
Accelerating Graph Networks for Real-Time Physics
Simulation

Mohammad Jasim Usmani

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

January 2024

c©Mohammad Jasim Usmani, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mohammad Jasim Usmani

Entitled: Accelerating Graph Networks for Real-Time Physics Simulation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Internal Examiner and Chair
Dr. Maria Amer

External Examiner
Dr. Charalambos Poullis

Supervisor
Dr. Krzysztof Skonieczny

Approved by
Yousef R. Shayan, Chair
Department of Electrical and Computer Engineering

2024
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Accelerating Graph Networks for Real-Time Physics Simulation

Mohammad Jasim Usmani

Physics-based simulations analyze interactions between physical objects, especially in areas

such as terramechanics to study the interaction between soil particles. By modern standards, most

computer simulations run at 60 Hz or 120 Hz refresh rates, equating to real-time step size require-

ments of 16 ms or 8 ms, respectively. The discrete element method (DEM) models the interactions

between the soil particles accurately, but it requires a lot of computational power. Graph Network

Simulator (GNS) presents a promising alternative where it uses graph neural networks to learn

and approximate the dynamics of the physical system fed into it. Although this method is faster

than conventional models, the high dimensionality of the dataset means that the inference happens

on a very large graph and rollouts do not occur in real-time. To accelerate the simulation, Haeri

and Skonieczny (2021) developed a method that uses dimensionality reduction techniques such as

principal component analysis (PCA). This method identifies the top principal components or PCA

modes in the dataset that carry the highest variance. The next step is to feed these modes into the

GNS along with the rigid body to train the model. Even though the reduced-order dataset results in

a much smaller graph than the original dataset, the modified real-time GNS does not use algorithms

such as nearest neighbours during adjacency graph construction for training and inference because

the interaction between the rigid body and PCA modes may not be proximity-based. The graph fed

into the network is naively fully connected. The contribution of this research is to propose a partial

graph framework for the GNS to further accelerate this subspace framework without compromising

the performance. To identify the redundant connections in the adjacency graph, Neural Relational

Inference (NRI) is used. The NRI model, based on a variational autoencoder, uses the encoder to

extract a partial graph between the PCA modes. This graph contains the most important edges that

iii

can still be used to perform inference on the GNS without any significant loss in accuracy. The

effectiveness of this approach has been tested on blade cutting as well as wheel datasets to generate

simulation at 60 Hz. This framework has reduced the inference time for excavation blade-driven

granular flow from (0.34 - 0.48) seconds per second of simulation to (0.12 - 0.15) seconds and from

0.37 seconds to 0.18 seconds for wheel driven granular flow, achieving approximately 3x and 2x

speed up respectively.

iv

Acknowledgments

I would like to extend my heartfelt gratitude to Dr. Krzysztof Skonieczny, my supervisor, for

his exceptional guidance and unwavering support throughout the completion of this thesis. Dr.

Skonieczny’s expertise and mentorship have been instrumental in shaping the direction of this re-

search, and I am truly fortunate to have had the opportunity to work under his guidance.

I am also deeply indebted to my parents Rashid Alam and Zeba Mehfooz for their support,

encouragement, and love. Their belief in my abilities and constant encouragement have been a

driving force behind my academic journey, and I am grateful for the sacrifices they have made to

ensure my success.

I would also like to express my gratitude to my labmates in the Aerospace Robotics Lab. The

collaborative and stimulating environment within the lab has not only facilitated the exchange of

ideas but has also contributed to the overall success of this research project. The shared passion for

innovation and the collective pursuit of knowledge have made the research process both fulfilling

and intellectually rewarding.

A special acknowledgment is also due to CM Labs Simulation for their generous research fund-

ing and invaluable technical guidance. The support provided by CM Labs Simulation have signifi-

cantly enriched the depth and scope of this research, and their commitment to advancing innovation

in the field has been a driving force behind the success of this thesis.

This thesis is a testament to the collective support and encouragement I have received from

Dr. Krzysztof Skonieczny, my family, CM Labs Simulation, and my labmates. Each has played a

crucial role in shaping my academic and personal growth, and for that, I am truly thankful.

v

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Related Work . 3

1.4 Contributions . 9

1.5 Thesis Outline . 10

1.6 Publication . 10

2 Related Work: Real-Time GNN based Simulation 11

2.1 Graph Neural Networks . 12

2.2 Graph Network Architecture . 14

2.3 Dataset . 16

2.4 Dimensionality Reduction . 18

2.4.1 Principal Component Analysis . 18

2.4.2 Kernel Principal Component Analysis . 19

2.5 Graph Network Simulator: Training and Inference 21

3 Accelerating Real-Time GNN based Simulation 25

3.1 Variational Autoencoder . 26

vi

3.2 Neural Relational Inference . 29

3.2.1 Training and Inference . 31

3.3 Accelerating Subspace Graph Network Simulator for rigid body driven granular

flows using NRI generated partial graph . 33

3.4 Rigid Body Correction by Least Square Fitting of 3D points 37

3.5 Training Noise . 39

3.6 Rollout . 40

4 Conclusion and Future Work 55

4.1 Limitations and future work . 56

Appendix A Notations 61

Bibliography 64

vii

List of Figures

Figure 2.1 Sample Graph . 13

Figure 2.2 Message passing steps in a graph . 14

Figure 2.3 Graph Network Architecture . 15

Figure 2.4 Particles representing rigid body (dotted lines are for visualisation) 17

Figure 2.5 Ground truth, PCA reconstruction and kernel PCA reconstruction of the ex-

cavation example . 21

Figure 2.6 GNS formulation for training and rollout for accelerated rigid body driven

granular flow where S refers to the full space granular particle position, S refers to

the PCA reduced granular particle positions, R refers to the particles representing

rigid body, F refers to the force acting on the rigid body. 23

Figure 3.1 Variational Autoencoder . 27

Figure 3.2 The Neural Relational Inference (NRI) architecture (Kipf, Fetaya, Wang,

Welling, & Zemel, 2018) . 29

Figure 3.3 Interaction between PCA modes and rigid body at time 1 second, 3 second

and 5 second. 31

Figure 3.4 MSE loss in NRI for training and validation steps 32

Figure 3.5 Output from NRI: partial graph representing the interaction between PCA

modes for wheel and excavation datasets. 34

Figure 3.6 Partial graph for excavation driven granular flow. 35

Figure 3.7 Partial graph for wheel driven granular flow. 36

Figure 3.8 Rigid body correction at t = 220 for wheel driven granular flow. 38

viii

Figure 3.9 Impact of random noise on the particles representing rigid body (wheel) . . . 40

Figure 3.10 GNS formulation for rollout with NRI assisted partial graph for accelerated

rigid body driven granular flow where S refers to the full space granular particle

position, S refers to the PCA reduced granular particle positions, R refers to the

particles representing rigid body, F refers to the force acting on the rigid body. . . . 41

Figure 3.11 Ground Truth and Prediction of the excavation driven granular flow at time

1 second, 3 second and 5 second. 43

Figure 3.12 Histogram of error between particle positions of the ground truth and pre-

diction of the excavation driven granular flow. 44

Figure 3.13 Ground Truth and Prediction of the wheel driven granular flow at time 1

second, 3 second and 5 second without rigid body correction. 45

Figure 3.14 Ground Truth and Prediction of the wheel driven granular flow at time 1

second, 3 second and 5 second with rigid body correction. 45

Figure 3.15 Ground truth and prediction of the interaction forces 46

Figure 3.16 Ground truth and prediction of the force in 9 different test examples for

wheel driven granular flow simulation without rigid body correction. 48

Figure 3.17 Histogram of error between particle positions of the ground truth and pre-

diction of the wheel driven granular flow. 49

Figure 3.18 Ground truth and prediction of 3 different test examples for excavation driven

granular flow simulation at time 5 seconds. 50

Figure 3.19 Ground truth and prediction of 3 different test examples for excavation driven

granular flow simulation at time 5 seconds. 50

Figure 3.20 Ground truth and prediction of 3 different test examples for wheel driven

granular flow simulation with rigid body correction at time 5 seconds. 51

Figure 3.21 Ground truth and prediction of 3 different test examples for wheel driven

granular flow simulation with rigid body correction at time 5 seconds. 51

Figure 3.22 Ground truth and prediction of the force in 9 different test examples for

excavation driven granular flow simulation. 52

ix

Figure 3.23 Ground truth and prediction of force in 9 different test examples for wheel

driven granular flow simulation with rigid body correction. 53

Figure 4.1 Motion Mixer architecture for excavation datasets. Here SE is squeeze and

excitation and CCSE is concurrent channel and spatial excitation. 57

Figure 4.2 Motion Mixer prediction for excavation datasets at time 1 sec, 3 sec and 5

sec. Here SE is squeeze and excitation block and CCSE is concurrent channel and

spatial excitation. 58

x

List of Tables

Table 2.1 Details of the excavation and wheel dataset. Here Motion 1 and 2 refers to

discrete ramp-horizontal-ramp motion and continuous curved motion respectively

(Haeri & Skonieczny, 2022). 17

Table 3.1 Run time comparison of rigid body driven simulation using Material Point

Method (MPM), full space GNS (FS), subspace GNS with fully connected graph

(FCG) (Haeri & Skonieczny, 2021) and subspace GNS with partially connected

graph (PCG). The excavation blade is represented by 15a and 20b particles while the

wheel is represented as 16 particles. GPU1 : NVIDIA GeForce RTX 3080 10GB,

GPU2: NVIDIA Tesla P6 16GB, CPU1: Intel Core i7-10700 2.9GHz 8-Core, and

CPU2: Intel Core i7-6700 3.4GHz Quad-Core. 42

Table 3.2 Wheel without rigid body correction (NC) and wheel with rigid body correc-

tion (C): position mean squared error and force mean percentage error in accelerated

GNS rollout. 47

Table 3.3 Wheel and Excavation (Exc.) position mean squared error and force mean

percentage error in accelerated GNS rollout with fully connected graph (FCG) (Haeri

& Skonieczny, 2021) and partially connected graph (PCG). 54

xi

Chapter 1

Introduction

1.1 Motivation

Space exploration missions to celestial bodies such as moon and mars require planetary rovers

for exploration. These rovers operate on an unusual terrain with different gravity levels to under-

stand and map the terrain. Understanding the wheel-terrain interaction on these celestial bodies is

essential as this helps in designing the rover wheels and installing the right tools to carry out exper-

iments for exploration. In terrestrial applications, understanding the dynamic interaction between

construction machinery wheels and the soil is essential for the development of real-time simulators.

This type of interaction model is deployed in the construction of simulators by CMLabs Simulations

which are designed for training operators. To model the interaction between the martian and lunar

soil, Discrete Element Method is a promising approach with high accuracy. However, simulating

granular flow and physics-based simulations are generally computationally intensive and expensive.

These simulations necessitate a prior understanding of the underlying physics of the environment

and objects involved, posing challenges in developing real-time simulators with both accuracy and

efficiency. Specifically, modelling situations like robot-terrain interaction and soil interaction with

excavators is particularly difficult. Real-time simulators are crucial for visualizing the interaction

of granular particles with various objects, however, achieving computational efficiency remains a

significant obstacle.

TheMars Rover Spirit encountered a challenging situation as it became immobilized and trapped

1

in a soft regolith terrain. When faced with the entrapment of vehicles in extraterrestrial environ-

ments, the application of real-time simulators emerges as a valuable tool for informed decision-

making. These simulators can also be used for the dynamic recreation of scenarios wherein the

rover’s wheels can be steered at varying angles, aiding in the exploration of optimal strategies to

steer the rover out of its entrapment.

In the case of planetary exploration and rover design, modelling the impact of gravitational

forces on granular flow dynamics, particularly the interaction with rigid structures like wheels or

excavation blade is very essential in understanding and developing wheel designs. Nonetheless,

the validation of these design concepts through physical experiments is challenging which requires

parabolic flights to simulate microgravity conditions. Previously, Skonieczny, Niksirat, and Nas-

siraei (2017) have extensively worked on developing and testing the effect of gravity on wheel

using a single wheel test bed in a parabolic flight to study the effect of gravity (Niksirat, Daca, &

Skonieczny, 2020; Skonieczny, Niksirat, & Nassiraei, 2019). In this context, real-time simulators

emerge as a highly promising solution for evaluating the performance of various wheel designs in

challenging terrains akin to those encountered on celestial bodies such as Mars or the Moon. These

real-time simulators can facilitate the systematic exploration of diverse wheel configurations and

their response to complex terrain conditions while avoiding the need for repeated physical experi-

mentation.

Construction machinery frequently interacts with granular substances through their wheels and

excavation tools. The simulation of these interactions for operator training is also a very impor-

tant application of real-time simulators. This research is facilitated by an industrial partner, CM

Labs Simulations, a company that creates training simulators for a wide range of heavy machinery,

including various types of construction vehicles. The precision and real-time simulation of the in-

teraction between machines, terrain and granular particles is vital for the visual accuracy of these

simulators for training operators.

2

1.2 Problem Statement

Modelling granular flow interactions for large scale particles is computationally expensive and

often time consuming. With advancements in neural network architectures, models can learn com-

plex dynamics and interpret intricate patterns within a dataset. In the case of granular flow, interac-

tions can be modelled as a graph where each particle represents a node. Graph network simulator

(GNS) (Sanchez-Gonzalez et al., 2020) uses graph neural networks to learn and approximate the

dynamics of the physical system fed into it. Even though this is faster, due to the high dimensional-

ity of the dataset, the inference is performed on a very large graph and rollouts are not in real-time.

To accelerate the simulation, one way developed recently in our laboratory is to use dimensional-

ity reduction techniques such as principal components analysis to identify the modes in the dataset

that carry the highest variance (Haeri & Skonieczny, 2021). These reduced-dimension modes are

then fed into the GNS along with the rigid body to train the model. Although the reduced-order

dataset results in a much smaller graph than the original dataset, the graph fed into the network is

still naively fully connected because the relationship between the particles representing the rigid

body in full-space and reduced soil particles in sub-space (PCA modes) is unknown. In the devel-

opment of real-time simulators, which are powered by machine learning techniques and operate at a

refresh rate of 60 Hz, the primary criterion is to achieve a minimal response time of 16 milliseconds

and a low positional error when compared to the ground truth. Additionally, the force metric is of

significant importance, particularly in scenarios where the simulator is required to provide haptic

feedback to the user. This research aims to further accelerate this subspace framework by identi-

fying a partial graph framework for excavation and wheel driven granular flows using the graph

network simulator without any significant compromise on the positional accuracy of the particle

predictions.

1.3 Related Work

Terramechanics-based models are computationally efficient due to their simplicity, however,

they are not considered as of the highest fidelity due to some of their assumptions. In the case of

Bekker-Wong model, soil dynamics or wheel dynamics are not considered which limits its ability to

3

capture the complexities of the wheel-soil interaction (McCullough, Jayakumar, Preston-Thomas,

Hodges, & Shoop, 2017). These models do not offer a consistent mechanism for accurately rep-

resenting how terrains respond to varying gravitational conditions, despite some attempts over the

years (Kovács et al., 2019; Wong, 2012). In the Discrete Element Method (DEM) approach, soil

is represented as a group of discrete particles that interact with each other and can also model the

interaction with a rigid body such as a wheel, directed by the principles of physics. DEM is widely

acknowledged for its superior accuracy in terramechanics modeling, but has a higher computational

demand (Karpman, Kövecses, Holz, & Skonieczny, 2020). Gravity is explicitly incorporated within

its formulation, which makes it well-suited for modelling the soil behaviour in environments char-

acterized by gravity (Nakashima, 2011).

Material point method (MPM) uses a hybrid computational approach that combines elements

of both Eulerian and Lagrangian frameworks. These materials can be represented as points within

a stationary computational grid which has the capacity to simulate physical motion and shape de-

formation based on the laws of physics. Haeri and Skonieczny (2022) implemented a 3D material

point method with non-local granular fluidity (NGF-MPM) which precisely computes the internal

forces and was also validated using lab experiments. This high fidelity model is able to generate

rigid body interaction with granular particles such as soil with very high accuracy. Specifically, it

focussed on generating simulation for excavation driven granular flow at various angles and depths

as well as wheel driven granular flow with varying wheel diameters and with varying gravity levels.

Although DEM- and MPM-based methods offer high accuracy they are generally not real-time. For

the case of NGF-MPM, it took around 270 sec to generate one second of simulation which clearly

does not make it usable for real-time applications (Haeri & Skonieczny, 2021).

Accelerating simulations using machine learning. With the advancements in neural network

architectures, the generalization abilities of deep learning models have improved exponentially.

These architectures have the ability to extract and learn the dynamics of the input data. These neu-

ral networks are capable of learning and simulating physical interactions many orders of magnitude

quicker than conventional methods as the machine learning algorithm comprises of model archi-

tecture and the trained weights of the network. The training process involves the utilization of a

substantial volume of simulation data, which is fed into the network to facilitate learning. Through

4

this training, the network acquires an understanding of the complex dynamics embedded in the

simulation data. During the inference phase, the trained neural network serves as a fast emulator,

approximating the physics solver and predicting future interactions within the environment. In a

study by Kasim et al. (2021), rapid emulators were developed using convolutional neural networks

for diverse applications, including astrophysics, seismology, and biogeochemistry. Employing a

novel method based on neural architecture search, the authors achieved a runtime acceleration of

2 billion times when running the inference step using graphics processing units (GPUs). To in-

vestigate real-time generation of physical interaction between various objects such as cloth based

interactions in a gaming environment, Holden, Duong, Datta, and Nowrouzezahrai (2019) utilized

a multi-layer perceptron (MLP) which was trained on synthetic data generated through a physics

solver. They reduced the dimensionality of the dataset using principal component analysis (PCA)

to mitigate high space complexity of the model. The model was trained to predict the next time

frame based on a window of the dataset, resulting in acceleration ranging from approximately 300

to 5000 times for various physical interactions such as object collisions and cloth movement. To

accelerate the computations within MPM, J. Li et al. (2023) introduced a new approach for learning

the parameters using neural networks to predict pressure fields between the particles and the grids

within MPM. MPMNet architecture contains three blocks in their architecture, an encoder followed

by a convolutional long short-term memory block and a decoder which led to an acceleration by

28 times. A novel formulation of the transformer architecture specifically for generating particle

based simluations was developed by Y. Shao, Loy, and Dai (2022). The core idea of transformer

with implicit edges (TIE) is the decentralization of paired particle interaction calculations, which is

achieved by means of per-particle updates. By adapting the self-attention module so that it imitates

the update method used for graph edges in Graph Neural Networks (GNNs), the model decentral-

izes the predictions. TIE stands out as a potentially useful method for modelling intricate particle

interactions without the need for clearly defined edges which makes it computationally efficient

when generating rollouts on large number of particles and reported lower mean squared error values

as compared to graph network simulator (Sanchez-Gonzalez et al., 2020).

Graph networks. Architectures based on geometric machine learning (Gilmer, Schoenholz,

Riley, Vinyals, & Dahl, 2017) have been successful in modelling the particle-particle interaction

5

by making the model learn the underlying physics by using graph neural networks using message

passing. Here, the information from the neighbouring nodes in the graph are aggregated together

which then used to update the state of each node in the graph. The graph network algorithm for

message passing which was developed by Battaglia et al. (2018) can capture the dynamics with

higher accuracy as it updates the global features along with the node and edge attributes. The

graph network simulator (GNS) as proposed by Sanchez-Gonzalez et al. (2020) is based on the

graph network architecture for capturing the physical dynamics of examples such as sand collision

and water splash. The GNS uses a segment of the particle positions as a time series input and

the GNS learns to predict the position of the particles in the next time step. Z. Li and Farimani

(2022) modified the graph network formulation to simulate fluid by using two different GNN blocks

namely node-focussed networks which are used to learn the advection while the edge-focussed

networks learn the elastic collision. This results in a lower number of parameters in the network,

thus making them around 8 times faster in generating predictions as compared to GNS. H. Shao

et al. (2021) improved the performance of the position-based dynamic solver where the correction

step is solved iteratively for simulating rod dynamics and requires initial guesses. To improve the

accuracy, the graph network is employed to make initial guesses to generate the simulation which

led to a better run time performance. In order to better simulate physical system, a graph network

with neural ordinary equation was developed as tested on gravity and coulomb based particles which

was compared against GNS where it performed slightly better with lower RMSE values (Shi, Zhang,

Jin, Pan, & Yu, 2023).

Pfaff, Fortunato, Sanchez-Gonzalez, and Battaglia (2021) proposed modifications to graph neu-

ral network to adapt them to learning mesh-based simulations such as moving cloth, flag and

even aerodynamics. Using message passing, the network successfully extracts the dynamics us-

ing encode-process-decode architecture (Battaglia et al., 2018) and beat all the baselines in terms

of accuracy and rollout performance. The study by Lino, Fotiadis, Bharath, and Cantwell (2022)

introduces two novel graph neural network (GNN) architectures multi-scale-GNN (MS-GNN) and

rotation-equivariant-multi-scale-GNN (RE-MS-GNN) designed explicitly for learning fluid flow dy-

namics to predict future interactions. The RE-MS-GNN incorporates rotational equivariance in its

6

model design, significantly improving the network’s capacity to learn underlying dynamics and ac-

celerating simulations by four to five times compared to conventional simulation methods. A study

by Allen et al. (2023) debunked the assumption that graph network based models do not have the

ability to learn the rigid body dynamics without the aid of some contact model. This assertion is

examined through experiments conducted on well-established real and simulated datasets, revealing

that general-purpose graph network simulators, without any type of contact-specific assumptions

still possess the capability to generalize and predict accurate contact discontinuities. Interestingly,

compared to finely tuned robotics simulators, the contact dynamics obtained by graph network sim-

ulators show a slightly higher degree of precision in the case when replicating actual cube throwing

trajectories.

While graph neural networks offer the potential to learn complex systems and accelerate con-

ventional simulation methods, there remains a computational challenge associated with graph for-

mation for modelling dynamics. This challenge becomes evident when simulating systems with a

substantial number of particles, resulting in a notably large graph structure. This, in turn, requires

higher computational power when employing the network for inference. To address this (Haeri

& Skonieczny, 2021; Holden et al., 2019) used principal component analysis (PCA) to reduce the

size of the dataset fed to neural network using PCA to accelerate the inference time. Haeri and

Skonieczny (2021) used the NGF-MPM (Haeri & Skonieczny, 2022) to generate the training dataset

for wheel and excavation driven granular flow. With PCA, nearly 6000 particles were reduced to 8

PCA modes which captured the maximum variance in the dataset. The position of the PCA modes

and the particles representing the rigid-body along with the force acting on the rigid-body was fed

to the GNS during training. Thus, the smaller graph structure led to a real-time rollout which was

almost 700 times faster than the original NGF-MPM implementation.

However, the graph formation in this modified version does not have any specific formulation

and uses a fully connected graph. As the particle interaction in the subspace may not be based on

nearest neighbor, some edges in the graph maybe redundant and not contribute in the graph learning

the process. Therefore, finding a relationship between the principal components and rigid body can

reduce the time and space complexity when training as well as testing the model. One way is to use

Neural Relational Inference (NRI) Kipf et al. (2018) which is a variant of variational autoencoder

7

models, characterized by latent spaces structured as graphs. This particular model finds application

in the prediction of particle trajectories. The fundamental methodology employed by NRI involves

leveraging the encoder of a variational autoencoder to probabilistically generate a graph by utilizing

the provided data trajectory as input. This process entails the utilization of a graph neural network as

the encoding mechanism. Subsequently, the resultant interaction graph functions as a latent variable

denoted as z, which is subsequently integrated into the decoder. Here, zij signifies the presence or

absence of an edge between nodes i and j in the graph. Using the trained encoder, we can sample out

the latent space to reveal the most important edges in the graph which can then be used in training

graph network simulator (GNS) for faster inference without any significant drop in accuracy.

Optimizing graph networks. The rising complexity of advanced Deep Neural Network (DNN)

models has created considerable hurdles in the area of performance optimization, particularly in the

form of large memory use and increased processing requirements. As a result, these complica-

tions have made the real-time deployment of such models quite challenging. In order to accelerate

inference time in deep neural networks, model compression techniques such as pruning and quan-

tization are some of the most common approaches. Pruning is a method for compressing models

that involves removing specific neurons from neural networks with an emphasis on disregarding the

neurons with the lowest weight magnitudes (Z. Li, Li, & Meng, 2023; Tailor, Fernández-Marqués,

& Lane, 2020). The pruning process typically follows a sequence: the initial training of the base

model, the subsequent ranking of model weights to identify the most significant ones, and the re-

moval of weights falling below a specified pruning threshold. The pruned model is then subjected to

re-evaluation and further training. However, the higher the pruning threshold the higher the potential

drop in accuracy.

Quantization is also a common method for model compression where the values of the weights

and the biases are reduced to a lower precision value. Reducing the precision of the model weights

leads to a lower memory requirement and faster inference time (Z. Li et al., 2023; Tailor et al.,

2020). A dynamic pruning method was introduced by Liu et al. (2022) for Graph Neural Networks

(GNNs) which is integrated within training procedure. Unlike other methodologies, comprehensive

graph pruning (CGP) integrates the pruning process by eliminating redundant connections during

8

the model training due to which the need for retraining is eliminated, significantly reducing com-

putational costs. The co-sparsifying technique introduced by CGP addresses the optimization of

three primary components in GNNs: graph structures, node characteristics, and model parameters.

This approach not only eliminates the node feature dimensions but also streamlines both the graph

structure and model parameters. Along with this, CGP incorporates a regrowth process into its

methodology, ensuring the efficacy of the pruning operation. Through reintroducing the pruned

connections which were crucial for the performance of the GNN, this procedural step safeguards

the model’s functionality from any adverse effects resulting from the pruning process. Gao et al.

(2022) introduced a new approach to accelerate the training and inference when a sizable graph

dataset is being used in a GNN model. In GNNs, each node in the graph must spread its character-

istics to its neighbours during the inference process. However, since the same characteristics may

propagate more than once via several pathways, the conventional propagation order may result in

duplicate calculations. Every node has a different propagation order using the adaptive propagation

order approach, which is determined by its topological information. A node with a high degree,

for example, one that is linked to a large number of other nodes, may see its characteristics propa-

gate sooner than a node with a low degree. This guarantees that the most significant characteristics

spread first, cutting down on needless calculations and thus accelerating the inference process.

1.4 Contributions

The thesis makes the following contributions:

1. Identifies a partial graph framework for Subspace Graph Network Simulator (GNS), assisted

by the Neural Relational Inference (NRI) method for the graph network as input that keeps

most of the information.

2. Accelerates the real time performance of the graph network simulator (GNS) using the partial

graph framework for simulating the dynamics of granular flows propelled by rigid bodies and

the interacting forces on a standard GPU (NVIDIA GeForce RTX 3080) with 10 GB VRAM.

9

1.5 Thesis Outline

The structure of the thesis is as follows: Chapter 2 is focused on the graph neural networks as

well as the graph network architecture with the modifications made to adapt it to real time simulator

for granular flows. It also addresses the dataset used for the GNS as well as NRI and mentions

the dimensionality reduction of the dataset using PCA and kernel PCA. The chapter concludes by

discussing the existing framework of the graph network simulator, specifically formulated for sim-

ulating real-time rigid body-driven interactions in granular flows. In Chapter 3, the focus shifts to

Neural Relational Inference (NRI) model, its implementation and the formulation of partial graph

framework for accelerating the GNS for the case of excavation and wheel-soil interaction. The chap-

ter ends by discussing the results both quantitatively and qualitatively. Finally, the thesis document

concludes in Chapter 4 by discussing the limitations of using partial graph with GNS for training

and inference along with suggestions for future works. The source code is available on GitHub1.

1.6 Publication

1. Mohammad Jasim Usmani and Krzysztof Skonieczny,Accelerating Graph Networks for Real

Time Physics Simulation”, 6th European - African Regional Conference of the ISTVS, Lublin,

Poland, October 2023.

https://github.com/jasimusmani/acc ssgp1 10

https://github.com/jasimusmani/acc_ssgp

Chapter 2

Related Work: Real-Time GNN based

Simulation

Modelling the physical dynamics of granular flows is very computationally intensive and is com-

monly approached by Discrete Element Method (DEM) as well as continuum based methods. As

these models are no where near real-time, their use case becomes limited. To address the challenge

of modelling the dynamics, a novel approach based on Graph Neural Networks was introduced by

Sanchez-Gonzalez et al. (2020) to simulate physics based interactions. They employed a graph net-

work architecture proposed by Battaglia et al. (2018) to learn the underlying dynamics of various

physics simulations involving substances like sand, water, and goop. The proposed Graph Network

Simulator resulted in accurate rollout performance as well as generalization. Even though the GNN

based approach reduced the time complexity, this was still far from real-time rollout. To tackle

the problem of real-time simulation for wheel-terrain interaction as well as excavation blade-driven

granular simulation interaction, Haeri & Skonieczny (2021) proposed to reduce the granular data to

reduced PCA modes and fed these to the Graph Network along with the particles representing an

interacting rigid body. A similar approach was previously proposed by Holden et al. (2019) for us-

ing PCA modes and training neural networks on subspace dataset to generate real-time simulations

of different objects for video games. Using subspace data instead of full space data significantly

decreased the space complexity which reduced the graph size significantly. This led to real time

11

rollout and up to 300 to 5000 faster times than the conventional simulation method.

In section 2.1, this chapter shall elucidate the contextual underpinnings of graph neural net-

works. Subsequently, section 2.2 shall undertake an explanation of the architectural aspects of graph

networks as applied to physics-based simulations (Sanchez-Gonzalez et al., 2020). Further, section

2.3 will provide a detailed explanation of the dataset employed in the training of the Graph Network

Simulator (GNS), while section 2.4 will delve into the theoretical details of Principal Component

Analysis (PCA) in section 2.4.1. This segment shall also encompass an exploration of kernel PCA

in section 2.4.2 and a critical analysis of its inapplicability within the present context. In section

2.5, our focus shall be directed towards the adaptation of the graph network simulator originally

introduced by Haeri and Skonieczny in 2021 which will be dedicated to the analysis of the training

and inference processes associated with the modified GNS.

2.1 Graph Neural Networks

Graph is data structure that is usually formulated by nodes and edges where the nodes are

connected to edges depending upon their relationship. Some naturally occurring graph based data

structures could be elemental structure of the chemical compounds where the nodes are the elements

and the edges represent the bond between them. Even the interaction of physical systems such as

wheel-terrain interaction can be categorized in the form of graph data structure where the nodes can

be the soil particles while the edges can be the distances between the particles (Sanchez-Gonzalez

et al., 2020).

In the context of graph theory, a fundamental means of characterizing a graph is by means of

its adjacency matrix. This matrix serves as a concise representation wherein the rows and columns

are uniquely associated with the nodes constituting the graph. Within the adjacency matrix, entries

may assume one of two forms: binary, denoting the presence or absence of a connection between

nodes, where ’1’ signifies an established connection, and ’0’ refers to the absence of connection; or

weighted, where entries assume non-binary values, often representing the significance or strength

of the connections.

12

(a) A fully connected graph with 8 nodes (b) Adjacency matrix

Figure 2.1: Sample Graph

It is crucial to distinguish the graph data structure from other modalities such as images when

training with simple neural network for training. Unlike images, the adjacency matrix of the graph

does not work well if we try to directly flatten the adjacency matrix to feed into neural network

architectures. Attempting to do so would result in a network architecture reliant on the specific

ordering of elements within the adjacency matrix. Consequently, such a network would inherently

lack permutation invariance or equivariance, making it unsuitable for tasks that require robustness

to changes in the order or arrangement of graph nodes. This structural difference in graph based

data structures necessitates specialized framework for effectively modelling graph based data within

neural network frameworks.

Graph Neural Network (GNN) utilizes a neural message-passing mechanism, wherein vector-

ized messages are interchanged among nodes within the graph and these messages are updated using

neural networks. For a graph G where u, v and e are global, node and edge features respectively.

hu, hv and he are global, node and edge embeddings respectively. The message passing can be

formally described as follows:

mssg(k)N(vi)
= AGGREGATE(k)

!
h(k)vi

"" ∀vi ∈ N(vi)
#

(1)

h(k+1)
vi = Update(k)

!
hkvi ,AGGREGATE

(k)
!
hkv′i

"" ∀v′i ∈ N(vi)
##

(2)

13

Figure 2.2: Message passing steps in a graph

To generate a message for a node vi the message passing function aggregates the features from

all the the neighbouring nodes using a neural network while the update the function also uses a

neural network to update the node embedding. As the order does not matter during the process

of aggregation, this formulation is permutation invariant and equivariant. The number of message

passing step decides the depth of the graph when aggregating the messages from the neighbouring

nodes. Higher message passing steps leads to accumulation of messages from farther nodes as

shown in figure 2.2.

2.2 Graph Network Architecture

The Graph Network Simulator (GNS) utilizes graph networks (GN) (Battaglia et al., 2018) to

learn physics and extract underlying dynamics from the training data. In this context, the granular

particles can be represented as nodes in a graph, while the edges symbolize the interactions between

these particles. The graph network is a message passing framework which simultaneously generates

the edge embedding, node embedding as well as the global embedding.

The GN performs the update step in a sequence. It first compute the updated edge attributes (e′k)

followed by the per node aggregation of edge features (e′i).

e′k = φe(ek, vrk, vsk, u) (3)

e′i = ρe→v
$
E′
i

%
(4)

14

(a) Graph Network Block (b) Encode-Process-Decode

Figure 2.3: Graph Network Architecture

Using the aggregated edge attributes, it then updates the node attributes (v′i) followed by global

edge aggregation (e′).

v′i = φv(e′k, vi, u) (5)

e′ = ρe→u
$
E′% (6)

The node features(v′) are aggregated globally followed by the final global feature update (u′).

v′ = ρv→u
$
V ′% (7)

u′ = φu(e′, v′, u) (8)

where E′
i = {(e′k, rk, sk)}rk=i,k=1:Ne , V ′ = {(v′i)}i=1:Nv and E′ =

&
iE

′
i = {(e′k, rk, sk)}k=1:Ne .

Here, r and s are the receiver and sender respectively.

The GNS uses the GN algorithm to learn and update the features associated with the nodes

and edges. The GNS has three modules which are the encoder, processor, and decoder which

are built with the graph network architecture to embed, aggregate, and update the node, edge and

global features. Here, multi-layer perceptron (MLP) is used with rectified linear unit (ReLU) as

the activation function. Here, each MLP has two layers where the output layer has a size of 128

for the case of encoder and processor. The decoder has an output size of 6 as it predicts the three

dimensional acceleration and force.

Encoder: The encoder’s role is to represent the initial states of the particles as a latent graph,

15

with the particle positions serving as node features and the displacements between sender and re-

ceiver nodes encoded as edge features. Graph construction is accomplished using the nearest neigh-

bour algorithm, creating connections between sender and receiver nodes based on proximity.

Processor: The processor uses the interaction network as proposed by (Gilmer et al., 2017)

which is a subset of the GN algorithm to perform the message passing and update the initial graph

by the encoder. Multi layer perceptron is used for update and aggregation function in the network

and is permutation invariant.

Decoder: The decoder takes the updated graph from the processor to further decode the dy-

namics by predicting the position of the particles. To promote generalization and avoid error ac-

cumulation during inference, random-walk noise is added to the input training data to ensure that

the data distribution in the input is like the one in the rollout. The noise is sampled from a normal

distribution with zero mean and 6× 10−4 as the standard deviation which is hardcoded in the GNS

codebase (Sanchez-Gonzalez et al., 2020).

2.3 Dataset

In order to train the graph network simulator, dataset containing the particle trajectories are

generated using the MPM method as implemented by Haeri and Skonieczny (2022). The dataset

consists of 250 examples of excavation driven granular flow of two different sizes of excavation

blades, one which is represented as 15 particles arranged in a 3 × 5 array and 20 particles arranged

in a 4 × 5 array. The wheel dataset contains 243 examples where the wheel is represented as

two circular concentric circles represented by 8 particles each as shown in figure 2.4. The dataset

is partitioned into training, testing, and validation sets with proportions of 80%, 10%, and 10%,

respectively. The parameters of the examples of the training and testing dataset is a combination of

the parameters as show in table 2.1.

16

Table 2.1: Details of the excavation and wheel dataset. Here Motion 1 and 2 refers to discrete ramp-
horizontal-ramp motion and continuous curved motion respectively (Haeri & Skonieczny, 2022).

Excavation Parameter Values

Angle [deg] 0, 4, 10, 31, 45

Depth [cm] 2, 4, 5, 8, 10

Speed [cm/s] 1, 4, 8, 10, 15

Motion 1, 2

Wheel Parameter Values

Gravity [m/s2] 1.62, 3.72, 9.81

Friction [deg] 30, 37, 43

Load [N] 100, 164, 225

Diameter [cm] 5, 15, 30

Slip [%] 20, 40, 70

The dataset is fed in the form of tensors to the GNS and have 321 time steps per example. The

node features are positions of the soil particles along with the particles representing the excavation

blade and the forces on the rigid body. The position tensor is arranged in the shape (321, 4895, 3)

when the rigid body is represented by 15 particles and by (321, 4900, 3) when the rigid body is

represented by 20 particles. Here, 321 is the time steps, 4880 are the number of soil particles in

the simulation and 3 refers to the 3 dimensions of the position in x, y and z direction. The force

acting on the excavation blade is represented as (321, 3) where 321 is the time steps and 3 is the

dimensions in x, y and z direction.

(a) (b) (c)

Figure 2.4: Particles representing rigid body (dotted lines are for visualisation)

Similarly, in the case of wheel, the node features are position and forces which are in the shape

(321, 6021, 3) where 321 is the time steps or the number of frames, 6005 are the number of soil

particles in the simulation along with 16 particles representing the wheel and 3 refers to the 3

dimensions of the position in x, y and z direction. The force acting on the wheel is represented as a

17

tensor of shape (321, 3) where 321 is the time steps and 3 is the dimensions in x, y and z direction.

Along with node features, the wheel example also contains global features which indicates the

gravity value and the wheel diameter for each example.

2.4 Dimensionality Reduction

The main objective of the graph network simulator (GNS) is to capture the underlying dynamics

between the rigid body and soil particles. The soil particles constitute to more than 90% of the

dataset and the graph size is directly proportional to the number of particles. Here, having all the

particles as nodes makes the graph very large and leads to large graphics processing unit (GPU)

memory requirements for training the GNS. Moreover, the rigid body does not interact with all

the soil particles leaving majority of them still throughout. Therefore, in order to reduce the space

complexity of the model and to reduce the inference time, Haeri and Skonieczny (2021) used a fully

connected graph instead of using nearest neighbour for graph construction and applied principal

component analysis on the soil dataset and reduced them to pca modes.

2.4.1 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised linear dimensionality reduction tech-

nique which maps a high dimensional dataset to lower dimension by keeping the maximum variance.

This is achieved through the selection of a set of orthogonal axes known as principal components

which can be identified by the computing the eigenvalues and eigenvectors. The primary princi-

pal component captures the most substantial variation in the data, while the subsequent principal

components capture the maximum orthogonal variance. PCA has various applications such as di-

mensionality reduction, feature extraction and compression. In the case of soil particles, PCA acts

a feature selection method where the PCA modes that captures most of the variance in the dataset

are selected. The idea behind PCA is that valuable information is embedded within the variability

of individual features. Thus, when a feature exhibits higher levels of variation, it inherently carries

a more significant information. Haeri and Skonieczny (2021) used eigen value decomposition to

compute the principal components. For a data Xm×n, steps for PCA are shown below:

18

Algorithm 1 Principal Component Analysis for granular flow data reduction [Hotelling (1933),
Haeri and Skonieczny (2021)]

Input: X

Output: W

1: x̄ = 1
mn

!m
i=1

!n
j=1Xij

2: Y = Xm×n − x̄m×n

3: Cn×n = 1
n−1

Y TY

4: Cwi = λiwi (computing the eigenvalues and eigen vectors)

5: W = [w1, w2,, wn] (Sorted based on descending order of eigenvalues)

The eigenvectors (W) are arranged in the descending order of eigenvalues. The main advantage

of using PCA is the ease of mapping the dataset back which is essential in the case of simulat-

ing granular flow interactions for accurate visualization. However, it is not able to capture the

non-linearities present in the dataset. To capture the non-linearities in the dataset, a non-linear

dimensionality reduction technique such as kernel PCA can be used.

2.4.2 Kernel Principal Component Analysis

Kernel principal component analysis (Schlkopf, Smola, & Mller, 1998) is an extension of the

principal component analysis that maps the data to a higher dimensional space by using kernel

functions. Then PCA is applied to the data in the higher dimensional space by an appropriate

positive semidefinite kernel function. The kernel function computes the inner product between the

data points. The process of applying kernel PCA is described as follows:

Choose a kernel function. Some of the common kernel functions are linear function (K(xi, xj) =

xTj xi), polynomial function (K(xi, Xj) = (xTj xi+1)a) and radial basis field or gaussian (K(xi, xj) =

e
−#xi−xj#

2

2σ2).

For aM ×N data matrix x, kernel matrix matrix is computed as

Kij = κ(xi, xj) (9)

Compute the kernel matrix. The kernel matrix (K) is centered to ensure that the has zero

19

mean. This can done by subtracting the mean of the computed kernel matrix. Here, 1N is a N ×N

matrix with all elements equal to 1
N and N is the number of data points.

Kc = K − 1NKK1N + 1NK1N (10)

Eigen value decomposition (EVD). In order to calculate the eigenvalues and eigenvectors of

the centered kernel matrix, eigenvalue decomposition is used. Here, V is the eigenvectors and D is

a diagonal matrix containing the eigenvalues in descending order.

V DV T = EVD(Kc) (11)

Data Projection. To perform the non-linear dimensionality reduction on the dataset, the top

M ′ eigenvectors are used to transform to a higher dimensionality space where φ(x′) is the final

projected dataset of shapeM ×M ′ andV′ are the selected eigenvectors for transformation.

φ (xi) =
'
K (xi,x1) ,K (xi,x2) , . . . ,K

$
xi,x

′
M

%(
·V′ (12)

Reconstruction. In order to map back the data to the original space, pre-image for each data

point needs to computed (Bakir, Weston, & Scholkopf, 2003). This can be achieved by using the

kernel ridge regression (KRR) which constructs a mapping function. This function facilitates the

transformation of data from a lower-dimensional space into a higher-dimensional space. Within the

scope of kernel PCA, KRR finds application to compute the pre-image for each data point within

the original feature space. These pre-images are intended to closely approximate the corresponding

original data points. So, for every data point, the it learns a mapping function that seeks to establish

its pre-image within the high-dimensional feature space which can be used to reconstruct back to

the original space.

Dimensionality reduction was performed using kernel PCA on of the examples in the excavation

dataset. Through a systematic exploration of various kernel functions, it was found that the radial

basis field function with a specific parameter setting (γ = 0.04) exhibited the closest resemblance

to the ground truth. However, it is important to note that even with this selected kernel function, the

20

model’s performance still falls considerably short of accurately representing the actual dataset.

Kernel PCA demonstrates significant efficacy in capturing the nonlinear features within a dataset,

making it a valuable tool for various tasks. However, one challenge associated with Kernel PCA

is in the task of reconstructing the original dataset. The transformation into a higher-dimensional

space achieved by kernelization directs the data to be linearly separable in that dimension and re-

veals the nonlinear patterns, but the inverse mapping from the transformed space to the original

feature space is not straightforward, which poses difficulties for reconstructing the original dataset

which is essential for visualizing the inference from the GNS. Thus, Kernel PCA is not considered

further, and linear PCA is used in the remainder of this research for its ability to reconstruct the data

back to higher dimensional space without any significant loss in information.

Figure 2.5: Ground truth, PCA reconstruction and kernel PCA reconstruction of the excavation
example

2.5 Graph Network Simulator: Training and Inference

The GNS framework was extended for the case of rigid body driven granular flows (Haeri &

Skonieczny, 2021). The dataset for training the GNS was generated using high-fidelity Non-local

Granular Fluidity Material Point Method (NGF-MPM) simulations (Haeri & Skonieczny, 2022).

The GNS model trained on the excavation dataset primarily focuses on predicting two key aspects:

21

the position of granular particles and the force applied to the rigid body. In the case of wheel, the

GNS model faces a more intricate challenge. It not only predicts the positions of granular particles

but also predicts the positions of particles representing the rigid body.

The model is trained using ADAM optimizer (Kingma & Ba, 2017) and uses a single message

passing step for training and generating rollout. The GNS employs multi layer perceptron (MLP)

for update functions. Each MLP has a dimensionality of 128 with two hidden layers and uses

ReLU activations. The decoder also uses MLP but has an output dimensionality of 6 as it predicts

the interaction between granular flow and the rigid body (Haeri & Skonieczny, 2021). Random

walk noise with zero mean and standard deviation equal to 6.7 × 10−4 (hardcoded in the GNS

codebase (Sanchez-Gonzalez et al., 2020)) is added to the input training data to ensure that the data

distribution in the input is like the one in the rollout. This is to avoid error accumulation during

rollout.

Once the model is trained, the model is fed initial positions of the soil particles along with the

forces acting on the rigid body where the position of the soil particles gets reduced to PCA modes.

Then, the reduced PCA modes along with the rigid body position and forces is fed as input to the

trained GNS which predicts the next time step. The prediction is fed back again in autoregressive

manner to generate rollouts. This enables the trained GNS to continuously generate the prediction

by just providing the initial position and forces. Due the dimensionality reduction, the GNS learned

the dynamics between the interaction of the rigid body and the PCA modes. This reduced the the

nodes in the graph from 6016 particles to 24 particles in the case of wheel and 5000 particles to

28 particles in the case of excavation. This significant reduction in graph led to accurate real-time

performance on single standalone GPU during inference. The following changes were adapted by

Haeri and Skonieczny (2021) to the GNS for accurate and real time modelling of granular flow:

1. The dataset fed into the network includes the position of the rigid body (Ri), the interacting

force on the rigid body (Fi), and, nominally, the positions of the granular particles (Si).

2. To make the simulation real-time, the dimensionality of the granular particle position data

was reduced using Principal Component Analysis (PCA) to 8 modes (Si).

3. The GNS was adapted to predict not only particle positions but also the forces acting on the

22

rigid body.

4. The loss function was adapted to include the mean squared error of the predicted and ground

truth interaction force on the rigid body.

L
$
Zt, Zt+1; θ

%
=

)
Nv*

i=1

++ât+1
i − at+1

i

++2
,
/Nv +

+++F̂ t+1 − F t+1
+++
2

(13)

Here F̂ t+1 is the ground truth force and ât+1
i is the ground truth acceleration.

5. Instead of using the nearest neighbour algorithm for graph construction in the encoder, a fully

connected undirected graph was used for message passing and learning.

Figure 2.6: GNS formulation for training and rollout for accelerated rigid body driven granular flow
where S refers to the full space granular particle position, S refers to the PCA reduced granular
particle positions, R refers to the particles representing rigid body, F refers to the force acting on the
rigid body.

Through their formulation, the authors successfully achieved accurate real-time modelling of

excavation and wheel-soil interactions. Nevertheless, the graph construction approach employed in

23

the encoder module was a simplistic fully connected scheme. This approach incurs a time com-

plexity of O(Ne) when updating the edge features, where N represents the number of nodes in the

graph. Consequently, employing a smaller graph would decrease the time complexity and enhance

inference speed. This raises the question of identifying the optimal partial graph configuration that

minimizes the number of edges, consequently reducing the rollout time which is explored in chapter

3.

24

Chapter 3

Accelerating Real-Time GNN based

Simulation

In the context of graph neural networks, the adjacency matrix introduced in figure 2.1b, is a way

to directly represent the graph. The sum of the elements of the adjacency matrix (equal to the num-

ber of connections) is directly proportional to the inference time. Higher the number of connections

in the graph, the longer it takes during the message passing and the update step. This research aims

at identifying a sparser adjacency matrix of the graph that retains key connections. By reducing

the number of edges, the graph would facilitate faster inference time. Neural Relational Inference

(NRI), an unsupervised variational autoencoder model proposed by Kipf et al. (2018) takes in the

particle trajectories as input and gives a partial graph indicating the most important edges. Using

the encoder-decoder framework, NRI learns a latent representation of the input graph and identifies

the most important edges that take part in the interaction while neglecting the redundant ones. The

main contribution of the thesis is accelerating the modelling of rigid body-driven granular flows by

utilizing a partial graph instead of a fully connected one. The Neural Relational Inference model

is employed to identify the most optimal partial graph for the PCA modes that will reduce the

inference time without significantly sacrificing accuracy.

Within this chapter, section 3.1 starts with a formal introduction to the variational autoencoder

and provides mathematical insights into reparameterization trick used in its formulation. Further,

25

section 3.2 furnishes an explanation of the neural relational inference framework, highlighting its

architecture and the underlying loss function while section 3.2.1 describes the training procedure of

NRI for the application of rigid body driven granular flows. Subsequently, section 3.3 delves into

the discussion on accelerating graph networks, partial graph generation through the utilization of the

neural relational inference framework and formalizes the partial graph framework for GNS in the

case of rigid body driven granular flow simulations. Section 3.4 discusses a rigid body correction

technique that prevents any physical distortion in the rigid body during simulation followed by

section 3.5 which talks about the impact of training noise in the GNS. Finally the chapter ends

with section 3.6 which provides detailed description of training and rollout using GNS on partially

connected graph and compares the simulation results.

3.1 Variational Autoencoder

An autoencoder is a type of neural network designed to learn to recreate the input fed to it

(Rumelhart, Hinton, & Williams, 1986). The autoencoder generally consists of two parts, an en-

coder and a decoder. The encoder is designed to compress the input to a lower dimensional space

which is achieved by a bottleneck in the architecture. The decoder tries to reconstruct the input

back again from the lower dimensional space or latent space learned by the encoder. This process

of compression and reconstruction leads to the network learning and capturing the most important

features of the datasets. A variational autoencoder is designed to learn a probability distribution of

the latent space instead of a specific latent space. This enables the autoencoder to gain generative

abilities, as the latent space is probabilistic, new unique samples can be generated by sampling from

the learned latent space. Let latent space be represented by z and input data as x. The process of

observing the latent space can formulated as computing the posterior p(z | x).

p(z | x) = p(x | z)p(z)
p(x)

(14)

However, computing the evidence p(x) usually turns out to be intractable.

p(x) =

-
p(x | z)p(z)dz (15)

26

Figure 3.1: Variational Autoencoder

Therefore, in order to compute the posterior, the formulation of variational autoencoder uti-

lizes variational inference to find an approximate distribution q(z | x) which is similar to the

true posterior p(z | x). The final objective function is represented in equation 16, where the first

term represents the reconstruction loss and the second term is the regularization term which is the

Kullback-Leibler divergence between the approximated posterior and the prior to ensure that the

learned distribution resembles the chosen prior which is usually a standard normal distribution.

Lφ,θ(x) = Eqφ(z|x) [log pθ(x | z)]−KL [qφ(z | x)&pθ(z)] (16)

However, the backpropagation cannot take place due to due to presence of a stochastic node, which

restricts gradient computation. Formal justification can be described as follows (Gundersen, 2018).

For an expectation Ep(z) [fθ(z)], where fθ(z) is differentiable and parameterized over θ while p(z)

is the probability density function over which the expectation is calculated. The gradient computa-

tion with respect to theta is tractable.

∇θEp(z) [fθ(z)] = ∇θ

.-

z
p(z)fθ(z)dz

/

=

-

z
p(z) [∇θfθ(z)] dz

= Ep(z) [∇θfθ(z)]

27

The result shows that the gradient of the expectation (E) with respect to theta θ is the expectation

of the gradient with respect to theta, however this does not hold true when the probability density

function over which the expectation is calculated is also parameterized by θ.

∇θEpθ(z) [fθ(z)] = ∇θ

.-

z
pθ(z)fθ(z)dz

/

=

-

z
∇θ [pθ(z)fθ(z)] dz

=

-

z
fθ(z)∇θpθ(z)dz +

-

z
pθ(z)∇θfθ(z)dz

=

-

z
fθ(z)∇θpθ(z)dz + Epθ(z) [∇θfθ(z)]

Upon simplification, the first term may not be an expectation. The challenge arises when at-

tempting to compute the gradient of the density funciton that is parameterized and subject to opti-

mization. In essence, the dynamic nature of the distribution and its changing nature to variations in

the parameters leads to complexity for the computation of the gradient. This problem is addressed

by a reparameterization of the lower bound introduced by Kingma and Welling (2013). This implies

that we take a random sample from a normal distribution N(0, 1), and then transform it using the

learned mean µ and variance σ of the encoder for the input x as shown in equation 17. This gets rid

of the stochasticity and enables backpropagation in the network.

z = µ+ σ · '

z = gθ(!,x)

(17)

The reparameterized z can be used instead which makes it deterministic in nature and allows for

backpropagation for training the network. Using reparameterization, the gradient of the expectation

over a paramterized probability function is equal to the expectation of the gradient as shown in

equation 18.

Epθ(z) [f (z)] = Ep(") [f (gθ (!,x))]

∇θEpθ(z) [f (z)] = ∇θEp(") [f (gθ (!,x))]

= Ep(") [∇θf (gθ (!,x))]

(18)

28

3.2 Neural Relational Inference

The Neural Relational Inference (NRI) model is an unsupervised learning model based on the

variational autoencoder architecture where the latent space encodes the pairwise interactions be-

tween the edges of the senders and receivers (Kipf et al., 2018). It is able to learn and encode the

dynamics from the trajectory dataset. The NRI uses graph neural networks to represent and learn

the interaction between the nodes by message-passing. Here, the NRI trains an encoder that models

the physical interactions between the input trajectories. The role of the decoder is to predict future

trajectories as well as reconstruct the ground truth trajectories fed into the model.

Figure 3.2: The Neural Relational Inference (NRI) architecture (Kipf et al., 2018)

The NRI tries to optimize the evidence lower bound:

L = Eqφ(z|x) [log pθ(x | z)]−KL [qφ(z | x)&pθ(z)] (19)

where qφ(z | x) is the discrete distribution learned encoder, log pθ(x | z) is the predicted trajectory

by the decoder, pθ(z) is the prior and KL refers to the KL divergence. The encoder tries to predict

the pairwise relationship between the nodes in the graph with a fully connected graph as input. The

following message-passing operations take place.

h1j = femb (xj) (20)

v → e : h1(i,j) = f1e
$'
h1i ,h

1
j

(%
(21)

29

e → v : h2j = f1v




*

i ∕=j
h1(i,j)



 (22)

v → e : h2(i,j) = f2e
$'
h3i ,h

3
j

(%
(23)

qφ(z | x) = softmax
!
h2(i,j)

#
(24)

Equations 20, 21, 22 and 23 mathematically describe the messaging passing operations where

h1i and h
1
j refer to the node embedding of the node vi and vj in layer 1 respectively. h2(i,j) and h

2
(i,j)

refers to the node embedding of the node vi and vj ,in layer in 2 respectively. h1(i,j) and h
2
(i,j) refers

to the edge embedding of node vi and vj in the first layer and second layer respectively. qφ(z | x)

in equation 24 represents the predicted probability of the latent space given the trajectory of the

particles and f refers to the neural network. However, sampling from the encoder is not possible as

the distribution is discrete. Instead, the NRI model uses the Gumbel-Softmax trick to sample from

this distribution where g refers to a sample from the Gumbel distribution and τ softmax temperature

which decides how smooth the samples will be. The decoder aims to predict the future trajectory

given the latent input graph z where each edge type is represented as a neural network.

zij = softmax
!
(h2(i,j) + g) / τ

#
(25)

The decoder can be mathematically described as follows:

v → e : h̃t(i,j) =
*

k

zij,k f̃
k
e

$'
xti , x

t
j

(%
(26)

e → v : µt+1
j = xtj + f̃v




*

i ∕=j
h̃t(i,j)



 (27)

p
!
xt+1
j | xt, z

#
= N

!
µt+1
j ,σ2I

#
(28)

In Equations 26 and 27, Kipf et al. (2018) provides mathematical descriptions of the message

passing operations within the proposed model. In particular, h̃t(i,j) represents the edge embedding,

while µt+1
j , denotes the mean of the predicted trajectory. The fundamental concept underlying the

30

NRI model is to acquire a comprehensive understanding of the physical dynamics exhibited by

trajectories based on a dataset of previous trajectories. This understanding enables the model to

accurately predict future timesteps given an initial condition. Since the NRI model is built upon

the framework of a variational autoencoder, the bottleneck encodes pairwise interactions, thereby

providing valuable insights into relative influence within the dataset.

3.2.1 Training and Inference

The Neural Relational Inference (NRI) model processes a sequence of states, representing the

trajectories of Principal Component Analysis (PCA) modes (reduced-order representation of gran-

ular particle positions) over time. Figure 3.3 shows an interaction between the rigid body and PCA

modes, however, the NRI does not produce consistent results when fed with trajectory of both the

PCA modes and rigid body. Therefore, in this case, only the trajectory of the PCA modes are fed

into NRI to reveal the interaction graph between them. The input comprises of the positional and

velocity information of the PCA modes, along with an initial guess of the adjacency matrix (fully

connected or no connection). The encoder utilizes this input to calculate the probability distribution

of the latent space (qφ(z | x)).

Figure 3.3: Interaction between PCAmodes and rigid body at time 1 second, 3 second and 5 second.

For each edge, discrete values between 0 and 1 are generated through a softmax function applied

to the embedding of the nodes. A threshold of 0.6 is employed to categorize the presence or absence

of an edge: values less than 0.6 signify no edge, while values exceeding 0.6 denote the existence

of an edge. Subsequently, the decoder forecasts the future trajectory of the PCA modes, and the

Neural Relational Inference (NRI) model computes the final loss, facilitating the backpropagation

31

of gradients. The reconstruction loss, detailed in equation 19, is approximated in accordance with

the methodology introduced by Kipf et al. (2018), as outlined in equation 29. The Kullback-Leibler

(KL) divergence term, under a uniform prior, is approximated as the sum of entropies, as expressed

in equation 30.

−
*

j

T*

t=2

+++xtj − µt
j

+++
2

2σ2
+ const (29)

*

i ∕=j
H (qφ (zij | x)) + const. (30)

As the distribution is not continuous, the reparameterization trick for the variational autoencoder

cannot be used. To overcome this problem, Kipf et al. (2018) used the Gumbel-Softmax trick to

sample from a categorical distribution in order to backpropagate the gradients in the network. The

final modified gumbel-softmax used for training the NRI model is shown in equation 31.

yi =
e
(log(πi)+gi)

τ

4m
n=1 e

(log(πn)+gn)
τ

for i = 1, . . . ,m (31)

Here, g is sampled from gumbel distribution Gumbel(0, 1), π refers to the class probabilities and

τ is the softmax temperature where lower values of τ lead to expected value of the categorical

variables while the higher values lead to uniform distribution over the categories.

(a) MSE loss between the input trajectory and output
from the decoder for wheel

(b) MSE loss between the input trajectory and output
from the decoder for excavation

Figure 3.4: MSE loss in NRI for training and validation steps

32

The mean squared error loss between the input trajectory and output from the decoder for both

wheel and excavation is shown in figure 3.4. The NRI was trained using adaptive momentum

estimation (Kingma & Ba, 2017), with 5×10−4 as the learning rate and 0.5 as the decay factor. The

number of epochs were set to 200, however the model converges before and stores the best values.

3.3 Accelerating Subspace Graph Network Simulator for rigid body

driven granular flows using NRI generated partial graph

In the framework of the Graph Network Simulator (GNS) for rigid body driven granular flows,

our groups prior work used a fully connected graph of PCA modes along with the rigid body nodes.

To make the GNS computationally efficient while maintaining its accuracy, the NRI model is used

in this work to identify a partial connection between the extracted PCA modes. NRI was applied

to both the excavation dataset as well as the wheel dataset. In the excavation example, only PCA

modes (reduced-order representation of granular particle positions) and the force on the center of

mass of the excavation blade were predicted, as the rigid body (flat plate blade) followed a preset

trajectory. In the wheel example, both the PCA modes (representing granular particle positions) and

the wheel position were predicted along with the force on the center of mass of the wheel.

The NRI model was fed the positions and the velocities (differences between subsequent pairs

of position data) of the excavation dataset and the wheel dataset. The encoder learns an interaction

network representing a partial graph for the PCA modes of the datasets as shown in figure 3.5. The

senders refer to the nodes that send messages using the message passing process to the receiver

nodes. A dark square indicates an edge with important message passing, while lighter squares

indicate little to no information being passed. A partial graph can thus be constructed with just the

edges corresponding to dark squares. The partial graph framework is split between four parts where

the graph has edges between senders and receivers. The senders and receivers define the interaction

between PCA modes to PCA modes, rigid body to rigid body, rigid body to PCA modes, and PCA

modes to rigid body. The partial graph formulations for each of these interactions are explained

below, and are summarized by figure 3.6 and 3.7 for wheel and excavation datasets, respectively.

The NRI model was fed the positions and the velocities (differences between subsequent pairs

33

Figure 3.5: Output from NRI: partial graph representing the interaction between PCA modes for
wheel and excavation datasets.

of position data) of the excavation dataset and the wheel dataset. The encoder learns an interaction

network representing a partial graph for the PCA modes of the datasets as shown in figure 3.5. The

senders refer to the nodes that send messages using the message passing process to the receiver

nodes. A dark square indicates an edge with important message passing, while lighter squares

indicate little to no information being passed. A partial graph can thus be constructed with just the

edges corresponding to dark squares. The partial graph framework is split between four parts where

the graph has edges between senders and receivers. The senders and receivers define the interaction

between PCA modes to PCA modes, rigid body to rigid body, rigid body to PCA modes, and PCA

modes to rigid body. The partial graph formulations for each of these interactions are explained

below, and are summarized by figure 3.6 and 3.7 for wheel and excavation datasets, respectively.

PCA modes to PCA modes: The interaction between PCA modes is predicted by the NRI

model, as described above. It is worth noting that the NRI prediction solely captures the interaction

between the PCA modes, disregarding the interaction of stationary granular particles within the

PCA mode. To address this limitation, an additional mode is introduced to represent the stationary

granular particles (compare figure 3.5 with figure 3.6 and figure 3.7).

Rigid Body to Rigid Body: When considering the interaction between particles representing

rigid bodies, message passing occurs only if the motion of the rigid body is also predicted by the

34

Figure 3.6: Partial graph for excavation driven granular flow.

network. In the excavation case, where the rigid body motion is not predicted, no message passing

occurs between the rigid body particles, resulting in the absence of edges in the adjacency graph to

represent these interactions.

However, in the case of the wheel, where the network predicts the motion of the rigid body,

message passing becomes necessary between the particles representing the rigid body. To determine

the appropriate rigid body edges, various trials were conducted. For the wheel scenario, it was

determined that establishing edge connections from each rigid body particle to its consecutive rigid

body particles yielded satisfactory results.

Rigid Body to PCA modes: The message-passing from the rigid-body to the PCA modes

occurs in both the excavation example as well as the wheel. This part is crucial for rigid body

driven granular flow, so all the particles representing the rigid body have an edge in the adjacency

matrix for all the connections with all the PCA modes. This enables the GNS to learn the relative

motion of the PCA modes with respect to the rigid body.

PCA modes to Rigid Body: The message-passing in this case occurs only when the positions

of the particles representing the rigid body are also predicted. For this case, the GNS needs to

35

Figure 3.7: Partial graph for wheel driven granular flow.

Algorithm 2 Constructing Sparse Adjacency Matrix in Graph Network Simulator for Interaction
between Rigid Body and PCA modes
1: procedure CONSTRUCTADJACENCYMATRIX

2: for all PCA modes to PCA modes do
3: Predict interaction using NRI model
4: end for
5: for all Rigid Body to Rigid Body do
6: ifMotion of rigid body predicted by network then
7: add edge based on geometry of the rigid body
8: end if
9: end for

10: for all Rigid Body to PCA modes do
11: add edges to all nodes
12: end for
13: for all PCA modes to Rigid Body do
14: if Positions of particles representing rigid body predicted then
15: add edges to all nodes
16: end if
17: end for
18: end procedure

36

learn the motion of the particles representing the rigid body relative to the PCA modes. Messaging

passing is necessary between the granular particles and the wheel, leading to an undirected graph

that enables the model to learn the dynamics of the wheel motion. Therefore, there is an edge in the

adjacency matrix for all the connections between PCA modes to the rigid body in the case of the

wheel but no edge in the case of excavation.

In the excavation example, the position of the particles representing the blade is pre-defined and

is not predicted by the network. Consequently, there is no messaging passing required from the

granular particles to the blade, resulting in a directed graph.

The optimized partial graph formulation resulted in a significant reduction in the number of

edges within the adjacency graph. Specifically, for excavation driven granular flow, the number of

edges decreased from 784 to 188, while for wheel driven granular flow, it decreased from 576 to

336. These reduced partial graphs successfully replicated the desired outcomes while offering faster

rollout times, primarily attributed to the decreased number of edges present in the adjacency matrix.

However, in the case of predicting the node positions of the wheel, a discrepancy was observed

where the particles within the rigid body failed to maintain rigid relative spacing. This issue is

addressed in the subsequent sub-section through the utilization of least square fitting techniques.

3.4 Rigid Body Correction by Least Square Fitting of 3D points

In the case of the wheel, predicting the position of the particles representing the rigid body

introduces a slight error in the wheel position. This error propagates to incorrect slip predictions

and eventually inaccurate predictions for the granular particles. To mitigate the accumulation of

errors during the rollout, it is essential to correct the position of the particles representing the rigid

body, i.e. maintaining the wheels rigid shape. To address this issue, a formulation is presented to

minimize the discrepancy between the particles representing the wheel before and after rotation.

This involves finding an appropriate rotation matrix and translation vector that minimize the error.

The rigid body correction is not introduced during the training of the GNS and is only used during

the rollout to keep the rigid body intact. The problem can be formally described as a minimization

problem, with the objective of minimizing the difference between the post rotation prediction of the

37

particles representing the wheel and rigid transformation of pre-rotation.

min
R∈Ω,d

n*

i=1

&Rxi + d− yi&2

Here n is the number of rigid body particles, R is the rotation matrix and d is the translation

vector. xi and yi are the particle positions before wheel rotation and after rotation respectively. This

is adapted from Sorkine-Hornung and Rabinovich (2017) and Söderkvist and Wedin (1994) who

formulated the process as shown in algorithm 1 below.

Figure 3.8: Rigid body correction at t = 220 for wheel driven granular flow.

38

Algorithm 3 Rigid Body Correction by Least Square fitting [Sorkine-Hornung and Rabinovich
(2017)]

Input: x1, x2, .., xn, y1, y2, .., yn

Output: R, t

1: x̄ = 1
n

!n
i=1 xi, ȳ = 1

n

!n
i=1 yi

2: A = [x1 − x̄, . . . , xn − x̄], B = [y1 − ȳ, . . . , yn − ȳ]

3: C = BAT

4: USV T = C

5: R = U × diag(1, 1, det(UV T)× V T

6: d = ȳ −Rx̄

This algorithm does not explicitly correct the particle positions of the rigid body but rather

extracts a rotation matrix and a translation vector to rotate the rigid body particles from before

the rotation. This algorithm is added along with the rollout to minimize any error in the rigid body

prediction. For the purpose of demonstration, figure 3.8 shows the correction of the deformed wheel

for 220th frame in the rollout.

3.5 Training Noise

The training noise added to the data was generated using random-walk, initially sampled from

a normal distribution with zero mean and standard deviation 6.7 × 10−4 (hardcoded in the GNS

codebase (Sanchez-Gonzalez et al., 2020)). This addition of random noise in the training data is

due to several reasons. Random noise leads to data augmentation in every step which promotes

generalization and prevents over-fitting. The main purpose of adding noise is to mimic the error

accumulation when we perform rollout to generate predictions for the dataset. The introduction of

random noise serves the purpose of training the model with an awareness of error accumulation

tendencies, thereby preventing the possibility for deviations in predictions. Nevertheless, the selec-

tion of the appropriate standard deviation for this random noise is essential, as higher magnitude of

noise has the potential to introduce distortion into the original dataset. In the context of our study,

the standard deviation of the Principal Component Analysis (PCA) modes was found to be on the

39

order of 10−5, which is notably lower than that of the standard deviation of the random noise. This

observation is visually depicted in figure 3.9, wherein the introduction of random noise with a stan-

dard deviation exceeding that of the dataset’s standard deviation leads to a significant distortion of

the dataset. This addition of noise is counterproductive, as it directs the model towards training on

an adulterated dataset, rather than enhancing the robustness of the model. This led to the training

data that was randomized to the point of data corruption, rather than helping in generalization. To

tackle this, the standard deviation of the normal distribution was modified from 6.7 × 10−4 which

was used by Sanchez-Gonzalez et al. (2020) in the GNS codebase to 6.7×10−6. This random noise

addition does not alter the dataset but adds slight perturbations mimicking the scenario of rollout

error accumulation. This reduced any significant alterations in the training dataset as seen in figure

3.9.

Figure 3.9: Impact of random noise on the particles representing rigid body (wheel)

3.6 Rollout

To generate the rollout, the graph network simulator is given the initial positions along with the

initial forces, and the GNS then iteratively predicts the particle positions and force acting on the rigid

body. The graph input into the Graph Neural Simulator (GNS) is not a completely interconnected

graph; instead, it is a partial graph. As the GNS uses a partially connected graph instead of a fully

connected graph, redundant nodes are eliminated. However, this leads to nodes where there is no

message passing which leads lower prediction accuracy. In the context of granular flow driven

by excavation, the model is supplied with the initial position and forces during the rollout process,

which is utilized to generate position and force values for subsequent time steps in an autoregressive

40

fashion. In the case of wheel driven granular flow, the predicted position of the rigid body undergoes

a correction process to ensure the preservation of the rigid body’s shape (as described in section 3.4).

Figure 3.10: GNS formulation for rollout with NRI assisted partial graph for accelerated rigid body
driven granular flow where S refers to the full space granular particle position, S refers to the PCA
reduced granular particle positions, R refers to the particles representing rigid body, F refers to the
force acting on the rigid body.

Runtime Efficiency: Table 3.1 shows the runtime efficiency of the MPM method, full space

dataset, subspace dataset with a fully connected graph, and subspace dataset with a partially con-

nected graph (this work). For the 60 Hz simulation, the partial graph has a faster training time as

well as rollout time compared to the fully connected graph where it is 3x faster for excavation and

2x faster in the case of wheel. The GNS predicts future trajectory of the PCA modes and the rigid

body. To obtain predictions in the full space, it is necessary to transform the predicted PCA modes

41

back to the full space using the inverse PCA. However, this transformation introduces an additional

computational overhead. In the context of excavation and wheel-driven granular flow, this overhead

amounts to an additional 2.6 ms and 4.2 ms per second of simulation at 60 Hz, respectively.

Table 3.1: Run time comparison of rigid body driven simulation using Material Point Method
(MPM), full space GNS (FS), subspace GNS with fully connected graph (FCG) (Haeri &
Skonieczny, 2021) and subspace GNS with partially connected graph (PCG). The excavation blade
is represented by 15a and 20b particles while the wheel is represented as 16 particles. GPU1 :
NVIDIA GeForce RTX 3080 10GB, GPU2: NVIDIA Tesla P6 16GB, CPU1: Intel Core i7-10700
2.9GHz 8-Core, and CPU2: Intel Core i7-6700 3.4GHz Quad-Core.

Dataset Method Training Rollout Simulation

[sec/step] [sec/sec] [sec/sec]

(60 Hz) (60 Hz)

GPU1 GPU2 CPU1 GPU1 CPU2

MPM - - - - 270

Excavation FS OOM 1 - OOM -

FCG 0.016 0.064
(0.344 - 0.348)a

(0.486 - 0.488)b

(0.447 - 0.491)a

(0.558 - 0.583)b
-

PCG (ours) 0.01 -
(0.127 - 0.128)a

(0.15 - 0.152)b

(0.132 - 0.170)a

(0.244 - 0.342)b

MPM - - - - 240

Wheel FS OOM 0.5 - OOM -

FCG 0.017 0.068 0.374 - 0.378 0.434 - 0.499 -

PCG (ours) 0.011 - 0.182 - 0.186 0.180 - 0.184 -

42

Figure 3.11: Ground Truth and Prediction of the excavation driven granular flow at time 1 second,
3 second and 5 second.

Prediction Accuracy: In order to compare the accuracy of the models, the visualization of the

particles and forces of the simulation are compared with the ground truth and the prediction in the

x-y plane for the excavation dataset at timesteps 1 second, 3 second, and 5 second mark as shown in

figure 3.11. The histogram in figure 3.12 quantifies the error between the predicted particle positions

from the GNS with the partially connected graph and the ground truth fromMPM for the excavation

dataset. In the prediction, most of the particles have a mean squared error between the order of 10−8

and 10−6 (units of mm2) which points towards the stationary particles in the simulation. Due to

the reduction of the edges, prediction accuracy of the force is slightly reduced, but, the error in

predicting the particle positions has reduced, however there is no significant impact the on visual

representation in the rollout as seen in figure 3.11 and figure 3.14.

43

Figure 3.12: Histogram of error between particle positions of the ground truth and prediction of the
excavation driven granular flow.

In the context of the wheel dataset, a comparison is made between the visualization of particles

and forces obtained from the simulation, the ground truth, and the predictions in the x-y plane.

When the simulation does not incorporate the rigid body correction, the particles representing the

rigid body exhibit incorrect predictions. Consequently, this leads to an amplified error in the position

of the granular particles. It is important to note that the positions of the granular particles are

dependent on the positions of the particles representing the rigid body. Therefore, any inaccuracies

in the prediction of the rigid body positions result in increased errors in the positions of the granular

particles during rollout as depicted in figure 3.13.

When the rigid body motion is corrected, both the rigid body particles as well as the granular

particles produce accurate prediction with respect to the ground truth. The visualization between

the ground truth and the prediction for the case when rigid motion is not corrected as well as when

the rigid body motion is corrected is shown in the figure 3.13 and 3.14 respectively. The histogram

quantifies the error between the predicted particle positions from the GNS with the partially con-

nected graph and the ground truth from MPM for the wheel dataset. In the prediction, most of the

particles have a mean squared error between the order of 10−8 and 10−6 which reflects the accuracy

of the simulation. However, there is higher error in the case when there is no rigid body correction

applied in the rollout as depicted in figure 3.13.

44

Figure 3.13: Ground Truth and Prediction of the wheel driven granular flow at time 1 second, 3
second and 5 second without rigid body correction.

Figure 3.14: Ground Truth and Prediction of the wheel driven granular flow at time 1 second, 3
second and 5 second with rigid body correction.

45

The addition of the rigid body correction which keeps the shape of the rigid body intact during

rollout not only avoids any deformations of rigid body, but also leads to more accurate prediction

of the particle. Table 3.2 shows the mean squared error of the position of the soil particles and rigid

body for the two cases: with rigid body correction and without rigid body correction.

(a) Excavation (b) Wheel

Figure 3.15: Ground truth and prediction of the interaction forces

The force prediction for the wheel and excavation for the examples in figure 3.13 and figure

3.14 are shown in figure 3.15a and 3.15b respectively. In these visual representations, the black

color signifies the ground truth forces, while the red color represents the predictions generated by

the graph network simulator utilizing a partial graph. It can be seen that after applying rigid body

correction, the prediction of soil particles as well as the rigid body drastically improves (force

predictions without rigid body correction are presented in figure 3.16). This is because the GNS

learns the interaction between the rigid body and PCA modes, thus, any distortion in the rigid body

can lead to false predictions. Even the force predictions are severely affected due to rigid body

distortion as seen in figure 3.16 as well as table 3.2.

46

Table 3.2: Wheel without rigid body correction (NC) and wheel with rigid body correction (C):
position mean squared error and force mean percentage error in accelerated GNS rollout.

Test Example Position MSE ×10−4 Position MSE ×10−4 Force MPE [%]

Rigid Body Soil Particles Rigid Body

Example Wheel (NC) Wheel (C) Wheel (NC) Wheel (C) Wheel (NC) Wheel (C)

1 6.11 0.081 0.0005 0.00014 -269.37 -13.06

2 9.14 0.047 0.0028 0.00066 -6.99 -89.99

3 4.43 0.056 0.017 0.0299 173.180 111.70

4 6.45 0.07 0.0099 0.0013 -140.75 24.89

5 8.43 0.047 0.0009 0.000032 21.466 -78.83

6 5.57 0.0032 0.036 0.01 340.023 233.35

7 6.31 0.0035 0.042 0.017 659.116 -22.27

8 4.43 0.071 0.017 0.093 173.18 111.71

9 5.39 0.04 0.091 0.013 -104.35 -142.75

Mean 6.25 0.046 0.024 0.018 - -

MPM - - -0.5 5.2

47

Figure 3.16: Ground truth and prediction of the force in 9 different test examples for wheel driven
granular flow simulation without rigid body correction.

48

(a) Histogram of error between particle positions of
the prediction with and without rigid body correction

(b) Histogram of error between particle positions
of the prediction when using fully connected graph
(FCG) and partially connected graph (PCG)

Figure 3.17: Histogram of error between particle positions of the ground truth and prediction of the
wheel driven granular flow.

Some more results. The histogram in figure 3.17a visualizes the mean squared error in the

particle positions with and without rigid body correction. The soil particle positions are achieved

by applying inverse PCA to the rollout generated using GNS. It can be seen in the histogram that

rigid body correction using singular value decomposition (SVD) significantly reduces the error in

the prediction of the particle positions. Figure 3.17b compares the error prediction between ground

truth and prediction for different graph inputs: fully connected graph (Haeri & Skonieczny, 2021)

and partially connected graph. The histogram shows that the partially connected graph with the

rigid body correction has slightly lower error than the fully connected graph.

Figure 3.18 and figure 3.19 depict the excavation driven granular flows for different depth,

angle and speeds of the excavation blade at the 5 second mark. The red to black colors represent

the velocity of the particles while blue to green colors represent the magnitude of the force acting

on the rigid body and the arrow represents the direction of the force. Some more examples of wheel

driven granular flows are shown in figure 3.20 and figure 3.21 where wheel of different diameter in

different gravity levels such as earth, lunar and martian are depicted at the 5 second mark.

49

Figure 3.18: Ground truth and prediction of 3 different test examples for excavation driven granular
flow simulation at time 5 seconds.

Figure 3.19: Ground truth and prediction of 3 different test examples for excavation driven granular
flow simulation at time 5 seconds.

50

Figure 3.20: Ground truth and prediction of 3 different test examples for wheel driven granular flow
simulation with rigid body correction at time 5 seconds.

Figure 3.21: Ground truth and prediction of 3 different test examples for wheel driven granular flow
simulation with rigid body correction at time 5 seconds.

51

Figure 3.22: Ground truth and prediction of the force in 9 different test examples for excavation
driven granular flow simulation.

52

Figure 3.23: Ground truth and prediction of force in 9 different test examples for wheel driven
granular flow simulation with rigid body correction.

In Table 3.3, we present an assessment of accuracy concerning both excavation and wheel-

driven granular flows with rigid body correction. This assessment is based on a comparison of

mean squared error (MSE) for particle positions and mean percentage error (MPE) for the forces

acting on the rigid body. Notably, when transitioning from a fully connected graph to a partial

graph, we observe an increase in force prediction errors for both excavation and wheel examples

and a reduction in the particle position error. This phenomenon can primarily be attributed to the

53

reduced number of edges available for message passing which makes it challenging for GNS to

predict the forces.

Table 3.3: Wheel and Excavation (Exc.) position mean squared error and force mean percentage
error in accelerated GNS rollout with fully connected graph (FCG) (Haeri & Skonieczny, 2021) and
partially connected graph (PCG).

Test Example Position MSE ×10−4 Force MPE [%]

FCG PCG FCG PCG

Example Exc. Wheel Exc. Wheel Exc. Wheel Exc. Wheel

1 0.01 0.01 0.049 0.00014 4.5 10.9 -62.71 -13.06

2 0.01 0.02 0.003 0.00066 -5.3 -16.2 -30.88 -89.99

3 0.00 0.00 0.03 0.0299 0.3 -18.5 -1.62 111.70

4 0.02 0.03 0.027 0.0013 -10.5 -22.8 397.24 24.89

5 2.41 0.05 0.032 0.000032 11.6 -21.7 82.13 -78.83

6 0.02 0.09 0.057 0.01 -2.4 -5.1 -28.30 233.35

7 2.86 0.03 0.027 0.017 -17.2 0.2 -69.30 -22.27

8 0.01 0.02 0.001 0.093 -1.9 26.6 -179.33 111.71

9 0.03 0.03 0.007 0.013 -5.1 -31.0 -54.02 -142.75

Mean 0.60 0.03 0.025 0.018 - - - -

MPM - - - - - - -0.5 5.2

For the excavation example, the number of edges was reduced from an initial 784 to 188, repre-

senting a significant reduction of 76.02%. Similarly, for the wheel example, the graph size decreased

from 576 to 336, reflecting a 41.66% reduction in the number of edges. It is worth noting, however,

that despite these substantial reductions in graph complexity, the visual error during the final ren-

dered rollout remains minimal and does not significantly impact the overall visual representation of

the results.

54

Chapter 4

Conclusion and Future Work

This research focused on accelerating the performance the performance of the graph network

simulator for rigid body driven granular flows on two main cases: excavation which emulates con-

struction vehicles excavating sand and wheel-terrain interaction in microgravity for simulating the

rover wheel interaction on extra-terrestrial bodies. This work extends the work developed by (Haeri

& Skonieczny, 2021) where using graph neural networks and principal component analysis (PCA),

the authors achieved real time performance with high accuracy.

However, the final adjacency graph was a fully connected graph and this work addresses on

finding the most optimal partial graph by getting rid of the redundant edges which do not effectively

contribute towards the learning of the subspace GNS.We used the Neural Relational Inference (NRI)

model, based on a variational autoencoder, to identify the most important edges that contribute to

the interaction between the subspace dynamics of the dataset. The variational autoencoder com-

presses the input data to a compressed latent space, and edge sampling reveals the most important

connection and eliminates the redundant ones. The development of the final partial graph frame-

work involved the NRI model predicting the interaction between PCA modes. Thus, this partial

graph framework for training and inference resulted in a 3x acceleration from the original subspace

GNS for the case of excavation and a 2x acceleration for wheel driven granular flow simulation.

Quantitative measurement of the results shows that the force prediction error is higher in the case

of the partial graph compared to the fully connected graph. The partial graph framework for the

excavation example reduced the number of edges from 784 to 188, indicating a 76.02% decrease.

55

Similarly, in the wheel example, the graph size was reduced from 576 to 336, indicating a 41.66%

drop in edges. Notably, the mean squared error of the particle positions in each frame during the

final generated rollout remains rather small and has minimal to no effect on the overall visual rep-

resentation of the simulation, even with these significant reductions in graph connections. Thus,

there is a tradeoff when using a sparser adjacency matrix for training the graph network simulator

as compared to a fully connected graph which has better force predictions. In the case where the

force predictions are not as important, the partial graph framework can be used for computational

efficiency due to its smaller adjacency graph. However, in situations where force predictions are

essential, such as providing haptic feedback to a user through the simulator, using a fully connected

graph is recommended for better accuracy in force predictions.

4.1 Limitations and future work

With the assistance from neural relational inference, the partial graph framework sped up the

simulation, leading to faster inference time in the case of rigid body driven granular flow for excava-

tion and wheel in a dynamic environment. However, further improvements can reduce the inference

time even more.

• The significant reduction in the graph size uses fewer edges during message passing steps,

making it difficult for the network as the GNS with a partially connected graph demonstrated

lower accuracy in force predictions compared to the fully connected method. However, the

simulation of the rollout shows no significant visual error which is computed by the mean

squared error of the particle positions in the simulation. Y. Shao et al. (2022) developed a

transformer-based simulator to improve accuracy as an alternative to GNN based methods

due to their computational complexity when increasing the graph size. This model predicts

individual particles, unlike GNN based models, which learn the pairwise interaction. Thus,

the use of this model with subspace data could result in faster inference time.

• Recent studies (Tolstikhin et al., 2021) demonstrate that the MLP-mixer architecture exhibits

comparable performance to transformer-based architectures (Vaswani et al., 2017). Unlike

56

transformer architectures that demand substantial computational power with increasing in-

put data and sequence length, the MLP-Mixer architecture eliminates attention-based mech-

anisms to address this challenge. This innovative approach projects the data into a higher-

dimensional space using multi-layer perceptrons (MLP) where the MLP-Mixer architecture

generates tokens, which undergo processing within the MLP-Mixer block. Through the use

of MLP, this block learns temporal and spatial features within the dataset. The final tokens are

subsequently directed to the classification head for the purpose of classification. (Bouazizi,

Holzbock, Kressel, Dietmayer, & Belagiannis, 2022) developed the motion mixer architec-

ture to analyze and predict human pose in three dimensions. This architecture leverages the

MLP-Mixer design to address a time-series forecasting challenge instead of classification.

Figure 4.1: Motion Mixer architecture for excavation datasets. Here SE is squeeze and excitation
and CCSE is concurrent channel and spatial excitation.

Incorporating a squeeze and excitation block (SE block) (Hu, Shen, Albanie, Sun, & Wu,

2019), motion mixer ranks spatial and temporal features from the spatial-mix MLP and

temporal-mix MLP. The SE block architecture imposes minimal computational overhead,

57

making it adaptable to enhance the performance of any baseline architecture. The SE block,

employing global average pooling, serves as an attention mechanism, eliminates spatial de-

pendency, and generates a descriptor based on the channel. This descriptor aids in re-ranking

the feature map to focus on more critical channels. Given its success in forecasting human

pose, we used this architecture to the context of excavation-driven granular flows. During

training, the input to the model was a segment of the position along with forces on the par-

ticles and objective is to predict the subsequent segment. In the inference phase, the model

is configured to predict the position of soil particles and the forces acting on the rigid body.

As it only uses MLPs for learning, the inference time is faster as compared to graph neural

networks. In the case of excavation, it takes on an average around 96 ms to generate one sec-

ond of simulation which is faster than our current subspace GNS using partial graphs which

is roughly between 120ms and 150 ms. However, the default architecture proposed is not

able to efficiently learn the dynamics as seen in figure 4.1. The embedding dimensions were

increased to 1218 and the squeeze and excitation block was replaced by concurrent channel

and spatial excitation (CCSE) block (Roy, Navab, & Wachinger, 2018).

Figure 4.2: Motion Mixer prediction for excavation datasets at time 1 sec, 3 sec and 5 sec. Here SE
is squeeze and excitation block and CCSE is concurrent channel and spatial excitation.

Instead of just ranking the spatial features, the CCSE block simultaneously identifies the

58

most important features for both the channel as well as the spatial features and then finally

combines the output. With these modifications, the model is able to generate simulation but

with a lag and flicker when rendering the simulation as seen in figure 4.2. More research in

developing the motion mixer architecture for rigid body driven granular flow can reduce the

inference time as MLP-Mixer just uses MLPs which requires less computation power. Specif-

ically, modifying or tuning the SE block or the CCSE block can improve its performance on

subspace data as seen in figure 4.2. Modification of the initial embedding layer can also lead

to better overall prediction.

• In the Graph Network Simulator (GNS), the partial graph remains static and is hardcoded

during both the training and rollout phases, necessitating a two-step process. However, recent

studies by Kovalenko, Pozdnyakov, and Makarov (2022) and Ahmad, Jalil, Nazir, and Taj

(2023) have proposed various methods for learning the adjacency graph during model train-

ing, yielding promising results. Therefore, if the training process can identify and learn the

graph, it could streamline the training and inference processes in the GNS.

• To further reduce the edges in the adjacency graph, a dynamic graph can be used based on the

interaction between soil particles and the particles representing the rigid body. The number

of rigid body particles interacting with the soil varies depending on factors like depth of the

wheel or the excavation blade, eliminating the necessity for a message passing step. This

would require performing inverse PCA to the predictions generated from the GNS and identi-

fying which rigid body particles are nearest to the soil particles during dynamic construction

of the adjacency graph. Employing this approach can lead to a reduction in graph size and

improvement in inference time.

• The codebase of the GNS is written using custom libraries and tensorflow in python. Pythons

runtime performance is considerably slower because it uses a global interpreter lock (GIL)

that uses a single core in the CPU, even if multi-core is available. Python, being a dynami-

cally typed language, does not pre-define variables and checks them during run-time, which

also slows down the final execution time (Meier & Gross, 2019). Mojo, an innovative pro-

gramming language (Xurshid, 2023), uses a Python-like syntax and builds on the Multi-Level

59

Intermediate Representation (MLIR). Mojo generates machine-level code, following a com-

pilation approach akin to the C programming language. Mojo, tailored specifically for AI

applications, is compatible with major Python libraries, including but not limited to NumPy,

scikit-learn, and SciPy, as well as popular deep learning frameworks like TensorFlow and Py-

Torch. This feature incorporates existing Python code into Mojo with minimal modifications.

Exploring and developing the codebase in Mojo could potentially accelerate the inference

time of the subspace GNS.

60

Appendix A

Notations

' Random variable drawn from a standard normal distribution

κ Kernel function

λ Eigenvalue

µ Mean

N Graph node neighbourhood

φ Feature update using neural network

ρ Message passing or feature aggregation

τ Temperature in gumbel softmax

θ GNS model parameters

σ Variance

a Node/subspace particle acceleration

C Covariance

d Translation matrix

D Diagonal matrix

61

e Edges in the graph

E Expectation

f Force

F Force

g Gumbel softmax

G Graph

he Graph edge embeddings

hu Graph global embeddings

hv Graph node embeddings

K Kernel matrix

n Number of dimensions in data

Ne Number of graph edges

Nk Number of message-passing steps

Nv Number of graph nodes

q Approximate distribution

ri Index of graph receiver node of edge i

r Number of subspace modes

R Rotation matrix

si Index of graph sender node of edge i

u Graph global feature

v Nodes in the graph

62

V Set of graph node features or embeddings

W Eigenvectors

Y Mean centered data

z Latent variable

Z Reduced flow and rigid states

63

References

Ahmad, O., Jalil, O. A., Nazir, U., & Taj, M. (2023). Learning adjacency matrix for dynamic graph

neural network.

Allen, K. R., Guevara, T. L., Rubanova, Y., Stachenfeld, K., Sanchez-Gonzalez, A., Battaglia,

P., & Pfaff, T. (2023, 14–18 Dec). Graph network simulators can learn discontinuous,

rigid contact dynamics. In K. Liu, D. Kulic, & J. Ichnowski (Eds.), Proceedings of the

6th conference on robot learning (Vol. 205, pp. 1157–1167). PMLR. Retrieved from

https://proceedings.mlr.press/v205/allen23a.html

Bakir, G. H., Weston, J., & Scholkopf, B. (2003). Learning to find pre-images. In Neural infor-

mation processing systems. Retrieved from https://api.semanticscholar.org/

CorpusID:80486

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Malinowski,

M., . . . Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks.

CoRR, abs/1806.01261. Retrieved from http://arxiv.org/abs/1806.01261

Bouazizi, A., Holzbock, A., Kressel, U., Dietmayer, K., & Belagiannis, V. (2022). Motionmixer:

Mlp-based 3d human body pose forecasting.

Gao, X., Zhang, W., Shao, Y., Nguyen, Q. V. H., Cui, B., & Yin, H. (2022). Efficient graph neural

network inference at large scale.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, 06–11 Aug). Neural

message passing for quantum chemistry. In D. Precup & Y. W. Teh (Eds.), Proceedings of

the 34th international conference on machine learning (Vol. 70, pp. 1263–1272). PMLR.

Retrieved from https://proceedings.mlr.press/v70/gilmer17a.html

64

https://proceedings.mlr.press/v205/allen23a.html
https://api.semanticscholar.org/CorpusID:80486
http://arxiv.org/abs/1806.01261
https://proceedings.mlr.press/v70/gilmer17a.html

Gundersen, G. (2018, Apr). The reparameterization trick. Retrieved from https://

gregorygundersen.com/blog/2018/04/29/reparameterization/

#doersch2016tutorial

Haeri, A., & Skonieczny, K. (2021). Subspace graph physics: Real-time rigid body-driven granular

flow simulation.

Haeri, A., & Skonieczny, K. (2022, May). Three-dimensionsal granular flow continuum modeling

via material point method with hyperelastic nonlocal granular fluidity. Computer Methods in

Applied Mechanics and Engineering, 394, 114904. Retrieved from https://doi.org/

10.1016/j.cma.2022.114904 doi: 10.1016/j.cma.2022.114904

Holden, D., Duong, B. C., Datta, S., & Nowrouzezahrai, D. (2019, July). Subspace neural physics.

In Proceedings of the 18th annual ACM SIGGRAPH/eurographics symposium on computer

animation. ACM. Retrieved from https://doi.org/10.1145/3309486.3340245

doi: 10.1145/3309486.3340245

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal compo-

nents. Journal of Educational Psychology, 24, 498-520. Retrieved from https://

api.semanticscholar.org/CorpusID:144828484

Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2019). Squeeze-and-excitation networks.

Karpman, E., Kövecses, J., Holz, D., & Skonieczny, K. (2020, October). Discrete element mod-

elling for wheel-soil interaction and the analysis of the effect of gravity. Journal of Ter-

ramechanics, 91, 139153. Retrieved from http://dx.doi.org/10.1016/j.jterra

.2020.06.002 doi: 10.1016/j.jterra.2020.06.002

Kasim, M. F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D. H., . . . Vinko,

S. M. (2021, December). Building high accuracy emulators for scientific simulations

with deep neural architecture search. Machine Learning: Science and Technology, 3(1),

015013. Retrieved from http://dx.doi.org/10.1088/2632-2153/ac3ffa doi:

10.1088/2632-2153/ac3ffa

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. CoRR, abs/1312.6114.

Retrieved from https://api.semanticscholar.org/CorpusID:216078090

65

https://gregorygundersen.com/blog/2018/04/29/reparameterization/#doersch2016tutorial
https://doi.org/10.1016/j.cma.2022.114904
https://doi.org/10.1145/3309486.3340245
https://api.semanticscholar.org/CorpusID:144828484
http://dx.doi.org/10.1016/j.jterra.2020.06.002
http://dx.doi.org/10.1088/2632-2153/ac3ffa
https://api.semanticscholar.org/CorpusID:216078090

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural relational inference for

interacting systems.

Kovács, L. L., Ghotbi, B., González, F., Niksirat, P., Skonieczny, K., & Kövecses, J. (2019). Effect

of gravity in wheel/terrain interaction models. Journal of Field Robotics, 37, 754 - 767.

Retrieved from https://api.semanticscholar.org/CorpusID:198939932

Kovalenko, A., Pozdnyakov, V., & Makarov, I. (2022). Graph neural networks with trainable

adjacency matrices for fault diagnosis on multivariate sensor data.

Li, J., Gao, Y., Dai, J., Li, S., Hao, A., & Qin, H. (2023). Mpmnet: A data-driven mpm frame-

work for dynamic fluid-solid interaction. IEEE Transactions on Visualization and Computer

Graphics, 1-14. doi: 10.1109/TVCG.2023.3272156

Li, Z., & Farimani, A. B. (2022, April). Graph neural network-accelerated lagrangian fluid simu-

lation. Computers & Graphics, 103, 201–211. Retrieved from https://doi.org/

10.1016/j.cag.2022.02.004 doi: 10.1016/j.cag.2022.02.004

Li, Z., Li, H., & Meng, L. (2023, Mar). Model compression for deep neural networks:

A survey. Computers, 12(3), 60. Retrieved from http://dx.doi.org/10.3390/

computers12030060 doi: 10.3390/computers12030060

Lino, M., Fotiadis, S., Bharath, A. A., & Cantwell, C. (2022). Remus-gnn: A rotation-equivariant

model for simulating continuum dynamics.

Liu, C., Ma, X., Zhan, Y., Ding, L., Tao, D., Du, B., . . . Mandic, D. (2022). Comprehensive graph

gradual pruning for sparse training in graph neural networks.

McCullough, M., Jayakumar, P., Preston-Thomas, J., Hodges, H., & Shoop, S. A. (2017). Simple

terramechanics models and their demonstration in the next generation nato reference mo-

bility model.. Retrieved from https://api.semanticscholar.org/CorpusID:

126226922

Meier, R., & Gross, T. R. (2019). Reflections on the compatibility, performance, and scalabil-

ity of parallel python. In Proceedings of the 15th acm sigplan international symposium

on dynamic languages (p. 91103). New York, NY, USA: Association for Computing Ma-

chinery. Retrieved from https://doi.org/10.1145/3359619.3359747 doi:

10.1145/3359619.3359747

66

https://api.semanticscholar.org/CorpusID:198939932
https://doi.org/10.1016/j.cag.2022.02.004
http://dx.doi.org/10.3390/computers12030060
https://api.semanticscholar.org/CorpusID:126226922
https://doi.org/10.1145/3359619.3359747

Nakashima, H. (2011). Soil–wheel interactions. In Encyclopedia of agrophysics (pp. 810–

813). Springer Netherlands. Retrieved from https://doi.org/10.1007/978-90

-481-3585-1 256 doi: 10.1007/978-90-481-3585-1 256

Niksirat, P., Daca, A., & Skonieczny, K. (2020, May). The effects of reduced-gravity on plan-

etary rover mobility. The International Journal of Robotics Research, 39(7), 797–811.

Retrieved from https://doi.org/10.1177/0278364920913945 doi: 10.1177/

0278364920913945

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., & Battaglia, P. W. (2021). Learning mesh-based

simulation with graph networks.

Roy, A. G., Navab, N., &Wachinger, C. (2018). Concurrent spatial and channel squeeze excitation

in fully convolutional networks.

Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986). Learning internal representations by error

propagation.. Retrieved from https://api.semanticscholar.org/CorpusID:

62245742

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P. (2020, 13–18

Jul). Learning to simulate complex physics with graph networks. In H. D. III & A. Singh

(Eds.), Proceedings of the 37th international conference on machine learning (Vol. 119, pp.

8459–8468). PMLR. Retrieved from https://proceedings.mlr.press/v119/

sanchez-gonzalez20a.html

Schlkopf, B., Smola, A., & Mller, K.-R. (1998). Nonlinear component analysis as a kernel eigen-

value problem. Neural Computation, 10(5), 1299-1319. doi: 10.1162/089976698300017467

Shao, H., Kugelstadt, T., Hädrich, T., Pałubicki, W., Bender, J., Pirk, S., & Michels, D.

(2021). Accurately solving rod dynamics with graph learning. Retrieved from https://

openreview.net/forum?id=v2tmeZVV9-c

Shao, Y., Loy, C. C., & Dai, B. (2022). Transformer with implicit edges for particle-based physics

simulation. In Lecture notes in computer science (pp. 549–564). Springer Nature Switzerland.

Retrieved from https://doi.org/10.1007/978-3-031-19800-7 32 doi: 10

.1007/978-3-031-19800-7 32

Shi, G., Zhang, D., Jin, M., Pan, S., & Yu, P. S. (2023). Towards complex dynamic physics system

67

https://doi.org/10.1007/978-90-481-3585-1_256
https://doi.org/10.1177/0278364920913945
https://api.semanticscholar.org/CorpusID:62245742
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://openreview.net/forum?id=v2tmeZVV9-c
https://doi.org/10.1007/978-3-031-19800-7_32

simulation with graph neural odes.

Skonieczny, K., Niksirat, P., & Nassiraei, A. A. F. (2017). Preparations for reduced grav-

ity flights to examine exomars rover wheel-soil interactions.. Retrieved from https://

api.semanticscholar.org/CorpusID:211125498

Skonieczny, K., Niksirat, P., & Nassiraei, A. A. F. (2019, June). Rapid automated soil prepara-

tion for testing planetary rover-soil interactions aboard reduced-gravity aircraft. Journal of

Terramechanics, 83, 35–44. Retrieved from https://doi.org/10.1016/j.jterra

.2019.03.001 doi: 10.1016/j.jterra.2019.03.001

Söderkvist, I., & Wedin, P.-Å. (1994, September). On condition numbers and algorithms for

determining a rigid body movement. BIT , 34(3), 424–436. Retrieved from https://

doi.org/10.1007/bf01935651 doi: 10.1007/bf01935651

Sorkine-Hornung, O., & Rabinovich, M. (2017). Least-squares rigid motion using svd. Computing.

Tailor, S. A., Fernández-Marqués, J., & Lane, N. D. (2020). Degree-quant: Quantization-aware

training for graph neural networks. CoRR, abs/2008.05000. Retrieved from https://

arxiv.org/abs/2008.05000

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., . . . Dosovitskiy,

A. (2021). Mlp-mixer: An all-mlp architecture for vision. CoRR, abs/2105.01601. Retrieved

from https://arxiv.org/abs/2105.01601

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin,

I. (2017). Attention is all you need. CoRR, abs/1706.03762. Retrieved from http://

arxiv.org/abs/1706.03762

Wong, J. (2012, February). Predicting the performances of rigid rover wheels on extraterrestrial

surfaces based on test results obtained on earth. Journal of Terramechanics, 49(1), 4961.

Retrieved from http://dx.doi.org/10.1016/j.jterra.2011.11.002 doi: 10

.1016/j.jterra.2011.11.002

Xurshid, M. (2023). Differences between mojo and python programming languages. In Conference

on digital innovation:” modern problems and solutions”.

68

https://api.semanticscholar.org/CorpusID:211125498
https://doi.org/10.1016/j.jterra.2019.03.001
https://doi.org/10.1007/bf01935651
https://arxiv.org/abs/2008.05000
https://arxiv.org/abs/2105.01601
http://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1016/j.jterra.2011.11.002

