLIP- : 0.482
Initial top-K

croquet ball agaric dough golf ball hen-of-the-woods
Initial top-K

croquet ball buckeye buckeye buckeye buckeye

Final top-K
golf ball American egret golf ball golf ball golf ball

Final top-K
lipstick Blenheim spaniel whistle hippopotamus       ground beetle

Channel 8 of Conv 5: Kendall- : 0.186, CLIP- : 0.278 Channel 9 of Conv 5: Kendall- : -0.073, CLIP- : 0.467
Initial top-K

strawberry bell pepper cucumber bell pepper bell pepper
Initial top-K

Yorkshire terrier file Norfolk terrier      Norwich terrier chiffonier

Final top-K
pineapple tiger beetle mantis tiger beetle cauliflower

Final top-K
barrel space heater rain barrel nail hamster

Figure D: Push-down attack on a single-channel of Conv5 of AlexNet. All  initial images have been
replaced by other images.



B.3 Push-down All-Channel Validation Visualization

Generalization on Validation Set. We evaluate the generalization of our attack on the validation

set of ImageNet. This gives more insights to the change of feature visualization. Figures E  and

F show the initial top-k images and final ones from training and validation sets for 10 randomly

chosen channels.

It can be observed that on every channel, from the validation set, at least one image from the

initial top-5 images is no longer present in final top-5 images (for the majority of these channels,

the first top-activating is no longer the top one). We also observe a complete replacement of top-

5 images on the validation set when Kenall-τ scores and CLIP-δ  are respectively low and high

simultaneously (e.g., channels 37 and 50 of Figure E). Moreover, the general trends in training and

validation are similar suggesting the attack is not just memorizing specific images but leading to a

generalized change.
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Channel 37 of Conv 5 "train": Kendall- : 0.208, CLIP- : 0.340
Initial Training top-K

Channel 48 of Conv 5 "train": Kendall- : 0.712, CLIP- : 0.012
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palace hand-held computer       window screen police van thimble mailbag Gila monster lawn mower pencil box CD player

Final Training top-K Final Training top-K
gibbon guenon gibbon gibbon guenon studio couch crib mailbag rule cradle

Channel 37 of Conv 5 "val": Kendall- : 0.307, CLIP- : 0.084

Initial Validation top-K

Channel 48 of Conv 5 "val": Kendall- : 0.691, CLIP- : 0.000

Initial Validation top-K
vending machine palace trolleybus barbershop streetcar hair slide abacus cellular telephone pencil box abacus

Final Validation top-K Final Validation top-K
titi gibbon guenon orangutan proboscis monkey notebook tape player chest pencil box projector

Channel 50 of Conv 5 "train": Kendall- : 0.435, CLIP- : 0.580
Initial Training top-K

Channel 71 of Conv 5 "train": Kendall- : 0.480, CLIP- : 0.223
Initial Training top-K

red-backed strainer strainer manhole cover handkerchief manhole cover
ptarmigan coucal black grouse sandpiper                    ptarmigan

Final Training top-K Final Training top-K
stupa maillot ptarmigan totem pole bell cote ocarina ocarina porcupine ocarina ocarina

Channel 50 of Conv 5 "val": Kendall- : 0.560, CLIP- : 0.077

Initial Validation top-K

Channel 71 of Conv 5 "val": Kendall- : 0.388, CLIP- : 0.009

Initial Validation top-K
robin black grouse coucal house finch black grouse ocarina ocarina wallet manhole cover flute

Final Validation top-K Final Validation top-K
flat-coated ocarina ocarina football helmet ladybug ladybug

stupa stupa pedestal retriever                     toy terrier

Figure E: Push-down all-channel attack of Conv5 of AlexNet. For each channel, the first two rows
are top-k images derived from the training set while the last two are derived from the validation set.
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Channel 128 of Conv 5 "train": Kendall- : 0.406, CLIP- : 0.083
Initial Training top-K

Channel 144 of Conv 5 "train": Kendall- : 0.605, CLIP- : 0.296
Initial Training top-K

Staffordshire chain pretzel brain coral chain pretzel
Scottish deerhound Scottish deerhound bullterrier           Scottish deerhound      Mexican hairless

Final Training top-K Final Training top-K
Bouvier

des
Flandres

Bouvier common newt agama eft night snake eft
des

Lakeland terrier      standard schnauzer Flandres Border terrier

Channel 128 of Conv 5 "val": Kendall- : 0.486, CLIP- : 0.032

Initial Validation top-K

Channel 144 of Conv 5 "val": Kendall- : 0.669, CLIP- : -0.005

Initial Validation top-K
miniature

standard schnauzer schnauzer
miniature chain green mamba pretzel thunder snake green snake

dingo schnauzer                    bluetick

Final Validation top-K Final Validation top-K
standard schnauzer toy poodle standard schnauzer        Scotch terrier Kerry blue terrier chain agama thunder snake green mamba pretzel

Channel 158 of Conv 5 "train": Kendall- : 0.801, CLIP- : 0.219
Initial Training top-K

Channel 169 of Conv 5 "train": Kendall- : 0.514, CLIP- : 0.181
Initial Training top-K

barrel tile roof chainlink fence honeycomb night snake miniature poodle porcupine miniature poodle hyena hay

Final Training top-K Final Training top-K
window screen thunder snake Persian cat Persian cat Lhasa

great grey owl

Bouvier
des

Flandres great grey owl great grey owl great grey owl

Channel 158 of Conv 5 "val": Kendall- : 0.793, CLIP- : 0.022

Initial Validation top-K

Channel 169 of Conv 5 "val": Kendall- : 0.522, CLIP- : 0.012

Initial Validation top-K
honeycomb honeycomb honeycomb honeycomb dishrag

great grey owl great grey owl great grey owl great grey owl

Irish
water
spaniel

Final Validation top-K Final Validation top-K
digital watch honeycomb necklace fly tick great grey owl great grey owl great grey owl laptop great grey owl

Figure F: Push-down all-channel attack of Conv5 of AlexNet. For each channel, the first two rows
are top-k images derived from the training set while the last two are derived from the validation set.



C Effect of Depth

We vary different layers of AlexNet and evaluate how the attack is affected by depth. Fig-

ure G shows results obtained on randomly chosen channels from conv1, conv2, conv3, and conv4 of

AlexNet. It can be observed that the earliest layers conv1 and conv2 are harder to attack. This is ma-

terialized by high values of Kendal-τ and low values of CLIP-δ  scores. When increasing the depth

(conv3 and conv4) we observe a complete replacement in top-5 images in channels 147 (conv3),

121 (conv4) and 124 (conv4), although some of these channels have low values of CLIP-δ  scores.
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4
Channel 6 of Conv 1: Kendall- : 0.849, CLIP- : 0.000 Channel 11 of Conv 1: Kendall- : 0.735, CLIP- : 0.007 

4

brass

accordion

accordion

brass

Initial top-K
file window screen

Final top-K
file window screen

electric fan

electric fan

brass space heater

brass space heater

Initial top-K
accordion window screen

Final top-K
electric fan window screen

electric fan

file

(a) Layer: Conv1.

Channel 1 of Conv 2: Kendall- : 0.580, CLIP- : 0.127

(b) Layer: Conv1.

Channel 106 of Conv 2: Kendall- : 0.505, CLIP- : 0.059
Initial top-K

solar dish window screen     window screen grille solar dish
Initial top-K

mailbag shoji black grouse leafhopper sombrero

Final top-K
solar dish solar dish window screen crossword puzzle pick

Final top-K
mailbag leafhopper monarch analog clock croquet ball

(c) Layer: Conv2.

Channel 147 of Conv 3: Kendall- : 0.696, CLIP- : 0.230

(d) Layer: Conv2.

Channel 214 of Conv 3: Kendall- : 0.622, CLIP- : 0.112
Initial top-K

window screen     window screen cleaver zebra electric fan
Initial top-K

chain mail chain tiger spatula fig

Final top-K
rugby ball binder anemone fish parachute wall clock

Final top-K
tiger fig megalith chain tripod

(e) Layer: Conv3.

Channel 121 of Conv 4: Kendall- : 0.672, CLIP- : 0.056
Initial top-K

(f) Layer: Conv3.

Channel 124 of Conv 4: Kendall- : 0.509, CLIP- : 0.177
Initial top-K

typewriter
flatworm holster keyboard limpkin electric ray

typewriter
space bar keyboard slot dial telephone slot

Final top-K
affenpinscher Bedlington terrier     Weimaraner Scottish deerhound        polecat

Final top-K
menu ear bottlecap diaper menu

(g) Layer: Conv4. (h) Layer: Conv4.

Figure G: Push-down all-channel attack of on several layers of AlexNet. Channels indexes were
selected randomly. While there are some changes in top-activating images of early layers (conv1
and conv2), they are not significant as materialized by low values of CLIP-δ and high values of
Kendall-τ . For conv3 and conv4, we see a complete replacement of top-5 images on channels 147
(conv3), 121 (conv4), and 124 (conv4).



D Additional Illustrations for the Push-up Attack

This section provides additional visual illustrations of the push-up all-channel attack on the

layer conv5 of AlexNet.

Visual Examples. We first provide additional visual illustrations in Figure H of the attack on 10

randomly chosen channels. As a reminder, this push-up attack aims to make images of the Goldfish

class appear in the top-k images of every channel on the targeted layer. From Figure H, a first

observation is the fact that out of these 10 randomly chosen channels, only two channels (channel

15 and channel 23) do not show an image with the Goldfish class. On the rest of the channels, an

image with Goldfish was successfully inserted in the final top images. Furthermore, in several cases

(channels 110, 125, 145, 180, 183, and 50) is the majority class of final top-5 images, demonstrating

the success of this attack. It is also important to note the complete replacement of images with the

Goldfish class in some channels (e.g., channel 125).
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Channel 11 of Conv 5: Kendall- : 0.695, CLIP- : 0.159 Channel 110 of Conv 5: Kendall- : 0.683, CLIP- : 0.296

brass

goldfish

Initial top-K
menu menu brass menu

Final top-K
menu goldfish menu brass

crane

goldfish

Initial top-K
magpie bald eagle

Final top-K
crane goldfish

vulture

goldfish

cardoon

cardoon

Channel 125 of Conv 5: Kendall- : 0.689, CLIP- : 0.307 Channel 145 of Conv 5: Kendall- : 0.600, CLIP- : 0.122
Initial top-K

shower cap jigsaw puzzle bath towel shower curtain pencil box
Initial top-K

chain mail anemone fish        sea anemone coral reef
typewriter
keyboard

Final top-K
goldfish goldfish goldfish goldfish goldfish

Final top-K
goldfish goldfish goldfish goldfish chain mail

Channel 15 of Conv 5: Kendall- : 0.553, CLIP- : 0.048 Channel 180 of Conv 5: Kendall- : 0.607, CLIP- : 0.125
Initial top-K

honeycomb matchstick apiary honeycomb honeycomb
Initial top-K

Airedale sea urchin bloodhound       golden retriever       African grey

Final top-K
honeycomb matchstick honeycomb rubber eraser honeycomb

Final top-K
Airedale goldfish goldfish lorikeet goldfish

Channel 183 of Conv 5: Kendall- : 0.658, CLIP- : 0.197 Channel 23 of Conv 5: Kendall- : 0.600, CLIP- : 0.126

reel

goldfish

car wheel

goldfish

Initial top-K
wall clock

Final top-K
reel

analog clock

car wheel

manhole cover

goldfish

dome dome

dome balloon

Initial top-K
balloon dome

Final top-K
dome dome

dome

car wheel

Channel 232 of Conv 5: Kendall- : 0.665, CLIP- : 0.096 Channel 50 of Conv 5: Kendall- : 0.709, CLIP- : 0.151

dome

goldfish

Initial top-K
mosque mosque dome

Final top-K
dome mosque dome

dome

beer bottle

ptarmigan

ptarmigan

coucal

goldfish

Initial top-K

black grouse

Final top-K
goldfish

red-backed
sandpiper

goldfish

ptarmigan

black grouse

Figure H: Push-up all-channel attack of Conv5 of AlexNet. Channel indexes were taken randomly.



Generalization for the Push-Up attack. After demonstrating the success of achieving target ma-

nipulability of top-k feature visualization through the push-up attack on training images, it is also

important to evaluate whether this success generalizes to unseen data. Figure I  shows not only top-k

images from the training but also from the validation set of ImageNet. We can observe that on all

the 10 randomly chosen channels not only at least one image of the Goldfish class is present in the

final top-5 images of the training but also at least one image of the Goldfish class is in the final

top-5 images from the validation set. Moreover, we also observe a similar number of images of

the Goldfish class present in top-5 images from both training and validation sets. This indicates the

ability of the push-up attack to generalize on the same distribution from where training examples

were drawn.
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Channel 111 of Conv 5 "train": Kendall- : 0.724, CLIP- : 0.304
Initial Training top-K

Channel 132 of Conv 5 "train": Kendall- : 0.630, CLIP- : 0.271
Initial Training top-K

entertainment
center mouse

entertainment window screen window screen honeycomb window screen window screen
home theater television center

Final Training top-K Final Training top-K
goldfish goldfish goldfish goldfish mouse goldfish honeycomb window screen grille window screen

Channel 111 of Conv 5 "val": Kendall- : 0.764, CLIP- : 0.087

Initial Validation top-K

Channel 132 of Conv 5 "val": Kendall- : 0.660, CLIP- : 0.034

Initial Validation top-K
entertainment

laptop center desktop computer iPod
window screen honeycomb shopping basket planetarium puffer

television

Final Validation top-K Final Validation top-K
entertainment window screen shopping basket goldfish honeycomb planetarium

goldfish goldfish laptop center                       goldfish

Channel 155 of Conv 5 "train": Kendall- : 0.717, CLIP- : 0.140
Initial Training top-K

Channel 183 of Conv 5 "train": Kendall- : 0.658, CLIP- : 0.197
Initial Training top-K

church vending machine steel drum church cassette reel car wheel wall clock analog clock manhole cover

Final Training top-K Final Training top-K
goldfish church vending machine goldfish goldfish goldfish goldfish reel car wheel goldfish

Channel 155 of Conv 5 "val": Kendall- : 0.755, CLIP- : 0.083

Initial Validation top-K

Channel 183 of Conv 5 "val": Kendall- : 0.757, CLIP- : 0.062

Initial Validation top-K
monastery bookcase church church digital watch manhole cover stopwatch stopwatch toilet seat saltshaker

Final Validation top-K Final Validation top-K
goldfish monastery bookcase church goldfish goldfish goldfish goldfish manhole cover stopwatch

Figure I: Push-up all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are
top-k images derived from the training set while the last two are derived from the validation set.
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Channel 20 of Conv 5 "train": Kendall- : 0.709, CLIP- : 0.087
Initial Training top-K

Channel 207 of Conv 5 "train": Kendall- : 0.758, CLIP- : 0.111
Initial Training top-K

lipstick lipstick syringe Angora hair spray European gallinule        American coot indigo bunting pillow European gallinule

Final Training top-K Final Training top-K
lipstick goldfish syringe goldfish lipstick goldfish goldfish goldfish goldfish goldfish

Channel 20 of Conv 5 "val": Kendall- : 0.781, CLIP- : -0.008

Initial Validation top-K

Channel 207 of Conv 5 "val": Kendall- : 0.805, CLIP- : 0.030

Initial Validation top-K
junco sunglass Pomeranian sea slug brambling little blue heron       Labrador retriever Dutch oven African grey great grey owl

Final Validation top-K Final Validation top-K
goldfish junco goldfish sea slug Pomeranian goldfish goldfish goldfish little blue heron       Labrador retriever

Channel 215 of Conv 5 "train": Kendall- : 0.624, CLIP- : 0.410
Initial Training top-K

Channel 244 of Conv 5 "train": Kendall- : 0.802, CLIP- : 0.383
Initial Training top-K

wool sea urchin stole poncho tennis ball
mailbox

entertainment
microwave center

entertainment
chest center

Final Training top-K Final Training top-K
goldfish goldfish goldfish wool goldfish goldfish goldfish goldfish goldfish goldfish

Channel 215 of Conv 5 "val": Kendall- : 0.722, CLIP- : 0.114

Initial Validation top-K

Channel 244 of Conv 5 "val": Kendall- : 0.820, CLIP- : 0.110

Initial Validation top-K
bonnet mitten sombrero pomegranate tennis ball entertainment

center perfume
entertainment

perfume center chiffonier

Final Validation top-K Final Validation top-K
goldfish goldfish bonnet mitten goldfish

goldfish
entertainment

goldfish center perfume goldfish

Figure J: Push-up all-channel attack of Conv5 of AlexNet. For each channel, the first two rows are
top-k images derived from the training set while the last two are derived from the validation set.



E Ablation Study on EfficientNet

It is important to show that the proposed attack methodology is not limited to AlexNet. To show

that the attack can work on newer, more sophisticated neural nets, we have also run an ablation study

on EfficientNet Tan and Le (2019). We select the third convolutional block in the Feature 7 layer

and perform a push-down attack similar way to AlexNet. The visual results are shown in Appendix

A  and the metrics for the layer are given in Table 1 in the main text. We observe similar effects

to AlexNet; the top images are changed in terms of the exact images and the semantic concepts.

We also observe relatively strong CLIP-δ  and Kendall-τ changes. Having confirmed the generality

of our approach in this way, we leave a survey study over all relevant architectures to future work,

computation power permitting.
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Channel 8 of features 7 conv block 3: Kendall- : 0.406, CLIP- : 0.103
Initial top-K

Channel 51 of features 7 conv block 3: Kendall- : 0.358, CLIP- : 0.244
Initial top-K

tripod

jacamar

tripod tricycle iPod

Final top-K
coucal starfish ear

miniskirt

trombone

snail

rubber eraser

snail

cucumber

chiton

Final top-K
otter

snail

hair slide

custard apple

printer

Channel 99 of features 7 conv block 3: Kendall- : 0.241, CLIP- : 0.288 Channel 102 of features 7 conv block 3: Kendall- : 0.514, CLIP- : 0.020
Initial top-K

Walker hound laptop whippet Boston bull

African
hunting

dog

Initial top-K
prison barrow pencil sharpener        container ship wreck

Final top-K
bib gasmask shopping basket Christmas stocking purse

Final top-K
analog clock tricycle magnetic compass plastic bag loudspeaker

Channel 147 of features 7 conv block 3: Kendall- : 0.431, CLIP- : 0.491
Initial top-K

Channel 167 of features 7 conv block 3: Kendall- : 0.395, CLIP- : 0.492
Initial top-K

Yorkshire terrier      Yorkshire terrier toy terrier silky terrier vizsla fountain pen wine bottle wine bottle oil filter beer bottle

Final top-K
lynx packet jean dumbbell pomegranate

Final top-K
football helmet amphibian steel drum stole dock

Channel 176 of features 7 conv block 3: Kendall- : 0.512, CLIP- : 0.072
Initial top-K

Channel 193 of features 7 conv block 3: Kendall- : 0.561, CLIP- : 0.264
Initial top-K

red wine

beer glass

carpenter's kit

lotion

ice lolly

Final top-K
beer glass

carpenter's kit

cup

letter opener

valley

tennis ball

cowboy hat

Shih-Tzu

chainlink fence

Shih-Tzu

Final top-K
hair slide

vacuum

squirrel monkey

toy terrier

pitcher

Figure K:  Push-down all-channel attack on Feature 7 block 3 of EfficientNet. All  initial top-5
images were completely removed from the new set of top-5 images, demonstrating the success of the
attack. Channel indices were randomly chosen.
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F Non-ConvNet Ablations

We perform additional ablations on ViT  and ResNet-50 to demonstrate the generalizability of

our attack framework beyond convolutional neural nets.

F.1 ResNet-50

We have performed additional experiments on Resnet-50 for push-up and push-down attacks,

for all the channels of the layer layer 4 2 conv 2. We observe no significant loss in accuracy as

shown in Table A. Figures L  and M show the result for a randomly chosen channel. We observed

that the results follow similar trends to those for AlexNet, with higher Kendall-τ values on the push

up attack, higher CLIP-δ on the pushdown, and low performance loss overall.

F.2 ViT-B/32

We attack the self-attention encoder layer in layers 0, 6, and 11 of ViT-B/32 to present a cross

section of the attack behaviour. Visualizations of the results can be seen in figures L  and M. Overall

the results follow those of AlexNet with later layers having a larger semantic change as shown by

the CLIP-δ  scores. Interestingly, we note overall increased CLIP-δ  scores, in particular for the first

Layer/Attack CLIP-δ

ViT  layer 11 Push Up 0.295

ViT  layer 11 Push Down 0.378

ViT  layer 6 Push Down 0.244

ViT  layer 0 Push Down 0.219

ResNet-50 L4.2.conv2 Push Down 0.267

ResNet-50 L4.2.conv2 Push Up 0.138

Kendall-τ

0.399

-0.168

-0.152

-0.139

0.319

0.784

CLIP-W K.-τ -W

0.813 0.138

0.833 -0.082

0.885 0.122

0.913 0.133

0.946 0.124

0.965 0.135

Accuracy ∆  Acc.

75.7% -0.22%

75.6% -0.27%

75.2% -0.73%

75.4% -0.55%

80.2% -0.01%

80.2% -0.01%

Table A: ViT-B/32 and Resnet-50 with Push-up and Push Down Attacks. Each row reports the result
obtained after attacking all units of a particular layer. Note that on ViT, the attacks are quite suc-
cessful, more than those performed on AlexNet, based on increased clip-δ scores and low accuracy
loss. We further note that compared to early AlexNet layers, earlier layers of ViT  are less resilient to
attacks.
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layer, whose analogue in AlexNet saw much smaller changes in its feature visualization.

Channel 505 of Layer_4_2:conv_2: Kendall- : 0.835, CLIP- : 0.126 Channel 8 of Layer 11: Kendall- : 0.618, CLIP- : 0.557

Initial top-K
military uniform       radio telescope assault rifle radio telescope        radio telescope

Initial top-K

computer keyboard space bar computer keyboardcomputer keyboard
typewriter
keyboard

Final top-K
goldfish goldfish goldfish goldfish goldfish

Final top-K
goldfish goldfish goldfish goldfish goldfish

(a) Model: ResNet50 (b) Model: ViT-B/32.

Figure L:  All-channel push-up attacks on ResNet50 and ViT. Goldfish images were successfully put
in top images.

Channel 505 of Layer_4_2:conv_2: Kendall- : 0.328, CLIP- : 0.213 Channel 8 of Layer 11: Kendall- : -0.078, CLIP- : 0.666

Initial top-K
military uniform       radio telescope assault rifle radio telescope        radio telescope

Initial top-K

computer keyboard space bar computer keyboardcomputer keyboard
typewriter
keyboard

Final top-K
hot pot hot pot Crock Pot wooden spoon hot pot

Final top-K
harp cello pajama pajama pajama

(a) Network: ResNet50. (b) Network: ViT-B/32.

Figure M: All-channel push-down attacks on Resnet-50 and ViT. Initial top images were success-
fully replaced.
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Attack Layer CLIP-δ

Conv 1 0.025

Conv 2 0.097

All-Layer Push Down Conv 3 0.154

Conv 4 0.180

Conv 5 0.194

Conv 1 0.021

Conv 2 0.049

All-Layer Push Up Conv 3 0.070

Conv 4 0.170

Conv 5 0.248

Kendall-τ

0.779

0.447

0.512

0.558

0.584

0.726

0.420

0.307

0.272

0.541

CLIP-W K.-τ -W

0.981 0.295

0.993 0.157

0.969 0.134

0.953 0.135

0.969 0.060

0.981 0.303

0.992 0.137

0.987 0.108

0.971 0.097

0.938 0.068

Accuracy ∆Acc

56.1% -0.45%

56.1% -0.46%

Table B: Alexnet All-Layer Attacks. Each block of rows (for the push-down and push-up attack)
shows the results obtained after attacking all the channels and layers of conv layers in AlexNet. We
see that both attacks follow the previously seen trend of later layers being easier to attack. Based on
a comparison of these metrics against those found in Table 1, we see that the push-down attack is
slightly less effective overall, while the push-up attack is actually more effective.

G All-Layer Attack

We perform additional experiments to attack all the channels of every layer simultaneously.

Table B  reports the computed metrics. The Push Down All-Channel Attack has results for each

of its layers that correspond well to what we saw in each layers’ individual attacks in the main

paper (Table 1). Overall the CLIP-δ scores are slightly lower, which is not unexpected as this attack

demands a shift in the neurons of all layers leaving less room for compensation than a single layer

attack. The Push Up Attack however, actually shows better results in this paradigm. We hypothesize

that this is due to synergistic effects in pushing up the same set of images across all layers.
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H Pruned Models

Here we show extra results and metrics for the pruned models and related attacks. We note that

the attacked models lose little accuracy from their fine-tuned baselines, and that there is no evidence

of a whack a mole problem in any of the attacks.

Pruned Filters

32

64

96

128

160

192

224

32

64

96

128

160

192

224

Attack

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

C L I P -δ  mean

0.275

0.258

0.233

0.226

0.235

0.237

0.258

0.087

0.163

0.179

0.202

0.195

0.185

0.221

k-τ self sim

0.270

0.293

0.415

0.483

0.362

0.475

0.570

0.693

0.667

0.675

0.691

0.716

0.737

0.756

C L I P -W       k-τ -W

0.990 0.027

0.982 0.021

0.972 0.021

0.971 0.002

0.992 -0.020

0.991 -0.061

0.982 -0.118

0.976 0.027

0.946 0.002

0.934 0.003

0.942 -0.045

0.934 -0.020

0.947 -0.102

0.927 -0.154

Init Acc.

56.3%

55.9%

55.5%

54.6%

53.2%

50.9%

44.0%

56.3%

55.9%

55.5%

54.6%

53.2%

50.9%

44.0%

Final Acc.      ∆Acc.

55.8% -0.44%

55.4% -0.46%

55.0% -0.41%

54.2% -0.44%

52.8% -0.40%

50.3% -0.56%

43.5% -0.47%

56.1% -0.18%

55.8% -0.12%

55.3% -0.15%

54.4% -0.17%

53.1% -0.07%

50.7% -0.12%

44.0% 0.03%

Table C: Vulnerability pruning attack results. Note the change in accuracy remains small, and that
the whack a mole metrics � 1 indicate that the problem is not occurring. The CLIP-δ scores indicate
that the attacks’ effectiveness are not strongly affected by the pruning amount.
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Prune Rate

12.50%

25.00%

37.50%

50.00%

62.50%

75.00%

87.50%

12.50%

25.00%

37.50%

50.00%

62.50%

75.00%

87.50%

Attack

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

CLIP-δ  mean

0.309

0.299

0.300

0.298

0.301

0.298

0.289

0.173

0.110

0.156

0.200

0.221

0.268

0.183

k-τ self sim

0.252

0.311

0.320

0.332

0.313

0.319

0.396

0.646

0.662

0.639

0.600

0.673

0.541

0.512

CLIP-W k-τ -W

0.977 0.039

0.975 0.044

0.980 0.043

0.977 0.041

0.975 0.042

0.979 0.042

0.976 0.053

0.944 0.015

0.970 0.033

0.954 0.027

0.929 0.008

0.918 0.038

0.885 -0.006

0.944 0.036

Init Acc.

56.7%

56.7%

56.7%

56.7%

56.5%

56.1%

54.6%

56.7%

56.7%

56.7%

56.7%

56.5%

56.1%

54.6%

Final Acc. ∆Acc.

56.2% -0.50%

56.2% -0.46%

56.2% -0.44%

56.2% -0.49%

56.1% -0.37%

55.6% -0.53%

54.1% -0.46%

56.6% -0.15%

56.5% -0.16%

56.4% -0.28%

56.5% -0.22%

56.4% -0.06%

55.9% -0.22%

54.2% -0.37%

Table D: Norm pruning attack results. Note the change in accuracy remains small, and that the
whack a mole metrics � 1 indicate that the problem is not occurring. The CLIP-δ scores, particularly for
the Push Down attack indicate that the attacks’ effectiveness is not strongly affected by this
pruning method.
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Target Sparsity

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

Attack

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

C L I P -δ  mean

0.266

0.260

0.261

0.283

0.277

0.304

0.216

0.239

0.241

0.232

0.262

0.267

0.284

k-τ self sim

0.514

0.512

0.507

0.515

0.534

0.320

0.498

0.490

0.497

0.464

0.470

0.396

0.298

C L I P -W       k-τ -W

0.890 0.280

0.899 0.276

0.865 0.280

0.886 0.293

0.851 0.323

0.822 0.283

0.910 0.290

0.881 0.285

0.864 0.288

0.861 0.271

0.841 0.273

0.826 0.259

0.797 0.247

Init Acc.

56.8%

56.2%

55.6%

53.2%

45.4%

14.7%

57.1%

56.8%

56.2%

55.6%

53.2%

45.4%

14.7%

Final Acc.      ∆Acc.

56.4% -0.36%

55.9% -0.38%

55.3% -0.23%

52.9% -0.33%

45.1% -0.28%

14.5% -0.17%

56.9% -0.18%

56.6% -0.22%

56.1% -0.12%

55.4% -0.15%

53.0% -0.18%

45.2% -0.24%

14.5% -0.11%

Table E: OTO weight pruning attack results. Note that whlie the loss in performance from the attack
itself is small, the higher pruning rates have significant drops in performace. The whack a mole
metrics � 1 indicate that the problem is not occurring. The CLIP-δ  scores, particularly for the Push
Down attack indicate that the attacks’ effectiveness is not strongly affected by this pruning method.
Indeed, the Push Up attack is ultimately more effective at higher pruning rates, a highly counter
intuitive result.
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Target Sparsity

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

Attack

Push Down

Push Down

Push Down

Push Down

Push Down

Push Down

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

Push Up

C L I P -δ  mean

0.290

0.217

0.264

0.237

0.241

0.158

0.243

0.257

0.262

0.260

0.253

0.217

0.052

k-τ self sim

0.464

0.478

0.399

0.466

0.412

-0.027

0.496

0.407

0.410

0.433

0.374

0.337

0.237

C L I P -W       k-τ -W

0.847 0.267

0.912 0.288

0.867 0.259

0.890 0.281

0.867 0.301

0.955 0.251

0.845 0.288

0.874 0.266

0.880 0.258

0.872 0.263

0.897 0.247

0.920 0.237

0.998 0.264

Init Acc.

53.2%

52.1%

50.5%

46.2%

35.7%

7.9%

56.3%

53.2%

52.1%

50.5%

46.2%

35.7%

7.9%

Final Acc.      ∆Acc.

52.8% -0.42%

51.7% -0.38%

49.9% -0.60%

46.0% -0.28%

35.3% -0.43%

6.7% -1.17%

55.9% -0.37%

52.9% -0.28%

51.8% -0.29%

50.1% -0.33%

46.0% -0.25%

35.4% -0.37%

7.0% -0.84%

Table F: OTO Filter pruning attack results. Note that while the loss in performance from the attack
itself is small, the higher pruning rates have significant drops in performance. The whack a mole
metrics � 1 indicate that this problem is not present. The CLIP-δ  scores indicate that this pruning
method does not provide meaningful protection against our attacks.
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