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Abstract

Pedestrian Detection Systems Focusing on Occluded and

Small-Scale Individuals

Ameen Abdelmutalab, Ph.D.

Concordia University, 2023

Pedestrian detection is essential in various applications, such as self-driving vehicles,

video surveillance, and intelligent traffic management. However, the wide variations in

pedestrian sizes, postures, locations, and backgrounds make the detection a complex

task. In particular, the detection becomes significantly challenging due to the lack

of pedestrian information when pedestrians are occluded by other objects, such as

vehicles or trees, or when they appear as objects of small-scale in an input image.

Such situations occur frequently in the real world. The objective of this thesis is to

design CNN-based pedestrian detection models to improve the detection of occluded

and small-scale pedestrians.

The first part of this work addresses the occlusion problem by proposing a specific

detection model referred to as Multi-Branch Center and Scale Prediction (MB-CSP).

The proposed model employs a multi-branch structure to optimize the utilization of

the features extracted from the visible parts of pedestrians. This structure enables the

feature data from the upper, middle, and lower parts of a pedestrian, as well as those

of the full body, to be processed separately. By doing so, the data representing the true

pedestrian appearances, whether partially or fully visible, can be more dominating in

the final decision making. As a result, the interference from non-pedestrian data in

the detection can be minimized. To optimize the fusion of the detection outcomes



generated by the multiple branches, a new method referred to as Boosted Identity

Aware-Non Maximum Suppression (BIA-NMS) is developed and applied in the design

of the MB-CSP detection system. The BIA-NMS method eliminates redundant

detections across branches and boosts the scores of the preserved detections. To

implement the proposed model, a part annotation algorithm has been introduced to

enable the training of the multi-branch structure. It is anticipated that the proposed

model can boost the overall performance of the pedestrian detection system.

The second part of this work provides a number of approaches to improving the

detection of small-scale pedestrians, besides the occluded ones. One can use two CNNs

designated to detect pedestrians of large and small scales, respectively, to achieve

a good detection in each of the two cases. Instead of two designated CNNs, one

can use only one and incorporate a specific branch in the proposed MB-CSP model

to process the features of small-scale pedestrians. The other approach proposed in

this thesis is to segment the original input image into multiple partially overlapped

sub-images, the likelihood of the presence of small-scale pedestrians in each sub-image

is measured, and those of high scores are selected and enlarged. The detection is

performed by two CNNs, of which one is designed for the original image and the other

for the selected/enlarged sub-images, in order to enhance the detection of small-scale

pedestrians while preserving the detection quality of the occluded pedestrians.

The detection systems presented in this thesis have been trained and evaluated

using image samples from the Caltech-USA and CityPersons datasets. The tests have

confirmed the effectiveness of the proposed multi-branch system in detecting occluded

pedestrians. The test results have also demonstrated that the approaches to enhance

the small-scale pedestrian detection produced a visible improvement in this aspect

without affecting the detection of occluded pedestrians.
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Chapter 1

Introduction

1.1 General

Pedestrian detection is an important part of various automatic surveillance systems.

The reliable detection performance is critical for such a system to be used in practice.

It is, however, very challenging to achieve because of the variability of pedestrians’

appearances.

� Pedestrians can appear in many different ways and their postures can vary

greatly. They may be walking, standing, or even cycling. This variability in

appearance and posture makes it challenging to develop a pedestrian detection

model that can accurately identify pedestrians in various situations.

� Various illumination conditions and environmental factors, such as day and night

lighting, rain, storms, and snow, can significantly alter a pedestrian’s appearance.

These changes complicate the detection process by affecting visibility and the

detection system accuracy.

Given the general challenges associated with the pedestrian detection, the work

in this thesis specifically addresses two critical challenges. Firstly, the pedestrian
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Figure 1.1: Image from CityPersons dataset [1], showing great variations in pedestrian’s
appearances including clothing, illuminations, scales, and postures. It also presents
pedestrians with different occlusion patterns such as heavy occlusion, partial occlusion,
and non-occlusion, as well as inter-class occlusion and intra-class occlusion.

detection becomes even more challenging when part of a pedestrian appearance is

hidden by an external object, such as a tree or parked vehicle, which is referred to

as inter-class occlusion, or by another individual, referred to as intra-class occlusion.

In such scenarios, the visual features of the pedestrian are mixed with those of the

obstructing objects, making the detection more complicated. This issue should be

properly addressed, and effective solutions are needed. The second challenge is to

detect small-scale pedestrians. Due to their sizes in images, their visual features are

very hard to extract and to identify. Fig. 1.1 depicts actual street scene to illustrate

various pedestrians’ appearances, including occluded and small-scale pedestrians.

Recent technological advancements have significantly facilitated the pedestrian

detection systems. This is driven by two key factors. Firstly, the growth in computa-

tional power allows for complex calculations that are essential for accurate pedestrian

detection. Secondly, the increase in data storage capacity and the availability of
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large amount of data, facilitates more comprehensive analyses, thereby boosting the

efficiency of these systems.

1.2 Literature Review

Pedestrian detection methods can generally be classified into two main groups based

on the approach used for detection. The first group involves the use of engineered

features in combination with classical classifiers. In this approach, pedestrian features

are manually extracted from images or videos, and then fed into a machine learning

classifier to distinguish between pedestrians and non-pedestrians. The second group

involves the use of deep learning models with automatic features. This approach

utilizes deep neural networks to automatically learn and extract features from the

images or videos, and then classifies the objects in the scene. While both approaches

have their advantages and limitations, the development of deep learning models has

revolutionized pedestrian detection, allowing for greater accuracy and reliability in

detecting pedestrians in various scenarios.

1.2.1 Pedestrian Detection Using Engineered Features

Engineered features are defined by researchers based on their observations and analysis

of a particular problem. These features are extracted to better distinguish between

different objects, in this case, pedestrians from other objects in images. In [2], one

of the earliest proposed methods for pedestrian detection utilized Haar-like features.

Haar-like features are simple rectangular filters that can be used to compute local

image contrast. These filters are applied to an image to identify distinctive features

such as edges by computing the difference between the sum of pixel intensities in white

and black rectangles of the same size and shape. The Viola-Jones (VJ) algorithm,

described in [3], accelerated the computation of Haar-like features by utilizing the
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Integral Image approach. This approach involves pre-calculating the sum of pixel

intensities in rectangular regions of an image, which allows for efficient computation

of Haar-like features. The approach also combined Haar-like features with Cascaded

Ada-boost classifiers, resulting in improved detection accuracy. Besides Haar-like

features, Scale Invariant Feature Transform (SIFT) is another widely used feature

extraction technique for pedestrian detection. SIFT features are known for their

robustness to rotation and scale changes, enabling them to detect pedestrians in

images captured under various viewing conditions. The SIFT method identifies and

characterizes key points in an image using a set of descriptors that are invariant to

changes in scale. These descriptors can be compared across multiple images, facilitating

reliable pedestrian detection, and tracking in complex scenarios. Furthermore, the

Histogram of Oriented Gradients (HOG) method was developed by Dalal and Triggs

in their paper [4]. This method entails partitioning an image into various blocks

and computing the gradient histogram based on the magnitudes and angles of the

image gradients. The resultant histogram depicts the spatial distribution of edge

orientations within the image and can serve as a useful feature vector for pedestrian

detection. Additionally, the authors of [5] presented the Integral Channel Features

(ICF) algorithm as an accurate and computationally efficient technique for pedestrian

detection. The ICF algorithm generates a set of feature channels using integral images,

which approximate detection features such as HOG, color statistics, and linear filters

at different scales by estimating their values from neighbouring scales. The resulting

feature channels capture both local and global information about pedestrians, which

are then processed by a cascade of classifiers to detect pedestrians in the image.

Classical machine learning classifiers, including Support Vector Machines (SVM)

[4, 6, 7] and boosting techniques [3, 8–10], are commonly used in the literature with

engineered features to achieve better detection performance. SVM is a popular classifier

that separates data into different classes using a hyperplane where this hyperplane is
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chosen such that it maximizes the margin between the closest points of the different

classes. Boosting techniques, on the other hand, are used to improve the performance

of weak classifiers by combining them into a strong classifier. Boosting classifiers

work by sequentially training a series of weak classifiers on the same dataset, with

each subsequent classifier focusing more on the misclassified examples of the previous

classifiers. The final classifier is obtained by combining the outputs of all the weak

classifiers, weighted according to their individual performances.

Recent research in the field of pedestrian detection has focused on the evaluation

and comparison of different state-of-the-art detectors. For example, Dollar et al.

conducted a systematic analysis in [11] focused on 16 state-of-the-art detectors across

six datasets, evaluating and comparing the performance of these detectors in a unified

manner at different scales and occlusion patterns. In another study, Benenson et al.

analyzed over 40 pedestrian detectors on the Caltech-USA dataset [12]. Additionally,

a survey in [13] reviewed 30 methods from the past decade, highlighting recent

advancements in pedestrian detection. Such studies helped researchers to improve

detection accuracy and reliability.

1.2.2 Pedestrian Detection Using CNN Features

Convolutional Neural Networks (CNNs) are now widely used in pedestrian detection

systems. There are two main approaches to using CNN models, hybrid approach and

pure CNN-based approach. Hybrid approach may use deep learning to extract features

and then use traditional classifiers for decision making. An example of this, is the

work proposed by Yang et al. [14], who replaced engineered features with those derived

from convolutional layers. Alternatively, hybrid approach may merge conventional

features with a CNN for the classification task. An instance of this latter approach

is presented by Ribeiro et al. [15], who trained several deep networks with varying

inputs, such as colour and segmentation images.
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Next method fully depends on deep learning for extracting features and performing

classification. For example, Zhu et al. [16] carefully selected features from the Region

of Interest (RoI) for regression and combined these features from various layers for

classifying objects. These techniques, which are solely based on CNNs, have been

found to be more efficient and simpler than hybrid methods, typically using an end-to-

end training approach. Furthermore, Lin et al. [17] adopted a top-down structure to

merge features from both deep and shallow layers, an approach referred to as Feature

Pyramid Network (FPN). This demonstrates the ease and effectiveness of using a

purely CNN-based approach in pedestrian detection.

Networks like Region-Based CNN (R-CNN) [18] employ a region proposal technique

known as Selective Search method that uses different image features like brightness,

color, texture, composition, and hierarchical structure to suggest proposed regions,

these regions are then classified and adjusted using a CNN network. Fast R-CNN [19],

on the other hand, directly applies the input image to a CNN network and generate

the RoI from the feature maps. This approach considerably reduces the processing

time compared to the original R-CNN, since the CNN network is only applied once. To

further reduce training and testing time, Faster R-CNN [20] replaces classical methods

for calculating region proposals like Selective Search with a Regions Proposal Network

(RPN). This approach eliminates the need for external region proposal methods,

and significantly reduces the computational complexity of the process compared to

Fast R-CNN. The RPN generates region proposals in parallel with the network’s

classification and bounding box regression tasks, leading to faster and more accurate

pedestrian detection performance.

An alternative approach to pedestrian detection utilizes feed-forward networks

that do not require a specific network for region proposals. Methods in this category

include Single Shot Detector (SSD) [21], You Only Look Once (YOLO) [22], and

Centre and Scale Prediction (CSP) [23]. SSD generates anchor boxes of different sizes
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and aspect ratios centred at every pixel in the input image. It then classifies these

anchor boxes into pedestrian or backgrounds based on their aspect ratios. YOLO,

on the other hand, generates non-overlapping anchor boxes and each box predicts a

certain number of bounding boxes. These bounding boxes are then used to represent

the position and size of pedestrians in the image. Both SSD and YOLO demonstrate

high detection accuracy and fast processing times, making them suitable for real-time

applications such as autonomous driving and surveillance. CSP is another feed-forward

neural network that does not rely on a region proposals network to detect pedestrians.

Instead, it automatically generates heat-maps that indicate the predicted locations of

pedestrians. CSP has demonstrated state-of-the-art accuracy while maintaining high

processing detection speeds.

1.2.3 Existing Solutions for Detecting Occluded Pedestrians

Occlusion is a common issue in pedestrian detection; in [11], videos recorded from a

driving car that captured pedestrians in different cities, showed that 70% of pedestrians

were occluded in at least one time frame. While this study was conducted in the

greater Los Angeles region of the United States, it provides an example of the scope

of the problem in similar metropolitan areas.

Occlusion occurs when part of pedestrian body is invisible and covered by another

object, in general occlusion can be divided into two types, inter-class occlusion that

takes place when pedestrians body is covered by an obstacle such as a tree, car or a

suitcase, and intra-class occlusion which occurs when part of pedestrian is covered

by another pedestrian in the scene, usually in crowded areas. Based on the degree of

occlusion, pedestrians can be categorized into heavy occluded pedestrians, partially

occluded pedestrians and non-occluded pedestrians. The great variation in occlusion

patterns, as well as the occluding objects, makes it difficult for machine learning

algorithms to learn a general model. Approaches to handle occlusion can be divided
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into three categories, Part-Based approaches, Attention-Based approaches and Post-

Processing and Loss-Based approaches. For models that utilize a Parts-Based approach,

as highlighted in references [24–26], the full pedestrian body is divided into various

parts, often characterized by different occlusion patterns. During occlusion some

body parts remain visible, hence detecting these parts is more convenient compared

to detecting the full body with mixed features of pedestrian and barrier. Earlier

Part-Based approaches used ensembles models, in which separate parts detectors are

used independently. As mentioned in [27], this approach is unsuitable for real-time

processing where the system complexity grows linearly with the addition of every

part detector. Moreover, ensembles models ignore the correlation between different

parts during learning, resulting in a non context-aware parts detector. Other methods

built parts models using joint frame work [28], where different body parts are trained

collaboratively using single Convolutional Neural Network (CNN). This approach

reduces the complexity presented in ensemble models; however it lacks accurate parts

annotation. In [27], authors introduced Multi Label Learning with separate labels

assigned to different body parts, their approach uses part pool with 20 different parts

and classical Ada-boost classifiers. Authors in [29] introduced Visible-to-Full body

Network (V2F-Net), in which the visible pedestrians are first identified and then used

to estimate their full body extension. In the study by Noh et al. [30], the researchers

used the confidence of pedestrian’s visible parts to adjust the final detection confidence.

This method addressed the issue of low confidence when pedestrians are partially

occluded.

As for Attention-Based approaches, authors in [31], introduced a separate part-

attention network to Faster R-CNN with the objective of creating a channel-wise

attention vector. This vector is used to adjust the weights of channel features to

handle different occlusion patterns. Another example is introduced by Guo et al. [32],

in their study to use a semantic segmentation map. These maps, derived from depth

8



images, guide the adjustment of the convolutional features obtained from RGB images.

Furthermore, Lin et al. [33] utilize pedestrian attention masks that are aware of scale

differences and a zoom-in-zoom-out module to enhance the feature maps’ ability to

detect smaller and partially hidden pedestrians.

For Post-Processing and Loss-Based approaches, the studies in [34] and [35]

investigate the impact of the Non-Maximum Suppression (NMS) threshold on crowded

detection. To mitigate the influence of a rigid threshold on detection, advanced NMS

strategies are proposed in [36–39]. Soft NMS [40] aims to reduce the score of closely

overlapping proposals rather than removing them, but it still indiscriminately penalizes

boxes with high overlap. Certain studies incorporate additional information such as

density and diversity into NMS, to address inflexible thresholds. Adaptive NMS [36]

employs the larger value between the predicted density around the instance and

the initial threshold as the dynamic suppression threshold to improve the bounding

boxes. This implies that the threshold increases as instances overlap and decreases

when instances appear independently. Different track of work focuses on improving

crowded pedestrian detection by introducing new loss functions [34,41], their goal is to

minimize the distance between duplicate detection boxes of the same pedestrian and

to maximize the distance between adjacent pedestrian boxes, eventually preventing

over elimination by NMS. Other authors integrated additional innovative features to

improve pedestrian detection task, for example Du et al [42] applied features from a

pixel-wise semantic segmentation network, and Song et al [43] integrated temporal

information from adjacent frames.

1.2.4 Existing Solutions for Detecting Small-Scale Pedestrians

Detecting larger pedestrians is generally easier for many models, but identifying

smaller ones can be very challenging. This is generally due to several factors. (a)

Small-scale pedestrians are described by a limited number of pixels in the image,
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making it particularly challenging for models to extract significant features to identify

them. (b) The blurring effect is severe on small-scale pedestrians, resulting in difficulty

distinguishing the target from the background. (c) Pre-trained deep learning models

with consecutive pooling layers, are optimized to detect objects that are usually large

or moderate in size, the mismatch between these scales and small pedestrian’s scales

limits their performance.

Small-scale pedestrian detection methods are mainly classified into four pillars,

Scale-Specific Categorization, Contextual Information, Super-Resolution, and Region-

Proposal, as mentioned in [44]. Scale-Specific Categorization combines the pedestrian

information extracted from shallow convolutional layers, which is usually important

for small-scale pedestrian localization, with deep convolutional layers necessary for

semantic information, leading to better pedestrian detection. For example, Multi-Scale

Deconvolutional Single Shot Detector (MDSSD), proposed in [45], uses skip connection

to add more contextual features. In this model, deconvolution layers are applied to

upsample the high-level feature maps to the same resolution as the corresponding low

layers. Deconvolution Region-Based CNN (DR-CNN) [46], Unlike MDSSD, which

sums the deconvolution layers, DR-CNN concatenates them. It also introduces a

new loss function to facilitate the training of hard negative samples, improving the

model’s overall performance. Authors in [47] developed Scale-Aware Fast R-CNN (SAF

R-CNN) with two detection ends to recognize large-scale and small-scale pedestrians

separately. Their model uses the later VGG layers to detect small-scale pedestrians,

which is insufficient as these layers are optimized to detect large areas in the image.

Contextual Information, this approach makes use of the surroundings and environ-

ment around pedestrians to enhance the detection accuracy of small-scale pedestrians.

For large-scale pedestrians, the features extracted are usually enough for recognition,

but with small-scale pedestrians extracting additional supplementary information to

complement the original features becomes essential. ContextNet [48] introduces a
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novel region proposal network (RPN) designed to encode the context information

surrounding a small-scale object proposal. Inside-Outside Net (ION) [49] utilizes

spatial recurrent neural networks (RNNs) to search for contextual information outside

the target region. This model integrates multiple scales and context information,

enhancing detection capabilities.

Super-Resolution techniques work to convert raw low-resolution images into higher

resolution versions. This means that more details of small-scale pedestrians can be

obtained, improving the clarity and understanding of the images. For Perceptual

GAN [50], a new conditional generator was introduced, utilizing low-level features as

input to capture more details about small-scale objects, leading to a super-resolved rep-

resentation. SOD-MTGAN [51] is a novel multitask generative adversarial network that

produces super-resolved images with real high-resolution, containing high-frequency

details. This results in easier classification and improved localization. JCS-Net [52]

comprises two subnetworks, a classification sub-network and a super-resolution sub-

network. These are integrated into a unified network by combining both classification

loss and super-resolution loss, enhancing small-scale pedestrian detection.

Region-Proposal is a strategy aimed at creating suitable anchors for small-scale

pedestrians. By focusing on specific needs rather than generic anchor parameters, it

seeks to better fit small-scale pedestrians and improve detection accuracy. For example,

AttentionMask [53] was designed to create tailored region proposals for small-scale

objects. It adopts a Scale-Specific Objectness Attention Mechanism (SOAM) to

select the most promising windows at each feature map with different scales, thereby

reducing the number of sampled windows. While all scales are evaluated according

to their attention values to find optimal locations for window sampling, this strategy

focuses only on the most promising windows. As a result, it saves memory and GPU

resources, enhancing the detection of small-scale objects. In addition, the authors

in [54] employ oversampling techniques specifically for images with small-scale targets.
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This approach is used to enhance the model’s ability to predict small-scale targets

accurately.

1.3 Objectives and Organization of the Thesis

The objectives of this thesis are two folds. The first fold is to develop a pedestrian

detection system capable of enhancing occluded pedestrian detection, addressing

both intra-class and inter-class occlusion challenges, all while ensuring a high level of

simplicity and speed. The second fold is to design detection architectures that enhance

the detection of small-scale pedestrians, while preserving the improved accuracy

achieved in detecting occluded and large-scale pedestrians.

To achieve these objectives, the work presented in this thesis explore the following

avenues:

Multi-Branch Model for Occluded Pedestrian Detection. The goal is to

optimize the detection of occluded pedestrians by using dedicated branches for distinct

body parts. Each potential pedestrian body is divided and the feature data of each

part are directed to a designated branch. It attempts to process efficiently the features

of the exposed parts of a pedestrian object and to ensure that the patterns of these

parts are correctly recognized. In this way, the data produced from the exposed

parts in these branches can significantly influence the final decision-making. The

body partitioning should be done appropriately to ensure that each part has easily

distinguishable patterns and the number of parts is minimal to minimize the overall

model complexity.

Optimized Fusion of the Multi-branch Model Detections. To better handle

the data produced by the multiple branches of the detection model, a post-processing

method must be integrated. The purpose of this method is to eliminate duplicate
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detections, optimize detection scores, and improve the detection of highly occluded

pedestrians.

Architectures to Address Pedestrian Size Variability. The objective is

to detect large-scale and small-scale pedestrians independently, using either distinct

detection models or separate branches within a single model. Implementing these

architectures can enhance the detection accuracy for smaller pedestrians without

compromising the accuracy for larger ones.

Architectures for Enlarging Potential Pedestrian Regions. The objective is

to identify image regions potentially containing small-scale pedestrians. These regions

should then be enlarged and processed using a separate detection model to identify

the pedestrians within them.

This thesis is organized as follows. In Chapter 2, a background overview essential

for understanding the proposed models is provided. In Chapter 3, the proposed

Multi-Branch detection model, designed to enhance occluded pedestrian detection,

is introduced. Chapter 4 presents the architectures proposed to enhance small-scale

pedestrian detection. Chapter 5 details the experimental setup and evaluates the

proposed models. Finally, Chapter 6 concludes the thesis by summarizing its primary

findings.
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Chapter 2

Background

This chapter provides an overview of the essential components of a Centre and Scale

Prediction (CSP) model. Throughout this thesis, systems based on the CSP model are

proposed to enhance the detection of occluded and small-scale pedestrians. This choice

is motivated by the CSP model’s simplicity and high detection accuracy compared to

other models in the literature. The chapter also covers the pre-processing techniques

essential for system robustness, the architecture of the CSP model, and the post-

processing method used to remove duplicate detections and produce the final detection

outputs.

2.1 Pre-Processing Techniques

In the process of training pedestrian detection models, the utilization of limited

datasets often leads to models with limited generalization capabilities, especially in

the context of larger network architectures which have a higher risk of over-fitting.

Recognizing these limitations, the application of image augmentation techniques is

essential. These techniques aim to strengthen the model’s stability, ensure a broader

representation in the dataset, and effectively address over-fitting concerns. Key

techniques in this field include.
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1. Horizontal Flipping: Mirroring images horizontally adds variation to the dataset

by changing the position of pedestrians, yet the inherent subject and context of

the image remain unchanged.

2. Random Cropping: Selecting specific parts of images to create more variations,

offering a broader view of pedestrian features.

3. Padding: By padding and then cropping images, pedestrians appear smaller, sim-

ulating varied distances or perspectives, enhancing model detection capabilities

in diverse scenarios.

4. Image Resizing: Standardizes image sizes for neural networks to enhance the

computational efficiency.

5. Random Noise: By adding noise to the training images, the model becomes better

at detecting pedestrians in noisy real-world settings, increasing its robustness

against diverse conditions.

2.2 Centre and Scale Prediction (CSP)

Anchor-based detection models primarily use predefined anchor boxes with specific

scales and aspect ratios to identify objects of key importance. These models employ

classification methods to determine the object’s precise class, and regression strategies

to accurately locate objects and define their spatial dimensions. In contrast, the

Centre and Scale Prediction (CSP) model [23], displayed in Fig. 2.1, introduces an

anchor-free approach. This model identifies the object’s class and its spatial location

directly from distinct image features. By avoiding the use of predefined anchor boxes,

the CSP model provides a potentially enhanced flexibility in object localization, a

fundamental aspect of computer vision tasks.

15



Figure 2.1: The architecture of the CSP model [23]. Including its Feature Extraction
part, and Detection Heads part.
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The CSP model consists of two main parts. Feature Extraction part and Detection

Heads part. The Feature Extraction part, commonly known as the model’s backbone,

processes the input image and extracts essential detection features using series of

convolutional layers and pooling steps. In this thesis, the ResNet50 architecture,

detailed in Table 2.1, is the adopted backbone for the proposed CSP-based systems.

The key strength of the Resnet architecture lies in its innovative use of residual

connections. These connections address major deep learning challenges like, vanishing

gradients, feature reuse, training speed, and model interpretability.

Table 2.1: ResNet50 Architecture Details.

Layer Name Output Size 50-Layers

Conv1 112× 112 7× 7, 64 filters, Stride 2

Max pool 56× 56 3× 3, stride 2

conv2 x 56× 56

 1× 1, 64
3× 3, 64
1× 1, 256

x3

conv3 x 28× 28

1× 1, 128
3× 3, 128
1× 1, 512

x4

conv4 x 14× 14

 1× 1, 256
3× 3, 256
1× 1, 1024

x6

conv5 x 7× 7

 1× 1, 512
3× 3, 512
1× 1, 2048

x3

Avg pool 1× 1 1000-d fc, softmax

Following feature extraction, the Detection Head part processes these features to

produce three different heat-maps, namely the center, scale, and offset heat-maps.

The Center Heat-Map is an essential component of the pedestrian detection

process using the CSP model, its role is to locate a pedestrian’s center within an image.

In the training phase, the center heat-map pixels are set to one if they represent the

17



center of a pedestrian, and to zero if they do not. However, the training process

is complicated due to the substantial imbalance between the number of center and

non-center pixels. To address this challenge, specific adjustments are made to the

center heat-map loss function calculations, with a particular focus on utilizing the

focal loss, as detailed in [55]. Focal loss is a specialized function designed to handle

class imbalances as in pedestrian detection scenarios. Its role is to enhance the model’s

attention to challenging cases (pedestrians’ center pixels) while reducing the impact of

straightforward examples (non pedestrian pixels). Within this strategy, a 2D Gaussian

distribution is applied around each pedestrian’s center. So, even though pedestrian

centers are marked as ones and non-pedestrian areas as zeros, the system offers some

flexibility for nearby pixels by not setting them exactly to zeros during training. This

technique simplifies the center heat-map training process, enhances the detection of

challenging positive pixels, and aids in efficient model convergence.

The Scale Heat-Map is the second output heat-map and its primary purpose

is to determine pedestrians’ height (h) and width (w). In practice, measuring only

the height is adequate, as pedestrians typically exhibit a consistent shape or aspect

ratio. For example, when assigning a ground truth value to a location in the scale

heat-map, if this location is the center of pedestrian n, then pixel in the scale heat-map

is assigned the value log(hn), corresponding to the log of the height of this pedestrian.

To reduce ambiguity, log(hn) is also assigned to negative locations within a radius of

2 from the pedestrians centers, while all other locations are assigned values of zero.

The Offset Heat-Map is the third output heat-map and its main function is

to correct potential inaccuracies that may arise when detection occurs at a lower

resolution than the original image size, which can lead to deviations or misplacements

in detection. For each pixel location, two offset heat-maps are created. One for the

horizontal shift to the pedestrian center point and another for its vertical shift. During
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training, these offset heat-maps have zero values everywhere except at pedestrian

locations, where they are assigned values as follows.

xn −
⌊xn
r

⌋
, yn −

⌊yn
r

⌋
(2.1)

where r is the downsampling factor equals to 4 in a standard CSP setting. xn and

yn represent the coordinates of the center of pedestrian n.

2.3 Non-Maximum Suppression (NMS)

During the model evaluation phase, the CSP model utilizes center maps to identify

potential pedestrian center points. This is achieved by applying a threshold to pixel

values. When a pixel’s value exceeds the specified threshold, it is considered as

a pedestrian center. In practical scenarios, several pixels surrounding the actual

pedestrian center often display values surpassing the predefined threshold. This

situation occurs due to inherent similarities among these pixel characteristics, further

influenced by the model’s training process involving the Gaussian mask, which allows

for errors. As a result, multiple pixels are designated as centers for the same pedestrian,

resulting in the generation of multiple overlapping bounding boxes, all indicating the

presence of the same pedestrian.

NMS is a technique employed to manage multiple bounding boxes, each associated

with its respective confidence score. By utilizing the concept of Intersection over Union

(IoU), NMS selectively eliminates redundant bounding boxes with an IoU exceeding a

specified threshold, often set at 0.5, only the bounding box with the highest confidence

score is retained, a process visually depicted in Fig. 2.2. The underlying assumption

here is the absence of pedestrians in immediate proximity, a scenario that would

result in bounding boxes with IoU values surpassing the predefined threshold. In this

context, the IoU between two boxes A and B is mathematically defined as follows.
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Figure 2.2: Illustration of Non-Maximum Suppression (NMS) in action, showing the
removal of redundant bounding boxes based on the IoU criteria. The assumption here
is that the blue and purple boxes have an IoU of more than 0.5 with the red box (the
box with the highest confidence), resulting in their removal when applying the NMS
method.

IoU(A,B) =
Area of Intersection(A,B)

Area of Union(A,B)
(2.2)

2.4 Summary

In this chapter, the main components of the Centre and Scale Prediction (CSP) model

were presented. Different image augmentation techniques are introduced to address the

challenges associated with limited datasets and over-fitting in models. The anchor-free

nature of the CSP model was compared to traditional anchor-based models, with the

ResNet50 architecture serving as its backbone. The roles of the center, scale, and offset

heat-maps in detection were described. The chapter also explored the Non-Maximum

Suppression (NMS) technique and its use of the Intersection over Union (IoU) metric

to eliminate redundant bounding boxes.
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Chapter 3

Proposed CNN Model for

Enhanced Occluded Pedestrian

Detection

In this chapter, a Convolutional Neural Network (CNN) system, labelled as Multi-

Branch Center and Scale Prediction (MB-CSP) is presented. This system is specifically

developed to tackle the challenges in detecting occluded pedestrians. When pedestrians

are obscured, the clarity of the available data can be significantly reduced, making

the detection more challenging. The strategy introduced in this chapter aims to use

the available data efficiently to improve the detection accuracy without significantly

increasing the system’s computational requirements. The work described in this

chapter has been presented in the research paper entitled ”Pedestrian Detection Using

MB-CSP Model and Boosted Identity Aware Non-Maximum Suppression”, published

in IEEE Transactions on Intelligent Transportation Systems [56].

In Section 3.1, the challenges of detecting occluded pedestrians are introduced,

and the building blocks of the proposed MB-CSP system are presented. Section

3.2 explains The Feature Generation Block, which is responsible for extracting the
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significant features for pedestrian detection. The Upper-Middle-Lower and Full

(UMLF) Block, designed to refine the generated features and detect pedestrian’s

body parts, is illustrated in Section 3.3. Section 3.4 introduces the post-processing

Block designed to merge the multi-branch outputs. The algorithm developed for parts

annotations is outlined in Section 3.5. Finally, Section 3.6 discusses the loss functions

utilized in the proposed system.

3.1 Overview

Detecting individual pedestrians in crowded areas is a challenging task, as people are

often occluded. A pedestrian can be partially obstructed by objects of other classes

such as vehicles and trees, which is referred to as inter-class occlusion. An intra-class

occlusion occurs when a pedestrian is partially occluded by other pedestrians. In

general, there are two hurdles when detecting occluded pedestrians.

� Real pedestrian features are mixed with features of the occluding barrier. This

hurdle is present in both inter-class and intra-class occlusions and can result in

confusion when learning pedestrian characteristics, eventually leading to wrong

detections. To overcome this hurdle, the proposed system utilizes part-based

detectors, each of which is exclusively learned from visible pedestrian parts.

� Multiple detections of a single pedestrian is a common problem in most detection

systems. The proposed Multi-Branch Center and Scale Prediction (MB-CSP)

system may exacerbate this problem by creating duplicates from its different

branches. To address this issue, the proposed system utilizes Non-Maximum

Suppression (NMS) to eliminate duplicates within the same branch and proposes

a novel post-processing method referred to as Boosted Identity Aware Non-

Maximum Suppression (BIA-NMS) for removing duplications across the different

branches.
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The block diagram of the proposed MB-CSP system is illustrated in Fig. 3.1. It is

composed of the following three blocks.

1. Feature Generation Block: This block processes input images to extract dis-

tinguishing features, producing feature maps optimized for pedestrian detection

at multiple scales.

2. UMLF Block: The block divides feature data into four branches. Each branch

creates heat-maps indicating location, scale, and offset of pedestrian targets.

This four-branch method enhances detection in different scenarios, increasing

reliability and capturing more pedestrians in varied conditions.

3. Post-Processing Block: This block integrates detections from the different

UMLF branches, processing the combined information to remove duplications

and to enhance the detection of intra-class occlusion cases.

Each block is discussed in detail in the following sections.

3.2 Feature Generation Block

The Feature Generation Block is fundamental to the pedestrian detection process.

Its main task is to process the input images and extract the essential features for

pedestrian detection. The block adopts ResNet50 architecture [57] and is pre-trained

on the ImageNet dataset. This pre-training allows for more detailed feature extraction

from a broad spectrum of image data.

The input images, sized HxW, are processed by the feature generation block. As

they are passed through stages 3, 4, and 5, their sizes change to (W/8)2, (W/16)2, and

(W/16)2 respectively. To make them ready for the next steps, they are first refined by

deconvolutional layers. Next, L2-normalization is applied to adjust their sizes to a

more uniform format, specifically (H/r)× (W/r). It’s important to mention that the

23



F
ig

u
re

3.
1:

M
B

-C
S

P
ar

ch
it

ec
tu

re
co

n
si

st
in

g
of

th
re

e
b

lo
ck

s:
F

ea
tu

re
G

en
er

at
io

n
B

lo
ck

,
U

M
L

F
B

lo
ck

,
an

d
P

os
t-

p
ro

ce
ss

in
g

B
lo

ck
.

24



downsizing rate used is represented by r and is set to 4. After these adjustments, the

images are given detailed information from different levels. With these enhancements,

they are then fed into the UMLF block for the main detection phase.

3.3 UMLF Block

If pedestrians appear partially occluded in an image, the pixel data in the occluded

part carry the features of the occluding barriers, which can contribute adversely to

the detection of the pedestrians. UMLF block is designed to mimic human perception

of a partially occluded pedestrian by extracting the relevant features from visible

pedestrian parts and ignoring data variations in the occluding barrier. To do so, one

needs to partition the view of a pedestrian into parts so that visible areas containing

actual features of real pedestrians are separated from the occluded areas, making it

possible to exclude non-pedestrian features in the training process. As a result, the

features of pedestrian parts will be processed in separate branches of the block, and

each branch will learn features of its corresponding part.

A pedestrian appearance can be obstructed differently, and the patterns of occlusion

are not unique. To partition a pedestrian view appropriately, the following elements

are considered.

� The designed partitions must have recognizable and distinguishable patterns

that discriminate pedestrians from irrelevant objects.

� Partitions must suit the different occlusion patterns so that each pedestrian has

at least one visible part, without significant interference of occluding element, in

most of the occlusion scenarios.

� The number of partitions must be reasonable, as more partitions implies more

branches, therefore increasing the complexity of the overall system.
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Figure 3.2: Pedestrians’ parts in different occlusion scenarios: A) shows a fully visible
pedestrian, where upper, middle, and lower body parts represent human contours. B)
A partially occluded pedestrian, where the upper and middle parts carry pedestrian
information, and the lower part is irrelevant. C) Depicts a heavily occluded pedestrian
where only the upper part indicates the presence of a pedestrian.

As discussed earlier, a pedestrian’s view has been divided into overlapping parts:

upper, middle, lower, and full body parts. Fig. 3.2 depicts these parts under different

occlusion conditions. Correspondingly, the MB-CSP system is constructed with four

distinct branches, with each branch specifically designed to recognize and identify one

of these parts, as follows:

� Upper Part Branch. This branch is dedicated to detecting pedestrians face

and shoulders using their distinguishable contours. The upper part detection is

crucial in detecting highly occluded pedestrians, where face and shoulders might

be the only visible part.

� Middle Part Branch. The features of the middle part, including the torso,

of a pedestrian’s view are very different from the upper or lower parts. This

branch is trained to identify the patterns of the middle part, and its output data

help to detect reasonable and partially occluded pedestrians.
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� Lower Part Branch. This branch is specialized to detect the unique shape of

the lower part, i.e. the trunk and legs of a pedestrian. If this part is visible, this

branch will detect it and contribute to the correct final decision.

� Full Body Branch. In case of fully visible pedestrians, a full-body detection is

evidently more advantageous than that of part-based, particularly when there

are many fully visible pedestrians in the training samples. Hence, this full-body

branch is placed to minimize the risk of missing fully visible pedestrian targets.

A good pedestrian detection needs a good identification of the patterns distinguish-

ing the pedestrian targets from the rest of the image. The four-branch structure of

the proposed UMLF Block permits each branch to be trained specifically to identify

the distinguished patterns of the designated part. If the part is visible, the branch

will generate a significant output, otherwise, no target patterns will be detected and

the output will be weaker. The final detection decision is based on the outputs of all

the four branches, dominated by the data generated from the visible parts.

The detailed structure of the UMLF block is illustrated in Fig. 3.3. The input

data, i.e., the 2D maps carrying features extracted in different scales, are first fused

by means of a convolutional layer of 256 kernels. The outputs of this layer are then

applied to each of the four branches for the detections of the upper, middle, lower and

full-body parts, respectively.

In each of the four branches, as shown in Fig. 3.3, the detection of the designated

part is performed by two convolutional layers, each of which has 256 kernels. It should

be noted that a standard 3x3 convolution is applied in the first layer, whereas the

second layer is a 3x3 separable convolution (consisting of depth-wise filter of size

3x3 followed by 1x1 classical convolution filter). The separable convolution acts as a

channel-wise attention mechanism to highlight the important features in each map.

The output data containing information on targets centers, scales and offsets are then

processed by 1x1 convolutions to generate the final center, scale and offset heat-maps.
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Figure 3.3: UMLF Network architecture, where C, S, O, and D denote center map,
scale map, offset maps, and output decoder, respectively.
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UMLF branches are configured identically. However, the convolution kernel pa-

rameters in each branch are designed to learn the associated features of each part.

Fig. 3.4 illustrates two detection examples, each having an original input image and its

associated upper, middle, lower and full-body center heat maps generated by the four

UMLF branches. The first example involves two fully visible pedestrians, with their

corresponding four center heat maps, indicating clearly and coherently the locations

of their parts and full-bodies. The second example is a challenging heavy occlusion

case, as one of the three pedestrians is severely occluded. Accordingly, the full-body

branch can only detect two pedestrians, as shown in Fig. 3.4(j). So do the branches

for the middle and lower parts. However, the center heat map in Fig. 3.4(g) produced

by the upper part branch clearly indicates three pedestrian locations, which is crucial

to detect the severely occluded third pedestrian. These two examples demonstrate

the effectiveness of the UMLF branches in enhancing detection quality in the presence

of significant heavy occlusion, without jeopardizing other cases.

As shown in Fig. 3.3, there is a decoder in each of the four UMLF branches. Each

decoder converts the center, scale, and offset maps in each branch to a list of bounding

boxes based on their predefined aspect ratios, illustrated in Fig. 3.5. It should be

mentioned that a single pedestrian target can be detected multiple times in each of the

four UMLF branches, which results in multiple overlapped full-length bounding boxes

per branch, creating a type of redundancy referred to as intra-branch redundancy.

Moreover, the same pedestrian may be detected by more than one branch, especially

if a pedestrian is fully visible in the image, this type of redundancy is referred to

as inter-branch redundancy. The post-processing block, presented in the following

section, is intended for bounding boxes refinement and redundancy elimination.
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(a) (b) (c)

Figure 3.5: Detection boxes of the three parts and their extension. (a) Upper part.
(b) Middle part. (c) Lower part.

3.4 Post-Processing Block

The post-processing block is designed to eliminate duplicated pedestrian boxes, and

to identify/preserve one bounding box per detected pedestrian. It is performed in two

steps to eliminate intra-branch redundancy and inter-branch redundancy, respectively.

For intra-branch redundancy, the duplicated boxes generated in the same branch

are removed by means of NMS. It is known that a single pedestrian can be indicated

by highly overlapped boxes. The degree of overlapping reflects the likeness of the case,

which is measured by IoU index representing an overlap between 0% and 100%. If

IoU value of two bounding boxes is higher than a threshold, they are considered to

indicate the same pedestrian and the one having the lower confidence score will then

be eliminated.

The above-mentioned threshold should be chosen very carefully. As NMS is

performed in each of the four branches, the thresholds can be selected differently

based on the detection criteria of different body parts. To decrease the risk of false

eliminations, the IoU threshold of the upper part is set more cautiously to be 0.6,

compared to 0.5 for the other branches. In case of detecting pedestrians that are

heavily occluded by other pedestrians, only the upper parts of the occluded pedestrians

can be differentiated, while their full-length boxes may highly overlap. In this case,

setting the IoU threshold for the upper branch to 0.6 allows to preserve the two

individual pedestrians upper parts.
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The NMS performed in each of the four branches removes most of intra-branch

redundant bounding boxes, and the remaining bounding boxes represent potential

pedestrian candidates detected in each branch. The bounding-boxes lists generated

by the four branches are then examined together, in the second step, to eliminate

inter-branch redundancy.

The inter-branch redundancy can be caused by the detection of a single fully visible,

or mostly visible, pedestrian in multiple branches, where the redundant bounding-

boxes are usually highly overlapped. However, if two pedestrians are heavily occluded

by each other, their boxes generated in the same branch or different branches, can

also be overlapped. In order not to falsely eliminate the bounding boxes representing

heavily occluded pedestrians, one needs to look into not only the overlap rate, but

also other indications from the four bounding boxes lists. The method, referred to

as Boosted Identity Aware Non-Maximum Suppression (BIA-NMS), is to check if a

group of overlapped boxes represent a single pedestrian or multiple heavily occluded

ones.

BIA-NMS is proposed with a view to minimizing the risk of merging heavily

overlapped boxes belonging to different pedestrians, while suppressing duplicated

pedestrian boxes. The following two points are used to develop BIA-NMS algorithm.

1. BIA-NMS aims at eliminating duplicated detection boxes, generated by different

branches, of the same pedestrian target. Hence, no boxes of the same branch can

be merged in this procedure, to eliminate the risk of missing occluded targets.

To be more specific, at a given location, the boxes to be checked must be from

different branches and are eventually merged to be one.

2. At given location, relatively high scores of multiple boxes from different branches

indicate a detection of multiple parts of the same pedestrian, implying a high

certainty of true detection. In this case, the final detection score will be boosted.
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BIA-NMS is performed in the following steps.

1. Sort all the detected boxes in a descending order based on their confidence

scores.

2. Identify the box with the highest score and refer to it as Bmax.

3. Calculate the IoU between all the detected boxes and Bmax.

4. Identify the boxes with IoU greater than 0.6 and add them to the new list

Bduplicate, make sure that only one box per branch is added to Bduplicate (the box

with the highest IoU per branch).

5. Define N as the number of boxes in Bduplicate.

6. Modify the score of Bmax as follows:

ScoreB = (N − 1)× λ× ScoreO + ScoreO (3.1)

where ScoreB denotes the boosted score of Bmax, ScoreO is the original score of

Bmax and λ is the boosting weight set to 0.08.

7. Add Bmax and its boosted score to the final detection list.

8. Remove Bmax and Bduplicate from the initial list.

9. Repeat the process starting from step 1.

Fig. 3.6 presents an example of two pedestrians applied to the proposed MB-CSP

system. The pedestrian in green is fully visible, hence the UMLF block can detect

its upper, middle, lower and full body parts (indicated by the green checkmarks).

Meanwhile, the red pedestrian is highly occluded and only the upper part can be

detected (red checkmark), and his middle, lower and full body parts are easily missed
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(red-crosses). The five detected boxes are depicted in (b), where the full-box for the

green pedestrian is represented by a black colour and has the highest score of 0.8.

The process of elimination starts by considering the IoU between all the detected

boxes and the box with the highest score (the black box). In this example, the four

boxes have IoU values greater than 0.5 with the black box. However, in (c), BIA-NMS

eliminates three of the four highly overlapped boxes and preserves one box (violet

box). This is because violet boxes represent upper body boxes, and the black box is

highly overlapped with two violet boxes, hence only one of them is eliminated (the

one with highest IoU value). Finally, the score of the black box is boosted to become

0.99 using equation 3.1.

In Fig. 3.7(a), an image including three pedestrians with different degrees of

occlusion is illustrated. If NMS is applied in the second post-processing stage, one

of the three pedestrians will be missed in the detection due to the heavy occlusion,

as shown in Fig. 3.7(b). The proposed BIA-NMS helps to capture the missed one,

so that all the three pedestrians are detected. Fig. 3.7(c) illustrates the detection

result, indicated by the three boxes, before the boosting. The scores of the detected

pedestrian boxes are boosted, by means of the calculation defined by Equation 3.1,

as shown in Fig. 3.7(d).

3.5 Parts Annotation

Most pedestrians’ datasets provide annotation information that specify two bounding

boxes for every pedestrian. Visible bounding box that indicates visible area of a

pedestrian, and Full bounding box that describes the full pedestrian body including

its extension if it is occluded. Annotation information is provided as follows:

Annotation = [xf , yf , wf , hf , xv, yv, wv, hv] (3.2)
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(a)

(b)

(c)

Figure 3.6: (a) Example of input involving two pedestrians, of whom one is severely
occluded. (b) Boxes generated by the four branches around the pedestrians locations.
(c) Result produced by the proposed BIA-NMS. The two boxes from the Upper part
branch should not be merged.
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(a) (b)

(c) (d)

Figure 3.7: (a) Input Image. (b) Detection results by MB-CSP and NMS, (c) by
MB-CSP and BIA-NMS before boosting, and (d) by MB-CSP and BIA-NMS after
boosting.
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where xf , yf and xv, yv are the coordinates of the top left corner of the full box and the

visible box, respectively. wf , hf and wv, hv are their corresponding width and height.

Since the proposed system has four detection ends, each pedestrian in the image

is assigned four bounding boxes, namely BBu, BBm, BBl and BBf , to describe the

upper, middle, lower and full pedestrian parts, respectively. Algorithm 1 presents

detailed explanation of the annotation algorithm.

3.6 System Loss

To calculate the total loss LossT of the proposed MB-CSP system, the four branch

losses are combined as follows:

LossT = α1LossU + α2LossM + α3LossL + α4LossF (3.3)

where LossU , LossM , LossL, and LossF indicate the system loss of the upper, middle,

lower, and full branches, respectively. For simplicity, α1, α2, α3, and α4 are set to 1s.

However, adapting different weights can be investigated.

Furthermore, for branch i, the branch loss Lossi can be expressed as:

Lossi = LossC i + LossS i + LossO i (3.4)

where LossC i, LossS i, and LossO i are the center, scale, and offset losses for branch

i, respectively.

To calculate the center loss for every branch, the same procedure presented in [23]

is followed. The main difference is that centers are calculated for every specific part

instead of a single center for the entire pedestrian body. Following this procedure, the

cross-entropy center loss is defined as:

37



Algorithm 1 Parts Annotation.

Input:
BBf=[xf , yf , wf , hf ]
BBv =[xv, yv, wv, hv]

Output:
BBu=[xu, yu, wu, hu]
BBm =[xm, ym, wm, hm]
BBl=[xl, yl, wl, hl]
BBf=[xf , yf , wf , hf ]

1: procedure Parts Annotation(BBfull, BBvis)
2: for img in Images do
3: for ped in Pedestrians do

4: BBu =
[
xf , yf , wf ,

hf

3

]
5: BBm =

[
xf , yf +

hf

3 , wf ,
hf

3

]
6: BBl =

[
xf , yf +

hf

2 , wf ,
hf

2

]
7: if Area(BBu∩BBv)

Area(BBu)
> 0.2 then

8: BBu ← BBu

9: else
10: BBu ← [0, 0, 0, 0]

11: if Area(BBm∩BBv)
Area(BBm) > 0.2 then

12: BBm ← BBm

13: else
14: BBm ← [0, 0, 0, 0]

15: if Area(BBl∩BBv)
Area(BBl)

> 0.2 then
16: BBl ← BBl

17: else
18: BBl ← [0, 0, 0, 0]

19: Return BBu, BBm, BBl, BBf
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LossC =


−1
Nobj

∑W
r
i=1

∑H
r
j=1 (1− pij)

γ log(pij), yij = 1

−1
Nobj

∑W
r
i=1

∑H
r
j=1(1−Mij)

βpγijlog(1− pij), yij = 0

(3.5)

where Nobj is the number of objects (specific body part) in the image, H, W and r

are the height, width and down-sampling factor of the image, respectively. Mij is a 2d

Gaussian map built around the center of every part, based on the height and width

of the specific part, this is done to reduce the uncertainty created by the negatives

surrounding center points, by reducing their effect on the total loss [23]. pij is the

predicated probability for a center to be presented at location i, j, and yij is the

ground truth value, equals to 1 if there is a center at location i, j and 0 otherwise. γ

and β are hyper-parameters, γ is set to 2 as recommended by [55], and β is set to

4 [58]. Scale and offset losses of every branch are calculated using smooth L1 loss

equation as follows:

Loss =
1

Nobj

Nobj∑
n=1

SmoothL1(sn, tn) (3.6)

where Nobj is the number of objects (specific body part) in the image, sn and

tn represent the network’s prediction and the ground truth of each positive target,

respectively.

3.7 Summary

In this chapter, a novel CNN system referred to as MB-CSP is introduced. This system

is specifically designed to enhance occluded pedestrian detection. The classification

stage consists of four detection branches, each dedicated to generating heat-maps to

indicate the locations of different pedestrians body parts. Special post-processing

method refereed to as BIA-NMS is introduced, to merge the detections of system

branches and generate the final outputs. The chapter also introduced the algorithm
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used for annotating pedestrian parts and details the loss functions crucial for the

training process. While the MB-CSP system improves occluded pedestrian detection,

identifying smaller pedestrians remains challenging. The next chapter highlights these

challenges and introduces architectures to tackle them.
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Chapter 4

Proposed CNN Architectures for

Enhanced Small Pedestrian

Detection

Pedestrians in images often vary in size and shape, frequently appearing much smaller

compared to the original image dimensions. Detecting these small-scale pedestrians

poses a significant challenge in creating a reliable detection system. This chapter

addresses this challenge by proposing multiple CNN architectures, all based on the

multi-branch CNN system introduced in Chapter 3. Section 4.1 discusses the difficulties

of detecting small-scale pedestrians and presents the proposed solutions to improve

their detection. In Section 4.2, the architectures designed for detecting pedestrians at

various scales are presented. Section 4.3 explains the proposed region selection models

and their corresponding architectures for small-scale pedestrian detection. Section 4.4

concludes the chapter and summarizes its main contributions.
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4.1 Overview

In this chapter, the term small-scale pedestrians refers to pedestrians smaller in size

relative to the original image dimensions, with the specific size varying based on

the dataset. However, this thesis focuses on enhancing the detection of pedestrians

with heights between 30 to 80 pixels. As illustrated in Fig. 4.1, this height range

corresponds to the medium scale in the Caltech-USA pedestrian dataset, with images

having a 480x640 resolution. Fig. 4.1 emphasizes that pedestrians of this size are

commonly encountered, thus indicating the importance of enhancing their detection.

Despite the challenges in detecting pedestrians at this scale, the right approaches can

yield significant improvements. A primary challenge in detecting these pedestrians

lies in accurately capturing their distinct features. This becomes evident in situations

like densely populated urban areas or surveillance systems, where precise pedestrian

detection is essential. This chapter examines two key observations concerning this

challenge, laying the groundwork for proposing solutions based on these observations.

1. Pedestrian features that are associated with large-scale pedestrians differ from

those associated with smaller pedestrians. Therefore, developing a model to

detect pedestrians across all scales poses a challenge. This complexity originates

from the need to account for varied feature sets and sizes, making universal

detection more complicated.

2. Smaller pedestrians occupy a limited number of pixels in images, especially

considering the consecutive downsizing and pooling processes common in many

pre-trained detection models. Such operations can further reduce the clarity and

distinctiveness of these smaller features, presenting additional hurdles in achiev-

ing precise detection. Moreover, many deep learning models, trained on general

object detection datasets, mainly focus on detecting larger objects/pedestrians.

As a result, these models often struggle to effectively detect smaller pedestrians.
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The gap in their training can lead to inaccuracies in real-world scenarios where

detection of diverse sizes is essential.

From these observations, two solutions have been proposed to address the specific

issues identified. Their potential integration is also under consideration. The proposed

solutions are as follows:

1. To address the dissimilarity between the features of large-scale and small-scale

pedestrians, this chapter introduces two distinct architectures. One assigns a

separate detection system for each scale, named DualScaleSeparateNet (DSSN).

The other integrates an additional branch into the previously suggested MB-CSP

system, dedicated to identifying small-scale pedestrians; this design is called

DualScaleBranchNet (DSBN).

2. To improve the detection of smaller pedestrians, often overlooked due to insuf-

ficient pixel information, a region proposal model is introduced. This model

identifies and enlarges regions potentially containing smaller pedestrians to

enhance their detection accuracy. The region proposal can be done using two

methods. The first method uses heat-maps generated by the proposed MB-

CSP model, resulting in an architecture named RegionUpscaleNet-HeatMap

(RUN-HM). Alternatively, region proposal can be driven by a designated branch

within the MB-CSP model, leading to the architecture termed RegionUpscaleNet-

DetectorGuided (RUN-DG).

The remainder of this chapter presents the proposed architectures, including their

losses, and post-processing techniques.
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Figure 4.1: Distribution of Pedestrian Heights in the Caltech-USA Dataset.

4.2 Architectures to Address Pedestrian Size Vari-

ability

In this section, the development of scale-specific systems designed for pedestrian

detection is discussed. The detection approach is categorized into two distinct scales.

� Large Pedestrian Scale: This scale focuses on pedestrians with larger dimen-

sions, especially those exceeding 80 pixels in height. Pedestrians of this size are

often closer to the vehicle, making their accurate detection vital. By omitting

smaller, potentially noisy pedestrian samples from the training, the model can

converge more effectively and refine its parameters to better identify these larger

pedestrians.

� Small Pedestrian Scale: This scale focuses on detecting pedestrians with

heights ranging from 30 to 80 pixels. While the training emphasizes enhancing

the detection of these smaller pedestrians, it might come at the cost of reduced

performance in detecting larger ones.
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4.2.1 Separate Detection Systems for Various Pedestrian

Scales

The proposed architecture adopts an ensemble strategy, utilizing two distinct systems.

Each system processes input images, yielding individual detection results. To produce

the final output, these detections are combined using a specific criterion that eliminates

duplicate detections and filters the noisy ones. As illustrated in Fig. 4.2, the proposed

architecture is referred to as DualScaleSeparateNet (DSSN) and it integrates a MB-

CSP system to detect large-scale pedestrians with a designated CSP [23] system to

target small-scale ones. While the two systems setup enhances training accuracy, it

demands more computational power for testing because both systems process data

simultaneously.

For the DualScaleSeparateNet framework, the two systems have individual loss

computations. The large-scale pedestrian system adopts the loss formulation described

in equation 3.3. Conversely, the small-scale pedestrian system utilizes the CSP loss

model as follows:

Loss = LossC + LossS + LossO (4.1)

Within this equation, LossC , LossS, and LossO define the center, scale, and offset

losses for the CSP model, respectively.

4.2.2 Separate Detection Branches for Various Pedestrian

Scales

In a different approach, DualScaleBranchNet (DSBN), as depicted in Fig. 4.3, imple-

ments the advantages of diverse detectors in a more simplified manner compared to

the DSSN architecture. Instead of operating with completely separate systems, DSBN

utilizes a shared Feature Generation Block among all the branches. This architectural

choice ensures that the integration of an additional branch requires only the addition
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of a few more convolutional layers, making it more resource efficient. This shared

structure can potentially lead to more unified feature learning, possibly benefiting

the detection of both smaller and larger pedestrians without overly complicating the

network architecture. The additional branch designed to detect smaller pedestrians is

comprised of the following layers:

1. Separable Convolutional Layer: This layer employs a combination of 3× 3

depth-wise convolutions followed by pointwise convolutions. After this convolu-

tional operation, batch normalization is applied, followed by the application of a

ReLU activation function.

2. Standard Convolutional Layer: A conventional convolution is then applied

using 256 filters of size 3 × 3. This is followed by batch normalization and a

subsequent ReLU activation function.

3. Output Layer: The outputs from the previous standard convolution are

subjected to three distinct 1 × 1 standard convolutions. These are employed

to generate center heat-map, scale heat-map, and offset heat-maps, especially

designed for the branch targeting smaller pedestrians.

The total loss of the DualScaleBranchNet is denoted as LossT . It is computed by

aggregating the individual losses from its five branches, as represented in equation 4.2:

LossT = α1 · LossU + α2 · LossM + α3 · LossL + α4 · LossF + α5 · LossS (4.2)

Here, LossU , LossM , LossL, and LossF denote the upper, middle, lower, and full

branches losses, respectively. LossS indicates the small branch loss. The coefficients α1

through α5 are set to 1, though their adjustment may optimize the model’s performance.

Finally, for a given branch, the branch loss is detailed in equation 3.4.
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Both DualScaleSeparateNet and DualScaleBranchNet architectures have a distinct

approach to handling pedestrian detections. For the four branches responsible for

upper, middle, lower, and full pedestrians, their detections are fused using the Boosted

Identity Aware Non-Maximum Suppression (BIA-NMS), as introduced in Chapter 3.

Subsequently, these detections are combined with the detections of the small-scale

pedestrian branch in the DualScaleBranchNet system or with the detections of the

small-scale pedestrian detector in the DualScaleSeparateNet system using Standard

Non-Maximum Suppression (NMS). Notably, if the small-scale detector identifies a

pedestrian taller than 80 pixels, its detection is omitted, relying solely on the detections

from the other four branches. This strategy ensures that any limitations in the smaller

detector’s performance for larger pedestrians don’t undermine the overall detection

accuracy.

4.3 Architectures for Enlarging Potential Pedes-

trian Regions

In this section, another architecture to enhance small-scale pedestrian detection is

proposed. The architecture is specifically designed and trained using large-scale

pedestrians, ensuring its effectiveness in identifying them during the testing phase. It

has been observed that generic architectures, when attempting to detect pedestrians of

all sizes, might compromise the accuracy of large-scale pedestrian detection, which is

generally more straightforward. Recognizing this challenge, the proposed architecture

emphasizes the reliable detection of larger pedestrians by systematically excluding

noisy small-scale samples during its training. In its testing procedure, two evaluations

are conducted. One on the original image to detect large-scale pedestrians, and another

on specific regions chosen for their potential to contain small-scale pedestrians. Once

identified, these regions are enlarged, making the smaller pedestrians appear larger
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and hence fit within the scale used in training. This strategy enhances the detection of

small-scale pedestrians while ensuring the accuracy for larger ones is not compromised.

Figs 4.4a and 4.4b illustrate the distribution of pedestrians’ locations. Fig. 4.4a

focuses on pedestrians taller than 40 pixels, while Fig. 4.4b highlights those with

heights between 30 and 80 pixels. The data shows that smaller pedestrians often

appear in the upper sections of the images. To identify the best regions for enlargement

within these upper areas, the proposed solution recommends selecting regions where

the spatial distribution of small-scale pedestrians, compared to the region’s size,

matches the distribution of larger pedestrians in the original image. Further details of

this distribution comparison method are discussed for Caltech-USA and CityPersons

datasets as follows.

Caltech-USA Dataset Analysis: In this dataset, pedestrians taller than 40

pixels typically appeared around the 207th row of the image (rowmean1), with a standard

deviation (std1) of 53 pixels. Conversely, for pedestrians with heights between 30

and 80 pixels, the central point of distribution (rowmean2) was at 182 pixels, with a

standard deviation (std2) of 30 pixels. The objective here is to select image regions and

enlarge them, so the pedestrians in the enlarged parts will have the same pedestrian

spatial distribution as in the training data of Fig. 4.4a.

Ratio1 =
std1

H
=

53

480
= 0.11 (4.3)

By calculating the ratio of std1 to the full image height (H), the benchmark ratio

(Ratio1) is obtained. This ratio should be matched by std2 when divided by the height

of the selected regions (HEnlarged) calculated as follows:

HEnlarged =
std2

Ratio1

=
30

0.11
= 272 pixels (4.4)
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(a) Pedestrian Distribution Across Image Rows For Pedestrians Height Larger than 40 Pixels.

(b) Pedestrian Distribution Across Image Rows for Pedestrians Height Between 30 and 80
Pixels.

Figure 4.4: Pedestrian Distribution in Different Height Categories.
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This implies that the optimal height of the selected regions should be 272 pixels.

This height is cropped around the mean row so the result is:

Starting Pixel = rowmean2 −
272

2
= 182− 136 = 46 (4.5)

and

Ending Pixel = rowmean2 +
272

2
= 182 + 136 = 318 (4.6)

To maintain the original image’s aspect ratio, it is essential for the selected regions

to have a width of 362 pixels. Two regions meeting these specifications are adequate

for covering the areas of interest within the image.

CityPersons Dataset Analysis: For the CityPersons dataset, characterized by

an image height of 1048 pixels and a width of 2048 pixels, the statistical analysis

of pedestrian spatial distributions is detailed as follows: Pedestrians exceeding 40

pixels in height are mainly centred around the 512th row, denoted as (rowmean1).

The corresponding standard deviation for this distribution, represented by (std1),

is approximately 295 pixels. In contrast, the second distribution, encompassing

pedestrians with heights ranging from 30 to 80 pixels, exhibited a mean row referred

to as (rowmean2) of 315 pixels and a standard deviation (std2) of 167 pixels. Based

on these values, two regions with height and width of 580 and 1160, respectively are

selected. Whereas the starting height pixel is 25 and the ending height pixel is 605.

Fig. 4.5 presents the first architecture proposed to enhance small-scale pedestrian

detection under this approach. Initially, an image is processed by the MB-CSP system,

with larger pedestrians primarily being targeted. Next, two specific regions of the

image are selected and enlarged for further analysis. These enlarged regions are then

processed by the CSP system to target the smaller pedestrians. This architecture is

referred to as the Region-Upscale-Net (RUN). It should be mentioned that small-scale
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pedestrians that are also occluded are very difficult to detect, hence these cases are

ignored and only the CSP system is applied.

(a)

Figure 4.5: (a) Original input image. (b) Image representation of Region (R1) after
upscaling. (c) Image representation of Region (R2) after upscaling.

4.3.1 Region Selection Using Heat-Maps

The RUN architecture selects regions for enlargement based on the matching process

detailed in the previous section. Yet, some of these regions might not contain any

pedestrians. As Fig. 4.6 demonstrates, enlarging such regions is inefficient and can

decrease the overall detection speed. To optimize the process, this section introduces a

method that selectively identifies regions for enlargement and processing based on the

center heat-map generated by the full-body branch of the MB-CSP system. Within

the RegionUpscaleNet-HeatMap (RUN-HM) framework, only regions that display

clear signs of pedestrians in the heat-map are processed further.

A threshold is introduced to guide this decision-making. The threshold evaluates

the signal strength within specific regions in the heat-map. Regions with signal strength

surpassing this threshold, indicating a higher likelihood of pedestrian presence, are

enlarged for processing. Conversely, regions that do not meet the threshold are

53



(a) First Input Image. (b) Second Input Image.

(c) Region (R1) Of
The First Image.

(d) Region (R2) Of
The First Image.

(e) Region (R1) Of
The Second Image.

(f) Region (R2) Of
The Second Image.

(g) The Center Heat-
Map of R1 for the
First Image.

(h) The Center Heat-
Map of R2 for the
First Image.

(i) The Center Heat-
Map of R1 for the
Second Image.

(j) The Center Heat-
Map of R2 for the
Second Image.

Figure 4.6: Comparison of Two Input Images, Their Highlighted Regions of Interest,
and Corresponding Central Heat-Maps.
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disregarded. Fig. 4.7 presents the steps and components of the RUN-HM architecture,

emphasizing its importance in enhancing the region enlargement and processing

strategy. This approach not only optimizes computational resources but also focuses

on areas with a greater likelihood of detection, thus improving both the efficiency and

accuracy of the pedestrian detection system.

(a)

Figure 4.7: RegionUpscaleNet-HeatMap (RUN-HM) Architecture.

4.3.2 Region Selection Using a Dedicated Pedestrian Detector

Similar to RegionUpscaleNet-HeatMap (RUN-HM) detector, the RegionUpscaleNet-

DetectorGuided (RUN-DG) focuses on examining regions of interest to determine if

they potentially contain pedestrians that require enlargement and further processing.

To achieve this, the DualScaleBranchNet (DSBN) system is employed as the foun-

dational system. Specifically, the detections made by the smaller pedestrian branch

of the DSBN architecture are assessed. If these detections indicate the presence of

pedestrians with heights less than 80 pixels, the corresponding regions are enlarged

and processed by the CSP system for further evaluation.
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It’s important to note that unlike the heat-maps approach used in

RegionUpscaleNet-HeatMap (RUN-HM) architecture. The detection guided approach

used in RegionUpscaleNet-DetectorGuided (RUN-DG) architecture is more accurate,

since this guided detector is specifically trained to detect smaller pedestrians, hence it

provides more precise signals, leading to a better choice of regions for enlargement.

However, because the foundational detector of RUN-DG architecture is built on the

DSBN network, every input image is analysed across all five detection branches, re-

gardless of whether smaller pedestrians are present or not. Fig. 4.8 shows the RUN-DG

architecture.

(a)

Figure 4.8: RegionUpscaleNet-DetectorGuided (RUN-DG) Architecture.

For all the proposed architectures discussed in this section, including RUN, RUN-

HM, and RUN-DG, the post-processing applied to the detections from the enlarged

regions is consistent. Specifically, any detections indicating pedestrians taller than 80

pixels are disregarded. This ensures that the focus remains on detecting pedestrians of

smaller sizes within the enlarged regions. Conversely, taller pedestrians are detected

using the original image directly, optimizing the detection process for various pedestrian

sizes.
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4.4 Summary

In this chapter, approaches to enhance small-scale pedestrian detection are presented.

The initial approach focused on detecting large-scale and small-scale pedestrians

separately. This could be achieved either by using two distinct detection systems that

process input images independently or by introducing a simplified method of adding

an additional branch to the primary large-scale system. This additional branch aims

to detect small-scale pedestrians, leading to unified feature learning.

The second approach enhances detection of small-scale pedestrians by enlarging

certain image regions likely to contain them. These enlarged regions are then processed

using a separate detection system. The aim is to ensure that the spatial distribution

of the small-scale pedestrians within these regions matches that of the large-scale

pedestrians in the original image. For a more refined region selection, two methods are

employed. The first uses heat-map analysis to identify regions, focusing only on areas

with clear signs of pedestrians. The second method utilizes a detector specifically

designed for smaller pedestrians, leading to more accurate region selection. Overall,

these methods tackle the issue of varying pedestrian scales, improving the detection

accuracy and simplifying the system computations.
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Chapter 5

Performance Evaluation

The proposed systems to enhance the detection of occluded pedestrians, as well as

systems targeting small-scale pedestrians, have been trained and tested for performance

evaluation. This chapter is dedicated to the presentation of their test results. In Section

5.1, the datasets used for the training and testing of the proposed systems are described.

Section 5.2 details the experimental setup, explaining the essential parameters and

configurations for the systems’ implementation. In Section 5.3, the evaluation results

of the proposed system for occluded pedestrian detection are presented. Section 5.4

examines the performance of the systems proposed for detecting small-scale pedestrians.

Finally, Section 5.5 summarizes the chapter’s primary findings and conclusions.

5.1 Datasets

This section outlines the two datasets used to assess the proposed systems: Caltech-

USA and CityPersons. These datasets are recognized as standard benchmarks for

pedestrian detection, presenting a wide variety of pedestrian appearances, such as

different poses, occlusions, and sizes.
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5.1.1 Caltech-USA

Image samples of this dataset are extracted from an approximately 10 hours video

recorded by a car driving in the greater Los Angeles area. Images are of size 640

× 480 pixels. The dataset contains a total of 350,000 labeled bounding boxes in

250,000 frames. For the experiments, one image has been taken out of every 30 frames

from the original sequence, resulting in 4250 training images and 4024 testing images.

Furthermore, the improved annotation, presented in [59], is adopted for the training

and testing. The proposed systems have been evaluated using a log-average miss rate

denoted as MR−2 for false positive per image in the range (10−2 to 1).

The evaluation subsets are presented in Table 5.1. The visibility criteria are based

on the visible proportion of a pedestrian, and the height criteria are measured in

pixels. Different categories are defined by combining these two metrics to address

various scenarios. For example, Bare represents cases where pedestrians have minimal

occlusion, whereas Heavy Occlusion involves situations in which pedestrians are signif-

icantly obscured. This categorization plays a crucial role in assessing the performance

of pedestrian detectors across a range of diverse and challenging scenarios. It ensures

a thorough evaluation of their effectiveness under various conditions, covering different

degrees of visibility and pedestrian sizes.

Table 5.1: Evaluation Subsets for Caltech-USA and CityPersons Datasets.

Category Visibility Height

Bare (B) ≥90% ≥50 pixels
Reasonable (R) ≥65% ≥50 pixels

Medium (M) 100% 30 ≤ pixels ≤ 80
Partial Occlusion (P) 65% to 90% ≥50 pixels
Heavy Occlusion (H) 20% to 65% ≥50 pixels
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5.1.2 CityPersons

This dataset consists of 2975 training images, 500 validation images and 1575 testing

images captured in 27 different cities in Germany and neighboring countries. All

images are of size 2048× 1024 pixels. The dataset has around 20K pedestrians, where

only less than 30% of them are fully visible. The great variation in pedestrian scales,

occlusions and backgrounds makes CityPersons a challenging dataset for pedestrian

detection. In this thesis, the validation images are used for testing.

5.2 Experiments Settings

Simulations have been performed using NVIDIA V100 Volta GPUs with 64G memory.

Following the training implementation in [23], the backbone networks are pre-trained

on ImageNet, and the total systems are fine-tuned using Adam optimizer. Fur-

thermore, training images have been resized to reduce the training computational

complexity. However, the full image size is used in the testing stage. Furthermore,

the implementation details are presented in Table 5.2.

Table 5.2: Training Details.

Dataset GPUs
Images
per GPU

Resized
Image

Learning
rate

Number
of Iterations

Caltech-USA 2 8 448× 336 10−4 15K
CityPersons 4 2 1280× 640 2×10−5 37.5K
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5.3 The Results of the Proposed System Targeting

Occluded Pedestrian Detection

This section presents the experimental results obtained with the proposed MB-CSP

system, specifically targeting the occlusion problem. To begin with, an ablation

study is conducted to demonstrate the impact of using different branches during the

development of the MB-CSP system. Next, the performance of the proposed MB-CSP

is compared with state-of-the-art detectors on the Caltech-USA and CityPersons

datasets, respectively.

5.3.1 Ablation Study

The proposed MB-CSP system is designed to use the information of the upper, middle,

lower and full-body parts in an optimized manner, in order to minimize the interference

of the features belonging to the occluding barriers. In this section, three alternatives

of UMLF model are investigated, namely, Upper and Full body parts (UF) model,

Upper, Middle and Full body parts (UMF) model and Upper, Middle and Lower parts

(UML) model. Extensive simulations have been conducted in order to recognize and

compare the pros and cons of each model.

UF model is the simplest block to design MB-CSP detector, in which, only upper

body box and full pedestrian box are considered. UF model reported the best results

compared to other models when tested on heavily occluded pedestrians with a miss

rate of 46.62%, as it is clear in Table 5.3. This is expected because lower and middle

parts boxes carry no pedestrian information in this case. However, UF performs poorly

for the remaining testing subsets.

On the other hand, UMF model, achieved better accuracy compared to UF model

on Reasonable, Partial and Bare subsets with miss-rates of 10.35%, 9.64% and 6.74%,

respectively. These results indicate the importance of middle body information
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for detecting visible and partially occluded pedestrians. Finally, UML utilizes the

information in different body parts and neglects full box information. Comparing

UML to UMLF model shows a drop in the detection accuracy for most testing subsets

when using UML. This observation suggests the importance of the full box information

for accurate pedestrian detection.

Table 5.3 compares the processing times of different models for a single image to

identify pedestrian locations. The UF model is the fastest at 0.4 seconds per image,

while both UMF and UML models take 0.44 seconds. The UMLF model, despite

having additional convolutional layers to predict various body parts, only takes slightly

longer at 0.48 seconds per image.

Table 5.3: Performance Comparison of Models Incorporating Different Body Part
Information: UF (Upper and Full body parts), UMF (Upper, Middle, and Full body
parts), UML (Upper, Middle, and Lower parts), and UMLF (all parts). These models
aim to optimize body part information use to minimize interference from occluding
barriers.

Method R H P B Test-Time

UF 12.6% 46.62% 11.32% 8.87% 0.40 s/img
UMF 10.35% 46.82% 9.64% 6.74% 0.44 s/img
UML 10.71% 47.12% 10.35% 6.95% 0.44 s/img

UMLF 10.08% 47.29% 10.22% 6.12% 0.48 s/img

5.3.2 Comparison with State-of-the-Art Detectors in the Oc-

clusion Challenge

The proposed MB-CSP system has been compared to the state-of-art detectors on

Caltech-USA testing sets. MB-CSP refers to the proposed system trained on Caltech-

USA training sets, and MB-CSP (City) indicates the system pre-trained on CityPersons

training sets and fine-tuned on Caltech-USA training sets. Fig. 5.1 compares the

proposed system to the state-of-art detectors reported in Caltech-USA dataset website
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1. All the algorithms are evaluated on the improved annotated testing sets, hence

there is a variation in their results compared to the ones reported on Caltech-USA

website.

In Fig. 5.1 (a), MB-CSP (City) achieved the lowest miss-rate of 4.38% on Reasonable

subset, Compared to 5.11% for AdaptFasterRCNN [1] and 5.13% for AR-Ped [60].

These results reflect the advantage of using the proposed system for detecting fully

visible and partially occluded pedestrians, particularly by boosting pedestrians scores

using BIA-NMS method in post-processing. For Heavy occlusion subset depicted in

Fig. 5.1 (b). MB-CSP (City) and MB-CSP reported superior miss-rates of 27.83%

and 30.55%, respectively. Lower by 4.4% compared to the best reported method

F-DNN2+SS [61] with a miss-rate of 32.28%. This gain in performance is attributed

to the proper design of the multi-branch system.

To further investigate the performance of the proposed system. Table 5.4 presents

the results of recent state-of-arts detectors that have not been included in Caltech-USA

website. The proposed system shows improvement over the Original CSP [23] in all

testing subsets. Furthermore, MB-CSP surpassed all detectors in Reasonable and

Heavy occlusion subsets.

The performance of the proposed system is compared to the state-of-the-art

methods on CityPerons validation set in Table 5.5. The proposed system in this case,

has been trained on CityPersons Dataset. MB-CSP outperformed all the reported

methods at all testing subsets. For Reasonable and Bare subsets, MB-CSP reported

miss-rates of 10.08% and 6.12%, respectively. Surpassing the best reported miss-rate by

almost 1%. This improvement emphasizes the benefits of using the proposed system in

detecting highly visible pedestrians. Furthermore, when detecting occluded pedestrians,

MB-CSP scored 47.29% and 10.22% for Heavy and Partial occlusions, compared to

49.3% and 10.4% for CSP [23]. Proving the superiority of the proposed system in

1http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
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(a) Reasonable case

(b) Heavy case

Figure 5.1: Comparison of the Proposed MB-CSP System and the State-of-the-Art
Detectors on Caltech-USA, Using Average Miss Rate (MR%) on (a) Reasonable, and
(b) Heavy Subsets.

64



detecting heavily occluded pedestrians with more than 2% gain on Caltech-USA and

CityPersons dataset.

Table 5.4: Comparison of the Proposed Multi-Branch Model with State-of-the-Art
Methods on the Caltech-USA Dataset.

Method R H

PAMS-FCN [62] N.A. 47.4%
CSP [23] 4.5% 45.8%

CircleNet [63] 10.2% 44.5%
CSP (City) [23] 3.8% 38.5 %

FRCN+A+DT [64] 8.0% 37.9%
Couple [65] 4.7% 34.6%
MB-CSP 5.30% 30.55%

MB-CSP (City) 4.38% 27.83%

Table 5.5: Comparison of the Proposed Multi-Branch Model with State-of-the-Art
Methods on the CityPersons Dataset.

Method R H P B

TLL [66] 14.4% 52.0% 15.9% 9.2%
RepLoss [34] 13.2% 56.9% 16.8% 7.6%
OR-CNN [35] 12.8% 55.7% 15.3% 6.7%
Couple [65] 12.2% 49.8% N.A. N.A.
ALFNet [67] 12.0% 51.9% 11.4% 8.4%
CircleNet [63] 11.7% 50.2% 12.2% 7.1%

CSP [23] 11.0% 49.3% 10.4% 7.3%
MB-CSP 10.08% 47.29% 10.22% 6.12%

5.4 The Results of the Proposed Architectures Tar-

geting Small-Scale Pedestrian Detection

This section presents simulation results for detecting small-scale pedestrians based on

the medium category of the Caltech-USA and CityPersons datasets. The proposed
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architectures are evaluated for their miss-rate and number of FLOPs, and then

compared with state-of-the-art detectors.

5.4.1 Assessing Detection Accuracy with Varied Training

Height Thresholds

In the original examination of the CSP system as mentioned in [23], the primary

focus was on detecting pedestrians classified under the Reasonable category. Pedestri-

ans within this category are generally closer to vehicles, necessitating their prompt

detection for safety considerations. Consequently, the training primarily included

pedestrians taller than 40 pixels. This strategy effectively identified larger pedestri-

ans but encountered difficulties with the Medium category, which includes smaller

pedestrians. To enhance detection capabilities across different pedestrian scales, the

system was revised. This modified version, labeled as CSPthr20, was trained with a

height threshold set at 20 pixels, thus including a wider range of pedestrian heights.

However, by including smaller and potentially noisier samples during training, the

CSPthr20 system resulted in reduced detection accuracy for larger pedestrians.

Table 5.6 shows that original CSP system had a 4.5% miss-rate in the Reasonable

category, while the CSPthr20 scored 8.18%. However, in the Medium category, the

CSPthr20 performed better with a 39.6% miss-rate, compared to the original’s 45.97%.

These results highlight the fundamental challenge in designing a system that effectively

detects both large-scale and small-scale pedestrians.

Table 5.6: Comparison of Pedestrian Detection Accuracy for Two Distinct Height
Thresholds in the CSP Systems.

Method R M

CSP [23] 4.5% 45.97%
CSPthr20 8.18% 39.6%
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5.4.2 Evaluating Architectures with Separate Detectors for

Various Pedestrian Scales

In this experimental section, the results of integrating detections from both small-scale

and larger-scale detectors are explored. The architectures under examination employ

two distinct strategies. The DualScaleSeparateNet (DSSN) utilizes a separate detector

exclusively for identifying small-scale pedestrians, while the DualScaleBranchNet

(DSBN) incorporates an additional branch within its framework to achieve the same

task. Both architectures, introduced in Chapter 4, aim to enhance pedestrian detection

across different scales. The evaluation results of these architectures on the Caltech-USA

and CityPersons datasets are presented in Table 5.7.

Based on the analysis of both datasets, the DSSN and DSBN architectures produced

comparable results to the original CSP and MB-CSP in the Reasonable category.

Specifically, on the Caltech-USA dataset, while the MB-CSP recorded a 5.3% miss-

rate, both DSSN and DSBN registered miss-rates of 5.5%. This performance similarity

suggests that DSSN’s additional detector and DSBN’s extra branch did not affect the

detection efficiency for larger pedestrians, especially with careful post-processing.

For the Medium category in the same dataset, the CSP system registered a 45.97%

miss-rate. In contrast, the DSSN and DSBN architectures achieved better miss-rates

of 37.5% and 37.6%, respectively, highlighting their enhanced capability to detect

smaller pedestrians. This improved performance from DSSN and DSBN was expected,

given their design to specifically address this scale. Table 5.6 illustrates how previous

approaches favoured detection of either large or small pedestrians, highlighting the

advantage of the DSSN and DSBN architectures in achieving a balanced detection

across both scales.
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Table 5.7: Performance Comparison of the Scale-Specific Systems on Caltech-USA and
CityPersons Dataset Using Average Miss-Rate (MR−2). The DualScaleSeparateNet
(DSSN) utilizes a separate detector for small-scale pedestrians, while the DualScale-
BranchNet (DSBN) introduces an additional branch for the same purpose.

Method Dataset R M H B P

CSP [23] Caltech 4.5% 45.97% 45.8% N.A. N.A.
MB-CSP Caltech 5.3% 43.39% 30.55% N.A. N.A.

DSSN Caltech 5.5% 37.5% 29.8% N.A. N.A.
DSBN Caltech 5.5% 37.6% 33.5% N.A. N.A.

CSP [23] City 11.0% 32.4 % 49.3% 7.3 % 10.4%
MB-CSP City 10.08 % 31.04 % 47.29% 10.2% 6.1 %

DSSN City 10.6% 24.7% 47.6% 6.9% 9.8%
DSBN City 10.02 % 25.9% 48.4% 6.3% 9.6%

In the Heavy Occlusion category on the Caltech-USA dataset, the DSBN recorded

a miss-rate of 33.5%, higher than the 30.55% of the MB-CSP. This difference might be

attributed to the introduction of the fifth branch to the DSBN architecture, possibly

influencing its training behavior and its capability to detect occluded pedestrians. In

contrast, the DSSN showed a 29.8% miss-rate. Using a separate detector for small-scale

pedestrians preserved the original MB-CSP detector’s efficiency in detecting heavily

occluded pedestrians. Evaluation on CityPersons datasets resulted in similar findings

as it is clear in Table 5.7.

5.4.3 Evaluating Architectures for Enlarging Potential Pedes-

trian Regions

This section examines the proposed architectures to enhance pedestrian detection

by enlarging regions that potentially contain small-scale pedestrians. The proposed

architectures are a baseline framework referred to as RegionUpscaleNet (RUN), and

its two distinct variants, each designed to a improve the region selection process.

One of these variants relies on heat-maps for region selection and is referred to as

RegionUpscaleNet-HeatMaps (RUN-HM), while the other utilizes a dedicated detector
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to guide this process known as RegionUpscaleNet-DetectorGuided (RUN-DG). These

architectures aim to enhance the detection accuracy, especially in challenging scenarios

where pedestrians may appear small due to factors like distance or image resolution

constraints. Results from evaluations on the Caltech-USA and CityPersons datasets are

presented to examine the miss-rate and computational complexity of each architecture.

For both datasets and as indicated in Table 5.8, the baseline RUN architecture

and its variants consistently demonstrated improved miss-rates, particularly in the

Medium and Reasonable categories. In the Medium category for the CityPersons

dataset, the CSP system recorded a miss-rate of 32.46%, the MB-CSP system achieved

31.04%, and the RUN architecture outperformed both with a miss-rate of 24.5%. The

variants, RUN-HM and RUN-DG, performed at 24.58% and 24.47%, respectively.

These results can be attributed to the RUN architecture’s approach of enlarging

regions with high probabilities of containing smaller pedestrians and subsequently

processing them through a designated CSP network. Importantly, due to the absence

of joint training, there was no observable performance degradation in the Reasonable

and Heavy Occlusion categories.

When evaluating the proposed architectures based on the number of enlarged

regions across the Caltech-USA and CityPersons datasets, the RUN architecture

consistently exhibits the highest usage, with 8048 enlarged regions for Caltech-USA

and 1000 regions for CityPersons. Notably, RUN-HM and RUN-DG show a reduction

in enlarged regions, indicating a more selective enlargement strategy. This trend is

evident in their respective counts of 3751 and 3214 for Caltech-USA, and 800 and 474

for CityPersons datasets. The main difference between RUN-HM and RUN-DG lies

in the criteria for region enlargement. In RUN-HM, regions are enlarged based on

the likelihood of heat-map containing any pedestrian activity, rather than exclusively

focusing on smaller pedestrians as in RUN-DG. This difference suggests that using

RUN-DG could be advantageous in reducing the number of selected regions. However,
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it’s important to note that the RUN-DG network is built upon the DSBN network,

which includes five detection branches, in contrast to RUN-HM, which is based on the

MB-CSP network, with just four detection branches. This implies that the fifth branch

of RUN-DG, designed for detecting smaller pedestrians, requires extra computations

for all images, as it needs to be calculated whenever an image is analysed for pedestrian

detection.

Table 5.8: Performance of RegionUpscaleNet Systems on Caltech-USA and CityPersons
datasets using Average Miss-Rate (MR%). This table features RUN, a baseline
framework that always enlarges regions to improve the small-scale pedestrian detection,
and its variants: RUN-HM, which uses heat-maps to select region potentially containing
pedestrians, and RUN-DG, driven by a dedicated small-scale pedestrian detector for
region selection.

Method Dataset R M H B Enlarged Regions

CSP [23] Caltech 4.5% 45.97% 45.8% N.A 0
MB-CSP Caltech 5.30% 43.39% 30.55% N.A 0

RUN Caltech 4.5% 34.81% 30.47% N.A 4024+4024
RUN-HM Caltech 4.65% 34.85% 30.40% N.A 1620+2131
RUN-DG Caltech 4.95% 33.58% 30.25% N.A 1468+1746

CSP [23] City 11.0% 32.46 % 49.3% 7.3 % 0
MB-CSP City 10.08 % 31.04 % 47.29% 6.12 % 0

RUN City 9.82 % 24.5% 47.33% 6.51% 500+500
RUN-HM City 9.82 % 24.58% 47.33% 6.51% 386+414
RUN-DG City 9.73% 24.47 % 47.59 % 6.49% 85+389

In Table 5.9, the proposed RUN architecture and its variants, RUN-HM and RUN-

DG, were benchmarked against the state-of-the-art detectors using the Caltech-USA

dataset. Under the Reasonable (R) category, both the RUN architecture and the CSP

system achieved the best miss-rate of 4.5%. Meanwhile, the RUN-HM and RUN-DG

architectures posted slightly higher miss-rates of 4.65% and 4.95%, respectively. In

the Heavy (H) Occlusion category, the RUN-DG architecture recorded a miss-rate of

30.25%, marking a notable improvement compared to other detectors in the literature,

such as GDFL [68] which had a miss-rate of 35.28%. However, the DSSN system

emerged as the top performer in this category with a miss-rate of 29.82%. In the
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Medium (M) occlusion category, RUN-DG achieved the top miss-rate of 33.58%, with

the RUN architecture following closely at 34.81%. Notably, the best detector from

the literature, GDFL [68], scored 40.26%. These results highlight the advancements

in small-scale pedestrian detection achieved by the proposed architectures, without

compromising the detection accuracy in other categories.

Table 5.9: Performance Comparison of the Proposed Systems with the State-of-the-Art
on Caltech-USA Dataset.

Method R H M

GDFL [68] 6.32% 35.28% 40.26%
TLL-TFA [66] 12.39% 39.70% 44.58%

PCN [69] 10.14% 41.40% 54.76%
SDS-RCNN [70] 6.43% 38.79% 51.34%

CSP [23] 4.5% 45.8% -
MB-CSP 5.30% 30.55% 43.39 %

DSBN 5.53% 33.51% 37.63%
DSSN 5.59 % 29.82%% 37.52% %
RUN 4.5% 30.47% 34.81%

RUN-HM 4.65% 30.40% 34.85%
RUN-DG 4.95% 30.25 % 33.58%

Table 5.10 presents the computational cost and system size of the various detection

systems proposed in this thesis for comparison, with these aspects measured by

Floating-Point Operations Per second (FLOPs) and the number of parameters. The

CSP system [23] reported the best efficiency, requiring only 192 billion FLOPs and

utilizing 40 million parameters. Furthermore, the MB-CSP system shows an increase

in computational demand, utilizing 293 billion FLOPs and 42 million parameters. As

for the DualScaleBranchNet (DSBN) system, that requires additional branch to detect

small-scale pedestrians, the system requires 319 billion FLOPs and requires 43 million

parameters. On the other hand, the DualScaleSeparateNet (DSSN), which dedicates

a separate stand-alone detector to target small-scale pedestrians presented a large
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increase in the computational power and system size at 485 billion FLOPs and 82

million parameters.

For the region selection architectures, the computational demand is typically

larger and not constant. The number of times a region is selected for enlargement

and further processing primarily depends on whether a specific image indicates the

presence of pedestrians. To provide a general perspective, suppose two regions from

every image were enlarged and processed as in the benchmark RegionUpscaleNet

(RUN) architecture. In this case, the total computational demand would amount to

677 billion FLOPs, and the system would comprise 82 million parameters. These

numbers can be significantly reduced if the region selection process uses the proposed

heat-maps in the RegionUpscaleNet-HeatMaps (RUN-HM) architecture to signal the

presence of pedestrians or by integrating an additional branch in the RegionUpscaleNet-

DetectorGuided (RUN-DG) variant to indicate the same. In evaluations, RUN-HM

demanded 469 billion FLOPs and 82 million parameters, whereas RUN-DG required

444 million FLOPs and 83 million parameters. Interestingly, even though RUN-DG

inherently holds more complexity than RUN-HM, it necessitates fewer computations.

This is mainly because RUN-DG is designed to suggest fewer regions for enlargement,

a trend particularly evident in the Caltech-USA dataset. However, when both systems

enlarge the same number of regions, RUN-HM stands out as the more computationally

efficient option. In conclusion, finding a balance between computational demands and

system performance is essential, emphasizing the importance of thoughtful design and

optimization in real-world applications.
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Table 5.10: Comparison of FLOPs and System Parameters Across Different Proposed
Systems.

Method FLOPs(G) Parameters(M)

CSP [23] 192 40
MB-CSP 293 42

DSBN 319 43
DSSN 485 82
RUN 677 82

RUN-HM (Caltech) 469 82
RUN-DG (Caltech) 444 83

5.5 Summary

In this chapter, the performance of the proposed systems is evaluated using the Caltech-

USA [11] and CityPersons [1] datasets. While the MB-CSP system shows significant

enhancement in the detection of pedestrians in the Heavy Occlusion category, there

remains room for advancement in the Medium category. In the context of Scale-Specific

and Region-Upscale systems, improvements in detecting Medium pedestrians are noted,

with DSBN being identified as the most computationally efficient. The best results

in the detection of Medium pedestrians are achieved by the RUN system. However,

similar performance levels with reduced computational demands are preserved by

its variants, RUN-HM and RUN-DG. Maintaining balance between computational

needs and system efficiency is essential, emphasizing the value of careful design of the

detection systems in practical applications.
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Chapter 6

Conclusion

Pedestrian detection is essential for various applications, such as self-driving vehicles,

video surveillance, and intelligent street traffic management. However, the wide

variations in pedestrian sizes, postures, locations, and backgrounds make their detection

a complex task. In particular, the detection becomes significantly challenging due

to the lack of pedestrian information when a pedestrian is occluded by objects, such

as vehicles or trees, or when they appear at a very small size in the image. Such

situations are frequently encountered in the real world. The objective of this thesis has

been to design CNN-based pedestrian detection architectures to improve the detection

of occluded and small-scale pedestrians.

The first part of this work has addressed the occlusion problem by proposing a

specific detection system referred to as Multi-Branch Center and Scale Prediction

(MB-CSP). The proposed system employs a multi-branch structure to optimize the

utilization of the features extracted from the visible parts of pedestrians. This multi-

branch structure enables the feature data from the upper, middle, and lower parts

of a pedestrian, as well as those of the full body, to be processed separately. By

doing so, the data representing the true pedestrian appearances, whether partially

or fully visible, can dominate the final decision. As a result, the interference from
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non-pedestrian data in the detection can be minimized. A part annotation algorithm

has been introduced to support multi-branch training. Additionally, a new method,

termed BIA-NMS, has been developed to optimize the fusion of the detection outcomes

from multiple branches. The BIA-NMS method eliminates redundant detections across

branches and boosts the scores of the preserved detections.

To improve the detection of small-scale pedestrians, the second part of this work

has introduced two approaches, both involving the proposed MB-CSP model. The

first approach detects pedestrians of different scales separately by training models

to distinguish features unique to each scale category. This is achieved by either

integrating an additional detection branch or adding an independent small-scale

pedestrian detector, thereby enhancing pedestrian detection across various scales. The

second proposed approach identifies regions in the image likely containing small-scale

pedestrians and enlarges these regions to enhance their detection. To optimize the

region selection process, the model utilizes heat-maps generated by the MB-CSP

model or locations suggested by an additional branch dedicated to predict small-scale

pedestrian locations.

The detection systems presented in this thesis have been trained and evaluated using

images from the Caltech-USA and CityPersons datasets. The results have emphasized

the effectiveness of the proposed multi-branch system in detecting occluded pedestrians.

Furthermore, testing results have demonstrated that both approaches, specifically

designed for small-scale pedestrian detection, significantly improve the accuracy in

this category.
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