
Algorithmic Solutions for Virtual Network Function

Migration in Cloud

Seyedeh Negar Afrasiabi

A Thesis

in

The Department

of

Information and Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

MontrÂeal, QuÂebec, Canada

December 2023

© Seyedeh Negar Afrasiabi, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Seyedeh Negar Afrasiabi

Entitled: Algorithmic Solutions for Virtual Network Function Migration in Cloud

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Rodolfo Coutinho

External Examiner
Dr. Soumaya Cherkaoui

External to Program
Dr. Ferhat Khendek

Examiner
Dr. Chadi Assi

Examiner
Dr. Jamal Bentahar

Thesis Supervisor
Dr. Roch Glitho

Approved by
Dr. Jun Yan, Graduate Program Director

Date of Defence: December 20, 2023
Dr. Mourad Debbabi, Dean, Gina Cody School of Engineering
and Computer Science

Abstract

Algorithmic Solutions for Virtual Network Function Migration in Cloud

Seyedeh Negar Afrasiabi, Ph.D.

Concordia University, 2023

Network Function Virtualization (NFV) is a network architecture that separates network func-

tions from dedicated hardware, implementing them as software modules known as Virtual Network

Functions (VNFs), which are executed in virtual machines or containers. A Network Service (NS)

consists of a chain of VNFs known as a VNF Forwarding Graph (VNF-FG). NFV increases deploy-

ment flexibility and agility within operator networks and reduces operating and capital expenditures

significantly. Deploying an NS requires solving the NFV resource allocation (NFV-RA) problem,

which involves the three stages of (i) VNF-FG composition, (ii) VNF-FG embedding, and (iii)

VNF scheduling. Resource allocation in NFV requires efficient algorithms to determine on which

physical node VNFs are embedded and to be able to migrate VNFs from one node to another. A

major challenge in NFV is how to maintain reasonable VNF embedding to adapt to the changes in

the network. As the VNF embedding stage may also be dynamic; it brings an additional dimen-

sion of complexity in terms of keeping track of where a given VNF is running. In other words,

the VNF migration is responsible for where, when, and how to transfer the VNFs from source to

destination in response to the variation in service requests. The VNF Migration problem generally

refers to the process of migrating VNFs from one node to another due to specific requirements such

as reduction of cost, energy saving, recovery from failures, etc. However, VNF migration faces

several challenges. The first challenge arises from the mobility of end-users and the fog nodes,

along with limited fog node coverage, resulting in service discontinuity and increasing application

delay. A second challenge presents when there are stringent latency requirements between VNFs

and can make them tightly coupled, thus hindering each VNF from being migrated individually,

and resulting in poor performance. The third challenge is when we have a limitation of resources

iii

in the network. The overloaded node can significantly impact the determination of the best VNF

decomposition option among all possible choices, potentially leading to a degradation in Quality of

Service (QoS). VNF migration can offer great potential to address these challenges. However, the

challenge remains: where, when, and which VNF should migrate to improve performance.

In this Ph.D. thesis, we aim to address the challenges in the VNF migration problem mentioned

above. Firstly, we introduce a reinforcement learning-based optimization framework for applica-

tion component migration in NFV cloud-fog environments where both fog nodes and end-users are

mobile. More specifically, our main objective is to efficiently migrate the VNFs of a request such

that the total delay and cost are minimized. Secondly, we introduce a cost-efficient solution for

solving the problem of cluster migration of VNFs for VNF-FG embedding by taking into account

the latency requirement between VNFs and reusing the already deployed VNFs. The objective is to

migrate the cluster of VNF so that the total embedding cost, including resource, instantiation, reuse,

and transmission cost, is minimized. Lastly, when considering VNF migration in the case of VNF

decomposition, we investigate how VNF migration and VNF decomposition can be mutually bene-

ficial. We achieve this by designing a joint VNF decomposition and migration approach to minimize

the embedding cost of network services (NS) and promote VNF reusability. To accomplish this, we

propose two efficient heuristics for identifying the best decomposition options and facilitating the

migration of previously deployed VNFs across the network.

iv

Acknowledgments

A dissertation is not the sole outcome of an individual’s efforts. Many people have contributed

to its development, and I would like to take this opportunity to acknowledge those who have made

a significant impact on my doctoral journey and accomplishment.

First and foremost, I extend my heartfelt gratitude to my supervisor, Dr. Roch Glitho, for

his continuous support throughout my Ph.D., his patience, kindness, and for providing me with

the invaluable opportunity to work in his lab. Each day spent in his lab has been a rich learning

experience, not only in academia but also in fostering positive behavior. The diverse interactions

with individuals from various backgrounds have broadened my perspective, and I am grateful for

the wealth of knowledge gained from these encounters. I would like to express my gratitude to

my committee members, Dr. Chadi Assi, Dr. Jamal Bentahar, and Dr. Ferhat Khendek, for their

time, valuable feedback, and constructive comments. I also extend my appreciation to Dr. Soumay

Cherkaoui for accepting to serve as my external examiner.

I am also thankful for the collaboration with Ericsson researchers Dr. Carla Mouradian, Dr.

Wubin Li, and Dr. RÂobert SzabÂo, with whom I had the opportunity to collaborate on my Ph.D.

projects. It was a great pleasure working with them for all the enlightening discussions, comments,

and collaborations on the projects that I completed throughout my Ph.D.

I dedicate this thesis to my beloved parents. I am deeply indebted to my mother, Sohila, for her

endless love, care, sacrifice, and guidance. Nothing would have been possible without her support

at all times. My gratitude extends to my father, Hossein, for always pushing me to advance in my

education and career. To my sisters, Niloofar and Nazanin, who are my best friends, I express my

heartfelt thanks. Thank you both for always cheering me up. A special acknowledgment goes to

v

Nazanin for being by my side since the beginning of this journey, providing unwavering support

and helping me navigate through the weakest moments. Your presence and assistance have been

invaluable in overcoming obstacles, and I am deeply grateful to have you as my sister. Words

cannot express how grateful I am to my family for having them in my life.

vi

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Overview . 1

1.2 Challenges . 2

1.3 Thesis Contributions . 4

1.3.1 Reinforcement Learning-based Optimization Framework for Application

Component Migration in NFV Cloud-Fog Environments [1, 2] 4

1.3.2 Cost-efficient Cluster Migration of VNFs for VNF Forwarding Graph Em-

bedding [3] . 5

1.3.3 Joint VNF Migration and Decomposition for Cost-efficient VNF Forward-

ing Graph Embedding [4, 5] . 6

1.4 Background Information . 6

1.4.1 Cloud, Edge and Fog Computing . 6

1.4.2 NFV Resource Allocation . 8

1.4.3 Reinforcement learning . 12

1.5 Thesis Outline . 13

2 Critical Review of the State of the Art 14

2.1 Application Component Migration in Edge Computing 14

vii

2.2 VNF Migration . 16

2.2.1 Simple VNF Migration . 16

2.2.2 Cluster VNF Migration . 17

2.3 Joint VNF Decomposition and Migration . 18

2.3.1 VNF Decomposition . 18

2.3.2 Joint Methods . 19

2.4 Conclusion . 21

3 Reinforcement Learning-based Optimization Framework for Application Component

Migration in NFV Cloud-Fog Environments 22

3.1 Introduction . 22

3.2 Motivating Scenario . 23

3.3 System Model and Problem Formulation . 25

3.3.1 System Model . 26

3.3.2 Problem Formulation . 28

3.3.3 Problem Analysis . 36

3.4 RL-Based VNF Migration . 37

3.4.1 MDP Framework . 37

3.4.2 Design of the Deep RL Agent . 38

3.4.3 DDQN with LSTM Cells . 41

3.4.4 Complexity Analysis . 43

3.5 Results and Discussions . 44

3.5.1 Simulation Settings . 44

3.5.2 Convergence Performance . 46

3.5.3 Simulation Results . 50

3.6 Conclusions . 54

4 Cost-efficient Cluster Migration of VNFs for VNF forwarding graph embedding 55

4.1 Introduction . 55

4.2 Motivating Scenario . 56

viii

4.3 System Model and Problem Formulation . 60

4.3.1 System Model . 60

4.3.2 Problem Formulation . 62

4.4 Proposed Single-/Multi-Destination Cluster VNF Migration Algorithm 66

4.4.1 Single-Destination Cluster Migration . 66

4.4.2 Multi-Destination Cluster Migration . 69

4.4.3 Complexity Analysis . 71

4.5 Results and Discussions . 71

4.5.1 Simulation Setup . 72

4.5.2 Results . 74

4.6 Conclusions . 79

5 Joint VNF Decomposition and Migration for Cost-efficient VNF Forwarding Graph

Embedding 81

5.1 Introduction . 81

5.2 Motivating Scenario . 82

5.3 System Model and Problem Formulation . 85

5.3.1 System Model . 85

5.3.2 Problem Formulation . 87

5.4 Proposed Solution . 91

5.4.1 Cost Aware VNF Decomposition (CA-VNF-D) 91

5.4.2 Node Aware VNF Migration (NA-VNF-M) 96

5.4.3 Asymptotic Analysis . 99

5.5 Results and Discussions . 100

5.5.1 Simulation setup . 101

5.5.2 Results . 102

5.6 Conclusions . 108

6 Conclusions and Future Works 110

6.1 Conclusions . 110

ix

6.2 Future Works . 111

6.2.1 Application Component Migration . 111

6.2.2 VNF Cluster Migration . 112

6.2.3 Joint VNF Decomposition and Migration 112

x

List of Figures

Figure 1.1 Illustrative example of a VNF-FG with two different realizations of VNF B:

(a) chain of required VNFs, (b) VNF-FG with decomposition option 1 for VNF B,

and (c) VNF-FG with decomposition option 2 for VNF B. 9

Figure 1.2 VNF Migration by considering the mobility of fog nodes.: (a) Before Migra-

tion, (b) After Migration. 10

Figure 3.1 Example of earthquake early warning and recovery application [6]. 25

Figure 3.2 Migration of an application component for an earthquake early warning and

recovery application :(a) Before Moving, (b) After Moving 26

Figure 3.3 Agent-environment interaction with DDQN strategy. 41

Figure 3.4 Network topology. 46

Figure 3.5 Convergence performance of our proposed DDQN-CM algorithm for differ-

ent values of learning rate α against the traditional DDQN algorithm (α = 0.001) [7]. 48

Figure 3.6 Objective function vs. episode for different values of fog node speed vmax. . 48

Figure 3.7 (a) Delay, (b) cost, and (c) objective function vs. weight ω for different

algorithms. 49

Figure 3.8 Average cost vs. average delay for different values of weight ω. 50

Figure 3.9 Objective function of different algorithms when varying the number end-

users communicating with the VNFs. 52

Figure 3.10 Average number of migrations per time slot with respect to the number of

end-users. 53

Figure 3.11 Power consumption when varying the number of VNFs. 54

xi

Figure 4.1 Illustrations of: (a) embedding solution for NS 1 obtained by the SG algo-

rithm [8], (b) simple VNF migration for NS 1 [9], (c) cluster VNF migration for NS

1, (d) solution for NS 2 obtained by the SG algorithm, (e) cluster VNF migration

for NS 2, (f) complex VNF migration. 59

Figure 4.2 Expanding the Cluster of VNFs for threshold = 4. 69

Figure 4.3 Total embedding cost vs. threshold T0 for our proposed (a) sDCM and (b)

mDCM algorithms for different values of r0 ∈ {1, 2, 4, 10} (17 nodes, 30 request,

and [5-8] VNFs per request). 72

Figure 4.4 Average cluster size per request vs. threshold T0 (with 17 nodes, 30 requests,

r0 = 10 and [5-8] VNFs per request. 74

Figure 4.5 Total embedding cost vs. number of requests for (a) r0 = 1, (b) r0 = 2,

(c) r0 = 4, and (d) r0 = 10 (with 17 nodes, r0 = 10, [5-8] VNFs per request). . . . 75

Figure 4.6 Total embedding cost vs. number of nodes ([5-12] VNFs per request, and

r0 = 10). 76

Figure 5.1 (a) Incoming NS 2 with possible decomposition options, (b) tree graph show-

ing all possible VNF-FGs for NS 2, (c) one possible realization of VNF-FG for NS

2, (d) substrate network topology with NS 1 being embedded, (e) embedding of best

decomposition option of NS 2 without considering migration, (f) migration of VNF

J to Node 2, and (g) embedding of the best decomposition option of NS 2 after

migration. 83

Figure 5.2 Illustrative examples for each step of Cost-Aware VNF Decomposition (CA-

VNF-D) algorithm. 95

Figure 5.3 Illustrative examples for Node Aware VNF Migration (NA-VNF-M) Algorithm 99

Figure 5.4 An NS with 3 main VNFs and all decomposition options. 102

Figure 5.5 Ratio of embedding cost of Decomposition-only to embedding cost of the

proposed method when (Fixed capacity, Variable capacity) = (10,1) for 500 requests

for different nodes’ capacity. 103

Figure 5.6 Embedding cost ratio vs. number of requests for (fixed capacity, variable

capacity) = (10,1) for different values of VNF-FG size. 105

xii

Figure 5.7 Examining the adaptiveness behavior in scenarios where decomposition op-

tions do not have equal CPU demand (14 requests). 106

Figure 5.8 Embedding Cost ratio vs. capacity demand for 10 requests (all options have

an equal CPU demand). 107

Figure 5.9 Breakdown of embedding cost for 10 requests and 5 VNFs per request. . . . 108

xiii

List of Tables

Table 2.1 Evaluation of the existing solutions for application component migration in

edge computing. 15

Table 2.2 Evaluation of the existing solutions for VNF migration, including simple and

cluster migration approaches. 18

Table 2.3 Evaluation of the related works for joint VNF decomposition and migration. . 20

Table 3.1 Summary of main notations. 27

Table 3.2 Hyperparameter settings. 44

Table 3.3 Parameter settings and default values. 47

Table 3.4 Convergence episode and execution time of different algorithms. 47

Table 4.1 Summary of main notations. 60

Table 4.2 Parameter settings and default values . 72

Table 4.3 Execution Time (seconds). 79

Table 5.1 Summary of main notations. 85

Table 5.2 Parameter settings and default values. 102

xiv

Chapter 1

Introduction

1.1 Overview

Network Function Virtualization (NFV) is an emerging technology initiated by the European

Telecommunication Standards Institute (ETSI) [10]. NFV provides the possibility to decouple net-

work functions from dedicated hardware and runs these functions as software instances on com-

modity servers through virtualization. In NFV, hardware-based network functions are replaced with

software-based Virtual Network Functions (VNFs), which are executed in Virtual Machines (VMs)

or container [11]. NFV increases the flexibility and agility of network service deployment. In addi-

tion, software-based VNFs significantly decrease the Capital Expenditure (CAPEX) and Operating

Expense (OPEX) of the Service Provider (SP) [10]. VNF Forwarding Graph (VNF-FG) is a graph

of interconnected VNFs that are linked in order to instantiate a Network Service (NS). Deploy-

ing an NS requires solving the NFV resource allocation (NFV-RA) problem, [11]. In general, the

NFV-RA problem can be divided into three main stages: (i) VNF composition, (ii) VNF-FG em-

bedding/placement, and (iii) VNF scheduling. The first stage refers to concatenating the different

VNFs efficiently to compose an NS with respect to SP’s objectives, whereas the second stage (VNF-

FG embedding) refers to the mapping of virtual resources (i.e., VNFs) to physical resources (i.e.,

substrate nodes/links. The third stage focuses on determining the schedule for processing the VNFs

on each substrate node.

1

With the development of cloud computing [12], Cloud Infrastructure Providers (CIPs) offer on-

demand computing (e.g., in the form of VMs, and containers) with a pay-as-you-go pricing model.

However, the fundamental limitation of cloud computing is the physical distance between a cloud

service provider’s data centers and end devices. This distance could cause end-to-end delays which

may not be acceptable for latency-sensitive applications. Fog computing is a computing paradigm

introduced to tackle the cloud latency-related challenge. Indeed, it extends the traditional cloud

computing architecture to the edge of the network, enabling computing at the edge of the network,

closer to the end-user devices. Extending cloud computing to the edge of the network results in a

hybrid cloud/fog system. Fog computing enables the deployment of some VNFs at the edge of the

network, on fog nodes, while keeping others in the cloud [13]. The SP can customize the location

of VMs that host VNFs to reduce operational costs and latency. A VNF-FG can map on a cloud/fog

provider infrastructure, also known as NFV Infrastructure (NFVI) [14].

While virtualization offers flexibility, it is subject to a number of challenges. Efficient algo-

rithms are essential in NFV for determining the allocation of resources, deciding on which physical

node to embed VNFs, and facilitating the migration of VNFs between nodes when necessary. A

major challenge in NFV is how to maintain VNF embedding to adapt to changes in network config-

urations. For example, when network topology changes (e.g., network device failure, congestion on

links or nodes, end-user mobility, etc.), it is necessary to dynamically adjust the network configura-

tion to meet the predefined Quality-of-Service (QoS). When a network configuration changes, the

administrator can relocate VNFs from one physical node to another to achieve better performance

and adapt to the network changes via the so-called VNF migration.

This thesis focuses on algorithmic solutions in VNF migration. In the following subsections, we

first discuss the challenges of VNF migration followed by our main thesis contributions. Next, we

provide background information about important concepts related to our thesis. Finally, we present

our thesis outline.

1.2 Challenges

The main challenges tackled in this thesis on VNF migration are summarized as follows:

2

• Application Component Migration in NFV Cloud-Fog Environments: In NFV settings,

application components can be implemented as VNFs. The mobility of end-users (e.g., mo-

bile devices) and fog nodes and limited fog node coverage may result in service discontinuity

and increased application delay. More precisely, as a result of a fog node’s mobility, the

hosted component may become farther from end-users which results in high latency. In this

case, migrating the component to a closer fog node helps in reducing the end-to-end latency.

Furthermore, dynamic consolidation of NFVIs in as few nodes as possible is key to allowing

several nodes to be switched off, thus helping minimize the overall cost [15]. Migration in

NFV-based hybrid cloud/fog systems, where both end-users and fog nodes are mobile, and

application components interact with each other is a complex problem, and it is particularly

challenging to make an optimal migration decision. Therefore, there remains a need for ef-

ficient algorithms to determine when and where application components migrate and enable

rapid decision-making.

• Cluster Migration of VNFs: The simplest form of migration aims to relocate VNFs individ-

ually. However, stringent latency requirements between VNFs of a given VNF-FG can make

those VNFs coupled to each other. This may limit the simple VNF migration strategy since

this strategy will only relocate the VNFs that are not coupled to their neighbor VNFs with

stringent latency constraints. Moreover, given that the simple VNF migration aims to move a

single VNF at a time, an additional transmission cost may be incurred, which can increase the

resulting embedding cost. Thus, the stringent latency requirements between VNFs can make

them tightly coupled, thus hindering each VNF from being migrated individually and result-

ing in poor performance. Besides simple VNF migration, another type of VNF migration can

be realized by clustering a group of coupled VNFs and migrating them within a single physi-

cal node or across multiple physical nodes. We refer to this type of migration as cluster VNF

migration, which can potentially reduce the embedding cost. Therefore, efficient algorithms

are needed to identify a cluster of VNFs for migration and to manage the migration of this

cluster to either a single physical node or multiple physical nodes.

• Joint VNF Migration and Decomposition: When a node’s resources are all occupied by

3

running workloads, it becomes over-loaded, potentially causing bottlenecks that prevent the

SP from admitting new requests. To address resource shortages and prevent the blockage

of incoming NSs, VNF migration can be a viable solution. The emergence of VNF decom-

position as a new functional architecture enables the VNFs to be decomposed into smaller

sub-functions, thus offering flexibility, resource sharing, and scalability. VNF decomposition

can lead to a notable reduction of VNF embedding cost, as different sub-functions can be flex-

ibly reused by multiple network requests. However, the amount of available resources within

substrate nodes can have a significant impact on determining the best decomposition option.

On the other hand, selecting the proper decomposition options may require some VNFs to be

moved from an over-loaded node to another. Thus, a major challenge lies in determining how

and which of the already deployed VNFs can be migrated to other nodes, aiming to select the

optimal decomposition option that minimizes embedding costs and promotes VNF reusabil-

ity. Therefore, efficient algorithms are required to jointly select the best VNF decomposition

option and migrate VNFs through the network.

Each of these challenges contributes to the costs and service quality of the final NS and thus should

be addressed carefully. Therefore, it is an important and challenging problem to decide where,

when, and how to migrate VNFs to achieve better performance in terms of embedding cost, power

consumption, and delay, among others.

1.3 Thesis Contributions

The existing solutions do not fully address all these challenges. This Ph.D. thesis proposes

algorithmic solutions to tackle the challenges related to VNF migration. It presents three primary

contributions as follows, with each corresponding to a challenge addressed by this thesis.

1.3.1 Reinforcement Learning-based Optimization Framework for Application Com-

ponent Migration in NFV Cloud-Fog Environments [1, 2]

The first contribution is focused on application components migration in NFV Cloud-Fog En-

vironments. As we discussed earlier, application components can be implemented as VNFs. Some

4

application components can be hosted by the fog while others may reside in the cloud. The mobility

of end-users and the fog nodes, and the limited fog nodes coverage result in service discontinuity

and may increase application delay. In this contribution, we propose a component migration strategy

in an NFV-based hybrid cloud/fog system considering the mobility of both end-users and fog nodes.

We mathematically modeled the problem to minimize both the application delay and cost. As the

problem of migrating application components is inherently complex, making optimal migration de-

cisions is particularly challenging. Much of this complexity arises from the necessity to manage

multiple uncertainties. For example, even when we have information about the current positions of

fog nodes and end-users, their future locations remain unknown, complicating the evaluation of the

cost/delay trade-off. Hence, we propose a Deep Reinforcement Learning (DRL) approach to decide

where and when to migrate application components and to achieve rapid decision-making. The sim-

ulation results demonstrate that the proposed scheme offers favorable convergence and outperforms

existing algorithms in terms of application delay and migration costs.

1.3.2 Cost-efficient Cluster Migration of VNFs for VNF Forwarding Graph Embed-

ding [3]

In the second contribution, we aim to solve the problem of cluster VNF migration by considering

the given inter-VNF latency requirements. As we discussed earlier, stringent latency requirements

between VNFs can make them tightly coupled, thus hindering each VNF from being migrated in-

dividually, and resulting in poor performance. Furthermore, a physical node may not support all

types of VNFs, and it has limited resources. Thus, migrating a cluster of VNFs to a single physical

node would not always be a reasonable option. Therefore, in this contribution, we are aiming to

identify clusters of VNFs for migration and migrate a cluster of VNFs to single and multiple phys-

ical nodes. We formulate the VNF migration problem as an Integer Linear Programming (ILP),

aiming to minimize the total embedding cost while satisfying the given latency between the VNFs.

In our developed formulation, we take into account computing resource cost, new VNF instantia-

tions, VNF reusability, traffic routing, and latency requirements between VNFs. We proposed two

scalable and efficient algorithms for migrating a cluster of VNFs. Through extensive experiments,

we show that our proposed algorithms achieve lower total embedding cost compared to the existing

5

algorithm while being much more scalable than the brute-force approach.

1.3.3 Joint VNF Migration and Decomposition for Cost-efficient VNF Forwarding

Graph Embedding [4, 5]

In the third contribution, we consider VNF migration by assuming each VNF can be decom-

posed into multiple options. In this contribution, we study the joint problem of VNF decomposition

and migration. As previously discussed, overloaded nodes play a crucial role in determining the best

decomposition option, and migrating VNFs from overloaded nodes to other nodes can significantly

influence this decision. We specifically explore how VNF migration and decomposition can mutu-

ally benefit each other, leading to reduced embedding costs and increased VNF reusability. After

formulating the joint problem of VNF decomposition and migration as an ILP to minimize the em-

bedding cost, we propose two efficient heuristics to identify the best decomposition options while

facilitating the migration of previously deployed VNFs across the substrate network. The simula-

tion results indicate that our proposed algorithms outperform the decomposition-only approach in

terms of embedding cost and number of new instances.

1.4 Background Information

In this subsection, the background information on important concepts used in this research work

is presented. First, some background information background information on cloud, edge, and fog

computing will be discussed. Then, the NFV Resource Allocation (NFV-RA) problem is provided.

Finally, the general principles of reinforcement learning will be discussed.

1.4.1 Cloud, Edge and Fog Computing

Computing paradigms have evolved from distributed, parallel, and grid to cloud, edge, and fog

computing [16]. This subsection discusses cloud, edge, and fog computing paradigms.

6

• Cloud computing has several inherent capabilities: scalability, on-demand resource alloca-

tion, reduced management efforts, pay-as-you-go, and easy applications and services provi-

sioning. It comprises three key service models: Infrastructure-as-a-Service (IaaS), Platform-

as-a-Service (PaaS), and Software-as-a-Service (SaaS). IaaS provides virtualized resources,

such as computing, storage, and networking [17]. The PaaS provides software environments

for applications’ development, deployment, and management. The SaaS provides software

applications and composite services to end-users and other applications. Cloud computing is

unsuitable for latency-sensitive applications since the connectivity between cloud and edge is

associated with a long delay [16].

• Multi-access Edge Computing (MEC) was initiated in late 2014 by the ETSI Mobile Edge

Computing Industry Specification Group (MEC ISG) [18]. MEC focuses on mobile networks

and virtualization technology. The ETSI initiative aims to standardize the APIs between

mobile users’ platforms and their applications to foster innovations in an open environment.

MEC only functions in standalone mode, and it is independent of the cloud. MEC aims

to unite telecommunication and IT cloud services to provide cloud-computing capabilities

within radio access networks close to mobile users.

• Fog computing is a concept introduced by Cisco in 2012 [16]. Fog computing is a highly vir-

tualized platform that offers cloud and end-user computing, storage, and networking services.

It is a novel architecture that extends the traditional cloud computing architecture to the edge

of the network. Fog computing enables the processing of latency-sensitive application com-

ponents at the network’s edge, and delay-tolerant and computational-intensive components

can be done in the cloud. In addition, fog computing supports low latency applications by

allowing processing to occur at the network edge, near the end devices, by the so-called fog

nodes, and the ability to enable processing at specific locations [16]. Unlike MEC, connec-

tivity with the cloud is a key feature of fog computing. In addition, fog computing targets

all applications, while MEC targets specific sub-sets of applications. For instance, MEC tar-

gets mobile offloading applications and those applications which are better provisioned at the

edge [16].

7

1.4.2 NFV Resource Allocation

The provisioning of Network Services (NSs) in an NFV-based infrastructure faces a significant

challenge in the form of NFV-RA, which has a substantial impact on both the SLA requirements of

the NSs and the profits of Network Operators (NOs). In NFV environments, NSs are typically pro-

visioned by directing their traffic through a predefined sequence of VNFs located between specific

endpoints. NFV-RA can be generally categorized into three key stages [11, 10] : (i) VNF composi-

tion, (ii) VNF embedding/placement, and (iii) VNF scheduling. We will provide a brief description

of each of these stages below.

1.4.2.1 VNF Composition

VNF composition involves the creation of VNF-FGs in response to NS requests. Typically,

an NS request comprises a collection of VNFs with associated dependency constraints and SLA

requirements, such as resource demands, traffic requirements, and latency constraints [19].The pri-

mary goal of VNF composition is to construct chains of VNFs to build VNF-FG. This process

involves determining which VNFs should be instantiated, the quantity of VNF instances for each

type, and the connections between these instances. This process is guided by Network Operator

(NO) objectives and SLA requirements.

Moreover, each VNF may be associated with multiple realizations, commonly referred to as

decomposition options [20, 21, 22]. For a better understanding, let us consider an NS request that

an ordered set of VNFs comprises VNFs A, B, and C, as shown Fig. 1.1.a. We also assume that

VNF B can be decomposed into multiple sub-functions and has two different decomposition options.

Fig. 1.1.b and Fig. 1.1.c show possible VNF-FGs of two decomposition options of VNF B. If sub-

functions B2 and BX are already deployed and have enough capacities to serve the NS, the VNF-FG

in Fig. 1.1.b is preferable, as the sub-functions B2 and BX can be reused to maximize profits of SPs.

Each of these decomposition options can highly influence SP’s objectives (e.g., embedding costs,

user experiences) as well as the NS performance. When considering function decomposition, a

VNF can be decomposed into more fine-grained sub-functions. Furthermore, the sub-functions

of the same type placed on the same VM can be re-used to save the node resource consumption.

8

(a) (b) (c)

Figure 1.1: Illustrative example of a VNF-FG with two different realizations of VNF B: (a) chain

of required VNFs, (b) VNF-FG with decomposition option 1 for VNF B, and (c) VNF-FG with

decomposition option 2 for VNF B.

Therefore, how to efficiently select the decomposition option for each VNF of various NSs to meet

SLA requirements as well as meet SP’s objectives becomes challenging [20]. This raises a new

problem, and we refer to it as VNF decomposition. It is worth mentioning that there is a subtle

difference between the terms composition and decomposition. The VNF-FG composition generally

aims at composing a suitable VNF-FG for an NS, whereas decomposition is used in micro-service

architecture to decompose VNFs into various sub-functions (micro-services) and select the best

decomposition options for VNF-FG composition.

1.4.2.2 VNF Embedding / Placement

The second phase of NFV-RA, known as VNF embedding or VNF placement, follows the VNF

composition stage. Once a VNF-FG is derived from the VNF composition, VNF embedding’s ob-

jective is to allocate network resources for VNF deployment and traffic routing. This allows for

the integration of the VNF-FG into an NFV-based infrastructure. In VNF embedding, [23] each

VNF within a VNF-FG is mapped to an NFV-enabled node. This implies that the resources of an

NFV-enabled node, such as CPU, memory, and storage, need to be allocated to deploy the VNF.

Additionally, a VNF can also be embedded into an existing VNF instance within the network, pro-

vided that the existing instance has the capability to support the VNF. In addition, each virtual link

connecting the VNFs within the VNF-FG is embedded into physical links. This entails reserving

resources, specifically link bandwidth, to facilitate the routing of traffic over these virtual links.

The VNF embedding stage may also be dynamic [24]; it brings an additional dimension of

complexity in terms of keeping track of where a given VNF is running. In other words, the or-

chestrator may trigger the migration of a VNF from one node to another if necessary, in order to

9

(a) (b)

Figure 1.2: VNF Migration by considering the mobility of fog nodes.: (a) Before Migration, (b) Af-

ter Migration.

optimize the use and allocation of physical resources [11]. The VNF Migration (VNF-M) problem

generally refers to the process of migrating VNFs from one place to another due to specific require-

ments such as load balance, hardware maintenance, and mobility. During the migration process, the

VNF-related state (e.g., CPU, memory, and storage) must be migrated to the destination [24]. One

important issue in VNF-M is to decide which destination node should perform the computation for a

particular VNF, taking into account user mobility and other dynamic changes in the network config-

uration. To provide a service to a user or a set of users, it is necessary to start VNF instances, which

can run in either the cloud or fog nodes. The key question here is how to select the optimal location

for running each VNF instance. Additionally, users may move across different geographical areas

due to mobility [25]. Thus, another question is whether we should migrate the VNF instance from

one node to another node when the user location or network condition changes over time. For every

VNF, there is a cost associated with running the VNF instance in a specific node, and there is also

a cost associated with migrating the VNF instance from one node to another node. Therefore, the

placement and migration of VNF instances need to properly take into account these costs.

For better understanding, let us consider the NS shown in Fig. 1.1.a. Let us assume that VNFs

are placed on UAV fog nodes. We assume that UAV 1, which hosts VNF A, moves from location f

to location g, shown in Fig. 1.2. In Fig. 1.2a UAV 1 may move from location f to g to take care of

a more urgent task at location g. As a result, UAV 1 becomes far away from the end-user devices

from which it gets its desired information. Let’s assume the distance between the end-user devices

and UAV 1 is denoted by d1. Also, assume that there is another UAV (i.e., UAV 2) at distance d2

10

from the end-user which VNF B and C are hosted on it. Therefore, it is more efficient to migrate

VNF A from UAV 1 to UAV 2 to reduce the communication latency, especially given that d1 > d2.

Moreover, UAV 1 (which acts as a fog node) can be switched off, as it does not host any components.

This action can reduce the power consumption cost (see Fig. 1.2b). However, migration of a VNF

will consume a certain amount of time and resources, which cause different system costs and delays.

VNF migration can be categorized into the following three types [3]: (i) simple migration,

(ii) cluster migration (iii) complex migration. Simple VNF migration refers to the migration of one

VNF of a given VNF-FG request from one node to another. Simple migration may not always be

enough to achieve a low-cost embedding outcome. More specifically, performing a simple migration

may not always be feasible due to stringent inter-VNF latency constraints. In such cases, a group

of VNFs can be gathered in the form of a cluster to be migrated to other nodes. Cluster migration

can potentially improve the embedding cost by allowing the decision maker to handle the restricting

impacts of the stringent inter-VNF latency constraints of VNF embedding. The third category of

VNF migration is complex migration, which aims to migrate two VNFs/clusters from two different

sets of nodes at the same time. A complex migration is realized by swapping the hosting nodes

of two different VNFs/clusters, requiring both eviction and migration of VNFs at the same time.

Unlike cluster migration, which considers a single NS at a time, complex migration can be realized

by considering multiple VNFs of different NSs at a time. Therefore, a migration mechanism should

be able to decide which, when, and where to migrate VNF. It is necessary to dynamically adjust the

network configuration to meet the predefined QoS.

1.4.2.3 VNF Scheduling

In the final stage of NFV-RA, VNF scheduling takes center stage, with its primary objective

being the determination of execution orders for the VNFs necessary for NSs. Building on the sets

of VNF instances and physical links allocated to NSs during the VNF embedding phase, this stage

operates under the assumption that VNF instances can be shared among multiple NSs.

11

1.4.3 Reinforcement learning

Reinforcement learning is one of the most important branches of machine learning, which has

significant impacts on the development of Artificial Intelligence (AI) over the last 20 years. Re-

inforcement learning is a learning process in which an agent can learn its optimal policy through

interaction with its environment. The agent observes its current state, then takes action, and receives

its immediate reward with a new state. The immediate reward and the new state are used to adjust

the agent’s policy, and this process will be repeated until the agent’s policy converges to the optimal

policy.

Q-Learning is a model-free algorithm [26] that learn directly from interactions with the environ-

ment. It does not require the agent to know the system model parameters, e.g., the state-transition

and reward models, in advance to estimate the pairs of state-action values. Specifically, the key

idea is to approximate state-action pairs’ values through samples obtained during the interactions

with the environment. Unlike model-free, the model-based RL algorithms simulate transition using

a learned model. It uses state-transition and reward models in order to estimate the optimal policy.

Hence model-based approaches are generally not used in an online manner where the agent learns

and recommends actions in real-time. Q-Learning is one of the most widely used RL strategies.

Q-learning works by successively updating the evaluation of the long-term quality (the Q value) of

actions at each state. In the Q-learning algorithm, all the states should be met, and all the actions

should be experienced.

It is a simple way for an agent to learn how to act optimally. However, this learning process,

even though proven to converge, takes a lot of time to reach the best policy as it has to explore

and gain knowledge of an entire system. It makes it unsuitable and inapplicable to real-world prob-

lems as they deal with extremely complex and dynamic environments, and their states are large and

vary rapidly over time. Recently, deep learning [26] has been introduced as a new breakthrough

technique. It can address this shortcoming of reinforcement learning, namely Deep Reinforcement

Learning (DRL). This approach eliminates the need to visit all the state/action pairs to compute

the Q-values. DRL embraces the advantage of Deep Neural Networks (DNNs) to train the learn-

ing process, thereby improving the learning speed and the performance of reinforcement learning

12

algorithms. As a result, DRL has been adopted in numerous applications of Deep Reinforcement

Learning in Communications and Networking such as wireless caching, data offloading, network

security, connectivity preservation, and traffic routing [26].

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents a critical review of the state-of-

the-art. Accordingly, Chapter 3 presents the reinforcement learning-based optimization framework

for application component migration in NFV cloud-fog environments. In Chapter 4, we present

algorithms for cluster migration of VNFs for VNF forwarding graph embedding. Chapter 5 presents

the joint VNF decomposition and migration for VNF forwarding graph embedding. Finally, we

conclude this thesis in Chapter 6 and provide future directions for this research work.

13

Chapter 2

Critical Review of the State of the Art

In this chapter, We review and evaluate the state of the art related to VNF migration. First, we

review the research works on application component migration in edge computing. We then assess

the works on VNF migration. Finally, we review the existing works on VNF decomposition and

migration.

2.1 Application Component Migration in Edge Computing

In this section, We review the existing solutions for application migration in edge computing,

where these components are not placed as VNF. This review encompasses a broad perspective of

edge computing, including MEC and fog computing.

Migration of application components in hybrid cloud/fog systems was studied in [15], where

the authors proposed a container migration algorithm to support mobile application tasks in fog

computing. The problem was formulated as a Markov Decision Process (MDP) designed to reduce

power consumption, communication delay, and migration costs, and a DRL-based approach was

proposed to solve the MDP problem. Service migration for MEC has recently received much at-

tention from academia [27, 28, 29, 30]. For example, the authors of [27] investigated the service

migration problem for MEC while considering the mobility of end-users, formulating the problem

as an MDP. Their proposed formulation represents a cost model that takes into account the migra-

tion and data transmission costs. VM migration in edge computing based on the multiple attribute

14

decision-making approach was proposed in [28], where the objective was to reduce the user re-

sponse time and improve the user experience quality. The authors of [29] proposed a modified

quantum particle swarm algorithm to solve the service migration problem for mobile end-users.

The objective was to minimize the total delay (consisting of migration, processing, and transmis-

sion delays) as well as the energy consumption. A DRL-based approach was presented in [30] to

solve the problem of service migration in an edge computing environment for a single user with

the objective of minimizing migration and communication costs. In [31], the authors proposed a

Multi-Agent Deep Reinforcement Learning (MADRL) algorithm for Vehicular Edge Computing

(VEC) with the objective of meeting the service delay requirements with minimum migration cost

and minimum travel time. We note that all the above-mentioned studies focus only on the migration

of a single service or application. In real-world scenarios, however, an application is a collection

of components that interact. In this thesis, application components are implemented as VNFs. To-

gether these VNFs form a VNF-FG with sub-structures such as sequence, parallel, selection, and

loop to establish the model of the execution sequence of the components. Moreover, none of the

existing solutions reviewed above considers the mobility of both fog/edge nodes and end-users. The

evaluation of the existing studies on application Component migration in NFV eddge computing is

summarized in Table 2.1.

Table 2.1: Evaluation of the existing solutions for application component migration in edge com-

puting.

References Research Area
Mobility Interaction between

Application Component Delay Cost
End-user Edge Nodes

[15] Fog computing - -

[27] MEC - - -

[28] MEC - - -

[29] MEC - - -

[30] MEC - - -

[31] VEC - - -

15

2.2 VNF Migration

2.2.1 Simple VNF Migration

In the following, we review the most pertinent works on simple VNF migration, where a single

VNF is migrated at a time.

The authors of [32] proposed a VNF migration algorithm to switch off the servers during low-

traffic periods in order to save energy. The authors of [33] formulated the migration problem as an

integer programming problem and proposed two heuristic algorithms to migrate VMs hosting VNFs

with the goal of reducing the migration delay. In [34], the migration problem was formulated as an

integer programming problem with the objective of minimizing the migration cost. The authors

proposed a heuristic algorithm for migrating VNFs whenever resources were limited in the nodes.

The authors of [35] proposed a VNF deployment algorithm followed by a migration algorithm.

They aimed to minimize both the power consumption cost and the use of bandwidth resources. The

migration algorithm proposed in [36] is based on a neural network that predicts future resource

requirements while considering migration delay and VNF reconstruction. A deep reinforcement

learning framework for service function chain migration was proposed in [37] under dynamic traffic

conditions with the objective of minimizing energy consumption and migration overhead. The

authors of [38] investigated the problem of service function chain migration when mobile end-users

move from one fog radio access network to another. This work aimed at reducing the migration

time and reconfiguration cost by proposing a two-step migration algorithm.

While the works presented above [32, 33, 34, 35, 36, 37] study the VNF migration problem,

they do not take into account the scenarios where VNFs must be migrated due to the mobility of

end-users. Moreover, they do not consider application component migration in NFV-based hy-

brid cloud/fog environments. Contrary to cloud-only solutions, a hybrid cloud/fog approach holds

great promise to offer faster response times, which can only be achieved if a number of challenges

are overcome, most notably the resource heterogeneity and mobility of fog nodes. None of the

above-mentioned works have addressed these challenges. Furthermore, it is important to identify

the dependent VNFs within a network service, which can help make more sophisticated migration

16

decisions. We note that all previous studies, including [32, 33, 34, 35, 36, 37, 38] focused on the

migration of a single VNF, thus realizing the simple migration scheme. They did not consider mi-

grating a cluster of VNFs by taking into account the dependency between VNFs. Moreover, they did

not investigate VNF migration with the main objective of reducing the embedding cost but rather

reducing the migration time/overhead and power consumption.

2.2.2 Cluster VNF Migration

To the best of our knowledge, there is no work that has considered cluster VNF migration,

though a few studies investigated cluster VM migration in multi-tier applications, e.g., [39, 40, 41,

42]. In [39], the authors aimed to reduce the volume of separated traffic and migration time via the

migration of a cluster of VMs, which is realized by the combination of two proposed algorithms.

The first algorithm identifies groups of intensively inter-communicating VMs that should not be

separated during the migration process. Then, a greedy scheduling algorithm decides the order of

migration of the different groups. Refs. [40, 41, 42] aimed to exploit dependencies among VMs,

though their main objective was not to reduce the embedding cost. In [40], the authors studied the

problem of Cloud-to-Cloud (C2C) migration based on the traffic dependency between multiple VMs

to decrease service downtime. The authors of [40] proposed a service-aware strategy for C2C migra-

tion of services on multiple VMs, which analyzed the dependency of multiple VMs based on graph

theory. Then, the network traffic intensity was used to determine the migration order of dependent

VMs by finding the minimum spanning tree. Ref. [41] proposed a cloud migration scheme, which

enabled a cluster of VMs to be migrated between different cloud infrastructures. They developed

a VM grouping scheme using principal component analysis (PCA) based on traffic dependencies

between VMs to reduce the migration downtime of applications. A VM migration method based on

minimum-cut and k-means algorithms was proposed in [42] for inter-cloud environments. The pro-

posed method partitioned VMs into subgroups based on the traffic between them. All VMs within a

group were scheduled for migration at the same time. The goal was to reduce the amount of traffic

between the clouds during the inter-cloud migration and minimize the network latency.

VNF instances run as software in VMs or containers, and a given network service consists of an

ordered set of VNFs. Migrating one VNF can affect other VNFs in the chain, as multiple VNFs of

17

a service chain can be instantiated on a VM. By contrast, in VM migration, the VM is considered as

a unique entity for migration. Furthermore, we may only need to migrate the stateful information

of VNFs, such that the VNF migration process would require less time [43]. As a result, the main

purpose of the papers on VM migration, e.g., [41], [40], [42] was to minimize the migration time and

service downtime caused by the migration process. Therefore, the optimization objective of papers

in VNF migration would be different from VM migration. Accordingly, the algorithms designed for

VM migration would not always apply to the NFV environment. In addition, Refs. [39, 40, 41, 42]

considered all VMs of a given network service as a cluster of VMs. Table 2.2 demonstrates the

evaluation of the related works on the simple and cluster migration.

Table 2.2: Evaluation of the existing solutions for VNF migration, including simple and cluster

migration approaches.

References Research Area Migration Approach VNF Depen-

dency

Embedding

Cost

Sharing of

VNFI

[32, 33,

34, 35, 37,

38]

VNF Simple Migration - - -

[34] VNF Simple Migration - -

[39] VM Cluster Migration - - -

[40] VM Cluster Migration - - -

[41] VM Cluster Migration - - -

[42] VM Cluster Migration - - -

2.3 Joint VNF Decomposition and Migration

In this section, we first review the few research works that target the VNF decomposition

method. Next, we classify and review the joint method by considering the joint problem of VNF-FG

decomposition and embedding problem. While there is no work to consider the joint VNF decom-

position and migration problem, we did not consider the joint VNF decomposition and migration.

2.3.1 VNF Decomposition

An architecture is presented in [44], where monolithic VNFs are disaggregated into lightweight

ªmicroº VNFs, enabling a finergrained resource allocation and reducing redundancy in the deployed

18

stack. The problem of dynamic function composition optimization problem was studied in [45],

and proposed a distributed algorithm, using Markov approximation method for the problem. The

service chain composition problem with respect to both user and resource failures present in [46],

the problem formulated the problem as a non-cooperative game to reduce request latency.

2.3.2 Joint Methods

VNF-FG composition generally aims at composing a suitable VNF-FG for an NS, while VNF-

FG embedding seeks to embed the composed VNF-FG in the networks. There exist works that have

studied the joint problem of VNF-FG composition and embedding, e.g., [19, 47, 48]. Also, a few

works, e.g., [22, 49, 50], have considered the problem of joint VNF decomposition and embedding

problems. To the best of our knowledge, there are no works considering joint VNF decomposition

and migration problems. In the following, we review the works that consider joint methods for VNF

composition and embedding, and VNF decomposition and embedding.

2.3.2.1 Joint VNF Composition and Embedding

The joint VNF-FG composition and the embedding problem was studied in [19][47][48] with

the objective of minimizing the embedding cost. In [19], the problem was formulated as an ILP,

which was then solved by a greedy heuristic. Similarly, a recursive heuristic algorithm was proposed

in [47]. In [48], the authors proposed a priority-based algorithm that consists of a composition

phase and a mapping phase. The work in [51] presents an ILP model for the problem of the chain

composition and embedding problem with the objective of maximizing revenue of resource sharing

and the acceptance rate. The authors in [52] aimed to minimize the service delay by considering the

joint composition and embedding of SFCs. They proposed a 2-approximation algorithm by applying

graph-theory based techniques, called Eulerian circuit-based hybrid SFP optimization (EC-HSFP).

2.3.2.2 Joint VNF Decomposition and Embeddding

In the VNF decomposition, a VNF can be decomposed into multiple sub-functions and the

same type of sub-function. The decomposition method allows for composing function chains and

reusing/sharing of sub-functions. Thus, the VNF decomposition brings the efficiency of the resource

19

Table 2.3: Evaluation of the related works for joint VNF decomposition and migration.

Methods References Approach

Category

VNF

Reusability

Composition Decomposition Migration Resource

Cost
Disjoint

Method
[44] Design an

Architec-

ture

- -

[45],[46] Markov

Approx-

imation

Method

- - - -

Joint
Method

[19],[47] Heuristic - - -

[48] Priority-

based

- - - -

[51] Optimization - - -

[52] Heuristic - - -

[22] Heuristic -

[49] Optimization - -

[50] Heuristic - -

allocation. Also, it makes the VNF embedding problem more flexible and challenging. In [22], the

authors studied the VNF embedding problem by considering function decomposition. The authors

of [49] presented an optimization framework for the decomposition and deployment of VNFs on a

hybrid network. They formulated the problem as mixed-integer linear optimization, aiming to de-

termine the best decomposition according to the traffic demands and network topology. In [50], the

authors discussed the joint optimization of service graph decomposition and embedding problems.

An ILP-based embedding algorithm was proposed to minimize embedding costs. In [53] proposed

deep reinforcement learning for microservice-based NFV for efficient deployment and decompo-

sition of VNFs onto substrate networks. Their objective is to maximize the service acceptance for

microservices-based Service Function Chains (SFCs). The authors in [54] decomposed IoT network

into multiple small VNF components and developed a deep Q-learning algorithm for embedding de-

composed VNFs to improve QoS (e.g.transmission delay). The work in [55] presents a deployment

model considering VNF decomposition. They formulated the problem as mixed-integer linear opti-

mization with the objective of guaranteeing reliability and reducing the delay requirement of service

function chains.

20

We note, however, that none of these works took into account VNF migration. VNF migration

can largely affect selecting the proper decomposition option for an NS. Furthermore, [19, 47, 48]

mainly focused on jointly determining the order of VNFs to compose a VNF-FG and then embed it

and they are unsuitable when VNFs in the NSs can be decomposed into sub-functions. Moreover,

they assumed the VNF provider had already acquired the details of the decomposed VNFs. This is

not a viable option for online VNF mapping when the arrival of VNF or a request is unknown to the

network. In addition, Table 2.3 summarizes the evaluation of the existing works on the Joint VNF

decomposition and migration.

2.4 Conclusion

In this chapter, we first conducted a survey of the related work. Table 2.1, Table 2.2, and

Table 2.3 provide summaries of the reviewed papers, respectively. For each paper, we show both

the criteria that are met and those that are not met. As can be seen, none of the reviewed works

satisfy all of the criteria.

21

Chapter 3

Reinforcement Learning-based

Optimization Framework for

Application Component Migration in

NFV Cloud-Fog Environments1

3.1 Introduction

Fog computing extends traditional cloud computing architecture by providing computing and

storage at the edge of the network, giving way to the so-called hybrid cloud/fog systems. In such

systems, some application components can be hosted by the fog while others may reside in the

cloud. We view applications as sets of interacting components. In NFV settings, application com-

ponents can be implemented as VNFs and chained to form VNF-FG. In these systems, the NFVI

in which the VNFs are run is provided by the cloud and by the fog. A challenging problem in

NFV-based hybrid cloud/fog systems is component migration, given that, in addition to end-users,

1This chapter is based on published papers: [1] S. N. Afrasiabi et al, ºReinforcement Learning-Based Optimization

Framework for Application Component Migration in NFV Cloud-Fog Environments,º in IEEE Transactions on Network

and Service Management, vol. 20, no. 2, pp. 1866-1883, June 2023.

[2] S. N. Afrasiabi, et al, ºApplication Components Migration in NFV-based Hybrid Cloud/Fog Systems,º 2019 IEEE

International Symposium on Local and Metropolitan Area Networks (LANMAN), Paris, France, 2019, pp. 1-6.

22

fog nodes can also be mobile. For instance, a drone can act as a mobile fog node [56]. End-users’

mobility combined with the mobility of fog nodes could significantly (and quickly) degrade the

QoS offered to end-users. Latency may increase when end-users move further from the fog nodes

that host components pertinent to the application they are using. The same concept applies when

fog nodes move further from end-users. Ideally, when an end-user leaves the coverage area of a

given fog node, the components hosted by that node and which are pertinent to the application the

end-user is using should also be migrated/moved to another fog node close to the end-user. Such

migration promises to ensure service availability and improved QoS [57]. Moreover, if the NFVIs

are dynamically consolidated in as few nodes as possible and several nodes are switched off, it

would help to minimize the cost (e.g., power consumption cost) [57].

This chapter proposed a solution for the problem of VNF migration in cloud±fog network envi-

ronments where both fog nodes and end-users are mobile. We model the problem as an optimization

framework to minimize the aggregated weighted functions of application delay and cost, and then

model the optimization problem as an Markov Decision Process (MDP) problem. Moreover, we de-

sign a Deep Reinforcement Learning (DRL) algorithm that makes an efficient and rapid migration

decision.

The rest of this chapter is organized as follows. First, we present 3.2 the motivating scenario.

The system model and problem definition are explained in Section 3.3. Our DRL-based approach

for solving the component migration problem is explained in Section 3.4, followed by the evaluation

results in Section 3.5. Finally, We conclude this chapter in Section 3.6.

3.2 Motivating Scenario

As a basis for our motivating scenario, we consider the earthquake early warning and recov-

ery application described in [6]. Figure 3.1 illustrates an example of earthquake early warning and

recovery application. According to Fig. 3.1.a, the application comprises six components, and the

communication between the application components is demonstrated. The six application compo-

nents are: Early Warner Issuer & Analyzer (EW), Map Producer (MP), Warning Alert Issuer (WA),

23

Victim Detector (VD), Rescue Strategies (RS), and Historical Storage (HS). For example, EW pro-

cesses the data received by various sensors such as cameras and seismic and accordingly detects

prospective danger. The data are sent to HS for long-term storage and analysis and to WA for public

warning. MP component processes these data to find the epicenter location and produce damage as-

sessment maps. The VD uses these maps to locate possible humans. The RS is then informed about

taking immediate life-saving decisions if a victim is detected. The RS instructs either First Respon-

ders (FR), Robot Dispatchers (RD), or HumanRobot Team (HR) to begin the rescue missions. The

application can be described by a structured graph, which shows whether the components are exe-

cuted in parallel or sequence. The execution order of elements can be defined by a structured graph

(see Fig. 3.1.b). For example, ªRSº and ªHSº are executed in sequence, while ªVDº and ªWAº

are executed in parallel. We consider a system with three layers: (i) an end-user layer that includes

mobile end-user devices; (ii) a fog layer that includes both mobile fog nodes such as drones and

static fog nodes e.g., sensors; and (iii) a cloud layer that consists of distant data centers as shown in

Fig 3.2. Accordingly, some of the application components can run in the fog layer (e.g., Warning

Alert Issuer), whereas the others can run in the cloud layer (e.g., Historical Storage). Given that the

considered earthquake early warning and recovery use-case is a delay-sensitive application, relying

only on static fog and/or cloud nodes may result in excessive response times, which can lead to

catastrophic consequences. On the other hand, drones serving as mobile fog nodes not only reduce

the response time significantly but also offer more reliable connectivity to end-users, especially

given that end-users may not access terrestrial base stations due to high congestion and increased

communication delay.

Given that a disaster may affect a large area, the drones may need to move around for several

purposes including capturing images, damage estimation, and finding the presence of human beings,

among others. As fog nodes (e.g., drones) and end-users (e.g., robots, cellphones) can be mobile,

we assume that Drone 1, which hosts the Early Warner & Analyzer components, moves from

location A to location B, and end-user devices move from location A to C. In Fig. 3.2.a, Drone 1

may move from location A to B to take care of a more urgent task at location B. For example, a

group of mobile end-users may be suffering from a lack of reliable communication due to temporary

congestion at location B, thus requiring Drone 1 to move from location A to B to provide the users

24

(a) Application components communication (b) Execution order of application components

Figure 3.1: Example of earthquake early warning and recovery application [6].

with reliable connectivity. As a result, Drone 1 becomes far away from the mobile end-user devices

from which it gets its desired information. Let the distance between the end-user devices and Drone

1 be denoted by d1. Also, assume that there is another drone (i.e., Drone 2) at a distance d2

from the end-user. Therefore, it is more efficient to migrate the Early Warner Issuer & Analyzer

components from Drone 1 to Drone 2 to reduce the communication latency, especially given that

d1 > d2. Moreover, Drone 1 (which acts as a fog node) can be switched off, as it does not host any

components. This action can save power, reducing the power consumption cost (see Fig. 3.2.b).

Such a migration decision can be made by the so-called migration decision module as a part of the

platform-as-a-service (PaaS) option [58]. The migration decision module is in charge of deciding

whether to migrate and where to migrate VNFs based on the data collected by other modules, such

as the monitoring engine in the PaaS [58].

3.3 System Model and Problem Formulation

In this section, we first present the system model, and then formulate and analyze the problem

of application component migration in an NFV-based hybrid cloud/fog system.

25

(a) (b)

Figure 3.2: Migration of an application component for an earthquake early warning and recovery

application :(a) Before Moving, (b) After Moving

3.3.1 System Model

In the following paragraphs, we explain the model of the application components implemented

as VNFs, structured VNF-FGs, underlying network, and the end-users that interact with the appli-

cation components. Table 3.1 lists the key notations and decision variables.

3.3.1.1 VNFs

We assume that an application is composed of several components and each component is im-

plemented as a VNF. Let K denote the set of different VNF types (e.g., victim detector or warning

alert issuer). The processing capacity and maximum allowable capacity utilization of VNF type k

are denoted by ck and µk, respectively. Each VNF k has a finite CPU resource requirement denoted

by rk and memory resource requirement denoted by mk.

3.3.1.2 VNF-FG Request

The whole application is modeled as a chain of VNFs, also referred to as VNF-FGs. Let Req

be the set of structured VNF-FG requests received by the system. We denote a single request with

R ∈ Req and the set of required VNF types for request R is presented by vnfR. Each VNF-FG

is converted into a tree structure [1]. While the leaf nodes represent the application components,

the middle nodes represent one of the substructures in the form of a sequence, parallel, selection, or

loop [1, 6]. Such tree structure allows for defining the relationship between the VNFs in the chain,

26

Table 3.1: Summary of main notations.
Parameter Definition Parameter Definition
k VNF type k ∈ K lz(t) Location of z ∈ Z at time slot t
ck Processing capacity of VNF k beqm(t) Available bandwidth between nodes zq

and zm at time-slot t
µk Maximum allowable utilization

of VNF k

peqm(X(t), Y (t)) Propagation delay between node zq lo-

cated at X and node zm located at Y at

time slot t
mk Memory requirement of VNF k µqm Maximum allowed utilization between

nodes zq and zm
rk Resource requirement of VNF k UR Set of end-users
ip(k) Immediate predecessors of VNF

k

lur(t) Location of end-user ur ∈ UR at time

slot t
aR
ip(k),k Traffic rate from ip(k) to VNF k W r

u×k 1 if there is a communication between

end-user u and VNF k for request R and

0 otherwise
Req Set of structured VNF-FG re-

quests

aRu×k Traffic rate between end-user u and

VNF k
vnfR Set of required VNF types for re-

quest R

beuz
(t) Available bandwidth between end-user

u and node z at time-slot t
Z Set of cloud/fog nodes |T | Length of a time-slot
E Set of links ϕ Cost of bandwidth for transmitting a sin-

gle bit of traffic
cCPU
z (t) CPU capacity of node z ∈ Z at t β Cost per consumed unit of power

cMem
z (t) Memory capacity of node z ∈ Z

at t

hi,k,z(t) 1 if an instance i of VNF k hosted at

cloud/fog node z at time-slot t and 0 oth-

erwise
µcMem

z
(t) Maximum allowed utilization of

cMem
z (t)

hR
i,k,z(t) 1 if an instance i of VNF k hosted at

cloud/fog node z at time-slot t for re-

quest R and 0 otherwise
µcCPU

z
(t) Maximum allowed utilization of

cCPU
z (t)

λz(t) 1 if the node z is switched on at time-

slot t and 0 otherwise
dkz Delay of processing one unit of

traffic for VNF type k located at

node z ∈ Z

where the immediate predecessor of VNF k is denoted by ip(k). For request R, the amount of traffic

transmitted from the immediate predecessor ip(k) to VNF k is indicated by aR
ip(k),k.

3.3.1.3 Network

We consider the following three layers: (i) mobile end-user layer, (ii) fog layer (including both

mobile and static fog nodes), and (iii) cloud layer. The cloud and the fog layers offer the underlying

NFVI that can host the VNFs. Let Z be the set of nodes (which can be either cloud or fog nodes).

Each node can host a single or multiple VNFs. Node z ∈ Z can be characterized by its CPU

capacity cCPU
z (t) (in terms of the number of cores) at time t (which changes over time) and available

27

memory cMem
z (t) (in terms of number of gigabytes available) at time t. The processing delay of

a unit of traffic for VNF type k on node z ∈ Z is denoted by dkz . In each time slot t, the nodes’

locations may change. Let lz(t) represent the location of node z ∈ Z at time t, peqm(X(t), Y (t)) be

the propagation delay between node zq at location X and node zm at location Y at time t. The set E

of links between the nodes are also characterized by available bandwidth capacity beqm(t) between

nodes zq and zm at time t. The maximum allowable link utilization between nodes zq and zm is

denoted by µqm.

The application components may communicate with end-users’ devices. We denote the set of

end-users communicating with the application components in request R ∈ Req by UR. In each time

slot t, the location of an end-user ur ∈ UR is represented by lur(t). The available bandwidth and

propagation delay between end-users at location X at time t and node z at location Y at time t are

denoted by beuz(t) and peuz(X(t), Y (t)), respectively. Also, let µeuz be the maximum allowable

link utilization between end-user devices and node z. We define a matrix WR
u×k ∈ {0, 1} that is 1

if there is a communication between u and k for request R; otherwise, it is equal to 0. Finally, the

traffic rate between end-user u and VNF k of request R is denoted by aRu×k.

3.3.2 Problem Formulation

Given the current locations of mobile end-users and fog nodes along with their CPU capacity,

memory capacity, and available bandwidth, we aim to solve the problem of VNF migration cost

with the main objective of minimizing the overall delay and cost. In the following, we formulate

the problem as an optimization problem. Similar to [56, 27, 59], we consider a slotted time model,

where the time is divided into time slots of length T . The index of each time-slot is denoted by

t ∈ [1, 2, ..., tmax] and t = 1 is considered as the starting point of the system, whereas tmax

corresponds to the final time-slot. Note that tmax is chosen large enough to cover the execution

of all requests. We assume that the locations of both fog nodes and end-users remain fixed for the

duration of a given time slot and change from one time slot to another [27]. The solution to the

optimization problem is characterized by the following decision variables:

• hi,k,z(t): A binary variable equal to 1 when instance i of VNF k is hosted at cloud/fog node

z at time t; Otherwise it is 0.

28

• hRi,k,z(t): A binary variable equal to 1 when instance i of VNF k is hosted at cloud/fog node

z at time t for request R; Otherwise, it is 0.

• λz(t): A binary variable equal to 1 when node z is switched on at time t; Otherwise it is 0.

Next, we explain our delay and cost model. To calculate the carried traffic of VNFs, we need to

consider all the inputs and output traffic. We note, however, that the traffic pattern of the first VNF

is different from that of the other VNFs, as it cannot connect to the predecessor VNF. The total

incoming traffic to a given VNF is the summation of the traffic from its predecessor VNFs (aR
ip(k),k)

and the traffic from end-user devices (aRu×k), given by:

aRk =
∑

u∈UR

WR
u×k · a

R
u×k k = 1

aRk =
∑

ip(k)∈IP (K)

aRip(k),k +
∑

u∈UR

WR
u×k · a

R
u×k, k ≥ 2.

(3.1)

3.3.2.1 VNF-level calculation

The calculation of the application delay and cost is performed based on parsing the associated

tree structure of the VNF-FG. The delay and cost of the leaf nodes representing VNFs are calculated

first. These values are then aggregated to calculate the delay and the cost for the middle nodes which

represent the sub-structure.

(a) Delay:

Application delay is the time it takes when the execution of the first component begins until

the execution of the last component has been completed. The total delay consists of three

parts: (1) the total processing delay dproc of the traffic sent from end-user devices or prede-

cessor VNFs, (2) communication delay dcom between mobile end-user devices and cloud/fog

nodes; and (3) migration delay dmigT for migrating a VNF k.

The processing delay is the time spent by nodes (cloud/fog) in order to process a request sent

by end-user devices or the immediate predecessors of VNF k. If node z is selected to process

29

traffic aRk , the processing delay of a time slot denoted by dproc(R, k, t) is calculated by:

dproc(R, k, t) =
∑

z∈Z

∑

i∈Ik

hi,k,z(t) · a
R
k d

k
z . (3.2)

The communication delay is the time spent to transmit a bit of traffic between edges, and

consists of both transmission and propagation delays [6]. The transmission delay in a time slot

can involve the traffic transmission from ip(k) to k (i.e., Eq. (3.4)) and traffic transmission

from ur to k (i.e., Eq. (3.5)). Then the total communication delay of VNF k belonging to

request R with the predecessor VNFs and end-users in a given time slot is given by:

dcom(R, k, t) = max(dcom(k, ip(k), t), dcom(k, ur, t)), (3.3)

where

dcom(k, ip(k), t) =
∑

z∈Z

∑

i∈Ik

hi,k,z(t)(
aR
ip(k),k

beqm(t)
) + peqm(X(t), Y (t)), (3.4)

dcom(k, ur, t) =
∑

z∈Z

∑

i∈Ik

hi,k,z(t).(
aRu×k

beuz(t)
) + peuz(X(t), Y (t)), (3.5)

To manage the mobility of end-user devices and fog nodes, especially when they move far

away from each other, migration can take place, and thus hi,k,z(t) ̸= hi,k,z(t − 1). When a

VNF is migrated, the propagation and transmission delays contribute to the migration time.

The downtime of migrating a VNF is equivalent to the time taken to occupy the network

bandwidth by migrating the memory data of VNF [59]. The larger the amount of memory

to be migrated and the smaller the available bandwidth between nodes, the longer the time

that the migration occupies the network bandwidth. The delay of migrating k from node zq

30

at location X at time t− 1 to node zm at location Y at time t is estimated by:

dmig(R, k, t) =
∑

z∈Z

∑

i∈Ik

hi,k,zq(t− 1)hi,k,zm(t) · (peqm(X(t), Y (t)) +
mk

beqm(t)
). (3.6)

Clearly, without migration, there is no migration delay and so the processing delay is calcu-

lated based on Eq. (3.4), where all the whole traffic is processed at the host node. However, in

the case of migration, the unfinished traffic will be processed on node zm. While the process-

ing delay of unfinished traffic at a previous time slot at node zq was calculated in Eq. (3.2), the

processing delay of unfinished traffic for VNF k at node zm must be calculated in the current

time slot where hi,k,zm(t) = 1 and the processing delay of the unfinished traffic of previous

time slot hi,k,zq(t− 1) must be subtracted.

Therefore, the total migration delay consists of the migration downtime and the new pro-

cessing delay of the unfinished traffic [59]. Let the size of the unfinished traffic be denoted

as a′
R
k . If the transmission delay is longer than the length of the time slot, then a′

R
k ≥ aRk ,

which means that all the traffic will be processed at the source node. If the traffic aRk is pro-

cessed within a time slot, then the size of the unfinished traffic is a′
R
k = aRk , meaning that

no migration will take place. As a result, dproc(R, k, t) + dcom(R, k, t) ≤ |T |. On the other

hand, if only a fraction of the traffic can be finished within one time slot, then the amount of

unfinished traffic at time-slot t is given by:

a′
R
k = min{aRk ,max{0, aRk −

|T | − dcom(R, k)

dproc(R, k)
aRk }}, (3.7)

which is processed at the destination node. It is also worth noting that there is no migration

in the first time slot, i.e., dmigT (R, k, t) = 0 for t = 1. In the first time slot, the application

components are placed randomly so there is no migration delay. The total migration delay of

unfinished traffic a′
R
k calculated by:

31

dmigT (R, k, t) = dmig(R, k, t)+
∑

z∈Z

∑

i∈Ik

hi,k,zm(t).a
′R
k D

R
k −

∑

z∈Z

∑

i∈Ik

hi,k,zq(t−1).a
′R
k D

R
k

(3.8)

(b) Cost:

The overall cost consists of the monetary cost of migration and the cost of power consumption.

The migration cost Cmig(R, k, t) describes the cost of bandwidth occupation involved when

migrating a VNF between nodes zm and zq at time t. Letting ϕ be the bandwidth occupation

cost for transmitting a single bit of traffic, migration cost Cmig(R, k, t) is obtained by:

CmigT (R, k, t) =
∑

z∈Z

∑

i∈Ik

hi,k,zm(t− 1) · hi,k,zq(t) · ϕ ·mk. (3.9)

Several nodes can be switched off by migrating VNFs to nodes that have enough capac-

ity, thereby realizing a considerable power consumption reduction. However, if too many

VNFs are hosted in a single node, the resource over-utilization of that node will be increased

dramatically, which can lead to performance degradation and longer processing delays, and

the transmission delay could also increase as the distances between the mobile end user de-

vices and nodes increase. A CPU consumes a larger proportion of energy than disk storage

network interfaces. Hence, we calculate the power consumption cost as the CPU power con-

sumption cost. If node z is switched off, then the power consumption would be negligible,

i.e., ptotal ≈ 0. Let β denote the cost per consumed power watt. The cost of total energy

consumption at a node for VNF k in a given time-slot can be estimated by:

Cpower(R, k, t) =
∑

z∈Z

∑

i∈Ik

β · hi,k,z(t) · pidle + (pmax − pidle) · uz(t). (3.10)

where pmax is the maximum power consumed when the node is fully utilized, pidle is the

power consumption when the node is in the idle state (no computation task or no VNF), and

32

uz(t) is the CPU utilization (resource utilization) of z at time t given by

uz(t) = min{

∑

i∈Ik
hi,k,zrk

cCPU
z

, 1},

which varies over time.

3.3.2.2 VNF-FG level calculation

The total delay and cost of application for a time slot can be calculated by traversing the tree

structure from the leaves to the root and aggregating the calculated delay and cost values of the

nodes from the bottom to the top. In the following, we estimate the processing delay at a given

time slot for the sub-structures’ sequence, parallel, selection, or loop. A sequence sub-structure

accumulates the time and the cost of its children.

When a node in the tree is a substructure, namely Si (sequence, parallel, selection, or loop), the

processing delay for that node dproc(R,Si, t) is calculated by Eq. (3.11). A sequence sub-structure

accumulates the processing delay of all its children. A loop can be considered as a sequence sub-

structure that is repeated for a certain number of iterations it, defined as the expected number of

iterations of a loop structure to be calculated by: it = q
1−q

, where q is the probability of the loop’s

occurrence.

For a parallel sub-structure, its children are all executed in parallel, hence the processing delay

is determined based on the maximum delay value of its children. In a selection sub-structure,

the probabilities of the selections of the children are involved in the calculation. Let Pk be the

probability of selecting a child Si a selection sub-structure.

dproc(R, root, t) =

∑

k∈Si dproc(R, k, t) Si is seq

max{k∈Si} dproc(R, k, t) Si is par

∑

k∈Si Pk · dproc(R, k, t) Si is sel

it.
∑

k∈Si dproc(R, k, t) Si is loop

(3.11)

33

In this regard, dmig(R, k, t) and dcom(R, k, t) are calculated by aggregating the migration and

communication delay, respectively, of VNFs, similar to Eq. (3.11). while the power consumption

and the migration cost for the sequence, selection, and loop substructures at a given time slot are

calculated similar to Eq. (3.11), for the parallel substructure, the cost is the sum of the costs for all

its children, for which the migration cost is given by:

Cmig(R, root, t) =
∑

k∈Si

Cmig(R, k, t), Si is par (3.12)

In this regard, the Cpower(R, k, t) for the parallel substructure is calculated similar to Eq. 3.12.

Finally, to calculate the total delay and cost of a VNF-FG for a time slot t the delay and the cost

of the root of the tree are computed by aggregating the delay and the cost of the VNFs and of the

basic sub-structures from the bottom to top. The total delay and the total cost of a VNF-FG request

R at times slot t are given by:

Delay(R, t) = dproc(R, root, t) + dcom(R, root, t) + dmigT (R, root, t), (3.13)

Cost(R, t) = Cmig(R, root, t) + Cpower(R, root, t). (3.14)

Our objective is to enable the migration of VNFs in the cloud and fog NFVI such that the

aggregated weighted function of the delay and cost is minimized over all the time slots. Specifically,

we consider the following objective function:

F =

t=tmax
∑

t=0

∑

∀R∈Req

ω ·Delay0(R) + (1− ω) · Cost0(R), (3.15)

where ω (a real number in the range [0,1]) determines the weight of delay over cost. To make a

proper trade-off between the two heterogeneous metrics of Delay(R) and Cost(R) in Eqs. (3.13)

and (3.14), Note that Delay0(R) and Cost0(R) in Eq. (3.15) are normalized values of Delay(R)

and Cost(R), respectively. More specifically, we aim to solve the following optimization problem:

34

minF (3.16)

subject to:

∑

R∈Req

∑

i∈Ik

hRi,k,z(t) ≤ N · λz(t), ∀k ∈ K, z ∈ Z, t ∈ [1, 2, .., tmax] NlargeConstant,

(3.17)
∑

R∈Req

aRip(k),k · h
R
i,k,zq

(t) · hRi,k,zm(t) ≤ µqm · beqm(t) ∀q,m ∈ Z, t ∈ [1, 2, .., tmax],

(3.18)

∑

R∈Req

WR
u×k · a

R
u×k · h

R
i,k,z(t) ≤ µeuz · beuz(t) ∀z ∈ Z, u ∈ UR, t ∈ [1, 2, .., tmax],

(3.19)

∑

R∈Req

∑

i∈Ik

rk · hi,k,z(t) ≤ µcCPU
z

.cCPU
z (t) ∀z ∈ Z, t ∈ [1, 2, .., tmax], (3.20)

∑

R∈Req

∑

i∈Ik

mk · hi,k,z(t) ≤ µcMem
z
· cMem

z (t) ∀z ∈ Z t ∈ [1, 2, .., tmax], (3.21)

∑

∀R∈Req

AR
k h

R
i,k,z(t) ≤ µk · ck ∀k ∈ K, z ∈ Z t ∈ [1, 2, .., tmax], (3.22)

The resultant solution must satisfy the following constraints of the optimization problem (F).

Constraint (5.17) guarantees that the server node is switched on when it hosts at least one VNF k.

Constraints (5.18-5.19) ensure that the communication links in the cloud, in the fog, between the

cloud and the fog, between the end-user devices and the cloud, and between the end-user devices

and the fog are not overloaded in terms of bandwidth capacity. Constraint (3.20) ensures that the

computational resource capacity of cloud and fog nodes are not exceeded. Constraint (3.21) guar-

antees that the total amount of memory occupied by a VNF assigned to node z should not exceed

the available memory. Finally, constraint (3.22) ensures that the capacity of an instance of VNF k

is not overloaded.

35

3.3.3 Problem Analysis

The problem of application component migration in an NFV-based hybrid cloud/fog system is

NP-hard, as it can be simplified to the NP-hard bin packing problem by considering nodes as bins

and VNFs as items. Thus, the problem can be solved heuristically or meta-heuristically [60]. The

migration problem that we define here in section 3.3 includes the dynamic parameters, such as the

locations of mobile fog nodes and end-user devices. The availability of resources may also change

from one-time slot to another. Moreover, when the parameters change, the heuristic algorithms

need to execute in each time slot, and they cannot adjust their solutions in accordance with these

changes. Most of the existing heuristic algorithms are unable to handle large-sized problems in

a computationally efficient manner, usually resulting in a long decision-making delay. Since the

dimensions of our problem are complex and vary over time, heuristics are not suitable for our

problem.

To handle the level of uncertainty of mobility and dynamicity, we present the application com-

ponent migration problem in the form of an MDP. We then adopt a DRL approach to find the

solution. The RL agent can automatically learn the ever-changing environment and update its deci-

sion through interactions with the environment. In the following, we demonstrate that our defined

problem has Markov property, which is a memory-less property [61]. Then, in Section 3.4, we

define the main components of our developed MDP, including the state set, action set, and reward

function. We then propose our RL-based application component migration algorithm.

Eq. (3.15) can be represented as the aggregation of cost and delay over each time slot with length

|T |τ , ∀τ = 0, ..., κ, which can be defined as:

φ(τ) =
k

∑

tau=0

∫ t0+(τ+1)|T |

t0+τ |T |
ω ·Delay(τ) + (1− ω) · Cost(τ)dτ, (3.23)

where Delay(τ) and Cost(τ) are the delay and cost over |T |τ .

Assume that φ(τ) is the aggregation of the cost and delay until |T |τ . We can conclude the

following equality holds for φ(τ):

φ(τ + 1) = φ(τ) + ω ·Delay(τ) + (1− ω) · Cost(τ). (3.24)

36

where the future value φ(τ + 1) depends only on the current values of the parameters. This shows

that our component migration problem has a memory-less property. Moreover, the mobility of end-

user devices and fog nodes’ are a sequential decision-making processes also have a memory-less

property [62]. Therefore, our problem can be modeled as an MDP and thus reinforcement learning

can be exploited to solve the problem [63].

3.4 RL-Based VNF Migration

Using the formulation presented in Section 3.3, we define the main components of the MDP in

our problem and show how we utilize this framework to develop our DRL-based application com-

ponent migration solution. Since our problem is a sequential decision-making process, we exploit

an advanced type of DQL, a double deep Q-network (DDQN) enhanced with LSTM memory cells.

In the following, we first explain the motivation for choosing this specific Q-network architecture

and then discuss the limitations of conventional recurrent neural networks and explain how LSTM

memory cells can overcome those limitations. Finally, we propose our DDQN-based algorithm for

solving the problem of application component migration.

3.4.1 MDP Framework

Our MDP model can be characterized by the following three main elements:

• System States: We consider state space S = {st|t = 0, 1, 2, .., tmax} in a specific slot t where

st described by a 2-tuple given by:

st = {H(t),Γ(t)}, (3.25)

where H(t) and Γ(t) represent the decision variables hi,k,z(t) and λz(t), respectively. There-

fore, the state of the system at time t represents whether the instance i of VNF k is hosted at

cloud/fog node z or not, and indicates whether the cloud/fog node z is switched on or off.

• System Action: The system action consists of all the possible cloud/fog nodes that the current

instance i of VNF k can migrate to. A
q,m
i,i+1(t) specifies whether the VNF on node q at a state

37

i migrate to node m in state i+ 1 at time slot t. We use at = {A
q,m
i,i+1(t)} ∈ A to identify the

action of selecting a new node for st, where A is the set of all possible actions in time slot t.

The action causes the system state to change to a new state st+1.

• Reward Function: The reward function determines the immediate consequence of choosing

action at in state st order to assess the short-term quality of a performed action. Our goal

is to minimize the value of the objective function given by Eq. (3.15). The action leading to

a smaller value of the objective function is associated with a larger reward. The immediate

reward of action at current state st based on Eq. (3.15) is defined as follows:

Rst
at

= −(
∑

R∈Req

ω ·Delay0(R) + (1− ω) · Cost0(R)). (3.26)

• Pa is the transition probability from state st at time t to state st+1 at time t+1 after action at

which is defined on Eq. (3.27):

Pa(st, st+1) = P (St+1 = s′|st = s, at = a). (3.27)

3.4.2 Design of the Deep RL Agent

In this subsection, we first introduce the traditional RL method to obtain optimal state-action

value in an MDP and then explain our motivation for using DDQN. The concept that an agent

learns by interacting with the environment is key to RL. The RL agent automatically learns the

ever-changing environment and continually updates its decisions. The interaction of an agent and its

environment utilizing the DDQN strategy is shown Fig. 3.3. We will use this figure and Algorithm 1

as we explain the theoretical aspect of our work.

Our proposed approach is based on Q-learning, a model-free algorithm and one of the most

widely used RL strategies for placement problems [64], computation offloading strategies [65], and

migration problems [57, 59]. Q-learning offers the most rapid computation of all the different types

of reinforcement learning methods [63], and it is a simple way for an agent to learn how to act

optimally. Our Q-learning policy is modeled as an action-value Q-function Q(st, at) (also known

38

as the Q-value), given by:

Qπ(st, at) = Eπ[

t=tmax
∑

t=0

γtRst
at
]. (3.28)

where π is the policy (a series of actions, each executed at a given a state) and γ = [0, 1] is

the discount factor, which is utilized to balance between the immediate and long-term rewards. The

Q-value is the maximum expected reward an agent can reach by taking a given action at from the

state st. The optimal Q-function can then be defined as:

Q∗(st, at) = max
π

Qπ(st, at). (3.29)

In our Q-learning algorithm, the action is selected based on the ϵ-greedy algorithm, which con-

sists of exploration and exploitation [66]. The Q-learning algorithm recursively computes and up-

dates the Q-value of the state-action pairs until all the states are met and all the actions have been

experienced, as follows:

Qnew(st, at) ←− Q(st, at) + α[Rst
at

+ γmax
a

Q(st+1, at) − Q(st, at)], (3.30)

where α is the learning rate. Although Q-learning works well when the state and action space

is small, it is quite challenging to find the optimal strategy in a large Q-table [63].

In Q-learning, all the states should be met, and all the actions should be experienced. In our

problem, the state and action spaces are not only large, but they also vary over different time slots.

Moreover, our problem has no terminal state, which makes using a Q-learning algorithm unsuit-

able for our purpose [67]. In order to address this shortcoming, we approximate the Q-values for

unmet states/actions using a deep neural network (DNN)-based approach, known as a nonlinear

gradient-descent function approximation[63]. This approach eliminates the need to visit all the

state/action pairs to compute the Q-values. In DQN, a DNN is used to learn Q∗(s, a) ≈ Q(st, at, θ)

where Q(st, at, θ) is the output of a DNN with weight θ. In deep Q-learning, (st, at, Rt, st+1) is

abstractly stored in the DNN. As the state of the system continuously changes at each time-slot,

it is important that the DNN is updated frequently. Therefore, the training of the DNN based on

39

historical information is stored in an experience replay memory D of size K. The experience replay

ensures that the optimal policy cannot be driven to a local minima [67]. During the learning, instead

of using only the currently experienced values of (st, at, Rt, st+1), the DNN can be trained by se-

lecting a random mini-batch from D to form a learning batch. These learning batches are then used

to feed the DQN and update the estimated Q-value. The DQN uses a Target Network with an On-

line Network to stabilize the overall network performance. The Target network is used to select an

action, whereas the Online Network is used to evaluate these actions. In DQN, instead of updating

the Q-table we update the parameters of the neural network to make better predictions. The DQN

can be trained by minimizing the loss function L(θ) given by:

L(θ) = Es,a[(y
DQN
t)−Q(st, at; θt))

2
], (3.31)

where y
DQN
t = Rst

at
+ γmaxat(st+1, at; θt) is the target Q-value with current parameter θt (the

weight of the Target Network), and θt gets updated periodically to θt based on the gradient descent

rule. The action at is selected from the Online Network using ϵ-greedy policy. The weights of the

Target Network are fixed for a fixed number of iterations, while those of the Online Network are

updated.

Moreover, since the same values of θt reused to select and evaluate an action in DQN, the Q-

value function may be an overestimated and unstable estimation of the Q-value [7]. Therefore, the

so-called double DQN [7] is used to mitigate this problem, so that two Q-value functions train si-

multaneously, one for selecting actions with weight θt (Online Network) and the other for evaluating

an action’s value or for estimating the Q-value (Target Network) with weight θt. In this regard, the

target y
DQN
t is replaced by y

DDQN
t given by:

y
DDQN
t = Rst

at
+ γQ(st+1, argmaxatQ(st+1, at; θt); θt), (3.32)

Finally, the gradient descent will be calculated by an Online Network and then the weight θ′t

is updated to θt the weight of the Q-network at time t. The gradient descent update rule for θt is

defined as follows:

40

Figure 3.3: Agent-environment interaction with DDQN strategy.

θt+1 = θt + α(yDDQN
t −Q(st, at; θt)).▽t .Q(st, at; θt). (3.33)

where▽t is the gradient descent at time t.

Figure 3.3 shows the RL procedure with DDQN and how the agent updates its decision by

interaction with the environment. The DDQN algorithm is composed of three main components,

the Online Network (Q(st, at; θ)) that defines the behavior policy, the Target Network (Q(st, at; θ
′))

that is used to generate the target Q-values, and the replay memory that the agent uses to sample

random transitions for training the Q-network.

3.4.3 DDQN with LSTM Cells

Here we explain the theoretical advantage of using LSTM memory cells in our designed DRL

agent. Previous works have shown the effectiveness of LSTM in predicting user mobility [68],

the task scheduling problem [69, 70], and in resource allocation [71]. LSTM is a good solution

for predicting a time series problem with long-term dependencies [72], as it can hold long-term

experiences. We integrate an LSTM layer in a DDQN to store the information acquired during

41

previous time slots, thereby allowing for additional information to give a more accurate prediction of

the Q-value of the component migration problem. The prediction of the current Q-value is not only

dependent upon more recent experience (st, at, Rt, st+1), it is also dependent upon some significant

experiences in the distant past.

LSTM [37] is an approach to address the vanishing gradient problems of conventional RNNs

[73]. The vanishing and exploding gradient problems result in inaccurate results and time-consuming

learning processes [73]. In the following, we elaborate on the theoretical aspect of the vanishing

gradient problem and explain how LSTM memory cells can be a suitable solution for our problem.

Let us consider the gradient rule given by Eq. 3.33. After passing many gradient update steps, and

when t becomes large enough, the error and the gradient-based descent become too small, which

prevents the value of θt from being updated. This may completely stop the NN from further training.

To address this problem, RNNs are enhanced with LSTM [74].

The memory cell is the key component of LSTM which is able to learn long-term dependencies

information of the network states. Each cell contains a sigmoid layer to optionally pass information,

where each cell is responsible for protecting and controlling its state.

In our work, we consider an LSTM cell consisting of three gates: (i) a forget gate, (ii) an input

gate, and (iii) an output gate. The forget and the input gates are used to selectively forget the

information of the previous cell or saved that cell state’s information, respectively. The output gate

controls which value in the cell is used to compute the output activation of the LSTM unit (i.e.,

which value should go to the hidden state). The LSTM gates are embedded in the hidden layer of

the DNN of the Target Network and are parameterized with weights and biases that can be optimized

simultaneously by applying the stochastic gradient descent update rule.

After choosing action at, the reward rt and the next state st+1 can be obtained by the predefined

definitions (see line 15 in Algorithm 1). We store transition (st, at, rt, st+1) in replay memory D

to update the Target Network (see line 16 in Algorithm 1) and a batch of experience from D is

randomly selected (see line 17 in Algorithm 1). The target value of y
DDQN
t is calculated next. The

y
DDQN
t is used to calculate the loss of function. The weights of the Online Network are updated

using a gradient descent-based approach. Every C step the weight of the Target Network will be

copied based on the Online Network weight (line 21 of Algorithm 1).

42

Algorithm 1: DDQN for application component Migration

1 input: threshold ϵ, learning rate α ;

2 initialize: the Online Network Q(st, at; θt) with the weight of θt ;

3 initialize: the Target Network Q(st, at; θt) with the weight of θt;

4 Initialize: the experience replay memory D ;

5 for each episode do

6 observe the current placement of the VNF and the statuses of Fog/Cloud to determine whether a

nod is switch on/off based on Eq.(25), and construct st;

7 for each time-slot do

8 Choose an action at at state st using the ϵ -greedy policy;

9 Generate a number ϕ ∈ [0, 1];
10 if η > ϵ then

11 the action is selected by exploitation select at = argmaxQ(st, at; θt);
12 else

13 the action is selected by exploration;

14 end

15 Calculate the immediate reward based on Eq. (26) and observe and next state st + 1
Perform action at;

16 Store transition values (st, at, rt, st+1) ;

17 Randomly sample a batch of experience from D ;

18 Calculate the target Q-value based on Eq.(31);

19 Calculate the loss function by L(θ) = Es,a[(y
DDQN
t −Q(st, at; θt))

2
] ;

20 Run the gradient descent algorithm using Eq. (33);

21 Set θ′t to θt a fixed number of C step

22 end

23 end

3.4.4 Complexity Analysis

In this subsection, we present the complexity analysis of our proposed algorithm. The complex-

ity of a deep Q-learning algorithm depends on complexity of action generation and complexity of

training. In the proposed algorithm, the Online Network and Target Network are fully connected

networks with G layers, where the input layer is proportional to the size of the states. As explained

in Section 3.3.1, we have a total of Z nodes, K VNFs, and I VNF instances. Thus, the dimension

of the state space is Z ·K · I . Let dg denote the number of neurons in layer g. The number Nν of

the multiplications can then be obtained as follows:

Nν = (Z ·K · I) · d1 +
G
∑

g=2

dg × dg−1,

43

Table 3.2: Hyperparameter settings.

Parameter Value

LSTM layers,number of cells 4,[50,50,50,50]

Activation Function softmax

Batch size 16

Optimizer AdamOptimizer

Discount factor 0.9

Hidden layer 64 neurons

Replay memory D 500

where G is the total number of layers in the neural network. Therefore, the computational complex-

ity of action generation at each time slot for one sample would be O(Nν).

Let N denote the total number training episodes. At each episode, the DDQN loop terminates

at the end of each time-slot. Given a total of M time-slots, the complexity of training for one

minibatch of N episodes with M time-slots would be O(N ·M ·Nν).

3.5 Results and Discussions

Here, we introduce the simulation settings and then show the simulation results. To train our

DDQN, we used Python 3.6 to build a TensorFlow 1.8.0 simulation environment [75], which is

Google’s open-source machine learning library. In particular, we utilized ªtf.contrib.rnn.LSTMCellº

and ªkeras.modelsº classes to instantiate the two four-layer DNNs, namely Online Network and

Target Network, with LSTM cells in hidden layers of the latter. We set γ = 0.9 and ϵ = 0.9. To

optimize the loss function for the training process (to learn the NN parameters), we used AdamOpti-

mizer, an algorithm for the first-order gradient-based optimization of stochastic objective functions

[76]. All the simulations were performed on a computer with a 2.67 GHz Intel Xeon CPU E5640

and 32 GB of memory. The results are shown with 95% confidence interval. The parameter settings

of DDQN are given in Table 3.2.

3.5.1 Simulation Settings

We have carried out our simulations in Yet Another Fog Simulator (YAFS), which is a Python-

based, lightweight, easy-to-configure, discrete event simulator for Fog computing scenarios [77].

44

The simulation setting of our component migration scenario is explained below.

3.5.1.1 Network Topology

Our network in the simulations consists of 14 mobile end-user devices, 3 cloud nodes, and 6

mobile fog nodes. An illustration of our considered network topology at the first time slot is shown

in Fig. 3.4, where both fog nodes and end-users are mobile. All fog/cloud nodes and end-user

devices are assumed to be deployed in a square-shaped environment with a dimension of 2 × 2

km2. The duration of each time slot is set to 0.05 ms. In order to model the mobility of drone

fog nodes and end-users, we have used Gauss-Markov [78, 79, 80, 81] and Random Walk [82, 83,

84] mobility models, respectively. Fog nodes are assumed to fly at a fixed altitude of H = 100

m. The maximum speed of fog nodes (i.e., drones) is set to vmax = 50 m/s. Other parameters

are set based on [85]. Each end-user is assumed to move at a fixed altitude of H = 0 with a

random speed distributed between 1 to 19 m/s [86]. The cloud nodes are located on the ground at a

distance of 1000 km from the end-users and fog nodes. The capacities of the fog and cloud nodes

are set to [2-4] and 8 (measured in number of cores), respectively, while the memory capacities

are set to 2 GB for fog nodes and 32 GB for cloud nodes (which are compatible with currently

deployed cloud computing platforms, e.g, Amazon AWs m4.2xlarge2). End-users communicate

with UABS fog nodes with a data rate of 2 Mbps [87]. Fog-to-cloud and Fog-to-fog bandwidth

is set to 1 Gbps and 100 Mbps, respectively [88]. Cloud nodes are connected through Gigabit

Ethernet with a bandwidth of 10 Gbps [89]. Effective bandwidth between end-users and cloud is

set to 1 Mbps. The processing delay per unit of traffic on the cloud and fog nodes is set 0.25 ms

and 25 ms, respectively. The propagation delay can be estimated by round-trip time (RTT), which

can be expressed as RTT (ms)=0.03× distance (km)+5 [90]. For cloud nodes, we set Pmax and

Pidle to 500 and 250 watts, respectively, and for fog nodes, we set Pmax = 100 watts and Pidle = 50

watts. The average costs of power consumption in the cloud and fog nodes are set to 4 and 2 units

of currency, respectively. The bandwidth cost of the links between cloud nodes is set to 0.155 units

of currency per GB of transmission. For the links between the fog nodes, the bandwidth cost is set

randomly between 0.25 and 2 units per GB of transmission, and for the links between cloud and fog

2https://aws.amazon.com/ec2/instance-types/

45

Figure 3.4: Network topology.

nodes, it is set randomly in the range of 10 to 20 units of currency per GB of transmission. We also

assume that the traffic originated from end-users is randomly distributed between [0.01, 2] MB. For

convenience, we have summarized the simulation parameters and their assigned default values in

Table 3.3.

3.5.1.2 VNFs

We consider there are 8 VNFs. For the sake of simplicity, we assume that there is a sequence

substructure within each VNF. The resource requirements of VNFs are randomly chosen between

[1-3] measured by the number of cores. The memory size of each VNF is set to 1 GB.

3.5.2 Convergence Performance

First, we examine the convergence performance of our proposed DDQN algorithm for the com-

ponent migration problem (DDQN CM) against that of the traditional DDQN algorithm with Dou-

ble RNNs and no LSTM cells [7]. We define the convergence episode as the episode beyond which

the objective function improvements lie within the interval (G∗− ϵ0, G
∗+ ϵ0), where G∗ is the best

obtained solution and ϵ0 is a (small) real number. In our evaluations, we have set ϵ0 = 6 × 10−2.

46

Table 3.3: Parameter settings and default values.

Parameter Value

Maximum area (xmax, ymax) 2× 2 km2

Cloud CPU core 8

Fog node CPU core [2− 4]

Cloud node memory 32 GB

Fog node memory 8 GB

Processing Delay cloud 0.25 ms/MB

Processing Delay fog nodes 25 ms/MB

Bandwidth between cloud nodes 10 Gbps

Bandwidth between fog nodes and cloud 1 Gbps

Bandwidth between end-user devices and fog nodes 2 Mbps

Bandwidth between end-user devices and cloud nodes 1 Mbps

Power Consumption fog nodes (Pmax, pidle) (100,50) Watts

Power Consumption cloud (Pmax, pidle) (500,250) Watts

VNF memory size 1 GB

VNF resource requirement [1− 3]

Traffic [0.01, 2] MB

Table 3.4: Convergence episode and execution time of different algorithms.

Algorithm Convergence episode Execution Time

Proposed DDQN CM

algorithm (α = 0.1)
2000 54.85 min

Proposed DDQN CM

algorithm (α = 0.01)
7000 185.8 min

Proposed DDQN CM

algorithm (α = 0.001)
10000 273.33 min

Traditional DDQN

algorithm (α = 0.001) [7]
7500 183.75 min

Fig. 3.5 shows the values of the objective function vs. episode for our proposed DDQN CM algo-

rithm for three different learning rate values of α = 0.001, 0.01, and 0.1. We observe from Fig. 3.5

that at the beginning of the learning process, the value of the objective function is high in all curves.

This is mainly due to the fact that at the beginning, there is no knowledge about the environment

and the agent chooses random actions. As the number of episodes increases, all curves tend to con-

verge to a lower objective value. However, the convergence of DDQN CM is faster for α =0.01

and 0.1 compared to that of α = 0.001. While a small learning rate may lead to slow learning speed

due to the need for more steps to obtain the global optimum, a larger learning rate require fewer

training steps, though it may get stuck in a local optimum instead of finding the global optimum

47

Figure 3.5: Convergence performance of our proposed DDQN-CM algorithm for different values of

learning rate α against the traditional DDQN algorithm (α = 0.001) [7].

Figure 3.6: Objective function vs. episode for different values of fog node speed vmax.

(see converged objective values in Fig. 3.5). Figure 3.5 indicates that our proposed DDQN CM

algorithm and traditional DDQN algorithm (both run for α = 0.001) perform closely for the first

48

(a) (b) (c)

Figure 3.7: (a) Delay, (b) cost, and (c) objective function vs. weight ω for different algorithms.

episodes, when there is not any knowledge about the environment. The proposed DDQN CM al-

gorithm converges to a smaller objective value compared to the traditional DDQN algorithm. This

is mainly because our proposed DDQN CM relies on using LSTM memory cells, which allow for

remembering the most valuable experiences in the past observations, thus leading to better objective

values. We note, however, that such superior performance is achieved at the expense of a slightly

more convergence time, to be examined next.

Table 3.4 summarizes the convergence episode and execution time of different algorithms. Ac-

cording to Table 3.4, the proposed DDQN CM algorithm converges after 2000, 7000, and 10,000

episodes for α = 0.1, 0.01, and 0.001, respectively. Given that each episode corresponds to 1.69 s,

the convergence time of our proposed DDQN CM algorithm is 3291 s, 11148 s, and 16400 s for

α = 0.1, 0.01, and 0.001, respectively. On the other hand, the traditional DDQN converges af-

ter 7500 episodes and each episode takes 1.47 s, which translates into a total convergence time of

184 min. This happens because the proposed DDQN CM deploys LSTM layers with 50 units and

it requires to pass the input through the Target Network. Using Fig. 3.5 and Table 3.4, we make

a suitable trade-off between performance and convergence speed by setting the learning rate α to

0.001, which offers the best performance with an acceptable execution time.

Next, we evaluate the convergence performance of our proposed method for different values

of fog speed vmax in Fig. 3.6, where we observe that the proposed algorithm can converge under

different fog node speeds. Further, we observe from the figure that the converged values of the

objective function for different values of fog node speed are very close to each other, which indicates

the adaptability of the proposed algorithm to different settings. To be more specific, we observe from

49

Figure 3.8: Average cost vs. average delay for different values of weight ω.

Fig. 3.6 that the performance of the proposed algorithm is slightly better for smaller values of the

fog node speed. The reason is that the higher the average speed of the fog nodes is, the greater the

fluctuations of network topology becomes. Thus, the fog nodes, on which application components

are placed on, become far from end-user devices more often, thus requiring more migrations to be

carried out. On the other hand, if the migration delay and the processing delay of fog nodes are

sufficiently small, increasing the average fog node speed may decrease the delay, as the number

of opportunities for migration increases. Moreover, we observe from Figs 3.5 and 3.6 that the

objective function has some performance variations for increasing episodes. This is mainly due to

the exploration, which is essential to continue progressively in order to migrate VNFs based on the

most recent location of fog nodes and end-users, which keeps changing at each time slot.

3.5.3 Simulation Results

We compare the performance of our proposed DDQN CM algorithm with four benchmarks,

namely, traditional Double Q-learning (DDQN) [7], Random Migration (RM) [1], [59], Never Mi-

gration (NM) [1], and First Fit (FF) migration [59]. In the RM scheme, the components are always

50

migrated to another node randomly, while satisfying the given capacity constraint. In contrast, the

FF migration scheme migrates components to the closest node while considering the given con-

straints (e.g., bandwidth, computational resource capacity).

We recall from Section 3.3 that our objective is to minimize the weighted sum of cost and delay,

where the weights allow for making a desired trade-off between cost and delay. The cost-delay

performance of our proposed DDQN CM algorithm, along with those of our benchmarks, is shown

in Figs. 3.7a-c for different values of ω. Figure 3.7.a indicates that as ω increases, the advantage

of the delay in DDQN CM increases, which is reasonable since the larger the ω, the greater the

influence on the delay. More specifically, we observe from Fig. 3.7.a that our proposed DDQN CM

algorithm can achieve up to a 56% of improvement of average delay over other algorithms. The

average cost obtained by different algorithms is illustrated in Fig. 3.7.b, which shows that our pro-

posed DDQN CM algorithm achieves the smallest average cost compared to all four other methods.

According to Fig. 3.7.b, our proposed DDQN CM algorithm achieves up to a 61% of improvement

of average cost over other algorithms. Similarly, the average cost of the DDQN CM algorithm is

better compared to the other methods. Figure 3.7.c depicts the performance of the five different

algorithms in terms of the obtained objective function for different values of ω. We observe that our

proposed DDQN CM algorithm outperforms all the other methods.

Figure 3.8 illustrates the average cost vs. the average delay for different values of weight ω. This

information allows the decision makers to make suitable delay-cost trade-offs by tuning the value of

weight ω. Importantly, we observe from Fig. 3.8 that as we decrease the value of ω, the average cost

is further prioritized over the average delay (and vice versa). Moreover, Fig. 3.8 indicates that the

cost and delay values of our proposed DDQN CM are smaller than those of all four other methods.

For our further simulation, we set ω = 0.5. According to Fig. 3.8, by increasing ω from 0.1 to

0.9, our proposed DDQN CM algorithm achieves a cost reduction of 50%, which is achieved at the

expense of a 47% increase of the average delay.

Next, we examine the adaptability of our proposed method to an increasing traffic. Figure 3.9

depicts the obtained objective function vs. number of end-users ranging from 2 to 26. In general,

we observe that the objective function increases as the number of users increases. This is because

for smaller number of users, a smaller amount of traffic needs to be transmitted and processed by

51

Figure 3.9: Objective function of different algorithms when varying the number end-users commu-

nicating with the VNFs.

the nodes, thus leading to small processing and transmission delays. Importantly, we observe from

Fig. 3.9 that the difference between our proposed method and the other methods becomes more

apparent for large number of end-user devices. This is because our proposed DDQN-CM algorithm

avoids excessive migration of application components thus reducing the objective function. Also,

our proposed DDQN-CM method achieves a considerably better result compared to the traditional

DQQN approach. The reason is that our proposed DDQN-CM method is empowered by an LSTM

memory cell, which allows the agent to remember the most valuable experience that it has had in its

past observation. More importantly, we observe from Fig. 3.9 that the upward trend of the objective

function for increasing number of end-users is considerably less compared to other approaches. To

see this, it is interesting to note that the obtained value of the objective function of our proposed

DDQN-CM algorithm for 26 end-user devices is still smaller than that of FF, NM, and RM methods

for 2 end-user devices (see Fig. 3.9). This highlights the fact that our proposed DDQN-CM algo-

rithm is well capable of adapting to more complex scenarios and maintaining its performance for a

wide range of number of end-users.

Figure 3.10 shows the average number of migrations per time slot. vs. the number of end-users

52

Figure 3.10: Average number of migrations per time slot with respect to the number of end-users.

ranging from 2 to 26. We observe that as the number of end-users increases, a larger number of

VNF instances will likely become further from the end-users due to their movement. Therefore, a

larger number of migrations will be needed to move the VNF instances closer to the hosted node

in order to reduce the delay and the cost (see Fig. 3.10). Figure 3.10 shows that the improvement

made by our proposed DDQN CM in terms of the number of migrations is 72% in comparison with

other algorithms. Finally, we evaluate the impact of the number of VNFs on the power consumption

performance. Figure 3.11 depicts the power consumption vs. the number of VNFs in a VNF-

FG, ranging from 4 to 14 VNFs. We observe in the figure that as we increase the number of

VNFs in VNF-FG, the power consumption of all methods under consideration increases. This

happens because not only a larger number of substrate nodes need to be switched on to host the

VNFs, but also hosting a larger number of VNFs per substrate node increases its CPU utilization,

which in turn increases the overall power consumption (see Eq. 3.10). According to Fig. 3.11, our

proposed DDQN CM algorithm outperforms other benchmarks in terms of power consumption, as

they require switching on a large number of nodes to host newly migrated VNFs.

53

Figure 3.11: Power consumption when varying the number of VNFs.

3.6 Conclusions

In this chapter, we studied the problem of application component migration in an NFV-based

hybrid cloud/fog environment. Application components were implemented as VNFs. We consid-

ered the mobility of fog nodes as well as the mobility of end-user devices. We aggregated the cost

and delay by traversing a structured tree built over the input VNF-FG. The cost function includes

power consumption and migration costs, while the delay includes processing, communication, and

migration delay. We then adopted an MDP framework and proposed a deep Q-learning approach.

We implemented our DRL migration agent with a deep double-Q learning method empowered by

LSTM memory cells. The simulation results revealed that our method achieves a good performance

in the aggregation of cost and delay compared to the existing methods. Furthermore, we analyzed

the effect of communicating with end-user devices on the number of migrations. We showed that

our proposed DDQN CM algorithm achieves up to 61% and 56% of improvement of cost and delay,

respectively.

54

Chapter 4

Cost-efficient Cluster Migration of VNFs

for VNF Forwarding Graph

Embedding3

4.1 Introduction

NFV enables the dynamic deployment and migration of VNF-FG over NFVI [91]. Where and

how VNFs are migrated may have a significant impact on the total embedding cost. VNF migra-

tion can be a potential solution to ensure the survivability of VNF-FG against failures of physical

nodes [92]. However, stringent latency requirements between VNFs of a given VNF-FG can make

those VNFs coupled to each other. This may limit the simple VNF migration strategy since this

strategy will only relocate the VNFs that are not coupled to their neighbor VNFs with stringent la-

tency constraints. Moreover, in the simple VNF migration, an additional transmission cost may be

incurred, which can increase the resulting embedding cost. Cluster VNF migration can potentially

reduce the embedding cost by migrating a group of coupled VNFs within a single physical node

or across multiple physical nodes. Ref. [93] studied live migration of virtual machines on multitier

applications and showed that if coupled/dependent components become split across a high-latency

3This chapter is based on a published paper: [3]S. N. Afrasiabi et al., ºCost-efficient Cluster Migration of VNFs for

Service Function Chain Embedding,º in IEEE Transactions on Network and Service Management.

55

network path, the network performance can severely degrade. However, a physical node may not

support all types of VNFs, and it has limited resources. Furthermore, the cost of VNF instantiation

may vary from one node to another. Thus, migrating a cluster of VNFs to a single physical node

would not always be a reasonable option.

To address the above-mentioned issues, in this chapter, we formulate the VNF migration prob-

lem as an ILP. In our cost modeling, we consider a wide variety of parameters, including computing

resources, VNF instantiation, reuse, and transmission cost. With the objective of minimizing the

total embedding cost, this chapter deals with the problem of migrating a cluster of VNFs to sin-

gle and multiple destination nodes, and develops a novel VNF cluster migration algorithm called

Single-/Multi-Destination Cluster VNF Migration. Our proposed Single-Destination Cluster VNF

Migration (sDCM) algorithm migrates all the VNFs within a cluster to a single node, whereas the

Multi-Destination Cluster VNF Migration (mDCM) algorithm migrates a cluster of VNFs to vari-

ous nodes. We evaluate our proposed algorithm via extensive simulations. Specifically, we compare

the performance of our proposed algorithm with those of the brute-force approach and existing se-

quential greedy embedding [8] and h-HSLG [9] algorithms. The simulation results indicate that our

proposed algorithms outperform the existing benchmarks in terms of embedding cost, while having

much shorter execution time compared to the brute-force approach.

The rest of this chapter is organized as follows. The motivating scenario is presented in Sec-

tion 4.2. We present the system model and problem formulation in Section 4.3. The proposed

VNF cluster migration strategies are introduced in Section 4.4. The numerical results are shown in

Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 Motivating Scenario

In this section, we present an illustrative example shown in Fig. 4.1 to further explain the moti-

vation behind using cluster migration. Let us consider two Network Services (NSs), namely NS 1

and NS 2 with an ordered set of VNFs {A,B,C} and {A,B,C,D}, respectively. We assume that

NS 2 arrives after NS 1. Inter-VNF latency requirements are shown in Fig. 4.1. For instance, the

latency requirement between VNFs A1 and B1 of NS 1 is 2 ms, meaning that the transmission delay

56

of the physical link(s) that realize the connection between these VNFs should not exceed 2 ms. The

VNF-FG associated with NS 1 requires a traffic rate of 1 unit to be transmitted from Node 1 as the

source node and then processed by the VNF-FG (which is given in the form of an ordered set of

VNFs) before reaching Node 4 as the destination node. In addition, each VNF type supported in the

network is associated with a predefined resource requirement, measured by the number of CPUs,

memory, and/or storage. The network topology consists of 4 physical nodes and 3 physical links, as

shown in Fig. 4.1. Each physical node is associated with a node capacity (in terms of CPU, memory,

and storage), cost per resource unit, and a set of supported VNF types. Each VNF also has a fixed

instantiation cost along with a reuse cost on a given node. A new deployment of a VNF instance on

a given physical node is subject to an instantiation cost, whereas the reuse of an already deployed

instance is subject to a reuse cost. For simplicity and without loss of generality, we assume that the

instantiation and reuse costs of all VNF types on a given physical node are $4 and $0, respectively,

and all VNFs type require 1 unit of resource. Similarly, each link is associated with a bandwidth

capacity, cost per bandwidth unit, and link latency. The attributes of each physical node and link are

shown in Fig. 4.1. For instance, Node 1 has 10 units of node capacity, and a cost of $7 per resource

unit. The link between Nodes 1 and 2 has a cost of $5 per bandwidth unit, and link latency of 1 ms.

Figure 4.1.a depicts the embedding outcome returned by the Sequential Greedy (SG) embedding

algorithm [8]. The SG algorithm places each VNF one by one in a sequential manner by making the

best local decisions. The total embedding cost of NS 1 in SG algorithm is $44 (shown in Fig. 4.1.a),

as the transmission cost from Node 1 to Node 4 is $11 and the cost of embedding of each VNF

of NS 1 in Node 1 is $11. This is because the embedding cost of VNF A1 is the summation of

the resource cost in Node 1, which is $7, and the instantiation cost $4. The h-HSLG algorithm

proposed in [9] aims to overcome the poor embedding outcome of [8], which suffers from the so-

called causality issue. The causality issues refers to the fact that the optimal embedding decision

of a VNF cannot be known until the embedding of its predecessor and successor VNFs are known.

The h-HSLG algorithm proposed in [9] deals with the causality issue by allowing the VNFs to be

revisited within a given exploration window in order to improve their embedding via simple VNF

migration. In this way, the h-HSLG algorithm aims to reduce the embedding cost by revisiting each

VNF and migrating it while taking into account the embedding decision of its neighbor VNFs. For

57

example, as shown in Fig. 4.1.b, VNF C1 is migrated to Node 4 after the link cost between the

destination node and VNF C1 is known. The outcome of the simple migration of VNF C1 from

Node 1 to Node 4 for NS 1 is shown in Fig. 4.1.b. By migrating C1 to Node 4, the total embedding

cost for NS 1 would be $41. This is because the transmission cost is $11, the resource cost for A1

and B1 in Node 1 is $14, the resource cost for C1 in Node 4 is $4, and the instantiation cost on Nodes

1 and 4 is 3× $4. We note, however, that even though Node 4 has a smaller resource cost, it is not

feasible to migrate VNF B1 to Node 4, mainly because the latency constraint between VNFs A1 and

B1 would be violated. The latency requirement between VNF A1 and VNF B1 is 2 ms, and the total

latency of the path from Node 1 to Node 4 is 6 ms. Unlike the simple VNF migration, which aims

to migrate VNFs one by one, we can allow the creation of a cluster of VNFs to be migrated. More

specifically, in the example under consideration, VNFs A1, B1, and C1 may constitute a cluster

of VNFs to be migrated to Node 4 without having any latency constraint violation issue; as seen

Fig. 4.1.c. This can improve the quality of the embedding solution. The total embedding cost of

NS 1 after migrating a cluster of VNFs would be $35, which is the summation of the transmission

cost $11, the resource cost $12, and instantiation cost $12.

The example above shows how the migration of a cluster of VNFs can improve the cost of the

simple migration-only approach. In the following, we show that the embedding cost can be further

reduced via the complex migration scheme. In addition to NS 1, let us consider another NS 2 with

an ordered set of VNFs A2, B2, C2, and D2 (see Fig. 4.1). The latency constraints between VNFs

are also shown in Fig. 4.1. We assume that the instantiation cost of all VNFs is $4, whereas the

reuse cost is set to $0. Figure 4.1.d shows the embedding solution obtained by the SG algorithm

for NS 2 [8]. The total cost of embedding NS 1 and NS 2 is $35 + $55 = $90, as the embedding

cost of NS 2 is $11 + $28 + $4 × 4 = $55. Clearly, the embedding cost of all VNFs at Node 4

is smaller than at other nodes, as the resource cost in this node is smaller. Moreover, VNF types

A, B, and C have already been deployed on Node 4, which has the capacity of 6 units, meaning

that it does not have enough capacity to host all the VNFs of NS 2. In addition, even though the

embedding cost at Node 3 is smaller than at Node 1, it would not be possible to migrate VNF D2

to Node 3 via a simple migration, mainly because the given latency constraint would be violated.

Using a cluster migration, all the VNFs of NS 2 can be migrated to Node 3, as shown in Fig. 4.1.e,

58

SG algorithm

Simple migration

Cluster migration

Complex migration

7ms2ms

NS 1

NS 2

Traffic demand of all VNFs = 1 unit

Source node = Node 1

Destination node = Node 4

Order set of VNFs ={A,B,C}

Traffic demand of all VNFs = 1 unit

Source node = Node 1

Destination node = Node 4

Order set of VNFs ={A,B,C,D,E}

3ms 5ms 1ms

(Unit, $)

S

Node1

(10 ,7) (10,7)

(5,1)

Node2 Node3 Node4

(10,5) (10,1)

D

(10 ,5) (6,4)

(Unit , $)

A1 B1 C1

A1 B1 C1

B2 C2A2 D2

(a)

S

Node1 Node2 Node3 Node4

D

(10,7) (10,7)

(5,1) (5,1) (1,4)

(10,5) (6,4)

A1 B1

C1

(b)

S

Node1 Node2 Node3 Node4

D

(10,7) (10,7)

(5,1) (5,1) (1,4)

(10,5) (6,4)

A1 B1 C1

(c)

(10 ,7) (6 ,4)(10,7) (10,5)

S

Node1 Node2 Node3 Node4

D

(5,1) (5,1) (1,4) A1 B1 C1
A2

B2

C2 D2

(d)

S

Node1 Node2 Node3 Node4

D

(10,7) (10 ,7)

(5,1) (5,1) (1,4)

(10,5) (6 ,4,)

A1
B1 C1

A2

B2 C2

D2

(e)

S

Node1 Node2 Node3

D

Node4

(10 ,7) (10 ,7)

(5,1) (5,1) (1,4)

(10 ,5) (6 ,4)

A1

B1 C1
A2

B2
C2 D2

(f)

Figure 4.1: Illustrations of: (a) embedding solution for NS 1 obtained by the SG algorithm [8],

(b) simple VNF migration for NS 1 [9], (c) cluster VNF migration for NS 1, (d) solution for NS 2

obtained by the SG algorithm, (e) cluster VNF migration for NS 2, (f) complex VNF migration.

where we observe that the total embedding cost for the NS 1 and NS 2 is $35 + $47 = $82, as the

embedding cost of NS2 is obtained as $11 + $16 + $20 = $47.

Using the complex migration scheme, VNF A1 is evicted from Node 4 and moved to Node 3,

and at the same time, VNFs B2, C2, and D2 are evicted from Node 3 and moved to Node 4. The

total embedding cost in this case would be $68. By assuming NS 1 arrives as a first request the

transmission cost would be $11, the resource cost of VNF A1 in Node 3 is $5 and the instantiation

cost is $4. The total resource and instantiation costs for B1, C1 in Node 4 are $8 and $8 respectively

(the total embedding cost of NS 1 is $36). Furthermore, the embedding cost of NS 2 would be

$32. The transmission cost is $11, A2 is reused in Node 3 which is encounter to $0 reused and

$5 resource costs. Consequently, the total resource cost for B2, C2, and D2 in Node 4 $12 and the

total reused cost for B2 and C2 $0 and the instantiation cost of D2 is $4. Therefore, the embedding

cost can be reduced by $35 and $27 compared to the simple and cluster VNF migration strategies,

59

respectively.

4.3 System Model and Problem Formulation

In this section, we describe the system model and problem formulation.

4.3.1 System Model

We introduce the main terminology used to represent the physical network and VNF here. A

summary of the notation used in this chapter is provided in Table 4.1.

Table 4.1: Summary of main notations.
Input Parameters

E Set of physical links

K Set of VNF indices in a given NS

L Set of virtual links in a given NS

R Set of requests in network

Z Set of NFV-enabled nodes

Ik Set of instances of VNF type k in the network

Kz Set of supported VNF types of physical node z

cz Available node capacity of physical node z

ϕz Node cost per resource unit of physical node z Cost of each unit of node resource

be Available link bandwidth of physical link e

de Link delay of physical link e

τe Link cost per bandwidth of physical link e cost of each unit of link resource

pk Processing capacity of VNF type k

uk Resource requirement for instantiation of VNF type k

ak Processing demand of VNF type k in the VNF-FG of request r

mi,k Processing load assigned to instance i of VNF type k

ηzk Instantiation cost of VNF type k on physical node z

Θz
i,k Reuse cost of instance i of VNF type k on physical node z

dl Latency requirement of virtual link l

ol Bandwidth requirement of virtual link l

wz
k Binary parameter, indicating whether or not physical node z can support VNF type k

xi,k
z (t) Binary variable, indicating whether or not instance i of VNF type k is a newly deployed instance on

node z in snapshot t

x̃i,k
z (t) Binary variable, indicating whether or not instance i of VNF type k is an already deployed instance

on node z in snapshot t

yle(t) Binary variable, indicating whether or not virtual link l is mapped onto physical link e in snapshot t

We denote the physical network as a directed graph G = (Z,E), where |Z| physical nodes and

|E| physical links are indexed by z ∈ {1, 2, . . . , |Z|} and e ∈ {1, 2, . . . , |E|}, respectively. Each

physical node z ∈ Z has a maximum computing resource capacity cz (which includes memory,

60

CPU, and storage) and cost ϕz per resource unit. Each physical node z may support multiple VNF

types Kz ⊆ KT , where Kz is the set of VNF types that are supported by physical node z and KT is

the set of all VNF types that are supported in the network. Let us define wz
k as a binary parameter

that indicates whether physical node z can support VNF type k ∈ KT . Moreover, each physical link

e ∈ E is represented by {s(e), d(e), be, τe, de}, where s(e) and d(e) are the source and destination

nodes of link e, be is the available bandwidth capacity, τe is the link cost per bandwidth unit, and de

is the link delay of physical link e.

Each request r ∈ R is represented by set K indexed by k ∈ {1, 2, . . . , |K|}, K ⊆ KT , which

describes the network service as a chain of |K| VNFs. Each VNF type k ∈ K has a processing

demand ak. We note that each VNF type k is associated with a predefined resource requirement

uk (measured by the number of CPU, memory, and/or storage units) and a processing capacity pk

(measured by traffic per time unit). Each VNF type k is subject to an instantiation cost ηzk (which

includes software and/or license cost) to create a new VNF instance of type k on physical node z.

Let the set of instances of VNF type k is denoted by Ik, which is indexed by i ∈ {1, 2, . . . , |Ik|},

where |Ik| is the maximum number of instances of VNF type k that is allowed to be instantiated

across the network. The VNFs in request r can either make use of existing VNF instances in the

substrate nodes or create new instances therein [94]. Each instance i ∈ Ik of VNF k is associated

with a reuse cost Θz
i,k on physical node z. Typically, the reuse cost of an already deployed VNF is

smaller than the instantiation cost of a new VNF instance. If VNF k is going to be instantiated on

node z, it is subject to instantiation cost ηzk. On the other hand, if instance i of VNF k is already

deployed on node z, it is subject to reuse cost Θz
i,k. Furthermore, we define mi,k as the amount of

processing load that is already assigned to instance i of VNF type k. The set L of virtual links in

the given VNF-FG request is indexed by l ∈ {1, 2, . . . |L|}, where virtual link l ∈ L connects a

pair of VNFs. Each virtual link l is associated with latency, and bandwidth requirements denoted

by dl and ol, respectively. We define a snapshot t as a representation of the system state over a fixed

time interval. Note that our model operates over two network snapshots: the current snapshot t− 1

(before migration of a cluster of VNFs) and the new one (after migration of a cluster of VNFs) at

snapshot t. Migrations can be carried out between snapshots t − 1 and t. Therefore, the number

of newly deployed and reused VNFs on a specific node for a request may vary from one snapshot

61

to another [95]. In the following, we define the binary decision variables used in our problem

formulation.

• x
i,k
z (t) ∈ {0, 1}: It specifies new VNF deployment. If x

i,k
z (t) is equal to 1, the VNF instance

i ∈ Ik of VNF type k ∈ K is newly deployed on physical node z on snapshot t; otherwise, it

is 0.

• x̃
i,k
z (t) ∈ {0, 1}: It specifies whether or not a VNF is reused, meaning that if x̃

i,k
z (t) is equal

to 1, the instance i ∈ Ik of VNF type k ∈ K is an already deployed instance on physical

node z in snapshot t; otherwise, it is 0, meaning that it is a newly deployed instance or not

deployed at all.

• yle(t) ∈ {0, 1}: It specifies new link assignment. If yle(t) is equal to 1, the virtual link l ∈ L

is mapped onto physical link e ∈ E of a request r on snapshot t; otherwise, it is 0.

4.3.2 Problem Formulation

This contribution aims to minimize the total embedding cost, which comprises the cost of com-

puting resource, VNF instantiation, VNF reuse, and transmission. We formulate the cluster migra-

tion problem as an ILP, to be explained in technical detail next.

4.3.2.1 Computing Resource Cost

Computing resource cost Ccr(t) is the cost of resources assigned to VNFs in snapshot t [95].

Some resources may be released during the migration from snapshot t − 1 to t, which leads to a

cost reduction. Thus, we need to consider the difference in resource consumption of a physical node

before and after migration. As an example, during the snapshot of t − 1, if instance i of VNF K

has 2 units of resource consumption and is hosted by node z1, by having migration from node z1

to node z2, we need to consider the released resources of node z1. Furthermore, if by switching

from snapshot t − 1 to snapshot t, no migration occurs, Ccr(t) in snapshot t would become 0. As

for a particular node z, instance i of VNF k, x
i,k
z (t − 1) and x

i,k
z (t) are equal to 1. With all these

62

considerations, computing resource cost Ccr(t) is given by:

Ccr(t) =
∑

z∈Z

∑

k∈Kr

∑

i∈Ir

uk · ϕz · ([x
i,k
z (t)− xi,kz (t− 1)]+ + [x̃i,kz (t)− x̃i,kz (t− 1)]+), (4.1)

where the term [xi,kz (t)− x
i,k
z (t− 1)]+ = max{xi,kz (t) − x

i,k
z (t − 1), 0}, which is used to prevent

the cost from becoming negative. For example, let us assume that in snapshot t − 1, instance i of

VNF k is hosted in node z1, meaning that x
i,k
z1 (t−1) = 1. If this instance is migrated to a new node

in snapshot t, x
i,k
z1 (t) would become 0 and therefore [xi,kz (t)− x

i,k
z (t− 1)]+ = 1.

4.3.2.2 VNF Instantiation Cost

Instantiation cost Cin(t) includes the cost associated with the network function software licenses

for installing a new VNF instantiation [96], which is given by:

Cin(t) =
∑

z∈Z

∑

k∈K

∑

i∈Ik

ηzk[x
i,k
z (t)− xi,kz (t− 1)]+, (4.2)

It should be noted that by having migration from a snapshot t − 1 to t, some VNFs need to be

newly instantiated in a node. As such, [xi,kz (t)− x
i,k
z (t− 1)]+ calculates the number of new VNF

instantiations of VNF k on node z in snapshot t, which is obtained similarly to Eq. (4.1).

4.3.2.3 VNF Reuse Cost

The already-deployed VNFs may be reused to reduce the embedding cost. We compute the

reuse cost Cru(t) of such VNFs from snapshot t− 1 to snapshot t, as follows:

Cru(t) =
∑

z∈Z

∑

k∈K

∑

i∈Ik

Θz
k[x̃

i,k
z (t)− x̃i,kz (t− 1)]+. (4.3)

where the terms [x̃i,kz (t)− x̃
i,k
z (t− 1)]+ = max{x̃i,kz (t)− x̃

i,k
z (t− 1), 0}.

63

4.3.2.4 Transmission Cost

The transmission cost Ctr(t) includes the cost of network bandwidth consumed for the commu-

nication between VNF instances, as follows:

Ctr(t) =
∑

e∈E

∑

l∈L

τeol[y
l
e(t)− yle(t− 1)]+. (4.4)

which considers the differential cost of the assigned link that may happen between two consecutive

snapshots as a result of the migration of VNFs.

The objective of our optimization problem is to minimize the sum of the aforementioned costs,

as follows:

Ctotal = min(Ccr(t) + Cin(t) + Cru(t) + Ctr(t)). (4.5)

In the following, we present the constraints of the problem to be considered. Constraint (4.6)

ensures that instance i of VNF type k can be deployed in physical node z, only if node z can support

VNF type k:

xi,kz (t) ≤ wz
k, ∀k ∈ K, ∀i ∈ Ik, ∀z ∈ Z. (4.6)

Constraint (4.7) ensures that each VNF instance i of VNF type k is not deployed more than once

in the network:

∑

z∈Z

xi,kz (t) ≤ 1, ∀k ∈ K, i ∈ Ik. (4.7)

Constraint (4.8) ensures that instance i of VNF type k can either be reused or instantiated in

physical node z:

xi,kz (t) ≥ x̃i,kz (t), ∀k ∈ K, ∀i ∈ Ik, ∀z ∈ Z. (4.8)

64

Constraint (4.9) ensures that the capacity of each physical node z is not exceeded:

∑

k∈K

∑

i∈I

uk(x
i,k
z (t) + x̃i,kz (t)) ≤ cz, ∀z ∈ Z. (4.9)

Constraint (4.10) ensures that the processing load assigned to instance i of VNF type k does not

exceed its available processing capacity:

∑

z∈Z

akxi,kz (t) ≤ pk −mi,k, ∀k ∈ K ∀i ∈ Ik. (4.10)

Constraint (4.11) ensures that the bandwidth capacity of each physical link e is not exceeded:

∑

l∈L

oly
l
e(t) ≤ be, ∀e ∈ E. (4.11)

Constraint (4.12) ensures that the delay requirement of each virtual link is met:

∑

e∈E

dey
l
e(t) ≤ dl, ∀l ∈ L. (4.12)

Constraint (4.13) ensures that if two consecutive VNFs are placed on different physical nodes,

at least a physical link is assigned between them:

xi,kz (t) · xj,k+1
z′ (t) ≤ yle(t), ∀z, z′ ∈ Z, ∀k ∈ K, ∀l ∈ L, z ̸= z′. (4.13)

Clearly, Constraint 4.13 is a non-linear equation, as it involves the multiplication of two decision

65

variables. Thus, we linearize it as follows:

Ql
e(t) = xi,kz (t) · xj,k+1

z′ (4.14a)

Ql
e(t) ≤ yle(t) (4.14b)

Ql
e(t) ≤ xi,kz (t) (4.14c)

Ql
e(t) ≤ x

j,k+1
z′ (4.14d)

Ql
e(t) ≤ xi,kz (t) + x

j,k+1
z′ − 1 (4.14e)

4.4 Proposed Single-/Multi-Destination Cluster VNF Migration Algo-

rithm

In this section, we introduce our single- and multi-Destination cluster VNF migration algorithm.

Our proposed migration methods aim to enhance the h-HSLG algorithm [9], which relies on go-

back and move forward mechanisms. A subset of VNFs in the VNF-FG of a NS is identified based

on a sliding window w, the embedded VNFs are revisited and migrated, if needed. Please refer

to [9] for details on this algorithm and the windowing strategy.

4.4.1 Single-Destination Cluster Migration

In single-Destination cluster VNF migration (sDCM), the VNFs are placed on a single or differ-

ent nodes. The placed VNFs are grouped into a cluster of VNFs, which is then migrated to a single

node in order to have an improved embedding cost. The algorithm aims to select the best cluster

of VNFs Bcluster, to be migrated to a new node. The algorithm takes the threshold T0 as an input

parameter, which controls how much the algorithm can expand the cluster. T0 helps us to avoid

trapping into the local optimum; if at some stage there is no benefit in terms of cost, the algorithm

tries to continue exploring by further expanding the cluster of VNFs to achieve cost improvement.

Furthermore, T0 is used to control the trade-off between complexity and solution quality.

The pseudo-code of our proposed sDCM algorithm is presented in Algorithm 1, where the

inputs are threshold parameter T0 , set {n1, n2, . . . , nK′} of K ′ VNFs that reside in the current

66

Algorithm 2: Single-Destination Cluster Migration (sDCM)

1 input: Threshold T0, VNFs residing in the current sliding window NK′ ∈ {n1, n2, ..., nK′},

network information;

2 Initialize: ClusterSize=1, Bcluster = ∅, δ = 0;

3 for j = 1 : K ′ do

4 Embed VNF nj using the h-HSLG algorithm ;

5 end

6 Calculate the total embedding cost Ct;

7 Cold
t ← Ct;

8 U ← ∅;
9 s← K ′;

10 while δ < T0 OR u1 == n1 do

11 for i = ClusterSize; i ≤ 1; i = i− 1 do

12 Add VNF ns−i+1 to U ;

13 end

14 Find potential candidate nodes for hosting U ;

15 vb ←Select the best node in terms of embedding cost ;

16 Cnew
t ← Calculate the embedding cost by considering vb as a destination node for U ;

17 if Cold
t ≤ Cnew

t then

18 δ ← δ + 1 ;

19 else

20 Bcluster ← U ;

21 Cold
t ← Cnew

t ;

22 end

23 ClusterSize← ClusterSize+ 1;

24 if u1 == n1 & Bcluster == ∅ then

25 CluterSize = 1;

26 s← s− 1 ;

27 end

28 end

29 if Bcluster ̸= ∅ then

30 Migrate the Bcluster to vb
31 end

sliding window w, and substrate network information. Given the input parameters, the algorithm

returns the decision about the migration of the selected VNF cluster to a single node as an output.

The algorithm starts by initializing Bcluster as an empty set and expands the cluster of VNFs by

increasing the parameter ClusterSize at each iteration. We initialize parameter ClusterSize to

1. The algorithm expands the cluster of VNF by keeping track of the value of δ, which counts the

number of times that there is no cost improvement. In the beginning, δ is initialized to 0.

First, we use the h-HSLG algorithm [9] and embed/re-embed the VNFs of the current sliding

window (see lines 3-5 in Algorithm 1). The h-HSLG algorithm aims to migrate only one VNF at

a time. The total embedding cost Ct of VNFs that are located in window w is calculated using

67

Eq. 4.5 in line 6 of Algorithm 1. We consider a cluster U of VNFs, where U ⊆ K and U ∈

{u1, u2, ..., uK′}. Let u1 and uK ′ denote the first and last VNFs of U , respectively. Before starting

to form the cluster, U is set to ∅ (see line 8 in Algorithm 1). After setting ClusterSize = 1, the

clustering process starts from the youngest VNF in the sliding window w (i.e., the last VNF nK′). U

is created from u1 to uK′ (see lines 11-13 in Algorithm 1). For illustration, in Fig.4.2.a, we assume a

network service with four VNFs types A, B, C and D and threshold T0=4. We consider a maximum

window size for the sliding window, meaning that all the VNFs are placed in the network. The

algorithm starts from the youngest VNF, which is D. In the first iteration, where CluterSize = 1,

only one VNF exists in the cluster, which means u1 is equal to uK′. After creating a cluster of VNF

U , the algorithm finds the potential destination nodes for U . The potential destination nodes are

selected among the nodes that are already part of the embedding of the given network service. More

specifically, we select the nodes that (i) have enough capacity to host U , (ii) support all types of

VNFs belonging to U , and (iii) satisfy the latency constraints. Next, we find the best node vb from

the obtained potential nodes (see line 15 in Algorithm 1). vb is a node with the smallest embedding

cost among all other potential nodes, and can be a destination node for all the VNFs of U . After

that, the new total embedding cost Cnew
t is calculated by considering vb as a destination node for all

the VNFs of U (see lines 14-16 in Algorithm 1).

Next, we examine whether there is any cost improvement by comparing the Cold
t and Cnew

t . If

Cold
t is equal or smaller than Cnew

t for a specific U , δ is incremented by one; otherwise, the current

cluster of VNFs is considered as Bcluster (see lines 17-22). The ClusterSize is then incremented

by one (see line 23). If Bcluster is empty and u1 is equal to n1, there is no cost improvement by

considering vb as the destination node for U and the first VNF of the cluster equals the first VNF

of the K. In this case, the clustering would start again with ClusterSize = 1, and the last VNF

inside the cluster is shifted to the right (see lines 24-27). To be more specific, as shown in Fig. 4.2

the cluster size is incremented by one at each iteration by assuming T0 = 4 until ClusterSize = 4.

In Fig. 4.2.d, we assume that Bcluster is equal to ∅ and ClusterSize = 4. The first VNF of U and

NK′ is A. In the next iteration, clustering starts from VNF C and ClusterSize = 1 (see Fig. 4.2.e),

as it might be a case by starting from VNF D we cannot see any improvement, while by starting

cluster from VNF C, we see a huge cost improvement. The algorithm repeats lines 10-32 until it

68

(a) Cluster Size=1 (b) Cluster Size=2

(c) Cluster Size=3 (d) Cluster Size=4

(e) Cluster Size=1

Figure 4.2: Expanding the Cluster of VNFs for threshold = 4.

reaches the termination condition, where threshold T0 is greater than δ or the first VNF inside the

w is equal to the first VNF within a cluster. Finally, if Bcluster is not an empty set, the VNFs of the

Bcluster are migrated to vb.

4.4.2 Multi-Destination Cluster Migration

A physical node would not be able to support all the VNF types. Furthermore, physical nodes

have limited capacity, and the instantiation and reuse costs of VNFs may vary on different physical

nodes. Thus, migrating a cluster of VNFs to a single physical node is not always feasible and/or

cost-efficient. To address this limitation of the sDCM algorithm, we present our Multi-Destination

Cluster Migration (mDCM) algorithm, where VNFs from multiple hosting nodes may form a cluster

to be migrated to multiple destination nodes in order to improve the embedding cost. The pseudo-

code of our proposed mDCM algorithm is presented in Algorithm 2. Similar to the sDCM algorithm,

we use threshold T0 as an input parameter. For each VNF inside the cluster U , we find a potential

list P of nodes, to which VNFs can be migrated (see line 16 Algorithm 2). For finding P , we only

consider the latency of youngest neighbor of VNF. For example, in Fig. 4.2.c, the youngest neighbor

for VNF D is the destination, or VNF C is the youngest neighbor for VNF B. After that, we check

whether P is an empty list or not. If P is not empty, the algorithm finds a feasible node vf for a

VNF from P ; the feasible node is a node that satisfies all the constraints and latency requirements

69

Algorithm 3: Multi-Destination Cluster Migration (mDCM)

1 input: Threshold T0, VNFs residing in the current sliding window NK ′ ∈ {n1, n2, ..., nK′},
network information;

2 Initialize: ClusterSize=1, Bcluster = ∅,, δ = 0;

3 for j = 1 : K ′ do

4 Embed VNF nj using the h-HSLG algorithm ;

5 end

6 Calculate the total embedding cost Ct;

7 Cold
t ← Ct;

8 U ← ∅;
9 while δ < T0 OR u1 == n1 do

10 for i = ClusterSize; i ≤ 1; i = i− 1 do

11 Add VNF ns−i+1 to U ;

12 end

13 s = ClusterSize ;

14 while s ≤ ClusterSize do

15 P ← Find potential candidate nodes for hosting us by considering examined neighbor ;

16 if P ̸= ∅ then

17 vf ← choose a feasible node from P ;

18 s = s− 1 ;

19 else

20 s = s+ 1 ;

21 end

22 end

23 Cnew
t ← Calculate embedding cost by considering vf as a destination node for each VNF

inside U ;

24 if Cnew
t ≤ Cold

t then

25 Bcluster ← U ;

26 else

27 δ ← δ + 1 ;

28 end

29 ClusterSize← ClusterSize+ 1;

30 end

31 if Bcluster ̸= ∅ then

32 Migrate each VNF of Bcluster to their own vf ;

33 end

70

of the youngest neighbors of the VNF. As an example for finding P for VNF D in Fig. 4.2, the

latency requirement between D and destination is checked. After selecting the feasible node for

a given VNF, the next VNF inside the cluster is checked. It might be the case that for a VNF, P

is empty, and therefore the algorithm is not able to find a feasible node for a VNF. In this case,

the algorithm returns to the previous VNF inside the cluster and selects another vf instead of the

previous one. For example, in Fig. 4.2.d, the algorithm finds vf for VNF D and VNF C, but when it

reaches VNF B, it cannot find any feasible node for B because of latency violation between VNFs

B and C. The algorithm then returns to VNF C and selects another node (vf) from P for VNF B.

This back-tracking mechanism repeats until a feasible node is found for VNF B. After finding vf

for each VNF inside the cluster, the algorithm calculates the embedding cost by considering vf for

each VNF inside U (see line 24 Algorithm 2). As with to sDCM, if Cnew
t is less than Cold

t , the U is

considered as Bcluster; otherwise, the value of δ increases by 1. We increase the cluster until δ < T0

or u1 is equal to n1. Finally, all the VNFs of cluster Bcluster are migrated to their own destination

nodes (see line 34 Algorithm 2).

4.4.3 Complexity Analysis

In the following, we present the complexity analysis of our proposed algorithms. In the proposed

sDCM algorithm, the h-HSLG algorithm is called in lines 3-5 of Algorithm 1, which runs with a

worst case complexity ofO(|K|·(|Z|+|E|)). The WHILE loop (in line 10 of Algorithm 1) runs for a

maximum of |K| iterations. At each iteration, a maximum of |K|+(|Z|+|E|) operations are carried

out. This suggests that the time complexity of the proposed sDCM is O(|K|2 + |K| · (|Z|+ |E|)).

Similarly, the time complexity of the proposed mDCM isO(|K|2+|K|·(|Z|+|E|)+|K||Z|log|Z|).

4.5 Results and Discussions

In this section, we conduct simulations to evaluate the performance of our proposed algorithms

against existing algorithms. We first describe the simulation environment and then present our

obtained results.

71

Table 4.2: Parameter settings and default values

.

Parameter Value Ref.

Number of nodes |Z| 17, 37, 65, 113 [97, 98]

Number of links E 26, 57, 108, 184 [97, 98]

Available node capacity cz 50 vCPU [99]

Node cost ϕz [1-5] vCPU [97]

Available link bandwidth be 50 Gbps [99]

Link cost τe $[1-5] [97]

Link delay de [1-3] ms [97]

Number of required VNFs in a request K [5-12] [100]

VNF resource requirement uk [1-3] vCPU [100]

Instantiation cost ηzk 1,2,4,10 $ [97]

Reuse cost Θz
i,k 1 $ [97]

Processing demand ak [1-3] Gbps [97]

Bandwidth requirement between VNF ol [1-3] Gbps [100]

Latency requirement between VNFs dl [1-5] ms [97]

(a) sDCM Algorithm. (b) mDCM Algorithm.

Figure 4.3: Total embedding cost vs. threshold T0 for our proposed (a) sDCM and (b) mDCM

algorithms for different values of r0 ∈ {1, 2, 4, 10} (17 nodes, 30 request, and [5-8] VNFs per

request).

4.5.1 Simulation Setup

We have implemented our algorithms in JAVA. All simulations are conducted on a PC with 1.60

GHz Intel(R) Core(TM) i5-8250U CPU and 8 GB of RAM. All simulation results are presented

with 95% confidence intervals.

72

4.5.1.1 Settings

We considered four substrate network topologies with different sizes, namely, NOBEL-GERMANY

[97] with 17 nodes 26 links, COST266 [97] with 37 nodes and 57 links, TA2 [97] with 65 nodes and

108 links, and ITC Deltacom [98] with 113 nodes and 184 links. The capacity of each physical node

is set to 50 vCPU [99]. Furthermore, the resource cost of the node is selected from the range [$1-$5]

per vCPU. Each link has an available bandwidth of 50 Gbps. The delay of each physical link varies

from 1 ms to 3 ms. The physical link cost is between $1 to $5. We also assume that all nodes can not

support all VNF types, and each supports 7 to 12 VNF types. Each request is represented by chain

of 5 to 12 VNFs. Each VNF requires [1-3] vCPU [100] for instantiation. The processing capacity

of all VNF types is set to 4 Gbps. We define a parameter r0, which is the ratio of instantiation cost

to reuse cost. The instantiation cost is selected from set {$1, $2, $4, $10}, whereas the reuse cost

is set to $1. The processing demand of each VNF is [1-3] Gbps, and the bandwidth requirement

between two VNFs is [1-3] Gbps. The latency requirement between two VNFs is [1-3] ms. All the

network parameters and default values are summarized in Table 5.2.

4.5.1.2 Benchmarks

We compare the performance of our proposed algorithms with the following benchmarks:

• Brute-Force Search (BFS): Using an exhaustive search through all possible migration out-

comes, the best decision is made to migrate a cluster of VNFs with the main objective of

achieving the smallest cost. BFS is used to assess the optimality gap of our proposed algo-

rithms.

• SG algorithm [8]: The SG algorithm is a greedy approach, which embeds the VNFs greedily

in a sequential manner without performing any VNF migrations.

• h-HSLG algorithm [9]: It is a window-based approach along with go-back and move-forward

mechanisms to offer efficient embeddings via simple migrations of visited VNFs.

73

Figure 4.4: Average cluster size per request vs. threshold T0 (with 17 nodes, 30 requests, r0 = 10
and [5-8] VNFs per request.

4.5.2 Results

Figure 4.3 illustrates the total embedding cost vs. threshold T0 for different values of r0 ∈

{1, 2, 4, 10} for our proposed sDCM and mDCM algorithms. In this scenario, the maximum number

of required VNFs in a request is between 5 and 8. Thus, the value of threshold T0 can vary between

0 and 7. We observe from Fig. 4.3.a that for a given r0, the total embedding cost reduces as threshold

T0 increases. This trend can also be seen in Fig. 4.3.b, where the total cost reduces by increasing

threshold T0. We also observe from Fig. 4.3.a and Fig. 4.3.b that as r0 increases, the proposed

sDCM and mDCM algorithm achieves a larger performance gain. More specifically, for r0 = 10,

by increasing the threshold T0 from 0 to 7, the proposed sDCM and mDCM algorithms can reduce

the total embedding cost by 8% and 14%, respectively. This happens for two reasons. First, when

the ratio r0 of instantiation cost to reuse cost is large, there is a greater chance of leverage on

the newly exposed context and further reduction of the embedding cost via migration of cluster of

VNFs. This means that for large values of r0, the reusability of VNFs becomes more beneficial,

such that it would be worth migrating more clusters of VNFs to further decrease the embedding

74

(a) r0 = 1 (b) r0 = 2

(c) r0 = 4 (d) r0 = 10

Figure 4.5: Total embedding cost vs. number of requests for (a) r0 = 1, (b) r0 = 2, (c) r0 = 4, and

(d) r0 = 10 (with 17 nodes, r0 = 10, [5-8] VNFs per request).

cost. Second, by increasing the threshold T0, we allow the cluster of VNFs to expand as much as

possible, thus increasing the chance of migrating a larger number of VNFs.

Next, we investigate the impact of threshold T0 on the resultant cluster size. Figure 4.4 illustrates

the average cluster size per request vs. threshold T0 for sDCM and mDCM algorithms when r0 =

10. We set r0 to 10, as the instantiation cost is generally higher than the reuse cost. We observe

from the figure that for larger values of threshold T0, VNF clusters of larger sizes are formed in both

sDCM and mDCM algorithms. Also, the average cluster size for mDCM algorithm is larger than

the sDCM for any given threshold T0. While the sDCM algorithm only migrates the VNF cluster

to a single node, the already deployed instances of various VNF types from previous requests may

reside on different nodes, and the nodes cannot support all VNF types in the given request. Thus,

75

(a) 30 requests. (b) 40 requests.

Figure 4.6: Total embedding cost vs. number of nodes ([5-12] VNFs per request, and r0 = 10).

the expansion of cluster size in the sDCM algorithm may stop at a smaller-size cluster of VNFs, as

the VNFs are not allowed to migrate to more than one destination node.

Next, we examine the performance of our proposed sDCM and mDCM algorithms compared

to those of the SG algorithm, h-HSLG algorithm, and BFS approach. We set the threshold T0 to

its maximum value, which leads to the smallest embedding cost, as shown in Fig. 4.3. Figure. 4.5

illustrates the total embedding cost vs. the number of requests ranging from 10 to 40 for different

values of r0 ∈ {1, 2, 4, 10}. We observe from Fig. 4.5 that as the number of requests increases

for different values of r0, the total embedding cost increases as a result, which was expected. We

observe from Fig. 4.5.a that as the number of requests increases from 10 to 40 for r0=1, the total

embedding cost increase 79% and 75% in the proposed sDCM and mDCM algorithms, respectively.

We can see similar trends for other values of r0. For instance, by increasing the number of requests

from 10 to 40 for r0=10, the total embedding cost increases 75% and 73% for the proposed sDCM

and mDCM algorithms, respectively as shown in Fig. 4.5.d. Clearly, the proposed sDCM and

mDCM algorithms outperform both SG and h-HSLG algorithms for a given r0 and number of

requests. For instance, as shown in Fig. 4.5.b, for r0 = 2 and 10 requests, the mDCM algorithm

can reduce the total embedding cost by 34% and 33% compared to SG and h-HSLG algorithms,

respectively. Also, by increasing the number of request to 40, the mDCM algorithm can reduce the

embedding cost by 27% and 26% compared to the SG and the h-HSLG algorithms, respectively. We

76

notice from Fig. 4.5 that the SG algorithm performs worse than other approaches, mainly because

it relies on local decisions, and is thus prone to deviate from the global optimum easily. The total

embedding cost of the h-HSLG algorithm is larger than that of our proposed sDCM and mDCM

algorithms. This happens mainly because the h-HSLG algorithm relies on simple migration only,

which may not perform well when inter-VNF latency requirements are stringent. Therefore, the

proposed algorithms can outperform the existing benchmarks not only for the small number of

requests, e.g., 10 requests, but also for the large number of requests (e.g. 40 requests). In addition,

the total embedding cost of our proposed sDCM and mDCM algorithms are, on average, only 15%

and 6% higher than that of BFS, respectively. Moreover, we observe from Fig. 4.5 that our proposed

mDCM algorithm performs better than the sDCM algorithm, mainly because a cluster of VNFs has

more chance to be migrated to multiple destination nodes (compared to a single destination node).

VNFs in a cluster can spread to different nodes that can support them and have an already deployed

instance of that VNF type from a previous request. Therefore, the total embedding cost can be

further decreased compared to the single-destination case.

Figure 4.6 depicts the total embedding cost vs. the number of nodes for 30 and 40 requests,

[5-13] VNFs per request and r0 = 10. We note that the results of BFS approach are not shown

here due to its exponential time complexity, which limits its applicability to very small size problem

instances. We can notice from the figure 4.6.a that when the number of nodes increases, the total

embedding cost increases in all algorithms under consideration because as the number of nodes

increases, the transmission cost increases as a result. Consequently, the instantiation cost becomes

more preferable. According to Fig. 4.6.b, while the proposed sDCM and mDCM algorithms out-

perform the existing benchmarks in all scenarios, the mDCM achieves the smallest total embedding

cost. Furthermore, the total embedding cost of our proposed sDCM algorithm is on average only

4.16% higher than that of the mDCM algorithm. We observe from Fig. 4.6.b that when the num-

ber of nodes increases, the total embedding cost increases in all algorithms under consideration.

As shown in Figs. 4.6.a and 4.6.b, when the number of requests increases from 30 to 40 for 17

nodes, the total embedding cost increases by almost 12% in sDCM and mDCM algorithms, respec-

tively. These changes become 22% and 19% when the number of nodes becomes 113. According to

Fig. 4.6.b, while the proposed sDCM and mDCM algorithms outperform the existing benchmarks

77

in all scenarios, the mDCM achieves the smallest total embedding cost. More specifically, the total

embedding cost of our proposed mDCM for 40 requests is on average 4.75% smaller than the sDCM

algorithm. According to the results explained above, our proposed sDCM and mDCM algorithms

outperform the existing benchmarks in terms of total embedding costs. We note, however, that this

comes at the expense of an additional computational burden, which is evaluated next.

Table 4.3 illustrates the execution time of all algorithms under consideration for different scenar-

ios and problem sizes. We observe from Table 4.3 that the execution time, of our proposed sDCM

and mDCM algorithms are not only much shorter, but they also grow at a slower rate than that of

BFS. According to Table 4.3, for 17 nodes, when the number of requests increases from 10 to 30,

the execution time of the BFS algorithm increases from 768 to 3480 seconds, whereas the execution

times of the sDCM and mDCm algorithms increase from 0.54 s to 1.3 s, and from 0.73 s to 1.6

s, respectively. For instance, when the number of nodes and requests are 17 and 30, respectively,

and r0 = 10, the execution times of our proposed sDCM and mDCM algorithms are about 60%

and 68% higher than those of the SG and h-HSLG algorithms, enabling us to obtain 14% and 20%

improvement of total embedding cost, respectively. On the other hand, the BFS takes 99 times more

execution time than the sDCM and mDCM algorithms to gain only 16% and 8% improvement in

the total embedding cost (see Fig. 4.6.a and Table 4.3). We note that the BFS algorithm cannot

find the solution within 2 hours for a larger size problem due to its exponential time complexity.

Furthermore, by increasing the number of requests from 10 to 30 for 17 nodes, the execution time

of SGA, h-HSLG algorithm, and the proposed sDCM and mDCM algorithms increases by 44%,

47%, 76%, and 87%, respectively. While increasing the number of nodes from 17 to 113 for 30 re-

quests, the execution times of the proposed sDCM and mDCM algorithms increase by 94% and the

execution times of SGA and h-HSLG algorithms increase by 93%, respectively. For instance, when

the number of nodes and requests are 113 and 30, and r0=10, the execution time of our proposed

sDCM and mDCM algorithms is about 60% higher than the SG and h-HSLG algorithms, producing

13% and 14% improvements of the total embedding cost (see Fig. 4.6.a and Table 4.3). Moreover,

for 17 nodes and 40 requests, the BFS did not return any solution in 2 hours, while the proposed

sDCM and mDCM algorithms returned the solution in less than 2 s. This indicates that the proposed

algorithms can achieve near-optimal results within a small execution time. This also highlights the

78

Table 4.3: Execution Time (seconds).
Nodes # of

Req.

BFS SG [8] h-HSLG

[9]

sDCM mDCM

17 10 768 0.26 0.32 0.54 0.73

17 20 1632 0.3 0.56 0.82 0.92

17 30 3480 0.47 0.61 1.34 1.61

17 40 >2hrs 0.52 0.65 1.38 1.72

37 10 >2hrs 0.7 0.8 2.12 2.73

37 20 >2hrs 1.02 1.3 3.35 4.32

37 30 >2hrs 1.4 1.6 4.67 4.8

37 40 >2hrs 1.7 1.9 4.92 5.24

65 10 >2hrs 0.9 1.1 2.76 3.73

65 20 >2hrs 1.53 1.92 4.6 5.1

65 30 >2hrs 2.2 2.77 4.91 5.87

65 40 >2hrs 2.83 3.62 5.5 6.7

113 10 >2hrs 2.1 2.79 4.42 6.03

113 20 >2hrs 3.3 3.08 7.3 9.01

113 30 >2hrs 4.09 4.73 10.3 13.21

113 40 >2hrs 4.71 5.53 13.79 18.03

Note: ª>2 hrsº means that the algorithm cannot find solutions within 2 hours.

fact that using an exhaustive search algorithm (e.g., BFS) to solve the cluster migration problem

becomes impractical in large-scale scenarios. Therefore, the proposed algorithms can deal with the

scalability issue of the BFS approach. To see this, when the number of requests increases from 10

to 40 for 113 nodes, the execution time for the proposed sDCM and mDCM algorithms increases

by only 66%, and 76%, respectively. Although the execution time of the proposed algorithms are

slightly larger than SGA and h-HSLG algorithms, they can improve the total embedding cost by

17% and 7%, respectively (see Fig. 4.6.b and Table 4.3).

4.6 Conclusions

In this chapter, we studied the problem of migrating a cluster of VNFs, taking into account the

latency requirement between VNFs and reusing the already-deployed VNFs. The objective was

to migrate the cluster of VNF so that the total embedding cost, including resource, instantiation,

reuse, and transmission cost, is minimized. We proposed two variants of VNF cluster migration

algorithms, namely, single- and multiple-Destination cluster migration algorithms, which allow for

migrating a cluster of VNFs rather than a single VNF. Extensive simulations were conducted to

79

evaluate the performance of our proposed algorithm. The simulation results show that our proposed

algorithms can improve the existing benchmarks. Our results indicate that the proposed algorithm

can achieve up to a 14% improvement in total embedding cost compared to the existing benchmarks,

which comes at the expense of a 60% increase in execution time.

80

Chapter 5

Joint VNF Decomposition and

Migration for Cost-efficient VNF

Forwarding Graph Embedding4

5.1 Introduction

To cope with resource shortage, which may block the incoming NSs from being admitted suc-

cessfully, VNF migration can be a viable solution to avoid over-and/or under-loaded situations in

VNF-enabled networks [102, 103]. When a node’s resources are all occupied by running work-

loads, it becomes over-loaded, potentially causing bottlenecks that prevents the service provider

from admitting new requests. Conversely, under-loaded nodes that host only a few traffic flows lead

to inefficient resource usage and increased power consumption. The amount of available resources

within substrate nodes can have a significant impact on determining the best decomposition option.

On the other hand, selecting the proper decomposition options may require some VNFs to be moved

from an over-loaded node to another. Thus, a major challenge is to determine how the already de-

ployed VNFs can be shuffled around the substrate network so as to select the best decomposition

4This chapter is based on a published paper [4] and a submitted paper [101]: S. N. Afrasiabi et al, ºJoint VNF

decomposition and migration for cost-efficient VNF forwarding graph embedding,º 2023 IEEE Global Communications

Conference (GLOBECOM).

[101] S. N. Afrasiabi, et al, ªJoint VNF decomposition and migration for cost-efficient VNF forwarding graph embed-

ding,º Submitted To IEEE Trans. Netw. Serv. Manag (To be submitted).

81

option to minimize the embedding cost. To fully reap the benefits of VNF decomposition, it can

be used in conjunction with VNF migration to help promote VNF reusability across the network to

reduce the embedding cost.

In this chapter, we propose an efficient heuristic algorithm to solve the joint problem of VNF de-

composition and migration. After modeling the problem as an optimization problem to minimize the

embedding cost of a given NS, we propose our heuristic, which comprise two components, namely,

Cost-Aware VNF Decomposition (CA-VNF-D) and Node-Aware VNF Migration (NA-VNF-M)

algorithms. While the CA-VNF-D algorithm gives us a near-optimal decomposition option, the

NA-VNF-M algorithm aims to migrate the already deployed VNFs to other nodes to make room for

embedding the selected decomposition option successfully. The simulation results indicate that our

proposed algorithm outperforms the decomposition approach in terms of embedding cost .

The rest of this chapter is organized as follows. The motivation scenario is presented in Sec-

tion 5.2. We present the system model and problem formulation in Section 5.3. The proposed

topological decomposition and VNF migration strategies are introduced in Section 5.4. The numer-

ical results are shown in Section 5.5. Finally, Section 5.6 concludes this chapter.

5.2 Motivating Scenario

In this section, we demonstrate how VNF migration can affect the selection of decomposition

options and subsequently the VNF-FG embedding cost. First, let us consider a network, comprising

3 physical nodes and 2 physical links, as shown in Fig. 5.1.a. Each node is associated with a node

resource capacity and a cost per resource unit. For simplicity, we assume all nodes support all VNF

types. Similarly, each link has a bandwidth capacity, a cost per bandwidth unit, and a link latency.

Furthermore, each VNF type is associated with a predefined capacity demand that consists of fixed

and variable capacities. The allocated capacity during runtime is associated with fixed capacity, and

whenever a workload is added to a VNF instance, that VNF encounters a variable capacity. There-

fore, once a VNF instance is newly instantiated, it is attributed with fixed and variable capacities

and a variable capacity when it is reused by another NS. For simplicity, we assume that the fixed

capacity of all VNF types is 4 units, and the variable capacity is 2 units, except we assume the fixed

82

NS2

A B C

F

𝑂𝐴,2

C

𝑂𝐶,1

Z

𝑂𝐵,1

𝑂𝐵,2

K

𝑂𝐴,1

D E

SRC DST

(a)

VNF A

VNF B

VNF C

SRC

DST

(b)

D E Z C

(c)

Resource Cost = $1

Capacity = 27

Available Capacity = 27

Resource Cost = $1

Capacity = 27

Available Capacity = 27

Node2

($1,1ms)

Resource Cost = $1

Capacity = 24

Available Capacity = 0

Node3

DST

Node1

SRC

($1,1ms)

F K L J

(d)

Resource Cost = $1

Capacity = 27

Available Capacity = 9

Resource Cost = $1

Capacity = 27

Available Capacity = 27

Node2

($1,1ms)

Resource Cost = $1

Capacity = 24

Available Capacity = 0

Node3

DST

Node1

SRC

($1,1ms)

F K L J

F Z C

(e)

Resource Cost = $1

Capacity = 27

Available Capacity = 21

Resource Cost = $1

Capacity = 27

Available Capacity = 27

Node2

($1,1ms)

Resource Cost = $1

Capacity = 24

Available Capacity = 6

Node3

DST

Node1

SRC

($1,1ms)

F K L J

(f)

Resource Cost = $1

Capacity = 27

Available Capacity =15

Resource Cost = $1

Capacity = 27

Available Capacity = 27

Node2

($1,1ms)

Resource Cost = $1

Capacity = 24

Available Capacity = 2

Node3

DST

Node1

SRC

($1,1ms)

F K L J C

(g)

Figure 5.1: (a) Incoming NS 2 with possible decomposition options, (b) tree graph showing all pos-

sible VNF-FGs for NS 2, (c) one possible realization of VNF-FG for NS 2, (d) substrate network

topology with NS 1 being embedded, (e) embedding of best decomposition option of NS 2 without

considering migration, (f) migration of VNF J to Node 2, and (g) embedding of the best decompo-

sition option of NS 2 after migration.

and variable capacity demand of VNF type Z is 3 and 2 units, respectively. Next, let us assume two

NSs arrive in the network in which NS 1 is already deployed to a network while we are trying to

embed NS 2 into a network. NS 1 which consists of VNFs F,K,L and J , is placed in Node 1. NS 1

requires its traffic to be transmitted from source node Node 1 to destination Node 3. The capacity

demand by NS 1 is 24 units. As all the VNFs on Node 1 are newly instantiated, they require fixed

and variable capacities (e.g., VNF F needs 4 units of fixed capacity and 2 units of variable capacity).

Therefore, the available capacity of Node 1 is 0.

Let us also consider NS 2 requires the ordered set of VNFs consisting of VNFs A, B, and C from

Node 1 to Node 3, as shown in Fig. 1a. The SP must embed VNFs A, B, and C onto the network and

make sure that the traffic of NS 2 is transmitted from the source to the destination while satisfying

83

the given requirements. We note that each VNF can have one or multiple decomposition options,

and each option can comprise one or multiple subfunctions as illustrated in Fig. 1a. For instance,

VNF A has two decomposition options. Let oi,j be the decomposition option j of VNF i. For

example, Option 1 of VNF A (oA,1) consists of two subfunctions (i.e., D and E). Figure 1b shows a

tree graph illustrating all connections of decomposition options between the VNFs for NS 2, which

has a total of 4 decomposition options. Figure 1d depicts one possible VNF-FG of NS 2, which can

be achieved via topological decomposition. Figure 1c depicts one possible VNF-FG of NS 2, which

can be achieved via topological decomposition.

In this example, it would be more cost-efficient to select a decomposition option that can reuse

other VNFs in the network and has a smaller number of sub-functions. Sub-functions F and K

from NS 2 can be reused as the same type of VNF instances of NS 1 are already deployed in

Node 1 (see Fig 5.1.a). However, Node 1 does not have enough capacity to serve any NS. Without

considering any migration, the best decomposition option would be F , Z, and C. VNFs F and C

require 4 fixed capacity and 2 variable capacity, and VNF Z requires 3 fixed capacity and 2 variable

capacity. Assuming that the resource cost of Node 2 is $1, the total resource cost of this VNF-FG

would be $17 and the link cost would be $2. Therefore, the embedding cost would be $19 and

the total embedding cost is $43, as shown in Fig. 5.1.e. However, by migrating VNF J to Node 2,

the available capacity of Node 1 becomes 6 units (see Fig1. 5.1.f. Therefore, Node 1 will have

enough capacity to serve other NSs. We can reuse VNFs F and K on Node 1, and therefore the

best decomposition option of NS 2 will be F , K, and C. The total embedding cost would be $38

for this VNF-FG (see Fig. 5.1.g). Migration can help reduce the total embedding cost by $5.

The discussion above demonstrates that the selection and embedding of VNF-FG without doing

any migration strategy can potentially select an inefficient decomposition option which leads to a

poor embedding solution. To address this issue, efficient mechanisms are still needed to jointly

select the best decomposition option and migrate VNFs. In this chapter, we aim to select the best

decomposition option by migrating embedded VNFs to other nodes to make room for selecting the

optimal decomposition option such that embedding cost is reduced by reusing the already instanti-

ated VNF instants.

84

Table 5.1: Summary of main notations.

Input Parameters

N Set of substrate nodes

L Set of substrate links

cn Available capacity of node n

ωn Cost per capacity unit of node n

bl Available bandwidth of physical link l

dl Delay of substrate link l

θl Cost per bandwidth unit for link l

K Set of all VNF types supported in the network

fk Fixed capacity demand for VNF type k

vk Variable capacity demand for VNF type k

pk Processing capacity of VNF type k

E Set of virtual links

be Bandwidth requirement of virtual link e

de Delay requirement of virtual link e

Ik Set of VNF instances of VNF k

mi,k Processing load assigned to instance i of VNF type k

DC Decomposition options for the given NS

Kdc Set of all VNFs in decomposition option dc

Edc Set of all virtual links in decomposition option dc

z̃i,k,dcn

Binary parameter, indicating whether instance i of VNF type k of decomposition dc has been

deployed in substrate node n

wk
n Binary parameter, indicating whether physical node n can support VNF type k

zi,k,dcn (t)
Binary variable, indicating whether or not instance i of VNF type k of a decomposition dc

is mapped on physical node n in snapshot t

Zi,k,dc
n (t)

Binary variable, indicating whether or not instance i of VNF type k of a decomposition option

dc is mapped on substrate node n as a newly deployed instance in snapshot t

y
e,dc
l (t)

Binary variable, indicating whether or not virtual link e of decomposition dc is mapped

to substrate node l ∈ L (1) for decomposition option dc ∈ DC in snapshot t

xdc Binary variable, indicating whether or not decomposition dc ∈ DC is selected for the mapping

5.3 System Model and Problem Formulation

5.3.1 System Model

We describe the main notations in the following. Table 5.1 lists the key notations and decision

variables. Let the network be represented as an undirected graph G = (N,L), where N is a set

of substrate nodes, and L is the set of substrate links. Each substrate node n is associated with

an available node capacity cn (e.g., CPU, memories, storage), cost per capacity unit ωn, and a set

of supported VNF types Kz ⊆ K, where K is a set of all VNF types that are supported in the

85

network. Each substrate link l = (n, n′) ∈ L, ∀n, n′ ∈ N, has an available bandwidth bl, cost per

bandwidth unit θl, and link delay dl. Each VNF k ∈ K is associated with a predefined fixed and

variable capacity demand in terms of computation, memory, and storage which are defined as fk

and vk, respectively. While fk is attributed to VNF type k when they are newly instantiated, vk is

considered when a workload is added to VNF type k. Also, the processing capacity of VNF type

k is denoted as pk. The set of virtual links is denoted by E, where e(i, j) ∈ E is the link between

VNF indices i and j. Also, the maximum allowed delay and bandwidth requirements of virtual link

e ∈ E are defined as be and de, respectively. Furthermore, we define Ik = {1, 2, ..., |Ik|} to specify

a set of VNF instances corresponding to VNF type k ∈ K, where |Ik| is the maximum number of

instances of VNF type k that is allowed to be instantiated across the network. In addition, we define

mi,k to specify the amount of processing load that has already been assigned to instance i of VNF

type k.

Now, let us focus on an online scenario, where NSs arrive in the network at different time in-

stants. The incoming NS requires its traffic to be traversed through a set of VNFs connected in the

form of a VNF-FG. As explained in section 5.1, an NS can be realized through multiple decom-

position options. Therefore, for each NS, a decomposition set DC = {dc1, dc2, ..., dcn} contains

all the possible decomposition options. Each decomposition option dc ∈ DC is represented as a

directed graph Gdc = (Kdc, Edc) to support the dependency between VNFs. Therefore, a set of all

VNFs Kdc ⊆ K in a decomposition dc are represented as nodes connected via directed virtual links

Edc in the graph, where Edc ⊆ E is the set of all virtual links for a decomposition dc. Finally, we

define two binary parameters that are used in our problem formulation. The first binary parameter

is z̃
i,k,dc
n ∈ {0, 1} that indicates whether instance i ∈ Ik of VNF type k ∈ K of the decomposition

option dc ∈ DC has already been deployed in substrate node n ∈ N (1) or not (0). The second

one is wk
n which indicates whether substrate node n ∈ N can support VNF type k ∈ K (1) or not

(0). Our model operates over a set of snapshots. We define a snapshot t as a representation of the

system state over a fixed time interval. The model operates over two network snapshots: the current

snapshot t− 1 (before migration of a cluster of VNFs) and the new one (after migration of a cluster

of VNFs) at snapshot t. Migrations can be carried out between snapshots t − 1 and t. The number

of newly deployed and reused VNF instances on a specific node for a request may vary from one

86

snapshot to another [95].

5.3.2 Problem Formulation

In the following we develop an ILP model to solve the joint VNF decomposition and migration

problem. To this end, we consider the following four decision variables:

• z
i,k,dc
n (t) ∈ {0, 1} is a binary variable, specifying whether instance i ∈ Ik of VNF type

k ∈ K of a decomposition option dc ∈ DC is mapped on physical node n ∈ N in snapshot t

(1) or not (0).

• Z
i,k,dc
n (t) ∈ {0, 1} is a binary variable, specifying whether instance i ∈ Ik of VNF type

k ∈ K of a decomposition option dc ∈ DC is mapped on physical node n ∈ N as a newly

deployed instance in snapshot t (1) or an already deployed instance/not deployed (0) in the

network.

• y
e,dc
l (t) ∈ {0, 1} is a binary variable, indicating whether virtual link e ∈ Edc of decomposi-

tion dc is mapped to physical node l ∈ L (1) for decomposition option dc ∈ DC in snapshot

t, or not (0).

• xdc ∈ {0, 1} is a binary variable, to indicate whether decomposition dc ∈ DC is selected for

the mapping (1), or not (0).

Next, we describe the constraints of the problem. Constraints (5.1) and (5.2) guarantee that only

one of the decompositions of an NS is selected and all the VNFs of the selected decomposition are

mapped only once.

∑

n∈N

zi,k,dcn (t) = xdc, ∀dc ∈ DC ∀k ∈ K, ∀i ∈ Ik (5.1)

∑

dc∈DC

xdc = 1, (5.2)

87

Constraint (5.3) ensures that instance i of VNF type k can be deployed in physical node z, only

if node z can support VNF type k:

zi,k,dcn (t) ≤ wn
k , ∀dc ∈ DC, ∀k ∈ K, ∀i ∈ Ik, ∀n ∈ N. (5.3)

Constraint (5.4) ensures that each VNF instance i of VNF type k is not deployed more than once

in the network:

∑

n∈N

zi,k,dcn (t) ≤ 1, ∀dc ∈ DC, ∀k ∈ K, ∀i ∈ Ik. (5.4)

Constraint (5.5) ensures that instance i of VNF type k can either be reused or instantiated in

physical node n:

zi,k,dcn (t) ≥ z̃i,k,dcn (t), ∀k ∈ K, ∀i ∈ Ik, ∀n ∈ N, ∀dc ∈ DC. (5.5)

Constraint (5.6) helps to indicate that if instance i of VNF type k is newly deployed in physical

node n, Z
i,k,dc
n is equal to 1; otherwise, it is equal to 0:

Zi,k,dc
n = zi,k,dcn (t)− z̃i,k,dcn (t), ∀k ∈ K, ∀i ∈ Ik, ∀n ∈ N, ∀dc ∈ DC. (5.6)

Constraint (5.7) ensures that the capacity of each physical node n does not exceeded the capacity

of that node:

∑

k∈K

∑

i∈I

fkZ
i,k,dc
n (t) + vkz

i,k,dc
n (t) ≤ cn, ∀n ∈ N, ∀dc ∈ DC. (5.7)

Constraint (5.8) ensures that the processing load assigned to instance i of VNF type k does not

exceed its available processing capacity:

∑

n∈N

zi,k,dcn (t) ≤ pk −mi,k, ∀k ∈ K ∀n ∈ N, ∀i ∈ Ik, ∀dc ∈ DC. (5.8)

88

Constraint (5.9) ensures that the bandwidth capacity of each physical link l is not exceeded:

∑

e∈E

bey
e,dc
l (t) ≤ bl, ∀dc ∈ DC ∀l ∈ L. (5.9)

Constraint (5.10) ensures that the delay requirement of each virtual link is met:

∑

l∈L

dey
l
e(t) ≤ dl, ∀e ∈ E, ∀dc ∈ DC. (5.10)

Constraint (5.11) ensures that two consecutive VNFs k and k′ with a virtual link e are deployed

on a physical link l(n, n′) ∈ L:

∑

ln,n′∈L

y
e,dc
lnn′

(t)−
∑

ln′,n∈L

y
e,dc
ln′n

(t) = xi,k,dcn (t)− xi,k
′,dc

n (t),

∀n ∈ N, ∀k, k′ ∈ K, ∀e ∈ E, ∀dc ∈ DC.

(5.11)

With all these considerations, our objective is to minimize the total embedding cost, which

comprises the cost of fixed capacity, variable capacity, and transmission. We formulate the problem

as an ILP, to be explained in technical detail next.

5.3.2.1 Fixed Capacity Cost

Fixed capacity cost Cfix(t) associated with the cost of capacity demand for instantiating a new

VNF instance in snapshot t on a node. The node capacity may be released during the migration of a

VNF k from snapshot t− 1 to t, which leads to a cost reduction. Therefore, it requires considering

the difference in occupied capacity of a physical node before and after migration, which is given by:

Cfix(t) =
∑

dc∈DC

∑

n∈N

∑

k∈Kdc

∑

i∈Ik

ωn.fk[Z
i,k,dc
n (t)− Zi,k,dc

n (t− 1)]+, (5.12)

where the terms [Zi,k,dc
n (t)− Z

i,k,dc
n (t− 1)]+ is given by max{Zi,k,dc

n (t) − Z
i,k,dc
n (t − 1), 0}.

It should be noted that by migration from a snapshot t − 1 to t, some VNFs need to be newly

89

instantiated in a node and accordingly encounter the capacity cost of the node based on their capacity

demand. As such, [Zi,k,dc
n (t)− Z

i,k,dc
n (t− 1)]+ calculates the number of new VNF instantiations

of VNF k on node n in snapshot t.

5.3.2.2 Variable Capacity Cost

The variable capacity cost Cvar(t) is introduced when an additional workload is added to a VNF

which is associated with the cost per variable capacity demand of a VNF on a physical node. We

compute the variable capacity cost Cvar(t) of such VNFs from snapshot t − 1 to snapshot t, as

follows:

Cvar(t) =
∑

dc∈DC

∑

n∈N

∑

k∈Kdc

∑

i∈Ik

ωn.vk[z
i,k,dc
n (t)− zi,k,dcn (t− 1)]+. (5.13)

where the terms [zi,k,dcn (t)− z
i,k,dc
n (t− 1)]+ is given by max{zi,k,dcn (t)− z

i,k,dc
n (t− 1), 0}.

5.3.2.3 Transmission Cost

The transmission cost Ctr(t) includes the cost of network bandwidth consumed for the commu-

nication between VNF instances, as follows:

Ctr(t) =
∑

dc∈DC

∑

e∈Edc

∑

l∈L

θlbe[y
e,dc
l (t)− y

e,dc
l (t− 1)]+. (5.14)

which considers the differential cost of the assigned link that may happen between two consecutive

snapshots as a result of the migration of VNFs.

The objective of our optimization problem is to minimize the sum of the aforementioned costs,

as follows:

Ctotal = min(Cfix(t) + Cvar(t) + Ctr(t)). (5.15)

90

5.4 Proposed Solution

In this section, we propose our solution to solve the problem of joint VNF decomposition and

migration efficiently. Our proposed solution comprises two phases, namely, (i) decomposition se-

lection, and (ii) migration. In the first phase, our so-called Cost-Aware VNF Decomposition (CA-

VNF-D) algorithm aims to select the best decomposition option of a given NS among its all pos-

sible options. More specifically, we measure the cost associated with each decomposition based

on a scoring strategy, which then helps select the one with the minimum score. Additionally, we

determine the potential node for each VNF of the selected decomposition option for embedding.

In the migration phase, we run our Node-Aware VNF Migration (NA-VNF-M) algorithm, where

the CA-VNF-D algorithm is executed for both loaded and unloaded networks. More specifically,

ªloaded networkº refers to the network in its current state, where each node bears the load. On

the other hand, the ªunloaded networkº refers to the network without any load, where nodes have

enough capacity to host VNFs. Our migration strategy examines whether the score of the selected

decomposition in the unloaded network is smaller than that in the loaded network. If this criterion is

satisfied, the migration process is triggered to move the already embedded VNFs from their hosting

nodes to alternative nodes, thereby creating capacity for the embedding of the selected decompo-

sition options. In the following, we explain the two phases of our proposed solution in technically

greater detail.

5.4.1 Cost Aware VNF Decomposition (CA-VNF-D)

Our proposed CA-VNF-D algorithm aims to identify the most cost-efficient VNF-FG without

requiring the embedding of all decomposition options onto physical nodes. Given the substrate

network, NS, and all of its decompositions represented by DC, the so-called decomposition score

Sd of option dc is calculated as follows:

Sd = Sf + Sv + Str, (5.16)

91

where Sf , Svar, and Str are given as follows:

Sf = ωn.fk, (5.17)

Svar = ωn.vk. (5.18)

Str = θlbe. (5.19)

respectively. In Eq. (5.16), Sf is the score of the fixed capacity cost, Sv is the score of the variable

capacity cost, and Str is the score of the transmission cost.

The pseudo-code of our proposed CA-VNF-D algorithm is shown in Algorithm 4. The CA-

VNF-D algorithm works as a pre-evaluation step for each VNF prior to its embedding into the

network. To explore the decomposition options of VNFs within an NS, the algorithm first initializes

a tree graph with the source node (src) and destination node (dst). For a given NS, a source-

destination pair is assigned to the tree graph. Let è denote the number of levels in the tree graph,

where each level is associated with a VNF type in DC. As an example, consider Fig 5.1(b), where

Node 1 and Node 3 are source node (src) and destination node (dst), respectively. Additionally,

there are a total of è = 3 levels in the tree graph. Each edge within the tree graph is associated with

a startvalue and an endvalue. To begin with, startvalue is set to src, while endvalue is set to the first

level of the tree graph (è1) (see lines 2-3 in Algorithm 4). For the first edge of the tree between src

and OA,1, the source node of the tree is startvalue (e.g., the source node for subfunction D within

OA,1 is Node 1 in Fig 5.1.c), and for subsequent VNFs, startvalue is determined by the potential

candidate node nb of the preceding VNF. Next, all the decomposition options O between startvalue

and endvalue are explored (see line 7 in Algorithm 4). For each option o ∈ O, the algorithm

examines all the VNFs (subfunctions) of option o (see lines 8-9 in Algorithm 4).

In the following, we explain how we assign a potential hosting node based on score calculation.

Initially, the algorithm identifies a list Nb of potential hosting nodes, which satisfy the given con-

straints (line 10 in Algorithm 4). Next, we calculate the each potential hosting node belonging to

set Nb, and then select the node with the smallest score (lines 11-13 in Algorithm 4). Next, node

nb with the smallest score is then assigned for exploring VNFs (line 14 in Algorithm 4). We note

92

Algorithm 4: Cost Aware VNF Decomposition (CA-VNF-D)

Input: G(N,L), src, dst, DC

Output: V NF -FG

Initialize: Tree graph (src,dst)

1 Function DecompositionSelection(G, src, dst,DC):

2 startvalue = src

3 endvalue = è1

4 V NF -FG = ∅
5 Sd = 0
6 while endvalue ≤ èt do

7 O ← Find all options from startvalue to endvalue
8 for each o ∈ O do

9 for each k ∈ o do

10 Nb ← List of potential hosting nodes

11 Calculate Sd for Nb

12 Sdcur ← Select the smallest Sd

13 nb ← The node with the smallest Sd

14 assign nb to k

15 startvalue = nb

16 Sd ← Sd + Sdcur

17 end

18 Assign Sd to o

19 end

20 end

21 Sort O in an ascending order of Sd

22 ob ← Select the best o with the smallest Sd

23 Add ob to Tree graph

24 endvalue = è + 1

25 V NF -FG← Tree graph

26 return V NF -FG

that although nb is identified as a potential hosting node, it will not necessarily be selected as the

actual hosting node for VNF embedding. Then the startvalue and total score Sd are updated (see

lines 15-16 in Algorithm 4).

For each option o, the total score Sd is assigned to o (see line 18 in Algorithm 4). After com-

puting the scores for all options of a specific VNF type (corresponding to a level of the tree), the

algorithm proceeds to select the option with the smallest score and eliminates all tree paths except

for the one that comprises the selected node. More specifically, the option with the lowest score,

denoted as ob, is chosen. Then, option ob is added to the tree graph (lines 21-23 in Algorithm 4).

Next, we move to the next level of the tree by updating endvalue (line 24 in Algorithm 4). These

93

steps are executed for each VNF type of NS in the tree. Finally, we identify the path from source to

destination that has the smallest score. This process continues until all paths between the last option

and the destination have been assessed, where endvalue becomes smaller than the number of levels

in the tree, indicating that all potential paths have been examined. The resultant tree graph will have

exactly one child node per parent node, thus forming a chain of VNFs. The algorithm then returns

the resulting tree as the VNF-FG (lines 25-26 of Algorithm 4)).

To better understand different steps of our proposed CA-VNF-D algorithm, let us consider the

network topology in Fig. 5.1.d and NS 2 in Fig. 5.1.a. To find potential VNF-FGs, we first initialize

a tree graph showing all possible VNF-FGs for NS 2 (see Fig. 5.1.b). In this example, src is Node1

and dst is Node3, as shown in Fig. 5.2.a. Next, we explore all the options between src and the first

level of the tree. In the first iteration, two options exist: src to OA,1 and src to OA,2. For each

option, we assign a potential hosting node (nb) and calculate the corresponding Sd. Let us now

consider OA,1, which consists of VNFs D and E (see Fig. 5.1.c). For each VNF within OA,1, we

calculate its respective Sd and find a potential hosting node (nb). Firstly, we must determine Nb

for VNF D. Nb for VNF D include Node 2 and Node 3. Given that Node 1 does not have enough

capacity, it cannot be part of Nb. Subsequently, we calculate Sd for each node in Nb. For VNF D,

SNode2
dD

= 7 with Sl = 1, Sf = 4, and Sv = 2. Similarly, SNode3
d = 8 with Sl = 2, Sf = 4, and

Sv = 2. The algorithm selects the node with the smallest value of Sd. For VNF D, Node 2 has

a smaller Sd compared to Node 3. Therefore, Node 2 is selected as nb for VNF D. This process

continues for all the VNFs within OA,1. For VNF E, Nb =[Node 2, Node 3], and SNode2
dE

= 14,

while SNode3
dE

= 15. The smallest Sd is SNode2
d = 14 for VNF E. To obtain Sd of a given VNF, we

sum the scores of all the preceding VNFs. For VNF E, it is the sum of SdE for E and SdD for VNF

D. Therefore, S
oA,1

d = 13, and Node 2 is assigned as nb for OA,1.

The hosting node (nb) for the last VNF of OA,1 is considered as nb for the entire OA,1. In

this case, Node 2 is selected as nb for VNF E. Thus, Node 2 is considered as nb for OA,1. This

process continues for the remaining options at the current level. For OA,2, the algorithm identifies

Nb and selects the node with the smallest Sd. OA,2 consists of VNF F, with Nb =[Node 2, Node 3].

For VNF F, SNode2
dF

= 7, and SNode3
dF

= 8. The hosting node (nb) is Node 2, and S
OA,2

d = 7. We

eliminite all the paths except the one with the smaller decomposition score. In this case, the selected

94

(a) (b)

(c) (d)

(e)

Figure 5.2: Illustrative examples for each step of Cost-Aware VNF Decomposition (CA-VNF-D)

algorithm.

95

option is OA,2, as shown in Fig. 5.2.b. Next, startvalue and endvalue of the tree will be updated.

The start value is Node 2 from OA,2, and endvalue is the next level of the tree, which is l = 2 of the

tree graph. As shown in Figs.5.2.c-d, this process continues for the remaining VNFs of NS 2 until

we reach dst. In this example, S
OA,2→OB,1→OC,1

d = 19 has the smallest score among the paths in

the graph tree, which corresponds to the VNF-FG comprising OA,2 → OB,1 → OC,1.

5.4.2 Node Aware VNF Migration (NA-VNF-M)

Algorithm 2 presents the pseudo-code of the proposed Node-Aware VNF Migration (NA-VNF-

M) algorithm. In the migration strategy, the VNF-FG obtained from CA-VNF-D is embedded into

the network. If the embedding cost can further be improved via migration, we migrate VNFs from

overloaded nodes to other nodes. To accomplish this, we start by initializing a network, considering

both loaded network Gl and unloaded network Gu (see line 3 in Algorithm 2). We first consider

the loaded network Gl followed by the unloaded network Gu (see lines 4-5 in Algorithm 5). By

doing so, two VNF-FGs along with their respective ranking scores and the assigned hosting nodes

for each VNF are obtained. Let the VNF-FG and score derived from Gl be denoted as VNF-FGl and

Sdl , respectively. Similarly, the VNF-FG and score derived from Gu are denoted as VNF-FGu and

Sdu, respectively. If the VNF-FGs obtained from Gl and Gu are identical and Sdl is smaller than

or equal to Sdu , the VNFs within VNF-FGl are embedded into the network using the Sequential

Greedy (SG) algorithm [8]. We note that SG is a greedy approach, which embeds the VNFs in a

sequential manner (see line 6 in Algorimthm 5). Conversely, if the obtained VNF-FGs from Gl

and Gu are not identical and if Sdl is greater than Sdu , the migration process is initiated. This may

necessitate the eviction of certain VNFs to create room for embedding VNF-FGu into a network.

For doing the migration, for each VNF, in VNF-FGu, the algorithm finds a list of candidate

nodes denoted as Nc, on which the VNF can be embedded (based on the given constraints, e.g.,

latency, capacity), and if nb (the potential hosting node designated to each VNF after running the

decomposition algorithm in Algorithm 4) is included in Nc, the algorithm embeds VNF k using SG

(see lines 8-12 in Algorithm 5); otherwise, if nb is not included in Nc and the same VNF type k is

hosted in note nb, it means the node nb does not have enough capacity and we create a list MIG

of migrating VNFs, which is a list of potential VNFs that can be migrated to other nodes (see line

96

Algorithm 5: Node-Aware VNF Migration (NA-VNF-M)

1 input: G(N,L)network information, NS;

2 output: Embedding an NS;

3 Initialize: Gl, unloaded network Gu, tree graph;

4 VNF-FGl ← DECOMPOSITIONSELECTION(Gl, src, dst,DC) VNF-FGu ←
DECOMPOSITIONSELECTION(Gu, src, dst,DC);

5 if VNF-FGl == VNF-FGu & Sdl
≤ Sdu

then

6 Embed VNF-FGl to the network by using SG algorithm [8];

7 else

8 for each k ∈ V NF -FGu do

9 Nc ← Find a list of candidate nodes;

10 if nb ∈ Nc potential hosting node is in the list of candidate node then

11 Embed k by using SG algorithm [8]

12 end

13 else

14 MIG← Find a list of migrating VNFs;

15 MIGs ← Sort the MIG based on Order of Migration;

16 MIGr ← Refine MIGr based on the migration order;

17 relocate MIGr;

18 Embed k to nb;

19 end

20 end

21 end

14 in Algorithm 5). The list MIG comprises all embedded VNFs located on node nb, excluding

the preceding VNFs of the VNF k. After that, the algorithm needs to sort the list MIG based on

the order of migration denoted as MIGs (see line 15 in Algorithm 5). The order of migration

starts from the last NS and VNF, which is embedded in the assigned node and continues the reverse

order of embedding of VNFs on the assigned node. If the VNF is reused by more than one NS

in list MIG, all the subsequent VNFs of NSs that reused that type of VNF need to be examined

and the algorithm should start from the last VNF of that NS, which is in list MIG. This process

continues until all the VNFs of list MIG are sorted. Next, the algorithm refines list MIGs (see

line 16 in Algorithm 5) based on the capacity demand of the current VNF. The refined ignore list

MIGr can include a VNF or multiple VNFs based on the capacity demand for a VNF that needs

to be embedded in node nb. The VNFs of list MIGr need to be evicted from node nb to a new

node. using the SG algorithm. To do so, the VNFs in MIGr are embedded to the node, which is

associated with the smallest cost. Once this is done, VNF k is embedded in the network using SG

(see lines 17-18 Algorithm 5). The process ends once all the VNFs of the VNF-FG are embedded.

97

To better understand the proposed ranking strategy, let us consider NS 1, NS 2, and NS 3 shown

in Fig. 5.3.a-c. Let us assume that NS 1 and NS 2 are already deployed in the network as depiceted

in Fig. 5.3.d, where Node 1 comprises all the VNFs of NS 1 and NS 2. Let us also assume that after

considering the overloaded network and running Algorithm 4, NS-3 is the returned VNF-FG. Node

nb for each VNF of NS 3 is also shown in Fig. 5.3.c. As an example, node nb for VNF K of NS 3

is Node 1. The capacity demand of VNFs of NS 3 is also shown in Fig. 5.3.c. As an example, F

requires a fixed capacity fk of 4 and a variable capacity vk of 30. In this example, it is assumed the

score of VNF-FGu is smaller than VNF-FGl, which indicates that a migration is needed.

As shown in Figs. 5.3.a-d, let us assume that all the VNF types of NS 1 and NS 2 require 4 fixed

and 2 variable capacities. The algorithm starts with the first VNF of NS 3, which is F. First, the

algorithm finds a list of candidate nodes for VNF F. The list of candidate nodes for F is Node 2 and

Node 3. As Node 1 does not have enough capacity (as shown in Fig. 5.3.d), it cannot be part of the

list of candidate nodes. Next, we examine whether or not node nb (which is Node 1) is part of the

list of candidate nodes (Nc). Then, we examine whether or not Node 1 hosts VNF type F. As VNF

type F is already deployed in Node 1, then the algorithm needs to create the migrating list MIG for

VNF F. List MIG includes all the VNF residing in Node 1. Therefore, the migrating list for VNF

F includes a list of [X, Y, L, J, K, F]. List MIG is then sorted in a descending order based on the

embedding in the network.

In our example, the last NS (which is embedded in Node 1) is NS 2 and the last VNF of NS 2

is VNF X. VNF X is added to the sorted ignore list MIGs. Next, we consider the second last VNF,

which is VNF L. Given that VNF L is already reused by NS 1, before adding L to the sorted ignore

list, all the VNFs after VNF L in NS 1 need to be added to MIGs, starting from the last VNF in

NS 1. The last VNF in NS 1 is VNF J. Therefore, VNF J is added to MIGs. Then, VNF L is

added to MIGs followed by VNF Y from NS 2, and VNFs K and F from NS 1. Thus, MIGs for

F of NS 3 is an ordered list comprising VNFs X, J, L, Y, K, and F. Next, we refine MIGs based

on the capacity demand of VNF F. The variable capacity demand of F is 30, as shown in Fig. 5.3.c.

Thus, MIGr includes [X, J, L, Y]. Next, all the VNFs of MIGr are migrated to Node 2, and F is

also embedded in Node 1 (see Fig. 5.3.e). We then consider VNF K of NS 3. Node nb for VNF

K is Node 1, but VNF K in the previous step was migrated to Node 2. Thus, Node 2 is considered

98

(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.3: Illustrative examples for Node Aware VNF Migration (NA-VNF-M) Algorithm

as node nb for VNF K, and a list of candidate nodes for VNF K is obtained. The list of candidate

nodes for VNF K is Node 3 because there is a VNF type K in Node 2. However, Node 2 does

not have enough capacity to serve VNF K. Thus, MIG for VNF K needs to be created to include

all the VNFs that are embedded on Node 2, i.e., VNFs X, L, Y, and J. List MIGs for VNF K is

therefore VNFs X, J, L, and Y. Based on the capacity demand of VNF type K, we refine list MIGs.

The variable capacity of VNF K in NS 3 is 2. Thus, list MIGr includes only VNF X. VNF X is

migrated to Node 3 and the VNF K is embedded in Node 2 (see Fig. 5.3.f). This process continues

for the other VNFs of NS 3 until all the VNFs are embedded in the network (see Fig. 5.3.g).

5.4.3 Asymptotic Analysis

To provide insights into the behavior of our proposed algorithm as the input size grows, we

conduct an asymptotic analysis. We show that the proposed algorithm demonstrates asymptotic

optimality, signifying that the embedding cost achieved through migrations closely approaches the

optimal solution as the size of the input grows large. Let R denote the number of incoming requests.

99

Also, the length of the VNF chain associated with request r ∈ R is denoted by L. For analytical

tractability, we assume that all the incoming requests have an equal number of VNFs with the same

length L. The number s of requests that fit into a single node can be estimated as follows:

s = ⌊
(cn − fk)

vk
⌋, (5.20)

The number of nodes that are fully occupied (meaning a node that is fully occupied cannot accept

any other VNFs to host on it)is denoted as g which is calculated by:

g = ⌊
R

s
⌋, (5.21)

The number of requests in the latest node (to be filled up) is denoted by q which is calculated by:

q = R mod s, (5.22)

Therefore, the total CPU usage (Totalcpu) from the request 1 to R is calculated by:

Totalcpu(R) = L · (g · (cn + s · vk) + (

⌈

R

s

⌉

–g) · fk + q · vk). (5.23)

where (
⌈

R
s

⌉

–g) is either 1 or 0. More specifically, it is 0 if the last node has enough capacity to be

filled up by the embedding of VNFs for request R, otherwise, it is 1.

5.5 Results and Discussions

In this section, we conduct simulations to evaluate the performance of our proposed algorithms

against a decomposition-only approach. We first describe the simulation environment and then

present our obtained results.

100

5.5.1 Simulation setup

Our results are obtained from an experiment conducted on the Ericsson testbed. Our testbed

environment consists of two digital twins; a workflow engine for VNF embedding algorithms (a

greedy sequential VNF embedding method), and Netconf/Yang-based configuration management

application programming interfaces (APIs) [8]. The hardware specifications of our testing platform

include a 1.4 GHz Quand Core Intel Core i5 and 8GB of RAM.

5.5.1.1 Settings

We consider a substrate network typology consisting of 11 nodes and 13 bidirectional links [104,

9]. Other parameter settings are those that were used in our previous works [9, 104]. We assume

that the number of available vCPUs of each node varies between 20 to 65 [4], and the node, as

a configurable parameter, is set to $2 per vCPU. In addition, each physical link has an available

link bandwidth of 50 Gbps. The link cost and the link delay are configurable and set as [0-10]$

per Gbps and 1 ms, respectively [104, 3]. We also assume that the network can support 7 types of

VNFs and sub-functions. Also, the value of the fixed capacity is set to [6-11] vCPUs and we set the

variable capacity to [1-6] vCPUs. Also, we assume that some VNFs are already embedded in the

network and nodes have limited available capacity. In the evaluation scenario, we consider a request

with a chain of 3 VNFs, which need to be embedded in the substrate network. We consider 3 to 8

possible combinations of VNF decomposition options for the VNFs required by a given NS [104], as

shown in Fig. 5.4. Each incoming request has a different source-destination pair, which is selected

randomly. All the network parameters and default values are summarized in Table 5.2.

We compare our algorithm’s results with the decomposition-only approach. In the decomposition-

only approach, we select the best decomposition option by considering loaded networks. Subse-

quently, the obtained VNF-FG is sequentially embedded in a node with the lowest hosting cost,

following SG algorithm [8], without considering any migration strategy.

101

Table 5.2: Parameter settings and default values.

Parameter Value Ref.

Number of nodes N 11 [9, 104]

Number of links L 14 [9, 104]

Available node capacity cn [20− 65] vCPU [3, 4]

Node cost ωn 2 [5, 4]

Available link bandwidth bl 50 Gbps [5, 4]

Link cost θl $2 [3, 4]

Link delay dl 1 ms [4, 9]

Number of required VNFs in a request K [3-5] [104]

Fixed capacity fk [6− 11] vCPU [104, 4]

Variable capacity vk [1− 6] vCPU [104, 4]

Figure 5.4: An NS with 3 main VNFs and all decomposition options.

5.5.2 Results

Asymptotic analysis: In Figs. 5.5 and 5.6, we assess the asymptotic behavior of the proposed

algorithm. We set the transmission cost to zero and consider five VNFs per request. Figure 5.5 illus-

trates the embedding cost ratio (which is defined as the the embedding cost of the decomposition-

only approach to the proposed algorithm) vs. the number of requests. This analysis considers nodes

with varying CPU capacities of 20, 22, 33, and 55 (e.g., each node has an available capacity of 55

CPU units and all nodes have the same capacity). For all VNFs of a given request, we consider

up to 500 requests and fk = 10 and vk = 1. Our results are based on the analysis presented in

Section 5.4.3. A node capacity of 55 CPUs is the best-case scenario, where the proposed algorithm

can achieve the maximum improvement of the embedding cost compared to the decomposition-only

102

Figure 5.5: Ratio of embedding cost of Decomposition-only to embedding cost of the proposed

method when (Fixed capacity, Variable capacity) = (10,1) for 500 requests for different nodes’

capacity.

approach. In this best-case scenario, no VNFs in the decomposition-only option can be reused due

to the fixed capacity demand of VNFs and limited node capacity. Additionally, a node capacity of 20

CPUs is considered as the worst-case scenario, where the embedding cost of the proposed method

is the same as the decomposition-only approach. In the proposed method, no migration is needed

due to the high fixed capacity demand for VNFs and the limited capacity of nodes. Each type of

VNF can be embedded in a node and reused by other VNFs of the incoming requests. In the worst-

case scenario, each node has an available capacity of 20 CPUs, where the proposed method cannot

execute migrations due to node capacity limit. For each VNF type, we cannot add more than one

type per node due to VNF fixed capacity and limited node capacity. Hence, both proposed method

and decomposition-only approach exhibit a similar trend, and we can observe that the embedding

cost ratio is 1. In the best-case scenario, achieving a maximum gain requires nodes with a capacity

of 55 CPUs. In the decomposition-only approach, VNFs cannot be reused, as each request neces-

sitates 55 CPU units. For each VNF in a new request, a new VNF instance must be instantiated,

as the VNFs of a request fully occupy the node capacity. Conversely, in the proposed algorithm,

103

VNFs can be reused by migrating previously embedded VNFs to other nodes, thereby reducing the

embedding cost. In the best-case scenario, the embedding cost ratio is 8. Interestingly, we observe

that for the curves representing various CPU capacities (22, 33, and 55), the observed saw-tooth

behavior in these three curves (22, 33, and 55) is primarily attributed to the migration strategy of the

proposed method. Through migration and increased reuse of VNFs, the embedding cost decreases.

Consequently, the embedding cost ratio increases. However, as the number of requests increases,

the nodes become fully occupied, thus decreasing the chance of migration. This in turn leads to new

instantiation of VNFs, which is associated with a higher embedding cost.

Additionally, we observe in Fig. 5.5 that the oscillations of the saw-tooth curve decreases as the

number of requests increases, moving asymptotically towards a single line. This behavior primarily

depends on the capacity of nodes to accommodate reused VNFs, ultimately affecting the embedding

cost ratio. Further, as observed in Fig 5.5, the transition from 22 to 33 CPUs demonstrates a similar

asymptotic behavior, while displaying different saw-tooth oscillations. Similarly, from 33 to 44

CPUs, there is asymptotic uniformity but with varying saw-tooth oscillations. Within these different

ranges, a consistent lower bound is apparent. For instance, when considering 22 CPUs, the ratio

gradually approaches the highest gain of 6.1 asymptotically. Within the range of 22-33 CPUs, the

lower bound remains similar to that of 22 CPUs, resulting in a higher embedding cost ratio and a

larger saw-tooth oscillation than 22 CPUs.

Figure 5.6 depicts the embedding cost ratio vs. number of requests for different VNF-FG size.

We set the capacity of nodes to 55 CPUs, fixed capacity of VNFs to 10, and variable capacity of

VNFs to 1. According to Fig. 5.6, the proposed method achieves a maximum improvement of the

embedding cost compared to the decomposition-only approach for 5 VNFs. This is primarily due

to the limitation of the decomposition-only approach, which mostly embeds new VNF instances

in the network rather than reusing them. In contrast, in the proposed algorithm, VNFs are mi-

grated from over-utilized nodes, thus allowing for VNF reusability. More interestingly, we observe

from Fig. 5.6 that as the number of VNFs per request increases, the performance gain obtained by

our joint migration and decomposition solution becomes even more highlighted compared to the

decomposition-only approach.

Adaptiveness: Next, we assess the adaptiveness of the proposed algorithm. Specifically, we

104

Figure 5.6: Embedding cost ratio vs. number of requests for (fixed capacity, variable capacity) =

(10,1) for different values of VNF-FG size.

examine whether the proposed algorithm has the capability to adapt itself and selects the chain with

the fewest VNFs when decomposition options do not have equal CPU demands. First, we set set

fk = 9, vk = 3, and fk = 8, vk = 4, and consider a node capacity of 66 CPU. Figure 5.7.a

depicts the embedding cost ratio vs. the number of requests. We can observe that as the number

of requests grows from 1 to 2, the embedding cost ratio becomes greater than one, which indicates

the embedding cost of the proposed method becomes smaller than that of the decomposition-only

approach. This is because the proposed method instantiates a smaller number of deployed VNF

instances in the network. Total number of deployed VNF instances vs. number of requests is shown

in Fig. 5.7.b, where we observe that our proposed algorithm can reduce the number of deployed

VNFs by 66% and 40% for fk = 8, vk = 4 and fk = 9, vk = 3, compared to the decomposition-

only approach, respectively. Figure 5.7.c depicts the average number of VNFs vs. number of

requests, in which the average number of VNFs is calculated based on the total number of newly

instantiated VNFs through the networks, divided by the number of requests. We observe in Fig. 5.7.c

exhibits adaptiveness when it reaches the limit of reusing VNFs from the longest chain within the

105

(a) Total embedding cost vs. Number

of requests

(b) Total number of deployed VNF in-

stances vs. number of requests

(c) Average number of VNFs vs. num-

ber of requests

Figure 5.7: Examining the adaptiveness behavior in scenarios where decomposition options do not

have equal CPU demand (14 requests).

network. For fk = 8 and vk = 4 and 10 requests, the proposed method switches to the shorter

chain. A similar transition occurs for fk = 9 and vk = 3, and 13 requests. Interestingly, for vk = 3,

the transition to the smallest chain happens at a larger number of requests compared to vk = 4. This

is because for vk = 3, VNFs require less capacity for reusing and the nodes reach their capacity

limit at higher loads compared to vk = 4.

In Fig. 5.8 we evaluate the impact of an increased capacity demand on the embedding cost ra-

tio for various chain capacities of 30, 40, 50, and 60 for 10 requests. In this result, all options

have an equal CPU demand. We can observe from the figure that the embedding cost ratio for

any given capacity demand is larger than one, indicating that the proposed method outperforms

the decomposition-only approach in terms of embedding cost. Moreover, we observe that as the

capacity demand of VNFs increases, the performance gain also increases. This difference is most

noticeable in the gap between the embedding cost of the decomposition-only approach and the pro-

posed method. In the decomposition-only approach, with an increase in the amount of capacity

demand, more VNFs are newly instantiated throughout the network. This necessitates higher ca-

pacity demand, leading to an increase in the total embedding cost. In contrast, the proposed method

involves migrating VNFs, allowing for more VNF reuse and a reduced amount of required capacity

demand.

Impact of transmission cost on the average embedding cost: Figure 5.9 shows the average

embedding cost and average number of deployed VNF instances for 10 requests and 5 VNFs per

request, and a node capacity of 55 CPUs. We note that the average embedding cost can be broken

106

Figure 5.8: Embedding Cost ratio vs. capacity demand for 10 requests (all options have an equal

CPU demand).

down to hosting cost (fixed and variable capacity costs) and transmission cost. Figure 5.9.a illus-

trates the average embedding cost for different values of fk and vk as stacked bar chart. The bottom

of each bar represents the average hosting cost, while the top one represents the average transmission

cost. In these results, we consider two scenarios with different values of transmission costs: θr = 2

and θr = 10. Throughout both scenarios and for various values of fk and vk, we set the hosting cost

to ωn = 2 for all nodes. The results are accompanied with 99% confidence intervals. We observed

that in the decomposition-only approach, by increasing the value of fk from 6 to 11, the average

hosting cost increases due to an escalated capacity demand for newly instantiated VNFs. Given

that the decomposition-only approach does not have any migration, it requires more capacity for

instantiating VNF instances in the network. Conversely, within the proposed method, increasing fk

from 6 to 11 results in a decrease of the average hosting costs. This reduction is primarily attributed

to fewer deployed VNF instances being instantiated across the network, while a greater number of

VNFs are reused, benefiting from increased fixed capacity as it shows in Fig 5.9.b. Furthermore, in

the proposed method, the average transmission cost for both θr = 2 and θr = 10 is slightly higher

107

(a) Average embedding cost vs. (fk, vk) (b) Total number of deployed VNF instances vs. (fk, vk).

Figure 5.9: Breakdown of embedding cost for 10 requests and 5 VNFs per request.

compared to the decomposition-only approach. This happens because reused VNFs may be located

far from the source and destination, consequently leading to an increased transmission cost. Despite

this increase in transmission costs, the potential decrease in hosting costs through VNF reuse makes

it more cost-efficient to embed VNFs even at a greater distance from the source and destination.

5.6 Conclusions

In this chapter, we studied the problem of joint VNF decomposition and migration with the

main objective of minimizing the embedding cost by promoting VNF reusability. We proposed a

cost model, which includes fixed capacity, variable capacity, and transmission cost. The objective is

to select the optimal VNF decomposition options and migrate the previously deployed VNFs from

overloaded nodes. After formulating the joint problem of VNF decomposition and migration as

an ILP, we proposed two algorithms to solve the problem. Extensive simulations were conducted

to evaluate the performance of our proposed algorithms, considering the asymptotic behavior and

adaptiveness of the proposed algorithm. Simulation results demonstrate that our proposed algo-

rithms can reduce the embedding cost by 62% and the number of deployed VNF instances by 60%

compared to a decomposition-only approach. An interesting direction for future work would be to

explore the problem of joint VNF decomposition and migration by considering more complex VNF-

FG typologies such split and split-and-merge. Additionally, another interesting research avenue is

108

to explore the impact of dynamic traffic on migration strategies for a network with mobile users.

109

Chapter 6

Conclusions and Future Works

6.1 Conclusions

The VNF embedding may also be dynamic due to changes in the network configuration. This

adds an additional layer of complexity in terms of keeping track of where a given VNF is running.

In other words, the VNF migration problem generally refers to the process of migrating VNFs from

one node to another to achieve objectives such as load balancing, cost reduction, energy saving,

and recovery from failures. Making decisions about where, when, and how to transfer the VNFs

from one node to another in response to variations in service requests is challenging. Especially

when facing the following challenges: Firstly, when there is mobility among end-users and fog

nodes, coupled with limited fog node coverage, this results in service discontinuity and increased

application delay. Secondly, stringent latency requirements between VNFs can tightly couple the

VNFs, hindering the individual migration of each VNF. Thirdly, an overloaded node can signifi-

cantly impact the determination of the best VNF decomposition option among all possible choices,

consequently degrading QoS. This thesis proposes algorithmic solutions to address these issues.

For the problem of application component migration in an NFV-based hybrid cloud/fog environ-

ment by considering mobile end-user and fog nodes, in chapter 3, we proposed a deep Q-learning

approach to minimize the overall cost and delay. The cost consists of power consumption and

migration costs, and the delay consists of processing, communication, and migration delay. The

simulation results revealed that our method achieves up to 61% and 56% of improvement in cost

110

and delay compared to the existing methods.

In Chapter 4, we addressed the problem of migrating a cluster of VNFs while considering

straight latency requirements between VNFs. Our study focused on reusing the already deployed

VNFs. The objective was to determine a cluster of VNFs and migrate this cluster of VNFs so that

the total embedding cost is minimized. We proposed two variants of VNF cluster migration algo-

rithms, which allow migrating a cluster of VNFs to single and multiple destinations. Our results

indicate that the proposed algorithm can achieve up to a 14% improvement in total embedding cost

compared to the existing benchmarks, which comes at the expense of a 60% increase in execution

time.

The focus of our study in Chapter 5 involved considering migration strategies while assuming

each VNF could have multiple decomposition options. In this chapter, our goal is to select the

best decomposition option in situations where nodes are overloaded. Our research delves into the

problem of joint VNF decomposition and migration by considering the reuse of already deployed

VNFs. We mathematically model the problem as an ILP aimed at minimizing the embedding cost.

This cost includes fixed capacity, variable capacity, and transmission costs. To address this, we

introduced two algorithms to select the best VNF decomposition option by migrating previously

deployed VNFs from overloaded nodes. This strategy aimed to minimize the embedding cost while

promoting VNF reusability. The simulation results demonstrate that our proposed algorithms can

improve the embedding cost of the decomposition-only approach by 62% and reduce the number of

new instances by 60%.

6.2 Future Works

This thesis presented a significant contributions on VNF migration. However, there still exist

some future research directions in this area.

6.2.1 Application Component Migration

As future research, the work presented in Chapter 3 could be extended by exploring application

component migration in conjunction with load balancing within hybrid cloud/fog environments.

111

Other aspects to consider is interoperability and federation of fog nodes to minimize the latency

further. From a failure management perspective, it may be interesting to deal with the failure of often

distributed fog nodes by means of designing efficient fault-tolerant migration techniques. Another

interesting research avenue is to consider the resource allocation and scheduling in conjunction with

the migration of VNFs in hybrid cloud/fog environments

6.2.2 VNF Cluster Migration

An interesting direction for future work would be to explore the problem of complex migration.

This involves considering more sophisticated patterns of VNF migration, allowing for the eviction

of VNFs of an NS from a specific node and the migration of a cluster of VNFs from another NS to

that specific node. Another viable research avenue would be to extend our proposed algorithm in

Chapter 4 by considering the situation in which multiple requests arrive in the system at one time

and decide the order of cluster migration by considering the highest affinity requests. Furthermore,

complex topologies such as linear chains, splits, and split-and-merged configurations [105] may

need to be taken into account when determining clusters of VNFs for a given VNF forwarding

graph. This presents an intriguing research direction to build upon this work.

6.2.3 Joint VNF Decomposition and Migration

Future research could explore the challenge of joint VNF decomposition and migration, partic-

ularly in the context of complex network topologies like linear chains, splits, and split-and-merged

configurations. Additionally, investigating the impact of dynamic traffic on migration strategies

presents another promising avenue for research in this field. This can include examining migration

strategies for overloaded links and their influence on the selection of decomposition options.

112

Bibliography

[1] S. N. Afrasiabi, S. Kianpisheh, C. Mouradian, R. H. Glitho, and A. Moghe, ªApplication

components migration in NFV-based hybrid cloud/fog systems,º in Proc. IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 1±6, 2019.

[2] S. N. Afrasiabi, A. Ebrahimzadeh, C. Mouradian, S. Malektaji, and R. H. Glitho, ªReinforce-

ment learning-based optimization framework for application component migration in NFV

cloud-fog environments,º IEEE Transactions on Network and Service Management, 2022.

[3] S. N. Afrasiabi, A. Ebrahimzadeh, C. Mouradian, W. Li, A. Recse, R. SzaboÂ, and R. H.

Glitho, ªCost-efficient cluster migration of vnfs for virtualized network function forwarding

graph embedding,º IEEE Transactions on Network and Service Management, 2022.

[4] S. N. Afrasiabi, A. Ebrahimzadeh, A. Azhdari, R. Szabo, C. Mouradian, W. Li, and R. Glitho,

ªJoint VNF decomposition and migration for cost-efficient VNF forwarding graph embed-

ding,º in GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023.

[5] S. N. Afrasiabi, A. Ebrahimzadeh, C. Mouradian, R. SzaboÂ, and R. H. Glitho, ªCost-efficient

cluster migration of vnfs for virtualized network function forwarding graph embedding,º

IEEE Transactions on Network Science and Engineering, 2022.

[6] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. T. Jahromi, and R. H.

Glitho, ªApplication component placement in NFV-based hybrid cloud/fog systems with mo-

bile fog nodes,º IEEE Journal on Selected Areas in Communications, vol. 37, pp. 1130±1143,

May 2019.

113

[7] H. Van Hasselt, A. Guez, and D. Silver, ªDeep reinforcement learning with double Q-

learning,º in Proc. AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[8] A. Recse, R. Szabo, and B. Nemeth, ªElastic resource management and network slicing for

IoT over edge clouds,º in Proc. ACM International Conference on the Internet of Things,

pp. 1±8, 2020.

[9] A. Ebrahimzadeh, N. Promwongsa, S. N. Afrasiabi, C. Mouradian, W. Li, Recse, R. SzabÂo,

and R. H. Glitho, ªh-horizon sequential look-ahead greedy algorithm for VNF-FG embed-

ding,º in Proc. IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), pp. 41±46, 2021.

[10] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, ªNetwork

function virtualization: State-of-the-art and research challenges,º IEEE Communications

Surveys & Tutorials, vol. 18, no. 1, pp. 236±262, 2016.

[11] J. Gil Herrera and J. F. Botero, ªResource allocation in NFV: A comprehensive survey,º IEEE

Transactions on Network and Service Management, vol. 13, no. 3, pp. 518±532, 2016.

[12] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, and C. Metz, ªCOLAP: A predictive

framework for service function chain placement in a multi-cloud environment,º in Proc. IEEE

Annual Computing and Communication Workshop and Conference (CCWC), pp. 1±9, 2017.

[13] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, ªA

comprehensive survey on fog computing: State-of-the-art and research challenges,º IEEE

Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416±464, 2018.

[14] N. ETSI, ªNetwork functions virtualisation (NFV); terminology for main concepts in NFV,º

Group Specification, vol. 3, pp. 1±10, 2014.

[15] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, ªMigration modeling and learning algo-

rithms for containers in fog computing,º IEEE Transactions on Services Computing, vol. 12,

no. 5, pp. 712±725, 2018.

114

[16] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, ªA

comprehensive survey on fog computing: State-of-the-art and research challenges,º IEEE

Communications Surveys & Tutorials, vol. 20, pp. 416±464, Firstquarter 2018.

[17] Q. Duan, Y. Yan, and A. V. Vasilakos, ªA Survey on Service-Oriented Network Virtualization

Toward Convergence of Networking and Cloud Computing,º IEEE Transactions on Network

and Service Management, vol. 9, no. 4, pp. 373±392, 2012.

[18] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang, and Z. Ding,

ªA survey of multi-access edge computing in 5g and beyond: Fundamentals, technology

integration, and state-of-the-art,º IEEE Access, vol. 8, pp. 116974±117017, 2020.

[19] J. Li, W. Shi, Q. Ye, W. Zhuang, X. Shen, and X. Li, ªOnline joint VNF chain composi-

tion and embedding for 5G networks,º in Proc. IEEE Global Communications Conference

(GLOBECOM), pp. 1±6, 2018.

[20] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and P. Demeester, ªNet-

work service chaining with optimized network function embedding supporting service de-

compositions,º Computer Networks, vol. 93, pp. 492±505, 2015.

[21] R. Szabo, M. Kind, F.-J. Westphal, H. Woesner, D. Jocha, and A. Csaszar, ªElastic network

functions: opportunities and challenges,º IEEE Network, vol. 29, no. 3, pp. 15±21, 2015.

[22] D. Li, P. Hong, W. Wang, and J. Pei, ªVirtual network function placement with function

decomposition for virtual network slice,º in Proc. IEEE Conference on Standards for Com-

munications and Networking (CSCN), pp. 1±4, 2018.

[23] B. Yi, X. Wang, K. Li, M. Huang, et al., ªA comprehensive survey of network function

virtualization,º Computer Networks, vol. 133, pp. 212±262, 2018.

[24] S. Wang, J. Xu, N. Zhang, and Y. Liu, ªA survey on service migration in mobile edge com-

puting,º IEEE Access, vol. 6, pp. 23511±23528, April 2018.

[25] Z. Rejiba, X. Masip-Bruin, and E. MarÂın-Tordera, ªA survey on mobility-induced service

115

migration in the fog, edge, and related computing paradigms,º ACM Comput. Surv., vol. 52,

sep 2019.

[26] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, ªAppli-

cations of deep reinforcement learning in communications and networking: A survey,º IEEE

Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133±3174, 2019.

[27] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, ªDynamic service migra-

tion in mobile edge computing based on Markov decision process,º IEEE/ACM Transactions

on Networking, vol. 27, pp. 1272±1288, May 2019.

[28] D. Zhao, T. Yang, Y. Jin, and Y. Xu, ªA service migration strategy based on multiple attribute

decision in mobile edge computing,º in Proc. IEEE International Conference on Communi-

cation Technology (ICCT), pp. 986±990, May 2017.

[29] L. Liang, J. Xiao, Z. Ren, Z. Chen, and Y. Jia, ªParticle swarm based service migration

scheme in the edge computing environment,º IEEE Access, vol. 8, pp. 45596±45606, March

2020.

[30] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, ªDeep reinforcement learning based

service migration strategy for edge computing,º in Proc. IEEE International Conference on

Service-Oriented System Engineering (SOSE), pp. 116±1165, May 2019.

[31] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, ªA joint service migration and mo-

bility optimization approach for vehicular edge computing,º IEEE Transactions on Vehicular

Technology, vol. 69, pp. 9041±9052, June 2020.

[32] V. Eramo, M. Ammar, and F. G. Lavacca, ªMigration energy aware reconfigurations of vir-

tual network function instances in NFV architectures,º IEEE Access, vol. 5, pp. 4927±4938,

March 2017.

[33] J. Xia, D. Pang, Z. Cai, M. Xu, and G. Hu, ªReasonably migrating virtual machine in NFV-

featured networks,º in Proc. IEEE International Conference on Computer and Information

Technology (CIT), pp. 361±366, March 2016.

116

[34] J. Xia, Z. Cai, and M. Xu, ªOptimized virtual network functions migration for NFV,º in Proc.

IEEE International Conference on Parallel and Distributed Systems (ICPADS), pp. 340±346,

Jan 2016.

[35] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, ªAn approach for service function chain

routing and virtual function network instance migration in network function virtualization

architectures,º IEEE/ACM Transactions on Networking, vol. 25, pp. 2008±2025, March 2017.

[36] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen, ªVirtual network function migra-

tion based on dynamic resource requirements prediction,º IEEE Access, vol. 7, pp. 112348±

112362, Aug. 2019.

[37] R. Chen, H. Lu, Y. Lu, and J. Liu, ªMSDF: A deep reinforcement learning framework for

service function chain migration,º in Proc. IEEE Wireless Communications and Networking

Conference (WCNC), pp. 1±6, June 2020.

[38] D. Zhao, G. Sun, D. Liao, S. Xu, and V. Chang, ªMobile-aware service function chain migra-

tion in cloud-fog computing,º Future Generation Computer Systems, vol. 96, pp. 591±604,

July 2019.

[39] A. Yazidi, F. Ung, H. Haugerud, and K. Begnum, ªAffinity aware-scheduling of live migration

of virtual machines under maintenance scenarios,º in Proc. IEEE Symposium on Computers

and Communications (ISCC), pp. 1±4, 2019.

[40] J. Narantuya, H. Zang, and H. Lim, ªService-aware cloud-to-cloud migration of multiple

virtual machines,º IEEE Access, vol. 6, pp. 76663±76672, 2018.

[41] Narantuya, Jargalsaikhan and Zang, Hannie and Lim, Hyuk, ªAutomated cloud migration

based on network traffic dependencies,º in 2017 IEEE Conference on Network Softwarization

(NetSoft), pp. 1±4, 2017.

[42] T. Lu, M. Stuart, K. Tang, and X. He, ªClique migration: Affinity grouping of virtual ma-

chines for inter-cloud live migration,º in Proc. IEEE International Conference on Network-

ing, Architecture, and Storage, pp. 216±225, 2014.

117

[43] B. Yi, X. Wang, M. Huang, and A. Dong, ªA multi-criteria decision approach for minimizing

the influence of vnf migration,º Computer Networks, vol. 159, pp. 51±62, 2019.

[44] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, ªA disaggregated packet pro-

cessing architecture for network function virtualization,º IEEE Journal on Selected Areas in

Communications, vol. 38, no. 6, pp. 1075±1088, 2020.

[45] P. Wang, J. Lan, X. Zhang, Y. Hu, and S. Chen, ªDynamic function composition for network

service chain: Model and optimization,º Computer Networks, vol. 92, pp. 408±418, 2015.

[46] S. Bian, X. Huang, Z. Shao, X. Gao, and Y. Yang, ªService chain composition with fail-

ures in nfv systems: A game-theoretic perspective,º in ICC 2019 - 2019 IEEE International

Conference on Communications (ICC), pp. 1±6, 2019.

[47] B. Spinnewyn, P. H. Isolani, C. Donato, J. F. Botero, and S. LatrÂe, ªCoordinated service com-

position and embedding of 5G location-constrained network functions,º IEEE Transactions

on Network and Service Management, vol. 15, no. 4, pp. 1488±1502, 2018.

[48] M. Wang, B. Cheng, S. Zhao, B. Li, W. Feng, and J. Chen, ªAvailability-aware service chain

composition and mapping in NFV-enabled networks,º in Proc. IEEE International Confer-

ence on Web Services (ICWS), pp. 107±115, 2019.

[49] D. Moro, G. Verticale, and A. Capone, ªA framework for network function decomposition

and deployment,º in Proc. IEEE International Conference on the Design of Reliable Com-

munication Networks (DRCN), pp. 1±6, 2020.

[50] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and P. Demeester, ªNet-

work service chaining with optimized network function embedding supporting service de-

compositions,º Computer Networks, vol. 93, pp. 492±505, 2015. Cloud Networking and

Communications II.

[51] S. M. A. AraÂujo, F. S. H. de Souza, and G. R. Mateus, ªA composition selection mecha-

nism for chaining and placement of virtual network functions,º in 2019 15th International

Conference on Network and Service Management (CNSM), pp. 1±5, 2019.

118

[52] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao, ªTowards latency optimization

in hybrid service function chain composition and embedding,º in IEEE INFOCOM 2020 -

IEEE Conference on Computer Communications, pp. 1539±1548, 2020.

[53] S. B. Chetty, H. Ahmadi, M. Tornatore, and A. Nag, ªDynamic decomposition of ser-

vice function chain using a deep reinforcement learning approach,º IEEE Access, vol. 10,

pp. 111254±111271, 2022.

[54] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, ªService function chain embedding for

NFV-enabled IoT based on deep reinforcement learning,º IEEE Communications Magazine,

vol. 57, no. 11, pp. 102±108, 2019.

[55] L. Qu, C. Assi, M. J. Khabbaz, and Y. Ye, ªReliability-aware service function chaining with

function decomposition and multipath routing,º IEEE Transactions on Network and Service

Management, vol. 17, no. 2, pp. 835±848, 2020.

[56] N. Mohamed, J. Al-Jaroodi, I. Jawhar, H. Noura, and S. Mahmoud, ªUAVFog: A UAV-

based fog computing for Internet of Things,º in Proc. IEEE SmartWorld, Ubiquitous Intel-

ligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communica-

tions, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1±8, June 2017.

[57] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, ªMigration modeling and learning algo-

rithms for containers in fog computing,º IEEE Transactions on Services Computing, vol. 12,

pp. 712±725, Sep. 2018.

[58] C. Mouradian, F. Ebrahimnezhad, Y. Jebbar, J. K. Ahluwalia, S. N. Afrasiabi, R. H. Glitho,

and A. Moghe, ªAn IoT platform-as-a-service for NFV-based hybrid cloud/fog systems,º

IEEE Internet of Things Journal, vol. 7, pp. 6102±6115, Jan. 2020.

[59] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen, ªDelay-aware microservice

coordination in mobile edge computing: A reinforcement learning approach,º IEEE Trans-

actions on Mobile Computing, vol. 20, pp. 939±951, Dec. 2021.

119

[60] Y. Cui, V. K. Lau, R. Wang, H. Huang, and S. Zhang, ªA survey on delay-aware resource con-

trol for wireless systemsÐlarge deviation theory, stochastic lyapunov drift, and distributed

stochastic learning,º IEEE Transactions on Information Theory, vol. 58, pp. 1677±1701,

March 2012.

[61] G. E. Monahan, ªState of the artÐa survey of partially observable Markov decision pro-

cesses: theory, models, and algorithms,º Management Science, vol. 28, pp. 1±16, Jan. 1982.

[62] Y. Zhai, Y. Wang, I. You, J. Yuan, Y. Ren, and X. Shan, ªA DHT and MDP-based mobility

management scheme for large-scale mobile internet,º in Proc. IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 379±384, June 2011.

[63] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, ªAppli-

cations of deep reinforcement learning in communications and networking: A survey,º IEEE

Communications Surveys & Tutorials, vol. 21, pp. 3133±3174, May 2019.

[64] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and F. Liberal, ªVirtual

network function placement optimization with deep reinforcement learning,º IEEE Journal

on Selected Areas in Communications, vol. 38, pp. 292±303, Dec. 2019.

[65] Y. Li, B. Shen, J. Zhang, X. Gan, J. Wang, and X. Wang, ªOffloading in hcns: Congestion-

aware network selection and user incentive design,º IEEE Transactions on Wireless Commu-

nications, vol. 16, pp. 6479±6492, July 2017.

[66] M. Tokic and G. Palm, ªValue-difference based exploration: adaptive control between

epsilon-greedy and softmax,º in Proc. Springer Annual conference on Artificial Intelligence,

pp. 335±346, 2011.

[67] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, ªPlaying atari with deep reinforcement learning,º in Proc. Workshop on Deep Learn-

ing, NIPS, 2013.

[68] C. Wang, L. Ma, R. Li, T. S. Durrani, and H. Zhang, ªExploring trajectory prediction through

machine learning methods,º IEEE Access, vol. 7, pp. 101441±101452, July 2019.

120

[69] G. Rjoub, J. Bentahar, O. A. Wahab, and A. Bataineh, ªDeep smart scheduling: A deep learn-

ing approach for automated big data scheduling over the cloud,º in Proc. IEEE International

Conference on Future Internet of Things and Cloud (FiCloud), pp. 189±196, Jan 2019.

[70] M. Hassan, H. Chen, and Y. Liu, ªDears: A deep learning based elastic and automatic re-

source scheduling framework for cloud applications,º in Proc. IEEE International Confer-

ence on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Com-

munications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable

Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 541±

548, March 2018.

[71] D. Yi, X. Zhou, Y. Wen, and R. Tan, ªToward efficient compute-intensive job allocation for

green data centers: A deep reinforcement learning approach,º in Proc. IEEE International

Conference on Distributed Computing Systems (ICDCS), pp. 634±644, 2019.

[72] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, ªDeep learning with long short-term

memory for time series prediction,º IEEE Communications Magazine, vol. 57, pp. 114±119,

March 2019.

[73] Y. Bengio, P. Simard, and P. Frasconi, ªLearning long-term dependencies with gradient de-

scent is difficult,º IEEE Transactions on Neural Networks, vol. 5, pp. 157±166, March 1994.

[74] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,

and T. Darrell, ªLong-term recurrent convolutional networks for visual recognition and de-

scription,º in Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625±

2634, 2015.

[75] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al., ªTensorFlow: a system for large-scale machine learning,º in Proc. USENIX

Symposium on Operating Systems Design and Implementation (OSDI), pp. 265±283, 2016.

[76] D. P. Kingma and J. Ba, ªAdam: A method for stochastic optimization,º in Proc. International

Conference on Learning Representations, pp. 1±13, Dec. 2015.

121

[77] I. Lera, C. Guerrero, and C. Juiz, ªYAFS: A simulator for IoT scenarios in fog computing,º

IEEE Access, vol. 7, pp. 91745±91758, 2019.

[78] C. Qu, P. Calyam, J. Yu, A. Vandanapu, O. Opeoluwa, K. Gao, S. Wang, R. Chastain, and

K. Palaniappan, ªDroneCOCoNet: Learning-based edge computation offloading and con-

trol networking for drone video analytics,º Elsevier Future Generation Computer Systems,

vol. 125, pp. 247±262, 2021.

[79] D. A. Korneev, A. V. Leonov, and G. A. Litvinov, ªEstimation of mini-UAVs network param-

eters for search and rescue operation scenario with Gauss-Markov mobility model,º in Proc.

IEEE Systems of Signal Synchronization, Generating and Processing in Telecommunications

(SYNCHROINFO), pp. 1±7, 2018.

[80] S. K. Maakar, Y. Singh, and R. Singh, ªImplementation of three dimensional model for flying

Ad Hoc network,º in Proc. IEEE International Conference on Intelligent Communication and

Computational Techniques (ICCT), pp. 303±307, 2019.

[81] S. Qazi, A. S. Siddiqui, and A. I. Wagan, ªUAV based real time video surveillance over

4G LTE,º in Proc. IEEE International Conference on Open Source Systems Technologies

(ICOSST), pp. 141±145, 2015.

[82] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, ªDynamic service mi-

gration and workload scheduling in edge-clouds,º Elsevier Performance Evaluation, vol. 91,

pp. 205±228, 2015.

[83] C. Song, T. Koren, P. Wang, and A.-L. BarabÂasi, ªModelling the scaling properties of human

mobility,º Nature physics, vol. 6, no. 10, pp. 818±823, 2010.

[84] S. Roy, N. Ghosh, P. Ghosh, and S. K. Das, ªBioMCS: A bio-inspired collaborative data

transfer framework over fog computing platforms in mobile crowdsensing,º in Proc. ACM

International Conference on Distributed Computing and Networking (ICDCN), pp. 1±10,

2020.

122

[85] D. Broyles, A. Jabbar, J. P. Sterbenz, et al., ªDesign and analysis of a 3±D Gauss-Markov

mobility model for highly-dynamic airborne networks,º in Proc. International Telemetering

Conference (ITC), pp. 25±28, Oct. 2010.

[86] M. McGuire, ªStationary distributions of random walk mobility models for wireless ad hoc

networks,º in Proc. ACM International Symposium on Mobile Ad Hoc Networking and Com-

puting, pp. 90±98, May 2005.

[87] C. T. Cicek, H. Gultekin, B. Tavli, and H. Yanikomeroglu, ªBackhaul-aware optimization of

UAV base station location and bandwidth allocation for profit maximization,º IEEE Access,

vol. 8, pp. 154573±154588, 2020.

[88] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, ªOn reducing IoT service delay via fog

offloading,º IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998±1010, 2018.

[89] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q. Zhang, W. Xie, and

J. P. Jue, ªFOGPLAN: A lightweight QoS-aware dynamic fog service provisioning frame-

work,º IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5080±5096, 2019.

[90] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, ªOn reducing IoT service delay via fog

offloading,º IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998±1010, 2018.

[91] B. Zhang, Q. Fan, X. Zhang, Z. Fu, S. Wang, J. Li, and Q. Xiong, ªA survey of VNF forward-

ing graph embedding in B5G/6G networks,º Springer Wireless Networks, pp. 1±24, 2021.

[92] S. Aidi, M. F. Zhani, and Y. Elkhatib, ªOn optimizing backup sharing through efficient VNF

migration,º in Proc. IEEE Conference on Network Softwarization (NetSoft), pp. 60±65, 2019.

[93] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, ªComma: Coordinating the migration

of multi-tier applications,º SIGPLAN Not., vol. 49, p. 153±164, mar 2014.

[94] Z. Xu, Z. Zhang, W. Liang, Q. Xia, O. Rana, and G. Wu, ªQoS-aware VNF placement and

service chaining for IoT applications in multi-tier mobile edge networks,º ACM Trans. Sen.

Netw., vol. 16, no. 3, pp. 1±27, 2020.

123

[95] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, ªOn the placement of VNF

managers in large-scale and distributed NFV systems,º IEEE Transactions on Network and

Service Management, vol. 14, no. 4, pp. 875±889, 2017.

[96] C. Morin, G. Texier, C. Caillouet, G. Desmangles, and C.-T. Phan, ªOptimization of network

services embedding costs over public and private clouds,º in 2020 International Conference

on Information Networking (ICOIN), pp. 360±365, 2020.

[97] S. Orlowski, R. WessÈaly, M. PiÂoro, and A. Tomaszewski, ªSndlib 1.0Ðsurvivable network

design library,º Networks, vol. 55, no. 3, pp. 276±286, 2010.

[98] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, ªThe Internet Topology

Zoo,º IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765±1775,

2011.

[99] ªConfigure per VM Tier 1 networking performance.º (online).

https://cloud.google.com/compute/docs/networking/

configure-vm-with-high-bandwidth-configuration#:˜:text=To%

20create%20a%20a%20VM,Specify%20your%20firewall%20rules.

[100] D. Cho, J. Taheri, A. Y. Zomaya, and P. Bouvry, ªReal-time virtual network function (VNF)

migration toward low network latency in cloud environments,º in Proc. IEEE International

Conference on Cloud Computing (CLOUD), pp. 798±801, 2017.

[101] S. N. Afrasiabi, A. Ebrahimzadeh, C. Mouradian, R. SzaboÂ, and R. H. Glitho, ªCjoint vnf

decomposition and migration for cost-efficient vnf forwarding graph embedding,º Submited

ToIEEE Trans. Netw. Serv. Manag, 2023.

[102] J. Fu and G. Li, ªAn efficient vnf deployment scheme for cloud networks,º in Proc. IEEE

International Conference on Communication Software and Networks (ICCSN), pp. 497±502,

2019.

[103] F. Zhang, H. Lu, F. Guo, and Z. Gu, ªTraffic prediction based vnf migration with temporal

124

convolutional network,º in 2021 IEEE Global Communications Conference (GLOBECOM),

pp. 1±6, 2021.

[104] A. Azhdari, A. Ebrahimzadeh, N. Afrasiabi, S. Robert, C. Mouradian, and R. Li, Wu-

bin Glitho, ªCost-aware topological decomposition of virtual network function forwarding

graphs,º in GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023.

[105] Q. Zhang, F. Liu, and C. Zeng, ªAdaptive interference-aware VNF placement for service-

customized 5G network slices,º in Proc. IEEE Conference on Computer Communications

(INFOCOM), pp. 2449±2457, 2019.

125

	List of Figures
	List of Tables
	Introduction
	Overview
	Challenges
	Thesis Contributions
	Reinforcement Learning-based Optimization Framework for Application Component Migration in NFV Cloud-Fog Environments con1,jour1
	Cost-efficient Cluster Migration of VNFs for VNF Forwarding Graph Embedding jour2
	Joint VNF Migration and Decomposition for Cost-efficient VNF Forwarding Graph Embedding conf3,jour3

	Background Information
	Cloud, Edge and Fog Computing
	NFV Resource Allocation
	Reinforcement learning

	Thesis Outline

	Critical Review of the State of the Art
	Application Component Migration in Edge Computing
	VNF Migration
	Simple VNF Migration
	Cluster VNF Migration

	Joint VNF Decomposition and Migration
	VNF Decomposition
	Joint Methods

	Conclusion

	Reinforcement Learning-based Optimization Framework for Application Component Migration in NFV Cloud-Fog Environments
	Introduction
	Motivating Scenario
	System Model and Problem Formulation
	System Model
	Problem Formulation
	Problem Analysis

	RL-Based VNF Migration
	MDP Framework
	Design of the Deep RL Agent
	DDQN with LSTM Cells
	Complexity Analysis

	Results and Discussions
	Simulation Settings
	Convergence Performance
	Simulation Results

	Conclusions

	Cost-efficient Cluster Migration of VNFs for VNF forwarding graph embedding
	Introduction
	Motivating Scenario
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Single-/Multi-Destination Cluster VNF Migration Algorithm
	Single-Destination Cluster Migration
	Multi-Destination Cluster Migration
	Complexity Analysis

	Results and Discussions
	Simulation Setup
	Results

	Conclusions

	Joint VNF Decomposition and Migration for Cost-efficient VNF Forwarding Graph Embedding
	Introduction
	Motivating Scenario
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Solution
	 Cost Aware VNF Decomposition (CA-VNF-D)
	Node Aware VNF Migration (NA-VNF-M)
	Asymptotic Analysis

	Results and Discussions
	Simulation setup
	Results

	Conclusions

	Conclusions and Future Works
	Conclusions
	Future Works
	Application Component Migration
	VNF Cluster Migration
	Joint VNF Decomposition and Migration

