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Abstract 

Damage by insect herbivores on white spruce in plantation and natural understory regeneration 

Allison Pamela Yataco 

 

 
 

Few studies focused on non-outbreaking herbivorous insects to understand the patterns of 

damage they inflict on plants. We compared damage by herbivorous insects on young 

white spruce (Picea glauca) between natural regrowth in the understory of mixed wood 

forest and small extensively-managed plantations. We observed damage to foliage to 

quantify damage by different groups of herbivores, including leaf chewers, miners and 

sap-sucking species. Our hypothesis stated that trees in forest understory environments 

would have higher diversity of damages caused by insects but that plantation trees would 

have more damaged tree shoots. Our two sampling methods were branch collection, in 

which we collected a forty-centimeter branch and recorded foliar damage, and field 

surveys, where one researcher recorded foliar damage on the saplings for three-minute 

intervals. We also measured tree growth, canopy openness, soil temperature and 

humidity. We used these environmental variables in general linear models to test their 

effects on herbivore damage in the two habitats. The results showed that plantation and 

understory trees did not differ significantly in the overall amount of insect damage. There 

was no correlation found with any environmental factor. This pattern indicated that the 

plantation we sampled maintained insect biodiversity similar to that in mixed wood 

forests. Thus, small, extensively managed multispecies plantations can be less at risk of 

insect outbreaks. 
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Introduction 

 

Plantation management aims to increase the growth of trees by creating even-aged stands 

under optimal conditions. However, these trees may be particularly vulnerable to insect 

pests, as many insect herbivores perform well on leaves with higher sun exposure (Altieri 

et al., 1984). In addition, climate warming could increase insect damage in northern 

forests via northward migration of more southern species (Vallières et al., 2015; Ward & 

Masters, 2007). In northern Canada, unstable weather linked to global warming also 

modifies outbreak patterns of native insects, such as the eastern spruce budworm 

(Choristoneura fumiferana) (Dukes et al., 2009). Because of these factors, the plantations 

of coniferous softwood in Canada are particularly vulnerable to insect damage. Therefore, 

we studied the composition of insect communities and the damage they cause to young 

trees in plantations compared to those in the forest understory. 

Environmental factors differ between both treatments and affect the development of the 

trees. Canopy openness in plantations implies increased sun exposure, leading to higher 

temperatures and drought stress, which can negatively impact the plant's defenses against 

pathogens and insects (Orwig & Abrams, 1997; Kolb et al., 2016). Conversely, high 

canopy cover was likely to reduce the growth of understory trees (Craine & Dybzinski, 

2013) compared to those in plantations. Another factor to consider is the diversity of the 

surrounding plant community. Higher levels of plant diversity lead to more stable 

herbivorous arthropod communities and a lower risk of insect outbreaks (Haddad et al., 

2011; Pimentel, 1961). 

In general, plantation trees are especially vulnerable to defoliation (Lehmann et al., 

2020). The higher temperature increases damage by native insect species (Pedlar & 
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McKenney, 2017). Sun exposure leads to higher nutritional value of foliage, increasing 

arthropod feeding damage (Bongers & Popma, 1990; Dudt & Shure, 1994; Murakami & 

Wada, 1997). However, leaf toughness is essential to the white spruce defence against 

herbivorous insects (Fuentealba et al., 2020), and increases with sun exposure (Lirette 

and Despland, 2021). Drought stress also reduces trees' physical and chemical defences 

over time (Potts et al. 2014). High sun exposure in plantations could thus have both 

positive and negative effects on susceptibility to insect damage. Lower canopy cover 

increases the reproductive output of some herbivorous insects in deciduous trees, notably 

aphids and sawfly larvae (Mattson & Haack, 1987). 

Tree diversity is correlated with insect diversity (Li et al., 2012). We hypothesized that 

elevated plant diversity creates diverse niches, providing environments for several insect 

species to secure food, shelter, and optimal space for reproduction (Potts et al., 2014). 

Furthermore, higher plant diversity reduces insect defoliation and lowers the risk of 

outbreaks (Stamps & Linit, 1997). Macfadyen's biodiversity stability theory explains 

these patterns. This theory states that heightened plant and insect diversity make forests a 

more stable system less susceptible to pest insect damage (Jactel et al. 2005). 

Identifying these factors' roles in damage distribution can help us understand their effects 

on insect distribution. Identifying how plantation characteristics influence insect damage 

is important in planning for reforestation and in managing plantations sustainably (Potts 

et al., 2014). Remote sensing does not provide enough resolution to identify damage by 

many herbivorous insects (Hall et al., 2016). Thus, ground-based monitoring of these 

herbivores is crucial, since they make up most of the insect community (Johns et al., 

2016), and their populations could increase to the point of restricting tree growth. Regular 
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monitoring may be necessary to analyze the stability of recent reforestation (Lieffers et 

al., 2020). It is also important to compare this to the damage in diverse naturally regrown 

forests, which represent a baseline insect community. 

White spruce is one of the main trees used in plantations in Canada. The goal of tree 

plantations is to shorten growth rotation and lower losses due to natural disturbances 

(Government of Canada, 2015). White spruce is a native Canadian softwood species 

(Farrar, 1995) found in old-growth forests as pure stands and as saplings in mixed wood 

boreal forests (Government of Canada, 2015). It naturally grows around floodplains, 

upland slopes and tree lines (Burns & Service, 1990). Young trees grow in the forest 

understory, under faster-growing hardwoods that regenerate post-fire (Burns & Service, 

1990; Government of Canada, 2015). White spruce grow in the shade of fast-growing 

trees. Low light availability reduces their growth rate. For this study, we used young 

plantations under 20 years old grown from local seeds. The managers did not thin, use 

fertilizer, or spray with pesticides. 

Choristoneura fumiferana, the eastern spruce budworm and Pikonema alaskensis, the 

yellow-headed sawfly, are amongst the best-known white spruce herbivores (Katovich, 

1995; Stocks, 1987). Spruce budworms are one of the major pest species that threatens 

the production of young white spruce, having caused the death of 15–40% of saplings 

during the 1972–1996 outbreak (Bouchard & Pothier, 2010). The yellow-headed sawfly 

is also a primary cause of mortality in saplings. There are other feeding guilds on white 

spruce saplings: leaf mining, leaf-chewing, sap-sucking and bud feeding insects (Rose & 

Lindquist, 1994). Many of these common defoliators are non-outbreaking species, but 
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they still cause low levels of defoliation (Wulder & Franklin, 2006), between 10-15 % of 

cumulative leaf damage in broad-leave species (Schowalter et al.1986). 

In this study, we created a comparative analysis of the arthropod defoliation that occurs in 

naturally regrown understory white spruce and those in small, extensively managed 

plantations in a research station (see Figure 1.1). The damage categories encompassed 

leaf chewers, miners and sap-sucking species. This study involved discerning damage 

patterns attributable to different arthropod groups or species. Two research questions 

guided our research: 1) How did the damage inflicted by various herbivorous arthropods 

in plantations differ from that of natural stands? 2) Was there a correlation between 

environmental variables (canopy openness, soil humidity and temperature) and the extent 

of specific damage types? 
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Figure 1.1 

 

Plantation and forest treatment images 

 
a) b) 

 

 

 

 

 

 

 

 

 

 

 
c) d) 

 

 

 

 

 

 

 

 

 
 

Note: The (a) image shows one of the sampled plantation trees, (b) is an image of the 

densiometer in a plantation from 2020 that shows the lack of canopy cover around the 

sampled tree. The image (c) is the photo of a forest tree sampled, and (d) is an image of 

the densiometer showing the tree cover in the forest site in 2020. 
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Methods 

 

2.1.1 Location 

 
Sampling took place at the FERLD research station in the region of Abitibi in the 

province of Quebec, Canada (N 48.513275, W -79.368423). The two environments we 

compared were plantations and natural regeneration in the understory of a mixed boreal 

forest. We selected a total of 19 sites with a clinometer measure between 0-8 % from both 

treatments using GIS maps (Végétation potentielle de la carte écoforestière from Forêts 

Ouvertes; Ministère des Ressources Naturelles et des Forêts, 2023). We sampled ten trees 

selected at least 3 meter apart at each site: all trees were between two and 3 meters in 

height to make sampling feasible with a ladder. We did the sampling in three sessions, 

2020 and 2021: late summer (July to August) of 2020, early summer (June) 2021 and late 

summer of 2021. We decided to sample in early and late summer as different insect 

larvae feed at different times throughout the season. Most larvae emerged in early 

summer, with a few species emerging in later summer (Wagner, 2005). 

Plantations consisted of small, 100-square-metre white spruce plots planted between 2008 

and 2013 in a matrix of stands of different conifers and broad-leaved trees. These 

plantations did not use fertilizers or pesticides, unlike standard practices used for white 

spruce production. Brush cutting to remove the overgrown wild plants that could compete 

with the planted saplings was only done once every seven years after planting. The 

genetic sources for white spruce in the FERLD were from local tree stands collected in 

Abitibi. 

Mature trembling aspen (Populus tremuloides) and balsam fir (Abies balsamea) that had 

regenerated after a large fire in the 1920s dominated forest sites. Trees of the same height 
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were likely to be older in forests than in the plantations (Martin, 2005). When possible, 

we sampled the same trees in 2020 and 2021; however, we could not find some 

individuals as they had died or had their tags removed. Thus, we selected other trees to 

sample. We sampled a total of 187 individual trees. Two forest sites had fewer than ten 

trees. One of these forest sites sampled in 2020 (number 2) became inaccessible in 2021 

due to the installation of bear traps. 

2.1.2 Environmental variables 

 
We measured the canopy aperture for each tree using a densiometer (Forestry Suppliers 

Spherical Crown Densiometer Concave Model C) in all sampling sessions. To measure 

the canopy openness with the densiometer, we stood two meters from the tree and held 

the densitometer at chest height and levelled the apparatus. Then, we counted the squares 

not covered by trees on the gridded curved mirror, giving us a percentage of the 

uncovered area. We did this three times per tree and then averaged the values to obtain 

the final data point. The measurements were considered an indirect light availability 

measure (Jennings et al., 1999). 

We measured soil temperature and relative humidity using a thermometer and a Time 

Domain reflectometer humidity sensor (Sharma et al., 2018). We took three 

measurements for each tree. We took the measurements with the humidity probe 50 cm 

from the base of the spruce trunk. We used this method because white spruce has shallow 

roots and thus is affected directly by topsoil humidity (Eis, 1970). We averaged the three 

measurements for each tree sampled. 
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2.1.3 White spruce growth measurements 

 
We measured the total tree size with a five-meter-long telescopic levelling rod (Allenuild 

Thenths 10th) in late summer 2020 and 2021. We used the bud scarring visible on the 

branches to measure the total growth of the tree in past years (Kozlowski & Clausen, 

1966). The scars were visible on the bark and faded after four years of growth. In this 

thesis, we only considered the previous two years (2019 and 2020) as these scars faded 

after four years, and we did not want to cause uncertainty in the results. 

We measured needle toughness in the late summer of 2020 with a manual penetrometer 

(Fuentealba et al., 2020). This machine uses a hypodermic needle (25-G insulin BD Luer 

Lock) to obtain the force required to pierce the cuticle of the spruce leaf. The needle was 

replaced after four uses to prevent its tip from dulling and causing inaccurate 

measurements (Fuentealba et al., 2020). In 2021, we used an electronic penetrometer 

designed by Juan Albaroz and Janice Cooke at the University of Alberta that contains the 

same type of hypodermic needle and provides more precise measurements. We selected 

four trees at random to measure toughness. We collected three shoots from each tree. We 

used ten needles from those shoots to obtain piercing force measurements. We averaged 

these measures to obtain each tree's final needle toughness value. The models that used 

toughness in the analysis included the four trees per site where toughness was measured. 

2.1.4 Herbivory damage measurement 

 
We classified different damage types using a guide from the Quebec Ministry of Forests 

Fauna and Parks (MFFP) (Rose & Lindquist, 1994). We used two methods to assess the 

damage to foliage: field surveys in early and late summer 2021 and branch sampling in 
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late summer 2020 and 2021. The survey method examined the current-year growth 

around the tree at eye level for three minutes. We put the three minutes in place to 

standardize the visual survey time. We only noted the buds that were at eye level around 

the tree. We counted the total number of buds with a clicker. The branch sampling 

method took place in the late summer of both years. We sampled a 40 cm branch from 

each tree to analyze the extent of damage done by burrowing larvae that were not visible 

with the visual survey. We cut them, placed them in bags, and brought them to the lab to 

count the damage types. We used the Fettes method to record overall defoliation by 

estimating the proportion of leaves removed on the current year shoot. There were twelve 

levels of defoliation, ranging from 1, no defoliation, to 11, complete defoliation, and 12, 

missing the stem (Kanoti, 2018). We estimated Fettes defoliation on twelve shoots per 

branch and averaged these to obtain one value per branch. We counted the number of 

healthy and damaged buds and those that did not develop. We classified the damages into 

the following groups: 

● Galls were considered one damage type and consisted of two species: 

Adelges abietis and Adelges cooleyi. They were only differentiated when 

doing the branch analysis. During surveys, it was difficult to distinguish 

between these two species. Adelges abietis, spruce gall adelgid colonies, 

form galls from new white spruce shoots called "pineapple galls". These 

are vegetative cell growths at the bottom of the needles that form a 

pineapple-like structure. The insects form colonies in these shoots. 

Adelges cooleyi are similar but their galls are much longer and have a red 
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tint. Dried galls from previous years were not counted in the experiment. 

We estimated damages by the number of shoots affected by this insect. 

● Cytospora kunzei, a fungal pathogen, was identified by the reddening of 

needles and the drooping of shoots at the end of the stem (Bergdahl & 

Hill, 2016). We considered each damaged spruce shoot as one damage. 

● We identified spruce budworm (Choristoneura fumiferana) damage by the 

presence of silk and frass on dead or damaged shoots. Other identifiers are 

the presence of larvae and nests formed from needles. These structures are 

formed by two or more shoots tied together by silk, curving into each 

other with needles eaten at the centre. This structure would then count as 

two buds damaged. 

● Shoots with hollow orange needles identified Spruce needle miner 

(Endothenia spp.) damage. We only counted the damage when there were 

five or more damaged needles. 

● We estimated damage caused by spruce web-spinning sawfly (Cephalcia 

fascipennis) by counting the number of buds with webbed nests. The silk 

of this species was brown, and they formed tubular-shaped cocoons. The 

larvae cannot survive without this nest, lacking the prolegs to cling and 

move on the tree's shoots. 

● We estimated the defoliation by all other sawflies (Pikonema alaskensis, 

Pikonema dimmockii, Pikonema lena, Gilpinia hercyniae) by counting the 

number of shoots with the typical sawfly feeding pattern with all needles 

removed from one side of the shoot. 
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● The spruce bud midge is a cecidomyiid fly (Rhabdophaga swainei) that 

infects the bud early in its development. We identified it by stunted bud 

growth and the swollen cone-like shape of the bud. We dissected the buds 

to confirm the presence of midge damage, such as pupae shell, egg, dead 

fly or parasitoid wasp. 

● A group of tiny larvae called microlepidoptera caused damage resulting in 

buds destroyed before they opened and expanded into shoots. We counted 

the presence of unidentifiable larvae dug into dried buds and small curved 

shoots. This group included Archips strian and Griselda radicana species 

that feed on young buds. 

 

 
 

2.1.5 Statistical analysis 

 
We analyzed survey (early and late summer of 2021) and branch (late summer 2021 and 

2022) data sets using the Generalized Linear Mixed-Effects Model (GLMER) from the 

'Lme4' (Bates et al., 2015) package in the R statistical computing software (R Core team, 

2020). The data had a hierarchical structure, as the trees were samples in different sites 

within two treatments. Therefore, we included the site sampled as a random variable in 

the model. 

We used a GLMER to test the difference in Shannon diversity between the two 

treatments. We also used this analysis to compare the treatments' tree growth and 

environmental differences. We used GLMER.NB (Generalized Linear Mixed-Effects 



12  

Model with Negative Binomial Distribution) to analyze the damage types because the 

data was left skewed and over-dispersed. 

Shannon diversity 

 
We calculated the Shannon diversity index by independently taking all survey and 

branch data damages. We used the R vegan package (Oksanen et al., 2022). This method 

was developed to compare habitat damage diversity (Pelini et al., 2009). Below is the 

GLMER model used: 

Shannon diversity ~ Treatment + Canopy + Soil Temperature + Soil Humidity + (1|site) 

 
We measured the following environmental variables: canopy openness, soil temperature 

and humidity. We added these measurements as fixed variables to the mixed model to 

evaluate their effect on diversity patterns (Brezzi et al., 2017). 

Damage types: survey data 

 
We compared the total damage between the two environments using the survey data sets. 

We added the same fixed factors to the GLMER as those used in the Shannon diversity 

models. Individual trees were not independent from one another, as many of them 

belonged to the same site. This data stratification indicated that they were pseudo- 

replicates (Hurlbert, 1984); thus, we considered the site as a random factor in the model 

(Bates et al., 2015). We use the following models: 

Damage type ~ Treatment + Soil humidity + Soil temperature + Canopy + (1 | 

Sampling site) 
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Testing for heterogeneity with residuals was only done after selecting a model (Zuur et 

al., 2009b). 

 

 
 

Damage types: branch data 

 
The branch dataset was not normally distributed. We used the GLMER.NSB to compare 

between sites using the following model: 

Damage type ~ Treatment + Soil humidity + Soil temperature + Canopy + (1 | 

Sampling site) 

We compared the Fettes defoliation between both treatments (Bates et al., 2015; Kanoti, 

2018; Marschner & Donoghoe, 2018). We used a GLMER model to analyze the 

difference between the treatments. The fixed and random variables were the same as in 

the previous models. 

Fettes ~ Treatment + Soil humidity + Soil temperature + Canopy + (1 | Sampling site) 

 

 

 
 

We did not measure toughness for every data point; thus, we made a model that only 

contained the sites where the toughness was measured. We used a subset of the data set to 

create the model. We included the following fixed factors in the model: soil humidity, 

temperature and canopy openness. We took the site as a random variable. 

Toughness ~ Treatment + Soil humidity + Soil temperature + Canopy + (1 | 

Sampling site) 

Multivariate analysis of branch data 
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We used non-metric multidimensional scaling (NMDS) (De'ath, 1999) to illustrate the 

special distributions of the sites based on the similarity of the data, using the vegan 

package in R (Oksanen et al., 2022). We used the damage data from different insects to 

create the matrix for the plot, consisting of Bray-Curtis distances for both branch and 

survey data (Beals, 1984). The NMDS did not have distortions caused by the linear 

assumption, which occurred when using other methods, such as the RDA. The NMDS 

also showed the patterns that different environmental variables had on the distribution of 

insect damage. 
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Results 

 

We use the GLMER models to compare the differences between treatments in the 

environmental factors and developmental data for the saplings. Canopy cover was 

significantly higher in forests compared to plantations (p < 0.001) see Table 3.1. The soil 

temperature was higher in plantations than in naturally regrown spruce (p < 0.001). 

Growth of the saplings was also much higher in plantations than in forests (p < 0.001). 

The GLM for the toughness of needles showed that it was significantly higher in 

plantations (P=0.006). Table 3.1 summarizes the complete data set for both sampling 

methods. We illustrated the distribution of the different damage types in the Figure 3.1 

plots. Figure 3.2 shows the histogram of each damage type. The graph indicates many 

more zeros than non-zero values in the data. 
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Table 3.1 

 
Branch sampling and field survey summary table. 

 
 

Plantations  Forest 

Sampling 

type 

Damages Mean Std. error Mean Std. error 

Survey Galls 1.516 0.312 0.141 0.039 

 Spruce budworm 0.382 0.059 0.635 0.115 

 Sawfly 0.720 0.118 1.071 0.166 

 Bud feeding 4.129 0.440 5.082 0.491 

Branch Galls 0.756 0.112 0.131 0.030 

 Spruce budworm 0.005 0.005 0.038 0.022 

 Sawfly 0.371 0.060 0.574 0.101 

 Bud feeding 1.117 0.162 1.437 0.208 

 Spruce gall midge 0.010 0.010 0.044 0.022 

 Spruce bud midge 0.040 0.019 0.071 0.025 

 Environmental     

 Soil temperature 23.706 0.311 21.749 0.261 

 Soil humidity 19.481 0.755 13.545 0.627 

 Canopy 38.207 1.654 90.402 0.815 

 Growth     

 Toughness 57.211 2.263 50.027 1.315 

 Lateral 2021 10.382 0.320 5.971 0.189 

 Lateral 2020 13.753 0.297 7.471 0.255 

 Apical 2021 26.632 1.049 7.009 0.558 

 Apical 2021 37.512 0.895 11.157 0.655 

Note: We showed the means and standard error for the damage types, environmental 

variables and growth of trees for each environment. 
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Figure 3.1 

 
Boxplot of damages of herbivore groups 

 

a) 
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b) 
 

 

 

Note: F represents the forest sites, and P represents the plantation sites. (a) branch data 

for late summer 2020 and 2021 combined and (b) survey data for early and late summer 

2021 combined. 
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Figure 3.2 

 
Histogram of damaged types present in shoots 

 

a) 
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b) 
 

 

 
 

 
Note: The (a) graphs are the histograms from branch data from late summer 2020 and 

2021 combined. The graph from (b) survey data of early and late summer 2021 

combined. The “n” value is the total number of data point in the histogram, thus the total 

number of trees sampled from branch and survey data. 
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Shannon diversity 

 
The diversity of damage types did not differ between plantation and forest sites (p > 0.05) 

when analyzing either data sets. No environmental factors affected the Shannon diversity 

index. 

 

 
 

Damage types 

 
Galls were more abundant in plantations than in forests in both the survey and branch 

analyses (see Table 3.2). However, there were no significant differences between forest 

and plantation trees in any other damage types with either survey or branch sampling, or 

in overall Fettes defoliation (p = 0.06). Number of buds was higher in plantations (p = 

0.03); however, there was no difference in underdeveloped buds between treatments (p = 

0.24). 
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Table 3.2 

 
Differences between treatments in branch and survey data 

 
 

Model Components Estimate Std. error z value P-value 

Spruce budworm 

Survey 

Intercept* -0.38 1.19 -2.52 0.01 

 Treatment -0.12 0.98 -0.12 0.90 

 Humidity 0.01 0.02 0.40 0.69 

 Temperature 0.02 0.02 0.87 0.39 

 Canopy 0.00 0.01 -0.10 0.92 

Sawfly Survey Intercept 1.23 1.15 1.07 0.29 

 Treatment -0.71 0.58 -1.23 0.22 

 Humidity 0.01 0.01 0.92 0.36 

 Temperature -0.09 0.04 -2.16 0.03 

 Canopy 0.00 0.01 -0.06 0.95 

Galls survey* Intercept** -5.09 1.56 -3.27 0.00 

 Treatment* 2.42 1.02 2.38 0.02 

 Humidity 0.01 0.02 0.42 0.68 

 Temperature 0.01 0.05 0.32 0.75 

 Canopy 0.01 0.01 1.14 0.26 

Early bud-feeding 

larvae survey 

Intercept 1.03 0.54 1.91 0.06 

 Treatment -0.10 0.39 -0.26 0.79 

 Humidity 0.00 0.01 0.50 0.62 

 Temperature -0.01 0.01 -0.44 0.66 

 Canopy 0.00 0.00 1.00 0.32 

Spruce bud midge 

survey 

Intercept -44.15 1182.42 -0.04 0.97 

 Treatment 34.00 1182.42 0.03 0.98 

 Humidity -0.08 0.12 -0.66 0.51 

 Temperature 0.14 0.17 0.81 0.42 

 Canopy 0.03 0.03 0.99 0.32 

Spruce budworm 

branch 

Intercept -9.08 5.21 -1.74 0.08 

 Treatment -1.20 2.95 -0.41 0.69 

 Humidity 0.04 0.06 0.74 0.46 

 Temperature -0.00 0.22 0.00 1.00 

 Canopy 0.01 0.03 0.42 0.68 

Sawfly branch Intercept -1.15 1.46 -0.79 0.43 
 Treatment 0.37 0.57 0.64 0.52 
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 Humidity 0.00 0.02 0.50 0.62 

 Temperature -0.06 0.05 -1.35 0.18 

 Canopy 0.01 0.01 1.67 0.10 

Galls branch* Intercept -1.75 1.27 -1.38 0.17 

 Treatment* 1.50 0.58 2.56 0.01 

 Humidity 0.00 0.02 -0.29 0.77 

 Temperature -0.02 0.04 -0.42 0.67 

 Canopy 0.00 0.01 -0.62 0.53 

Early bud-feeding 

larvae branch 
Intercept -1.69 0.90 -1.89 0.06 

 Treatment -0.12 0.74 -0.16 0.88 

 Humidity 0.01 0.01 0.84 0.40 

 Temperature -0.01 0.03 -0.18 0.86 

 Canopy* 0.01 0.00 2.18 0.03 

 Intercept -4.35 2.67 -1.63 0.10 

 Treatment -0.38 1.02 -0.38 0.71 

 Humidity -0.03 0.04 -0.77 0.44 

 Temperature 0.06 0.09 0.70 0.49 

 Canopy 0.00 0.02 0.16 0.88 

Note: The table shows each model's intercept, treatment, humidity, temperature, and 

canopy components. The presence of one star (*) in front of the component and model 

indicates that the P-value is significant at the 0.05 level. 
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Multivariate analysis of branch data 

 
The NMDS showed significant overlap in the composition of damaged communities 

between the plantation and forest sites. We illustrated the Bray distance NMDS in Figure 

3.3. There was no correlation or pattern in the distribution of the data set. Adding a 

canopy cover to the figure showed no pattern in damage distribution. The plot shows that 

spruce budworm and spruce bud midge were the farthest in the distribution, being the 

damages with the least similar distributions compared to the others. However, there was 

no significant difference in the overall pattern between environments. 
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Figure 3.3 

 
NMDS plots for the survey and branch data. 

 

a) 
 

 

 
 

b) 
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c) 
 

 

 

d) 
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Note: Plot (a) and (b) represent branch data and (c) and (d) graphs are plots for the survey 

data. Graphs (a) and (c) show the relationship between treatment and the statistical 

distance between the sites. The statistical difference being how different was one data 

point’s composition different from another. F represents the forest sites, and P represents 

the plantation sites. Graphs (b) and (d) show the relationship between canopy cover and 

the different data points in the matrix. The position of the points on the graph showed the 

effect of the herbivorous damage types (spruce budworm, gall, sawfly, spruce bud midge, 

spruce gall midge, early bud-feeding larvae). 
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Discussion 

 

The overall findings initially revealed that arthropod herbivore damage diversity did not 

differ between the two environments. We had predicted higher diversity in forest sites 

because they were more complex environments and had more niches for various species 

(Potts et al., 2014). However, contrary to our hypothesis, the data did not support the 

lower diversity in plantations. Additionally, the amount of damage was only marginally 

higher in plantations for specific damage types. These results suggested that the types of 

plantations used in FERLD are not at elevated risk for herbivore damage. 

 

 
There were several possible explanations for why the plantation damages were higher for 

some specific insects. One may have been the higher canopy openness and temperature. 

High temperatures generally accelerate insect development rates (Rouault et al., 2006). 

However, this can also decrease reproductive rates in some insects (Zhang et al., 2015). 

Overall, generalist pest insects were expected to thrive in higher temperatures (Pelini et 

al., 2009). Gall adelgids were sap-sucking insects; they produced two generations per 

year, which could have enabled them to rapidly take advantage of warmer conditions in 

plantations to increase population size. Hylobius abietis tended to increase in abundance 

at the crown of Picea glauca (Pilichowski et al., 2014), indicating they did well under 

sun-exposed conditions. Previous work suggested that gall adelgid damage was higher in 

plantations because of lower parasitism rates and lower pathogen infection of the insects 

in these environments (Fernandes & Price, 1992). 

Spruce budworm damage increased from 2020 to 2021. Budworm outbreaks are 

infrequent but can last for decades and cause mortality of white spruce and other conifers 
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over multiple square kilometres (Bouchard et al., 2018). Younger forest trees were also 

susceptible to small larval populations found at the start of a new outbreak (Lavoie et al., 

2021). Navarro et al. (2018) identified an outbreak hotspot in Abitibi, north of Quebec, 

near the research station where we conducted our study. Budworms were active in early 

spring, and budworm damage was thus more straightforward to identify in the early 

season sampling. Identifying budworms was more difficult in the later months as the silk 

was no longer present due to the rain washing it away. 

Our data suggested that plantations could be a suitable habitat for many insect species, as 

observed damages were comparable to naturally regrown trees. As most herbivorous 

insects were flighted, they could disperse between the plantations and the surrounding 

forest (Anderson & Sturtevant, 2011). The proximity between different trees facilitated 

the movement and exchange of generalist herbivore species. The plantations were within 

100 meters of other plantations and naturally regrown forests. 

The management approach of FERLD left early succession plants growing around the 

saplings on the plantation. This method could have contributed to maintaining insect 

biodiversity. Studies indicated that early successional plants enhance insect diversity 

(Swanson et al., 2011). Their presence increased overall plant diversity, potentially 

leading to more niches for insect species in these environments (Poniatowski et al., 2020; 

Thomas, 2010). In summary, the findings suggested that these plantations support a 

similar diversity of herbivorous insects to naturally regrown forest environments. 

Consequently, creating smaller plantations may be advantageous as having more diversity 

could improve environmental resilience (Jactel et al., 2005) and protect against 

outbreaking species (Messier et al., 2022). 
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As of 2020, the world had an estimated 280 million ha of planted forests, which is 

continuously increasing (Bahar et al., 2020). Of these, 131 million ha were monospecific 

planted forests under intensive management. Although monospecific planted forests were 

critical in providing timber, they harbored less biodiversity and were potentially more 

susceptible to disturbances than natural or diverse planted forests. Diverse stands also 

sequester more carbon than monocultures (Hulvey et al.,2013). Here, we pointed out the 

increasing scientific evidence for increased resilience and ecosystem service provision of 

functionally and species-diverse planted forests (hereafter referred to as diverse planted 

forests). 

Our results suggested that plantation stands in FERLD offer a suitable quality habitat for 

various insect species, similar to that found in natural forests. The silvicultural hypothesis 

indicated that stands made of diverse trees decrease the prevalence of pest species (Jactel 

& Brockerhoff, 2007). This hypothesis also supported the practice of multispecies 

plantations with minimalist intervention to suppress non-commercial species (Messier et 

al., 2022). 
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Conclusion 

 

Our results indicated that the insect damage types do not differ significantly between 

young white spruce trees in plantation relative to those in naturally regrown forests. Thus, 

the sampled plantations seem to be a good reservoir for herbivorous insect species. There 

was no correlation between insect distribution and the environmental variables we 

measured. However, a spruce budworm outbreak was progressing in the region 

(Government of Quebec, 2022), and thus, a continued survey of herbivorous insects may 

be important to identify insect community changes under this increasing spruce budworm 

population. 
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