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ABSTRACT 

 

Detecting Collusion in Public Procurement: A Comparative Study of Machine Learning Models 

 

 

Ruchika Barot 

 

 

Detecting collusion in public procurement is critical to ensure fair and transparent practices in 

government acquisitions. Bid collusion in auctions poses a major challenge in public procurement 

by causing unfair price hikes through unlawful cooperation among competing firms, consistently 

affecting the overall supply chain. This study uses machine learning methods to investigate 

collusion in public procurement processes. It delves deeply into exploring multiple machine 

learning models such as random forests, extra tree classifiers, support vector classifiers, Neural 

Networks, Gradient Boosting, and various combinations of models for collusion detection. First, 

the models were trained using available data, followed by the inclusion of screening variables 

derived from bid information as additional features. The additional features were fed to the models, 

which went through fine-tuning of parameters. Additionally, comparative analyses were carried 

out to evaluate the merits and drawbacks of each model. Metrics including Accuracy, balanced 

accuracy, precision, recall, F1-score, and ROC-AUC score were evaluated, providing a 

comprehensive evaluation framework. Various settings were used to compare which set of inputs 

gives the highest accuracy in collusion detection. The ROC-AUC analysis brought forward crucial 

insights, particularly regarding models' abilities to minimize false positives while maximizing true 

positives. Models like Random Forest and Gradient Boosting demonstrated superior performance, 

showcasing lower false positive rates—a crucial aspect when identifying collusion in public 

procurement. Additionally, the study underscores the significance of feature engineering in 

collusion detection. Specifically, attributes like screens - CV, SPD, DIFFP, RD, SKEW, KURTO, 

and KS significantly aid algorithms in processing data effectively to identify collusion patterns. 

The outcomes of this study carry significant implications for both the specific domain under 

investigation and the broader field of collusion detection. Ultimately, this research provides a 

valuable guide for policymakers, procurement officers, and data scientists, offering valuable 

insights into the effective machine learning techniques tailored for detecting collusion in public 

procurement. 

 

 

Keywords: Collusion detection, public procurement, Machine learning models, Feature 

engineering 
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Chapter 1 INTRODUCTION 

 

Supply chain management encompasses a network of interconnected stages and entities 

involved in fulfilling consumer demands. As shown in Figure 1.1, this network expands from 

suppliers and manufacturers to distributors, retailers, and eventually the consumers themselves. It 

entails coordinating, managing, and refining operations across these elements to streamline 

efficiency and meet consumer needs. At every phase of the supply chain, there's a consistent 

acquisition of a variety of supplies and services that extends from the inception to the completion 

of the supply chain. Procurement refers to the process of acquiring goods or services from external 

sources, encompassing sourcing, negotiation through auction, purchasing, and managing supplier 

relationships. Procurement plays a crucial role in supply chain management by ensuring timely 

access to quality resources, optimizing costs, and mitigating risks associated with suppliers 

(Monczka, 2009). Within the domain of public procurement, the government stands as the 

consumer in figure 1.1, ultimately serving the citizens of the nation. Public procurement stands as 

an integral part of the supply chain, characterized by its systematic approach to government 

acquisitions, intending to utilize public funds efficiently and transparently (Rodríguez et al., 2022). 

Public procurement emerges as a robust mechanism to accomplish economic, environmental, 

technological, and social goals. The process of public procurement is often intricate and resource-

intensive, demanding substantial investments. Public Procurement is susceptible to corruption due 

to the high value of funds involved, which frequently constitutes a significant share, typically 

falling within the range of 10% to 20% of GDP. Government spending, as per the Organization for 

Economic Cooperation and Development (OECD) 2017, constitutes a noteworthy 12% of global 

GDP (Bosio et al., 2022).  
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Figure 1.1: Supply chain management network 

Public procurement carries a high risk of potential illegality throughout the entire process 

of acquiring goods and services. A significant challenge in public procurement process is Bid 

rigging, also known as collusion in auctions which involves illegal agreements between rival 

companies to boost their profits. Collusion, or bid rigging, is malpractice where competing firms 

form unlawful agreements to inflate prices, limiting fair competition and distorting the 

procurement process (Rustiarini et al., 2019). These agreements often lead to coordinated (non-

competitive) price hikes, and pose a persistent challenge in the public sector, especially during the 

procurement of high-cost capital works. This practice undermines the integrity of the procurement 

process, hindering innovation and quality while risking budget inefficiencies. Therefore, there's a 

necessity for a robust detection methodology capable of identifying collusion among participants 

engaged in public procurement processes. We aim to develop methodologies for detecting 

collusion within Italy's public procurement system and identify which auctions might be collusive. 

1.1 Research Problem Description 

Collusion detection in public procurement is crucial as it safeguards fairness, transparency, 

and efficiency in government acquisitions. By preventing bid manipulation and price-fixing among 

suppliers, it ensures a level playing field, ultimately saving costs, curbing corruption, and 

optimizing the use of taxpayers' money. Detecting collusion fosters trust, accountability, and 

healthy competition, crucial for maintaining integrity in procurement processes and maximizing 
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the value derived from public spending, thus benefiting both suppliers and the public. Which also 

leads to better supplier selection and quality of supply or work delivered. 

This research focuses on improving the accuracy of identifying collusion in public 

procurement. It does this by using advanced machine learning techniques commonly used in 

various industries. Specifically, this master's thesis aims to boost the effectiveness of current 

collusion detection methods by refining parameters and optimizing features. This enhanced 

approach is expected to yield better overall performance in identifying collusion instances. We 

seek to explore several research questions. Firstly, within the realm of Italian public procurement 

data, our primary aim is the identification of collusive auctions. Secondly, we aim to evaluate the 

impact of optimizing hyperparameters on the accuracy of our predictive results. Additionally, our 

goals include determining the extent to which feature engineering contributes to enhanced 

accuracy and assessing whether hyperparameter tuning improves the accuracy of collusion 

detection in public procurement. 

1.2 Structure of Thesis 

The thesis will consist of seven main parts. The second chapter, named "Literature 

Review," will thoroughly examine current methodologies used in detecting collusion in various 

domains including public procurement. It sets the groundwork for this study by discussing how 

collusion detection is approached in academia. Chapter three, "Dataset," will cover where the data 

comes from, how it's processed, and how features are created. Subsequently, Methodology," the 

following chapter, summarises the models utilized, their structures, and the techniques applied for 

screening variables. Chapter 5 covers the model framework, diverse settings utilized, and various 

error metrics employed. Chapter 6 provides the results of each model. Finally, the last chapter, 

"Conclusion," will sum up the main findings, research limitation, and suggest areas for future 

research. 

 

Chapter 2 LITERATURE REVIEW 

 

The goal of this chapter is to examine different methods to detect collusion in public 

procurement practices. This section delves into how collusion is detected in various domains. 

Recently, the rise of machine learning has opened new possibilities for identifying collusion across 

various sectors. These algorithms can sift through extensive data sets, analyze patterns, and flag 

irregularities that might signal collusion. Leveraging data-driven approaches holds the potential to 

boost openness and responsibility in public procurement processes. In this literature review, we 

aim to present a comprehensive look at existing research concerning the identification of collusion 

in public procurement, specifically focusing on the use of machine learning algorithms. We'll 

explore the main ideas, techniques, challenges, and achievements in this developing area, 

highlighting how machine learning could serve as a valuable tool in combating collusion and 

corruption in public procurement. Additionally, this chapter discusses the use of screening 

variables and different evaluation metrics in detection and surveys previous research that employed 

these methods. This chapter offers a detailed analysis of the latest strategies and approaches 

shaping collusion detection based on the most pertinent studies available. 
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2.1 Collusion in Public Procurement Practices and impact 

Public procurement plays a vital role in the supply chain, holding significant importance 

in its operations and overall functionality. A significant problem in public procurement is bid 

rigging or collusion, which disrupts fair competition and transparency. These practices not only 

impede efforts aimed at improving the supply chain but also lead to the selection of subpar 

suppliers, a decline in product quality, inflated prices, and a loss of transparency. The prevalent 

forms of procurement fraud and corruption often involve bid-rigging, collusion between vendors 

and employees, and collusion between vendors.  

 

 

Figure 2.1: Fraud taxonomy related to procurement fraud by (Dhurandhar et al., 2015) 

Figure 2.1 outlines the stages of procurement where fraud, encompassing bid rigging, 

bribery, false invoicing, and collusion, can occur. When several bidders, frequently rivals, work 

together covertly to manipulate the bidding process for their mutual gain, this is referred to as 

collusion in public procurement. Which undermines the principles of fair competition, 

transparency, and efficiency that are the foundation of public procurement. Collusive practices 

among bidders often emerge as a profound and pressing concern in public procurement auctions 

(Pfizer & Jakobsson, 2007). The impact of corruption on average amounts to 5% of the total value 

of public procurement, which translates to about 14% of the European Union's GDP, or EUR 1.9 

trillion within the EU; which is why efforts have been put in the field of corruption definition and 

detecting suspicious actions (Dahlberg, 2001). A World Bank study identifies critical technology 

trends to combat public sector fraud and corruption. These include big data, artificial intelligence, 
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biometrics, blockchain, FinTech, and IoT, showcasing the potential for technological innovation. 

The OECD estimates that eliminating bid rigging could lower procurement costs by 20% or even 

more (Public Procurement - OECD, 2012). Creating pre-emptive approaches to detect bid-rigging 

schemes is of paramount significance for competition and procurement authorities worldwide.  

 

2.2 Corruption/ anomaly detection methods in different sectors: 

The initial efforts in identifying anomalies were undertaken within the realms of the 

telecommunications, insurance, and banking sectors. This process demanded a substantial 

investment of time and expertise spanning multiple domains, such as legal, financial, commercial, 

and more (Bolton & Hand, 2002). It's crucial to highlight that the research in this domain primarily 

centers on the development of predictive models, as well as the identification of relationships 

between economic entities and contracting agencies. Fundamentally, this is a multifaceted subject, 

encompassing statistical techniques, a variety of data mining methodologies, and the integration 

of machine learning. The literature demonstrates the use of two widely recognized approaches, 

specifically supervised and unsupervised learning methods. These approaches diverge in their 

target variables, with supervised learning relying on well-defined output variables, and 

unsupervised learning operating without predetermined variables, making it suitable for anomaly 

detection. Table 2.1 recapitulates the key features of both types of learning. 

 

Table 2.1: Key features for algorithms 

Algorithm type Key Features 

Supervised This method analyzes samples of data (input/ 

output pairs) that have been categorized 

beforehand (labeled data) to establish the 

mapping function between them. 

Unsupervised This method uncovers patterns in input data 

without requiring prior knowledge of output 

data labels (using unlabeled data). 

 

In the context of anomaly detection for financial data, two significant domains of 

application are network security and fraud detection. Network security is concerned with 

identifying atypical patterns within the vast and ever-changing landscape of network traffic, amidst 

a multitude of standard signals (García et al., 2009). In contrast, fraud detection primarily centers 

on the detection of unusual alterations in spending behavior over time, often relying on the 

expertise and experience of investigators. In both application areas, the fundamental approach to 

anomaly detection is consistent: it involves the establishment of a baseline that characterizes 

"normal" conditions, followed by a comparison of individual observations against this baseline to 

flag and identify behaviors or patterns that deviate from the norm. This process serves as the 

foundation for robust anomaly detection in financial contexts. Broadly, most studies indicate that 
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fraud detection models typically involve a series of distinct steps for supervised machine learning 

as shown in Figure 2.2. 

 

 

Figure 2.2: Fraud detection model 

New approaches are being constantly under investigation and, various statistics and 

machine-learning initiatives have exhibited promising outcomes in the realm of fraud detection 

(C. Phua et al., 2013). Commonly used methods in studies include linear and logistic regression, 

neural networks, and Naive Bayes for classification and clustering. In simple terms, these models 

are trained on past data and aim to create an early warning system. This system can offer 

goverments advance information about the risks when they make agreements with potentially risky 

businesses (Gallego et al., 2021). Most frequently, the prevalent approaches, as mentioned earlier, 

center on supervised learning or classification methods when there is labeled data at hand. 

However, certain researchers have effectively applied unsupervised learning, demonstrating the 

ability to identify patterns and extract valuable hidden insights even when labeled data is lacking 

(Bolton & Hand, 2019). Bolton & Hand employed unsupervised techniques for anomaly detection 

in a study dating back to 2001, which centered on the detection of credit card fraud (Bolton & 

Hand, 2019). This research illustrated the feasibility of identifying patterns and revealing valuable 

hidden insights, even when labeled data was unavailable. 

 

2.3 Collusion detection methods in public procurement:  

The detection of corruption in public procurement has emerged as a significant global 

concern in recent times. Given the substantial volume of services and financial transactions 

involved in public procurement, it has become imperative to identify and prevent any instances of 

corrupt practices. Identifying collusion is a difficult task that calls for the use of a wide range of 

statistical methods, different data mining techniques, and machine learning methodology. 

Numerous studies in auction theory show that bidders' cost structures greatly impact how they 

compete or collude. McAfee and McMillan were the first to examine collusion in bid rotation 

schemes without compensation between cartel members (Mcafee & Mcmillan, 1992). Their 

auction model didn't tie the winner to past auctions. Aoyagi and Skrzypacz, expanded this model, 

exploring repeated collusion in evolving bid rotation schemes (Aoyagi, 2003). Other research has 

investigated how collusion happens and its impact in actual procurement auctions (Harrington, 

2004). There are very few empirical-based collusion detection models available in the literature. 

One of the early attempts to develop an empirically based model was by Porter and Zona. They 

aimed to calculate the likelihood of a bidder winning given some known observable cost elements. 
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The goal of that approach was to predict the price range of the next (competitive) bids, not to 

identify collusion per se (Porter & Zona, 1999).  

 

The model introduced by Signor et al., is a probabilistic approach (Signor et al., 2023a). 

Signor et al.'s model conducts a dual-level analysis of submitted bids. Firstly, it assesses whether 

the overall distribution of bids adheres to a predefined reference scenario, such as a Lognormal 

distribution. Additionally, it approximates the location of this distribution, specifically the absolute 

order of bid magnitudes, using historical auction data whenever pre-tender estimates (PTE) 

information is accessible. As a result, the model evaluates the deviation of submitted bids from the 

PTE (Signor et al., 2023a). 

 

Signor et al. have introduced a probabilistic model for analyzing bids in a more 

straightforward manner (Signor et al., 2023a). This model operates at two levels. First, it checks if 

the overall distribution of bids matches a standard pattern, like a Lognormal distribution. 

Furthermore, it estimates the location of this distribution, which refers to the actual bid values, 

based on historical auctions when pre-tender estimate (PTE) data is accessible. Consequently, the 

model assesses how far the submitted bids deviate from these estimates. Secondly, the model’s 

probabilistic approach deals with the spread of the lowest bid using order statistics theory. In 

simpler terms, it evaluates whether the lowest bid (the potential winner) could have realistically 

come from the same distribution as in the previous step. In this method, the actual winning bid is 

compared to the lowest order statistic, which is the smallest value drawn from a reference 

distribution. If there's a substantial difference, it indicates that the bid may not be genuinely 

competitive (Signor et al., 2023). This probabilistic method is robust, but its effectiveness depends 

on having reliable PTE data from past honest auctions and the auction currently under examination. 

 

A technique to evaluate markets for suspected cartel activities was developed by 

identifying disparities in bid behavior between competitive and non-competitive firms (Bajari & 

Ye, 2003). If firms are competitive, they should submit proposals that are not influenced by those 

of their rivals. Conversely, when collusion is suspected, bids may exhibit correlations, often 

attributed to the submission of "phantom" bids aimed at simulating a competitive environment. 

The hypothesis of conditional independence can be empirically examined, and if it is found to be 

false, collusion is a more likely explanation. Although the model exhibits notable constraints in 

academic research, including a significant dependence on the selected functional form during 

regression analysis, heightened susceptibility to missing data, and vulnerability to manipulation 

by cartels with a deep understanding of its inner workings, such as coordinated cover bids. 

Fortunately, after Bajari and Ye's (Bajari & Ye, 2003) research, an increased availability of public 

data regarding public contracts and competitor information has emerged. This data presented 

promising opportunities for enhancing collusion detection through machine learning techniques.  

 

The research conducted by Rodríguez et al. explores the use of machine learning 

algorithms for spotting potential collusion in public procurement auctions (García Rodríguez et 

al., 2022). The paper focuses on leveraging these algorithms to detect suspicious behaviors among 

auction participants, ultimately aiming to enhance collusion detection and ensure fairness in these 

auction processes. The study likely highlights the machine learning models' adeptness in analyzing 

vast data sets, identifying irregularities that might signify collusion among bidders. However, 

inherent limitations in this approach are anticipated to be addressed. These limitations may arise 
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due to the complexity of auction dynamics, the critical need for diverse and high-quality data, and 

the adaptability of colluding parties in masking their actions. The effectiveness of machine 

learning models might heavily rely on comprehensive data availability and adherence to legal and 

ethical data usage. In conclusion, while emphasizing the potential of machine learning in detecting 

collusion, the study acknowledges the need for ongoing improvements and interdisciplinary 

collaborations. It also underscores the importance of hyperparameter tuning and exploring other 

models to increase the accuracy. 

 

Imhof's model marked a significant step forward by using machine learning (ML) to 

examine bids and spot collusion (Huber & Imhof, 2019). Imhof used a limited set of Screening 

Variables (SV) in a dataset related to road construction in Switzerland. Furthermore, Imhof 

employed two types of ML algorithms: (1) Lasso regression and an 'Ensemble method' that 

combines multiple algorithms through a weighted average, and (2) bagged regression trees, 

random forests, and neural networks (Huber & Imhof, 2019). These Screening Variables played a 

crucial role in preventing and detecting bid rigging in public procurement and competitive markets 

(Huber & Imhof, 2019). Similarly, in their exploration of collusion detection using machine 

learning in public procurement auctions, Rodríguez et al. integrated Screening Variables (SV), 

crucial in identifying potential collusion among auction participants. The incorporation of 

Screening Variables aligns with their pursuit to enhance the precision and effectiveness of 

collusion detection mechanisms within these auction processes (Rodríguez et al., 2022). In our 

study, we plan to build upon Imhof's approach by leveraging a similar dataset and screening 

variables but will explore a wider array of machine learning models, diverse settings, and rigorous 

hyperparameter tuning to assess and enhance performance. 

 

To assess the performance of the machine learning models for classification tasks, it is 

essential to establish specific error metrics. The most frequently employed error metrics in the 

classification tasks include accuracy, precision, recall, balanced accuracy, and the F1 score 

(Sokolova & Lapalme, 2009).  Furthermore, the Receiver Operating Characteristic (ROC) curve 

visually represents a binary classifier's performance. The area under this curve (AUC) offers a 

comprehensive assessment of the model's ability to distinguish between two classes, providing a 

more nuanced evaluation of its capabilities (Sokolova & Lapalme, 2009).  In our study, we plan to 

use accuracy, precision, balanced accuracy, and ROC-AUC score to assess the performance of all 

models. Previous work in collusion detection within public procurement primarily relied on 

accuracy, precision, and balanced accuracy for assessing performance. However, the ROC graph 

and AUC score offer metrics independent of threshold values, which most researchers haven't 

incorporated alongside accuracy, precision, and balanced accuracy specially within public 

procurement domain. This study incorporates all these metrics, including ROC-AUC, to assess 

classifier performance. This research underscores the significance of carefully choosing evaluation 

metrics. 

 

 

2.4 Summary table 

A comprehensive summary table consolidating the research conducted in this domain 

provides a concise overview of recent findings. This table systematically presents various 

methodologies, evaluation metrics, data processing strategies, and hyperparameter tuning methods 
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employed across these studies, aiming to furnish a holistic comprehension of the current research 

landscape. Most studies as shown in table 2.3, did not opt for hyperparameter tuning or feature 

engineering. While Decarolis & Giorgiantonio, and Rodríguez focused on feature engineering 

without engaging in hyperparameter tuning (Decarolis & Giorgiantonio, 2022;Rodríguez et al., 

2022). This highlights the need for a more comprehensive consideration of tuning practices in the 

field. One finding from this collection of studies is the absence of the ROC-AUC score as an 

evaluation metric. Instead, the predominant focus was on metrics like accuracy or balanced 

accuracy.  

 

Table 2.2: Summary of Literature Review Table 

RESEARCH 

 

METHODS INPUT DATA TUNING/ 

SOFTWARE 

Dhurandhar et al., 

2015 

Text analysis, ranking, 

unsupervised learning 

RFx data Social network 

analysis 

 

Decarolis & 

Giorgiantonio, 2022 

Lasso, ridge 

regression, and RF. 

Italian dataset 

managed by the 

ANAC 

Feature engineering/ 

tuning not done 

Ghedini Ralha & 

Sarmento Silva, 

2012 

Clustering, association 

rules, multi-agent 

approach 

Brazilian Public 

Procurement 

Not available 

Bolton & Hand, 

2013 

Behavioral outlier 

detection, 

unsupervised learning 

Credit card data Peer Group Analysis 

Domingos et al., 

2017 

CRISP-DM  Brazilian Public 

Procurement 

Not available 

Signor et al., 2023 Probabilistic methods Brazilian Federal 

Police's ongoing 

“Operation Car 

Wash” investigation 

data 

Not available 

Torres-Berru & 

Batista, 2021 

Clustering(K-Means), 

SOM, SVM, PCA 

Public Procurement 

System (SERCOP) of 

Ecuador 

Technologies: Python 

Scikit-learn library, 

MiniSom, AZURE 

Machine Learning/ 

tuning not done 

Wallimann et al., 

2022 

RF See-Gaster and 

Graubünden in 

Switzerland 

procurement data 

Feature engineering/ 

tuning not done 

Conley & Decarolis, 

2016 

Standard hierarchical 

clustering algorithm 

City of Turin dataset Not available 

Rodríguez et al., 

2022 

SGD, Extra Trees, RF, 

Ada Boost, Gradient 

Boosting, SVC (C-

Public procurement 

open data from 

Brazil, Italy, Japan, 

Technologies: 

Python, Used 
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Support Vector 

classification), KNN, 

MLP, Bernoulli NB 

and Gaussian Naive 

Bayes. 

Technologies: Python 

and Scikit-learn 

library. 

Switzerland, and 

USA 

Screening variables/ 

Tuning not done 

Rabuzin & 

Modrušan, 2019 

NLP, NB, LR, SVM.  Electronic Public 

Procurement of 

Croatia 

Technologies: Python 

/ Tuning not done 

Arief & Asnar, 2017 

 

NB, Bayesian 

networks, decision 

trees, and neural 

network. 

Indonesian Public 

Procurement 

 Tuning not done 

 

Despite extensive research in collusion detection, the utilization of machine learning in this 

domain is still in its early stages. It's crucial to note numerous limitations, particularly the absence 

of screening variables in many studies. Even among those that do consider such variables, the lack 

of parameter tuning in machine learning models is apparent. These limitations highlight the need 

for further research and methodological advancements in detecting collusion in public 

procurement. To address this gap, my work distinguishes itself from prior studies by meticulously 

fine-tuning parameters across multiple models and integrating screening variables with machine 

learning techniques. The objective is to investigate whether this approach enhances the current 

capability to identify bid-rigging cartels. We'll employ a range of evaluation metrics—such as 

accuracy, balanced accuracy, precision, and ROC-AUC score—to thoroughly assess and compare 

the performance of diverse models. 

Chapter 3 DATASET 

 

To assess the collusive detection capabilities of machine learning algorithms under various 

conditions, we acquired public procurement datasets from Italy, covering the period between 2000-

2003. The dataset has been obtained from the study conducted by García Rodríguez in 2022 

(Rodríguez et al., 2022).  

 

3.1 Data Information 

The Italian dataset encompasses auctions related to road construction projects conducted 

by the municipal authorities of Turin. A quantitative description of the datasets is presented in 

Table 3.1. It is important to note that these datasets have been examined and/or provided by public 

institutions, specifically the courts of justice in Italy. Consequently, we presume the data's 

reliability and trustworthiness (Rodríguez et al., 2022). The auctions within this dataset are based 

on the Average Bid Auction (ABA) method, where the contract is awarded to the bidder whose 

bid is closest to a trimmed average bid (Conley & Decarolis, 2016b). This auction mechanism has 

the potential to incentivize collusion among bidders, as they may coordinate their bids with other 

participants with the aim of manipulating the overall bid distribution (Conley & Decarolis, 2016b).  
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Table 3.1: Summary of Italian Road Construction Procurement Dataset (2000-2003) 

 

General Information Road Construction public 

procurement dataset from 

Italy 

Year 2000-2003 

No. of auctions 278 

No. of bids 20,286 

Average No. bids per auction 72.97 

Total number of bids 20,286 

Collusive bids 8085 (39.86%) 

Competitive bids 12,201 (60.14%) 

Aggregated total €11,520,750,772 

Aggregated collusive €7,911,773,729 (68.67%) 

Aggregated Competitive €3,608,977,044 (31.33%) 

 

 

Figure 3.1: Class distribution 

Figure 3.1 presents the class distribution for both categories. The dataset utilized in this 

study exhibits a minor imbalance, with one class representing collusive bids, accounting for 



12 

 

39.86% (8,085 instances), and the other class representing competitive bids, constituting 60.14% 

(12,201 instances). Collusive bids involve unethical collaboration among bidders, aiming to 

manipulate the bidding process by agreeing not to compete or artificially inflating prices. In 

contrast, competitive bids signify an open and fair competition where bidders independently 

submit their bids for a contract by offering their best prices. In table 3.2, a tender is an official 

request for competitive bids from potential suppliers or service providers. A Pre-Tender Estimate 

(PTE) is an early assessment of the anticipated project cost before the formal bidding process. The 

winner of a tender is the entity whose bid is accepted. Cartel Name signifies the identifier for a 

collusive group of businesses working together to manipulate markets. A bid value represents the 

amount submitted by a bidder in response to a tender, while the number of bids indicates the total 

count of proposals submitted by different entities, reflecting the level of competition for the 

opportunity. A sample of data used for this research is shown in table 3.2: 

 

Table 3.2: Sample of dataset  

 

3.2 Feature engineering 

Feature engineering in collusion detection involves incorporating screening variables, 

which are specialized indices derived from bid value distributions in auctions. These Screens aid 

machine learning algorithms by efficiently processing auction data, enhancing the detection of 

collusion. While there is limited research on the performance of various Screens in collusive 

datasets, these indices offer a means not only to flag potential collusion in auctions but also to 

identify sustained collusive patterns among specific bidders (Imhof & Wallimann, 2021) . Screens 

typically involve statistical indices calculated directly from bid values or after selecting specific 

bids, such as the lowest and highest bids. Their ease of calculation and demonstrated effectiveness 

in machine learning algorithms make Screens valuable tools in detecting abnormally high bids and 

improving overall model performance. Total of seven screening variables- CV, SPD, DIFFP, RD, 

KURT, SKEW & KSTEST, were calculated using the formulas mentioned in section 3.3 and added 

to the raw data to improve the collusion capabilities of Machine Learning models. Post the 

incorporation of all six screens into the raw data, the final data used for modelling is presented in 

Table 3.3 as follows: 

 

Tender Difference Bid/PTE Winner Competitors Legal_entity_type Site Capital Pre-Tender Estimate (PTE) Bid_value Cartel_name Collusive_competitor Number_bids

0 33.41122 0 80170392 3 255.39 80000 1187851 79097540 1 1 63

0 30.11963 0 105230056 10 35.067 520000 1187851 83007458 0 1 63

0 28.58136 0 128540358 7 164.948 80000 1187851 84834694 0 1 63

0 44.84511 0 133910935 10 307.1731 1463245 1187851 65515784 0 1 63

0 27.57113 0 140990409 5 251.896 80000 1187851 86034696 1 1 63

0 45.33199 0 155570021 10 36.599 200000 1187851 64937443 0 1 63

0 34.31618 0 159170042 11 37.83399 50000 1187851 78022583 0 1 63

0 35.10052 0 167670041 10 60.73399 710000 1187851 77090904 0 1 63

0 28.34308 0 185120045 10 69.083 2000000 1187851 85117735 0 1 63

0 32.81166 0 228840278 7 250.042 80000 1187851 79809728 1 1 63

0 38.34854 0 238930010 11 0.347 208000 1187851 73232740 1 1 63

0 32.45334 0 276690823 11 991.0822 30988 1187851 80235359 1 1 63

0 34.17144 0 287960512 2 311.137 80000 1187851 78194512 1 1 63

0 30.9313 0 308900281 11 236.891 100000 1187851 82043315 0 1 63

0 30.75139 0 323030429 7 320.764 80000 1187851 82257022 0 1 63
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Table 3.3: Dataset snapshot after adding screens 

 
 

3.3 Screening Variables in Bid Rigging Detection: 

Screening variables play a pivotal role in identifying bid rigging within procurement 

procedures by identifying potentially suspicious bidding behavior. These screening variables are 

integrated as features or attributes in machine learning models to predict or describe certain 

characteristics of bid distributions. These screens can help machine learning algorithms process 

auction information more efficiently to detect collusion (Huber et al., 2019.). Screening variables 

function as initial early warning systems in detecting collusion, pinpointing tenders requiring 

additional investigation. They offer quantitative evidence that either corroborates or questions the 

notion of collusion. When integrated into machine learning models, these variables enable 

detection algorithms to prioritize tenders which have suspicious patterns for more extensive 

examination. Feinstein in 1985 discovered that within highway construction contracts in North 

Carolina, bid rigging was associated with a significantly lower coefficient of variation, indicating 

reduced bid dispersion (Feinstein et al., 1985). Abrantes-Metz in 2012 offered evidence indicating 

manipulation within daily bank quotes used for Dollar Libor calculation by leveraging the 

coefficient of variation (Abrantes-Metz et al., 2006). Conversely, Jimenez and Perdiguero in 2012 

demonstrated that markets with restricted competition showcased decreased price variability and 

elevated prices (Jiménez & Perdiguero, 2012). There are three primary types of screening variables 

used in bid rigging detection:  

 

1. Variance Screens: It evaluates the spread or dispersion of bid prices within a tender, where a 

high variance signifies a broader range of bid values. 

 

Significance: During collusion or bid rigging, colluding bidders frequently submit artificially 

inflated or suppressed bids, aiming to manipulate prices. Such manipulation often results in higher 

bid price variance compared to genuinely competitive tenders. 

 

2. Asymmetry Screens: Asymmetry screens center on the shape of the bid distribution, 

scrutinizing whether it displays skewness toward one side or maintains symmetry. 

 

Significance: Bid rigging cartels may tactically submit bids that skew the distribution towards a 

specific outcome. Detecting such asymmetry aids in recognizing potential collusion. 

 

3. Uniformity Screens: Uniformity screens assess the evenness of bids across different bid 

categories. Any deviations from uniformity can raise suspicion. 

Tender Difference Bid/PTEWinner Competitors Legal_entity_typeSite Capital Pre-Tender Estimate (PTE)Bid_value Cartel_nameCollusive_competitorNumber_bidsCV SPD DIFFP RD KURT SKEW KSTEST

0 33.41122 0 80170392 3 255.39 80000 1187851 79097540 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 30.11963 0 105230056 10 35.067 520000 1187851 83007458 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 28.58136 0 128540358 7 164.948 80000 1187851 84834694 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 44.84511 0 133910935 10 307.1731 1463245 1187851 65515784 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 27.57113 0 140990409 5 251.896 80000 1187851 86034696 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 45.33199 0 155570021 10 36.599 200000 1187851 64937443 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 34.31618 0 159170042 11 37.83399 50000 1187851 78022583 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 35.10052 0 167670041 10 60.73399 710000 1187851 77090904 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 28.34308 0 185120045 10 69.083 2000000 1187851 85117735 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 32.81166 0 228840278 7 250.042 80000 1187851 79809728 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 38.34854 0 238930010 11 0.347 208000 1187851 73232740 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 32.45334 0 276690823 11 991.0822 30988 1187851 80235359 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 34.17144 0 287960512 2 311.137 80000 1187851 78194512 1 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 30.9313 0 308900281 11 236.891 100000 1187851 82043315 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725

0 30.75139 0 323030429 7 320.764 80000 1187851 82257022 0 1 63 0.0863 0.6147 0.0045 0.0469 2.4209 0.287 0.3725
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Significance: Bid rigging schemes frequently entail collusion in lot or category allocations among 

conspiring bidders. Identifying deviations from uniform bidding behavior can signal potential 

collusion. 

 

The following section provides an explanation of the screens used in this thesis, encompassing 

their definitions and respective formulas: 

3.3.1 CV 

first variance screen is the coefficient of variation (CV), a scale-invariant statistic which is formally 

defined as follows: where 𝑠𝑑𝑡 is standard deviation and 𝑏𝑡 the mean of the bids in some tender t. 

 

𝐶𝑉𝑡 =
𝑠𝑑𝑡

�̅�𝑡

 3.1 

 

3.3.2 SPD 

The spread (SPD), which is calculated as follows, is another screen associated with the support of 

the bids. Where   𝑏𝑚𝑎𝑥,𝑡 denotes the maximum bid and 𝑏𝑚𝑖𝑛,𝑡 the minimum bid in some tender t 

(Wallimann et al., 2022). 

 

 

𝑆𝑃𝐷𝑡 =
𝑏𝑚𝑎𝑥,𝑡 − 𝑏𝑚𝑖𝑛,𝑡

𝑏𝑚𝑖𝑛,𝑡
 

 

3.2 

 

3.3.3 DIFFP 

The percentage difference (DIFFP) is one screen that looks for manipulations in the discrepancies 

between the two lowest bids, where 𝑏𝑚𝑖𝑛,𝑡 is the lowest bid and 𝑏2𝑡 the second lowest bid in some 

tender t. 

 

𝐷𝐼𝐹𝐹𝑃𝑡 =
𝑏2𝑡 − 𝑏𝑚𝑖𝑛,𝑡

𝑏𝑚𝑖𝑛,𝑡
 

 

 

3.3 

 

3.3.4 RD 

The relative distance (RD) can be calculated by replacing the denominator in equation (DIFFP), 

which is the standard deviation of unsuccessful bids as an alternative method for quantifying the 

difference.  𝑠𝑑𝑙𝑜𝑠𝑖𝑛𝑔𝑏𝑖𝑑𝑠,𝑡 measures the spread of losing bids around the mean. 
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𝑅𝐷𝑡 =
𝑏2𝑡 − 𝑏𝑚𝑖𝑛,𝑡

𝑠𝑑𝑙𝑜𝑠𝑖𝑛𝑔𝑏𝑖𝑑𝑠,𝑡
 

 

 

3.4 

 

3.3.5 SKEW 

Another screening criterion is the skewness statistic (SKEW), a commonly used measure of 

distribution symmetry. where 𝑛𝑡  denotes the number of the bids, 𝑏𝑖𝑡 the i th bid, 𝑠𝑑𝑡 the standard 

deviation of the bids, and �̅�𝑡 the mean of the bids in tender t. 

 

𝑆𝐾𝐸𝑊𝑡 =
𝑛𝑡

(𝑛𝑡 − 1)(𝑛𝑡 − 2)
∑(

𝑏𝑖𝑡 − �̅�𝑡

𝑠𝑑𝑡
)

3
𝑛𝑡

𝑖=1

 

 

 

3.5 

 

3.3.6 KURTO 

The kurtosis statistic (KURTO) is a statistical measure used to analyze bidding behavior and detect 

potential collusion or manipulation of bids within a competitive procurement process. Kurtosis is 

a statistical term that relates to the shape of the probability distribution of a dataset. In this context, 

it is employed to identify irregular patterns in bidding behavior that may suggest anticompetitive 

practices. where 𝑏𝑖𝑡 denotes the bid i in tender t, 𝑛𝑡  the number of bids in tender t, 𝑠𝑑𝑡 the standard 

deviation of bids, and �̅�𝑡 the mean of bids in that tender. 

 

𝐾𝑈𝑅𝑇𝑡 =
𝑛𝑡(𝑛𝑡 + 1)

(𝑛𝑡 − 1)(𝑛𝑡 − 2)(𝑛𝑡 − 3)
∑(

𝑏𝑖𝑡 − �̅�𝑡

𝑠𝑑𝑡
)

4

−
3(𝑛𝑡 − 1)3

(𝑛𝑡 − 2)(𝑛𝑡 − 3)

𝑛𝑡

𝑖=1

 

 

 

 

3.6 

 

3.3.7 KS 

The nonparametric Kolmogorov-Smirnov statistic (KS) is used to assess the uniformity in the 

distribution of bids(Wallimann et al., 2022b) . While competitive bids may not inherently exhibit 

uniformity, we hypothesize that coordination further disrupts the bid distribution's uniformity. This 

change can be detected by alterations in the KS statistic. where 𝑛𝑡 is the number of bids in a tender, 

𝑖𝑡 is the rank of a bid. 

 

𝐾𝑆𝑇𝐸𝑆𝑇𝑡 = 𝑚𝑎𝑥(𝐷𝑡
+, 𝐷𝑡

−) 𝑤𝑖𝑡ℎ 𝐷𝑡
+ = 𝑚𝑎𝑥𝑖 (

𝑏𝑖𝑡

𝑠𝑑𝑡
−

𝑖𝑡
𝑛𝑡 + 1

), 

𝐷𝑡
− = 𝑚𝑎𝑥𝑖 (

𝑖𝑡
𝑛𝑡 + 1

−
𝑏𝑖𝑡

𝑠𝑑𝑡
) 

 

 

3.7 
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Chapter 4 METHODOLOGY 

 

In this section, we aim to offer an extensive overview of the different models utilized in 

our study. A total of eight ML algorithms were applied for the comparative analysis.  We will also 

explore the hyperparameter tuning for each model and tuned parameters for best performance. 

Additionally, we will elaborate on the essential software tools and libraries that played a crucial 

role in fine-tuning the models and preparing the data. We employed classification methods that are 

suitable for anomaly detection. Machine learning methods can be used to detect collusion, with 

each auction being categorized as either "collusive" or "competitive." The algorithms are tasked 

with performing binary classification for each auction instance. These diverse algorithms 

collectively address the task of binary classification, aiming to identify collusion in auction 

scenarios through the application of various machine-learning approaches. 

 

4.1 Support Vector Classifier  

The support-vector classifier is a novel machine-learning approach designed for solving 

classification problems. Finding a hyperplane that best divides the training data into two categories 

is the foundation of support vector classifiers. As shown in figure 4.1, a hyperplane is a line that 

divides the observed points into two classes in a two-dimensional space. Based on the side of the 

hyperplane they fall on, observations from the test data are mapped into the space for class 

prediction. To enhance the accuracy of classification, it's desirable for these data points to be as 

distant as possible from the hyperplane in the training data, as for these data points confidence in 

their producing a correct classification will be high. The margin refers to the distance between the 

hyperplane and the closest data point within either of the two distinct classes. Giving a greater 

chance of new data being correctly classified, the algorithm chooses a hyperplane with the goal of 

achieving the greatest possible margin. However, the idea of the hyperplane as a line is a 

simplification, as a linear hyperplane might perform poorly when the data points are not separable 

with a line. Support vector machines offer the support vector classifier by enlarging the feature 

space using kernels and mapping the inputs into high-dimensional feature spaces (Cortes et al., 

1995). To distinguish between different classes of data points on a dimensional space, SVM 

computes the "margin maximum classifier" (Marsland, 2009). The largest circle with no data 

points formed around a classification border is known as a maximum margin. Support vectors are 

the nearest data points found next to this margin. The classification of these vectors is thought to 

be the most challenging. As a result, they are employed as "support" while drawing a 

categorization model's boundary. The procedure outlined by Marsland in 2009 for a support vector 

machine for Classification in classification tasks can be summarized as follows (Marsland, 2009). 

 

As shown in figure 4.1, a new instance x is classified by support vector classifier based on 

its separation from the hyperplane H, which is positioned in the centre of a maximum margin, and 

the support vector 𝑥𝑖. A weight vector �⃗⃗� 𝑖 is positioned perpendicular to the hyperplane, and the 

class prediction 𝑦𝑖 for a new instance is determined by its coefficient on the weight vector. where 

𝑦𝑖 denotes the class prediction (+1 or -1 in a binary classification), �⃗⃗� 𝑖 represents the weight 

vectors, K is the kernel function. The calculation of the decision function for support vector 

classifier is carried out as: 
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𝑓(𝑥) = ∑ 𝑦𝑖�⃗⃗� 𝑖𝐾(𝑥, 𝑥𝑖) 4.1 

 

 

 

Figure 4.1: SVM separating hyperplane. 

The baseline model was established using the default settings from the scikit-learn Python 

library. Within this model configuration, the regularization parameter defaults to one, while the 

kernel type is defined as "rbf". which stands for Radial Basis Function; it is a kernel function used 

in Support Vector Machine (SVM) algorithms for various machine learning tasks, including 

classification. This kernel function is effective in transforming data into higher-dimensional space, 

allowing SVM models to classify non-linearly separable data by creating non-linear decision 

boundaries. Subsequently, a grid search methodology was employed to fine-tune these parameters 

across a range of values. Specifically, for the "rbf" kernel, the regularization parameter spanned 

from 0.1 to 10, while the gamma ranged between 0.001 to 1 as part of the optimization process. 

 

4.2 Random Forest: 

Random Forest, a pioneering ensemble learning method, was introduced by Leo Breiman 

in 2001. This method, shown in figure 4.2, combines the power of multiple decision trees to create 

a robust, versatile, and high-performance predictive model (Breiman, 2001). Random forest 

models, which are based on decision trees, have significantly increased prediction accuracy as 

compared to a single tree by developing 'n' number of trees; each tree in the training set is picked 

randomly without replacement (Breiman, 2001). A decision tree is a tree-like structure, uses nodes 
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to represent classification criteria. During training, data moves through internal nodes based on 

tests until reaching a leaf. Next, a metric is calculated to determine whether the leaf needs to be 

split and if so, which splitting criterion should be applied. The Gini index and entropy through 

information gain are the most used measurements. Records go through the tree throughout the 

testing phase until they come to a leaf (Quinlan, 1986). When using tree-based algorithms for 

predictions beyond the sample, there exists a balance between bias and variance. By increasing the 

number of splits, we decrease bias, making the model more adaptable. However, this approach 

leads to smaller regions and higher variability in test data. To address excessive variance, random 

forests take multiple subsamples from the training set and build decision trees. In this process, 

random forest only considers a subset of features at each split to decrease the connection between 

tree structures across subsamples, aiming to reduce prediction variations (Merentitis et al., 2014). 

To determine which feature to split on at each node, the entropy is computed. Entropy 

measures the homogeneity of the subset data; if entropy equals one then the class labels are equally 

divided while an entropy of zero means the sample is completely homogeneous (Eq. 4.2). As in 

the case of binary classification with only two labels, if the split resulted in the class labels being 

all 1 or 0, then the entropy will be zero. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −𝑝 ∗ log 2(𝑝) − 𝑞 ∗ log 2(𝑞) 
 

4.2 

The procedure outlined by Ruppert in 2004 for a random forest in classification tasks can be 

summarized as follows (Ruppert, 2004). 

1. For b = 1 to B:  

 

(a) Draw a bootstrap sample 𝑍∗of size N from the training data. 

(b) Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively repeating the 

following steps for each terminal node of the tree, until the minimum node size 𝑛𝑚𝑖𝑛 is 

reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variable/split-point among the m.  

iii. Split the node into two daughter nodes. 

 

2. Output the ensemble of trees {𝑇𝑏}1
𝐵. 

 

Classification: Let �̂�𝑏(𝑥) be the class prediction of the 𝑏𝑡ℎ  random-forest tree.  

 

 Then �̂�𝑅𝑓
𝐵 (𝑥) = majority vote {�̂�𝑏(𝑥) }1

𝐵 

 

4.3 
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Figure 4.2: Ensemble of decision trees (random forest). 

 

The scikit library and the built-in parameters were used to build the basic random forest 

classifier. The initial model was constructed using scikit-learn's default settings, employed a 

default criterion, Gini, to measure the quality of a split. The criteria involved a minimum 

requirement of two samples to split an internal node, one sample for a leaf node, and no restrictions 

on the maximum depth of each tree within the forest, consisting of one hundred trees. Later, 

through grid search, these parameters underwent fine-tuning by exploring various values. 

 

4.3 KNN: K-nearest neighbours 

The k -nearest neighbors (KNN) algorithm is a simple and effective supervised learning 

technique, used for classification and regression. Evelyn Fix and Joseph Hodges first demonstrated 

the k-nearest neighbours non-predicting classification algorithm (Fix & Hodges, 1989); which 

Thomas Cover later expanded on (Altman, 1992). The simple way to assess the similarity of two 

objects is using Euclidean distance, as outlined by (Dong et al., 2019). This involves comparing 

the shared attributes of the objects, calculating similarity by summing the squared differences 

between each term or attribute. The Euclidean distance is then derived from this process. A larger 

k value results in a broader, less sensitive function with fewer nearby influences. KNN classifies 

an observation based on its k nearest neighbours. The algorithm operates by considering a 

proportion of 'k' cases near the observations. For instance, as shown in figure 4.3, when 'k' equals 

3, it selects the three nearest data points, and for 'k' equal to 7, it expands to the seven nearest data 

points. The algorithm then categorizes the new data point based on the majority class within this 

selected group, represented here by the dark circle. The distances that define an observation's 

vicinity are Euclidean and are calculated according to the dimensions of the independent variables. 

It basically puts more than one neighbor and calculates the distance using Euclidean distance, the 

method which can be calculated with the following equation (Ruppert, 2004): 
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𝑑𝑒 = √(𝑝1 − 𝑝2)2 − (𝑞1 − 𝑞2)2 

 

4.4 

 

 

Figure 4.3: K-nearest neighbours classification (Sampathkumar et al., 2020) 

We built the baseline k-nearest neighbor (KNN) model for classification tasks using the 

scikit-learn Python module. Initially, we utilized default settings, setting the number of neighbors 

considered for classification to five, employing uniform weights and a power parameter (p) of 2 

for the Minkowski metric. To enhance the model's classification performance, we conducted 

parameter tuning through grid search, aiming to optimize these settings. 

 

4.4 Extra Trees (Extremely Randomized Trees) Classifier: 

The Extra Trees Classifier, introduced by Geurts, Ernst, and Wehenkel, is an ensemble 

learning method that diverges from conventional decision trees by adding an extra layer of 

randomness (Geurts et al., 2006). As depicted in Figure 4.4, the node divisions in the Extra Tree 

classifier rely not only on a random subset of features but also on randomly chosen thresholds for 

these divisions. This stands as the primary distinction between the Extra Tree classifier and the 

Random Forest classifier, along with the computational time required. Notably, Random Forest 

tends to take more time to process the same dataset compared to the Extra Tree classifier. The 

deliberate injection of randomness in extra tree classifier enhances the diversity of individual trees 

within the ensemble, which, combined with bagging techniques, reduces overfitting, and 

strengthens the model's resilience to noise in the data (Geurts et al., 2006). This unique 
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characteristic not only contributes to computational efficiency, owing to the method's 

parallelizability, but also allows the model to perform well with noisy or high-dimensional data, 

making it a versatile tool in various machine learning applications. Geurts, Ernst, and Wehenkel 

demonstrated how the Extra Trees algorithm, with its highly randomized approach to tree 

construction, can yield competitive performance compared to other ensemble methods like 

Random Forests, particularly in scenarios with noisy data or limited computational resources 

(Geurts et al., 2006). Summarized in figure 4.4, this class embodies a meta-estimator which fits 

multiple randomized trees on varied dataset subsets, employing voting or averaging techniques to 

enhance accuracy and control overfitting. 

 

Furthermore, the performance of Extra-Trees is influenced by adjusting two key 

parameters: L (the number of trees) and 𝑛𝑚𝑖𝑛  (minimum sample size for node splitting). While 

𝑛𝑚𝑖𝑛 regulates noise averaging strength, L dictates variance reduction within the forest. Notably, 

default values for K and 𝑛𝑚𝑖𝑛have been indicated as near optimal for various classification 

problems (Geurts et al., 2006). The classification of extra tree classifier uses Gini impurity by 

default as in equation 4.5 and uses Entropy as an alternative for the classification as in equation 

4.6, whereas for regression, Mean Square Error and Mean Absolute Error are used:  

 

𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = ∑ 𝑓𝑗(1 − 𝑓𝑗)
𝑂

𝑗=1
 

 

 

4.5 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑓𝑗𝑙𝑜𝑔(𝑓𝑗)
𝑂

𝑗=1
 

 

 

4.6 

 

Fj is the frequency of label j at a node and O is the number of unique labels. 

 

 

Figure 4.4: Structure of Extra Trees classifier 

The foundational extra tree classifier was built using the Python module scikit-learn. 

Initially, default settings were employed, configuring 100 trees for classification, with maximum 
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depth set to none and a minimum sample split of 2. Subsequently, we engaged in parameter tuning 

via grid search to refine these settings to improve the model's classification performance. 

 

4.5 Gradient Boosting Classifier:  

Gradient boosting, known for its remarkable predictive abilities, has garnered extensive 

popularity across diverse domains as a robust machine learning algorithm. This method was 

initially proposed by Jerome H. Friedman in 1999 (Friedman, 2001). It involves the combination 

of multiple weak learners, typically decision trees, to create a strong predictive model. By 

iteratively correcting the errors of the previous trees, Gradient Boosting optimizes predictive 

accuracy and is particularly effective in handling complex, non-linear relationships within the data. 

It has been widely cited as an efficient algorithm for tasks such as classification, regression, and 

ranking (Friedman, 2001). By minimizing predefined loss functions such as squared error for 

regression or log loss for classification, it iteratively fits new models to the residuals of previous 

ones, progressively enhancing predictive accuracy by focusing on prior model mistakes as shown 

in figure 3.5. Post its inception, gradient boosting witnessed remarkable advancements with 

optimized implementations like XGBoost, LightGBM, and CatBoost, incorporating enhancements 

for improved performance and scalability. In this technique, the classification is dependent on the 

residuals of the previous iteration as shown in figure 4.5 where the impact of each feature is 

evaluated sequentially until a target accuracy is obtained as compared to other tree based models 

shown in figure 4.2 and 4.4 where no residuals are taken into consideration. The residuals are 

calculated by a Loss function L(Φ) that is optimized using gradient descent. The result Φ(𝑋) is 

obtained by the addition of the results of the K sequential classifier functions 𝑓𝑘 as follows:  

 

𝑌
^

= Φ(𝑋) = ∑ 𝑓𝑘(𝑋)𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 

 

 

4.7 

 

where 𝑓𝑘 is a decision tree, and K is the total number of iterations in the boosting algorithm. 

 

Initially applied to regression tasks, gradient boosting quickly found substantial success in 

binary classification applications. It evolved to accommodate various improvements and 

adaptations specific to classification problems. Modifications included refined algorithms to 

handle class imbalances, feature importance estimation, and hyperparameter tuning tailored for 

classification tasks. These advancements facilitated its widespread adoption across industries for 

diverse classification challenges, ranging from finance to healthcare, owing to its robustness in 

handling complex datasets and delivering high predictive accuracy. Subsequent innovations have 

further refined gradient boosting techniques, enhancing their adaptability, efficiency, and 

applicability across a wide array of classification problems. 

Using the Python module scikit-learn, the foundational gradient boosting classifier was 

constructed. Initially, default settings were applied, setting the learning rate to 0.1 and the number 

of boosting stages (n_estimators) to 100. Subsequently, parameter tuning through grid search was 

conducted to refine these settings, aiming to enhance the model's classification performance. 
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4.5.1 XGBoost (Extreme Gradient 

Boosting): 

Extreme Gradient Boosting is a prominent machine learning algorithm widely recognized 

for its exceptional predictive capabilities and efficiency in various domains. This algorithm was 

developed by Tianqi Chen (Chen & Guestrin, 2016). Tianqi Chen asserts that regularisation is 

added to XGboost to manage the sparse data and weighted quantile sketch for tree learning to 

optimise the loss function. Additionally, they offer some insights that aid in the development of a 

quick and scalable tree boosting system (Chen & Guestrin, 2016). These insights include cache 

access patterns, data sharding, and data compression. XGboost outperforms most other machine 

learning algorithms in both speed and accuracy because of these mechanisms and insights. As 

shown in the figure 4.5, XGBoost employes a series of decision trees to iteratively minimize errors 

and optimize predictive accuracy by combining weak learners into a robust model. 

 

 

Figure 4.5: Simplified structure of XGBoost (Wang et al., 2021) 

 

In this technique, the function to optimize in Step t is called the regularization term Ω(𝑓𝑡) and 

following equation is used to calculate a Loss function ℒ(𝜙)𝑡 at step t. 

 
ℒ(𝜙)𝑡 = ∑𝑙(𝑓𝑡−1 + 𝑓𝑡) + Ω(𝑓𝑡) 

 

4.8 
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Using the Python module scikit-learn, the foundational extreme gradient boosting classifier 

was constructed. Initially, default settings were applied, setting the learning rate to 0.1 and the 

number of boosting stages (n_estimators) to 100. Subsequently, parameter tuning through grid 

search was conducted to refine these settings, aiming to enhance the model's classification 

performance. 

 

4.6 Multilayer Perceptron or Artificial Neural Network 

The development of Multilayer Perceptron (MLPs), which are foundational components of 

modern deep learning, can be attributed to the collective research efforts of scientists and pioneers 

in the field of artificial intelligence, including Frank Rosenblatt's invention of the perceptron 

(Rosenblatt, 1960), followed by significant contributions from researchers such as Geoffrey 

Hinton, Yann LeCun and Yoshua Bengio (Bengio et al., 2007). The Multi Layer Perceptron (MLP) 

model or Feedforward Neural Network is a fundamental machine learning method that can be used 

to address a wide range of issues like classification, regression, and approximation. By simulating 

the weights of the neural connections, it contains, the network learns its behaviour. As shown in 

figure 4.6 a basic structure of Multilayer Perceptron consists of an input layer, an output layer, and 

one or more hidden layers. Each neural connection has a weight value assigned to it. The neurons 

in this network are fully interconnected, which means that each neuron is linked to every other 

neuron in the layer above it as well as every neuron in the layer below it. Weights in the neural 

network are adjusted using a training algorithm until desired error criteria are met, refining the 

network's predictions or classifications. 
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Figure 4.6:Basic structure of MLP (Ruppert, 2004). 

 

The activation is given by (Ruppert, 2004): 

 

𝐴𝑙 =  σ (𝑊𝑙 ∗ 𝐴𝑙−1 + 𝐵𝑙) 

 

4.9 

 

 

Where, 

𝐴𝑙−1 = Activation in layer 

𝑊𝑙= Weight matrix of layer 

𝐵𝑙 = Base matrix of layer 

σ  = Activation Function 

 

Using the Python module scikit-learn, the MLP (Multi-Layer Perceptron) classifier was 

built for binary classification. Initially, default settings were used, followed by parameter tuning 

through grid search to optimize the model's performance. The initial construction of the basic MLP 

classifier utilized default parameters: activation = ReLU, alpha = 0.0001, hidden layer size = 100, 

learning rate = constant, and max iteration = 200. Subsequent to this, a grid search was executed 

for parameter tuning, aimed at refining these settings to improve the model's classification 

performance. Which includes an input layer with 240 neurons, succeeded by three hidden layers 

containing 120, 70, and 35 neurons respectively, all activated by the ReLU function. For the binary 

classification task, the output layer comprises a single neuron activated by the sigmoid function. 

This summary shown in figure 4.7 offers a comprehensive overview of the neural network's design. 
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Figure 4.7: Model summary of MLP used 

 

4.7 Ensemble ANN-RF 

Ensemble ANN-RF combines the strengths of Artificial Neural Networks (ANN) and 

Random Forests (RF) in a unified method for improved performance. It amalgamates the 

capabilities of two powerful models - Artificial Neural Networks (ANN) and Random Forests (RF) 

- to enhance accuracy in discerning between two distinct classes. The independent classification 

generated by the ANN and RF models are harmonized through a weighted combination approach. 

Typically, equal weights (50%) are assigned to both models, though variations in weighting 

strategies can be explored based on their individual performance or other pertinent considerations. 

The Ensemble of ANN-RF was implemented through the Python library scikit-learn. Equal 

weights (50%) were allocated to both models for the final classification. The Random Forest model 

utilized tuned parameters, setting max features as auto, min samples leaf as 1, n_estimators as 100, 

and min_samples_split as 2. On the other hand, the ANN configuration included an input layer 

with 240 neurons, followed by three hidden layers containing 120, 70, and 35 neurons, 

respectively, employing the ReLU activation function. The output layer for binary classification 

featured a single neuron activated by the sigmoid function, alongside alpha set to 0.0001. 

 

4.8  Ensemble ANN-Gradient Boost 

Ensemble ANN-Gradient Boost combines the strengths of Artificial Neural Networks 

(ANN) and Gradient Boost in a unified method for improved performance. It amalgamates the 

capabilities of two powerful models - Artificial Neural Networks (ANN) and Gradient Boost - to 

enhance accuracy in discerning between two distinct classes. The independent classification 
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generated by the ANN and Gradient Boost models are harmonized through a weighted combination 

approach. Typically, equal weights (50%) are assigned to both models, though variations in 

weighting strategies can be explored based on their individual performance or other pertinent 

considerations. 

The Ensemble of ANN- Gradient Boost was implemented through the Python library scikit-

learn. Equal weights (50%) were allocated to both models for the final classification. The Gradient 

Boosting utilized tuned parameters, setting learning rate to 0.01 and the number of boosting stages 

(n_estimators) to 100. On the other hand, the ANN configuration included an input layer with 240 

neurons, followed by three hidden layers containing 120, 70, and 35 neurons, respectively, 

employing the ReLU activation function. The output layer for binary classification featured a 

single neuron activated by the sigmoid function, alongside alpha set to 0.0001. 

 

Chapter 5 MODEL FRAMEWORK 

 

The comprehensive framework comprises multiple distinct stages. Figure 5.1 illustrates the 

overall system framework. The initial stage involves dataset collection and observation. 

Subsequently, data preprocessing ensues, encompassing data visualization and computation of 

screening variables across all bids. Subsequently, the dataset is partitioned into a 80:20 ratio, 

allocating segments for training, and testing sets, respectively. The training set was employed in 

the Learning Algorithm, culminating in the development of a final model using optimization 

techniques. Diverse classifiers detailed in Chapter 4 were utilized within this process. Evaluation 

of the final model was conducted against the testing set, employing various evaluation metrics. 

Four distinct settings, elaborated in Table 5.1, were utilized for model assessment. A range of 

classification evaluation metrics, including Accuracy, Balanced Accuracy, Precision, ROC-AUC 

score, were applied across all models and settings. 
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Figure 5.1: Overall framework employed for collusion detection. 

5.1 Different settings 

We applied machine learning methods to train and test models for detecting collusion in 

the public procurement dataset. Specifically, we considered eight models explained in 

methodology section and applied these four settings as implemented by Rodríguez in his research   

(Rodríguez et al., 2022). Every setting represents varied data accessibility per auction. Implicitly, 

a larger volume of data per auction should theoretically yield improved collusion detection 

outcomes. Setting 3 and 4 encompass the inclusion of screening variables. The four settings in 

which all models are evaluated is shown in Table 5.1: 

 

Table 5.1: Diverse Settings in Machine Learning Methods for Collusion Detection 

SETTING DESCRIPTION PREDICTORS TARGET 

 

1 Model without screens 

without tuning 

'Tender', 'Winner', 

'Number_bids','Bid_value', 

'Difference Bid/PTE', 

'Competitors', 'Pre-Tender 

Estimate (PTE)' 

 

'Collusive_competitor' 
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2 Model without screens 

with tuning 

'Tender', 'Winner', 

'Number_bids','Bid_value', 

'Difference Bid/PTE', 

'Competitors', 'Pre-Tender 

Estimate (PTE)' 

 

'Collusive_competitor' 

3 Model with screens 

without tuning 

'CV', 'SPD', 'DIFFP', 'RD', 

'KURT', 'SKEW', 'KSTEST', 

'Tender', 'Winner', 

'Number_bids','Bid_value', 

'Difference Bid/PTE', 

'Competitors', 'Pre- 

Tender Estimate (PTE)' 

 

'Collusive_competitor' 

4 Model with screens 

with tuning 

'CV', 'SPD', 'DIFFP', 'RD', 

'KURT', 'SKEW', 'KSTEST', 

'Tender', 'Winner', 

'Number_bids','Bid_value', 

'Difference Bid/PTE', 

'Competitors', 'Pre- 

Tender Estimate (PTE)' 

'Collusive_competitor' 

. 

5.2 ERROR METRICS 

The most widely used error measures for classification in machine learning include 

accuracy, precision, recall, balanced accuracy, and F1 score (Sokolova & Lapalme, 2009). When 

the dataset is highly unbalanced and most performance indicators indicate significant bias for a 

more represented class, balanced accuracy is utilized to identify the best parameters for the 

classifiers. Balanced accuracy (also Informedness or Youden's J statistic) measures the proportion 

of correctly identified records of each class relative to class size (Sokoliuk et al., 2021). 

Additionally, the area under the receiver operating characteristic curve (AUC) will also be used to 

assess the performance as it is independent of threshold value selection.  
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Table 5.2: Measures for binary classification(Sokolova & Lapalme, 2009b). 

MEASURE FORMULA EVALUATION FOCUS 

Accuracy 𝒕𝒑  +  𝒕𝒏

𝒇𝒑  + 𝒇𝒏 + 𝒕𝒑  + 𝒕𝒏
 

Overall effectiveness of a 

classifier 

Precision 𝒕𝒑

𝒇𝒑 + 𝒕𝒑
 

Class agreement of a 

classifier to identify positive 

labels 

Recall (Sensitivity) 𝒕𝒑

𝒇𝒏 + 𝒕𝒑
 

Effectiveness of a classifier to 

identify positive labels 

Specificity 𝒕𝒏

𝒇𝒑 + 𝒕𝒏
 

Effectiveness of a classifier to 

identify negative labels 

F-score 
𝟐 ∙

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙ 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
 

Relations between data’s 

positive lables and those 

given by a classifier 

Balanced accuracy 𝟏

𝟐
 (

𝒕𝒑

𝒕𝒑 + 𝒇𝒏
+

𝒕𝒏

𝒕𝒏 + 𝒇𝒑
) 

Measures proportion of 

correctly identified records of 

each class relative to class 

size. 

 

The error metrics discussed earlier can be tailored to fit our specific situation. In our binary 

classification study, a True Positive identifies a bid as collusive correctly, while a True Negative 

signifies correctly recognizing a competitive bid. Conversely, a False Positive indicates the 

algorithm identifies a bid as collusive when it's competitive, and a False Negative suggests the 

algorithm misses a collusive bid, flagging it as competitive. The impact of 𝑓𝒑 and 𝑓𝒏 errors vary 

based on the institution involved; for law enforcement and courts, 𝑓𝒑 errors lead to unwarranted 

investigations. 
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5.4 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

 

5.5 

 

We are working with a binary classification at the auction level in this research. Hence, the 

previous error metrics can be expressed into our binary classification problem as: 
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5.9 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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TN + FP + FN + TP = Total number of bids 

 

 

5.11 

 

Consequently, machine learning algorithms were developed and evaluated to detect collusion 

within the dataset. Following each iteration, the error metrics were computed and used for analysis. 

 

5.3 Computational Environments 

For conducting classification tasks, Python programming language, specifically version 

3.10.12, served as the primary tool for this thesis. Python version 3.10.12 was utilized within 

Jupyter Notebook via Anaconda throughout the entire thesis. The hardware setup includes an 
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x86_64 architecture with two cores, facilitating concurrent processing and 64-bit addressing. For 

data manipulation, Pandas (Mckinney, 2010)and NumPy (Harris et al., 2020) stand as foundational 

libraries, instrumental in intricate data handling and processing tasks. Statistical and machine 

learning models were created using the Scikit-Learn (Pedregosa et al., 2011), StatsModels 

(Seabold & Perktold, 2010), and tslearn, empowering the construction and analysis of various 

models. For all the algorithms we used GridSearchCV on each dataset to search for the best 

parameters for hyper parameter tuning. Delving into deep learning methodologies, TensorFlow 

and Keras play pivotal roles, particularly in deploying neural networks for classification purposes. 

To evaluate performance of classifiers, we used variety of libraries available in scikit-learn such 

as accuracy score, confusion matrix, classification report, and roc auc score. 

 

Chapter 6 RESULT 

 

This research evaluates various machine learning algorithms for their performance in 

distinguishing between collusive and competitive auctions. It begins by introducing optimized 

models and showcasing improvements achieved through hyperparameter tuning. Following this, 

it evaluates and ranks these models based on their performance metrics to offer a thorough 

assessment of their effectiveness. Before distinguishing between collusive and competitive 

auctions, all machine learning algorithms must undergo training. We split the dataset, allocating 

80% for training, and the remaining 20% for test set. In this section, we will explore the test set 

performance of each model to detect the collusion capabilities of eight algorithms under different 

scenarios. Each auction is categorized as either 'collusive' or 'competitive,' requiring the algorithms 

to perform binary classification for each auction. In this research, the Python programming 

language and the machine learning library scikit-learn were utilized for conducting the analysis 

and implementing various machine learning models. Python, known for its versatility and 

extensive libraries, coupled with scikit-learn, a powerful machine learning toolkit, enabled the 

implementation and evaluation of different algorithms for the tasks outlined in the study. The 

algorithms' performance was evaluated across four distinct settings to assess their effectiveness. 

The following algorithms are utilized to perform this task: 

 

6.1 Support Vector Classifier 

In this analysis, we evaluated the performance of a Support Vector Classifier under four 

distinct settings as shown in table 6.1. The settings were categorized as follows: Setting 1 

represented the model without screens and without tuning, setting 2 indicated the model without 

screens but with tuning, setting 3 referred to the model with screens without tuning, and Setting 4 

denoted the model with screens and tuning. The results shown in table 6.1 indicate that Setting 4 

yielded the highest overall performance, with an accuracy of approximately 66.67% and a balanced 

accuracy of 51.73%. This setting also achieved the highest precision and F1 Score, suggesting that 

the combination of screens and tuning significantly improved the model's ability to correctly 

classify instances. On the other hand, setting 2 had notably lower performance metrics, particularly 

in terms of recall. The detailed performance metrics for each setting are provided in the table 

above. These findings provide valuable insights into the impact of screens and tuning on the 

performance of the SVC (SVC1 is for setting one, SVC2 is for setting 2 and so on) model under 

various scenarios, helping us make informed decisions regarding the configuration of the model 

for our specific task. Parameter tuning for C and gamma were carried out for different values 
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shown in the table and C=5, gamma=1 showed optimal performance. Thus, value of C = 5 and 

gamma = 1 are used in the classifier. Figure 6.1 displays the ROC-AUC curve for the support 

vector classifier, exhibiting a low AUC score of 0.50, indicating poor performance. 

 

 

Table 6.1: Performance of Support Vector Classifier under different settings 
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Table 6.2: Hyperparameter tuning for Support Vector Classifier

 

 

 

 

Figure 6.1: Evaluation of Support Vector Classifier using ROC-AUC  

 

6.2  Random Forest 

In our analysis, we evaluated the performance of a Random Forest model under the four 

distinct settings discussed, each representing a different combination of features and 

hyperparameter tuning as shown in table 6.3. The results of our analysis revealed that Setting 2 

achieved the highest overall performance, boasting an accuracy of approximately 86.95% and a 

balanced accuracy of 86.89%. It also demonstrated a commendable balance between precision and 

recall, resulting in an impressive F1 Score of 85.75%. The remaining settings, while still exhibiting 

respectable performance, demonstrated variations in precision, recall, and overall accuracy. 

Notably, we employed various hyperparameters as shown in table 6.4. These findings emphasize 
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the importance of hyperparameter tuning when optimizing a Random Forest model for our specific 

task. Figure 6.2 displays the ROC-AUC curve for the random forest, exhibiting a very good AUC 

score of 0.93, indicating excellent performance.  

 

Table 6.3: Performance of Random Forest Classifier under different settings 

 

 

Table 6.4: Hyperparameter tuning for Random Forest Classifier

 

 

Figure 6.2: Evaluation of Random Forest Classifier using ROC-AUC 
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6.3 KNN  

We also assessed the performance of the K-Nearest Neighbors model under four distinct 

settings as shown in table 6.5, each representing a different combination of features and 

hyperparameter tuning. Interestingly, setting 2 emerged as the top performer, achieving an 

accuracy of approximately 69.32% and a balanced accuracy of 69.35%. This setting demonstrated 

a good balance between precision and recall, resulting in an F1 Score of 67.69%. The remaining 

settings exhibited competitive performance but showcased differences in precision, recall, and 

overall accuracy. These results underscore the significance of feature engineering and the fine-

tuning of hyperparameters in optimizing the KNN model for our specific task. The 

hyperparameters considered for KNN included 'n_neighbors,' 'weights,' and 'p.' After evaluation, 

the best hyperparameter configuration was identified as shown in table 6.6. Figure 6.3 displays the 

ROC-AUC curve for KNN, exhibiting an AUC score of 0.78, indicating good performance.  

 

Table 6.5: Performance of K-Nearest Neighbors under different settings 

 

 

Table 6.6: Hyperparameter tuning for K-Nearest Neighbors 
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Figure 6.3: Evaluation of K-Nearest Neighbors using ROC-AUC 

 

6.4 Extra Tree Classifier 

In our analysis, we evaluated the performance of extra tree classifier under four distinct 

settings, each representing a different combination of features and hyperparameter tuning as shown 

in table 6.7. The results of our analysis revealed that Setting 4 achieved the highest overall 

performance, boasting an accuracy of approximately 83.45% and a balanced accuracy of 81.75%. 

It also demonstrated a commendable balance between precision and recall, resulting in an 

impressive F1 Score of 86.77%. The remaining settings, while still exhibiting respectable 

performance, demonstrated variations in precision, recall, and overall accuracy. Notably, we 

employed various hyperparameters as shown in table 6.8 These findings emphasize the importance 

of hyperparameter tuning when optimizing a Random Forest model for our specific task. Figure 

6.4 displays the ROC-AUC curve for the extra tree classifier, exhibiting a very good AUC score 

of 0.93, indicating excellent performance.  
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Table 6.7: Performance of Extra Tree Classifier under different settings 
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Table 6.8: Hyperparameter tuning for Extra Tree Classifier

 

 

 

 

Figure 6.4: Evaluation of Extra Tree Classifier using ROC-AUC 

 

6.5 Gradient Boosting 

We assessed the performance of a Gradient Boosting model under four distinct settings, 

each representing a different combination of features and hyperparameter tuning as shown in table 

6.9. Notably, setting 4 emerged as the top performer, achieving an accuracy of approximately 

88.92% and a balanced accuracy of 88.78%. This setting demonstrated an excellent balance 

between precision and recall, resulting in an F1 Score of 88.02%. The remaining settings also 

exhibited competitive performance but showcased variations in precision, recall, and overall 

accuracy. These results emphasize the significance of hyperparameter tuning and feature 

engineering when optimizing the Gradient Boosting model for our specific task. The 
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hyperparameters under consideration included 'n_estimators', 'learning_rate' and ‘max_depth’ as 

shown in the table 6.10. Figure 6.5 displays the ROC-AUC curve for gradient boosting, exhibiting 

an AUC score of 0.89, indicating very good performance.  

 

 

Table 6.9: Performance of Gradient Boosting classifier under different settings

 

 

Table 6.10: Hyperparameter tuning for Gradient Boosting

 

 

 

 
Figure 6.5: Evaluation of Gradient Boosting using ROC-AUC 
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6.5.1 Xgboost 

We evaluated the performance of an XGBoost model under four distinct settings, each 

representing a different combination of features and hyperparameter tuning as shown in table 6.11. 

Notably, setting 4 emerged as the top performer, achieving an accuracy of approximately 83.94% 

and a balanced accuracy of 82.35%. This setting demonstrated an excellent balance between 

precision and recall, resulting in an F1 Score of 87.30%. The remaining settings also exhibited 

competitive performance but showcased variations in precision, recall, and overall accuracy. These 

results underline the significance of both feature engineering and hyperparameter tuning when 

optimizing the XGBoost model for our specific task. The hyperparameters considered for 

XGBoost included  'n_estimators', 'learning_rate' and ‘max_depth’ as shown in the table 6.12. 

 

 

Table 6.11: Performance of XgBoost classifier under different settings 

 
 

Table 6.12: Hyperparameter tuning for XgBoost classifier 

 

 

6.6 Multi-Layer Perceptron 

 We evaluated the performance of a multi-layer perceptron under four distinct settings, 

each representing a different combination of features and hyperparameter tuning as shown in table 

6.13. Notably, setting 4 emerged as the top performer, achieving an accuracy of approximately 

83.1% and a balanced accuracy of 80.6%. This setting demonstrated an excellent balance between 

precision and recall, resulting in an F1 Score of 86.00%. The remaining settings also exhibited 

competitive performance but showcased variations in precision, recall, and overall accuracy. These 

results underline the significance of both feature engineering and hyperparameter tuning when 

optimizing the Multi-Layer Perceptron model for our specific task. The best hyperparameter 

configuration for Multi-Layer Perceptron included 'hidden_layer_sizes': (240, 120, 70, 35), 

'activation': 'logistic', 'alpha': 0.0001, 'learning_rate': 'constant' and 'max_iter': 300 as shown in 
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table 6.14. Figure 6.6 displays the ROC-AUC curve for multi-layer perceptron, exhibiting an AUC 

score of 0.82, indicating good performance.  

 

Table 6.13: Performance of Multi-Layer Perceptron/ ANN under different settings

 
 

 

Table 6.14: Hyperparameter tuning for Multi-Layer Perceptron/ ANN
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Figure 6.6: Evaluation of Multi-Layer Perceptron/ ANN using ROC-AUC 

 

6.7 Ensemble ANN-RF 

 We examined the performance of an Ensemble ANN-RF (Artificial Neural Network - 

Random Forest) model under two distinct settings, each incorporating a unique combination of 

hyperparameters, and feature engineering as shown in table 6.15. The Random Forest (RF) model 

was fine-tuned to achieve optimal performance with hyperparameters including 'max_features,' 

min_samples_leaf,' 'min_samples_split,' and 'n_estimators.' The best hyperparameters for the RF 

model were identified as {'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 

'n_estimators': 100}. The Artificial Neural Network (ANN) architecture was defined using 

MLPClassifier, specifying a complex configuration with hidden layer sizes of (240, 120, 70, 35) 

and various other settings related to activation, solver, learning rate, and more. Both settings of the 

Ensemble ANN-RF model exhibited strong performance metrics. In Setting 1, the model achieved 

an accuracy of approximately 79.47% and a balanced accuracy of 80.25%. This setting 

demonstrated an excellent balance between precision, recall, and an F1 Score of 82.32%. In Setting 

2, the model showcased similar robust performance with an accuracy of approximately 79.93% 

and a balanced accuracy of 81.08%, achieving a commendable precision and an F1 Score of 

82.52%. Figure 6.7 displays the ROC-AUC curve for ensemble ANN- random forest, exhibiting 

an AUC score of 0.88, indicating excellent performance.  
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Table 6.15: Performance of ANN-RF under different settings

 

 

 

Figure 6.7: Evaluation of ANN-RF using ROC-AUC 

 

6.8 Ensemble ANN-Gradient Boost 

 We evaluated the performance of an Ensemble ANN-Gradient Boost model using two 

distinct settings, both of which incorporated tuned hyperparameters. As shown in table 6.16, these 

settings represent a combination of a neural network (ANN) model and Gradient Boost, 

showcasing the power of ensemble learning in our approach. For both settings, we optimized the 

hyperparameters to achieve the best results. For the ANN model, we used a configuration with 

hidden layer sizes (240, 120, 70, 35) and various other settings like 'activation,' 'solver,' 'alpha,' 

and more. For Gradient Boost, the best hyperparameters were determined as {'learning_rate': 

0.001, 'n_estimators': 200}. Notably, the ensemble model delivered strong performance in both 

settings. Setting 1 achieved an accuracy of approximately 88.49% and a balanced accuracy of 

88.54%. It demonstrated a balanced combination of precision, recall, and an F1 Score of 83.79%. 

Setting 2, while achieving an accuracy of approximately 88.01% and a balanced accuracy of 

88.08%, showcased impressive precision and a commendable F1 Score of 87.07%. Figure 6.8 
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displays the ROC-AUC curve for ensemble ANN- gradient boosting, exhibiting an AUC score of 

0.91, indicating excellent performance.  

 

 

Table 6.16: Performance of ANN- Gradient Boost under different settings 

 

 

 

Figure 6.8: Evaluation of ANN-GB using ROC-AUC 

 

6.9 Performance evaluation of models 

In this chapter, we assess the performance of our models. Our dataset exhibits a slight 

imbalance, with a split of 40% for one class representing collusive bids and 60% for the other class 

indicating competitive bids, using various evaluation metrics can provide a comprehensive 

understanding of all classifier’s performance. We'll evaluate the models using measures such as 

accuracy, balanced accuracy, precision, and ROC-AUC scores. Initially, we outline the 

progression of various settings employed and identify the top-performing setting among the four 

utilized. Subsequently, we conduct a comparative analysis between baseline models and enhanced 

models. 
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6.10 Performance analysis using accuracy, balanced accuracy, and precision: 

Figure 6.9 compares the accuracy and balanced accuracy of all models, highlighting the 

superior performance of setting 4 among the four settings used. We expected setting 4 to perform 

the best as it incorporates screening variables along with available bid information, and fine-tuning 

through grid search. This emphasizes the significance of feature engineering and underscores the 

critical role played by hyperparameter tuning. Both accuracy and balanced accuracy are utilized 

to ensure fair performance assessments, particularly in datasets with imbalances. Given our 

dataset's slight imbalance, there's minimal difference between the two values across most models, 

depicted by the blue line denoting accuracy and the orange line representing balanced accuracy in 

figure 6.9. The chart in figure 6.10 also demonstrates the accuracy and balanced accuracy across 

different models, indicating minimal variations between these two metrics Notably, the Support 

Vector Classifier (SVC) as shown in table 6.1 exhibited the lowest accuracy and balanced accuracy 

among these models, while the Gradient Boosting model attained the highest scores in both 

accuracy and balanced accuracy. 

 

 
Figure 6.9: Accuracy and balanced accuracy for best performing settings 



47 

 

 

Figure 6.10: Model Performance Metrics_ Accuracy and balanced accuracy 

As we aim to identify collusion within a public procurement dataset, relying solely on 

accuracy and balanced accuracy doesn't provide a comprehensive evaluation of performance. It's 

crucial to include precision alongside ROC-AUC for a holistic view of all models. Figure 6.12 

presents a comparative analysis across various machine learning models, examining accuracy, 

precision, and balanced accuracy based on the most effective settings utilized. Precision, as 

explained in section 5.2, signifies the ratio of accurately identified positive instances among all 

instances predicted as positive by the classifier.  Precision, in our case, measures how many of the 

bids that our model identified as collusive were actually collusive. A higher precision indicates 

that when model identifies a bid as collusive, it's more likely to be correct, minimizing 

misclassifications of non-collusive bids as collusive. Notably, Gradient Boosting demonstrated 

superior performance in precision. An intriguing observation emerges from Figure 6.12: the 

performance of ANN alone wasn't as remarkable as ensemble of ANN with Gradient Boosting. 

Additionally, Figure 6.12 highlights that SVC displayed the poorest precision among the models 

assessed. 
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Figure 6.11: Model Performance Metrics_ Accuracy, balanced accuracy, and Precision 

6.11 Performance analysis using Receiver Operating Characteristic (ROC)- Area Under the 

Curve (AUC)  

As Huang and Ling outlined, ROC-AUC stands out as a superior evaluation metric 

compared to accuracy (Huang & Ling, 2005). We also incorporated it in our evaluation, figure 

6.1 to 6.8 provides ROC- AUC graphs for all the models used and table 6.17 summarizes the AUC 

scores. The ROC curve compares the classifiers’ performance across the entire range of class 

distributions. It takes into consideration of all possible threshold values not just 0.5 default 

threshold value. Figure 6.1 highlights the support vector classifier as the least reliable, displaying 

an AUC score of 0.50, indicative of random classification for this dataset. Conversely, figures 6.2, 

6.4, and 6.5 showcase top performers—random forest, extra tree classifier, and gradient boosting 

classifier—with notably high AUC scores of 0.93, 0.93, and 0.89, respectively. The ROC curve 

represents the trade-off between the true positive rate (sensitivity) and the false positive rate (1 - 

specificity) at different classification thresholds. Our research objective, detecting collusion in the 

public procurement dataset, emphasizes minimizing false positives while maximizing true 

positives. Notably, both random forest and gradient boosting, evident in figures 6.2 and 6.5, exhibit 

exceptional performance with remarkably low false positive rates, aligning with our objective to 

minimize false positives while maintaining high true positive rates. 
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Table 6.17: AUC score of all models 

Model ROC-AUC score 

Support vector classifier 0.50 

Random Forest 0.93 

K-nearest neighbours 0.78 

Extra tree classifier 0.93 

Gradient boosting 0.89 

Multi-layer perceptron 0.82 

Ensemble ANN-RF 0.88 

Ensemble ANN-GB 0.91 

 

6.12 Performance analysis using F- Score 

F score combines precision and recall in a single value as described in table 5.2. The F-

score in binary classification offers a balanced assessment of the model's performance. The 

summary table 6.18 summarizes the F-scores of all models under optimal configurations. Chapter 

6 details the F-scores for all models across the four settings. It's evident that all models exhibited 

improvement in their F-scores following hyperparameter tuning. While some models showed 

marginal improvements, others demonstrated up to a 5% improvement over their base models such 

as extra tree classifier, gradient boosting classifier and random forest classifier. 

Table 6.18: F-score of all models 

Model F- Score 

Support vector classifier 0.5376 

Random Forest 0.8575 

K-nearest neighbours 0.6812 

Extra tree classifier 0.8677 

Gradient boosting 0.8802 

Multi-layer perceptron 0.8730 
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Ensemble ANN-RF 0.8251 

Ensemble ANN-GB 0.8707 

6.13 Evaluation of the effect of feature engineering and hyper parameter tuning 

In our analysis, initially, we utilized the default parameters for all machine learning models 

accessible in the scikit-learn library. Subsequently, we did feature engineering by incorporating 

extra features as screening variables, in addition to the foundational bid and other data. 

Furthermore, we conducted hyperparameter tuning across all models. As a result, we anticipated 

an improvement in classification accuracy between the base models and those integrated with 

features and tuning. The figure 6.13 contrasts the baseline model with the enhanced model, which 

has undergone tuning and incorporated screening variables as features. Figure 6.13 illustrates that 

all the models experienced an increase in accuracy when utilizing features and undergoing tuning. 

 

Figure 6.12: Comparison the baseline model with the (tuned+Screens) models. 

The ROC-AUC plots displayed in figures 6.13 and 6.14 depict the impact of both feature 

engineering and hyperparameter tuning. In both figures, the models on the right side of the ROC 

curves underwent tuning and integrated screening variables as additional features. Figure 6.14 
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illustrates that this approach not only enhanced the AUC score but also reduced the false positive 

rate in comparison to the baseline model. 

 

  

Figure 6.13: Evaluation of the effect of feature engineering and tuning using ROC-AUC for 

KNN 

  

Figure 6.14: Evaluation of the effect of feature engineering and tuning using ROC-AUC for 

gradient boosting 

 

 

 

 

 

 



52 

 

 

Chapter 7 CONCLUSION 

 

This chapter concludes our research by offering important takeaways from our analysis, 

addressing the limitations that impacted the work, and suggesting potential future research 

directions. 

 

7.1 Concluding Remarks 

This study was motivated by the need to address collusion detection in public procurement, 

where collusion can lead to increased prices and the selection of corrupt bidders, fostering 

monopoly-like situations. To tackle this issue, we explored various techniques, including basic 

machine learning and ensemble models. Each model underwent thorough hyperparameter tuning 

with and without screens along with available bid information. Tree-based algorithms like Gradient 

Boosting, Extra Tree Classifier, and Random Forest consistently outperformed others, while the 

support vector classifier exhibited subpar performance across all metrics, including F-score, and 

ROC-AUC score. The challenges in selecting the best model were evident, as different metrics 

favored different models. This project underscores the complexity of choosing a suitable 

classification model for collusion detection, emphasizing the importance of careful consideration, 

and understanding of the metrics involved before making a final decision. 

Feature engineering and hyperparameter tuning emerged as pivotal factors in enhancing 

model performance. Incorporating screening variables and fine-tuning through grid search notably 

improved the accuracy of all models. The ROC-AUC analysis brought forward crucial insights, 

particularly regarding models' abilities to minimize false positives while maximizing true 

positives. Models like Random Forest and Gradient Boosting demonstrated superior performance, 

showcasing lower false positive rates—a crucial aspect when identifying collusion in public 

procurement. The outcomes of this study carry significant implications for both the specific 

domain under investigation and the broader field of collusion detection. While the primary focus 

has been on collusion detection, particularly in accurately distinguishing between collusive and 

competitive auctions, the insights derived from this research can be extrapolated to various realms 

within binary classification for collusion detection. As per the study's findings, the application of 

tree-based models emerges as a more accurate approach to detect collusion in public procurement.  

 

7.2 Contribution 

Accessing public procurement data poses a considerable challenge, which is made more 

difficult by a small amount of academic literature on this area of collusion detection in public 

procurement. Very few publications offer both their findings and the associated data. This thesis 

investigates a variety of machine learning models that were not used before to detect collusion in 

the context of public procurement. Furthermore, it investigates various configurations differing in 

their access to bid information. This study distinguishes itself from extant literature by employing 

hyperparameter tuning across all machine learning models utilized herein. Notably, these models 

exhibited notable improvement after the tuning process. The support vector classifier and gradient 

boosting classifier demonstrated substantial enhancement after the tuning. In contrast, models such 
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as k-nearest neighbors, random forest, and multilayer perceptron exhibited improvements, 

however, the improvements observed in these models were not as prominent. 

 

7.3 Limitations 

One primary limitation of this study arises from the constraints imposed by the availability 

of data. The study's potential for exploration could be significantly enhanced with access to more 

comprehensive information on auctions and company-specific data. The incorporation of 

additional data has the potential to open new avenues for analysis, offering a richer understanding 

of participant behavior within auctions. This expanded dataset could explain critical aspects such 

as financial positions, bidding strategies, and potential indicators of collusion. Employing machine 

learning techniques on this dataset might uncover previously unnoticed connections between 

financial standing and procurement behavior, thereby advancing the development of more precise 

collusion detection models. One potential other limitation of this research is exclusive focus on 

machine learning techniques without considering domain-specific nuances or incorporating 

qualitative data from industry experts or stakeholders.  

 

7.4 Future Research Directions 

Future research could focus on exploring novel feature engineering techniques tailored 

specifically to bid timing among bidders, which can potentially reveal deeper insights into 

collusion dynamics within this context. Integrating auction-specific information with company 

financial data presents an avenue for constructing a more comprehensive dataset, offering a 

nuanced understanding of participant behavior within auctions. By leveraging machine learning 

techniques on this amalgamated dataset, future endeavors aim to uncover previously undiscovered 

connections between financial standing and bidding behavior, thus advancing the accuracy and 

effectiveness of collusion detection models within public procurement settings. 
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