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Abstract

Learning-Based Load Identification and Forecasting using Low-Frequency
Measurements

Amanie Azzam

Non-intrusive load monitoring (NILM) is a technique used for effective and cost-efficient

electricity consumption management. This thesis presents two different NILM methods.

One of them employs a hybrid model of convolutional neural network (CNN) and bidi-

rectional long short-term memory (BiLSTM) for low-frequency data disaggregation, and

the oher one utilizes a graph neural network (GNN) along with a long short-term mem-

ory (LSTM) network for load prediction, both combined with attention mechanism. The

first study is adept at extracting temporal and spatial features from low-frequency power

data, enhanced by an attention mechanism for event detection and load disaggregation. We

conduct simulations using the publicly available low-frequency REDD dataset to assess

our model’s performance. The proposed approach exhibits superior accuracy and compu-

tational efficiency compared to existing methods. The second study explores NILM load

prediction, integrating a GNN to represent complex time correlations between appliances,

forming a graph-based foundation for feature extraction. The outcome is coupled with

LSTM for temporal pattern capturing and attention processes for focusing on key informa-

tion. The results confirm the effectiveness of this approach in predicting load and uncov-

ering hidden power consumption patterns. Both studies contribute significantly to the field

of NILM, offering advanced methodologies for energy management in smart homes.
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Chapter 1

Introduction

1.1 Literature Review

Non-intrusive load monitoring (NILM) has emerged as a critical technology in the field

of energy consumption analysis and management. It enables one to quantify individual

home appliances’ energy consumption without requiring additional instrumentation or sen-

sor deployment. As society continues to grapple with the challenges of rising energy de-

mands and environmental concerns, NILM stands as a promising solution to promote en-

ergy efficiency, reduce wastage, and enable informed decision-making for homeowners and

utilities alike.

The development of NILM is timely and pertinent, as our society faces escalating chal-

lenges in managing increasing energy demands alongside pressing environmental concerns.

The global push towards sustainability highlights the urgent need for efficient energy use,

making technologies like NILM not only relevant but essential. NILM’s ability to dis-

aggregate total energy consumption into specific appliance usage offers a detailed insight

into energy usage patterns. This level of granularity is crucial for identifying areas where

energy efficiency can be improved, thus playing a vital role in reducing overall energy

consumption.
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The benefits of NILM extend to both consumers and energy providers. For consumers,

NILM empowers homeowners with insights into their energy consumption habits. This

awareness encourages energy-efficient behavior, resulting in reduced utility bills and a

lower carbon footprint. It also provides real-time information about appliance operation,

helping users detect malfunctioning or inefficient devices [1]. This, in turn, facilitates

timely maintenance and replacement decisions. Integrating NILM with smart home sys-

tems allows for intelligent energy management [2], [3]. Appliances can be automatically

controlled based on user preferences and real-time energy consumption data. For energy

providers, NILM facilitates demand response programs by enabling utilities to communi-

cate with consumers and control appliances during peak demand periods, thereby balanc-

ing the grid’s load. Accurate appliance-level consumption data aids in load forecasting

and peak demand management [4]. This enables utilities to allocate resources effectively

and prevent grid overloads [5]. Detailed appliance-level data also helps utilities strategi-

cally plan infrastructure upgrades and expansions, improving grid reliability and efficiency.

NILM allows both consumers and energy providers to identify which appliances consume

the most energy, facilitating targeted energy-saving measures. For instance, replacing or

adjusting the usage of high-energy-consuming appliances can substantially reduce electric-

ity bills. Additionally, it enables the early detection of defects in appliances. By moni-

toring and analyzing energy consumption patterns, NILM systems can identify anomalies

that may indicate a malfunctioning or inefficient appliance. Early detection of such issues

not only prevents further energy wastage but also allows for timely maintenance or re-

placement, which can extend the lifetime of appliances and avert costly repairs. Moreover,

integrating NILM with smart home systems enhances overall energy management, auto-

matically controlling appliances based on real-time data to optimize energy usage, thus

further driving down costs.
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NILM was first introduced by Hart [6] during the early 1900s. The concept encom-

passes four distinct components: event detection, data processing, load decomposition, and

load identification. Load identification is a fundamental task in NILM among these com-

ponents. It consists of sophisticated algorithms which categorize loads using input features

either provided by human input or extracted from electrical signal attributes. The early in-

vestigations into load identification effectiveness [7], [8], [9] often faced constraints arising

from emerging hardware and software capacities.

Traditional NILM methods focused on statistical analysis and pattern recognition [6],

[10]. Rule-based methods and statistical analyses constitute prevalent non-learning tech-

niques, which rely on predefined heuristics and pattern recognition algorithms like hidden

markov models (HMMs) [6], and clustering methods [11]. These techniques often struggle

to capture the complicated variability and complexities of modern appliances’ behaviors,

particularly in cases of overlapping power signatures or subtle differences.

NILM can be classified into two primary groups: load identification and load forecast-

ing. Each of these categories addresses specific aspects of energy monitoring and manage-

ment, contributing uniquely to the overall effectiveness of NILM systems. Load Identifi-

cation focuses on discerning the individual appliances contributing to the overall energy

consumption within a household or building [33]. This process is foundational to NILM,

as it allows for the detailed analysis of which appliances are using energy and when. The

significance of load identification lies in its ability to provide granular data about energy

usage patterns. By identifying which appliances are active and their consumption profiles,

homeowners and energy managers can gain a clearer understanding of where and how en-

ergy is used. This insight is crucial for implementing targeted energy-saving strategies,

such as replacing inefficient appliances or adjusting usage patterns. The methodologies

employed in load identification range from simple signature recognition techniques, where

appliances are identified based on unique electrical signatures, to more complex machine
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learning algorithms that can discern appliances in real time, even in environments with

overlapping signals and variable usage patterns.

While load identification provides a snapshot of current or past appliance usage, load

forecasting extends this analysis into the future. It involves predicting the future energy

consumption of different appliances within a house or building. This predictive aspect

of NILM is increasingly important in the context of dynamic energy markets and smart

grid technologies. Effective load forecasting enables better energy planning and decision-

making. For instance, it can inform homeowners when it is most cost-effective to run

certain appliances based on predicted energy prices or guide energy providers in managing

supply and demand more effectively. Advanced forecasting models leverage a variety of

data inputs, including historical consumption patterns, weather data, and user behaviors, to

make accurate predictions. The challenge in load forecasting lies in the variability of these

factors and the need for models to adapt to changing conditions.

Both load identification and load forecasting are integral to the development of intelli-

gent energy systems. Load identification lays the groundwork by providing detailed data

on current usage patterns, while load forecasting builds on this foundation to anticipate

future energy needs. Together, they form a comprehensive approach to energy monitor-

ing and management, enabling more efficient and sustainable energy use. Moreover, the

integration of these two aspects of NILM can lead to more sophisticated energy manage-

ment solutions. For example, data derived from load identification can be used to train and

refine load forecasting models, enhancing their accuracy and reliability. In a broader con-

text, these capabilities are critical for the advancement of smart grid technologies, where

understanding and predicting energy usage at a granular level is key to optimizing grid

performance and integrating renewable energy sources.

The introduction of deep learning in the field of NILM marked a significant turning

point, particularly in the realm of load disaggregation research. This shift, underscored in
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studies [11], [12], [13], represented a fundamental change in approach, addressing many

of the limitations inherent in non-learning-based methodologies. Deep learning’s ability to

process and analyze large datasets, discern complex patterns, and adapt to new data types

has made it particularly well-suited for the nuanced challenges presented by NILM. The

transition to deep learning in NILM research was initially spearheaded by the work refer-

enced in [15], which marked a notable departure from traditional methods. This pioneering

study introduced a novel composite architecture that synergistically combined long short-

term memory (LSTM) networks with denoising autoencoders (DAE). The LSTM networks,

renowned for their efficiency in handling time-series data, were adept at capturing temporal

dependencies in energy consumption patterns. This feature was crucial for NILM, where

understanding usage patterns over time is essential. The integration of DAEs, on the other

hand, addressed the issue of noise in the data – a common challenge in NILM due to the

variability of appliance signatures and the presence of external disturbances. The combi-

nation of these two elements into a single architecture marked a significant advancement

in the field, enabling more accurate and reliable load disaggregation. Further extending

the capabilities of deep learning in NILM, Davies et al. presented an innovative approach

to feature learning in [16]. This work tackled the problem of dealing with high-frequency

electrical data, which, while rich in information, presents significant processing challenges.

By downsampling this data into four distinct channels, the authors were able to simplify

the data while retaining critical information. This pre-processing step was instrumental in

enabling the subsequent application of a five-layer convolutional neural network (CNN).

CNNs, with their ability to extract features from spatial data, proved highly effective in

classifying the transformed data, thereby achieving a more effective and efficient load dis-

aggregation process. The advancements in NILM were further augmented by the intro-

duction of a fusion of sequence-to-point, spatial, and channel attention mechanisms, as

detailed in [17]. This development led to the formulation of a convolutional block attention
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model. The significance of this model lies in its ability to focus on specific features of the

input data, akin to the human attention mechanism. By selectively concentrating on certain

aspects of the data while ignoring others, this model could learn the distinctive charac-

teristics of target devices with greater accuracy and detail. This attention-based approach

represented a step forward in the quest to enhance the interpretability and effectiveness of

NILM systems.

The collective impact of these deep learning-based advancements on NILM has been

profound. By enabling more precise and efficient analysis of energy consumption data [34],

[35], these technologies have opened up new possibilities for energy management. They

have paved the way for smarter, more responsive, and more sustainable energy usage in

both residential and commercial settings. The ability to accurately disaggregate and fore-

cast energy consumption at the appliance level has implications for energy conservation,

operational efficiency, and the optimization of power grids. Furthermore, the integration

of these deep learning models into practical applications promises to revolutionize the way

energy consumption is monitored and managed. From smart homes that can optimize their

energy use in real-time to utility providers better equipped to manage demand and supply,

the potential applications of these advancements are vast. Additionally, load forecasting

can facilitate demand response programs that can adjust the electricity prices and loads ac-

cording to the supply and demand, to lower the peak demand and greenhouse gas emissions

[34], [35]. Moreover, it can be used for predictive maintenance by identifying the faults and

anomalies in the appliances, and hence, improving their performance and durability [34],

[36]. It can also support smart home automation, tailoring the living environment to the

occupants’ activities and preferences, to enhance their comfort and convenience [34], [37].

As the field continues to evolve, further research is likely to yield even more sophisticated

models and algorithms, driving the future of energy management towards greater sustain-

ability and efficiency. As renewable energy sources become more prevalent, the ability to
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accurately predict and manage load becomes even more crucial. Load forecasting can help

integrate these variable energy sources more effectively into the grid, thereby supporting

the transition to a cleaner energy mix.

The main challenge in load forecasting lies in its complexity, as the electricity demand

is influenced by a multitude of factors, including weather conditions, seasonal variations,

time-of-day patterns, and user behavior. These elements introduce a level of unpredictabil-

ity and variability that makes accurate forecasting a demanding task. Weather conditions,

for instance, can significantly affect energy usage; cold or hot weather may lead to in-

creased heating or cooling demands. Seasonal changes impact not only the temperature but

also the length of daylight, affecting lighting and heating requirements. Time-of-day pat-

terns reflect typical usage cycles, with peak demands often occurring in the mornings and

evenings. Furthermore, individual user behavior, which can vary greatly among different

households and change over time, adds another layer of complexity to forecasting.

To address these challenges, numerous advanced methods have been proposed in the

literature, each aiming to improve the accuracy and reliability of load forecasting. A  no-

table contribution in this field is the work [44], which presents a short-term load forecasting

approach that integrates empirical mode decomposition (EMD), bi-directional long short-

term memory (BiLSTM) networks, and an attention mechanism (EMD-BiLSTM-ATT).

This approach is particularly innovative in how it combines EMD with advanced neural

network architectures. EMD is effective in decomposing nonlinear and non-stationary time

series data, making it easier for the LSTM network to capture the underlying patterns in

energy usage. The bi-directional nature of LSTM allows the model to learn from both past

and future data points, providing a more comprehensive understanding of energy consump-

tion patterns. The addition of an attention mechanism further enhances the model’s ability

to focus on the most relevant features of the data, thereby improving forecasting accuracy.
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This integrated approach has been shown to outperform traditional state-of-the-art meth-

ods in terms of prediction accuracy and adaptability. Another significant advancement is

outlined in [43], which proposes a real-time prediction model for smart grids based on the

combination of an attention mechanism with a bi-directional LSTM (CNN-ATT-BiLSTM).

The authors in [42] introduce an enhanced graph neural network (GNN) based on the

bi-directional LSTM framework (EnGAT-BiLSTM). This model represents a significant

leap forward in load forecasting, employing a dynamic load knowledge graph to represent

both the load data and external influencing factors. The use of a knowledge graph allows

the model to incorporate a wide range of data. The graph attention mechanism enables

the model to effectively extract high-quality load spatiotemporal features, focusing on the

most relevant parts of the graph to improve forecasting accuracy. The methodologies and

findings presented in the papers [44], [43], and [42] collectively demonstrate the effec-

tiveness of employing advanced neural network architectures, such as GNNs and LSTMs,

combined with attention mechanisms, for load forecasting using low-frequency data. How-

ever, these studies do not fully address the time correlation of different appliances within a

household, which could further enhance forecasting accuracy. The simultaneous operation

of multiple appliances and their time correlation can have a significant impact on overall

energy consumption patterns. By incorporating these time correlations between different

appliances into the forecasting models, one can achieve higher levels of accuracy and reli-

ability. Moreover, these models do not account for the uncertainty and variability in human

behavior and preferences, which can change over time, influencing appliance usage pat-

terns. Human behavior is often unpredictable and can vary due to a multitude of factors,

such as changes in lifestyle, occupancy patterns, and personal preferences.

Both load identification and load forecasting stem from the ability to recognize unique

power signatures of appliances, which are generally consistent across different households.
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While the time correlation between appliance usage varies based on individual human be-

haviors and household-specific patterns, the fundamental power signatures of appliances

remain largely invariant. This characteristic of NILM allows for effective identification

and monitoring of individual appliances independent of the household. Each appliance (re-

frigerator, washing machine, etc.) has a distinctive electrical signature that NILM systems

can detect and analyze. This capability ensures that NILM is not limited by the variability

in household usage patterns. Instead, it can reliably disaggregate total energy consumption

into specific appliance usage based on the power signatures. This universal applicability of

power signatures across different environments underlines the method’s efficiency, making

NILM a robust and versatile tool for energy monitoring and management in diverse resi-

dential settings. Consequently, NILM provides valuable insights into energy consumption,

ensuring its effectiveness and broad application.

Utilizing low-frequency data, as adopted in this thesis, presents distinct advantages over

high-frequency data, making it a preferable choice for several applications. Low-frequency

data significantly enhances computational efficiency. This offers a significant advantage,

especially when dealing with large datasets or operating with limited computational re-

sources. The reduced volume of data due to longer time intervals allows for more effi-

cient processing and analysis, leading to quicker insights into energy consumption patterns.

This efficiency is particularly beneficial in real-time or near-real-time monitoring systems,

where speed is essential. The cost-effectiveness of low-frequency data processing cannot

be overstated, as it requires lower storage capacity and processing power, making it an eco-

nomically viable option for widespread deployment, especially in residential or small-scale

commercial settings. This cost advantage extends to implementing and maintaining NILM

systems, making energy monitoring more accessible and sustainable. Furthermore, while

high-frequency data provides greater accuracy in identifying specific appliance signatures,
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its level of detail may not always be necessary for effective energy management. Low-

frequency data, although less granular, still provides sufficient accuracy for most practical

real-world applications. It enables the identification of major energy consumption patterns

and recognizing key appliances, often the primary focus in energy efficiency and manage-

ment strategies. Moreover, the simplicity of low-frequency data analysis makes it more

adaptable and less prone to overfitting, a common challenge with more complex high-

frequency data models. This adaptability is essential in diverse environments where energy

usage patterns vary significantly.

1.2 Thesis Organization and Contributions

The rest of this thesis is organized as follows. Chapter 2 introduces CNN-BiLSTM

model with an attention mechanism using low-frequency power data to develop a NILM

algorithm. The proposed approach offers a cost-effective advantage, as low-frequency data

collection requires less expensive measurement equipment compared to its high-frequency

counterpart. The CNN-BiLSTM model combines two distinct neural network architectures,

to leverage the strengths of each for enhanced NILM performance. The CNN part special-

izes in detecting spatial features and patterns, which is crucial for distinguishing different

appliances based on their distinct energy consumption signatures. The BiLSTM compo-

nent, on the other hand, excels at capturing temporal patterns and dependencies within se-

quential data, making it adept for load disaggregation tasks. The integration of an attention

mechanism further refines the model’s focus on relevant information, improving its ability

to accurately identify appliance activation and deactivation. This work has been submitted

to a Conference. Chapter 3 introduces the second proposed method called GNN-LSTM

model combined with an attention mechanism to predict the power consumption of home

appliances using low-frequency power data. The proposed model leverages the strengths

of the LSTM network to capture temporal dependencies in electricity consumption while
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integrating a GNN to explore the time correlation between appliances. The attention mech-

anism allows the model to dynamically weigh the significance of various factors in the input

sequence. By combining the three components mentioned above, the model captures short-

term fluctuations and long-term trends in load data. This work has been submitted to the

18th annual IEEE  International Systems Conference (SYSCON2024). Finally, Chapter 4

provides conclusions and possible future research directions.
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Chapter 2

Low-Frequency Load Identification

using CNN-BiLSTM Attention

Mechanism

2.1 Problem Statement

Consider the energy consumption data for a household, available as an aggregate sig-

nal. It is desired to decompose the overall aggregated power waveform into its constituent

appliance-level components as depicted in Figure 2.1. The main challenges for power

disaggregation include: (i) handling appliances’ power signature variations [18]; (ii) iden-

tifying appliances whose power signature overlap partially or completely [20], and (iii)

achieving the desired accuracy. Previous research efforts have tackled these issues by uti-

lizing high-frequency data, as they contain the complete signal and can be used to extract

maximum information. However, the significant drawback lies in the cost of gathering such

high-frequency data. It demands dedicated infrastructure, which incurs costs in terms of

installing hardware to collect this type of data. Conversely, low-frequency features come
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Figure 2.1: Household appliances power consumption

with information loss but offer the advantage of being easily collectible [21]. The forward

challenge revolves around the disaggregation of power consumption data, characterized

by a low frequency of 0.1 Hz. Mathematically, the disaggregation is formulated in [6] as

follows:

Ptotal (t) =  
X

Pa p p l i a n c e i ( t )  +  Pnoise (t), (2.1)
i = 1

where Ptotal (t) represents the total power consumption at time t, Pappliancei (t) is the power

consumption of the i-th appliance, N  is the number of appliances, and Pnoise (t) signi-fies

the noise component in the signal. The objective is to estimate Pappliancei (t) for each

appliance, despite challenges posed by low-frequency measurements and signal noise.

CNNs are utilized for the classification of load types, leveraging spatial patterns within

the data [26], [27]. The CNN architecture consists of convolutional layers followed by

pooling layers. Each convolutional layer detects progressively more complex features. It

can learn to distinguish the energy consumption patterns of various appliances, e.g., the

13
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distinct start-up and shut-down sequences of a dishwasher and an electric stove. Pooling

layers reduce spatial dimensions, preserving important information. This process is partic-

ularly essential for our application, as it helps condense the information while preserving

the critical spatial characteristics that distinguish appliances. The convolution operation

utilized in [29] is:

C i j  =  
X  X

I i + m , j + n K m , n , (2.2)
m=1 n = 1

where I  is the input matrix, K  is the convolutional kernel, and M and N  are the kernel

dimensions. Pooling (max-pooling) extracts the maximum value from a region of the input,

reducing spatial dimensions while retaining significant features denoted by Pi j ,  i.e.:

P i j  =  max(I2i,2j , I2i,2j +1 , I2i+1,2j , I2i+1,2j +1 ). (2.3)

A  CNN is an essential part of our load identification and appliance classification technique

because it is a powerful tool for capturing the spatial patterns in energy consumption data.

This enables our model to effectively distinguish between appliances based on their unique

energy consumption signatures.

2.2 Long Short Term Memory (LSTM)

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) designed

to process sequential data and remember long-term dependencies [22]. It is widely used

in deep learning for sequence prediction tasks such as natural language processing [23],

speech recognition [24], and time series forecasting [25]. The core idea behind LSTM

is the use of specialized memory cells that can store and retrieve information over long

sequences.
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2.3 Bidirectional Long Short Term Memory (BiLSTM)

The BiLSTM unit plays a crucial role in the proposed disaggregation process. Its bidi-

rectional processing capability helps our model comprehend sequential data and identify

the complex temporal features in energy consumption data. Home appliances have unique

energy consumption patterns that can be observed (and learned) over time. These patterns

have nuanced transitions and interactions. The BiLSTM is a powerful tool for capturing

these subtleties. It consists of two LSTM layers, one processing the input sequence in the

forward direction and the other in reverse, enabling it to capture more context (compared

to the LSTM) from both past and future inputs. The method can recognize the temporal

sequences associated with appliance operation, such as the recurring cycles of a refriger-

ator’s compressor or the periodic fluctuations in power consumption caused by a washing

machine’s agitator. Mathematically, the forward LSTM computes hidden states as follows

[28]:

hf =  LST Mf (xt , ht−1 , ct−1 ), (2.4)

where xt is the input at time t, ht−1 is the forward hidden state at time t − 1, and ct−1 is the

forward cell state at time t −  1. The backward LSTM computes hidden states in a similar

manner i.e.[28]:

ht =  LST Mb (xt , ht+1 , ct+1 ), (2.5)

where ht+1 is the forward hidden state at time t +  1, and ct+1 is the forward cell state at

time t +  1. The final hidden state is a concatenation of the forward and backward hidden

states:

ht =  [ht , ht]. (2.6)

The BiLSTM is a powerful tool that helps the proposed model distinguish between different

appliances based on their temporal intricacies. It can accurately break down total power
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α = P T .

consumption into individual appliance-level components by effectively modeling temporal

patterns and dependencies.

2.4 Attention Mechanism

The attention mechanism is integrated into the BiLSTM model to enhance the model’s

capability to focus on specific time steps crucial for load identification. Attention mech-

anisms have been widely adopted in sequence-to-sequence tasks, and in our context, they

dynamically weigh the importance of different time steps within the input sequence. This

dynamic weighting is essential for accurately identifying appliance patterns, as certain time

steps may contain more relevant information than others. For better identification of appli-

ances, one can also consider the turning on and off time instants, especially in relation to

other appliances, as features to improve the accuracy of the method. The model uses the

attention mechanism to assign weights to each moment in the input sequence. Therefore,

the moments when significant changes occur can be used in the identification task. This

leads to a more accurate disaggregation of the power consumption data into the individual

components.

The attention score αt for a time step t is calculated using the hidden state ht and a

context vector v according to [30]:

exp(et)
t

j = 1  exp(ej )
(2.7)

et in the above equation is the attention energy at time t, computed as:

et =  vT tanh (Whht +  bh), (2.8)

where Wh and bh are weight and bias learnable parameters for attention calculation, and T
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T

is the total number of time steps. The context vector c is obtained as the weighted sum of

hidden states according to [30]:

c =  
X
α t h t . (2.9)

t=1

The final prediction y in the regression task, according to [30], is then obtained by passing

c through a linear layer as follows:

y =  Wyc +  by, (2.10)

where Wy and by are weight and bias learnable parameters for linear transformation in

regression.

The attention mechanism is a mechanism for improving load identification performance

by offering a more focused and selective understanding of the data. This allows the model

to better identify important temporal events that define appliance behaviour, ultimately

leading to more accurate and reliable load disaggregation. Therefore, integrating an at-

tention mechanism is crucial for improving the model’s ability to recognize patterns of

appliance activation and deactivation.

2.5 Proposed Model

In our study, we propose a hybrid model for the precise identification of home appli-

ances’ energy consumption patterns. Our model seamlessly integrates three key compo-

nents: a CNNs, a BiLSTM network, and an attention mechanism for pinpointing critical

time steps within energy data sequences. The CNNs leverage spatial patterns in the data

to categorize the identified appliances effectively. The BiLSTM, on the other hand, cap-

tures intricate temporal dependencies in energy consumption data for enabling accurate

appliance identification. Finally, the attention mechanism enhances the model to focus on
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Figure 2.2: Proposed model architecture

more informative time steps, crucial for accurate load estimation. This hybrid approach,

shown in Figure 2.2, capitalizes on the strengths of each component to create a robust and

comprehensive solution for load identification using low-frequency power data.

2.6 Simulations

The REDD dataset is a well-established benchmark in the field of load identification

and energy disaggregation. This dataset comprises a rich set of electrical load measure-

ments recorded from various sensors and appliances within a residential setting. We will

use the data for six appliances: dishwasher, electric space heater, electric stove, refrigerator,

microwave, and washer dryer. It is publicly available and was collected by the authors of

[18]. The dataset is characterized by a low monitoring frequency of 1 Hz. We reduced the

sampling frequency of the REDD dataset from 1 Hz to 0.1 Hz by downsampling in time.

Downsampling to 0.1 Hz effectively reduces the data volume by a factor of ten, signifi-

cantly alleviating these challenges. This downsampled frequency provides an appropriate

balance between maintaining sufficient detail for effective energy consumption analysis and

reducing the computational burden. At 0.1 Hz, the dataset still retains enough granularity

to capture the essential characteristics of appliance energy usage patterns, which is vital

for accurate load disaggregation and monitoring. Note that if the downsampling rate is too
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Table 2.1: The proposed model’s hyperparameters used in the simulations

hyperparameters method
No. of epochs                            20
Loss function                          MSE

Optimizer Adam
CNN layer number                         1

BiLSTM layer number                      2
Attention mechanism layer number           1

Dropout layer number                      2
Dense layer number                        1

low, it could risk losing important information, while a rate that is too high might not suf-

ficiently alleviate the computational challenges. Therefore, 0.1 Hz represents a pragmatic

middle ground, ensuring the dataset remains manageable and the analysis remains feasible

without significantly compromising the quality and utility of the information derived from

the data. This tailored approach reflects a nuanced understanding of the trade-offs involved

in data sampling for NILM. It demonstrates a thoughtful consideration of the practical

aspects of data handling and analysis in this research. To prepare the data for our exper-

iments, we perform standard preprocessing steps as part of the proposed model shown in

Figure 2.3, including data cleaning, normalization, and sequence splitting into training and

testing sets. Additionally, we transform the data into a format suitable for both the BiL-

STM model (for regression) and the CNN model (for classification). Table 2.1 provides

an overview of the proposed model’s hyperparameters: epochs, cost function, optimization

method, and the configuration of various neural network layers, used in the simulations. It

is to be noted that 80% of data was used for training and 20% was used for testing. The

proposed method was trained over a span of 20 epochs. The normalized data for appliances

and total household energy consumption are shown in Figure 2.4 and 2.5 respectively. The

training and validation loss values are shown for each epoch as depicted in Figure 2.6. This

figure demonstrates that the model successfully converges, with a loss value lower than

0.00025. Despite the depth and complexity of the proposed model, it is noteworthy that the
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Figure 2.3: Flowchart of the proposed model
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Figure 2.4: Normalized appliance data

Figure 2.5: Normalized total household energy consumption data
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P recision =

Figure 2.6: Training and validation loss

runtime (computation time) was notably fast (around 31 s 19ms/step). This computational

efficiency is essential for real-time or near-real-time applications, where timely load iden-

tification is paramount. The power consumption of the refrigerator, microwave, electric

space heater, and electric stove are shown in Figures 2.7, 2.8, 2.9 and 2.10, where each

appliance is properly identified by the proposed method. In assessing the performance

of our load identification model, we utilize three essential metrics: precision, recall, and

F1-score. These metrics are fundamental for evaluating the model’s classification accuracy.

P recision quantifies the accuracy of the model’s positive identification of a particular load

type as described by [31]:

T rueP ositives
T rueP ositives +  F alseP ositives

(2.11)

Recall, also known as the true positive rate, measures the model’s ability to correctly iden-

tify instances of a specific load type among all actual instances of that type, according to
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Figure 2.7: Identified vs. ground truth power consumption for a refrigerator

Figure 2.8: Identified vs. ground truth power consumption for a microwave
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Figure 2.9: Identified vs. ground truth power consumption for an electric space heater

Figure 2.10: Identified vs. ground truth power consumption for an electric stove
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Recall =

F 1 =

Table 2.2: Model performance

Appliances
dish washer

electric space heater
electric stove fridge

microwave
washer dryer

Precision
1.0000
1.0000
1.0000
1.0000
0.9810
0.9823

Recall F1
0.9524     0.9756
1.0000     1.0000
1.0000     1.0000
0.9890     0.9940
1.0000     0.9901
0.9901     0.9860

the following formula [31]:

T rueP ositives
T rueP ositives +  F alseN egatives

(2.12)

F 1 − score is defined as the harmonic mean of precision and recall, balancing the trade-off

between false positives and false negatives, as follows [31]:

2.P recision.Recall
P recision +  Recall

(2.13)

Table 2.2 provides a summary of these metrics for test data, illustrating our model’s re-

markable performance in accurately classifying load types.
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Chapter 3

Load Forecasting using GNN-LSTM

Attention Mechanism with

Low-Frequency

3.1 Problem Statement

In the load forecasting problem, it is desired to predict the electricity demand or con-

sumption in a given time interval. Load forecasting is essential for planning and operating

power systems, as well as for optimizing energy efficiency and reducing costs. It is a chal-

lenging problem due to several reasons, such as:

• the diversity and complexity of electrical loads with potentially large fluctuations,

overlapping patterns, or nonlinear behaviors [38];

• the lack of standardized and representative datasets, metrics, and procedures for as-

sessing the efficacy of NILM algorithms [39], [40], and

• the trade-off between the accuracy, scalability, and practicability of the existing NILM

techniques may necessitate high-resolution data, complex models, or user feedback
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[38].

These challenges necessitate novel and robust approaches capable of dealing with the un-

certainty of load data, as well as user demands and expectations. A  fully connected graph

structure is employed to represent the time correlation of appliances. An adjacency matrix

is constructed with a controlled level of sparsity, introducing a realistic representation of

the correlation between appliances. This sparsity mimics the real-world scenario, where

not all appliances’ operation times depend on each other. The diagonal elements of the

matrix are set to zero, neglecting the self-dependency of the appliances. The objective is

to predict each appliance’s load based on its time correlation with other appliances despite

the challenges mentioned earlier.

3.2 Graph Neural Network (GNN)

In the context of our energy consumption prediction model, GNN plays a pivotal role

in capturing and leveraging the intricate time correlation among household appliances. The

sparse graph structure is defined by an adjacency matrix, incorporating a controlled level of

sparsity to realistically model the time correlation between appliances. A  commonly used

equation in GNN-based load forecasting is the message-passing formula given in [42] as

follows: � h( l +1)

=  σ � 
X

�

W (l)h(l)�, (3.1)
u�N (v)

where h(l +1)  is the updated value of node v at layer (l +  1) and represents the hidden state

of the node after information aggregation at layer (l +  1); σ is the activation function; W (l)

is the weight matrix at layer l used to transform and combine node features and messages

from neighbors, which is specific to each layer of the GNN and is learned during training;

h(l) is the value of neighboring node u at layer l and represents the hidden state of neighbor-

ing nodes at layer l. The equation describes how the hidden state of a node v in a graph is
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updated in the next layer ( l + 1)  by aggregating information from its neighboring nodes, ap-

plying a weight matrix transformation W (l) , and then passing the result through a nonlinear

activation function σ. This process is repeated for each node in the graph over multiple lay-

ers, allowing the network to capture complex time correlations and dependencies between

appliances within the graph structure.

3.3 Long Short Term Memory (LSTM)

LSTM networks have become a pivotal tool in load forecasting due to their effectiveness

in capturing temporal dependencies in electricity consumption patterns. LSTM is a type of

recurrent neural network (RNN) that excels at modeling time series data. In the context of

load forecasting, LSTM cells are used to retain information over extended time periods and

remember past consumption patterns. This enables the network to grasp not only immediate

dependencies but also longer-term trends in appliance usage. The core equation of an

LSTM cell for load forecasting given in [46] is:

it =  σ(Wxi xt +  Whiht−1 +  Wcict−1 +  bi) (3.2)

ft  =  σ (Wxf xt +  Whf ht−1 +  Wcf ct−1 +  bf ) (3.3)

ct =  f t  · ct−1 +  it · tanh(Wxcxt +  Whcht−1 +  bc) (3.4)

ot =  σ(Wxoxt +  Whoht−1 +  Wcoct +  bo) (3.5)

ht =  ot · tanh(ct), (3.6)
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where xt represents the input at time t, which can include information like historical load

values and external factors; ht is the hidden state at time t, denoting the learned representa-

tion at that moment; ct is the cell state at time t, capturing memory and information reten-

tion; it, ft , and ot are the input, forget, and output gates, respectively, and they control the

flow of information in and out of the cell; σ is the sigmoid activation function, and tanh is

the hyperbolic tangent activation function; W and b are, respectively, the weight matrix and

bias term learned during training. LSTM networks demonstrate remarkable performance

in capturing complex load patterns and are crucial tools for accurate load forecasting in the

energy domain.

3.4 Attention Mechanism

Attention mechanisms have revolutionized load forecasting by allowing models to fo-

cus on specific aspects of the input data that are most relevant for prediction. These mech-

anisms enable the model to assign varying levels of importance to different time steps,

factors, or features, adapting dynamically to the input sequence. In load forecasting, atten-

tion mechanisms prove valuable in capturing seasonality and identifying crucial patterns in

energy consumption. The core equation for a simple attention mechanism is the weighted

sum of input features, described in [48] as:

Attention(Q, K, V ) =  
i = 1  

P
j

e x  
exp(QKj ) 

· Vi, (3.7)

where Q represents the query vector used to weigh the importance of different keys; K  rep-

resents the keys, which are the elements attended to, and V represents the values associated

with the keys. The attention mechanism computes a weighted sum of the values, where the

weights are determined by the similarity between the query and the keys. This is an equa-

tion according to which the model pays attention to specific time steps or features most
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Figure 3.1: Proposed model architecture

relevant to making load forecasts and is a powerful tool for enhancing prediction accuracy

in load forecasting applications.

3.5 Proposed Model

In our study, we propose a hybrid model for predicting the energy consumption pat-

terns of home appliances. Our model integrates three key components: a GNN, an LSTM

network, and an attention mechanism for pinpointing critical time steps within energy data

sequences. The GNN captures complex time correlations and dependencies between home

appliances, represented as nodes in the graph. The LSTM, on the other hand, effectively

models temporal dependencies and sequences, allowing the model to remember past con-

sumption patterns. Finally, the attention mechanism dynamically assigns varying levels

of importance to different time steps within energy data sequences, facilitating the iden-

tification of crucial patterns for energy consumption predictions. This hybrid approach,

shown in Figure 3.1, capitalizes on the strengths of each component to create a robust and

comprehensive solution for load forecasting using low-frequency power data.

3.6 Simulations

The reference energy disaggregation data set (REDD) [47] is a benchmark data collec-

tion in load prediction and energy disaggregation research. This dataset comprises a rich
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Table 3.1: The proposed model’s hyperparameters used in the simulations

hyperparameters method
No. of epochs                             5
Loss function                         MAE

Optimizer Adam
GNN layer number                         1

LSTM layer number 1
LSTM layer units number                  30

Attention mechanism layer number           1
Dense layer number                        1

set of electrical load measurements recorded from various sensors and appliances within a

residential setting. We will use this dataset for six appliances: dishwasher, electric space

heater, electric stove, refrigerator, microwave, and washer-dryer. The dataset is character-

ized by a low monitoring frequency. To prepare the data for our simulations, we perform

standard preprocessing steps as part of the proposed model, including data normalization

and sequence splitting into training and testing sets. Additionally, we transform the data

into a format suitable for both the GNN and LSTM model. Table 3.1 provides an overview

of the proposed model’s hyperparameters: epochs, loss function, optimization method, and

the configuration of various neural network layers used in the simulations. It is to be noted

that 80% of the data was used for training and 20% for testing. The proposed method

was trained over a span of 5 epochs, as the model will be over-fitted after five iterations.

The training and validation loss values are shown for each epoch as depicted in Figure 3.2.

This figure demonstrates that the model successfully converges with a loss value lower

than 16.81, less than the existing results, as shown in Table 3.2. Despite the depth and

complexity of the proposed model, it is remarkable that the runtime (computation time)

was notably fast. This computational efficiency is essential for real-time or near-real-time

applications, where timely load identification is paramount. The power consumptions of

the refrigerator, microwave, dishwasher, and washer-dryer are shown in Figures 3.3, 3.4,

3.5 and 3.6. These figures demonstrate satisfactory load identification performance when
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Figure 3.2: Training and validation loss

Table 3.2: Performance comparison of different models

Model                MAE
GNN-LSTM-ATT     16.81

GNN4NILM          18.87
B E RT                 26.35
LSTM               30.80
GRU                 28.73
CNN                 28.92
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Figure 3.3: Predicted power consumption of a fridge compared to the ground truth

compared with the ground truth.
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Figure 3.4: Predicted power consumption of a microwave compared to the ground truth

Figure 3.5: Predicted power consumption of a dishwasher compared to the ground truth
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Figure 3.6: Predicted power consumption of a washer-dryer compared to the ground truth
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Chapter 4

Conclusions and Future Work

In this thesis, we present two models within the non-intrusive load monitoring (NILM)

framework using low-frequency data: the CNN-BILSTM model and the GNN-LSTM model,

both enhanced by an attention mechanism. The CNN-BILSTM model stands out for its

computational efficiency and accuracy, surpassing existing methods in solving NILM prob-

lems. This model’s cost-effectiveness is a significant advantage, particularly considering its

use of low-frequency data. Its efficiency and accuracy make it highly suitable for real-time

applications, offering a new horizon for energy monitoring in smart homes.

The CNN-BILSTM model not only demonstrates superior performance in terms of

computational resources but also sets a benchmark in appliance identification within the

NILM context. The model’s ability to operate with low-frequency data without sacrificing

accuracy is a notable breakthrough, making it an ideal solution for real-world applications

where high-frequency data may not be readily available. This aspect of the model shows

great promise for widespread implementation in various residential and commercial set-

tings, promoting energy efficiency and cost savings.

Furthermore, this thesis explores the potential of the GNN-LSTM model in forecast-

ing future energy consumption patterns of individual appliances. This model’s approach,

which integrates controlled graph representation with an attention mechanism, enhances
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interpretability and prediction accuracy. Such capabilities are crucial in developing smart

energy systems that can adapt and respond to changing consumption patterns, thereby op-

timizing energy usage.

Our simulation results demonstrate the efficacy of both models, highlighting their po-

tential to transform energy management in residential environments. The findings sug-

gest that these models can play a pivotal role in advancing proactive energy management,

contributing significantly to the evolution of intelligent and sustainable smart homes. By

enabling more precise and efficient energy usage, these models support efforts in energy

conservation and play a crucial role in mitigating the environmental impact of energy con-

sumption.

The impact of this research extends beyond just its technical successes. It helps achieve

the larger aim of sustainable living by improving how we monitor and predict energy use.

Using these models in smart homes could significantly lower unnecessary energy use, sup-

porting worldwide initiatives to cut down on carbon emissions and fight against climate

change. The results lay the groundwork for upcoming studies in NILM and smart energy

management. The development of the CNN-BILSTM and GNN-LSTM models marks a

major advancement in the quest for more efficient and intelligent energy use in domes-

tic applications. As the global community shifts towards sustainable energy solutions, the

methodologies introduced in this research provide essential contributions to this critical

area.

Nevertheless, despite the encouraging outcomes, there are limitations that should be

acknowledged. For instance, the effectiveness of these models across various environmen-

tal settings and with different types of appliances requires more study. Future research

could concentrate on improving the robustness of these models against diverse data sets

and real-life situations. Moreover, investigating how these models can be combined with

other smart home technologies might pave the way for more comprehensive home energy
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management systems.
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