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ABSTRACT 

Variation in Effects of Climate Change on Salmonid Demography: Extent, Scale, and 

Underlying Mechanisms 

 

Brian K. Gallagher, Ph.D. 

Concordia University, 2024 

Predicting species responses to climate change is an increasingly important objective in 

ecological research and natural resource management. However, heterogeneity in demography, 

life history, and habitat characteristics across multiple spatial scales can generate substantial 

diversity in population responses, complicating species-level assessments. Therefore, for widely 

distributed species consisting of many fragmented populations, understanding the mechanisms 

that underlie population variation can improve predictions of climate impacts across the species 

range. Using salmonid fishes as a model system, my thesis investigates variation in population 

responses to climate change at global, regional, and local scales. First, through a global meta-

analysis of 156 studies of 23 species, I demonstrated that population responses to temperature 

and precipitation exhibit significant spatial, temporal, and biological patterns that broadly align 

with predictions based on salmonid thermal limits. Importantly, I showed that salmonid 

populations at low latitudes and elevations tend to be most negatively impacted by rising 

temperatures. Subsequently, I analyzed mark-recapture and stream temperature data collected 

during field surveys in Cape Race (Newfoundland, Canada) since 2010 to characterize local-

scale variation in demography, climate impacts, and thermal regimes among eleven populations 

of brook trout (Salvelinus fontinalis) separated by <5 km. I showed that variation in recruitment, 

growth, and demographic relationships combined to generate diverse population dynamics that 

stabilized brook trout abundance across Cape Race, and that thermal regimes driven by 

groundwater inputs contributed to population diversity. Finally, using population-specific 

demographic and life history data, I built eco-genetic models that simulated responses to future 

climate warming across Cape Race brook trout populations, which emphasized the role of life 

history evolution and thermal habitat variation in determining population persistence. Together, 

my thesis shows that large-scale gradients in latitude and elevation structure salmonid responses 

to climate change, but substantial fine-scale variation is embedded within these trends due to 

heterogeneity in habitat characteristics, human impacts, and eco-evolutionary dynamics 

experienced by populations. Similar research frameworks that employ diverse methodologies 

and integrate data across scales will be crucial for understanding the complex impacts of climate 

change on salmonids and other freshwater fish populations, and should inform the conservation 

of a wide range of species.
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List of Figures 

Figure 1.1: Summary of predicted patterns in effects of temperature (panels a, c, and e) and 

precipitation (panels b, d, and f) on salmonid productivity. Predictions are structured according 

to spatial (a and b), temporal (c and d), and biological (e and f) patterns that were of most 

interest, and stages 1-3 (boxes and arrows) correspond to the order variables were inputted into 

models during the stepwise model selection process (see Methods). All panels have a shaded 

background to highlight expected climate effects when temperatures exceed upper thermal limits 

(red shading), or when low temperatures limit productivity (blue shading; see Introduction). Note 

that predicted effects on productivity were expected to be largely similar for measures of 

abundance and growth. 

Figure 1.2: Best-fit model for the Abundance-Precipitation dataset, showing categorical 

coefficients and 95% confidence intervals plotted by season for spatial (silver) or temporal (gold) 

study designs (see Table S1). Total sample sizes for each level of season are shown for reference. 

Figure 1.3: Best-fit model for the Abundance-Temperature dataset. Predicted values are plotted 

by latitude (a) and elevation (b), with fitted slope and intercepts corresponding to a reference 

level (c; arrow). Intercepts in (a) and (b) were adjusted to reflect the mean elevation and latitude, 

respectively, while points were sized according to the inverse of their sampling variance. 

Categorical coefficients and 95% confidence intervals (c) are plotted by age-class for native 

(silver) or non-native (gold) range portions, and spatial (circles) or temporal (triangles) study 

designs. Coefficients in (c) were estimated as contrasts relative to a reference level (bottom; see 

text) while controlling for latitude and elevation (see Table S1). Total sample sizes for each level 

of age-class are shown in panel (c) for reference. 

Figure 1.4: Best-fit model for the Growth-Precipitation dataset, showing categorical coefficients 

and 95% confidence intervals plotted by life-stage for anadromous (silver) or freshwater resident 

(gold) populations (see Table S1). Total sample sizes for each level of life-stage are shown for 

reference. 

Figure 1.5: Best-fit model for the Growth-Temperature dataset. Predicted values are plotted by 

latitude (a) and elevation (b), with fitted slope and intercept corresponding to a reference level (c; 

arrow). The relationship with latitude in panel (a) was not significant, so the fitted line is not 

shown. Points in panels (a) and (b) are sized according to the inverse of their sampling variance. 

Categorical coefficients and 95% confidence intervals (c) are plotted by life-stage*age for lentic 

(silver) or lotic (gold) habitat types (see Table S1). Coefficients in (c) were estimated as contrasts 

relative to a reference level (bottom; see text) while controlling for latitude and elevation. Total 

sample sizes for each level of life-stage*age are shown in panel (c) for reference. 

Figure 2.1: Patterns and trends in recruitment (top panels) and juvenile growth (bottom panels) 

of age-1 Cape Race brook trout. Correlation matrices (a, d) show pairwise correlations between 

population time-series (top rows) and correlations with sampling year within each population 

(bottom row). Kernel density plots are shown for all pairwise correlations (b, e) and temporal 

trends (c, f), with the black dashed lines denoting the average correlation in each case. 

Figure 2.2: Results of dynamic factor analysis of Cape Race brook trout recruitment (top panels) 

and juvenile growth (bottom panels) time-series. Estimated common trends (thick black line) and 

95% confidence intervals (grey bands) are shown for models with no covariates and an identity 



x 
 

variance-covariance matrix (a, c). Loadings describing the relationship between individual 

populations and the common trend (see Table 1 for population codes) are also shown (b, d), with 

dashed horizontal lines denoting strong positive or negative loadings (after Zuur et al. 2003). 

Figure 2.3: Variation in three key demographic relationships among Cape Race brook trout 

populations. Raw data and regression lines are shown for each population (top panels; see Table 

1 for population codes), as well as estimates of fixed effects (thick black line with grey 95% 

confidence band) and population random effects (thin black lines) from generalized linear mixed 

models (bottom panels; see Table 2). The recruit-adult relationship (a, d) plots standardized 

adult abundance (age-2+ census population size) against standardized recruitment (age-1 census 

population size) during the previous year. The stock-recruitment relationship (b, e) plots the log-

transformed ratio of recruits per spawner against the standardized adult abundance when recruits 

were born. The density-dependent growth relationship (c, f) plots standardized juvenile growth 

(age-1 individual growth rate) against standardized recruitment within each year-class. 

Figure 2.4: Effects of selected stream temperature metrics on Cape Race brook trout recruitment 

(left panels) and juvenile growth (right panels). Raw data and regression lines are shown for each 

population (top panels; see Table 1 for population codes), as well as estimates of fixed effects 

(thick black line with grey 95% confidence band) and population random effects (thin black 

lines) from generalized linear mixed models (bottom panels; see Table 2). The temperature-

recruitment relationship plots standardized recruitment against mean stream temperature during 

emergence in May (a, c), while the temperature-growth relationship plots non-standardized 

juvenile growth against degree days accumulated from November 1-August 31 within each year-

class (b, d). Note that the GLMM for the temperature-recruitment relationship (c) exhibited no 

variation in population random effects. 

Figure 2.5: Portfolio effects across Cape Race brook trout populations. Stacked time-series of 

abundance (census population size of all individuals age-1 and older) are shown for the seven 

best-monitored populations (a), with a gap in 2020 due to the the COVID-19 pandemic 

preventing travel to the study area. Temporal coefficients of variation in abundance (b) are 

shown for individual populations (dark grey bars), the average across individual populations 

(black dashed line), and for the total abundance summed across all populations (red bar). A 

lower coefficient of variation suggests greater stability in abundance throughout the study period. 

Figure 2.6: Thermal regimes experienced by Cape Race brook trout populations since 2005. 

Stream temperatures were reconstructed from air temperature based on data from 2012-2021, 

then averaged during incubation (a; November-March) and the growing season (b; April-

November), fitted by population-specific regression lines with 95% confidence intervals. Note 

that two groundwater-dominated streams, LC (sky blue) and STBC (yellow green), experienced 

the warmest incubation temperatures and coldest growing season temperatures. 

Figure 3.1: Raw data showing relationship between daily average stream temperature and air 

temperature in ten Cape Race streams. Different colors are used to highlight stream temperature 

observations below (black points) and above 16°C (red points), with red points corresponding to 

periods of possible thermal stress. Note the absence of stream temperatures above 16°C in LC 

and STBC.
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Figure 3.2: Non-linear relationships predicting daily average stream temperature from average 

air temperature for ten Cape Race streams. Parameter estimates (see Equation 1), sample sizes, 

and R2 values for each stream are shown in Table 3.1. Streams are colored based on their 

maximum temperatures, with darker blue colors used for groundwater-dominated streams (STBC 

and LC) and dark orange or red colors used for rainfall-dominated streams (LO, UO and HM; 

see Results). 

Figure 3.3: Performance of non-linear regression models predicting daily average stream 

temperature from air temperature. Kernel densities are shown for mean daily air temperatures 

from 2012-2021 used to estimate stream temperature via non-linear regression (a), and all daily 

air temperature observations used to reconstruct stream temperature in ten Cape Race streams 

from 1980-2021 (b). Root-mean-square error (RMSE) values were calculated for daily stream 

temperatures predicted directly by regression models (see Table 3.1), as well as average stream 

temperatures calculated over weekly and monthly time periods from 2012-2021 (c). Lower 

RMSE values suggest that predicted stream temperatures are closer to observed values. Streams 

are colored based on their maximum temperatures (see Figure 3.2). 

Figure 3.4: Trends (a) and anomalies (b) extracted from reconstructed temperature time-series 

for ten Cape Race streams. Trends and anomalies were estimated independently during each 

month and year from 1980-2021 (i.e. trends were estimated with anomalies removed and vice-

versa), such that the original time-series can be reproduced by summing the corresponding trend 

and anomaly values. Monthly estimates each year (transparent points) were fitted with a loess 

smoother (solid lines) to clarify broader patterns, and anomaly values in (b) were aggregated by 

month. Streams are colored based on their maximum temperatures (see Figure 3.2).   

Figure 3.5: Temporal trends in degree-days accumulated from incubation until emergence (a; 

November 1st-May 1st) and from incubation until the end of summer (b; November 1st-August 

31st) for ten Cape Race streams. Horizontal lines in (a) are shown at 500 and 750 degree-days to 

denote putative thresholds for the timing of hatch and emergence, respectively. Streams are 

colored based on their maximum temperatures (see Figure 3.2). Note that groundwater-

dominated LC and STBC (royal blue and dark blue lines) accumulated the most degree-days 

before emergence (a), but accumulated the fewest by the end of the summer in recent years (b).   

Figure 3.6: Temperature-dependent growth of young-of-the-year (YOY) brook trout in ten Cape 

Race streams from 2010-2021. Individual fork length is plotted against degree-days accumulated 

from the start of the incubation period on November 1st the previous year until the date 

individuals were captured (transparent points), then fitted with stream-specific regressions (solid 

lines). The putative degree-day threshold for emergence (750 degree-days; dashed vertical line) 

is shown for reference. Streams are colored based on their maximum temperatures (see Figure 

3.2), and regression equations are reported in Table S2. 

Figure 4.1: Empirical life history patterns in eight Cape Race brook trout populations. Mean age 

(a) and longevity (b) of spawning adults from Bernos and Fraser (2016) are plotted against mean 

length of spawning adults from Zastavniouk et al. (2017). Similarly, mean age of spawning 

adults (c) and reproductive effort estimated from von Bertalanffy growth coefficients (d) are 

plotted against the adult:juvenile growth ratio. Growth ratios were calculated based on predicted 

size at age-1 (for juveniles) and change in predicted size from age-2 to age-4 (for adults) from 

von Bertalanffy growth curves, similar to previous methods used by Hutchings (1993). Linear 

regression equations and R2 values are shown separately in each panel for reference. 
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Figure 4.2: Initial growth curves and probabilistic maturation reaction norms (PMRNs) in eight 

Cape Race brook trout populations, based on empirical data from 2010-2022. Individual length 

observations are plotted against age estimated using finite mixture models (transparent points). 

Lester growth curves (solid lines) assuming average population-specific biomass and growing 

season temperature are shown separately for maturation at age-2 or age-3. Population-specific 

PMRN intercepts were estimated using logistic regression (dotted lines) and PMRN slopes were 

assumed to be zero, with a constant width of 20mm (transparent bands). Populations are colored 

according to their stream thermal regime, with cooler groundwater-dominated streams in blue 

and warmer rainfall-dominated streams in red (see Chapter 3). 

Figure 4.3: Climate change scenarios experienced by eight Cape Race brook trout populations. 

Air temperature increased by 0°C (solid lines), 3°C (dotted lines), or 6°C (dashed lines) during 

the last 100 years of each simulation, which then affected stream temperatures experienced by 

each population during the growing season and summer. Slopes and intercepts for converting air 

temperature to population-specific stream temperature are shown in Table 4.1. Populations are 

colored according to their stream thermal regime, with cooler groundwater-dominated streams in 

blue and warmer rainfall-dominated streams in red (see Chapter 3). 

Figure 4.4: Effects of climate change on evolving traits of Cape Race brook trout populations. 

Results are displayed as violin plots (polygons) that summarize changes in mean genotype values 

during the last 100 years from twenty independent simulations (points), organized by three traits 

(rows; top: PMRN intercept, middle: PMRN slope, bottom: maximum growth rate) and three 

climate scenarios (columns; magnitude of air temperature warming over the same 100 years). 

Populations are colored according to their stream thermal regime, with cooler groundwater-

dominated streams in blue and warmer rainfall-dominated streams in red (see Chapter 3). No 

data are shown for ‘No Evolution’ scenarios, where all three traits were fixed through time. 

Figure 4.5: Effects of climate change on abundance of Cape Race brook trout populations. 

Results are displayed as violin plots (polygons) that summarize the percent change in total 

abundance during the last 100 years from twenty independent simulations (points), organized by 

two evolutionary scenarios (rows; whether evolution occurred or not) and three climate scenarios 

(columns; magnitude of air temperature warming over the same 100 years). Declines of 100%, in 

which population extirpation occurs, are shown for reference (dashed lines). Populations are 

colored according to their stream thermal regime, with cooler groundwater-dominated streams in 

blue and warmer rainfall-dominated streams in red (see Chapter 3).  

Figure 4.6: Effects of climate change on biomass of Cape Race brook trout populations. Results 

are displayed as violin plots (polygons) that summarize the percent change in total biomass 

during the last 100 years from twenty independent simulations (points), organized by two 

evolutionary scenarios (rows; whether evolution occurred or not) and three climate scenarios 

(columns; magnitude of air temperature warming over the same 100 years). Declines of 100%, in 

which population extirpation occurs, are shown for reference (dashed lines). Populations are 

colored according to their stream thermal regime, with cooler groundwater-dominated streams in 

blue and warmer rainfall-dominated streams in red (see Chapter 3).  

Figure 4.7: Effects of climate change on growth curves of Cape Race brook trout populations. 

Results are displayed as average size-at-age across twenty independent simulations. Growth 
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curves are shown for simulation years 100 (high transparency), 200 (intermediate transparency), 

and 299 (no transparency), and for climate change scenarios corresponding to 0°C (solid lines), 

3°C (dotted lines), or 6°C (dashed lines) of warming over the last 100 simulation years. 

Populations are colored according to their stream thermal regime, with cooler groundwater-

dominated streams in blue and warmer rainfall-dominated streams in red (see Chapter 3).  

Figure A1.1: Study screening summary, showing each step from the original Web of Science 

search to the final database after critical appraisal and filtering (see Section A1.3). Flow chart 

made through the ROSES online tool provided by Haddaway (2020).  

Figure A1.2: Map of georeferenced observations from each dataset. Shape files were taken from 

from the Maps package in R (Deckmyn et al. 2021). Map lines delineate study areas and do not 

necessarily depict accepted national boundaries.  

Figure A1.3: Plots of residuals against predicted values from the best-fit models for the 

Abundance-Precipitation (a), Abundance-Temperature (b), Growth-Precipitation (c), and 

Growth-Temperature (d) data sets. Details on model structure in each case can be found in Table 

1.3. 

Figure A1.4: Funnel plots showing residual values (x-axis) and standard errors (y-axis) of each 

observation from the best-fit models for the Abundance-Precipitation (a), Abundance-

Temperature (b), Growth-Precipitation (c), and Growth-Temperature (d) data sets. Note the 

residual asymmetry in panel a, where publication bias is evident in observations with low 

standard error that are skewed towards negative residual values. Corresponding Egger test results 

are in Table A1.2. 

Figure A1.5: Plots of residuals against publication year from the best-fit models for the 

Abundance-Precipitation (a), Abundance-Temperature (b), Growth-Precipitation (c), and 

Growth-Temperature (d) data sets. Temporal patterns are visualized with a loess smoother (blue) 

and its confidence interval (grey shading) in each case. Statistical tests of linear trends with 

publication year are in Table A1.2. 

Figure A1.6: Species contrasts and 95% confidence intervals for Abundance-Precipitation (a), 

Abundance-Temperature (b), and Growth-Temperature (c) datasets subsetted to contain the five 

species with the greatest sample size in each case. Contrasts were obtained by adding species as 

an additional covariate to each best-fit model structure (see Methods; Table 3). Note that all 

confidence intervals contain zero, and that the first species listed was used for reference in each 

set of contrasts. 

Figure A2.1: Map of the study area, with labels denoting codes for the eleven brook trout 

populations (red circles) studied in Cape Race, Newfoundland. The full names for each 

population are provided in Table 2.1. 

Figure A2.2: Size distributions for eleven Cape Race brook trout populations. Distributions are 

displayed as smoothed kernel densities for age-1 (pink) and age-2+ individuals (blue) within 

each population (rows) and year (columns). Empty panels had no data available (see Section 

A2.1). 

Figure A2.3: Recruitment time-series for eleven Cape Race brook trout populations. 

Recruitment was estimated as the total census population size multiplied by the proportion of 
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age-1 individuals derived from length distributions or age-specific counts (see Section A2.1 and 

Figure A2.2). 95% confidence intervals (error bars) were estimated based on recapture 

proportions observed across all ages. 

Figure A2.4: Juvenile growth rate time-series for eleven Cape Race brook trout populations. 

Growth rates were estimated as the median length of age-1 individuals divided by their estimated 

age at the time of sampling (see Section A2.1).  

Figure A3.1: Examples of groundwater- and rainfall-dominated streams harboring brook trout in 

Cape Race, Newfoundland, Canada (photo credits: Dylan Fraser). Panel A (facing upstream) and 

B (facing downstream, same position): a groundwater seep entering the upper section of Lower 

Coquita (LC). The seep pours out of the ground 3 m above the confluence with the stream and 

directly influences the flow, acidity and vegetation downstream. For example, note the tannin-

colored water in the bottom right corner of panel B upstream of the groundwater seep that is 

devoid of aquatic vegetation – here the stream pH is ~5.0-5.3, whereas below the groundwater 

seep the pH is ~6.3-6.6 and aquatic vegetation is abundant. Panel C: the presence of Miner’s 

Lettuce (Montia fontana) (the bright green aquatic plant) below a large groundwater seep that 

enters a small pond within Bob’s Cove River (BC). Panel D: a groundwater-dominated stream 

characterized by very low current velocity and choked aquatic vegetation (Still There by Chance; 

STBC). Panels E and F: example of fluctuating streamflow in a rainfall-dominated stream 

(Upper O’Beck; UO) in the same location in July 2021 (E) and October 2022 (F). 

Figure A3.2: Autocorrelation functions based on residual values from air-stream temperature 

relationships in ten streams in Cape Race, Newfoundland, Canada. Correlations in residuals 

across various daily time lags (vertical bars) and significance thresholds (blue dashed lines) are 

shown in each case. 

Figure A3.3: Effects of daily precipitation on residual values from air-stream temperature 

relationships in ten streams in Cape Race, Newfoundland, Canada (panels). A linear trend is 

shown for each stream (red line), along with its estimated intercept and slope (text in top right 

corner). Note that all streams exhibit negative slopes. 

Figure A3.4: Temporal trends in reconstructed mean stream temperature during the growing 

season (April-November) in ten streams in Cape Race, Newfoundland, Canada. Estimated 

intercepts and slopes are shown in the top-left of each panel (see also Table 2). Note the lower 

average temperatures and reduced slopes predicted in the two groundwater-dominated streams 

(LC and STBC). 

Figure A3.5: Annual variation in reconstructed degree-day accumulation since November 1st in 

ten streams in Cape Race, Newfoundland, Canada from 1980-2020. Horizontal lines are shown 

at 500 and 750 degree-days to denote putative thresholds for the timing of hatch and emergence, 

respectively. The most recent years are plotted in yellow, illustrating phenological shifts (see 

Table 3.3). Note the earlier phenology and reduced inter-annual variation predicted in the two 

groundwater-dominated streams (LC and STBC). 

Figure A3.6: Violin plots showing within-stream spatial variation in water temperature recorded 

during transect surveys in ten streams in Cape Race, Newfoundland, Canada. Transects were 

performed during four summers between mid-June and early-August (see Wood et al. 2014 for 

details), but not all streams were sampled each year and were not always sampled in the same 
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order or during the same time of day within years. Note that spatial variation in temperature 

exceeded 5°C in the majority of cases. 
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List of Tables 

Table 1.1: List of all potential covariates, plus their abbreviations (abbrev.), usage during 

quantitative meta-analysis (model selection stage 1-3, or post-selection tests; see Methods), and 

number of levels (categorical variables only). Note that variables used in stages 1, 2, and 3 of 

model selection correspond to spatial, temporal, and biological or methodological covariates, 

respectively, and were tested in a stepwise forward selection framework. Details for data 

collection protocols can be found in the Supplementary Material (section S.1), while the full 

database, metadata, and R code are freely accessible online (see Gallagher et al. 2022 on Dryad). 

Table 1.2: Full list of unique model numbers and corresponding equations within three stages of 

stepwise model selection. ΔAICc scores are shown for each model in the Abundance-

Precipitation (labeled A-P; 16 models tested overall), Abundance-Temperature (A-T; 24 

models), Growth-Precipitation (G-P; 10 models), and Growth-Temperature (G-T; 16 models) 

datasets. Abbreviations used in model equations are taken from Table 1, with Z denoting the 

standardized effect size and r denoting the nested random effect structure (see Methods). Some 

models were ignored (denoted by ‘-‘) due to limited contrast in covariates within some datasets 

(see Methods). The selected models in stages 1 and 2 are denoted by an asterisk (*). All models 

within 2 ΔAICc units of the selected model are highlighted in bold italic text, and the model with 

the fewest fixed effects was selected in these cases. The best model overall for each dataset is 

denoted by three asterisks (***). 

Table 1.3: Summary of best-fit models for the Abundance-Precipitation (labeled A-P), 

Abundance-Temperature (A-T), Growth-Precipitation (G-P), and Growth-Temperature (G-T) 

datasets according to stepwise model selection. Abbreviations used in model equations are taken 

from Table 1. Each ΔAICc (with p-values for likelihood ratio tests) and pseudo-R2 value was 

calculated relative to models with no covariates (Number=1 in Table 2; see Methods). 

Heterogeneity tests are based on a Wald-type test statistic, while the total heterogeneity (summed 

within and among studies) was calculated based on variance components. Significant p-values 

are marked with an asterisk (*). 

Table 2.1: List of Cape Race brook trout population codes, full names, and proposed drivers of 

population variation. The groundwater index (GWI; stream-air temperature regression slope 

from 2018-2020, with lower values suggesting more groundwater input), mean recruitment (R; 

age-1 abundance), mean juvenile growth rate (G; age-1 individual growth rate; mm·year-1), mean 

reproductive success (S; ratio between effective number of breeders and adult census population 

size from Bernos et al. 2016) and phylogenetic distance (PD; mean pairwise distance across 

study populations provided by H.-B. Jeon, personal communication) are shown for each 

population. Connectivity among populations inferred from past habitat surveys and genetic 

studies is shown for reference, with “None” denoting isolated populations. In Middle Coquita 

(MC; denoted with an asterisk *), the groundwater index was estimated using stream temperature 

data from 2013-2016 and reproductive success data were unavailable. 

Table 2.2: Results from generalized linear mixed models (GLMM) estimating demographic 

relationships (recruit-adult, stock-recruitment, density-dependent growth) and effects of selected 

stream temperature metrics on demography (temperature-recruitment, temperature-growth) 

across Cape Race brook trout populations. The number of annual observations (N) and the 

number of populations (P) included in each analysis are shown for reference. The fixed effect 
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intercept and slope estimates are displayed with standard errors in parentheses. The percentage of 

variance (pseudo-R2) explained by the fixed effect and population random effects is shown for 

each model. The selected stream temperature metric for the temperature-recruitment relationship 

was emergence temperature during May. For the temperature-growth relationship, it was 

cumulative degree-days from November-August (see Appendix 1: Table S2). 

Table 2.3: Correlations between model estimates and proposed drivers of brook trout population 

variation across Cape Race. Correlations were not corrected for multiple comparisons, and 

significant relationships (p<0.05) are marked in bold italic text. Pearson correlations are shown 

for the groundwater index (GWI), mean recruitment (R), mean juvenile growth rate (G), and 

mean reproductive success (S), while Mantel correlations are shown for pairwise phylogenetic 

distance (PD). Correlations could not be calculated for the temperature-recruitment relationship 

because the GLMM exhibited no variation in population random effects (see Results). 

Table 3.1: Parameter estimates, sample sizes, R2 and root-mean-square error (RMSE, in °C) 

values for non-linear relationships between daily average air temperature and stream temperature 

for ten Cape Race streams from 2012-2021. Sample sizes for BC and HM are marked with 

asterisks (*) due to missing data after July 2019 in these streams. For reference, µ is the 

minimum stream temperature, α is the maximum stream temperature, γ is the slope at the 

inflection point, and β is the temperature where the inflection point occurs (see Equation 3.1). 

Thermal regimes are categorized as groundwater-dominated, rainfall-dominated, or intermediate 

(see Results). 

Table 3.2: Temporal trends in reconstructed stream temperature in winter (December-February), 

spring (March-May), summer (June-August), autumn (September-November), and growing 

season (April-November) months for ten Cape Race streams from 1980-2021. Trends are 

expressed as slopes (in °C·year-1) from regressing mean temperature on year within each stream, 

and the corresponding air temperature regression slope is shown for reference (bottom). Thermal 

regimes are categorized as groundwater-dominated, rainfall-dominated, or intermediate (see 

Results). 

Table 3.3: Summary statistics for dates of degree-day (DD) accumulation since November 1st 

for putative hatch (500 DD; left side) and emergence (750 DD; right side) thresholds in ten Cape 

Race streams from 1980-2021. Mean, minimum, and maximum annual dates of degree-day 

accumulation are shown, with temporal trends displayed as slopes (in days·year-1) from 

regressing annual date of accumulation on year within each stream. The 40-year change (in days) 

multiplies the annual slope by 40 to approximate the advancement of developmental timing (in 

days) over the last four decades in each stream. Thermal regimes are categorized as 

groundwater-dominated, rainfall-dominated, or intermediate (see Results). 

Table 4.1: Population-specific parameters for individual-based eco-genetic models of eight Cape 

Race brook trout populations. Parameters in bold italic text are evolving traits, shown as initial 

mean values for genotypes drawn from a normal distribution. 

Table 4.2: Shared parameters for individual-based eco-genetic models of eight Cape Race brook 

trout populations. Values separated by commas represent values used in three different climate 

change scenarios (for ΔT) and two evolution scenarios for each population (for CV). 
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Table 4.3: Average change in Cape Race brook trout evolving traits, demography, and 

phenotypes over the last 100 years of twenty independent simulations, across six scenarios. 

Table A1.1: Model results for omnibus test of covariates (Wald-type test statistic with p-values 

based on a Chi-squared distribution), and fixed effect coefficients for best-fit models from each 

data set (Abundance-Precipitation (A-P), Abundance-Temperature (A-T), Growth-Precipitation 

(G-P), Growth-Temperature (G-T)). Covariate abbreviations used for coefficients are from Table 

1.1. 

Table A1.2: Summary of post-hoc tests of model assumptions, collinearity (variance inflation 

factors calculated across all levels of each covariate and within levels of temporal covariates), 

publication bias, taxonomic effects, and robustness of model results to methodological factors 

(see Table 1) or the inclusion of outlier studies. Results are shown separately for Abundance-

Precipitation (A-P), Abundance-Temperature (A-T), Growth-Precipitation (G-P), Growth-

Temperature (G-T) datasets. Asterisks (*) denote significant results, while non-significant 

statistical tests are marked with NS. Detailed contrasts for robustness tests are shown in Table 

A1.3. 

Table A1.3: Detailed results of robustness tests where four methodological variables were added 

to the best-fit model for each data set (see Methods; variable descriptions and abbreviations in 

Table 1). Contrast coefficients and their p-values are shown, as well as a description of the 

variable levels used in each contrast. Results are shown separately for Abundance-Precipitation 

(A-P), Abundance-Temperature (A-T), Growth-Precipitation (G-P), Growth-Temperature (G-T) 

datasets. Significant contrasts and p-values are highlighted in bold italic text with an asterisk (*).       

Table A2.1: Model selection results from dynamic factor analysis of recruitment (top) and 

juvenile growth (bottom) time-series in Cape Race brook trout. All models were run with an 

identity variance-covariance matrix, and only the top 15 models are shown for recruitment (55 

models overall). Note that in both cases, AICc values were lowest in the model with no 

covariates, which significantly outperformed all models with one covariate (T=air temperature, 

P=precipitation), which in turn outperformed models with two covariates. The number of 

parameters estimated (k) increased substantially every time a covariate was added to the model. 

Table A2.2: Model selection results from generalized linear mixed models (GLMMs) relating 

recruitment and juvenile growth to various measures of stream temperature. Average stream 

temperature (T) and degree-days since November 1st (DD) were estimated based on empirical 

air-stream temperature relationships from 2012-2021 (see Chapter 3 for details). 

Table A3.1: Catchment survey data for ten streams in Cape Race, Newfoundland, Canada. 

Drainage area is expressed in km2, gradient is reported as the percent change in elevation divided 

by stream length, depth is shown in cm, velocity is in m·s-1, and relative pond area was 

calculated as the total perimeter of all ponds divided by stream length. Sinuosity and the 

width:depth ratio are unitless. Full details on survey methodology are available in Wood et al. 

(2014). 

Table A3.2: Relationships between young-of-the-year brook trout length and degree-days 

accumulated from November 1st the previous year until the date of capture (see Figure 6). 

Intercepts, slopes, sample sizes (N), and R2 values (treating degree-days as a fixed effect) are 

shown for linear regression models run separately for each stream with no random effects. The 
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same outputs are also shown for a generalized linear mixed model that included stream as a 

random effect on intercepts and slopes (bottom), where R2 Fixed and R2 Random correspond to 

the variance explained by the fixed and random effects, respectively. Intercept and slope 

estimates with a p-value <0.05 are marked with an asterisk (*), while those with a p-value 

<0.001 are marked with two asterisks (**). 

Table A3.3: Correlations between stream characteristics from habitat surveys (predictors) and 

parameter estimates for non-linear relationships between daily average air temperature and 

stream temperature in ten streams in Cape Race, Newfoundland, Canada. Significant correlations 

without multiple comparison adjustments (p <0.05) are shown in bold italic text. For reference, µ 

is the minimum stream temperature, α is the maximum stream temperature, γ is the slope at the 

inflection point, and β is the temperature where the inflection point occurs (see Equation 3.1). 

Note that all significant correlations became non-significant when applying Bonferroni multiple 

comparison adjustments (p >0.0016). 
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I. General Introduction 

Declines in species abundance contribute to extinction and biodiversity loss throughout the 

world, thereby altering the structure and function of ecosystems (Pimm and Raven 2000, Dirzo et 

al. 2014). Climate change is an important driver of biodiversity loss and, crucially, is likely to 

accelerate extinction rates in the future (Urban 2015). As a result, efforts to describe and predict 

the effects of climate change have increased dramatically in recent decades, most commonly 

using climate envelope models based on contemporary species distributions (reviewed by 

Pearson and Dawson 2003). However, species distribution models are often applied with coarse 

spatial resolution and may ignore or oversimplify mechanisms that are known to impact 

responses to climate change in many species, especially environmental heterogeneity and 

adaptive potential (Skelly et al. 2007, Urban et al. 2016). Moreover, while biodiversity risk 

assessments are often conducted at the species level, variation in phenotypes, demographics and 

habitat sensitivities can generate substantial diversity in responses to climate change among 

populations of the same species, even at very small spatial scales (Richardson et al. 2014, 

Nadeau et al. 2017). Indeed, many species of fish, amphibians, reptiles, mammals, and plants 

exhibit large ranges with many genetically and ecologically distinct populations that occupy 

diverse, fragmented habitats (Schindler et al. 2010, Waterhouse et al. 2017, Pearson et al. 2018, 

Ony et al. 2020, Rowland et al. 2022), which likely produces enormous variation in population 

responses to climate change. Moreover, intraspecific population variation can have substantial 

impacts on community and ecosystem dynamics, often equaling or exceeding the effect of 

interspecific variation (Des Roches et al. 2018). More detailed research and mechanistic models 

that describe the ecological and evolutionary effects of climate change across diverse populations 

will be crucial for improving predictions of climate-induced biodiversity loss (Urban et al. 2023). 

Population variation at multiple spatial scales is crucial for the conservation and management of 

many species under climate change, as it allows the risk of local extinction to be spread among 

populations experiencing different environmental conditions that affect growth, survival, and 

evolutionary potential (Schindler and Hilborn 2015, Nadeau and Urban 2023). This is 

exemplified by salmonids, a family of coldwater fishes consisting of dozens of species that 

occupy lakes, rivers, and streams around the world (Crawford and Muir 2008, Muhlfeld et al. 

2019), supporting commercial, recreational, and subsistence fisheries that are culturally and 

economically important to many human communities (ASF 2011, PSC 2017). The persistence of 

many salmonid populations and, by extension, the ecosystem services they provide, is threatened 

by climate change, especially intense warming and drought (Arismendi et al. 2013, Kovach et al. 

2016). However, observed effects of contemporary climate change on population demography 

are highly variable. For example, increased temperatures have been linked to increased 

abundance and growth of many salmonid populations in subpolar climates across northern 

Europe (Jensen et al. 2000, Donadi et al. 2023), while warming is often associated with 

population declines in Mediterranean climates within southern Europe (Almodovar et al. 2012). 

Similarly, warming often reduces the abundance of salmonids in low-lying regions of North 

America and Asia (Nakano et al. 1996, Budy et al. 2008), while nearby populations at high 

altitudes commonly maintain stable abundance or even increase as the climate warms (Nakano et 

al. 1996, Coleman and Fausch 2007). Subtle differences in connectivity, reproductive timing, 

and somatic growth rates can also affect survival and modify responses to climate change among 

neighboring salmonid populations (Tsuboi et al. 2022, Baldock et al. 2023). Modeling studies 

that incorporate future climate projections routinely predict sharp declines in abundance or 



2 
 

complete extirpation (Bassar et al. 2016, Ayllon et al. 2019), but these studies typically focus on 

a single population and have only assessed a very small subset of salmonid population diversity, 

which may limit the generalizability of current knowledge (O’Sullivan 2021). Collectively, a 

better understanding of the prevalence, scale, and drivers of population diversity in salmonids 

can help managers and conservation organizations prioritize which populations should be 

targeted for protection (Schindler et al. 2010) or active interventions (e.g. White et al. 2023, 

Beechie et al. 2023) under current and future climate conditions. 

In this thesis, I ask “What are the mechanisms that drive variation in contemporary and future 

demographic responses to climate change among salmonid fish populations?” I explore how 

processes that operate at large and small spatial scales combine to shape population-specific 

responses to inter-annual variation in temperature and precipitation. Over large scales, I argue 

that population responses are structured by gradients in latitude and elevation, which strongly 

influence macroclimatic patterns such as maximum temperature exposure, growing season 

length, and winter severity (Jensen et al. 2000, Isaak et al. 2015). However, aquatic habitats can 

exhibit substantial differences in thermal regimes at small scales due to variation in groundwater 

inputs, watershed geomorphology, and land use, such that habitats at the same latitude and 

elevation often vary in their susceptibility to climate change (Lisi et al. 2015, Ishiyama et al. 

2023). Habitat variation at small scales also contributes to local adaptation in salmonid 

populations (Fraser et al. 2011), leading to distinct genotypes, phenotypes and demographics that 

influence population dynamics and responses to human impacts (Schindler et al. 2010). 

Therefore, I argue that measuring and accounting for local biotic and abiotic heterogeneity is 

also crucial for understanding how salmonid populations respond to climate change. Overall, the 

goal of my thesis is to use multiple methods that integrate data across spatial scales in order to 

support more accurate and generalizable predictions about the future of salmonids in a rapidly 

changing world, and ultimately inform conservation and management. 

In Chapter 1, I conducted a global-scale meta-analysis to examine how observed effects of 

climate (temperature and precipitation) on salmonid demography (abundance and growth) from 

156 studies of 23 species were related to spatial, temporal, and biological variation among 

populations. For spatial variation, I predicted that increased temperature and reduced 

precipitation would be associated with declines in salmonid growth and abundance at low 

latitudes and elevations, but opposite patterns would be observed at high latitudes and elevations 

where demography is often constrained by suboptimal temperatures. Similarly for temporal 

variation, I predicted that warming and drought would reduce salmonid abundance and growth 

during the warmest times of year (e.g. summer months), but increase it during the coldest 

periods. Finally, for biological variation, I predicted that native populations would respond more 

negatively to warming than non-native populations due to asymmetric competition, while 

salmonids occupying lakes would respond more favorably to warming than those in streams 

because lake stratification increases coldwater habitat availability. Predictions were informed by 

salmonid thermal limits, but were also influenced by prevailing narratives in the salmonid 

biology literature, which had never been quantitatively tested across many studies (see Kovach et 

al. 2016). I interpreted results as very broad patterns that were useful but insufficient for 

population-specific predictions, and highlighted the importance of continued monitoring to 

understand heterogeneity in salmonid responses to climate change across space and time. 

In Chapters 2-4, I focused on local-scale variation in responses to climate change among wild 

populations of brook trout (Salvelinus fontinalis) in Cape Race (Newfoundland, Canada). Cape 
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Race brook trout are an excellent model system because multiple populations have been studied 

extensively since the 1980s and are separated by <5 km, thereby experiencing similar climate 

conditions (Hutchings 1993). Populations are also genetically and phenotypically distinct despite 

sharing a common ancestor, and are virtually untouched by human activities with the exception 

of climate change (Wood et al. 2015, Zastavniouk et al. 2017). Specifically in Chapter 2, I 

analyzed mark-recapture data from eleven brook trout populations in Cape Race from 2010-2022 

in order to quantify asynchrony in abundance, somatic growth rates, and demographic 

relationships among populations. I predicted that Cape Race brook trout would exhibit 

substantial demographic asynchrony tied to differences in habitat characteristics, life history, and 

genetics among populations known from previous studies, which would ultimately stabilize 

species abundance across the study area and buffer against climate change. I interpreted results 

in light of the pristine nature of Cape Race, which may not be typical for most salmonid 

populations and can thus offer unique insights into natural (rather than anthropogenic) processes. 

In Chapter 3, I collected and analyzed stream temperature data from 2012-2021 to describe 

thermal regimes experienced by ten Cape Race brook trout populations, then explored how 

temperature variation influenced phenology, growth and exposure to warming among 

populations. Based on over a decade of on-the-ground research and consultations with local 

naturalists, I predicted that neighboring streams would exhibit substantial differences in water 

temperature due to variation in groundwater inputs, which in turn would strongly influence rates 

of warming and phenological shifts experienced by each population. Seasonal variation in 

temperature plays a key role in determining rates of development, growth, and survival of brook 

trout and other salmonids (Beacham and Murray 1990, Curry et al. 1995), so fine-scale 

differences in groundwater inputs can potentially diversify population responses to current and 

future climate change. I interpreted results with respect to variation in watershed geomorphology 

and the unusual subpolar oceanic microclimate of Cape Race, which may reduce brook trout 

vulnerability to warming within the study area. 

Finally, in Chapter 4, I combined my findings from Chapters 2 and 3 with previous results from 

common garden experiments and transplant studies in Cape Race brook trout in order to build 

eco-genetic models (Dunlop et al. 2009) that simulated the effects of climate warming from 

2001-2100 on demography and life history evolution in eight populations. I predicted that 

population abundance will decline and individuals will evolve faster somatic growth rates as 

rates of atmospheric warming increase, while the effects of warming on population biomass will 

be more complex, depending on the relative magnitude of climate-induced changes in abundance 

(which will reduce biomass) and growth (which will increase biomass). Additionally, I predict 

that evolution will reduce the demographic impacts of climate change, while populations will 

differ in their responses based upon initial life history patterns and stream thermal regimes, with 

the latter having the strongest influence on model outcomes (Snyder et al. 2015). I interpreted 

results based upon past mechanistic modeling work that seeks to understand the role of habitat 

variation and evolution in fish population responses to climate change (e.g. Reed et al. 2011, 

Bassar et al. 2016, Ayllón et al. 2019), and speculate how results in Cape Race can inform future 

research on this topic. 
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II. Chapter 1: Effects of climate on salmonid productivity: a global meta-analysis 

across freshwater ecosystems 

Abstract: 

Salmonids are of immense socio-economic importance in much of the world, but are threatened 

by climate change. This has generated a substantial literature documenting effects of climate 

variation on salmonid productivity in freshwater ecosystems, but there has been no global 

quantitative synthesis across studies. I conducted a systematic review and meta-analysis to gain 

insight into key factors shaping the effects of climate on salmonid productivity, ultimately 

collecting 1,321 correlations from 156 studies, representing 23 species across 24 countries. 

Fisher’s Z was used as the standardized effect size, and a series of weighted mixed-effects 

models were compared to identify covariates that best explained variation in effects. Patterns in 

climate effects were complex, and were driven by spatial (latitude, elevation), temporal (time-

period, age-class), and biological (range, habitat type, anadromy) variation within and among 

study populations. These trends were often consistent with predictions based on salmonid 

thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity 

when high temperatures challenged upper thermal limits, while opposite patterns were common 

when cold temperatures limited productivity. Overall, variable climate impacts on salmonids 

suggest that future declines in some locations may be counterbalanced by gains in others. In 

particular, I suggest that future warming should (1) increase salmonid productivity at high 

latitudes and elevations (especially >60° and >1,500m), (2) reduce productivity in populations 

experiencing hotter and dryer growing season conditions, (3) favor non-native over native 

salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns 

should help conservation and management organizations identify populations most vulnerable to 

climate change, which can then be prioritized for protective measures. My framework enables 

broad inferences about future productivity that can inform decision making under climate change 

for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research 

is needed to expand current knowledge. 

1.1 Introduction: 

Climate change is strongly impacting biodiversity throughout the world (Parmesan and Yohe 

2003, Woodward et al. 2015). These effects are likely to intensify in the future (Urban 2015), but 

estimates of effect size can vary considerably depending on the design, location, and focal 

organism of different studies (Koricheva et al. 2013, Haddaway 2015). Understanding how and 

why climate change affects biodiversity in natural systems is critically important for improving 

predictions of biodiversity loss (Urban et al. 2016, Mouquet et al. 2015), as well as for 

developing adaptive conservation and management strategies (Reside et al. 2018). Although the 

ecological consequences of climate change can be affected by evolutionary history, spatial scale, 

and other factors (Nadeau et al. 2017a, 2017b), data synthesis approaches offer a way to 

disentangle these confounding influences to gain a more integrated understanding across 

multiple studies. Indeed, data synthesis plays a prominent role in explaining patterns and changes 

in biodiversity more broadly, and while conclusions can still be disputed (e.g. Dornelas et al. 

2014, Vellend et al. 2013, but see Gonzalez et al. 2016), this process can help identify key 

knowledge gaps that motivate further study. 

A growing body of research has focused on synthesizing effects of climate change on fishes 

(Kovach et al. 2016, Myers et al. 2017, Comte and Olden 2017, Krabenhoft et al. 2020, Comte et 
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al. 2021), which are culturally and economically important to communities around the world. 

Salmonids in particular support valuable commercial, recreational, and subsistence fisheries in 

many regions (ASF 2011, PSC 2017) and are thought to be sensitive to climate change, driving 

fears of future declines in productivity (defined herein as the rate of population biomass 

production, which I assume to increase with higher abundance, individual growth, or both). 

However, there is considerable uncertainty in how different species and populations will respond 

to future warming, while the factors shaping vulnerability to climate change are thought to be 

complex and difficult to disentangle (Kovach et al. 2019, Irvine and Fukuwaka 2011). As a 

result, previous syntheses have not explicitly quantified spatial, temporal, and biological 

variation in salmonid responses to climate across many empirical studies. My research attempts 

to fill this knowledge gap by synthesizing effects of climate variables (temperature and 

precipitation) on a wide range of salmonid populations, providing timely insight into the broad 

patterns influencing current and future productivity. 

Spatial variation likely plays a dominant role in structuring salmonid responses to climate. 

Salmonids occupy an enormous native and non-native range across the globe (Crawford and 

Muir 2008), and often exhibit strong gradients in productivity based on latitude and elevation. 

Previous research suggests that populations at low latitudes (Ayllón et al. 2019, Carlson and 

Satterthwaite 2011) are expected to respond to climate change differently than those at high 

latitudes (Pitman et al. 2020, Campana et al. 2020), with similar contrast expected between low-

altitude and high-altitude populations (Kanno et al. 2015, Isaak et al. 2016). Specifically, 

declines in salmonid productivity are expected in areas where temperatures regularly exceed 

upper thermal limits, and should decline further if low precipitation reduces the volume and 

thermal buffering capacity of water (Kovach et al. 2016). Therefore, in the warmest areas at low 

latitudes and elevations, higher temperature is expected to reduce salmonid productivity and 

increased precipitation should enhance productivity, whereas opposite patterns are expected at 

high latitudes and elevations (Figure 1.1a,b). Despite the importance of spatial variation in 

moderating responses to climate, no quantitative research to date has tested these predicted 

effects at a global scale across salmonid species. 

Responses to climate in salmonids also likely depend on the time-period under consideration, as 

most salmonids occupy temperate regions where temperature and precipitation vary seasonally 

and may disproportionately affect some life-stages more than others (Jonsson and Jonsson 2009, 

Nislow and Armstrong 2012, Bassar et al. 2016). Moreover, since salmonid productivity can also 

be limited by cold temperatures, warming can be beneficial for most of the year but harmful 

during summer months (Armstrong et al. 2021). Despite a large volume of research on these 

topics, the vulnerability of specific life-stages to increasing temperatures is still debated (Dahlke 

et al. 2020; but see Pottier et al. 2022), and the severity of the threat posed by warming 

temperatures to species persistence remains unresolved (Muñoz et al. 2015; but see Mantua et al. 

2015). Similarly, while some research shows that climate impacts can vary based on the size- or 

age-class being affected (Letcher et al. 2002, 2015), these can differ among systems within 

studies (e.g. Xu et al. 2010a). Nonetheless, increased temperatures and reduced precipitation 

should be associated with declines in productivity during the warmest time-periods, with 

opposite effects expected during the coldest periods, especially for temperature (Figure 1.1c,d). 

More complex influences of temporal variation should also be considered, as negative impacts of 

flooding could be observed during vulnerable life-stages such as egg incubation, and timing of 

key events across the life cycle can vary considerably within and among species (Kovach et al. 
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2016, 2019). Data synthesis can test these predictions, thereby informing debates and 

uncertainties about the factors shaping salmonid vulnerability to climate change. 

Finally, biological differences among populations have the potential to modify the effects of 

climate on salmonid productivity (Figure 1.1e,f), but these too await quantification across many 

studies. For example, effects may differ based on whether salmonids occupy lotic (streams and 

rivers) or lentic environments (lakes and ponds) due to the prevalence of stratification in lakes, 

which is expected to increase the availablility of coldwater habitat (Blair et al. 2013) and reduce 

sensitivity to warming in lentic populations. Additionally, some research has suggested that non-

native salmonids may respond more favorably to warming than their native counterparts by 

exhibiting higher thermal tolerance or outcompeting them for suitable habitats (Al-Chokhachy et 

al. 2016, Bell et al. 2021), leading me to expect more severe climate-induced declines in 

productivity within native species. Also, because my work focuses on salmonids in freshwater 

environments, migration behaviors may play a role, as anadromous populations could respond 

less strongly to climate variation than freshwater residents due to their shorter periods of 

residence and exposure to ocean conditions (Mueter et al. 2002). Specifically, warming and 

drought are expected to reduce productivity more severely in freshwater resident populations 

than anadromous ones. Finally, observed climate impacts could be influenced by methodological 

differences, as studies can vary widely in sampling design, the exact salmonid or climate data 

measured, and how data were transformed and analyzed. Taken together with the spatial and 

temporal variation discussed previously, it is clear that broad patterns should be detectable in 

salmonid responses to temperature and precipitation. A simplified overview of a priori 

predictions for the influence of spatial (latitude, elevation), temporal (age-class, time-period), 

and biological (range portion, habitat type, anadromy) factors is shown in Figure 1. Rigorously 

testing these predicted patterns will help clarify key drivers underlying variation in climate 

impacts, thereby addressing an important knowledge gap in salmonid biology (Kovach et al. 

2016, 2019).  

I conducted a global systematic literature search and quantitative meta-analysis to illuminate key 

patterns in the effects of climate variables on salmonid productivity. This research is timely 

because it can leverage a vast body of past research to inform the future of salmonids in a 

changing world – a topic that remains rife with uncertainty and disagreement (Muñoz et al. 2015, 

Mantua et al. 2015, Kovach et al. 2016, Dahlke et al. 2020, Pottier et al. 2022). My objectives 

were to (1) conduct a systematic review to build a database of standardized effect sizes 

describing the influence of climate variation on salmonid productivity, (2) identify a 

parsimonious set of covariates that best explain variation in effect sizes and test predicted spatial, 

temporal, and biological patterns, and (3) assess publication bias and potential taxonomic, 

methodological, and geographic influences that may limit current knowledge. This is the first 

study to carry out these objectives at a global scale for salmonids, providing the most in-depth 

analysis to date of climate impacts on these iconic coldwater taxa. My structured and hypothesis-

driven approach allowed me to identify broad patterns in salmonid-climate relationships, which 

can then support inferences about future productivity. Such patterns can inform conservation and 

management decisions by helping agencies identify populations that are likely to be most 

vulnerable to climate change. More broadly, I believe this approach can be adapted to a host of 

other taxa to predict and test key drivers of variation in responses to climate change. 
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1.2 - Methods: 

1.2.1 - Literature search and screening criteria: 

Throughout this study, I used PRISMA-EcoEvo criteria to guide decision making and reporting 

(O’Dea et al. 2021). I sought to identify studies reporting correlations between climate variables 

(temperature or precipitation) and the individual growth or relative abundance (growth or 

abundance hereafter) of wild salmonid populations in freshwater environments. To increase 

consistency and maximize focus on natural contexts, I targeted observational studies of 

populations that did not receive hatchery supplementation during the study period. Correlations 

were preferred because they are the simplest measure of standardized relationships between 

continuous variables, and can easily be used to calculate effect size and its sampling variance 

(see below). While this decision may have reduced data availability, it is paramount to 

standardize effect sizes for rigorous quantitative analysis (Koricheva et al. 2013). Measures of 

relative abundance (e.g. density, population size, biomass, survival) and individual growth (e.g. 

length-at-age, somatic growth rate) were interpreted as surrogates for productivity, but past 

research has shown that rates of salmonid biomass production are often more sensitive to 

abundance than growth (Lobón‐Cerviá 2009). Similarly, all surrogates of temperature and 

precipitation were treated equally, although a previous review argued that direct measures of 

aquatic habitat conditions (e.g. water temperature, streamflow) are preferable to indirect proxies 

(e.g. air temperature, rainfall; see Kovach et al. 2016). It would have been ideal to quantify 

differences between the many proxies used to describe climate and salmonid productivity, but 

this was impractical because relationships between these proxies and the processes of interest 

varied, and were often unknown or unreported. 

A comprehensive literature search was conducted during the first week of July 2020 through the 

Web of Science advanced search portal, including all available collections since 1900. Search 

terms were adapted from Kovach et al. (2016), but expanded to include more salmonid taxa, 

yielding 2,989 studies. The specific search string was: 

TS=(trout* OR char(r) OR salmon* OR whitefish* OR grayling*) AND TS=(streamflow OR 

stream temperature OR lake temperature) AND TS=(abundance OR survival OR growth) 

where TS denotes a set of search topics, AND/OR are Boolean operators, and asterisks enable 

truncated word searches (e.g. salmon* identifies salmon, salmonid, salmoninae, etc.). Web of 

Science was the only literature search method used and may not be exhaustive, but I chose to 

avoid other methods (e.g. alternative search engines, compiling studies from past reviews) in 

order to maximize consistency and save time. 

Titles and abstracts were screened for relevance based on whether relationships between 

salmonid data and climate variables were mentioned, or if it seemed plausible that relevant raw 

data could be reported. Title and abstract screening was first conducted by co-author Sarah 

Geargeoura (BSc honors student, Concordia University) and followed up in full by me for 

verification. All studies deemed relevant by one or both authors were collated, yielding 700 

studies for subsequent screening. Google Scholar was used to retrieve full-texts, which were 

available for 603 relevant studies. Each study was subsequently scanned to determine whether 

the study design was suitable (review papers and modeling studies without empirical data were 

excluded), and whether correlations (with sample sizes) or raw data were reported. Overall, 182 

studies satisfied these criteria and were subjected to data extraction. If not directly reported by 
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authors, correlations and sample sizes were calculated in a spreadsheet from raw data extracted 

manually from tables, or from figures with the Digitize package in R (Poisot 2011). Non-linear 

relationships were ignored unless they were shown in figures, in which case the data were 

extracted and used to calculate linear correlation coefficients. This practice was uncommon (ten 

observations from six studies), and did not strongly impact effects (correlation between linear 

and non-linear R2 values=0.94). In total, this process yielded 1,735 observations. I was satisfied 

with this outcome, and therefore decided not to allocate more time towards increasing the 

number of observations or studies (e.g. contacting authors for missing data). 

1.2.2 - Database description: 

In addition to correlations and sample sizes, a wide range of other data were collected in the 

initial database, including relevant spatial, temporal, biological, and methodological covariates. 

Study coordinates and elevation data directly reported by authors were preferred, but 

georeferencing was conducted in Google Maps and elevations were inferred using the Elevatr R 

package (Hollister et al. 2021) when necessary. A detailed account of the methods used and data 

recorded in this process can be found in Appendix 1 (see section A1.1), while details about 

covariates, their usage, and categorical levels are in Table 1.1. Once the initial database was 

completed, it was subjected to critical appraisal to ensure the validity and comparability of 

observations (Haddaway 2015), while filtering out duplicates and observations with insufficient 

sample size (n<5; section A1.2). After six critical appraisal and filtering steps, the final database 

contained 1,321 correlations from 156 studies, featuring 23 species within six genera, and 

spanning 24 countries across five continents. Overall, my database (see Gallagher et al. 2022) 

had considerably greater sample size, taxonomic breadth, and geographic contrast than a 

previous systematic review by Kovach et al. (2016). A summary of the study filtering process is 

provided in Figure A1.1 (after Haddaway 2020), while the final database and a full bibliography 

of the included studies can be found in Gallagher et al. (2022). Note that repeated measures 

within studies were often present (range: 1-102 correlations per study), and this non-

independence was accounted for during data analysis. 

1.2.3 - Statistical analysis: 

The filtered database was imported into R, and analyzed using the Metafor package (Viechtbauer 

2010). The escalc() function was used to calculate Fisher’s Z based on the formula: 

𝑍 =
1

2
ln (

(1 + 𝑟)

(1 − 𝑟)
)          (𝐸𝑞. 1.1) 

where ln is the natural logarithm and r is the correlation coefficient. This transformation 

alleviates problems with correlations becoming skewed as they approach ±1, while retaining the 

magnitude and direction of effects. The asymptotic variance (VZ) for each Fisher’s Z estimate 

was calculated by: 

𝑉𝑍 =
1

(𝑛 − 3)
                     (𝐸𝑞. 1.2) 

where n is the sample size. In all subsequent analyses, Fisher’s Z was used as the standardized 

effect size, while the inverse of the variance was used to weight observations (Koricheva et al. 

2013). 
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The database was then divided into four datasets based on the type of response and predictor 

variables used within each correlation: Abundance-Precipitation (n=362), Abundance-

Temperature (n=610), Growth-Precipitation (n=66), and Growth-Temperature (n=283). 

Abundance and growth were both assumed to be positively related to population productivity. 

Each dataset was analyzed separately using the rma.mv() function, which allows for linear 

mixed-effects models to be built with a nested random effect structure (Viechtbauer 2010). 

Across all models in this analysis, response variables from each correlation (which were assigned 

unique within-study codes) were nested within study to create a consistent random effect 

structure. When appropriate, variances were partititioned among studies, within studies, and due 

to sampling variance, which were used to calculate indices of heterogeneity and test their 

statistical significance (Nakagawa et al. 2017, Senior et al. 2016). Variance components also 

influenced weights for each effect size by downweighing repeated measures within and among 

studies according to the variance observed at each level, thereby alleviating pseudoreplication. 

An explicit demonstration of this random effect structure and its handling of repeated measures 

can be obtained through R code that I have made publicly available (see Gallagher et al. 2022). 

1.2.4 - Model selection: 

Due to the large number of potential covariates in my data, I sought to test competing models in 

a stepwise forward selection framework that reflected the structure of my data and was guided by 

mechanistic hypotheses (see Figure 1.1). Model selection was conducted separately for each 

dataset, but I ensured the same framework was applied consistently to all datasets. All covariates 

were incorporated as fixed effects, with models fit using maximum likelihood and compared 

based on AICc values. The model with the lowest AICc was selected in each stage, although the 

most parsimonious model was preferred in cases where AICc values differed by less than two 

(Johnson and Omland 2004). Note that taxonomic variation was not explicitly considered during 

model selection due to unbalanced sample sizes and concerns that estimating species-specific 

coefficients would yield over-parameterized models, so this was addressed in subsequent 

analyses (section 1.2.6). 

The first stage of model selection sought to identify the best set of spatial covariates (latitude, 

elevation, and their interaction; Table 1.1) because these effects are of considerable biological 

interest, and were expected to be relatively strong and consistent across datasets. In all analyses, 

latitude was expressed as an absolute value for simplicity, but 98% of observations were from 

the northern hemisphere (Figure A1.2). There was limited spatial contrast in the Growth-

Precipitation dataset due to low sample size, so the interaction between latitude and elevation 

was not explored. 

The selected model from the first stage was then used as the base model for the second stage, 

where temporal covariates based on age-class (four levels), season (five levels), life-stage (seven 

levels), or life-stage*age (ten levels; see Table 1.1 and section A1.1 for details) were added 

individually and compared. Note that most levels of life-stage*age were identical to life-stage, 

but estimates from the growing season were broken up by age-class (Table 1.1). These factors 

were of interest because they could suggest differential vulnerabilities to climate change based 

on size, age, or specific events in the life cycle. However, the relative importance of each 

temporal covariate may vary across datasets, especially since model selection penalized more 

complex covariates. There were few observations during the growing season in the Growth-

Precipitation dataset (n=35) such that age differences were unlikely to be informative, so I chose 
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to omit life-stage*age from model selection. For all other temporal covariates and datasets, there 

was sufficient contrast (n>10 within two or more levels) to proceed with model selection, but I 

noted all cases where sample sizes did not meet this threshold for specific levels (see Results). 

Finally, the selected model from the second stage moved forward to the third stage, wherein four 

binary covariates (two levels) denoting biological (range portion, habitat type, anadromy) and 

methodological differences (study design; see Table 1.1 and section A1.1) were added in all 

possible combinations. These factors were expected to have less consistent effects across 

datasets, but could nonetheless help explain variation. Covariates were excluded from model 

selection if they lacked contrast within a given dataset (n<10 for one of two levels), which ruled 

out habitat type in Abundance-Precipitation and Growth-Precipitation, and range portion in the 

Growth-Precipitation and Growth-Temperature datasets. The selected model from the third stage 

was considered the best-fit model overall for each dataset. 

1.2.5 - Best-fit models: 

After identifying best-fit models, I summarized model performance using ΔAICc scores, 

likelihood ratio tests, and pseudo-R2 values (based on proportional reduction in variance 

components) relative to alternative models with no covariates. Mean effect sizes and their 95% 

confidence intervals were estimated from each best-fit model, while variance components were 

used to run omnibus tests for residual heterogeneity (Viechtbauer 2010) and calculate total 

heterogeneity within and among studies (Nakagawa et al. 2017). Finally, estimated coefficients 

for all covariates (or contrasts for categorical levels) were reported and used to make summary 

plots, while an omnibus test across all covariates was performed for each best-fit model 

(Viechtbauer 2010). 

1.2.6 - Publication bias and model robustness: 

Homogeneity of variance was evaluated by inspecting residual plots from all best-fit models. 

Collinearity was checked in each best-fit model using variance inflation factors (VIF) calculated 

across all levels of each covariate, while within-level VIF values were also reported for temporal 

covariates that had more than two levels. All best-fit models were assessed for publication bias 

by creating funnel plots in Metafor. Currently, Egger regression cannot be implemented in 

models with nested random effects, so instead I added the standard error as an additional 

covariate in each best-fit model to test for the effect of precision on residuals (Viechtbauer 

2010). This test (Egger test hereafter) is analogous to an Egger regression, such that a significant 

effect of the standard error indicates publication bias. If bias was detected, I identified individual 

studies that contributed to the pattern, removed them from the dataset, and re-tested for 

publication bias in the reduced data. Similarly, temporal publication bias was explored by 

relating residuals from each best-fit model to publication year (Gurevitch et al. 2018). 

Possible taxonomic biases were examined by subsetting the Abundance-Precipitation, 

Abundance-Temperature, and Growth-Temperature datasets to only include the five species with 

the largest sample size (Growth-Precipitation was excluded due to low sample size), then re-

running the best-fit model with and without species as an additional covariate. The decision to 

select five species was subjective, but I sought to estimate multiple species effects while 

retaining sufficient sample sizes within species. Species contrast terms were reported and 

analyzed for significance in each dataset, while 95% confidence intervals for all other 

coefficients were compared. Support for species-specific intercepts and slopes was assessed 
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using ΔAICc scores relative to the original best-fit model. Additionally, the effects of four 

methodological factors (response type, predictor type, data transformation, data extraction 

method; Table 1) were evaluated by adding them individually to all best-fit models and testing 

their significance. Finally, influential studies were identified in each dataset using Cook’s 

distance, and their impact was assessed by comparing 95% confidence intervals of all 

coefficients from models fitted to data with and without these studies. 

1.3 - Results: 

1.3.1 - Model selection: 

Table 1.2 describes all models run and their ΔAICc scores within each stage of model selection, 

suggesting that each dataset had a different set of covariates that best explained variation. 

Abundance-Precipitation effect sizes differed according to season and study design, while 

Abundance-Temperature effects were influenced by latitude, elevation, age-class, study design, 

and range portion (Tables 2 and 3). Growth-Precipitation effect sizes varied according to life-

stage and anadromy, while Growth-Temperature effects had the most complex model that 

included latitude, elevation, life-stage*age, and habitat type as covariates (Tables 1.2 and 1.3). 

Across all datasets, best-fit models substantially outperformed models with no covariates 

(ΔAICc>15; likelihood ratio test p<0.001), but the proportional reduction in variance 

components suggested that relatively little variation was explained (pseudo-R2=5-41%; Table 3). 

Mean effect sizes based on predicted values from the best-fit models were positive and 

significant for the Growth-Precipitation and Growth-Temperature datasets, while 95% 

confidence intervals contained zero in the Abundance-Precipitation and Abundance-Temperature 

datasets (Table 3). Residual heterogeneity within and among studies was significant (Wald-type 

test; p<0.006) and accounted for a large percentage of the total variance (40-74%; Table 3) 

observed in all best-fit models. 

1.3.2 - Best-fit models: 

In all datasets, omnibus tests showed that covariates had significant explanatory power (Wald-

type test p<0.002; Table A1.1). Coefficients from the best Abundance-Precipitation model 

confirmed a significant positive effect of fall precipitation on abundance highlighted in a 

previous review (Kovach et al. 2016), but this was only evident in temporal studies, which were 

associated with significantly more positive (or less negative) effect sizes than spatial studies 

(p<0.05; Table A1.1; Figure 1.2). In contrast, a significant negative effect of spring precipitation 

on abundance was apparent (p<0.01; Table A1.1), but only for spatial studies (Figure 1.2).  

The best Abundance-Temperature model showed that latitude and elevation had a significant 

positive influence on effect sizes (p<0.01; Table A1.1), such that effects of temperature on 

abundance were predicted to be negative at low latitudes and elevations, but positive at higher 

values (latitude>60°; elevation>1,500m; Figure 1.3a-b). Temperature effects did not vary 

significantly by age-class (p>0.05; Table A1.1) but were significantly more positive in temporal 

study designs (p<0.05) and non-native ranges (p<0.01; Figure 1.3c).  

Within the best Growth-Precipitation model, precipitation had significant positive effects during 

the growing season (p<0.001) and negative effects during incubation (p<0.01; Table A1.1). 

However, the latter was based on a very low sample size (n=2; Figure 1.4), and this model 

should be interpreted with caution due to the low number of observations in the dataset (n=66 
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total). Effect sizes varied for precipitation during other life-stages, but precipitation effects were 

significantly more negative in anadromous populations relative to those observed in freshwater 

residents (p<0.05; Figure 1.4). 

Finally, estimates from the best Growth-Temperature model suggested that temperature effects 

became more positive with increasing latitude and elevation (Figure 1.5a-b). This was only 

significant for elevation (p<0.05; Table A1.1), while temperature effects were also significantly 

more negative in lotic than lentic habitats (p<0.05; Figure 1.5c). Similarly, effect sizes varied 

across levels of life-stage*age, with significant differences observed during incubation (positive 

effect; p<0.05), overwintering, and the growing season (negative effects; p<0.05; Figure 1.5c). 

Negative effects during the growing season were weaker in age-0 compared to age-1 or age-2+ 

salmonids (Figure 1.5c), but these differences were not significant (p>0.05). Estimates for 

incubation (n=8) and overwintering (n=12) were likely impacted by low sample sizes.  

1.3.3 - Publication bias and model robustness: 

Visual inspections of residuals suggested that assumptions of residual homogeneity were 

satisfied for all best-fit models (Figure A1.3; Table A1.2). Variance inflation factors suggested 

that collinearity among covariates in each best-fit model was limited (VIF<5; Table A1.2). 

However, there was evidence of collinearity within the ‘multiple’ (VIF=6.12) and ‘winter’ 

(VIF=6.43) levels of the season covariate in the best-fit Abundance-Precipitation model, but not 

within other seasons or any of the other datasets (Table A1.2). Funnel plots and Egger tests 

revealed evidence of publication bias in the Abundance-Precipitation dataset only (p<0.05; Table 

A1.2). This bias appeared to be mostly caused by observations with high precision having 

residual values that were skewed negative (Figure A1.4). Further investigation identified eleven 

studies that contributed disproportionately to this bias, which were skewed towards two study 

areas and correlations based on precipitation data averaged over nine months or more (i.e. 

season=‘multiple’). Removing these eleven studies caused publication bias to become non-

significant (Egger test p=0.064) and reduced collinearity (VIF=2.70 and 1.87 for ‘winter’ and 

‘multiple’, respectively), while estimated coefficients had overlapping confidence intervals 

(details in section A1.3). Significant negative relationships between residuals and publication 

year were detected in the Abundance-Precipitation and Growth-Temperature datasets (p<0.05; 

Table A1.2). However, these patterns were largely driven by positive residuals from very few 

studies published before 1981, suggesting these trends could be an artifact of the skewed 

distribution of publication years. 

Analysis of the three datasets subsetted by species indicated that results from best-fit models 

were robust to taxonomic differences. Specifically, whenever species contrasts were added, they 

were not significantly different than zero, with wide and overlapping confidence intervals 

(Figure A1.6). Confidence intervals for all coefficients broadly overlapped in models with and 

without species contrasts, while models with species contrasts were always outperformed by 

best-fit models without them (ΔAICc>3.5). Interactions between species and intercepts or slopes 

were also explored for effects of latitude and elevation in the Abundance-Temperature and 

Growth-Temperature datasets, but these models performed poorly compared to the original best-

fit models (ΔAICc range: 8.0-21.5).  

Robustness tests suggested that methodological choices often had significant impacts on effect 

sizes. The best-fit model for the Abundance-Precipitation dataset was robust to all four 

methodological factors tested (p>0.05), but the other datasets showed significant effects of one 
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or more variables (p<0.05; Table A1.2). Adding data transformation and extraction method 

(Table 1.1) to the best-fit Abundance-Temperature model suggested that correlations based on 

transformed abundance data (99% of which were log-transformations) and data extracted from 

figures or tables were associated with more positive effect sizes (p<0.05; Table A1.3). Similarly, 

adding response type to both Growth-Precipitation and Growth-Temperature models suggested 

that correlations based on weight were significantly different (p<0.01) than those based on length 

or growth rate (Table A1.3). Predictor type also affected the best-fit Growth-Temperature model, 

such that correlations based on minimum temperature were associated with significantly more 

negative effect sizes than for average temperature, with no significant differences for other 

predictor types (Table A1.3). Finally, Cook’s distance identified influential studies in each 

dataset (n=3-6), but removing these studies and re-running each best-fit model yielded similar 

coefficients with substantial overlap in 95% confidence intervals (Table A1.2). 

1.4 - Discussion 

I assembled and analyzed the most extensive global database of climate effects on salmonid 

productivity to date, uncovering substantial variation. This variation exhibited broad spatial, 

temporal, and biological patterns that often, but not always, aligned with predictions based on 

salmonid thermal limits (see Figure 1.1). Specifically, spatial variation in latitude and elevation 

shaped temperature effects on productivity but, interestingly, did not influence precipitation 

effects. Generally, increased temperature tended to reduce productivity at low latitudes and 

elevations where warm and stressful thermal regimes predominate, but increase productivity at 

high latitudes and elevations where cold temperatures limit salmonid growth and abundance. 

Similarly, temporal variation structured responses to climate during the warmest time-periods, 

when higher temperature and lower precipitation were both associated with reduced productivity. 

In addition, there was some evidence that increased flooding during egg incubation or the spring 

could further diminish productivity, but these patterns were inconsistent and sometimes impacted 

by low sample size. Finally, biological differences were also important, as abundance of non-

native populations and salmonid growth in lentic habitats responded more positively (or less 

negatively) to higher temperatures, relative to native populations and lotic habitats.  

Collectively, these patterns imply that future warming should be expected to (1) enhance 

productivity at polar latitudes (>60°) and high altitudes (>1,500m), (2) threaten salmonids in 

areas where precipitation is declining during the warmest months (3) affect native populations 

more negatively than non-natives, and (4) increase the importance of lentic habitats as climate 

refugia. These findings can help conservation and management bodies identify and protect 

salmonid populations that are especially sensitive to climate change, as well as guide future 

research. However, I also identified key limitations in current knowledge of salmonid responses 

to climate, as the majority of variation remains unexplained, while geographic bias, 

methodological inconsistencies, and unbalanced sample sizes likely restricted scope of inference.  

1.4.1 - Spatial patterns: 

The effects of temperature on salmonid abundance and, to a lesser extent, growth were related to 

latitude, as warming negatively impacted productivity at low latitudes but had positive effects in 

polar regions, which is in line with previous research. For example, studies of European brown 

trout (Salmo trutta) suggested that higher temperatures and longer growing seasons should 

increase productivity in high-latitude populations that are currently constrained by cold 

temperatures (Jensen et al. 2000, Parra et al. 2009), while Mediterranean populations face 
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extirpation due to thermal stress as climate change continues (Almodóvar et al. 2012, Ayllón et 

al. 2019). My results suggest that this pattern may be similar across other salmonids, although 

most species are not well-represented in my database across their range. Generally, this 

latitudinal trend supports predictions that salmonids should become more productive within their 

native range in the Arctic under climate change (especially >60°N), while declines in 

productivity will be more frequent in low-latitude regions (Reist et al. 2006, Jonsson and Jonsson 

2009, Campana et al. 2020). However, the Arctic currently has the highest rates of warming on 

earth and this trend is expected to continue, so many high-latitude areas could be a boon for 

salmonids over the next few decades but may become less suitable later this century. Moreover, 

constraints within polar ecosystems could limit increases in salmonid productivity, as primary 

and secondary production must rise substantially to sustain higher salmonid biomass in the future 

(Reist et al. 2006), and high-latitude populations can still be negatively impacted by prolonged 

heat waves and droughts (von Biela et al. 2022). 

Similar to latitude, there was a strong trend in temperature effects due to elevation, such that 

warmer temperatures were linked to declines in growth and abundance at low elevations, but 

with increases at high elevations. This pattern supports the notion that high-altitude streams 

provide a ‘coldwater climate shield’ for salmonids and will serve as important climate refugia in 

a warming world (Nakano et al. 1996, Almodóvar et al. 2012, Isaak et al. 2015, Kanno et al. 

2015). Mountain streams typically exhibit slower climate velocities that help buffer against 

warming (Isaak et al. 2016), while previous research on cutthroat trout (Oncorhynchus clarkii) in 

the Rocky Mountains showed that productivity at high elevations is limited by cold summer 

temperatures (Harig and Fausch 2002, Young et al. 2005, Coleman and Fausch 2007). Thus, 

there is considerable scope for warming to increase productivity in high-altitude populations 

(especially >1,500m), and I expect the distribution of productivity to shift towards higher 

elevations in the future. However, this will be offset by reduced productivity and more frequent 

extirpation in low-lying areas (Nakano et al. 1996, Almodóvar et al. 2012). Moreover, there is 

likely to be considerable variation in the rate of elevation shifts at the local level, especially as 

warming interacts with changes in snowpack and non-native species (Wenger et al. 2011).  

The broad spatial patterns in salmonid-temperature relationships I uncovered were in line with 

my predictions (Figure 1.1a), and suggest that populations occupying low-elevation habitats near 

low-latitude range margins are most likely to decline with warming. These vulnerable 

populations can be targets for conservation interventions or restoration by agencies, especially if 

they harbor unique diversity that might aid persistence (Carlson and Satterthwaite 2011). 

Similarly, if vulnerable populations support fisheries, managers may need to consider reducing 

future harvests to remain sustainable under climate change. Changes in precipitation could 

possibly offset some of these impacts, but model selection did not indicate strong spatial 

variation in precipitation effects. This is likely because temperature varies more predictably with 

latitude and altitude than precipitation, which is more influenced by rainshadows, prevailing 

winds, and proximity to large water bodies (Fick and Hijmans 2017). 

1.4.2 - Temporal patterns: 

Effects of climate on growth and abundance varied considerably based on the time-period 

studied, revealing critical periods when climate variation tends to have particularly strong 

impacts on salmonids. Most notably, warmer temperatures and decreased precipitation during the 

warmest times of year were both associated with reduced productivity, while increased 
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precipitation during other time-periods (e.g. spring, egg incubation) was also linked to declines 

in productivity. These patterns largely matched expectations (especially during the growing 

season; Figure 1.1c,d) and corroborated previous qualitative reviews that emphasized temporal 

variation in climate impacts, as well as its utility for improving inferences (Nislow and 

Armstrong 2012, Kovach et al. 2016). Indeed, multiple studies of brook trout (Salvelinus 

fontinalis) in eastern North America found that temperature and precipitation have the largest 

impacts during specific seasons or life-stages (Kanno et al. 2015, Bassar et al. 2016, Sweka and 

Wagner 2022). In contrast, model selection in both temperature datasets supported the inclusion 

of age (age-class in Abundance-Temperature, life-stage*age in Growth-Temperature), but 

differences between age-classes varied in direction and were not statistically significant. Thus, 

the magnitude and direction of future climate change during critical time-periods in the life cycle 

will be a key determinant of salmonid persistence, while differences among age-classes should 

be less influential. Continued research on these critical periods should help build upon current 

knowledge of how temporal climate variation shapes habitat quality (Armstrong et al. 2021), and 

how this can produce different responses within and among species (Kanno et al. 2015, Bassar et 

al. 2016, Kanno et al. 2017). 

The temporal patterns I found in salmonid responses to climate suggest that declines in 

productivity should be most frequent in areas where growing season conditions are becoming 

hotter and dryer, as proposed in previous studies (Arismendi et al. 2013). This type of climate 

change is especially prominent in western North America (Carlson and Satterthwaite 2011) and 

Mediterranean Europe (Ayllón et al. 2019), which will create future management and 

conservation challenges in these regions. However, future responses will likely be complex, as 

temporal patterns were not always consistent among datasets (e.g. summer precipitation did not 

show expected positive effects in the Abundance-Precipitation dataset), and their significance 

sometimes depended on other biological and methodological factors. Additionally, some strong 

effects were based on low sample sizes (e.g. reproduction and incubation in Figure 1.4, 

incubation and overwintering in Figure 1.5), and should thus be viewed as preliminary. The 

paucity of data during migration, reproduction, incubation, and emergence means I cannot 

resolve uncertainties about the vulnerability of these life-stages to climate change (e.g. Jonsson 

and Jonsson 2009, Dahlke et al. 2020, Pottier et al. 2022). Finally, I believe inferring the impacts 

of temporal covariates on salmonid productivity is especially hampered by the use of ambiguous 

time-periods. Specifically, climate data were frequently averaged over 9-12 month periods (e.g. 

season=’multiple’), which contributed to publication bias and collinearity issues in the 

Abundance-Precipitation dataset (see section A1.3 for details). More broadly, this practice 

obscures inferences about temporal variation in climate effects (section A1.4) and should thus be 

avoided, as also suggested by Kovach et al. (2016). Instead, assessments of climate impacts 

should consistently focus on well-defined periods linked to the life cycle of the focal population.  

1.4.3 - Biological patterns: 

Biological factors such as range portion, habitat type, and anadromy also strongly modified 

salmonid responses to climate variation. The most striking patterns were the significant 

differences in temperature effects between native and non-native species, and between lotic and 

lentic habitats, which both have implications for management and conservation. Specifically, the 

abundance of non-native salmonids responded more positively to warming on average, relative 

to native populations. This supports the perception that climate change may allow non-native 

salmonids to further outcompete or replace their native counterparts in some areas (Budy et al. 
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2008, Al-Chokhachy et al. 2016), a key warning sign given that many management agencies 

seek to limit or remove non-natives from critical habitats when feasible (Kanno et al. 2016, 

Kovach et al. 2017). However, such decisions should still be tailored to species- and population-

specific data whenever possible, as Bell et al. (2021) showed that competition with non-native 

salmonids can significantly threaten some native species, but not others. Additionally, the 

Growth-Temperature model suggested that warming temperatures during the growing season 

reduced productivity in lotic habitats, but these effects were negligible in lentic habitats. This 

pattern could be due to lentic environments, especially large lakes, becoming stratified with 

warming and providing deepwater thermal refugia that can benefit salmonid growth (Blair et al. 

2013). While the role of lentic habitats as potential climate refugia for salmonids has not been 

extensively studied, protecting or restoring large stratified lakes may be a worthwhile 

management and conservation option, especially in areas where lakes are known to be more 

resistant to warming than other habitats (Reist et al. 2006). Migration behaviors also influenced 

effects in the Growth-Precipitation dataset, such that increased precipitation during the growing 

season improved growth in non-anadromous salmonids more than anadromous populations. 

Causes of this pattern are uncertain given the low sample size in this dataset, but could perhaps 

be due to shorter freshwater residency in anadromous salmonids, which reduces exposure to the 

warmest time-periods when increased precipitation should be most beneficial. It is also notable 

that methodological differences in study design, data collection, and transformation influenced 

patterns in effect size (Figures 1.2 and 1.3c; Table A1.1 and A1.3), which underscores the need 

to improve standardization across studies. 

1.4.4 - Limitations and future work: 

Although my quantitative synthesis now provides the most comprehensive global analysis of 

salmonid responses to climate change, current knowledge is incomplete and significant 

uncertainty remains. First, my database does not represent the whole salmonid range, with 85% 

of observations coming from Canada, the United States, British Isles, and Nordic countries, 

similar to geographic biases highlighted in critiques of past biodiversity syntheses (e.g. Gonzalez 

et al. 2016). This bias clearly underrepresents non-English speakers and limits scope of 

inference, such that applications of my findings beyond these regions must be done with care. In 

future studies, English language bias could be partially remedied by using scientific genus names 

instead of common names as Web of Science search terms (e.g. “Salmo, Oncorhynchus, and 

Salvelinus” instead of “salmon, trout, and charr”). This was an oversight in my meta-analysis, 

even though it likely had a small effect on the studies that were ultimately included. Moreover, 

although covariates were significant overall, the variance explained was low for effects on 

abundance (pseudo-R2=5-10%) and modest for effects on growth (30-41%). This is an important 

limitation since abundance often has the strongest impact on productivity (Lobón‐Cerviá 2009), 

and much of the unexplained variation (40-75%) was attributed to heterogeneity within and 

among studies. Such variation is typical in ecological meta-analyses (Senior et al. 2016), and 

suggests that the broad patterns in productivity I uncovered have limited predictive power at the 

local level, and that population-specific monitoring data remain critical for conservation and 

management planning. The variation I observed also likely reflects the remarkable population 

diversity of salmonids, which managers should seek to maintain in order to promote stability and 

resilience in a changing world (Schindler et al. 2010). 

Our analysis was also impacted by the need to use correlations to derive standardized effect 

sizes, as these simplified relationships cannot account for factors such as density-dependence 
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(Matte et al. 2020a), food availability (Railsback 2022), and species interactions (Wenger et al. 

2011). Furthermore, I analyzed growth and abundance separately even though these are often 

coupled (Lobón‐Cerviá 2022, Zabel and Achord 2004), and can exhibit complex and variable 

relationships to actual rates of biomass production (Lobón‐Cerviá 2009). Similarly, interactive 

(Arismendi et al. 2013) or non-linear (Rosenfeld 2017, Lobón‐Cerviá and Mortensen 2005) 

climate effects are not adequately captured with correlations, while the linearity of salmonid-

climate relationships are likely influenced by choices in study design and data transformation. 

Further research that standardizes productivity and climate data while accounting for key 

ecological processes (e.g. density-dependence; Matte et al. 2020a) would provide more precise 

and informative effects of climate on salmonids. 

Despite some issues with publication bias, collinearity, and unbalanced sample sizes, best-fit 

models appeared to satisfy assumptions, and were robust to influential studies and taxonomic 

differences. Although species did not differ significantly in my analyses, divergence in 

evolutionary histories, habitat preferences, and thermal tolerances within and among species will 

invariably shape future responses to climate change (McKenzie et al. 2021, Jonsson and Jonsson 

2009). My data are probably ill-suited to taxonomic comparisons due to skewed species 

composition (47% of observations were brown trout or brook trout), so more targeted studies of 

variation in climate responses within and among species should be a priority for future research. 

Overall, the patterns my meta-analysis uncovered are not definitive, and more research is needed 

to mitigate its geographic, taxonomic, and methodological limitations. To this end, I have shared 

my database (see Gallagher et al. 2022) and encourage others to use it, add more studies, or 

explore other covariates (e.g. WorldClim data; Fick and Hijmans 2017). Finally, while I 

recognize that ecological data are complex and often best analyzed with sophisticated models 

(e.g. Letcher et al. 2015), I urge researchers around the world to report simple correlations (with 

sample sizes) between salmonid and climate data believed to be most relevant for their own 

study systems. Together, broader data sharing and more targeted, hypothesis-driven inquiry 

should further improve predictions of the future of salmonids under climate change. 

1.5 - Conclusion:  

Patterns revealed by my meta-analysis suggest that native salmonids occupying lotic habitats at 

low latitudes and elevations are likely to be most vulnerable to future warming, especially in 

areas where drought will become more frequent during the hottest time-periods. Conversely, 

increased temperatures will likely enhance productivity at high latitudes and elevations. In 

combination, these trends can serve as a point of comparison for future studies, and may play an 

important role in salmonid range shifts over the coming decades (Comte and Olden 2017). More 

generally, my framework to predict and test patterns in effects of climate variation on growth and 

abundance enabled us to translate simple correlations from past research into broad inferences 

about future productivity, underscoring the value of data synthesis to informing conservation and 

management decisions (Haddaway 2015). While imperfect, my structured quantitative approach 

- centered around simple questions of where, when, and what kind of effects are measured - 

should be useful for explaining patterns in responses to climate in other organisms. Overall, 

future impacts of climate change will be complex but are unlikely to be entirely negative, and 

local responses will exhibit substantial variation around the broad patterns highlighted in this 

study. Such varied responses to climate change in salmonids imply that, while some populations 

will inevitably decline, this will be offset by expansion and increased productivity in others 

(Mantua et al. 2015). For biodiversity at large, this balance between gains and losses in species 
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productivity through time is critically important for the future of life in an increasingly human-

dominated world (Dornelas et al. 2014, 2019). My synthesis suggests that this uncertain balance 

also applies to salmonids, with far-reaching implications for these coldwater fishes, and the 

ecosystems and people that depend on them. 
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Tables & Figures: 

Table 1.1: List of all potential covariates, plus their abbreviations (abbrev.), usage during 

quantitative meta-analysis (model selection stage 1-3, or post-selection tests; see Methods), and 

number of levels (categorical variables only). Note that variables used in stages 1, 2, and 3 of 

model selection correspond to spatial, temporal, and biological or methodological covariates, 

respectively, and were tested in a stepwise forward selection framework. Details for data 

collection protocols can be found in the Supplementary Material (section A1.1), while the full 

database, metadata, and R code are freely accessible online (see Gallagher et al. 2022). 

Covariate Abbrev. Usage N Levels Description or levels 

Latitude L Stage 1 Cont. Absolute value of latitude (° from 

equator) 

Elevation E Stage 1 Cont. Elevation (meters above sea level) 

Age-class AC Stage 2 4 Age-0, age-1, age-2+, or multiple 

Season SE Stage 2 5 Fall, spring, summer, winter, or 

multiple 

Life-stage LS Stage 2 7 Incubation, emergence, growing 

season, overwintering, migration, 

reproduction, or multiple 

Life-stage*Age LSA Stage 2 10 Same as Life-stage, but growing 

season is broken up by age into 

growing season_0, growing 

season_1, growing season_2+, 

and growing season_multiple 

levels 

Study design S Stage 3 2 Spatial or temporal 

Anadromy A Stage 3 2 Anadromous or resident 

Range portion N Stage 3 2 Native or non-native 

Habitat type H Stage 3 2 Lotic or lentic 

Publication year YR Publication bias Cont. Year when study was published 

Response type RT Robustness tests 7 Abundance, population growth, 

stock-recruitment, survival 

(abundance only), length, weight, 

or growth rate (growth only) 

Predictor type PT Robustness tests 6 Average, maximum, minimum, 

percentile, PCA (temperature or 

precipitation), or degree-day 

(temperature only) 

Data transformation DT Robustness tests 2 Yes or no 

Extraction method DM Robustness tests 2 Direct reporting or manual 

extraction 
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Table 1.2: Full list of unique model numbers and corresponding equations within three stages of 

stepwise model selection. ΔAICc scores are shown for each model in the Abundance-

Precipitation (labeled A-P; 16 models tested overall), Abundance-Temperature (A-T; 24 

models), Growth-Precipitation (G-P; 10 models), and Growth-Temperature (G-T; 16 models) 

datasets. Abbreviations used in model equations are taken from Table 1, with Z denoting the 

standardized effect size and r denoting the nested random effect structure (see Methods). Some 

models were ignored (denoted by ‘-‘) due to limited contrast in covariates within some datasets 

(see Methods). The selected models in stages 1 and 2 are denoted by an asterisk (*). All models 

within 2 ΔAICc units of the selected model are highlighted in bold italic text, and the model with 

the fewest fixed effects was selected in these cases. The best model overall for each dataset is 

denoted by three asterisks (***). 

Stage Number Model Equation 

A-P 

(n=362) 

A-T 

(n=610) 

G-P 

(n=66) 

G-T 

(n=283) 

1 1 Z = r 0.00* 9.97 0.00* 3.26 

1 2 Z = L + r 2.03 8.24 2.10 3.66 

1 3 Z = E + r 0.59 8.70 1.51 2.16 

1 4 Z = L + E + r 2.33 1.02* 3.72 0.00* 

1 5 Z = L * E + r 1.52 0.00 - 2.08 

2 - Stage 1 (selected) 11.44 2.33 20.03 13.91 

2 6 Stage 1 + LS 10.77 10.93 0.00* 2.70 

2 7 Stage 1 + AC 7.77 0.00* 23.41 9.57 

2 8 Stage 1 + SE 0.00* 7.87 13.13 16.26 

2 9 Stage 1 + LSA 14.45 16.59 - 0.00* 

3 - Stage 2 (selected) 4.19 10.96 2.05 2.44 

3 10 Stage 2 + S 0.00*** 7.57 2.33 3.48 

3 11 Stage 2 + A 4.82 10.25 0.26*** 4.67 

3 12 Stage 2 + N 6.01 2.82 - - 

3 13 Stage 2 + H - 13.02 - 0.16*** 

3 14 Stage 2 + S + A 0.06 7.17 0.00 5.72 

3 15 Stage 2 + S + N 1.61 0.00*** - - 

3 16 Stage 2 + S + H - 9.43 - 0.00 

3 17 Stage 2 + A + N 6.02 3.04 - - 

3 18 Stage 2 + A + H - 11.87 - 2.40 

3 19 Stage 2 + N + H - 4.67 - - 

3 20 Stage 2 + S + A + N 0.62 0.45 - - 

3 21 Stage 2 + S + A + H - 8.13 - 2.24 

3 22 Stage 2 + S + N + H - 1.35 - - 

3 23 Stage 2 + A + N + H - 4.12 - - 

3 24 Stage 2 + S + A + N + H - 0.68 - - 
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Table 1.3: Summary of best-fit models for the Abundance-Precipitation (labeled A-P), 

Abundance-Temperature (A-T), Growth-Precipitation (G-P), and Growth-Temperature (G-T) 

datasets according to stepwise model selection. Abbreviations used in model equations are taken 

from Table 1.1. Each ΔAICc (with p-values for likelihood ratio tests) and pseudo-R2 value was 

calculated relative to models with no covariates (Number=1 in Table 1.2; see Methods). 

Heterogeneity tests are based on a Wald-type test statistic, while the total heterogeneity (summed 

within and among studies) was calculated based on variance components. Significant p-values 

are marked with an asterisk (*). 

Dataset Best-Fit Model Equation ΔAICc 

Pseudo-

R² 

Mean 

Effect 

Wald Test Total % 

Heterogeneity 

A-P Z = SE + S + r 15.63 

(p<0.001)* 

0.05 0.06 

(p>0.05) 

589 

(p<0.001)* 

59.3 

A-T Z = L + E + AC + S + N + r 22.24 

(p<0.001)* 

0.10 -0.07 

(p>0.05) 

1563 

(p<0.001)* 

70.1 

G-P Z = LS + A + r 21.82 

(p<0.001)* 

0.41 0.23 

(p<0.05)* 

91 

(p=0.005)* 

40.2 

G-T Z = L + E + LSA + H + r 19.44 

(p<0.001)* 

0.30 0.26 

(p<0.05)* 

874 

(p<0.001)* 

73.8 
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Figure 1.1: Summary of predicted patterns in effects of temperature (panels a, c, and e) and 

precipitation (panels b, d, and f) on salmonid productivity. Predictions are structured according 

to spatial (a and b), temporal (c and d), and biological (e and f) patterns that were of most 

interest, and stages 1-3 (boxes and arrows) correspond to the order variables were inputted into 

models during the stepwise model selection process (see Methods). All panels have a shaded 

background to highlight expected climate effects when temperatures exceed upper thermal limits 

(red shading), or when low temperatures limit productivity (blue shading; see Introduction). Note 

that predicted effects on productivity were expected to be largely similar for measures of 

abundance and growth. 
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Figure 1.2: Best-fit model for the Abundance-Precipitation dataset, showing categorical 

coefficients and 95% confidence intervals plotted by season for spatial (silver) or temporal (gold) 

study designs (see Table A1.1). Total sample sizes for each level of season are shown for 

reference. 



24 
 

 

Figure 1.3: Best-fit model for the Abundance-Temperature dataset. Predicted values are plotted 

by latitude (a) and elevation (b), with fitted slope and intercepts corresponding to a reference 

level (c; arrow). Intercepts in a and b were adjusted to reflect the mean elevation and latitude, 

respectively, while points were sized according to the inverse of their sampling variance (see 

Methods). Categorical coefficients and 95% confidence intervals (c) are plotted by age-class for 

native (silver) or non-native (gold) range portions, and spatial (circles) or temporal (triangles) 

study designs. Coefficients in c were estimated as contrasts relative to a reference level (bottom; 

see text) while controlling for latitude and elevation (see Table A1.1). Total sample sizes for 

each level of age-class are shown in panel c for reference. 
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Figure 1.4: Best-fit model for the Growth-Precipitation dataset, showing categorical coefficients 

and 95% confidence intervals plotted by life-stage for anadromous (silver) or freshwater resident 

(gold) populations (see Table A1.1). Total sample sizes for each level of life-stage are shown for 

reference. 
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Figure 1.5: Best-fit model for the Growth-Temperature dataset. Predicted values are plotted by 

latitude (a) and elevation (b), with fitted slope and intercept corresponding to a reference level (c; 

arrow). The relationship with latitude in panel a was not signficant, so the fitted line is not 

shown. Points in panels a and b are sized according to the inverse of their sampling variance (see 

Methods). Categorical coefficients and 95% confidence intervals (c) are plotted by life-stage*age 

for lentic (silver) or lotic (gold) habitat types (see Table A1.1). Coefficients in c were estimated 

as contrasts relative to a reference level (bottom; see text) while controlling for latitude and 

elevation. Total sample sizes for each level of life-stage*age are shown in panel c for reference. 
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III. Chapter 2: Microgeographic variation in demography and thermal regimes stabilize 

regional abundance of a widespread freshwater fish 

Abstract: 

Predicting the persistence of species under climate change is an increasingly important objective 

in ecological research and management. However, biotic and abiotic heterogeneity can drive 

asynchrony in population responses at small spatial scales, complicating species-level 

assessments. For widely distributed species consisting of many fragmented populations, such as 

brook trout (Salvelinus fontinalis), understanding drivers of asynchrony in population dynamics 

can improve predictions of range-wide climate impacts. I analyzed demographic time-series from 

mark-recapture surveys of eleven natural brook trout populations in eastern Canada over 13 

years to examine the extent, drivers, and consequences of fine-scale population variation. The 

focal populations were genetically differentiated, occupied a small area (~25 km2) with few 

human impacts, and experienced similar climate conditions. Recruitment was highly 

asynchronous, weakly related to climate variables and showed population-specific relationships 

with other demographic processes, generating diverse population dynamics. In contrast, 

individual growth was mostly synchronized among populations and driven by a shared positive 

relationship with stream temperature. Outputs from population-specific models were unrelated to 

four of five hypothesized drivers (recruitment, growth, reproductive success, phylogenetic 

distance), but variation in groundwater inputs strongly influenced stream temperature regimes 

and stock-recruitment relationships. Finally, population asynchrony generated a portfolio effect 

that stabilized regional species abundance. My results demonstrate that population demographic 

and habitat diversity at microgeographic scales can play a significant role in moderating species 

responses to climate change. Moreover, I suggest that the absence of human activities within 

study streams preserved natural habitat variation and contributed to asynchrony in brook trout 

abundance, while the small study area eased monitoring and increased the likelihood of detecting 

asynchrony. Therefore, anthropogenic habitat degradation, landscape context, and spatial scale 

must be considered when developing management strategies to monitor and maintain 

populations that are diverse, stable, and resilient to climate change. 

2.1 Introduction: 

Population dynamics are often expected to be synchronized at small scales due to the prevalence 

of spatial autocorrelation in dispersal, environmental conditions, and trophic interactions such as 

predation (Liebhold et al. 2004). Within species, demographic synchrony among populations has 

been observed in numerous taxa at scales ranging from centimeters to thousands of kilometers 

(Liebhold et al. 2004), with shared responses to environmental variation among populations 

often cited as a key driver (i.e., ‘Moran effects’ after Moran 1953). In addition, dispersal often 

facilitates gene flow that increases the similarity of geographically proximate populations, as 

described in isolation-by-distance models that are ubiquitous in population genetics (Wright 

1943). The ecological and genetic similarity driven by gene flow can further synchronize 

population dynamics, especially in mobile, large-bodied species occupying habitats with limited 

barriers to dispersal (Jenkins et al. 2010, Carvajal-Quintero 2022). 

Despite its prevalence and utility as a conceptual baseline, synchrony can break down due to 

biotic and abiotic heterogeneity, even at small spatial scales. For example, fine-scale population 

dynamics in pond-breeding amphibians are expected to be synchronized due to connectivity and 

environmental similarity, but a recent study of wood frogs within a small area (32 km2) found 
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that asynchrony dominated due to local variation in pond size and density-dependence (Rowland 

et al. 2022). Furthermore, habitat heterogeneity can drive local adaptation that reduces 

synchrony, even within continuous habitats expected to be open to dispersal and gene flow. For 

example, many fish species within postglacial lakes exhibit strong morphological, behavioral, 

and genetic divergence linked to the use of benthic and limnetic habitats (Skúlason et al. 1989, 

Schluter and McPhail 1992, Doenz et al. 2018). This microgeographic variation within species 

(after Richardson et al. 2014) is increasingly recognized as a key factor in ecological and 

evolutionary processes, with effects extending to community and ecosystem dynamics (Bolnick 

et al. 2011, Des Roches et al. 2018). However, the relative importance of asynchrony driven by 

microgeographic variation and synchrony driven by spatial autocorrelation is poorly understood 

in most systems, and more studies are needed that sample many populations (Liebhold et al. 

2004). 

Asynchrony may be most widespread in species occupying highly fragmented habitats, which 

often limit dispersal and increase population divergence at microgeographic scales. This pattern 

has also been observed across numerous taxa and contexts, such as plants within forest fragments 

(Ony et al. 2020), reptiles on rocky outcrops (Pearson et al. 2018), amphibians in isolated desert 

springs (Wang 2009), and mammals living on mountainsides (Waterhouse et al. 2017). At 

evolutionary time-scales, historical differences in habitat fragmentation can determine how 

colonization, genetic drift, and local adaptation influence diversification among species and 

populations (Yoder et al. 2010), which can in turn impact contemporary demography (Johansson 

et al. 2007, Kuhn et al. 2022). Variation arising through these mechanisms can drive asynchrony 

in population abundance through time, resulting in portfolio effects that stabilize aggregate 

abundance at larger scales (Bolnick et al. 2011, Schindler et al. 2015). In species that are 

sensitive to warming, portfolio effects driven by asynchrony can thus increase the likelihood of 

persistence under climate change (Rowland et al. 2022), while synchronized responses often 

result in widespread declines (Manderson 2008, Carlson and Satterthwaite 2011). Comparative 

studies across many naturally fragmented populations can help better characterize the 

prevalence, causes, and consequences of asynchrony at fine scales. 

Salmonid fishes are useful systems to study population asynchrony due to their fine-scale genetic 

differentiation, as well as remarkable variation in locally adapted phenotypes, life histories, and 

demographics (Hutchings 1993, Fraser et al. 2011). Moreover, salmonid habitats can be naturally 

fragmented and differ markedly in hydrology and geomorphology at small scales, driving highly 

variable local sensitivities to regional air temperature and precipitation patterns (Lisi et al. 2015, 

Snyder et al. 2015, Isaak et al. 2016). This interplay between population variation and habitat 

heterogeneity should increase the likelihood of demographic asynchrony in salmonids at 

microgeographic scales. Indeed, asynchrony in reproductive timing, spawning habitat conditions, 

and population productivity stabilize abundance of sockeye salmon across southwestern Alaska, 

perhaps the most iconic example of portfolio effects in a vertebrate (Hilborn et al. 2003, 

Schindler et al. 2010). Over broader scales, the resilience conferred by asynchrony could help 

attenuate range shifts in salmonids and other widespread species exhibiting fine-scale population 

structure (Richardson et al. 2014, Amburgey et al. 2018). In many species, improved knowledge 

of the causes and consequences of population asynchrony at microgeographic scales may also 

inform management and conservation under climate change, as there is often considerable local 

variation in species responses to warming (Urban et al. 2016, Gallagher et al. 2022). 
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In this study, I assess how microgeographic variation contributes to demographic asynchrony in 

eleven populations of brook trout (Salvelinus fontinalis) in Cape Race (Newfoundland, Canada). 

Brook trout are a freshwater salmonid fish with a large native range in eastern North America 

(spanning 35-59°N latitude; NatureServe 2022) and often consist of small, isolated stream 

populations (Kazyak et al. 2022). I specifically investigated variation in juvenile abundance, 

growth rates, and demographic responses to climate at a microgeographic scale (~25 km2), which 

I expected to display significant asynchrony that stabilizes abundance across the study area (after 

Schindler et al. 2015). Crucially, because Cape Race brook trout have been studied for decades 

(Hutchings 1993, Purchase and Hutchings 2008, Matte et al. 2020b), population differences 

identified in past research were used to explore potential drivers of microgeographic variation. 

Predictions were constructed around five well-studied population and habitat features: 

groundwater input, juvenile abundance, juvenile growth, reproductive success, and phylogenetic 

distance (Table 2.1). First, groundwater is crucial in moderating freshwater thermal regimes 

(Snyder et al. 2015) and brook trout are known to be sensitive to temperature and precipitation 

(Kanno et al. 2015, Bassar et al. 2016, Smith and Ridgway 2019), so I predicted variation in 

groundwater inputs to drive demographic asynchrony. Second, because juvenile abundance (i.e., 

recruitment) spans three orders of magnitude and is strongly correlated with drainage size in 

Cape Race (Wood et al. 2014), I predicted greater asynchrony among small populations than 

large populations due to their susceptibility to demographic stochasticity (Lande 1993) and 

hydrological variation (Sabo et al. 2010). Next, I predict that populations with reduced juvenile 

growth rates will exhibit stronger demographic responses to temperature, as life history research 

suggests small body size increases overwintering mortality (Hutchings 1993). Similarly, adult 

reproductive success varies considerably (Bernos et al. 2016) and is positively associated with 

spawning habitat diversity (Belmar-Lucero et al. 2012), so I predicted that populations with low 

reproductive success (and therefore fewer spawning areas) will be more strongly impacted by 

temperature and precipitation patterns. Finally, given the well-described genetic structure in 

Cape Race, I expected closely related populations (i.e., lower phylogenetic distance) to exhibit 

more similar growth and abundance patterns as a result of sharing similar demographic histories, 

habitats and selection pressures (Fraser et al. 2014, Wood et al. 2014).  

Our results inform the management of fragmented populations by characterizing 

microgeographic variation in brook trout and exploring its drivers and consequences, which 

should be relevant for other species. The fact that Cape Race streams are well-studied and 

pristine may also illuminate mechanisms that explain the relative importance of synchrony and 

asynchrony in different contexts, thereby identifying management strategies that can promote 

and maintain diversity among natural populations. 

2.2 - Methods: 

2.2.1 - Study area: 

This study focuses on eleven brook trout populations in Cape Race, a coastal barren landscape in 

southeastern Newfoundland dominated by blanket bogs, streams, and ponds (population codes: 

BC, DY, HM, LC, LO, MC, STBC, UC, UO, WC, WN; Figure A2.1). Proximity to the Grand 

Banks, where the Labrador Current meets the Gulf Stream, results in cool, wet, and foggy 

weather year-round. The focal streams are short (0.3-8.2 km; Wood et al. 2014), separated by 5 

km or less, and harbor brook trout with a common origin dating back to the last deglaciation 10-

12 kya (Danzmann et al. 1998). Brook trout are the only vertebrates in most Cape Race streams. 
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Landlocked Atlantic salmon (Salmo salar) are also present in three streams (LO, UO, WN), but 

they are rare in LO and significantly outnumbered by brook trout in UO (~5-fold difference) and 

WN (~20-fold difference) while exhibiting much more limited spatial distributions (Bernos et al. 

2018). Importantly, Cape Race drainages are uninhabited and mostly protected within Mistaken 

Point Ecological Reserve, providing a rare opportunity to study effects of climate change on a 

system with minimal confounding human impacts. 

Cape Race brook trout are genetically differentiated despite their close proximity and exposure 

to similar climate conditions (Fraser et al. 2014). In addition, populations vary in abundance and 

life history (Hutchings 1993, Fraser et al. 2019), while streams differ in size, habitat variability, 

and thermal regimes driven by the prevalence of groundwater seeps (Wood et al. 2014, see 

Chapter 3; Table 2.1). Although most populations are physically isolated, previous habitat and 

genetic surveys found evidence of connectivity within the O’Beck (LO and UO) and Coquita 

(LC, MC, UC) drainages (Table 2.1). Specifically, LO and UO are separated by a short (~50m) 

boulder field that occasionally floods, while MC receives individuals from both UC and LC 

(Bernos et al. 2016). MC does not contribute individuals to UC due to an impassable waterfall at 

its upstream end, while acidic conditions at its downstream end likely reduce brook trout survival 

(Yates et al. 2019) and limit exchange with LC except during times of flooding. Connectivity can 

influence demographic processes and was therefore considered when interpreting results, but 

models were also re-run without connected populations to ensure that patterns were robust (see 

Results). 

2.2.2 - Demographic data: 

Brook trout have been monitored almost every year from 2010 to 2022 (no data were collected in 

2020 due to COVID-19 travel restrictions), and I focused on the best-studied populations (Table 

2.1). Mark-recapture data were obtained through backpack electrofishing surveys that sampled 

the entire length of each stream. First, a marking event was conducted where all captured brook 

trout were marked with adipose fin clips and released. Several days later, this was followed by 

one or more recapture events that estimated the proportion of marked individuals in a random 

sample of the population (Krebs 2014). I aimed to observe population-level recapture rates (i.e., 

proportion of marked individuals during recapture events) of at least 25%, and achieved this in 

73% of my observations (mean=37%, range=4-80%). Individual fork lengths were measured and 

weight was recorded for a subsample of fish during marking events, but these data were 

unavailable for some populations and years (see Appendix 2; Section A2.1). The Petersen 

method was most commonly used to estimate population abundance (i.e., census population size) 

from a single recapture event (93% of observations), but the Schnabel method was employed 

when multiple recapture events were conducted (Wood et al. 2014).  

Abundance estimates included all fish age-1 or older, and a total of 122 annual observations were 

available from 11 populations. However, my objectives required data for individual age-classes 

that experienced similar environmental (e.g., temperature) and ecological conditions (e.g., 

conspecific density). Age-1 brook trout can be confidently distinguished from older fish based on 

size cutoffs (Figure A2.2), so length distributions or age-specific count data were used to 

separate age-1 from age-2+ individuals for each population each year, and then generate 

estimates of age-specific abundance and growth rates (details in Appendix 2: Section A2.1). 

Estimated age-1 abundance (recruitment hereafter; n=122 observations), age-2+ abundance 

(adult abundance hereafter; n=122 observations), and age-1 individual somatic growth rates 
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(juvenile growth hereafter; n=105 observations) from 11 populations were the focus of statistical 

analysis (Figures A2.3 and A2.4). Juvenile growth was calculated as the median fork length of 

age-1 individuals divided by their estimated age in years (units of mm·year-1). Abundance could 

not be confidently estimated in age-0 brook trout because they were small (mean fork length=42 

mm) and thus poorly selected by electrofishing (Dolan and Miranda 2003), especially during 

early summer sampling dates. 

2.2.3 - Climate and stream temperature data: 

I used the DayMet database to obtain daily climate data for the study area from 1980-2021 

(Thornton et al. 2020; available: https://daymet.ornl.gov/single-pixel/). Monthly average air 

temperature and precipitation from DayMet reasonably matched data from a nearby weather 

station with less consistent records (R2=0.96 and 0.62 for temperature and precipitation, 

respectively; ECCC 2021). I used different time-periods to link climate data to brook trout 

recruitment or growth to reflect distinct hypotheses. Recruitment was related to mean air 

temperature and precipitation during reproduction (October 8-31), incubation (November-

March), emergence (May), first summer (July-August), and first winter (December-February), 

which are of interest in salmonid research (Gallagher et al. 2022). In contrast, growth was related 

to mean temperature and precipitation during the first growing season (April-November) and 

non-growing season (December-March) after emergence, since these are critical periods for 

brook trout to gain (Xu et al. 2010) or lose body mass (Hutchings et al. 1999). All climate 

variables were checked for collinearity, which was limited (variance inflation factors <5). 

Cape Race streams also exhibit substantial variation in thermal regimes, with daily summer 

stream temperatures differing by up to 13°C based on the relative influence of groundwater 

(Table 2.1). To account for this in demographic analyses, I used non-linear regression to relate 

DayMet air temperature to daily average stream temperature data collected by automated loggers 

placed on the stream bottom during four periods from 2012-2021 (Mohseni and Stefan 1999; see 

Chapter 3 for details). Model fits were satisfactory for all populations (monthly R2 range=0.88-

0.98; monthly RMSE range=0.69-1.15°C), and air temperatures were thus used to reconstruct 

stream temperatures experienced by each population since 2005, a plausible birth year for the 

oldest individuals sampled in 2010 (Bernos et al. 2016). Reconstructed stream temperatures were 

used to calculate annual averages during the same time-periods outlined previously for climate 

variables. In addition, cumulative degree-days were calculated from stream temperatures during 

November-August every year within each population (spanning incubation, emergence, and first 

summer), which generated additional metrics for analyses of juvenile growth. One population, 

MC, was excluded from all stream temperature reconstructrions because data were unavailable 

from 2018-2021. 

In all analyses of recruitment and juvenile growth (see below), climate data or stream 

temperatures were lagged to correspond to the time when each year-class experienced a 

particular time-period (e.g., age-1 fish sampled in 2010 were born in October 2008, incubated 

from November 2008-March 2009, emerged in May 2009, etc.). 

2.2.4 - Population asynchrony: 

All analyses were run using R version 4.2.1 (R Core Team 2022), and visualized with ggplot2 

(Wickham 2016). First, patterns in recruitment and juvenile growth of Cape Race brook trout 

were summarized using a simple correlation analysis. Pairwise correlations between all 
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populations were plotted for both metrics, along with correlations between each population time-

series and sampling year to indicate temporal trends. The distribution and average values of all 

pairwise correlations (n=66) and temporal trends (n=11) were then summarized to assess 

whether correlations and trends were centered around zero or skewed in a particular direction. 

Next, trends and synchrony in recruitment and juvenile growth time-series were characterized 

using dynamic factor analysis (DFA) within the MARSS package (Holmes et al. 2012). DFA is a 

multivariate technique designed to identify common trends across short, non-stationary time-

series (Zuur et al. 2003). Common trends were modeled with a non-linear autoregressive random 

walk, while loadings were estimated that describe the relationship between population-specific 

time-series and the common trend (i.e., positive loadings imply that populations track the 

common trend, while those with negative values track the inverse of the common trend; Holmes 

et al. 2012). In both recruitment and growth analyses, population time-series and climate 

variables were standardized to Z-scores (mean=0, SD=1), then modeled with a single common 

trend and an identity variance-covariance matrix. This approach minimized the number of 

estimated parameters and ensured that covariance among time-series was reflected in population 

loadings (Holmes et al. 2012). Alternative models were built with all possible combinations of 

one or two climate covariates to explain residual variation in recruitment (55 models including 

air temperature or precipitation during reproduction, incubation, emergence, summer, and 

winter) or juvenile growth (10 models including air temperature or precipitation during the 

growing and non-growing seasons). Models were compared using AICc, and the model with the 

lowest AICc by two or more units was selected as the best-fit (Johnson and Omland 2004). To 

ensure that temperature and precipitation extremes did not have stronger effects on recruitment 

or growth (Maitland and Latzka 2022), I repeated my DFA model selection procedure with 

maximum values instead of means. 

2.2.5 - Demographic relationships and temperature responses: 

Population variation in demographic relationships and responses to temperature were assessed 

using generalized linear mixed models (GLMMs) within the lme4 package (Bates et al. 2015). 

For simplicity and comparability, all selected GLMMs were fitted with restricted maximum 

likelihood, coded with a single fixed effect, and used population as a random effect on both 

intercepts and slopes. A normal distribution with no link function was used in all cases. Models 

were subjected to variance partitioning using the Mu-MIn package (Barton 2009), which 

estimated the variance explained (pseudo-R2) by fixed and random effects. These components 

were interpreted as proxies for the strength of population variation (random component) relative 

to any shared underlying relationship (fixed component). While random effects were always 

coded in a consistent manner, I reported instances when GLMMs estimated no variation in 

intercepts or slopes (i.e., singular fit; see Bolker et al. 2009). Due to my short time-series and 

interest in population differences, data were visualized by plotting raw data with population-

specific regression lines, as well as plotting fixed and random effects from GLMMs. Finally, to 

assess potential non-linearity in GLMMs, I used AICc to compare fits from linear models to non-

linear models with a quadratic term added as an additional fixed effect. 

Three demographic relationships were used to describe key linkages between age-specific 

abundance and growth rates in GLMMs, while data were standardized to Z-scores to alleviate 

population differences in most cases. The first relationship was between standardized adult 

abundance and standardized recruitment the previous year (recruit-adult relationship hereafter), 
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which was expected to be positive if recruitment drives subsequent population dynamics (Kanno 

et al. 2015). Adult abundance includes multiple age-classes which may weaken this relationship, 

but mortality rates are high in Cape Race brook trout (54-69% year-1 based on Bernos and Fraser 

2016; 56-78% year-1 in Hutchings 1993), so recently recruited age-2 adults should dominate 

most years. The second relationship was between the log-transformed recruits per spawner ratio 

and standardized adult abundance when recruits were born (stock-recruitment relationship 

hereafter), a linearized Ricker model expected to have negative slopes if density-dependent 

compensation reduced recruitment at high adult abundance (Hilborn and Walters 2013). The 

third relationship was between standardized juvenile growth and standardized recruitment within 

year-classes (density-dependent growth relationship hereafter), which was expected to be 

negative if intraspecific competition reduced growth at high densities (Matte et al. 2020a). 

Similarly, population-specific stream temperature data (see Chapter 3) were related to 

recruitment and juvenile growth using GLMMs with population random effects applied to 

intercepts and slopes. However, to determine which temperature metric best explained each 

demographic response, I fit multiple models with different fixed effects via maximum likelihood 

and selected the best model using AICc. For recruitment, standardized values (Z-scores) were 

related to average stream temperature during reproduction, emergence, incubation, summer, or 

winter (temperature-recruitment relationship hereafter). For juvenile growth, raw values (non-

standardized) were related to average stream temperature during the growing season and 

accumulated degree days from November-April or November-August (temperature-growth 

relationship hereafter). Raw growth data were preferred to test whether stream temperature 

explained absolute differences in somatic growth among populations (Table 2.1). The best-fit 

GLMMs for recruitment and growth were re-fitted with restricted maximum likelihood and 

subjected to variance partitioning. 

2.2.6 - Drivers and consequences of population variation: 

To assess the five hypothesized drivers of demographic variation among Cape Race populations 

(see Introduction), I conducted a correlation analysis using population-specific estimates from 

DFA (loadings) and GLMMs (random effect slopes). Two-sided Pearson correlations were used 

to test relationships between model outputs and groundwater input, recruitment, juvenile growth 

rate, and reproductive success (Table 2.1). Similarly, the absolute value of all pairwise 

differences in population-specific DFA and GLMM estimates were compared to pairwise 

phylogenetic distances estimated from neutral single-nucleotide polymorphisms (H.-B. Jeon, 

personal communication), with significance assessed using Mantel tests (10,000 permutations, 

within the vegan package; Oksanen et al. 2022). Drivers were not strongly correlated with one 

another (linear regression; R2 range=0.01-0.16), suggesting negligible collinearity. Note that 

slopes and intercepts from GLMMs can be highly correlated (Bolker et al. 2009), so strong 

correlations with random effect slopes may also apply to intercepts. It should be emphasized that 

this analysis was exploratory in nature, and that power was low in all cases. 

Finally, coefficients of variation were calculated to test whether population asynchrony resulted 

in portfolio effects that increased the temporal stability of brook trout abundance across Cape 

Race. The coefficient of variation was calculated for abundance (all individuals age-1 and older) 

as the standard deviation divided by the mean in seven populations with twelve years of data 

(BC, DY, LC, STBC, UC, UO, WC). For comparison, abundance in all seven populations was 

summed to obtain a total each year, and the coefficient of variation was calculated for the total 
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abundance over all twelve sampling years. If the coefficient of variation for total abundance was 

less than the average across populations, this implies that annual fluctuations in population 

abundance tend to offset one another and stabilize the aggregate pattern (Schindler et al. 2010). 

Abundance across multiple age-classes was preferred in this analysis because it captures 

variation in demographic relationships affected by older individuals. However, coefficients of 

variation were also calculated the same way for recruitment alone to determine its contribution to 

portfolio effects. Similarly, total abundance within a given year could not be calculated if any 

population was missing data, which excluded populations with more gaps in time-series. 

Nonetheless, coefficients of variation were calculated across different subsets of years to include 

LO or HM and ensure results were robust. 

2.3 - Results:  

2.3.1 - Population asynchrony: 

Pairwise correlations in recruitment were highly variable in strength and direction (Figure 2.1a), 

with a symmetrical distribution averaging near zero (mean r=-0.002; Figure 2.1b). Similarly, 

positive and negative temporal trends in recruitment were evident across populations (Figure 

2.1a; bottom row), and the average correlation with year was close to zero (mean r=0.08; Figure 

2.1c). In contrast, pairwise correlations in juvenile growth were variable but skewed towards 

positive values (Figure 2.1d), with an average correlation of 0.21 (Figure 2.1e). Temporal trends 

in juvenile growth were more variable among populations, with a symmetrical distribution and 

an average correlation near zero (mean r=-0.04; Figure 2.1f). 

Climate variables were uninformative in DFA models for recruitment and juvenile growth, as 

both best-fit models had no covariates and significantly outperformed all others (ΔAICc<12.6; 

see Table A2.1). For recruitment, the common trend increased over time and population loadings 

varied substantially in both magnitude and direction (Figure 2a,b). This implies asynchrony in 

recruitment, with some populations displaying strong increasing trends (LO, MC, UC, UO) while 

others are declining (DY and HM) or stable (BC, LC, STBC, WN). For juvenile growth, the 

common trend was non-linear with an initial increase, followed by a decline, then another 

increase in recent years (Figure 2.2c). Most population-specific loadings were strongly positive 

(BC, HM, LO, MC, UO, WN) and only two populations exhibited weak negative loadings (DY 

and WC), suggesting broad synchrony in individual growth rates among populations (Figure 

2.2d).  

DFA results were largely similar when excluding populations displaying connectivity or long 

gaps in time-series (details in Appendix 2: Section A2.2). Model selection results also did not 

change appreciably when using maximum temperature and precipitation as covariates instead of 

average values (ΔAICc<14.3; Section A2.3). 

2.3.2 - Demographic relationships and temperature responses: 

All three demographic relationships showed strong population variation in intercepts and slopes 

according to GLMMs (Figure 2.3, Table 2.2). The recruit-adult relationship displayed a strong 

positive fixed effect (slope=0.24; SE=0.12), implying that recruitment drives adult abundance 

the following year to some extent (Figure 2.3a,d). However, some populations exhibited stronger 

(DY, HM, STBC, UC, WN) or weaker (LC, LO, UO) slopes and variance partitioning suggested 
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that population variation in slopes (but not intercepts) explained the same amount of variation 

(6.1%) as the fixed effect (6.1%; Table 2.2). 

The stock-recruitment relationship showed a strong negative fixed effect (slope=-0.25; SE=0.07) 

consistent with density-dependent reductions in recruitment when adult abundance is high, but 

the shape of this relationship varied among populations (Figure 2.3b,e). Some populations 

exhibited lower intercepts and steeper negative slopes (DY and HM) while others had higher 

intercepts and flatter slopes (BC, LC, STBC), and variance partitioning suggested that population 

random effects explained more variation (31.5%) than the fixed effect (9.2%; Table 2.2). 

Similarly, the density-dependent growth relationship showed a negative fixed effect suggesting 

that juvenile growth is reduced when recruitment is high, but this effect was relatively weak 

(slope=-0.14; SE=0.12) and populations differed in their intercepts and slopes (Figure 2.3c,f). 

Some populations displayed negligible (BC, LO, UO) or even positive (MC) relationships, while 

variance partitioning showed that population variation in intercepts and slopes was modest (4%) 

but exceeded the fixed effect (1.9%). 

In contrast to demographic relationships, GLMMs suggested that population variation was more 

limited when relating recruitment and growth to selected stream temperature metrics (Figure 2.4, 

Table 2.2). For the temperature-recruitment relationship, emergence temperature was selected as 

the best fixed effect (ΔAICc>2.5; Table A2.2), which had a strong negative impact on 

recruitment (slope=-0.22; SE=0.11). Although raw data suggested that some populations 

exhibited stronger negative relationships (LC, STBC, WC; Figure 2.4a), there was no evidence 

of population variation in intercepts and slopes in the GLMM (Figure 2.4c), so the variance 

explained by random effects (0%) was less than the fixed effect (3.2%; Table 2.2). 

The temperature-growth relationship was best characterized by cumulative degree-days from 

November-August, which substantially outperformed other fixed effects (ΔAICc>10.1; Table 

A2.2). Degree-days exhibited a strong and consistent positive effect on juvenile growth across 

populations (slope=0.02; SE=0.004; Figure 2.4b,d). Although there was evidence of population 

variation in intercepts and (to a lesser degree) slopes, random effects explained less variance 

(22.7%) than the fixed effect (26%).  

Results from all five GLMM models were robust to the inclusion of connected populations 

(Appendix 2: Section A2.2). Similarly, non-linear quadratic terms were generally weak, and their 

inclusion was not supported by model selection in any GLMMs (Section A2.4). 

2.3.3 - Drivers and consequences of population variation: 

Exploratory correlation analyses showed that predicted drivers of population variation were not 

strongly related to population-specific estimates from DFA and GLMMs in 28 out of 30 cases 

(93%), but there were two significant associations (Table 2.3). First, mean age-1 growth rates 

were negatively correlated to slopes and positively correlated to intercepts from the temperature-

growth relationship (p<0.05), but this result was likely an artifact (see Discussion). Second, the 

groundwater index was negatively correlated with intercepts and slopes from the stock-

recruitment relationship (p<0.05), suggesting that populations in groundwater-dominated streams 

displayed higher density-independent productivity (based on intercepts) and weaker density-

dependent compensation (based on slopes). 
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Finally, when abundance data were aggregated across the seven best-studied populations (Figure 

2.5a), the temporal coefficient of variation (CV=15%) was 2.2 times lower than the average 

value across individual populations (CV=32%; Figure 2.5b), consistent with a portfolio effect 

(Schindler et al. 2010). Further analysis suggested this was mostly, but not entirely, driven by 

variation in recruitment patterns, as the aggregate CV for recruitment alone was 1.9 times lower 

than the population average. Results held when different subsets of years were evaluated to 

include LO (2.3-fold difference in CV) and HM (2.4-fold difference), indicating that portfolio 

effects were robust to the inclusion of additional populations. 

2.4 - Discussion: 

Brook trout populations in Cape Race exhibited significant demographic variation at a 

remarkably small spatial scale (~25 km2), with prominent differences between recruitment and 

juvenile growth patterns. Recruitment was highly asynchronous and its relationships with other 

demographic processes were population-specific, which likely combined to diversify population 

dynamics throughout the study period. Effects of local climate variation on recruitment were 

weak, showing little evidence of Moran effects that theoretically increase synchrony. In contrast, 

juvenile growth rates were largely synchronized across Cape Race and strongly influenced by a 

positive effect of stream temperature that was shared among populations, although variation 

remained evident in relationships between growth, temperature and density-dependence. Overall, 

demographic variation stabilized the total abundance of brook trout throughout the study region, 

but drivers of population differences remained mostly elusive despite decades of past research. 

Regardless of cause, the microgeographic variation highlighted in this study generated 

asynchrony among naturally fragmented populations and likely has meaningful impacts on 

responses to contemporary and future environmental change. For brook trout and other 

widespread species occupying fragmented habitats, such fine-scale diversity could potentially 

buffer against regional extirpation and climate-induced range shifts in a warming world. 

2.4.1 - Synchrony and asynchrony at a microgeographic scale: 

As expected, pairwise correlations and dynamic factor analysis both suggested that asynchrony 

dominated recruitment patterns in Cape Race. Temperature experienced in May, during brook 

trout emergence, was the most informative climate covariate identified in this study, but its effect 

on recruitment was negligible (3.2% variance explained; Figure 2.4c). While some connected 

populations within drainages exhibited similar trends in recruitment (e.g., MC and UC, LO and 

UO; Figure 2.2b), asynchrony prevailed nonetheless, similar to observations from recent research 

on salmonids (Donadi et al. 2023) and other organisms (Moore and Schindler 2022, Rowland et 

al. 2022). However, these results differ from previous studies of brook trout elsewhere in North 

America (Zorn and Nuhfer 2007, Warren et al. 2009, Kanno et al. 2016, Sweka and Wagner 

2021, Maitland and Latzka 2022), and other stream-dwelling salmonids in Europe (Cattanéo et 

al. 2003, Alonso et al. 2011, Bret et al. 2016), which generally report synchronized population 

dynamics at larger scales than the current study. This synchrony is often attributed to Moran 

effects, where one or more environmental variables are spatially autocorrelated and consistently 

influence recruitment across the study area (Moran 1953). The asynchrony observed in Cape 

Race brook trout recruitment could thus be considered unusual, although the reason for this 

disparity is unclear. It is possible that the study area is less susceptible to the synchronizing 

effects of local climate due to its northerly position in the species range, cool microclimate, and 

unusual lack of seasonality in precipitation (Beck et al. 2018). Alternatively, it may be that 
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natural ecological and habitat variation has been preserved in the pristine streams of Cape Race , 

while this diversity is often homogenized or lost in more human-impacted systems (Stranko et al. 

2008, Carlson and Satterthwaite 2011; see Section 2.4.4 below). 

Contrary to predictions, juvenile growth rates tended to be spatially correlated and were 

positively related to degree-days accumulated between November and August, indicating a 

synchronized response to temperature within and among populations. Although intercepts and 

slopes varied, and populations in groundwater-dominated streams (LC and STBC) accumulated 

fewer degree-days (Figure 2.4b,d), variance partitioning suggested that the temperature-growth 

relationship was mostly shared across Cape Race. This pattern was also supported indirectly by 

the common trend estimated via dynamic factor analysis (Figure 2.2c), which was positively 

correlated with mean air temperature during the growing season (r=0.55; p-value=0.053). In 

contrast, studies of more southerly brook trout populations found that warming negatively 

impacted individual growth rates during the summer and fall (Robinson et al. 2010, Xu et al. 

2010). However, a recent meta-analysis suggested that, on average, warming tends to increase 

salmonid growth, especially in cold environments where suboptimal temperatures limit growth 

(Gallagher et al. 2022). Therefore, while water temperatures can exceed brook trout thermal 

optima in some streams during the summer (Smith and Ridgway 2019, see Chapter 3), the fact 

that warmer growing seasons increase juvenile growth across Cape Race is unsurprising. 

Whether or not this pattern will persist under continued warming is uncertain, but should 

motivate further modeling efforts and comparative studies across the range of brook trout and 

other widespread species. Additionally, while short time-series limited my ability detect the 

effects of temperature extremes on juvenile growth, the importance of extreme heat may become 

evident in the future as Cape Race warms and more data are collected (Letcher et al. 2023, 

Maitland and Latzka 2022). 

Demographic relationships in Cape Race brook trout showed some consistent patterns, but also 

exhibited considerable population variation, underlining the importance of both shared responses 

(i.e., synchrony) and population-specific nuance (i.e., asynchrony). The recruit-adult relationship 

showed that higher recruitment tended to increase adult abundance the following year, 

supporting prior assertions that recruitment is a key driver of salmonid population dynamics 

(Warren et al. 2009, Kanno et al. 2016). Similarly, stock-recruitment relationships were 

consistently negative, implying that per-capita recruitment declined at high adult abundance due 

to density-dependent compensation, as observed in some brook trout populations (Sweka and 

Wagner 2021) but not others (Grossman et al. 2010, Huntsman and Petty 2014). Additionally, 

the density-dependent growth relationship was negative, in accordance with general patterns 

across salmonids highlighted by a recent meta-analysis (Matte et al. 2020a). However, while 

patterns in fixed effects were in line with past research, variance explained by population random 

effects equaled or exceeded fixed effects in all three relationships, suggesting that population 

variation is an important contributor to fine-scale asynchrony in brook trout. Indeed, differences 

in demographic relationships should cause population-specific recruitment patterns to propagate 

through older age classes in diverse ways, generating a complex mosaic of population dynamics 

across the landscape (Rowland et al. 2022). Overall, variation in demographic relationships 

among fragmented populations may be an underappreciated source of intraspecific diversity in 

brook trout and other wide-ranging species, and variance partitioning offers one practical way to 

quantify this contribution in future studies. 
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2.4.2 - Drivers of population variation: 

In most cases, population-specific model outputs were unrelated to population variation in 

groundwater influence, recruitment, juvenile growth, reproductive success, or phylogenetic 

distance (Table 2.3). This could suggest that demographic asynchrony in Cape Race is mostly 

driven by internal population-specific processes (Munch et al. 2022), or influenced by a more 

complex set of drivers than those analyzed in this study (Hilborn et al. 2003). However, there 

were two exceptions to this pattern. First, slopes and (especially) intercepts from the 

temperature-growth relationship were correlated with average juvenile growth rates, but this 

result was likely an artifact from using raw growth data. Specifically, Cape Race populations 

have evolved distinct growth and life history traits reflected in common garden experiments 

(Fraser et al. 2019) and in the wild (Zastavniouk et al. 2017), such that fast-growing populations 

would be expected to have higher intercept values in GLMMs (Figure 2.4b). Secondly, a 

significant correlation was detected between stock-recruitment relationships and an index of 

stream groundwater inputs, with groundwater-dominated streams (e.g., LC and STBC) exhibiting 

higher productivity and relaxed density-dependent compensation (Figure 2.3b,e). Similar 

patterns have been suggested in brook trout elsewhere (Latta 1965, Hartman et al. 2007) and 

could help explain recent findings highlighting variation in productivity and density-dependent 

regulation among Cape Race populations (Matte et al. 2020b). Indeed, the relative importance of 

environmental conditions and density-dependence in shaping salmonid stock-recruitment 

relationships is still debated (Lobón‐Cerviá 2005, 2009), but my results suggest that the strength 

of each driver is population-specific and influenced by local habitat variation. 

More broadly, groundwater can generate substantial differences in thermal regimes among 

neighboring streams (Snyder et al. 2015), and this was evident in Cape Race (see Chapter 3). For 

example, the disparate incubation temperatures experienced by Cape Race populations (Figure 

2.6a) likely influenced hatch and emergence timing, with warmer winter temperatures likely 

accelerating development in groundwater-dominated streams. Thermal regimes during the 

growing season also differed (Figure 2.6b), as groundwater-dominated streams consistently 

exhibited colder temperatures that may limit brook trout growth, but also warmed less rapidly 

since 2005 (e.g., increase of 0.55°C in HM, but only 0.15°C in STBC; Figure 2.6b) and did not 

exceed thermal optima during summer months (see Chapter 3). Together, these patterns suggest 

that natural variation in groundwater inputs should contribute to asynchrony in phenology, 

growth, and survival in many stream-dwelling organisms, highlighting the need for fisheries and 

watershed managers to engage with local groundwater withdrawal policies (Lapides et al. 2022). 

2.4.3 - Portfolio effects: 

Regional brook trout abundance across Cape Race was more than twice as stable as the average 

among individual populations, suggesting that asynchrony in recruitment and, to a lesser extent, 

variation in demographic relationships contributed to a portfolio effect. Similar findings have 

been observed in anadromous salmonids occupying larger watersheds (Schindler et al. 2010, 

Moore et al. 2014, Connors et al. 2022), but there has been little research documenting this 

phenomenon in other widespread species, including many stream-dwelling salmonids. Indeed, 

the naturally fragmented habitats occupied by brook trout could be instrumental in generating 

microgeographic variation (Wood et al. 2014) and stabilizing dynamics over larger scales, 

thereby buffering the species against disturbance (Schindler et al. 2015). While brook trout 

population dynamics are likely more synchronized in southern range margins with warmer 
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climates, recent studies in these regions nonetheless show evidence of demographic variation and 

subtle differences within and among streams (Kanno et al. 2016, Andrew et al. 2022), which can 

covary with watershed geology (Hartman et al. 2007) and elevation (Kanno et al. 2015). Thus, 

fine-scale portfolio effects could potentially alleviate regional climate-induced extinction risk 

throughout much of the species range. This is perhaps even more likely when considering fine-

scale thermal heterogeneity driven by groundwater (Figure 2.6), which is often ignored in spatial 

assessments of brook trout habitat loss (Clark et al. 2001, Flebbe et al. 2006; but see Deitchman 

et al. 2012), yielding overly pessimistic predictions (Snyder et al. 2015). Range-wide research 

approaches like those for other widespread vertebrates (e.g., wood frogs; Amburgey et al. 2018) 

would provide valuable insight into the extent, scale, and drivers of portfolio effects in species 

such as brook trout. 

2.4.4 - Management implications: 

Our study highlights the challenges of managing widespread species with innumerable 

populations. A comprehensive understanding of every population is unattainable, but applying 

blanket conservation measures across diverse populations could inadvertently homogenize 

population dynamics (Schindler and Hilborn 2015). In a rapidly changing world, there is 

considerable interest in developing management strategies that promote stability now and retain 

options in the future (Moore and Schindler 2022), and Cape Race illustrates the importance of 

human impacts, landscape context, and scale to achieving these goals. 

Cape Race is minimally impacted by human activities, which has preserved natural differences in 

the quality, quantity, and configuration of habitats that arose over thousands of years (Wood et 

al. 2014, Zastavniouk et al. 2017), contributing to asynchrony in brook trout abundance. 

Therefore, protecting local habitat variation may be sufficient to maintain stable abundance 

across the ~25 streams in Cape Race. These streams are also small (stream length: 0.2-8 km), 

close together, and relatively easy to sample, facilitating monitoring that can inform population-

specific management strategies when needed (e.g., populations at risk of extirpation). However, 

habitat protection may be ineffective in degraded landscapes (Stranko et al. 2008), so restoration 

and other active interventions may be necessary to generate asynchrony among populations in 

highly impacted systems. Similarly, population-specific approaches are impractical across the 

entire range of many species or in systems with hundreds or thousands of populations across vast 

areas, so it may be more prudent to monitor key subsets of population diversity and their 

relationships with habitat heterogeneity across large scales (e.g., Schindler et al. 2010, Connors 

et al. 2022). In Cape Race and elsewhere, continued long-term monitoring of populations will be 

crucial for tracking demographic variation across different contexts and future conditions, 

thereby informing adaptive management under climate change (Schindler and Hilborn 2015). 

2.4.5 - Limitations: 

While this study uncovered ecologically significant variation in brook trout demography at a 

remarkably small spatial scale, three main caveats limited my analysis. Firstly, monitoring in 

Cape Race only began in 2010, so the time-series used in this analysis were relatively short, 

increasing the likelihood of mischaracterized trends (Bahlai et al. 2021) and precluding tests for 

dynamic properties such as chaos (Munch et al. 2022). Similarly, only eleven Cape Race 

populations had sufficient data for this study, which limited scope of inference when assessing 

drivers of population variation. Future studies of brook trout could gain more robust insight into 

the prevalence, causes, and consequences of asynchrony by analyzing more populations with 
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longer time-series across a larger portion of their native range, as done in other salmonids (e.g., 

Donadi et al. 2023). Secondly, results of this study were based on observations of brook trout 

age-1 and older, but ignored age-0 (young-of-the-year) individuals that were often too small to 

be comprehensively sampled by electrofishing (Dolan and Miranda 2003). Age-0 fish are likely 

most sensitive to density-dependent growth and survival in Cape Race (Matte et al. 2020b), but 

these processes may not be well-represented by demographic relationships in older age-classes 

(e.g., Figure 2.3c,f). Finally, overemphasizing population variation could potentially disregard 

factors that remain important to local and regional species persistence. For example, one 

population in this study (HM) is small, highly inbred (Bernos et al. 2016), and exposed to the 

highest water temperatures in Cape Race (>20°C; see Chapter 3), which may explain sharp 

declines in recent recruitment. Similarly, the populations most influenced by connectivity (LO, 

MC) accounted for most cases when population-specific demographic relationships opposed 

expectations (Figure 2.3a-c), perhaps suggesting a stronger impact of connectivity than implied 

in this study. 

2.5 - Conclusion: 

Microgeographic variation in recruitment, juvenile growth, and responses to climate in Cape 

Race brook trout show that asynchrony can prevail at small scales and dampen fluctuations in 

regional species abundance. Although the prevalence and consequences of microgeographic 

variation may differ across the species range and some populations will inevitably face 

extirpation (Hudy et al. 2008, Bassar et al. 2016), such heterogeneity will likely increase the 

resilience of brook trout to future climate change. This resilience should stabilize, or at least 

complicate, climate-induced range shifts in brook trout, and could also play an important role in 

future range dynamics of other widespread species with naturally fragmented habitats 

(Waterhouse et al. 2017, Pearson et al. 2018, Ony et al. 2020, Rowland et al. 2022). My results 

also highlight the importance of landscape context and ecosystem state when designing 

monitoring programs and adaptive management strategies, which should be relevant for many 

species (Moore and Schindler 2022). 

While measuring fine-scale demographic variation is difficult and not equally relevant for all 

species, my study suggests that ignoring it in spatial assessments of extinction risk may 

sometimes generate predictions that are too pessimistic, potentially warping management 

priorities and ignoring bright spots that can benefit conservation efforts (Cvitanovic and Hobday 

2018). Similar concerns have been raised for stream thermal regimes, which can vary 

substantially but are often oversimplified when evaluating climate change vulnerability (Snyder 

et al. 2015). For brook trout and other widespread species with diverse populations, further 

research on the influence of microgeographic variation in demography and thermal regimes 

throughout the native range may yet uncover more potential sources of resilience, but uncertainty 

will always remain. Therefore, continued efforts to monitor and maintain diversity of all kinds 

may be the most prudent way to retain conservation options and ecological flexibility in a 

changing world. 
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Tables & Figures: 

Table 2.1: List of Cape Race brook trout population codes, full names, and proposed drivers of 

population variation. The groundwater index (GWI; stream-air temperature regression slope 

from 2018-2020, with lower values suggesting more groundwater input), mean recruitment (R; 

age-1 abundance), mean juvenile growth rate (G; age-1 individual growth rate; mm·year-1), mean 

reproductive success (S; ratio between effective number of breeders and adult census population 

size from Bernos et al. 2016) and phylogenetic distance (PD; mean pairwise distance across 

study populations provided by H.-B. Jeon, personal communication) are shown for each 

population. Connectivity among populations inferred from past habitat surveys and genetic 

studies is shown for reference, with “None” denoting isolated populations. In Middle Coquita 

(MC; denoted with an asterisk *), the groundwater index was estimated using stream temperature 

data from 2013-2016 and reproductive success data were unavailable. 

Population Code Population Name GWI R G S PD Connectivity 

BC Bob's Cove 0.525 2,181 52.3 0.076 0.579 None 

DY Ditchy 0.702 33 49.4 0.086 0.602 None 

HM Hermitage 0.870 15 55.4 0.076 0.508 None 

LC Lower Coquita 0.349 243 45.8 0.092 0.599 MC 

LO Lower O'Beck 0.824 267 45.2 0.094 0.595 UO 

MC Middle Coquita* 0.646 56 54.3  0.566 LC, UC 

STBC Still There By Chance 0.294 479 46.3 0.031 0.533 None 

UC Upper Coquita 0.677 43 52.7 0.308 0.600 MC 

UO Upper O'Beck 0.796 1,159 51.1 0.024 0.581 LO 

WC Whale Cove 0.612 333 52.8 0.040 0.592 None 

WN Watern 0.524 2,724 52.5 0.023 0.700 None 
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Table 2.2: Results from generalized linear mixed models (GLMM) estimating demographic 

relationships (recruit-adult, stock-recruitment, density-dependent growth) and effects of selected 

stream temperature metrics on demography (temperature-recruitment, temperature-growth) 

across Cape Race brook trout populations. The number of annual observations (N) and the 

number of populations (P) included in each analysis are shown for reference. The fixed effect 

intercept and slope estimates are displayed with standard errors in parentheses. The percentage of 

variance (pseudo-R2) explained by the fixed effect and population random effects is shown for 

each model. The selected stream temperature metric for the temperature-recruitment relationship 

was emergence temperature during May. For the temperature-growth relationship, it was 

cumulative degree-days from November-August (see Table A2.2). 

      Fixed Effect   Variance Partitioning 

GLMM Relationship N P Intercept Slope   % Fixed % Population 

Recruit-Adult 95 11 -0.08 (0.09) 0.24 (0.12)   6.1 6.1 

Stock-Recruitment 84 11 -0.35 (0.14) -0.25 (0.07)   9.2 31.5 

Density-Dependent Growth 104 11 -0.00 (0.09) -0.14 (0.12)   1.9 4.0 

Temperature-Recruitment 112 10 1.43 (0.75) -0.22 (0.11)   3.2 0 

Temperature-Growth 96 10 13.61 (8.33) 0.02 (0.004)   26.0 22.7 
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Table 2.3: Correlations between model estimates and proposed drivers of brook trout population 

variation across Cape Race. Correlations were not corrected for multiple comparisons, and 

significant relationships (p<0.05) are marked in bold italic text. Pearson correlations are shown 

for the groundwater index (GWI), mean recruitment (R), mean juvenile growth rate (G), and 

mean reproductive success (S), while Mantel correlations are shown for pairwise phylogenetic 

distance (PD). Correlations could not be calculated for the temperature-recruitment relationship 

because the GLMM exhibited no variation in population random effects. 

    Pearson r   Mantel r 

Model Estimate GWI R G S   PD 

DFA Recruitment loading 0.11 -0.11 -0.13 0.23   -0.01 

DFA Growth loading 0.30 0.29 0.13 -0.12   -0.06 

GLMM Recruit-adult slope -0.11 -0.12 0.35 0.01   -0.13 

GLMM Stock-recruitment slope -0.69 0.17 -0.57 0.11   -0.12 

GLMM Density-dependent growth slope 0.50 0.04 0.25 0.30   -0.06 

GLMM Temperature-recruitment slope - - - -   - 

GLMM Temperature-growth slope 0.16 -0.33 -0.74 0.05   0.00 
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Figure 2.1: Patterns and trends in recruitment (top panels) and juvenile growth (bottom panels) of age-1 Cape Race brook trout. 

Correlation matrices (a, d) show pairwise correlations between population time-series (top rows) and correlations with sampling year 

within each population (bottom row). Kernel density plots are shown for all pairwise correlations (b, e) and temporal trends (c, f), with 

the black dashed lines denoting the average correlation in each case. 
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Figure 2.2: Results of dynamic factor analysis of Cape Race brook trout recruitment (top panels) and juvenile growth (bottom panels) 

time-series. Estimated common trends (thick black line) and 95% confidence intervals (grey bands) are shown for models with no 

covariates and an identity variance-covariance matrix (a, c). Loadings describing the relationship between individual populations and 

the common trend (see Table 2.1 for population codes) are also shown (b, d), with dashed horizontal lines denoting strong positive or 

negative loadings (after Zuur et al. 2003). 
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Figure 2.3: Variation in three key demographic relationships among Cape Race brook trout populations. Raw data and regression 

lines are shown for each population (top panels; see Table 2.1 for population codes), as well as estimates of fixed effects (thick black 

line with grey 95% confidence band) and population random effects (thin black lines) from generalized linear mixed models (bottom 

panels; see Table 2.2). The recruit-adult relationship (a, d) plots standardized adult abundance (age-2+ census population size) against 

standardized recruitment (age-1 census population size) during the previous year. The stock-recruitment relationship (b, e) plots the 

log-transformed ratio of recruits per spawner against the standardized adult abundance when recruits were born. The density-

dependent growth relationship (c, f) plots standardized juvenile growth (age-1 individual growth rate) against standardized recruitment 

within each year-class.
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Figure 2.4: Effects of selected stream temperature metrics on Cape Race brook trout recruitment 

(left panels) and juvenile growth (right panels). Raw data and regression lines are shown for each 

population (top panels; see Table 2.1 for population codes), as well as estimates of fixed effects 

(thick black line with grey 95% confidence band) and population random effects (thin black 

lines) from generalized linear mixed models (bottom panels; see Table 2.2). The temperature-

recruitment relationship plots standardized recruitment against mean stream temperature during 

emergence in May (a, c), while the temperature-growth relationship plots non-standardized 

juvenile growth against degree days accumulated from November 1-August 31 within each year-

class (b, d). Note that the GLMM for the temperature-recruitment relationship (c) exhibited no 

variation in population random effects. 
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Figure 2.5: Portfolio effects across Cape Race brook trout populations. Stacked time-series of 

abundance (census population size of all individuals age-1 and older) are shown for the seven 

best-monitored populations (a), with a gap in 2020 due to the COVID-19 pandemic preventing 

travel to the study area. Temporal coefficients of variation in abundance (b) are shown for 

individual populations (dark grey bars), the average across individual populations (black dashed 

line), and for the total abundance summed across all populations (red bar). A lower coefficient of 

variation suggests greater stability in abundance throughout the study period. 
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Figure 2.6: Thermal regimes experienced by Cape Race brook trout populations since 2005. 

Stream temperatures were reconstructed from air temperature based on data from 2012-2021, 

then averaged during incubation (a; November-March) and the growing season (b; April-

November), fitted by population-specific regression lines with 95% confidence intervals. Note 

that two groundwater-dominated streams, LC (sky blue) and STBC (yellow green), experienced 

the warmest incubation temperatures and coldest growing season temperatures.
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IV. Chapter 3: Stream groundwater inputs generate fine-scale variation in brook trout 

phenology and growth across a warming landscape 

Abstract: 

Climate change is increasing global atmospheric temperatures, which can reduce abundance and 

cause range shifts in species that are sensitive to warming. However, fine-scale thermal 

heterogeneity can drive highly variable local responses to climate change, especially in 

freshwater environments that differ in groundwater inputs and geomorphology. I used 

temperature data collected during 2012-2021 from ten small, pristine streams in eastern Canada 

to characterize thermal variation at a small spatial scale (~25 km2). I then used relationships 

between daily air and stream temperatures to reconstruct stream temperature since 1980 and 

assessed how thermal variation influenced the phenology and growth of brook trout (Salvelinus 

fontinalis). Air-stream temperature relationships varied considerably among streams despite their 

close proximity, with predicted summer temperatures differing up to 9.5°C between warmer 

rainfall-dominated streams and cooler groundwater-dominated streams. Rainfall-dominated 

streams warmed more than twice as fast as groundwater-dominated streams across all seasons 

since 1980, with nearly 4-fold differences in rates of warming evident during summer months. 

Fine-scale thermal heterogeneity also shaped brook trout phenology, as juveniles in rainfall-

dominated streams were estimated to hatch and emerge much later (~70 and 40 days, 

respectively) and experience faster phenological shifts than in groundwater-dominated streams. 

Relationships between juvenile brook trout size and accumulated degree-days were positive, but 

slopes differed over 2-fold and did not vary systematically based on stream hydrology, 

suggesting more idiosyncratic impacts of warming on early growth. Collectively, my study 

illustrates how species responses to climate change in freshwater environments can be consistent 

in direction but vary substantially in magnitude due to the influence of groundwater. Future 

climate change will likely increase thermal stress experienced by brook trout populations in 

warmer rainfall-dominated streams, while potentially benefiting those in groundwater-dominated 

streams where current temperatures are often suboptimal. Observed differences in the rates and 

ecological impacts of warming among streams suggest that fine-scale thermal variation must be 

considered when forecasting effects of future climate change on stream fish population 

dynamics. 

3.1 Introduction: 

Atmospheric temperatures are increasing globally due to climate change, threatening biodiversity 

in terrestrial and aquatic habitats (Woodward et al. 2010, Urban et al. 2016). Rapidly warming 

temperatures can challenge the upper thermal limits of organisms (Sunday et al. 2019) and alter 

the timing of life history events to track local climate conditions (i.e. phenological shifts; 

Parmesan and Yohe 2003, Cohen et al. 2018). Although thermal tolerance and phenology are 

often constrained by shared evolutionary histories and adaptation to past environments, these 

traits nonetheless vary within and among species (Willis et al. 2008, Bennett et al. 2021, Pottier 

et al. 2022). Such biological patterns interact with spatial temperature variation, which can be 

substantial even at fine scales, to produce population-level responses (Suggitt et al. 2011, 

Scheffers et al. 2014, Lenoir et al. 2017). Thus, the prevalence, causes and consequences of fine-

scale temperature differences must be considered when assessing species vulnerability to climate 

change, and population dynamics must be studied at spatial scales that accurately reflect thermal 

heterogeneity (Nadeau et al. 2017b). 
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Responses to warming are particularly complex in freshwater environments, which can exhibit 

vastly different thermal sensitivity, defined as the expected change in water temperature for 

every 1° increase in air temperature (Boyer et al. 2021). For example, boreal streams in 

southwestern Alaska varying in elevation, slope, and contribution of snowmelt to streamflow 

displayed >5-fold differences in thermal sensitivity during summer months (Lisi et al. 2015). The 

resulting variation in water temperature shapes salmon phenology and trophic interactions (Lisi 

et al. 2013, Schindler et al. 2013) and potentially helps stabilize regional abundance in the face 

of warming (Schindler et al. 2010). Similarly, diverse stream thermal regimes have been noted 

elsewhere, with groundwater playing a key role in modifying sensitivity to air temperature 

(Carlson et al. 2019, Daigle et al. 2019, Johnson et al. 2020). Generally, streams dominated by 

groundwater inputs should have lower thermal sensitivities with more stable temperatures 

throughout the year (i.e. higher minimums and lower maximums) relative to streams mostly 

receiving rainfall (Mohseni et al. 1998, Hare et al. 2021). Consequently, fine-scale variation in 

groundwater contributions can impact the thermal habitats of fishes and strongly influence 

responses to future climate change, especially in small streams (Meisner et al. 1988, Snyder et al. 

2015). 

Groundwater plays a key role in generating breeding and rearing habitat for stream fishes. For 

example, brook trout (Salvelinus fontinalis) prefer spawning near groundwater seeps (Curry and 

Noakes 1995, Ridgway and Blanchfield 1998) where higher discharge, temperature, and 

dissolved oxygen provide better conditions for developing eggs than surrounding sites (Curry et 

al. 1995). The warmer winter temperatures at groundwater-dominated sites can significantly 

advance brook trout phenology (Crisp 1981), while their cooler temperatures during the summer 

can provide suitable habitat for juveniles after emergence (Borwick et al. 2006). Similar patterns 

have been documented in other coldwater fish species (Beacham and Murray 1990), and recent 

research suggests that groundwater-dominated streams harbor distinct and more temporally 

stable ecological communities (Ishiyama et al. 2023, Hitt et al. 2023). Thus, brook trout can 

serve as a model for understanding the diverse impacts of groundwater on coldwater fish 

populations. However, the extent to which groundwater influences ecological processes at small 

spatial scales remains poorly understood, as previous studies assessed brook trout thermal habitat 

across relatively large areas (maximum distance between streams: ~25 km in Kanno et al. 2014, 

~65 km in Snyder et al. 2015, ~500 km in Carlson et al. 2019). Improved understanding of the 

spatial scale of temperature variation and its consequences can also inform brook trout 

conservation and management, as population status and habitat loss are often assessed at coarse 

scales that aggregate many streams within larger catchments (Hudy et al. 2008, Fesenmyer et al. 

2017). If stream thermal sensitivity differs at much smaller scales due to groundwater, this 

approach may overestimate current and future habitat loss (Snyder et al. 2015). 

In this chapter, I assessed fine-scale variation in thermal regimes among ten small streams in 

Cape Race (Newfoundland, Canada) separated by 5 km or less and explored the ecological 

impacts of stream temperature on brook trout populations. Cape Race is an excellent focal 

system because brook trout have been extensively studied for decades (Hutchings 1993, Fraser et 

al. 2019), and streams exhibit considerable variation in summer water temperatures (Belmar-

Lucero et al. 2012, Wood et al. 2014). Although detailed hydrological data are unavailable, field 

surveys and consultations with local naturalists (J. Cappelman, personal communication) suggest 

that streams differ in the prevalence of groundwater seeps, which are distinguishable by cool 

temperatures, less acidic pH, and high densities of miner’s lettuce (Montia fontana; Purchase and 
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Hutchings 2008, Belmar-Lucero et al. 2012; see Figure A3.1). The extent to which groundwater 

dynamics generate variation in stream thermal regimes is important for brook trout populations, 

as habitat suitability may decline at temperatures above 16°C (Kovach et al. 2019, Smith and 

Ridgway 2019) and the species is sensitive to warming in Cape Race (Wells et al. 2016) and 

elsewhere (Bassar et al. 2016, Kanno et al. 2016). Additionally, brook trout populations in 

different streams are frequently distinguishable based on genetic markers (Kazyak et al. 2021) 

and can exhibit substantial phenotypic differences at small spatial scales (Hutchings 1993, 

Belmar-Lucero et al. 2012). If thermal habitats differ at similarly fine scales, brook trout 

populations likely experience enormous variation in environmental and ecological conditions 

across their range, which has the potential to stabilize species abundance and increase resilience 

to climate change (Schindler et al. 2010). 

In general, I predict that Cape Race streams will exhibit different thermal regimes based on the 

relative contributions of groundwater and rainfall to each stream. Specifically, my objectives 

were to (1) characterize relationships between water temperature and air temperature in each 

stream, (2) reconstruct and compare long-term trends in stream temperature since 1980, (3) 

explore the consequences of stream thermal regimes for brook trout phenology and growth, and 

(4) use independent catchment survey data to explore potential causes of thermal habitat 

variation. The phenological responses of most salmonids to climate change is poorly understood 

(Kovach et al. 2016), and groundwater likely generates thermal heterogeneity at smaller scales 

than current knowledge suggests (Snyder et al. 2015). My study addresses these knowledge gaps 

by linking fine-scale stream temperature variation to the ecology of brook trout populations 

across Cape Race. This approach should produce more accurate inferences about the effects of 

contemporary and future climate change on brook trout, which may be applicable to other 

freshwater fish species. 

3.2 - Methods: 

3.2.1 - Study area: 

Cape Race is a coastal barren with little riparian vegetation and flat, low-elevation topography 

covered by blanket bogs (stream elevation = 20-51 m). These characteristics, coupled with the 

small study area (~5 km x 5 km), suggest that air temperature and other factors that may 

influence water temperature (Mohseni and Stefan 1999, Lenoir et al. 2017) are likely very 

similar across streams. Furthermore, the underlying geology is mostly homogeneous and 

dominated by Precambrian sedimentary rock (Liu and Matthews 2017). The focal catchments are 

uninhabited with no dams, and thus represent natural hydrologic conditions with minimal human 

disturbance. Cape Race exhibits a subpolar oceanic microclimate that is rare in eastern North 

America (Cfc Köppen classification; Rubel et al. 2017), characterized by mild winters, cool 

summers, and high precipitation all year. Brook trout populations in Cape Race are genetically 

distinct at a scale of tens to hundreds of meters (Fraser et al. 2014, Wood et al. 2014, Yates et al. 

2019), and differ markedly in abundance, body size, behavior, life history and morphology 

(Hutchings 1993, Wood et al. 2014, Wood et al. 2015, Zastavniouk et al. 2017). 

3.2.2 - Air-stream temperature relationships: 

Water temperature data in ten Cape Race streams (abbreviated names: BC, DY, HM, LC, LO, 

STBC, UC, UO, WC, WN; Table A3.1) were recorded every 1.5-2 hours by data loggers placed 

on the streambed. Data were intermittently collected during three periods from 2012-2016 using 
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HOBO pendent loggers (July-September 2012, July 2013-June 2015, June-August 2016; see 

Wells et al. 2016, 2019) and continuously collected from June 2018-December 2021 using 

HOBO U20L loggers (Onset Computer Corporation, Bourne, Massachusetts, USA). Importantly, 

data were available during each season across multiple years, covering temperature extremes 

during summer (nine years: 2012-2016, 2018-2021) and winter months (six years: 2013-2014, 

2018-2021). However, U20L loggers were not found in BC or HM during the summer of 2021, 

so data were only available until July 2019 in these two streams. I averaged stream temperatures 

within each stream to obtain daily time-series, which were subsequently filtered to remove 

periods when loggers were out of the water to download data. This process resulted in 959 (BC) 

to 1,885 (UO) daily temperature observations in each stream from 2012-2021 (Table 3.1). Most 

study streams have distinct and unconnected drainages, with the exception of those in the 

Coquita (LC and UC, separated by a waterfall and a ~150 m section of dried streambed) and 

O’Beck drainages (LO and UO, separated by a ~50 m boulder field that is dry under baseflow 

conditions but sporadically floods). Despite differences in geomorphology that may affect 

thermal regimes (e.g. relative pond area; Table A3.1), all streams are short (0.2-8.1 km) and 

shallow (mean depth range: 11-42cm; Wood et al. 2014) so local air temperature is likely the 

strongest driver of stream temperature. 

To quantify air-stream temperature relationships, air temperature data from the same period were 

gathered from the DayMet database, which provides continuous gridded climate data throughout 

North America since 1980 (Thornton et al. 2020). Specifically, the single-pixel extraction tool 

(available: https://daymet.ornl.gov/single-pixel/) was used to obtain daily average air 

temperature data at 2-meter height for the middle of the study area (46.6464° N, 53.2064° W) 

from 2012-2021. Average air temperatures from DayMet closely matched those from a weather 

station at Cape Race Lighthouse, which had limited temporal coverage (R2=0.93; ECCC 2021). 

Air temperatures (Tair) were aligned with daily average stream temperatures (Tstream), and stream-

specific relationships were fitted using non-linear Type-I least squares. The model estimated 

Tstream as a function of Tair and four parameters based on the equation: 

𝑇𝑠𝑡𝑟𝑒𝑎𝑚 = 𝜇 +
𝛼 − 𝜇

1 + 𝑒𝛾(𝛽−𝑇𝑎𝑖𝑟)
                 (𝐸𝑞. 3.1) 

where µ is the minimum stream temperature, α is the maximum stream temperature, γ is the 

inflection point (steepest slope) of the relationship, and β is the temperature at which this 

inflection point occurs (Mohseni et al. 1998, Morrill et al. 2005). Errors were assumed to be 

independent and normally distributed, but the consequences of this assumption were evaluated in 

subsequent analyses (see below). However, this approach does not account for non-stationarity in 

relationships and is not recommended for estimating stream temperatures under future climate 

conditions (Arismendi et al. 2014; see Discussion). 

To evaluate model performance, residuals were plotted against predicted values and root-mean-

square error (RMSE) was calculated for daily stream temperature and for weekly and monthly 

averages. Ideally, residuals should be unbiased and evenly distributed across all predicted stream 

temperatures, while RMSE values should be below 1°C (Daigle et al. 2019). Stream 

temperatures often exhibit strong temporal autocorrelation (Johnson et al. 2020), so residual 

autocorrelation functions were plotted within each stream and all air-stream temperature 

relationships were re-estimated with an autoregressive error structure using the nlme package in 

R (Pinheiro et al. 2022). Finally, precipitation can affect stream temperature positively (Ishiyama 

https://daymet.ornl.gov/single-pixel/
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et al. 2023) or negatively (Carlson et al. 2019), so residuals from air-stream temperature 

relationships from March-November were regressed on daily precipitation data from the DayMet 

database to explore its effects within each stream. This period was selected because precipitation 

often influences stream temperature most strongly during the warmest months (Carlson et al. 

2019), while wintertime effects may be unreliable in Cape Race because high winds often limit 

accumulation of snow. 

3.2.3 - Reconstruction of historical stream temperatures: 

Air-stream temperature relationships served as reasonable proxies for thermal regimes 

experienced by brook trout populations in Cape Race, despite some limitations (see Results). 

Therefore, these relationships were considered suitable for reconstructing historical stream 

temperatures to support further analysis. For each stream, I plugged parameter estimates from 

air-stream temperature relationships (Table 3.1) into Equation 1 to estimate stream temperatures 

from DayMet air temperature records every day from 1980-2021. This process generated a 

continuous time-series of stream temperatures spanning over four decades in ten Cape Race 

streams. Because this extrapolated well beyond the time-periods used to fit non-linear regression 

models, I compared the distribution of air temperatures during the regression period (2012-2021) 

to all observations during the reconstruction period (1980-2021). Reconstructed stream 

temperatures were summarized each year by averaging daily values in each stream during the 

winter (December-February), spring (March-May), summer (June-August), autumn (September-

November), and the longer growing season (April-November). 

To assess how differences in stream thermal regimes impact brook trout development and 

phenology, I calculated cumulative degree-days in each stream every day from November 1st 

until August 31st the following year. Although my approach for estimating degree-days did not 

account for population variation in reproductive timing (see Discussion), the period from 

November-August captured thermal conditions during incubation, emergence, and the first 

summer that most strongly influence rates of growth and development (Wood and Fraser 2015). 

A base temperature of 0°C was used in all streams (i.e. a daily average temperature of 5°C would 

add 5 degree-days to the cumulative total). Inaccurate base temperatures can be problematic 

(Chezik et al. 2014), but a recent review suggested that base temperatures of 0°C are likely 

adequate for salmonids like brook trout (Honsey et al. 2022). 

3.2.4 - Characterizing rates of warming and phenology: 

I used summaries of reconstructed stream temperatures (see section 3.2.3) to assess seasonal 

rates of warming across Cape Race, and compared them to rates for air temperature during the 

same period (after Carlson et al. 2019). I estimated warming rates as slopes from the regression 

of mean annual temperature on year from 1980-2021 (in units of °C·year-1). Additionally, I 

calculated monthly averages from daily temperature reconstructions from 1980-2021, then 

extracted trends and anomalies during each month and year using time-series analysis conducted 

within the forecast package in R (Hyndman et al. 2022). I adopted this method to complement 

regression-based approaches because trends and anomalies are independent (i.e. trends are 

estimated with anomalies removed and vice-versa) and explicitly account for autocorrelation and 

seasonality in time-series (Daigle et al. 2019), which can potentially bias regression slopes. 

Annual summaries of cumulative degree-days were used to explore variation in the timing of 

brook trout development and phenological shifts among streams, with particular focus on 
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hatching and emergence. Common garden experiments suggest that Cape Race brook trout 

populations reared at 5°C hatch after accumulating 490-520 degree-days and respond similarly 

when developmental temperatures are altered (Wood and Fraser 2015). Studies of other brook 

trout populations suggest that emergence occurs 150-250 degree-days after hatching (Grande and 

Anderson 1990, Argent and Flebbe 1999). Thus, I used putative thresholds of 500 degree-days 

for hatching and 750 degree-days for emergence in each stream.  I identified the date each year 

when these developmental thresholds were reached, calculated the mean and range of dates 

within each stream, and regressed these dates (converted to ordinal days) on year to obtain slopes 

from 1980-2021 (in units of days·year-1). This approach assumes identical degree-day thresholds 

and start dates for incubation (November 1st) across all streams and years, and thus may not fully 

represent conditions experienced in the wild (see Discussion). 

3.2.5 - Effects of thermal regimes on fish growth: 

To test the influence of thermal regimes on brook trout growth after emergence, observed fork 

lengths of young-of-the-year (YOY) were regressed against cumulative degree-days experienced 

from November 1st in the preceding year until individuals were sampled. YOY were captured via 

backpack electrofishing during annual mark-recapture surveys from 2010-2021 (Wood et al. 

2014; N = 5,531 across all streams and years). Stream-specific regression equations were used to 

assess growth differences among populations. Similarly, I incorporated all data into a generalized 

linear mixed model (GLMM) with stream as a random effect on intercepts and slopes, then 

conducted variance partitioning to quantify the relative importance of growth variation among 

populations. The efficacy of the putative emergence threshold was also evaluated by back-

calculating lengths at 750 degree-days from stream-specific regression equations and comparing 

these to emergence lengths reported in laboratory studies of Cape Race brook trout (Wood and 

Fraser 2015, Fraser et al. 2019). Finally, this analysis was repeated using YOY growth rates 

(length divided by estimated age in years; see Chapter 2) in order to ensure that inter-annual 

differences in the timing of YOY surveys did not significantly influence results. 

3.2.6 - Spatial variation and influence of catchment characteristics: 

Detailed catchment surveys were conducted in at least eight streams over four summers (late-

June to early-August) between 2010 and 2015, which quantified drainage characteristics via 

satellite imagery and measured a suite of variables across transects within each stream. Stream 

transects were conducted one day each year at 5-49 points spaced 25-100 meters apart depending 

on stream length, with larger streams having more and more widely-spaced transects (see Wood 

et al. 2014). Surface water temperatures measured during each transect were used to characterize 

spatial variation in summer stream temperature, which was important because time-series from 

temperature loggers were only collected from a single location. Transects in small streams were 

completed in 1-3 hours, but the largest streams (BC, UO, WC, WN) took 4-8.5 hours to sample 

and spatial variation was thus influenced by time of sampling to some extent (see Discussion). 

Finally, a correlation analysis was used to relate parameter estimates from air-stream temperature 

relationships (Equation 3.1) to eight variables measured during catchment surveys (drainage 

area, sinuosity, gradient, flow velocity, depth, width:depth ratio, pH, and relative pond area; 

Table A3.1). This yielded a total of 32 correlations that were used to infer potential drivers of 

thermal regimes, but this analysis should be considered exploratory in nature and was thus 

implemented with and without multiple comparison adjustments. 
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3.3 - Results: 

3.3.1 - Air-stream temperature relationships: 

Streams exhibited considerable temperature differences from 2012-2021, especially in the 

frequency of temperatures above 16°C (Figure 3.1). During the summer, observed temperatures 

differed between the warmest and coldest streams by as much as 13°C within the same day. 

Parameter estimates similarly varied among streams, suggesting diverse air-stream temperature 

relationships (Table 3.1, Figure 3.2). Streams such as STBC and LC were characterized by 

relatively high minimum temperatures (µ = 2.5-3.5°C) and low maximum temperatures (α = 9-

10°C; Figure 3.2), which point to significant groundwater influence. In contrast, streams such as 

HM and LO exhibited low minimum temperatures (µ = 0-1.5°C) and high maximum 

temperatures (α = 17-19°C; Figure 3.2), suggesting they primarily receive surface water (see 

Discussion). To ease interpretation, I grouped streams into three categories based on estimated 

thermal sensitivities during the growing season: groundwater-dominated (STBC and LC; thermal 

sensitivity <0.45 after Hitt et al. 2023), rainfall-dominated (HM, LO, UO; thermal sensitivity 

>0.70), and intermediate (DY, BC, WN, UC, WC; thermal sensitivity = 0.45-0.70). These 

categories are not absolute and may not be applicable elsewhere, but reasonably describe the 

continuum of air-stream temperature relationships I observed. 

Air temperatures used in regressions from 2012-2021 (Figure 3.3a) were representative of the 

historic range in Cape Race from 1980-2021 (Figure 3.3b), but skewed towards warmer air 

temperatures collected during summer months. Model fits were satisfactory, with R2 values of 

0.79-0.92 (Table 3.1), and predicted stream temperatures following 1:1 relationships with 

observations. Residuals largely satisfied assumptions of homoscedasticity, although variance was 

reduced as predicted temperatures approached 0°C in some streams (DY, LO, UO). Daily RMSE 

values based on predicted stream temperatures were relatively high (1.05-1.97°C; Table 3.1), but 

improved when data were averaged across weekly (0.83-1.52°C) and monthly (0.69-1.15°C) 

intervals (Figure 3.3c). Autocorrelation was pervasive in the residuals from all streams (Figure 

A3.2), but re-fitting relationships with autoregressive errors yielded very similar parameter 

estimates and daily RMSE values (1.05-1.98°C). Daily precipitation had a negative effect on 

residuals in every stream (Figure A3.3), and showed similar patterns for 3-day and 5-day running 

average precipitation. 

3.3.2 - Variation in rates of warming and phenology: 

Positive slopes for all streams and seasons indicated pervasive warming in Cape Race since 1980 

(Table 3.2), but slopes varied substantially in magnitude. During winter, air temperatures 

increased by 0.0314°C·year-1, while the slowest (LC; 0.0058°C·year-1) and fastest (LO; 

0.0125°C·year-1) rates of stream temperature warming differed 2.1-fold (Table 3.2). Warming 

was less dramatic for spring air temperature (0.0115°C·year-1) but still differed 2.3-fold between 

streams with the slowest (STBC; 0.0031°C·year-1) and fastest (LO; 0.0071°C·year-1) rates. 

Summer exhibited the highest rate of warming for air temperature (0.0482°C·year-1), with 3.9-

fold differences between streams with the fastest (HM; 0.0356°C·year-1) and slowest (STBC; 

0.0091°C·year-1) increases. Rates of warming were similarly high during the autumn, as air 

temperature increased by 0.0451°C·year-1, while streams with the slowest (STBC) and fastest 

(HM) rates of warming differed 2.8-fold, increasing 0.0140°C and 0.0399°C·year-1, respectively 

(Table 3.2). During the growing season (April-November), air temperatures increased by 

0.0379°C·year-1, while stream temperature rose fastest in HM (0.0304°C·year-1) and slowest in 
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STBC (0.0096°C·year-1), representing a 3.2-fold difference (Table 3.2, Figure A3.4). When 

compared against rates of atmospheric warming across all periods except winter, rainfall-

dominated streams exhibited thermal sensitivities of 0.62-0.88, while groundwater-dominated 

streams had much lower sensitivities ranging from 0.19-0.31 (Table 3.2). These patterns were 

corroborated by time-series analysis of reconstructed stream temperatures where groundwater-

dominated streams exhibited slower rates of warming (especially since 2000; Figure 3.4a) and 

dampened seasonality (Figure 3.4b) compared to rainfall-dominated streams. 

Annual degree-day accumulation in each stream indicated that thermal regimes varied 

significantly during brook trout development, while hatching and emergence appeared to occur 

earlier in recent years due to warming (Figure A3.5). These patterns were confirmed in estimates 

of hatch and emergence timing, where mean hatch dates spanned ~2.5 months, from as early as 

February 25th (LC) to as late as May 9th (LO). Similarly, mean emergence dates spanned ~1.5 

months, ranging from April 25th in LC to June 11th in LO (Table 3.3). Phenology shifted towards 

earlier dates in every stream since 1980, but the rate of these shifts differed among streams by 

2.2-fold for hatching and 1.6-fold for emergence (Table 3.3). Groundwater-dominated streams 

(LC and STBC) had the smallest shifts, with slopes of -0.29 and -0.22 days·year-1 for hatching 

and emergence, respectively. In contrast, rainfall-dominated streams such as HM and UO had 

larger phenological shifts, with slopes of -0.60 days·year-1 for hatching and -0.33 days·year-1 for 

emergence. These rates imply that Cape Race brook trout currently hatch 11-25 days earlier and 

emerge 9-15 days earlier than four decades ago (Table 3.3). Degree-day accumulation also 

exhibited notable discrepancies before emergence and at the end of summer, as groundwater-

dominated streams accumulated the most degree-days from November-April (Figure 3.5a), but 

the fewest from November-August (Figure 3.5b). 

3.3.3 - Effects of thermal regimes on fish growth:  

Accumulated degree-days had a significant positive effect on YOY brook trout length in every 

stream (p <0.001), although regression slopes differed 2.5-fold among populations (Figure 3.6; 

Table A3.2). Contrary to expectations, slopes did not differ systematically based on thermal 

regime, with groundwater-dominated streams displaying both the steepest (STBC; slope = 

0.041mm·degree-day-1) and shallowest slopes (LC; slope = 0.017mm·degree-day-1; Table A3.2). 

The GLMM integrating data across all streams yielded similar results, with pseudo-R2 values 

suggesting that the variance explained by population-specific intercepts and slopes (35%) 

exceeded the fixed effect (27%; Table A3.2). The putative 750 degree-day threshold for 

emergence appeared to be reasonable, as estimated lengths at this threshold (mean = 26mm, 

range = 17-33mm based on regression equations; Table A3.2) were more variable but otherwise 

similar to emergence lengths of Cape Race brook trout observed in common garden experiments 

(mean = 23mm, range = 20-25mm; Wood and Fraser 2015, Fraser et al. 2019). Results were very 

similar when YOY growth rates were used as the response variable instead of lengths, with 

roughly four-fold differences in slopes between LC (0.008mm·day-1·degree-day-1) and STBC 

(0.037mm·day-1·degree-day-1). 

3.3.4 - Spatial variation and influence of catchment characteristics: 

Surface water temperatures measured during summertime transect surveys indicated significant 

spatial variation within each stream, often exceeding 5°C (Figure A3.6). While the date and time 

of stream sampling varied within years and likely influenced spatial patterns (see Discussion), 

groundwater-dominated streams were usually coldest (Figure A3.6). Correlating additional 
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habitat survey data to parameter estimates from air-stream temperature relationships uncovered 

seven significant associations (p <0.05; Table A3.3). The minimum stream temperature 

parameter (µ) was positively correlated with stream gradient (r = 0.85) and negatively associated 

with average velocity (r = -0.64). Maximum stream temperature (α) was negatively correlated 

with stream gradient (r = -0.87), while the inflection point slope (γ) was negatively related to 

drainage area (r = -0.84). Finally, temperature at the inflection point (β) was negatively 

associated with stream gradient (r = -0.69), and positively correlated with width:depth ratio (r = 

0.67) and relative pond area (r = 0.64). However, no correlations remained significant after using 

the Bonferroni method to adjust for multiple comparisons (p >0.0016). 

3.4 - Discussion: 

I uncovered substantial differences in water temperature among streams separated by less than 5 

km, which alter rates of warming experienced by fish populations and generate variation in 

phenology and growth. Thermal regimes were well-characterized by air-stream temperature 

relationships from 2012-2021, which diverged by over 9.5°C in estimated maximum stream 

temperatures. Based on reconstructed temperatures since 1980, warming and phenological 

advancement were ubiquitous across Cape Race, albeit with significant variation in magnitude. 

Warming rates varied more than 2-fold among streams across all seasons and differed nearly 4-

fold during the summer, while advancement in the timing of brook trout hatching and emergence 

differed 2.2-fold and 1.6-fold, respectively. Because climate conditions, underlying geology, and 

landscape attributes were similar across the small study area, temperature variation among 

streams appeared to be influenced by differences in groundwater inputs, with groundwater-

dominated streams always displaying the slowest rates of change. Such fine-scale heterogeneity 

in thermal regimes has significant implications for stream fish habitat suitability, growth, and 

phenology under continued warming, and may play a key role in diversifying species responses 

to future climate change. However, my results are likely shaped by the remote high-latitude 

setting and unusual local climate of Cape Race, so caution is warranted when applying these 

findings elsewhere. 

3.4.1 - Thermal regimes under climate change: 

Air-stream temperature relationships highlighted significant variation in thermal regimes across 

Cape Race, especially in the prevalence of high stream temperatures that may negatively impact 

brook trout during summer months (Figures 3.1 and 3.2). Optimal growth for brook trout occurs 

at 12-16°C (Kovach et al. 2019, Smith and Ridgway 2019) and may decline when chronically 

exposed to higher temperatures. For Cape Race populations, field experiments conducted over 

~2 months showed reduced growth and survival above 15°C (Yates et al. 2019) while short-term 

laboratory experiments suggested that behavioral stress responses are initiated at 17-18°C (Wells 

et al. 2016). Based on these thresholds, brook trout occupying rainfall-dominated streams (HM, 

LO and UO) are clearly exposed to much more thermal stress than those in groundwater-

dominated streams (LC and STBC), which seldom experience temperatures above 16°C. Rates 

of warming observed in groundwater-dominated streams were also much slower than rainfall-

dominated streams (Table 3.2; Figure 3.4), suggesting that future temperature differences among 

streams may widen if this pattern persists. However, stream temperature records in Cape Race 

contained multiple gaps that likely prevented this study from capturing the full range of 

conditions, as recent hydrology studies recommend using at least five years of continuous stream 

temperature data to characterize thermal sensitivity (Daigle et al. 2019, Boyer et al. 2021). 
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Additionally, I did not account for temporal autocorrelation or non-stationarity in air-stream 

temperature relationships, which will change in the future if climate change impacts the 

recharge, routing, and depth of groundwater (Arismendi et al. 2014, Hare et al. 2021). Despite 

these limitations, the large differences in observed stream temperature (Figure 3.1) and 

satisfactory model performance over longer periods (monthly RMSE = 0.69-1.15°C; Figure 3.3) 

support the use of air-stream temperature relationships to broadly describe thermal regimes 

experienced by brook trout. 

I focused on predicting average daily stream temperature, but its variance must also be 

considered, especially at high temperatures. For example, the maximum stream temperature 

parameter (α) in HM was ~19°C, but the warmest observed stream temperatures were as low as 

15°C and as high as 23°C (Figure 3.1). Similarly, stream temperature data were recorded at one 

location in each stream, but summer temperatures routinely differed by 5°C or more along the 

entire stream length (Figure A3.6), and the smallest drainages (e.g. DY, LC, UC) tend to exhibit 

greater spatial temperature variation (Wood et al. 2014). Hourly fluctuations in stream 

temperature can also be substantial (Kanno et al. 2014), and this was evident in the most detailed 

Cape Race temperature logger data available from 2018-2021. Specifically, median differences 

between the highest and lowest stream temperatures observed each day ranged from 1.6-2.9°C, 

but within-day differences exceeded 9°C on rare occasions in every stream. This pattern also 

impacted temperatures recorded during transect surveys that took 4-8 hours in large streams (see 

Methods), so the data in Figure A3.6 likely overestimate spatial variation. Nonetheless, the 

combination of residual error, spatial variation, and subdaily fluctuations highlight that thermal 

regimes in Cape Race streams are much more complex than my analysis suggests. Indeed, such 

spatiotemporal variability may create cooler refuges that buffer brook trout populations against 

the adverse effects of high summer temperatures, even within the warmest streams (Wang et al. 

2020, Morgan and O’Sullivan 2022). 

The variation and complexity of stream temperatures across Cape Race demonstrates that brook 

trout thermal habitat differs substantially at finer scales than previously documented (Kanno et 

al. 2014, Snyder et al. 2015, Carlson et al. 2019). Variable rates of warming estimated among 

streams imply that these differences may increase in the future, impacting brook trout habitat 

quality during the summer. More broadly, my results suggest that characterizing the distribution 

of thermal refuges among streams should continue to be a research priority in areas occupied by 

coldwater fishes (Kovach et al. 2019, Isaak and Young 2022). This also applies to spatial 

variation within streams, as groundwater seeps occur midway along the length of some Cape 

Race streams with intermediate thermal regimes (e.g. BC, WC), and are perhaps better 

characterized as rainfall-dominated upstream with groundwater-dominated thermal refuges 

downstream. 

3.4.2 - Phenology and growth under climate change: 

By combining reconstructed stream temperatures with previous research on brook trout 

development in Cape Race and elsewhere, I estimated substantial fine-scale variation in 

phenology that aligned with thermal regimes in accordance with past research (Crisp 1981, 

Beacham and Murray 1990). Remarkably, eggs were estimated to hatch up to 74 days earlier 

(February 25th vs. May 9th) and emergence was estimated to occur 47 days earlier (April 25th vs. 

June 11th; Table 3.3) in groundwater-dominated streams such as LC and STBC than in rainfall-

dominated streams (Figure A3.5). This disparity is surprising given that developmental rates of 
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Cape Race populations are similar in common garden conditions (Wood and Fraser 2015), but 

can be explained by differences in incubation temperature. Specifically, groundwater-dominated 

streams were predicted to be ~3°C warmer than most nearby streams during the incubation 

period, thereby accumulating more degree-days and accelerating development (Figure 3.5a). In 

addition, while the timing of hatch and emergence shifted earlier in every stream, groundwater-

dominated streams exhibited slower phenological shifts, perhaps reflecting their more stable 

temperatures overall (Figure 3.4). Similar variation in hatch and emergence times in Chinook 

salmon can mediate spatial patterns in growth (Kaylor et al. 2021, 2022), but the consequences 

of the disparate phenologies observed among Cape Race brook trout populations are currently 

less clear (see below). Moreover, reproductive timing was not accounted for when reconstructing 

degree-day accumulations, as spawning ground surveys (see Fraser et al. 2019) indicate that 

brook trout reproduce at least one to two weeks later in groundwater-dominated streams. 

Similarly, more stable incubation temperatures in groundwater-dominated streams may increase 

degree-day thresholds needed to hatch and emerge (Grande and Anderson 1990), while some 

Cape Race populations actively prefer spawning near groundwater seeps within streams 

(Purchase and Hutchings 2008). Combined, these processes should generate less extreme 

phenological variation across wild populations than my estimates suggest, although differences 

in developmental temperature likely remain substantial. 

Young-of-the-year brook trout increased in size as they accumulated more degree-days in every 

stream (Figure 3.6, Table A3.3), but no consistent patterns distinguished groundwater-dominated 

from rainfall-dominated streams. Nonetheless, slopes of these relationships differed 2.5-fold in 

groundwater-dominated STBC and LC (Table A3.3), highlighting that effects of temperature on 

individual growth can vary considerably among streams with similar thermal regimes. 

Differences in slopes may reflect genetically-based growth rates observed in common garden 

experiments (Fraser et al. 2019) and spatial variation within streams, while differences in 

intercepts could be due to population divergence in egg size, which positively influences 

emergence length (Hutchings 1991). Age-1 brook trout growth rates in Cape Race similarly 

increased with accumulated degree-days, corroborating this pattern (see Chapter 2). Overall, 

warming currently appears to increase individual growth rates in Cape Race brook trout, but it is 

unclear whether this pattern will persist in the future, especially in rainfall-dominated streams 

with high and rapidly increasing temperatures (e.g. HM, LO, UO). Indeed, continued warming 

may reduce growth in rainfall-dominated streams while benefiting populations in groundwater-

dominated streams, where temperatures are currently suboptimal throughout much of the 

growing season. 

The diverse effects of stream temperature on brook trout phenology and growth imply that Cape 

Race populations are not responding to climate change the same way. For example, differences 

in phenology should spread the risk of exposure to episodic events such as floods, droughts, or 

heatwaves, thereby reducing the likelihood of synchronous declines in survival and growth 

across populations (Kovach et al. 2016, Kaylor et al. 2021). Additionally, effects of temperature 

on growth differed considerably among streams with similar thermal regimes, adding another 

layer of variation that may help stabilize productivity through portfolio effects (Lisi et al. 2013, 

Kaylor et al. 2022). Improved understanding of fine-scale population and habitat diversity across 

the species range could provide insights into the resilience of brook trout and the ecosystem 

services they provide (e.g. supporting fisheries and acting as apex predators in small streams). 

Identifying and conserving key facets of this diversity will be critical for maintaining healthy 
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brook trout populations (Fesenmyer et al. 2017), and are likely relevant for the management of 

other species. 

3.4.3 - Factors influencing stream thermal regimes: 

Groundwater is likely the dominant influence on stream thermal regimes in Cape Race, although 

this can only be inferred indirectly in the present study. Streams such as LC and STBC exhibited 

warmer winter temperatures and much cooler summer temperatures than other streams (Figures 

3.2 and 3.4), consistent with signals of groundwater influence (Snyder et al. 2015, Carlson et al. 

2019, Hare et al. 2021). In addition to its effect on temperature, groundwater may also dampen 

fluctuations in streamflow (Mann et al. 1989), and neutralize acidic conditions that reduce brook 

trout survival (Yates et al. 2019) but are otherwise prevalent in the bog-covered landscape of 

Cape Race (Figure A3.1). Among eight drainage characteristics explored as predictors of thermal 

regimes, stream gradient had the strongest influence. High-gradient streams were associated with 

lower maximum and higher minimum temperatures (Table A3.3), suggesting larger groundwater 

contributions. Additionally, the inflection point of air-stream temperature relationships exhibited 

steeper slopes in smaller drainages, while inflection points occurred at higher air temperatures in 

relatively wide streams (Table A3.3). These patterns demonstrate the importance of catchment 

characteristics to fish thermal habitat (Lisi et al. 2015, Daigle et al. 2019), but all correlations 

became non-significant after multiple comparison adjustments and may not be relevant beyond 

Cape Race. 

Stream geomorphology, particularly the presence of ponds within drainages, may also help 

explain variation in thermal sensitivity among streams. For example, HM was very warm during 

the summer but exhibited higher winter temperatures (µ = 1.55°C) than other rainfall-dominated 

streams. This is likely because HM is a deep and slow-moving pond over most of its length 

(Table A3.1), making it more likely to freeze and thus insulate water from heat loss during the 

winter (Mohseni and Stefan 1999). A similar dynamic may also influence winter thermal regimes 

and spatial variation within streams such as BC, UO, and WC, which all contain multiple 

interconnected ponds (Table A3.1). Although more data are needed to determine the influence of 

ponds on thermal regimes in Cape Race, air-stream temperature inflection points tended to occur 

at higher temperatures in drainages with high relative pond area (Table A3.3). Finally, stream 

temperatures in Cape Race are invariably shaped by the region’s unusually cool and wet 

microclimate, which has few analogues throughout the native range of brook trout and may 

explain why the highest predicted stream temperatures in Cape Race (~17-19°C) were lower than 

similar studies conducted in Canada (~23-24°C in Quebec; Daigle et al. 2019) and the United 

States (~22-23°C in Virginia and Michigan; Snyder et al. 2015, Carlson et al. 2019). Therefore, 

while fine-scale variation in groundwater contributions may influence stream thermal regimes 

throughout much of the species range, its consequences will depend on current and future 

climate conditions, with temperatures expected to exceed thermal optima more often in warmer 

regions at low latitudes and elevations (Gallagher et al. 2022). 

3.5 - Conclusion: 

I found considerable temperature variation among small, pristine streams separated by less than 5 

km, which likely alters brook trout growth and phenology at a remarkably small spatial scale. 

Such fine-scale variation has largely been overlooked in past assessments of brook trout 

conservation status and climate vulnerability (Flebbe et al. 2006, Hudy et al. 2008, Fesenmyer et 

al. 2017), so future research should develop tools that enable managers to incorporate stream-
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specific thermal regimes into decision making. More widespread data collection would facilitate 

this process, as paired air-stream temperature monitoring (Ishiyama et al. 2023), thermal infrared 

cameras (Morgan and O’Sullivan 2022, Iwasaki et al. 2023), and high-resolution models (e.g. 

DeWeber and Wagner 2014) offer promising ways to identify and preserve thermal refuges for 

many species. 

While more refined studies of local groundwater dynamics in Cape Race and elsewhere would be 

valuable, the fine-scale thermal heterogeneity observed in this study has important conservation 

implications nonetheless. Firstly, fine-scale differences in stream temperature can play an 

essential yet underappreciated role in generating response diversity within species, which can 

provide a buffer against climate change and other human impacts (Schindler et al. 2010, Lisi et 

al. 2013). Secondly, projected effects of future warming that do not account for stream-specific 

thermal sensitivities may overestimate the risk of local extirpation in coldwater fishes, as 

previously noted (Snyder et al. 2015). Finally, matching the spatial scale of population dynamics 

to the temperatures experienced by those populations (Nadeau et al. 2017b) may be especially 

difficult in freshwater environments due to their natural fragmentation and variable responses to 

warming (Daigle et al. 2019, Hare et al. 2021). Overall, my study highlights how for brook trout 

and other widespread stream fishes, continued efforts to characterize diversity in thermal 

regimes, phenology and growth at the smallest scale possible should improve forecasts of climate 

change responses (Urban et al. 2016), and may provide more insights into mechanisms that will 

shape future persistence. 

 



63 
 

Tables & Figures: 

Table 3.1: Parameter estimates, sample sizes, R2 and root-mean-square error (RMSE, in °C) 

values for non-linear relationships between daily average air temperature and stream temperature 

for ten Cape Race streams from 2012-2021. Sample sizes for BC and HM are marked with 

asterisks (*) due to missing data after July 2019 in these streams. For reference, µ is the 

minimum stream temperature, α is the maximum stream temperature, γ is the slope at the 

inflection point, and β is the temperature where the inflection point occurs (see Equation 3.1). 

Thermal regimes are categorized as groundwater-dominated, rainfall-dominated, or intermediate 

(see Results). 

Stream 

Thermal 

Regime µ α γ β 

Sample 

Size R2 RMSE 

BC Intermediate 0 16.63 0.21 8.07 959* 0.88 1.87 

DY Intermediate 0.50 16.17 0.26 8.22 1,732 0.90 1.81 

HM Rainfall 1.55 19.25 0.28 9.16 1,119* 0.91 1.92 

LC Groundwater 3.11 10.66 0.28 7.23 1,714 0.79 1.39 

LO Rainfall 0 17.67 0.28 7.82 1,808 0.91 1.94 

STBC Groundwater 2.68 9.73 0.25 6.16 1,652 0.83 1.05 

UC Intermediate 1.01 15.09 0.27 7.01 1,647 0.86 1.97 

UO Rainfall 0.17 18.27 0.24 8.45 1,885 0.92 1.79 

WC Intermediate 2.26 13.58 0.27 8.09 1,878 0.89 1.37 

WN Intermediate 0 17.04 0.18 8.30 1,635 0.90 1.52 
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Table 3.2: Temporal trends in reconstructed stream temperature in winter (December-February), 

spring (March-May), summer (June-August), autumn (September-November), and growing 

season (April-November) months for ten Cape Race streams from 1980-2021. Trends are 

expressed as slopes (in °C·year-1) from regressing mean temperature on year within each stream, 

and the corresponding air temperature regression slope is shown for reference (bottom). Thermal 

regimes are categorized as groundwater-dominated, rainfall-dominated, or intermediate (see 

Results). 

 
Stream 

Thermal 

Regime  Winter Spring Summer Autumn 

Growing 

Season 

BC Intermediate  0.0119 0.0060 0.0271 0.0311 0.0237 

DY Intermediate  0.0106 0.0060 0.0274 0.0336 0.0248 

HM Rainfall  0.0099 0.0062 0.0356 0.0399 0.0304 

LC Groundwater  0.0058 0.0032 0.0113 0.0165 0.0115 

LO Rainfall  0.0125 0.0071 0.0292 0.0391 0.0279 

STBC Groundwater  0.0063 0.0031 0.0091 0.0140 0.0096 

UC Intermediate  0.0113 0.0060 0.0205 0.0300 0.0209 

UO Rainfall  0.0120 0.0067 0.0322 0.0376 0.0283 

WC Intermediate  0.0077 0.0044 0.0195 0.0246 0.0180 

WN Intermediate  0.0119 0.0057 0.0267 0.0288 0.0226 

        
Air -  0.0314 0.0115 0.0482 0.0451 0.0379 
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Table 3.3: Summary statistics for dates of degree-day (DD) accumulation since November 1st for putative hatch (500 DD; left side) 

and emergence (750 DD; right side) thresholds in ten Cape Race streams from 1980-2021. Mean, minimum, and maximum annual 

dates of degree-day accumulation are shown, with temporal trends displayed as slopes (in days·year-1) from regressing annual date of 

accumulation on year within each stream. The 40-year change (in days) multiplies the annual slope by 40 to approximate the 

advancement of developmental timing (in days) over the last four decades in each stream. Thermal regimes are categorized as 

groundwater-dominated, rainfall-dominated, or intermediate (see Results). 

  Hatch Timing (500 DD) Emergence Timing (750 DD) 

Stream 

Thermal 

Regime Mean Min Max Slope 

40-Year 

Change Mean Min Max Slope 

40-Year 

Change 

BC Intermediate 17-Apr 23-Mar 13-May -0.53 -21 30-May 11-May 19-Jun -0.34 -13 

DY Intermediate 1-May 10-Apr 25-May -0.49 -20 9-Jun 21-May 27-Jun -0.29 -12 

HM Rainfall 31-Mar 2-Mar 27-Apr -0.62 -25 22-May 5-May 9-Jun -0.33 -13 

LC Groundwater 25-Feb 14-Feb 13-Mar -0.29 -11 25-Apr 15-Apr 7-May -0.23 -9 

LO Rainfall 9-May 16-Apr 3-Jun -0.48 -19 11-Jun 22-May 1-Jul -0.31 -12 

STBC Groundwater 1-Mar 16-Feb 17-Mar -0.29 -11 28-Apr 18-Apr 11-May -0.22 -9 

UC Intermediate 1-Apr 6-Mar 30-Apr -0.59 -24 21-May 4-May 9-Jun -0.34 -13 

UO Rainfall 28-Apr 4-Apr 23-May -0.55 -22 5-Jun 16-May 25-Jun -0.33 -13 

WC Intermediate 12-Mar 23-Feb 3-Apr -0.45 -18 10-May 27-Apr 26-May -0.29 -11 

WN Intermediate 30-Mar 2-Mar 28-Apr -0.56 -23 19-May 2-May 7-Jun -0.34 -14 
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Figure 3.1: Raw data showing relationship between daily average stream temperature and air 

temperature in ten Cape Race streams. Different colors are used to highlight stream temperature 

observations below (black points) and above 16°C (red points), with red points corresponding to 

periods of possible thermal stress. Note the absence of stream temperatures above 16°C in LC 

and STBC.
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Figure 3.2: Non-linear relationships predicting daily average stream temperature from average 

air temperature for ten Cape Race streams. Parameter estimates (see Equation 3.1), sample sizes, 

and R2 values for each stream are shown in Table 3.1. Streams are colored based on their 

maximum temperatures, with darker blue colors used for groundwater-dominated streams (STBC 

and LC) and dark orange or red colors used for rainfall-dominated streams (LO, UO and HM; 

see Results). 
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Figure 3.3: Performance of non-linear regression models predicting daily average stream temperature from air temperature. Kernel 

densities are shown for mean daily air temperatures from 2012-2021 used to estimate stream temperature via non-linear regression (a), 

and all daily air temperature observations used to reconstruct stream temperature in ten Cape Race streams from 1980-2021 (b). Root-

mean-square error (RMSE) values were calculated for daily stream temperatures predicted directly by regression models (see Table 

3.1), as well as average stream temperatures calculated over weekly and monthly time periods from 2012-2021 (c). Lower RMSE 

values suggest that predicted stream temperatures are closer to observed values. Streams are colored based on their maximum 

temperatures (see Figure 3.2). 
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Figure 3.4: Trends (a) and anomalies (b) extracted from reconstructed temperature time-series for ten Cape Race streams. Trends and 

anomalies were estimated independently during each month and year from 1980-2021 (i.e. trends were estimated with anomalies 

removed and vice-versa), such that the original time-series can be reproduced by summing the corresponding trend and anomaly 

values. Monthly estimates each year (transparent points) were fitted with a loess smoother (solid lines) to clarify broader patterns, and 

anomaly values in (b) were aggregated by month. Streams are colored based on their maximum temperatures (see Figure 3.2). 
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Figure 3.5: Temporal trends in degree-days accumulated from incubation until emergence (a; November 1st-May 1st) and from 

incubation until the end of summer (b; November 1st-August 31st) for ten Cape Race streams. Horizontal lines in (a) are shown at 500 

and 750 degree-days to denote putative thresholds for the timing of hatch and emergence, respectively. Streams are colored based on 

their maximum temperatures (see Figure 3.2). Note that groundwater-dominated LC and STBC (royal blue and dark blue lines) 

accumulated the most degree-days before emergence (a), but accumulated the fewest by the end of the summer in recent years (b). 
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Figure 3.6: Temperature-dependent growth of young-of-the-year (YOY) brook trout in ten Cape 

Race streams from 2010-2021. Individual fork length is plotted against degree-days accumulated 

from the start of the incubation period on November 1st the previous year until the date 

individuals were captured (transparent points), then fitted with stream-specific regressions (solid 

lines). The putative degree-day threshold for emergence (750 degree-days; dashed vertical line) 

is shown for reference. Streams are colored based on their maximum temperatures (see Figure 

3.2), and regression equations are reported in Table A3.2. 
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V. Chapter 4: Fine-scale thermal habitat variation and life history evolution shape the 

demography of brook trout populations under future climate change 

Abstract: 

Many species are at risk of extinction due to climate change, but climate vulnerability can vary 

considerably among populations of the same species due to multiple mechanisms that are often 

poorly understood. This is especially likely in species with fine-scale population structure that 

occupy diverse habitats and exhibit high capacities for phenotypic change via plasticity or 

evolution. Thus, for many species, there is a need to understand how habitat characteristics, 

phenotypic plasticity, and evolution contribute to population persistence under climate change. 

In this chapter, I built individual-based eco-genetic models to simulate the effects of climate 

change on eight populations of wild brook trout (Salvelinus fontinalis) separated by <3 

kilometers in Cape Race, Newfoundland, Canada. Models were parameterized with empirical 

data from mark-recapture surveys, life history studies, common garden experiments, and stream 

temperature measurements. Three evolving traits governed individual growth and maturation, 

while stream temperature and density-dependence also influenced growth via phenotypic 

plasticity. Within each population, six scenarios were explored that represented three rates of 

atmospheric warming over the next century (0°, 3°, or 6°C), both with and without evolution 

allowed to occur (genetic CV set to 0.12 or 0, respectively). I found that warming generally 

caused populations to evolve faster growth, larger size-at-maturation, and earlier age-at-

maturation, but less phenotypic change occurred in populations inhabiting colder groundwater-

dominated streams. Population biomass tended to decline as rates of warming increased, but the 

magnitude of decline varied considerably among populations, with extirpation occurring 

exclusively in warmer rainfall-dominated streams in scenarios when evolution could not occur. 

Plasticity was sufficient to rescue some populations from extirpation under climate change, but 

evolution consistently dampened demographic declines and was necessary to rescue populations 

inhabiting the warmest streams. The critical role of population-specific thermal regimes and life 

history evolution is broadly applicable for stream-dwelling species, and underscores the 

importance of accounting for habitat suitability and local adaptation when modeling species 

responses to climate change. 

4.1 Introduction: 

Life history evolution is crucial for understanding how variation in individual growth, survival 

and maturation influence fitness across populations and species, which directly impacts 

persistence in different environments (Stearns 1992). Life histories can evolve rapidly over 

ecological time scales (30 generations or less; Hairston and Walton 1986, Reznick et al. 1990, 

Stockwell and Weeks 1999), which alter eco-evolutionary dynamics that link genetically-based 

phenotypes to population dynamics (Hendry 2017). Human activities can play a role in eliciting 

rapid changes in life history traits, with fisheries known to exhibit particularly strong impacts 

(Fugere and Hendry 2018). Indeed, there is evidence that intense size-selective harvest of 

Atlantic cod increased mortality of fast-growing individuals, which ultimately selected for 

slower growth and earlier maturation, thereby reducing population productivity and recovery 

potential (Olsen et al. 2004, 2005). However, the impacts of climate change on life history 

evolution have not been extensively studied, despite the potential of consistent warming to 

impose directional selection on body size, development, and fecundity (Grainger and Levine 

2022). Moreover, how evolutionary responses to climate change differ among populations due to 
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pre-existing variation in life history traits and thermal habitat characteristics is not well 

understood (Nadeau et al. 2017b). 

The extent to which detailed population-specific information is needed for accurate biological 

risk assessment under climate change is highly relevant for conservation and management 

decisions. For example, if multiple populations respond similarly to warming temperatures over 

a large area, then population-specific data may not be needed to accurately characterize the 

current status and future risk of each population. Moreover, population-specific data is often 

unavailable while gathering it is costly and labor intensive, so there could be many 

circumstances where this approach is not the best use of conservation resources (Iacona et al. 

2018). Similar concerns apply when considering the mechanisms that impact life history and 

population dynamics - genotypes, phenotypes, plasticity mediated by environmental conditions, 

and feedbacks between them can all shape demography (Hendry 2017) but may not be equally 

relevant in all situations (Bailey et al. 2009). The utility of population-specific information and 

mechanistic detail in predicting ecological and evolutionary responses to climate change can be 

assessed through the development of simulation models based on empirical data, which provide a 

tractable way to compare outcomes across a wide range of scenarios while disentangling 

mechanistic impacts (Ezard et al. 2009, Norberg et al. 2012). 

The development of biologically realistic models of future climate change responses will likely 

play an increasingly important role in the conservation and management of biodiversity (Urban 

et al. 2016). Such models allow researchers to compare the risk of extinction across species or 

populations (Cotto et al. 2016) and quantify the influence of specific processes on model 

outcomes. Modern software and computing capabilities have facilitated recent development of 

biological models with unprecedented detail, such as end-to-end (Rose et al. 2015), individual-

based (Ayllón et al. 2019) and eco-genetic models (Dunlop et al. 2009). Despite these advances, 

the data needed to parameterize complex models are unavailable in most taxa (Hoffman and Sgro 

2011), which highlights the need to identify well-studied species that are suitable for model 

development. In addition, there has been little research comparing model outcomes across 

geographically proximate populations within species, even though population divergence can be 

considerable at small spatial scales (Richardson et al. 2014) and population comparisons can 

provide insight into local adaptation while minimizing confounding phylogenetic and 

biogeographic influences (Hutchings 1993). 

Among vertebrates, salmonid fishes are excellent candidates for application of mechanistic 

models because the evolutionary history, heritability, and plasticity of life history and other 

phenotypes have been extensively studied (Stearns and Hendry 2004, Carlson and Seamons 

2008). Additionally, salmonids commonly exhibit large genetic and phenotypic differences at 

small spatial scales, which makes them especially useful for comparative analyses among 

populations (Hutchings 1993, Hilborn et al. 2003). For salmonid species such as brook trout 

(Salvelinus fontinalis), mechanistic models have previously been developed to study the 

evolution of alternative life history tactics (Thériault et al. 2008) and impacts of compensatory 

density-dependence on demographic responses to climate change within populations (Bassar et 

al. 2016), but a model integrating both approaches across many populations has not been 

attempted. More generally, the role of evolution and phenotypic plasticity in responses to climate 

change is a critical knowledge gap in salmonid biology (Kovach et al. 2019), and a recent review 

suggested that only eight published studies have explicitly modeled the effects of climate change 

on eco-evolutionary dynamics in wild fish populations (O’Sullivan 2021). Therefore, a better 
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understanding of the combined effects of life history evolution and plasticity on future 

population dynamics would benefit salmonid conservation and management efforts. 

In this chapter, I developed individual-based eco-genetic models that projected the impacts of 

climate warming on multiple populations of brook trout over the 21st century (~30-50 

generations). Importantly, these models can track how two distinct mechanisms contribute to 

temporal shifts in life history phenotypes - genetic change due to evolution and non-genetic 

change due to phenotypic plasticity, which accounts for the influence of environmental 

conditions. Thus, the phenotypes expressed by each individual at a given time are determined by 

genetic trait values inherited from the previous generation, plus any modifying effects of the 

environment (e.g. temperature). My objectives were to (1) build individual-based eco-genetic 

models that simulated demography and life history evolution in eight populations of brook trout, 

(2) compare population responses across three different climate change scenarios, and (3) assess 

the influence of life history evolution on climate change responses in each population. In general, 

I predict that increasing levels of climate warming will increase growth and length-at-maturity at 

the individual level, while reducing abundance at the population level. I also predict that 

population-specific responses to climate change will vary, and will be most strongly influenced 

by observed differences in thermal habitat among populations (see Chapter 3). Changes in 

biomass will be more complex, and will differ based on the magnitude of population-specific 

increases in growth (which positively affects biomass) and declines in abundance (which 

negatively affects biomass). This framework will provide crucial insights into how much 

population-specific data and mechanistic detail affect predictions about population dynamics 

under climate change. 

4.2 Methods: 

4.2.1 - Study system and model parameterization: 

Models were built to represent eight genetically distinct brook trout populations in Cape Race, 

Newfoundland, Canada (population abbreviations: BC, DY, HM, LC, STBC, UC, UO, and WC). 

These populations exhibit a gradient of life history strategies, despite sharing a common 

evolutionary origin (Danzmann et al. 1998) and experiencing similar climate conditions due to 

their geographic proximity (separated by <3 km). This gradient is best captured by two 

contrasting populations: UC exhibited low growth, low survival (i.e. shorter lifespan), early 

maturation, and high reproductive effort, while WC displayed high growth, high survival, 

delayed maturation, and low reproductive effort (Figure 4.1). Other populations showed 

consistent patterns between these extremes, as larger adult body size was positively associated 

with average age and maximum age of spawning adults (Figure 4.1a,b), while the ratio between 

adult and juvenile growth was negatively correlated with reproductive effort (Figure 4.1d). Life 

history patterns were remarkably similar to seminal research on Cape Race brook trout by 

Hutchings (1993, 1994, 1996), who studied three populations that were not included in this 

chapter. Hutchings (1993) argued that population variation in growth and survival emerged from 

differences in the availability of food and overwintering habitat within each stream, and my 

results suggest this may be a general phenomenon across Cape Race. However, my research also 

suggests that thermal habitat plays a critical role, as populations in colder groundwater-

dominated streams such as LC and STBC exhibit lower growth, higher juvenile survival, and 

should warm significantly less in the future than warmer rainfall-dominated streams such as DY, 

HM and UO (Yates et al. 2019, see Chapters 2 and 3). 
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The evolving life history traits of interest in this study were maximum growth rate and 

probabilistic maturation reaction norms (PMRNs hereafter) describing the size and age at which 

individuals mature (Heino et al. 2002). PMRNs were expressed as a linear function with slope 

and intercept terms, with the PMRN intercept corresponding to the median length-at-maturation 

when the slope is equal to zero (Heino et al. 2002). Model parameterization was informed by 

recent research in Cape Race brook trout, which has shown genetically-based population 

differences in maximum growth rates in common garden experiments (Fraser et al. 2019), while 

growth rates of wild individuals decline with conspecific density (Matte et al. 2020b) and 

increase with stream temperature during the growing season (see Chapters 2 and 3). 

Additionally, empirical length and weight data were available for thousands of individuals from 

mark-recapture surveys conducted in each population between 2010 and 2022 (Wood et al. 2014; 

see Chapter 2), while the size and age of spawning individuals has been described in targeted 

field studies (Bernos and Fraser 2016, Zastavniouk et al. 2017). Detailed age data are unavailable 

for Cape Race populations in recent years, but age-0 and age-1 individuals can be confidently 

distinguished based on length frequency distributions (see Appendix 2). To estimate age in older 

individuals, I used finite mixture models in the mixtools package in R (Benaglia et al. 2009) to 

separate the length distribution into three discrete normal distributions representing age-2, age-3, 

and age-4+. This process was repeated for every sampling year with length data available from 

2010-2022, and used to assign individuals to age-classes each year (after Hoxmeier and 

Dieterman 2011). 

Growth curves were constructed to relate individual size to estimated age using the von 

Bertalanffy model, as well as an alternative model by Lester et al. (2004) that estimated growth 

separately before and after maturation. PMRN slopes were assumed to be zero, while PMRN 

intercepts representing the length at which the probability of maturation is 50% were estimated 

via logistic regression. Population-specific growth and maturation patterns are summarized in 

Figure 4.2, which support previous observations that populations with relatively low adult 

growth rates (e.g. LC, STBC, UC) tend to mature at smaller sizes and earlier ages, and likely 

invest more energy into reproduction. Further details about model structure and parameterization 

are described in the sections below. Population-specific parameters are listed in Table 4.1, while 

Table 4.2 shows relevant parameters that were shared across all populations. 

4.2.2 - Climate change: 

All models were constructed to run over 300 years with an annual time step. The first 200 years 

exhibited stable temperature to allow populations to reach equilibrium (Dunlop et al. 2009), then 

temperature was subsequently increased at a constant rate during the last 100 years, representing 

climate change from 2001 to 2100. Annual mean temperature acted as the key environmental 

forcing on brook trout populations, and affected individual growth and mortality (see Sections 

4.2.4 and 4.2.5). Air temperature at a given time (Tt) was determined by: 

𝑇𝑡 = {
𝑇0 𝑖𝑓 𝑡 ≤ 200

𝑇0 + (∆𝑇 ∙ (𝑡 − 200)) 𝑖𝑓 𝑡 > 200
                (𝐸𝑞. 4.1) 

where T0 is the initial air temperature, ΔT is the rate of air temperature warming (in °C·year-1). 

Air temperature was assumed to be identical for all populations, but stream temperatures 

experienced by each population varied based on stream thermal sensitivity, moderated by local 
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groundwater inputs (see Chapter 3). The mean growing season stream temperature from April-

November (GTt) was calculated from air temperature based on the equation: 

𝐺𝑇𝑡 = 𝐺𝑇𝑖𝑛𝑡 + (𝐺𝑇𝑠𝑙𝑜𝑝𝑒 ∙ 𝑇𝑡)               (𝐸𝑞. 4.2) 

where GTint and GTslope represent the intercept and slope from regression equations converting 

annual air temperature to growing season stream temperature experienced by each population. 

Similarly, mean summer stream temperature from June-August (STt) was calculated from air 

temperature using a linear conversion: 

𝑆𝑇𝑡 = 𝑆𝑇𝑖𝑛𝑡 + (𝑆𝑇𝑠𝑙𝑜𝑝𝑒 ∙ 𝑇𝑡)               (𝐸𝑞. 4.3) 

where STint and STslope represent the population-specific intercept and slope from conversion 

equations. Both stream temperature metrics were simulated without stochasticity, and air 

temperature was increased by 0°, 3°, or 6°C over the last 100 years of each simulation (see 

Section 4.2.6). Variation in stream temperature conversion equations (Table 4.1) resulted in each 

population experiencing different thermal regimes (Figure 4.3), with populations inhabiting 

rainfall-dominated streams (DY, HM, UO) exhibiting higher mean values and faster rates of 

warming than those in groundwater-dominated streams (LC, STBC). 

4.2.3 - Reproduction and inheritance: 

For populations to persist and evolve through time, new individuals need to be added each year 

through reproduction, and acquire evolving traits through inheritance. To initiate this process, the 

number of offspring at time t was calculated as the sum of fecundity across all mature females. 

Fecundity (ft) of individual females increased with length (Lt) according to the function: 

𝑓𝑡 = 𝑐 ∙ 𝐿𝑡
𝑑                 (𝐸𝑞. 4.4) 

where c is a constant and d is an exponential term. This allowed larger fish to produce more 

offspring (Gobin et al. 2016), which is supported by empirical studies of Cape Race brook trout 

populations (Hutchings 1993, Fraser et al. 2019). The number of recruits that enter the model at 

time t (Rt) was determined by a population-specific Ricker stock-recruitment function: 

𝑅𝑡 =  𝛼 ∙ 𝑆𝑡−1 ∙ 𝑒(−𝛽∙𝑆𝑡−1) ∙ 𝜖𝑅               (𝐸𝑞. 4.5) 

where St-1 is the total number of mature adults of both sexes during the previous time step (when 

reproduction occurred), α is the density-independent term describing the maximum number of 

recruits per spawner and β is the density-dependent compensation term that determines the shape 

of the curve when adult abundance is high (Hilborn and Walters 1992; Table 4.1). The 

multiplicative error term εR was drawn from a lognormal distribution with a mean of one and a 

shared coefficient of variation, in order to add stochasticity to the number of recruits produced 

each year. Stock-recruitment parameters were tuned to roughly reproduce the average total 

abundance of each population observed in mark-recapture surveys from 2010-2022, which varies 

over three orders of magnitude among Cape Race populations (DY, HM, and UC have relatively 

low abundance; see Nmean in Table 4.1). Notably, recruitment was much lower than the number 

of offspring, but adults that produced more offspring (i.e. larger females) were assumed to 

produce more recruits, which has been observed in Cape Race (Morrissey and Ferguson 2009). 

The parentage of all recruited individuals was tracked and used to determine evolving trait 

genotypes. Individual genotypes followed a quantitative genetic model of inheritance, with 
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random mating of males and females. Sexes were treated equally for all phenotypes, and all 

simulations were initialized with a 50:50 sex ratio. Individual offspring inherited three evolving 

traits that characterized growth (maximum growth rate) and maturation (PMRN intercept and 

slope), with segregation-recombination variances that equaled half of parental values (Dunlop et 

al. 2009). Offspring genotypes were not identical, but drawn from a normal distribution centered 

on mid-parent values with a variance determined by a shared genetic coefficient of variation 

(Gobin et al. 2021). Models of inheritance were informed by common garden experiments 

conducted in Cape Race brook trout populations (Table 4.2), which established the genetic basis 

for growth (Fraser et al. 2019) and estimated heritability and quantitative genetic variation for a 

suite of early life history traits (Wood et al. 2015). Specifically, I assumed a heritability (h2) of 

0.39 and a genetic coefficient of variation (CVG) of 0.12 (but see Section 4.2.6). This heritability 

was within the observed range for growth and life-history traits from a past review of salmonids 

(Carlson and Seamons 2008), as well as estimates from wild juveniles in one Cape Race brook 

trout population (Morrissey and Ferguson 2011). 

4.2.4 - Growth and maturation: 

Individuals grew larger and matured with age based upon evolving trait genotypes and plasticity 

(i.e. density-dependence and stream temperature) within each population. Increasing 

temperatures driven by climate change (Figure 4.3) therefore acted as a selective pressure that 

could alter the phenotypic and genetic composition of populations. Individual growth was age-

structured and modeled using the biphasic growth model of Lester et al. (2004), which accounts 

for the allocation of energy towards gonads after maturity. Maturation status of each individual 

was determined before growth occurred at each time step. For immature individuals, length at a 

given time step (Lt) increased linearly according to the equation: 

𝐿𝑡 = ℎ𝑡 ∙ 𝐴𝑡                (𝐸𝑞. 4.6) 

where ht is the annual growth rate and At denotes age in years at time step t.  

For mature individuals, length increased according to an asymptotic function: 

𝐿𝑡 = (
3

3 + 𝑔
) ∙ 𝐿𝑡−1 + (3 ∙

ℎ𝑡

3 + 𝑔
)              (𝐸𝑞. 4.7) 

where g is the population-specific reproductive effort, which was calculated from the von 

Bertalanffy growth coefficient estimated from mature individuals (Lester et al. 2004).  

In both cases, expressed growth rates (ht) were a function of the maximum growth rate genotype 

(hmax) that each individual inherited from its parents, and scaled according to population biomass 

(Bt) and average stream temperature during the growing season (GTt) experienced during that 

time step (modified from Gobin et al. 2021; Figure 4.2). This was modeled by the equation: 

ℎ𝑡 = (
ℎ𝑚𝑎𝑥

𝑚 + 𝑛 ∙ 𝐵𝑡
) + 1.67 ∙ (𝐺𝑇𝑡 − 𝐺𝑇𝑟𝑒𝑓)               (𝐸𝑞. 4.8) 

where n represents the loss of food due to competition among individuals, m represents the loss 

of food due to other causes (after Walters and Post 1993), GTref is the reference growing season 

stream temperature representing the average across all populations from 2010-2022, and 1.67 is 

the effect of relative growing season stream temperature on growth (i.e. if GTt exceeds GTref by 
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1°C, ht increases by 1.67 mm·year-1 on average). Growing season temperature was assumed to 

positively and linearly influence growth rates based on data from mark-recapture surveys (see 

Chapters 2 and 3). Thus, expressed growth was density- and temperature-dependent, and these 

effects acted as non-evolving sources of phenotypic plasticity (Table 4.2). 

Population biomass at a given time was obtained by summing the weights (Wt) of all individuals 

age-1 and older. Weights were determined by population-specific length-weight relationships: 

𝑊𝑡 = 𝑎 ∙ 𝐿𝑡
𝑏               (𝐸𝑞. 4.9) 

where a is a constant and b is an exponential term (Table 4.1). 

Individual maturity status (Mt) was treated as a binary variable (i.e. 0 for immature, 1 for mature) 

and determined by population-specific PMRNs (Figure 4.2). During each time step, the 

probability of maturing (pmat) at a given age (At) and length (Lt) was estimated from a function: 

𝑝𝑚𝑎𝑡 = 𝑓(𝐴𝑡, 𝐿𝑡  | 𝐼, 𝑆, 𝑤)                 (𝐸𝑞. 4.10) 

where I is the PMRN intercept genotype and S is the PMRN slope genotype that each individual 

inherited from its parents, and w is the PMRN width that described the range of sizes at which 

individuals can mature at each age. A random number drawn above or below the estimated 

probability determined individual maturity status (Gobin et al. 2016). Initial population means 

for PMRN slopes were assumed to be zero with a width of 20mm (Figure 4.2), while PMRN 

intercepts were estimated via logistic regression as the length at 50% maturation based on 

lengths of wild adults (Zastavniouk et al. 2017) and a similar number of putatively immature 

age-0 and age-1 individuals collected during mark-recapture surveys. Although detailed data on 

the lengths of immature fish at older age-classes were unavailable, assumed PMRNs reflect the 

fact that Cape Race brook trout are short-lived and mature at a relatively narrow range of ages 

(two to four years; Hutchings 1993). 

4.2.5 - Mortality: 

Mortality of individuals after recruitment occurred at the end of each time step. The annual 

probability of natural mortality (pmort) was calculated by the equation: 

𝑝𝑚𝑜𝑟𝑡 = (1 − 𝑒−𝑍  + (𝑀𝑡 ∙ 𝐶)) + (0.0284 ∙ (𝑆𝑇𝑡 − 𝑆𝑇𝑟𝑒𝑓))               (𝐸𝑞. 4.11) 

where Z is the population-specific instantaneous mortality rate, Mt is individual maturity status 

(immature=0, mature=1), C is the population-specific cost of reproduction, STt is the population-

specific summer stream temperature, and STref is the fixed reference summer stream temperature 

representing the average across all populations from 2010-2022. Similar to maturity status, a 

random number drawn above or below the estimated probability determined individual survival. 

Instantaneous mortality rates were based on longevity data collected by Bernos and Fraser 

(2016) and estimated using a model from Hoenig (1983). Increasing summer stream temperature 

was assumed to increase mortality based on recent transplant experiments of Cape Race brook 

trout, which found that exposure to high summer temperatures (>15°C over ~3 months) 

increased mortality (Yates et al. 2019). This response was similar across populations, and was 

further supported by laboratory experiments that showed limited population variation in thermal 

tolerance (Wells et al. 2016). Similarly, the effect of maturity status reflects consistent increases 
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in overwintering mortality observed after spawning (Hutchings 1994, Morrissey and Ferguson 

2009), as the cost of reproduction (C) was assumed to be related to reproductive effort (g). 

Specifically, populations with high reproductive effort (LC, STBC, UC) exhibited a 30% 

increase in mortality after maturity (see Morrissey and Ferguson 2009), while those with 

intermediate effort (BC, HM, UO) displayed a 20% increase, and those with low effort (DY, 

WC) had only a 10% increase (Table 4.1). 

4.2.6 - Model scenarios and comparative analysis: 

Climate models suggest an average of 2-3°C of atmospheric warming is most plausible by the 

end of the century, and recent studies suggest that higher emission scenarios (e.g. RCP8.5) are 

probably unrealistic (Burgess et al. 2023). Nonetheless, northern regions such as Newfoundland 

are warming faster than the global average (increase of 0.35°C·decade-1 from 1980-2021; see 

Chapter 3), so I tested three climate scenarios with annual air temperature increases of 0°C, 3°C, 

and 6°C by the end of the century. This was done by adjusting the value of the ΔT parameter to 

equal 0, 0.03, or 0.06 respectively (Table 4.2). Additionally, each climate scenario was run with 

evolving trait genotypes allowed to change over time according to their heritability and genetic 

variance, or held constant at their initial values by setting genetic variance to zero (Table 4.2), 

yielding a total of six scenarios tested for all eight populations. To compare effects of climate 

change across scenarios, I calculated observed changes over the last 100 years of twenty 

independent simulations for three evolving trait genotypes (maximum growth rate, PMRN 

intercept and slope), two measures of population demography (total abundance and biomass), 

and three phenotypic traits (expressed growth rate, female length and age at maturation). Growth 

curves were also constructed to visualize how length-at-age for individuals age 1 to 5 changed 

over time (simulation years 100, 200, and 299) across all six scenarios. 

4.3 Results: 

4.3.1 - Evolving trait genotypes: 

As expected, none of the three evolving trait genotypes changed over time in simulations where 

genetic variation was set to zero, regardless of the climate scenario (Table 4.3). However, 

significant changes in genotypes often occurred in simulations when traits were allowed to 

evolve, but the magnitude varied by trait, population, and climate scenario (Table 4.3, Figure 

4.4). 

PMRN intercepts (I; see Equation 4.10) exhibited varying degrees of evolutionary change over 

the last 100 simulation years under 0°C of warming, ranging from a reduction of 2.8 mm in HM 

to an increase of 16.4 mm in STBC. Specifically, PMRN intercepts tended to increase most in 

populations inhabiting cold groundwater-dominated streams (LC, STBC) and decline in 

populations with low abundance occupying warm rainfall-dominated streams (DY, HM), but 

changed relatively little in other populations (BC, UC, UO, WC; Table 4.3). Similar patterns 

were observed in other climate change scenarios, but average outcomes became more clearly 

linked to stream thermal regimes with 3° and 6°C of warming (Figure 4.4; see top row). This was 

exemplified by PMRN intercepts in UO, which were relatively stable without warming but 

declined over time as warming intensified, ultimately becoming more similar to other rainfall-

dominated streams (Table 4.3). Notably, there appeared to be more variation across simulations 

in populations exhibiting low abundance (DY, HM, UC), which became more prominent as the 

amount of warming increased (Figure 4.4). 
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PMRN slopes (S; see Equation 4.10) were initially assumed to be flat (slope = 0 mm·year-1) and 

did not change considerably on average over the last 100 simulation years. Across all 

populations and climate change scenarios, the largest observed evolutionary changes in PMRN 

slopes were an increase of 0.059 mm·year-1 (DY under 6°C of warming) and a decrease of 0.089 

mm·year-1 (HM under 6°C of warming; Table 4.3). Considering that Cape Race brook trout 

rarely live beyond age-5 (Figure 4.1b), simulated changes in slopes translate to a difference in 

median length-at-maturity of only 0.3-0.5 mm over the lifetime of most individuals, which is 

probably not biologically significant. Moreover, outcomes varied across simulations in every 

population, with a range of change spanning zero (Figure 4.4; see middle row). 

Maximum growth rates (hmax; see Equation 4.8) consistently increased over time across all 

simulations, but the magnitude of evolutionary change differed across thermal regimes (Figure 

4.4; see bottom row). Under 0°C of warming, growth rates increased by 31.2 to 51.8 mm·year-1, 

but changes in growth were lower for populations within cold groundwater-dominated streams 

(LC, STBC; Table 4.3). Similar patterns were observed as rates of warming increased, with 

populations generally evolving faster maximum growth rates under 3°C (36.2 to 56 mm·year-1) 

and 6°C of warming (38.4 to 54.5 mm·year-1) while maintaining comparable population 

differences (Table 4.3). Similar to PMRN intercepts, greater variation across simulations was 

evident in populations with low abundance (DY, HM, UC; Figure 4.4). 

4.3.2 - Population demography: 

Simulated population demography showed that brook trout abundance and biomass remained 

stable or increased modestly when warming did not occur (0°C scenario), while increasing 

temperatures by 3° or 6°C tended to reduce population abundance and biomass (Table 4.3). 

However, there was considerable population variation in demographic outcomes that was largely 

driven by stream thermal regimes within each scenario (Figures 4.5 and 4.6). Changes in 

abundance and biomass were calculated over the last 100 simulation years, but were expressed as 

percent differences in order to account for disparities among populations in average biomass 

(range = 1.4 to 62.5 kg) and spawner abundance (range = 44 to 2,015 individuals; Table 4.1). 

Climate change tended to reduce abundance in simulations with no evolution, but the magnitude 

of population decline differed based on stream thermal regime (Figure 4.5; see top row). 

Population abundance changed little on average under 0°C of warming, ranging from a 5% 

decline to a 7% increase in abundance (Table 4.3). In contrast, abundance declined in every 

population exposed to 3°C of warming, with severe declines of 53 to 98% in populations 

occupying warm rainfall-dominated streams (DY, HM, UO) while more modest declines of 16 to 

22% were observed in populations inhabiting cold rainfall-dominated streams (LC, STBC; Table 

4.3). Abundance declined even more precipitously under 6°C of warming, ranging from 

complete extirpation (100% decline) of HM within the warmest stream to a 22% decline of 

STBC in the coldest stream (Table 4.3).  

Overall, life history evolution appeared to dampen climate-induced declines in abundance, but 

populations experiencing the warmest thermal regimes were still more negatively affected than 

those inhabiting cooler streams in every scenario (Figure 4.5; see bottom row). In models where 

populations were allowed to evolve over time, relatively small changes in abundance occurred 

when temperatures warmed by 0°C, spanning a 2% decline to a 17% increase on average (Table 

4.3). When temperatures warmed by 3°C, abundance declined by 24 to 38% in warm rainfall-
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dominated streams (DY, HM, UO) but only declined by 8 to 19% within cold groundwater-

dominated streams (LC, STBC; Table 4.3). Similarly under 6°C of warming, a 74% decline in 

abundance occurred for the population inhabiting the warmest stream (HM), while a decline of 

only 25% was observed in the coldest stream (STBC; Table 4.3).   

In general, changes in simulated biomass exhibited similar patterns to population abundance 

(Figure 4.6), but were more complex due to the evolution of increased maximum growth and 

divergent PMRN intercepts (see Section 4.3.1), which indirectly affected individual maturation 

schedules, length, and weight. For biomass in model scenarios with no evolution (Figure 4.6; see 

top row), most populations were relatively stable with 0°C of warming, with changes varying 

from a 4% decline to a 9% increase (Table 4.3). Conversely, biomass was reduced in every 

population under 3°C (8 to 99% declines) and 6°C of warming (17 to 100% declines), with the 

most severe reductions occurring in the three warmest rainfall-dominated streams (DY, HM, UO; 

Table 4.3). In model scenarios when evolution was allowed to occur (Figure 4.6; see bottom 

row), biomass increased in every population under 0°C of warming (13 to 26% rise; Table 4.3). 

With 3°C of warming, biomass rose slightly by 2 to 9% in populations occupying cold 

groundwater-dominated streams (LC, STBC), but declined by 32% within the warmest stream 

(HM) and was reduced slightly in other populations (0.2 to 9% declines; Table 4.3). Biomass fell 

in every population under 6°C of warming, but declines were strongly ordered by stream thermal 

regime, ranging from 3% in STBC to 40% in HM (Table 4.3).   

4.3.3 - Phenotypes: 

Climate-induced changes in three phenotypic traits related to growth (expressed growth rate) and 

maturation (length- and age-at-maturation for females) were assessed, which integrated changes 

in evolving trait genotypes and plasticity due to changes in stream temperature and density-

dependent growth (see Equation 4.8). Differences in the average phenotype of all surviving 

individuals were calculated over the last 100 simulation years as a proxy for shifts in phenotypic 

composition within each population across all six scenarios. Similar to evolving trait genotypes 

and population demography, simulated results mostly varied according to stream thermal regime 

within each scenario (Table 4.3). However, when evolution was not allowed to occur, phenotypic 

change could not be calculated in two populations with low abundance, DY (6°C scenario) and 

HM (3° and 6°C scenarios) because steep declines in abundance meant that no individuals 

remained during the last year of most simulations (Figure 4.5). 

Expressed growth rate phenotypes (ht; see Equation 4.8) generally increased over time in every 

population and scenario. In scenarios when evolution was not allowed to occur, changes were 

small and variable on average under 0°C of warming (range: decrease of 2.8 mm·year-1 to 

increase of 1.5 mm·year-1), but individuals consistently grew faster under 3° (3.6 to 22 mm·year-1 

increase), and 6°C (5.6 to 43.1 mm·year-1 increase) of warming (Table 4.3). Larger gains in 

growth were evident in populations inhabiting warm rainfall-dominated streams, such as UO. 

Increases in simulated growth were disproportionately higher in scenarios when evolution was 

allowed to occur, as expressed growth progressively rose under 0° (range: 0.2 to 6.8 mm·year-1 

increase), 3° (5.2 to 30.8 mm·year-1 increase), and 6°C (10.9 to 86.5 mm·year-1 increase) of 

warming, with the smallest increases occurring in populations within colder streams (LC, STBC) 

and larger increases in populations occupying warmer streams (DY, HM, UO; Table 4.3). 
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Female length-at-maturation phenotypes most commonly increased within simulations, but 

exhibited idiosyncratic changes across populations and scenarios. In scenarios without evolution, 

changes were small under 0°C of warming (range: 2.8 mm decrease to 3.3 mm increase), but 

became more skewed towards larger length-at-maturation with 3° (5.9 mm decrease to 35.4 mm 

increase), and 6°C of warming (9.4 mm decrease in UC, increase of 0.1 to 28.4 mm elsewhere; 

Table 4.3). Results were not strongly ordered by stream thermal regime, but females tended to 

mature at modestly larger sizes in populations within cold groundwater-dominated streams (LC, 

STBC; Table 4.3). In scenarios with evolution, length-at-maturation declined slightly on average 

in DY and UC under 0°C of warming (0.8 to 1 mm decrease) but rose in other populations (2.6 

to 15.4 mm increase), with the largest increases in groundwater-dominated LC and STBC (Table 

4.3). Similar patterns occurred as rates of warming increased, as females matured at smaller sizes 

in two relatively warm streams (DY, UO), but otherwise exhibited larger length-at-maturation 

under 3°C (increase of 4.5 to 19.8 mm) and 6°C (increase of 6.4 to 19.8 mm) of warming, while 

larger increases tended to occur in populations within relatively cold streams such as LC, STBC, 

and WC (Table 4.3). 

Female age-at-maturation phenotypes most commonly declined across simulations, indicating a 

general shift towards earlier reproduction under climate change. With 0°C of atmospheric 

warming, shifts in average age-at-maturation were small and variable in scenarios without 

evolution (range: 0.04 year decrease to 0.11 year increase) and with evolution allowed to occur 

(0.15 year decrease to 0.29 year increase; Table 4.3). With 3°C of atmospheric warming, female 

age-at-maturation was consistently reduced in scenarios when evolution was not allowed to 

occur (0.09 to 0.48 year decrease) and when evolution did occur (0.01 to 0.54 year decrease; 

Table 4.3). Similar patterns occurred under 6°C of atmospheric warming, as females always 

matured at younger ages in scenarios both without (0.28 to 0.75 year decrease) and with 

evolution (0.17 to 0.81 year decrease; Table 4.3). When rates of warming were higher (3° and 

6°C), the largest reductions in age-at-maturation tended to occur in populations occupying 

warmer streams (DY, HM, UO), while shifts were less pronounced within cooler streams (LC, 

STBC, WC; Table 4.3). 

4.3.4 - Growth curves: 

For nearly all populations, increasing the rate of climate warming led to progressively larger 

simulated length-at-age (Figure 4.7). Additionally, when evolution was not allowed to occur 

(Figure 4.7; see top panels), length-at-age remained largely static as simulations progressed 

through time, but tended to increase over time when evolution did occur (Figure 4.7; see bottom 

panels). The only exception to this pattern was HM, which was stable or showed shifts towards 

smaller size-at-age under climate change and over time within simulations, possibly due to a 

combination of demographic stochasticity (see Section 4.3.2) and its exposure to the warmest 

stream temperatures in Cape Race (Figure 4.3), which reduced samples sizes via high mortality. 

With the exception of HM, the degree to which growth curves changed in each population 

appeared to be largely driven by stream thermal regime and population-specific reproductive 

effort (Table 4.1). Specifically, two populations in warm rainfall-dominated streams (DY, UO) 

exhibited the biggest increases in length-at-age as the rate of warming increased, with average 

simulated lengths at age-5 exceeding 350 mm under 6°C of warming and when evolution 

occurred (Figure 4.7). This is substantially larger than any individual observed in current Cape 

Race monitoring programs (maximum length ~ 230 mm; Figure 4.2). In contrast, two 

populations occupying the coldest groundwater-dominated streams exhibited the smallest 
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climate-induced increases in modeled length-at-age (LC, STBC), with age-5 lengths never 

exceeding 200 mm. 

4.4 Discussion: 

By simulating the effects of climate warming on life history evolution, demography, and 

phenotypes of Cape Race brook trout populations, I uncovered substantial variation in multiple 

responses. Through a combination of evolution and phenotypic plasticity, increasing rates of 

warming from 0° to 3° to 6°C over 100 years generally caused individuals to develop faster 

growth rates, larger sizes-at-maturation, and earlier ages-at-maturation over time, which should 

increase body size and reproductive output in every population. These gains were offset by 

higher mortality as rates of warming increased, which reduced abundance and caused severe 

declines in some populations under 3° and 6°C of warming. However, declines in abundance 

were dampened when evolution was allowed to occur, which generally increased the magnitude 

of phenotypic change within simulations. How these processes combined to shape changes in 

population biomass was strongly influenced by stream thermal regime, as populations inhabiting 

colder groundwater-dominated streams (LC, STBC) exhibited less phenotypic change and 

smaller increases in mortality than those in warmer rainfall-dominated streams (DY, HM, UO). 

As a result, population biomass in groundwater-dominated streams declined only slightly (under 

6°C) or sometimes even increased (under 3°C), while biomass within rainfall-dominated streams 

was consistently reduced and some populations were extirpated completely under 6°C of 

warming. Therefore, my models suggest that brook trout as a species will exhibit diverse 

responses to future climate change, even among geographically proximate populations. The vital 

role of fine-scale thermal habitat variation, phenotypic plasticity, and life history evolution is 

broadly relevant for predicting biodiversity loss, and highlights the importance of conserving 

natural habitat variation and adaptive potential in many species. 

4.4.1 - Importance of thermal habitat 

The variation observed in model outcomes across Cape Race shows that demographic responses 

to climate change in brook trout are likely to be population-specific, even at very small spatial 

scales. Although populations were separated by <3 kilometers, thermal habitat differed 

significantly and appeared to be the most influential driver of future population demography. 

This is best illustrated by simulated changes in biomass, which integrated shifts in abundance, 

growth phenotypes, and stream temperature within each population. In the scenario with 

evolution under 6°C of atmospheric warming, biomass was predicted to decline by 32% over 100 

years in the population inhabiting the warmest rainfall-dominated stream in Cape Race (HM), 

but only declined by 3% in the population occupying the coldest groundwater-dominated stream 

(STBC; Table 4.3). Between these extremes, changes in population biomass were ordered by 

thermal regime (Figure 4.6), with the average percent change in population biomass showing a 

strong correlation with population-specific STslope values (r = -0.93; Tables 4.1 and 4.3). This 

suggests that, for species with diverse populations like brook trout, caution is warranted when 

interpreting coarse-scale models of climate vulnerability that average over many discrete 

populations (e.g. Clark et al. 2001, Flebbe et al. 2006; see Chapter 2). Similarly, model 

predictions from one population may not necessarily support accurate inferences about other 

populations, or indeed the species as a whole, especially without information about the thermal 



84 
 

sensitivity of occupied streams (Snyder et al. 2015). Comparable population-specific responses 

to climate change are likely common in other species, especially those with large ranges, 

fragmented habitats, and significant population differentiation (Amburgey et al. 2018, Rowland 

et al. 2022). 

My results differed from a previous study that projected the effects of climate change on four 

more southerly brook trout populations, which suggested that warming was likely to drive every 

population to extirpation (Bassar et al. 2016). However, thermal regimes experienced by 

populations in Bassar et al. (2016) were very similar, while average summer stream temperatures 

and rates of warming in Cape Race differed considerably (Figure 4.3; see Chapter 3). This could 

suggest that fine-scale population variation in demographic responses to climate change is not 

universal, but depends on geographic and landscape contexts that influence local thermal 

regimes. For example, compared to other well-studied trout streams in the United States and 

Canada (e.g. Bassar et al. 2016, Carlson et al. 2019, Daigle et al. 2019, Lu et al. 2023), streams 

in Cape Race are more physically isolated and exhibit relatively cool stream temperatures, likely 

because they are situated at a higher latitude with a cool microclimate (see Chapter 3). 

Additionally, drainages in Cape Race are uninhabited by humans and thus unimpacted by land 

use change or groundwater withdrawal, which can homogenize stream temperature (Stranko et 

al. 2008, Lapides et al. 2022). Overall, diversity in thermal regimes should contribute to the 

stability and resilience of brook trout populations under future climate change, both in Cape 

Race (see Chapter 2) and elsewhere (Valentine et al. 2024). Nonetheless, simulated abundance 

and biomass declined in every Cape Race population under 6°C of warming, highlighting the 

importance of mitigating climate change as much as possible (IPCC 2023). To understand key 

drivers of variation in climate-induced biodiversity loss, more mechanistic modeling studies are 

needed to improve predictions of demographic responses to climate change across a wide range 

of species, populations, and environmental contexts (O’Sullivan 2021, Urban et al. 2023). 

Thermal habitat also influenced the magnitude of climate-induced genetic and phenotypic shifts 

in Cape Race brook trout, as populations within cooler groundwater-dominated streams (LC, 

STBC) exhibited relatively little change in maximum growth genotypes, expressed growth rates, 

and female maturation patterns within simulations (Table 4.3). Indeed, warming stream 

temperature acted as a driver of plasticity and selection (see Section 4.4.2 below), while initial 

temperatures and rates of warming were both considerably lower in colder streams. Modeled 

growth curves also shifted towards larger size-at-age in every population, but generally changed 

more in warmer streams (DY, UO) than in colder streams (Figure 4.7). However, changes in 

growth curves could not be explained by thermal regimes alone, as growth increased 

considerably more in WC than in UC, even though WC experienced cooler temperatures (Figure 

4.7). This could be due to much lower reproductive effort in WC (g = 0.47 in WC, g = 0.92 in 

UC). High reproductive effort in UC, which has the shortest lifespan out of any study population 

(Figure 4.1b), constrains the amount of energy allocated towards growth after maturation occurs 

(Lester et al. 2004), making changes in growth less pronounced. This may also partially explain 

why growth curves were relatively static in groundwater-dominated LC and STBC, which 

exhibited high reproductive effort (g = 0.77 and 0.92, respectively; Table 4.1). Demographic 

stochasticity may have also played a role, as the least abundant populations (DY, HM, UC) 

showed more variable phenotypic and demographic shifts across simulations (Figures 4.4 and 

4.6), likely due to random fluctuations in survival having larger per-capita effects in small 

populations (Lande et al. 1993). 
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4.4.2 - Effects of life history evolution on persistence 

Life history evolution in Cape Race brook trout considerably dampened declines in simulated 

population abundance and biomass due to climate change, supporting the notion that adaptive 

potential will be a key determinant of future persistence (Reed et al. 2011, Urban et al. 2023). 

Under 6°C of warming, the population occupying the warmest stream (HM) was always 

extirpated when evolution did not occur (i.e. genetic variance was set to zero), but abundance 

declined by 74% and biomass was only reduced by 32% when populations evolved through time. 

Similar demographic buffering was evident in other populations, especially for biomass (Figure 

4.6), likely because evolution enabled larger and more rapid changes in life history phenotypes 

under climate change. Indeed, expressed growth rates increased progressively as rates of 

warming rose from 0° to 3° to 6°C, and this pattern was even stronger when evolution was 

allowed to occur (Table 4.3). In the scenario with evolution under 6°C of warming, expressed 

growth roughly doubled in four populations (BC, DY, HM, UO) on average over the course of 

300 simulation years, or 100-150 generations. Mechanistically, increased growing season 

temperatures and warming-induced declines in population biomass both resulted in faster growth 

rates through phenotypic plasticity (Equation 4.8), and this often resulted in considerably larger 

individual body size under climate change, even when evolution did not occur (Figure 4.7). 

When evolution took place, increases in growth were intensified because fecundity increased 

exponentially with body size and individual contributions to the next generation were 

proportional to fecundity (see Section 4.2.3), which should select for adults with higher 

maximum growth genotypes. Faster expressed growth rates also likely contributed to females 

maturing earlier and at larger sizes in most populations under climate change (Table 4.3), which 

should increase adult length, weight, fecundity, and frequency of reproduction over time. 

Together, these phenotypic changes increased individual-level biomass production and offset 

losses caused by climate-induced reductions in survival, thus explaining the beneficial effect of 

life history evolution on population biomass within simulations (Figure 4.6). My results support 

prior assertions that population-specific life histories in Cape Race are adaptive and influence 

fitness (Hutchings 1993, 1994, Fraser et al. 2019), but plasticity in individual growth also plays 

an important role (Hutchings 1996). 

There is considerable interest in evolutionary rescue (Carlson et al. 2014) and plastic rescue 

(Snell-Rood et al. 2018) under climate change, which describe the ability of phenotypic change 

via evolution or plasticity to prevent extirpation. For example, two previous modeling studies in 

salmonids showed that warmer temperature and changes in precipitation under climate change 

will likely lead to extirpation, overwhelming the rescue effects of plasticity (Bassar et al. 2016) 

and evolution (Ayllón et al. 2019). However, my research shows that plastic rescue and 

evolutionary rescue should both contribute to persistence in Cape Race brook trout under climate 

change. For populations in streams with cold (LC, STBC, WC) or intermediate thermal regimes 

(BC, UC), plasticity alone was sufficient to prevent extirpation under 6°C of warming, although 

declines in abundance were dampened when evolution occurred (Figure 4.5). In contrast, plastic 

rescue was insufficient for populations inhabiting the warmest streams (DY, HM, UO) under 6°C 

of warming, but these populations persisted when plasticity and evolutionary rescue occurred 

together (Figure 4.5). Thus, the combined effects of phenotypic change through plasticity and 

life history evolution enabled all eight simulated Cape Race populations to persist in a warming 

world, but the relative importance of evolutionary rescue varied by thermal regime. This further 

underscores the need for more modeling studies across a greater range of environments in 
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salmonids (O’Sullivan 2021), and suggests that habitat heterogeneity could influence the strength 

of plastic rescue and evolutionary rescue in other species (Nadeau et al. 2017b). 

4.4.3 - Limitations 

My research, like any modeling study, includes assumptions and simplifications that limit the 

generalizability results, which could be improved upon in future work. First, my current models 

captured a simplified range of future atmospheric warming scenarios over the next century, but 

using empirical climate projections based on shared socioeconomic pathways (SSPs) would be 

more realistic (Burgess et al. 2023, IPCC 2023). I also did not account for climate-induced 

changes in precipitation, which can intensify or offset the effects of warming on salmonids (see 

Chapter 1). Although I did not observe strong precipitation effects in Cape Race (see Chapter 2), 

multiple studies in the United States found that increased rainfall during brook trout incubation 

and emergence is associated with lower juvenile abundance (Warren et al. 2009, Sweka and 

Wagner 2022, Maitland and Latzka 2022, Valentine et al. 2024). In Newfoundland, recent 

ensemble projections suggest air temperature will increase by 4-6°C and precipitation will 

increase 0-10% by the end of this century (Leduc et al. 2019, Sobie et al. 2023). Thus, depending 

on the exact climate model and emission scenario considered, my simulations that assumed 6°C 

of atmospheric warming this century may be unrealistic. Downscaled projections from multiple 

climate models across various SSPs are available from the Canadian government (Sobie et al. 

2023) and other global databases (e.g. Karger et al. 2023), which should be leveraged to create 

more representative climate scenarios for Cape Race populations in the future. 

Second, current models may not accurately represent life history evolution in Cape Race brook 

trout populations. For example, I assumed heritability and genetic variance values based on a 

common garden experiment conducted on juveniles from multiple Cape Race populations (Wood 

et al. 2015). These values were within the observed range from other studies of salmonids, but 

were relatively high (Carlson and Seamons 2008, Gobin et al. 2021), and could have thus 

overestimated the rate of evolution. The assumed heritability may also not apply to all life-stages 

in wild populations (Morrissey and Ferguson 2011), while natural selection can potentially 

reduce the genetic variance of fitness-linked traits over time (Stearns and Hendry 2004). 

Correlations and tradeoffs between life history traits were also not accounted for, even though 

they can significantly affect evolution (Stearns 1992). Most notably, the substantial increase in 

maximum growth genotypes could suggest that growth-mortality tradeoffs were not sufficiently 

strong, even though they were indirectly included through the effects of temperature. Similarly, 

salmonid life history traits are highly polygenic (Tsai et al. 2015, Ali et al. 2020; but see Pearse 

et al. 2014) and may thus be influenced by correlations among genetic loci that influence 

multiple traits. More research is needed on genetic and phenotypic correlations among life 

history traits in Cape Race brook trout, as well as the genomic basis of traits and the maintenance 

of individual genetic variation. 

Finally, the exact contribution of climate change, stream thermal regimes, evolution, and 

plasticity to model outcomes has not been quantified in the current study. For example, while 

stream thermal regimes clearly structured population-specific responses to climate warming in 

Cape Race, the abundance and reproductive effort of each population also influenced patterns of 

phenotypic change (see Section 4.4.1). Additionally, I did not assess model outcomes without 

density-dependent growth (after Gobin et al. 2021), which likely exacerbated climate-induced 

increases in growth because population biomass often declined at the same time (Figure 4.6). In 
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the future, a more generalized model parameterization coupled with a targeted sensitivity 

analysis (Dunlop et al. 2009, Bernos et al. 2023) is needed to quantify the importance of stream 

thermal regimes, especially compared to the impacts of more realistic climate scenarios (e.g. 

projections from multiple SSPs; IPCC 2023), density-dependence, and other population 

attributes that affected model outcomes (e.g. initial population abundance and life history traits). 

4.5 Conclusion: 

To my knowledge, this is one of very few assessments of climate change impacts that accounts 

for variation in habitat characteristics, life history traits, demography, and evolutionary potential 

across many wild populations (Urban et al. 2016). My research is also the first to apply this 

modeling approach to brook trout, which was enabled by decades of past research in Cape Race 

(Hutchings 1993, Wood et al. 2014, Fraser et al. 2019). My work illustrates how thermal 

regimes, plasticity, and evolution will all play a significant role in shaping future population 

demography within species under climate change. In accordance with initial predictions, 

abundance declined while individual growth rates and sizes-at-maturation mostly increased as 

the climate warmed. Together, this caused biomass to decline in every population under 6°C of 

warming, but the exact decline varied based on thermal habitat. Specifically, simulated biomass 

was only slightly reduced in groundwater-dominated streams, which experienced colder average 

stream temperatures and slower rates of warming, while biomass declined more substantially in 

warmer rainfall-dominated streams. However, phenotypic plasticity and life history evolution 

dampened declines in abundance and, when combined, allowed every population to withstand up 

to 6°C of warming across simulations, with evolutionary rescue playing a more critical role in 

populations occupying the warmest streams. 

Collectively, the diversity in responses to climate change observed among Cape Race brook trout 

populations is remarkable considering they are separated by <3 km, share a common ancestor 

(Danzmann et al. 1998), and are exposed to the same climate. This fine-scale population 

variation may be broadly applicable to salmonids (Schindler et al. 2010; see Chapter 2), as well 

as other species that are genetically and ecologically distinct at small spatial scales while 

occupying diverse habitats with varying thermal sensitivities (Nadeau et al. 2017b; see Chapter 

3). By building more mechanistic models that capture population diversity in thermal habitat, life 

history traits, plasticity, and evolutionary potential across a range of conditions, biodiversity 

scientists should gain further insight into the fate of species and the stability of species ranges in 

a warmer future.
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4.6 Tables & Figures: 

Table 4.1: Population-specific parameters for individual-based eco-genetic models of eight Cape Race brook trout populations. 

Parameters in bold italic text are evolving traits, shown as initial mean values for genotypes drawn from a normal distribution. 

Parameter Process BC DY HM LC STBC UC UO WC Description 

α Demography 12 15 11 9 8 15 11 9 Density-independent term for Ricker 
stock-recruitment function 

β Demography 3.7e-4 1.9e-2 2.6e-2 4.6e-3 3.6e-3 2.3e-2 8.0e-4 2.3e-3 Density-dependent term for Ricker 
stock-recruitment function 

Z Demography 0.77 0.84 0.70 0.72 0.65 0.91 0.70 0.70 Instantaneous mortality rate for 
immature individuals 

C Demography 0.15 0.08 0.14 0.22 0.20 0.27 0.14 0.07 Reproductive cost, which additively 
increases mortality after maturation 

Bmean Demography 62.5 2.5 1.9 3.9 9.9 1.4 47.6 22.4 Mean biomass (kg), excluding age-0 
individuals 

Nmean Demography 2015 62 44 141 462 44 1622 616 Mean number of spawners 

I Maturation 100.6 99.8 111.7 94.2 90.8 99.6 101.4 110.6 Initial PMRN intercept (mm) 

S Maturation 0 0 0 0 0 0 0 0 Initial PMRN slope with age (mm/year) 

hmax Growth 114.8 109.4 114.4 109.3 121.8 121.4 108.0 119.4 Initial maximum growth rate 
(mm/year) 

g Growth 0.59 0.47 0.57 0.77 0.92 0.92 0.52 0.47 Reproductive effort derived from von 
Bertalanffy growth coefficient 

a Growth 1.1e-5 2.7e-5 1.6e-5 2.1e-5 2.7e-5 6.7e-6 2.5e-5 1.5e-5 Constant for length-weight relationship 

b Growth 3.02 2.85 2.95 2.87 2.82 3.13 2.84 2.96 Exponent for length-weight relationship 

STint Climate 
change 

8.33 8.44 9.39 7.52 7.14 9.35 8.98 8.12 Intercept for converting air temperature 
to summer stream temperature 

STslope Climate 
change 

0.65 0.68 0.87 0.29 0.23 0.53 0.78 0.49 Slope for converting air temperature to 
summer stream temperature 

GTint Climate 
change 

5.34 5.06 5.70 5.66 5.52 5.96 5.34 5.59 Intercept for converting air temperature 
to growing season stream temperature 

GTslope Climate 
change 

0.67 0.71 0.85 0.35 0.30 0.63 0.80 0.52 Slope for converting air temperature to 
growing season stream temperature 
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Table 4.2: Shared parameters for individual-based eco-genetic models of eight Cape Race brook 

trout populations. Values separated by commas represent values used in three different climate 

change scenarios (for ΔT) and two evolution scenarios for each population (for CVG). 

Parameter Process Value Description 

c Demography 5.3e-4 Constant for length-fecundity relationship 

d Demography 2.45 Exponent for length-fecundity relationship 

εR Demography 0.2 Coefficient of variation in recruitment 

w Maturation 20 PMRN width (5-95% probability of 
maturation, in mm) 

n Growth -0.39 Effect of biomass (relative to the 
population average, Bmean) on intraspecific 
competition for food 

m Growth 1 Effect of biomass on other causes of food 
loss 

GTref Climate change 9.72 Reference growing season stream 
temperature for growth effect 

STref Climate change 11.68 Reference summer stream temperature 
for mortality effect 

T0 Climate change 5.24 Initial mean annual air temperature 

ΔT Climate change 0, 0.03, 0.06 Rate of increase in annual air temperature 
per year 

h2 Evolution 0.39 Heritability of all evolving traits, based on 
common garden experiments 

CVG Evolution 0, 0.12 Coefficient of genetic variation of all 
evolving traits 
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Table 4.3: Average change in Cape Race brook trout evolving traits, demography, and 

phenotypes over the last 100 years of twenty independent simulations, across six scenarios. 

      No Evolution   Evolution 

Change in Output Type Population 0°C 3°C 6°C   0°C 3°C 6°C 

PMRN Intercept Evolving Trait BC N/A N/A N/A   0.4 1.4 0.1 

(mm) Genotype DY N/A N/A N/A   -0.6 -8.4 -6.6 

    HM N/A N/A N/A   -2.8 -1.8 -8.2 

    LC N/A N/A N/A   7.0 5.8 5.4 

    STBC N/A N/A N/A   16.4 12.3 11.8 

    UC N/A N/A N/A   2.9 4.1 0.4 

    UO N/A N/A N/A   1.0 -3.0 -7.0 

    WC N/A N/A N/A   0.7 0.6 0.2 

PMRN Slope Evolving Trait BC N/A N/A N/A   0 0.01 0 

(mm/year) Genotype DY N/A N/A N/A   0 0.03 0.06 

    HM N/A N/A N/A   0.05 -0.06 -0.08 

    LC N/A N/A N/A   0.03 0 0.01 

    STBC N/A N/A N/A   0.05 0.02 0.04 

    UC N/A N/A N/A   0.03 -0.02 -0.02 

    UO N/A N/A N/A   0.01 0 -0.02 

    WC N/A N/A N/A   0 -0.03 0.01 

Max Growth Evolving Trait BC N/A N/A N/A   47.9 49.2 52.1 

(mm/year) Genotype DY N/A N/A N/A   46.7 44.1 51.3 

    HM N/A N/A N/A   47.8 51.6 50.2 

    LC N/A N/A N/A   36.4 38.9 40.5 

    STBC N/A N/A N/A   31.2 36.2 38.4 

    UC N/A N/A N/A   51.8 56.0 54.5 

    UO N/A N/A N/A   43.1 46.9 53.2 

    WC N/A N/A N/A   44.8 46.4 48.0 

Abundance Demography BC 1 -32 -83   1 -41 -60 

(% change)   DY -5 -53 -99   13 -25 -47 

    HM 7 -98 -100   16 -38 -74 

    LC 0 -22 -33   3 -19 -27 

    STBC 4 -16 -22   -2 -8 -25 

    UC 5 -47 -76   17 -26 -41 

    UO 7 -78 -96   8 -24 -57 

    WC -1 -24 -46   7 -32 -45 

Biomass Demography BC 2 -27 -68   13 -9 -30 

(% change)   DY -4 -42 -96   27 -6 -25 

    HM -3 -99 -100   26 -32 -32 

    LC 3 -11 -23   18 2 -6 

    STBC 4 -8 -17   14 9 -3 

    UC 9 -23 -58   21 -5 -11 

    UO 1 -58 -92   23 -8 -40 

    WC 0 -21 -41   20 0 -17 
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      No Evolution   Evolution 

Change in Output Type Population 0°C 3°C 6°C   0°C 3°C 6°C 

Expressed Growth  Phenotype BC 0 10.4 31.9   3.5 19.7 38.4 

(mm/year)   DY 1.2 13.4 -   5.2 22.6 39.2 

    HM -2.8 - -   6.8 30.8 86.5 

    LC 0.6 3.7 6.3   1.3 7.4 12.2 

    STBC -1.2 3.6 5.6   0.2 5.2 10.9 

    UC 1.5 14.6 25.8   3.2 10.9 25.9 

    UO -0.7 22.0 43.1   3.8 24.5 51.9 

    WC -0.4 7.3 16.0   1.1 14.5 25.5 

Female Length at Phenotype BC -0.2 -4.2 28.4   3.3 19.8 9.3 

Maturation (mm)   DY 3.3 9.8 -   -0.8 -9.2 -5.5 

    HM -2.8 - -   4.0 13.9 6.4 

    LC 0.8 5.2 8.0   7.4 11.1 9.3 

    STBC 0.9 1.2 0.1   15.4 14.7 17.4 

    UC -1.2 5.8 -9.4   -1.0 4.5 13.5 

    UO -1.2 35.4 22.2   2.6 -14.5 -10.4 

    WC -0.5 -5.9 0.6   3.6 15.6 19.8 

Female Age at Phenotype BC 0 -0.48 -0.61   -0.04 -0.21 -0.65 

Maturation (years)   DY 0.11 -0.28 -   -0.15 -0.50 -0.67 

    HM 0 - -   -0.05 -0.42 -0.75 

    LC 0 -0.15 -0.28   0.03 -0.20 -0.44 

    STBC -0.01 -0.15 -0.29   0.29 -0.01 -0.17 

    UC -0.03 -0.23 -0.75   -0.02 -0.38 -0.65 

    UO 0.01 -0.09 -0.65   -0.06 -0.54 -0.81 

    WC -0.04 -0.38 -0.56   -0.03 -0.17 -0.35 

Note: Non-applicable values (N/A) were used for cells where evolving trait genotypes were fixed 

through time in ‘No Evolution’ scenarios, and dashes (-) were used for cells where population 

declines meant that average phenotypes could not be calculated for some populations and 

scenarios (see DY and HM). 
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Figure 4.1: Empirical life history patterns in eight Cape Race brook trout populations. Mean age (a) and longevity (b) of spawning 

adults from Bernos and Fraser (2016) are plotted against mean length of spawning adults from Zastavniouk et al. (2017). Similarly, 

mean age of spawning adults (c) and reproductive effort estimated from von Bertalanffy growth coefficients (d) are plotted against the 

adult:juvenile growth ratio. Growth ratios were calculated based on predicted size at age-1 (for juveniles) and change in predicted size 

from age-2 to age-4 (for adults) from von Bertalanffy growth curves, similar to previous methods used by Hutchings (1993). Linear 

regression equations and R2 values are shown separately in each panel for reference. 
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Figure 4.2: Initial growth curves and probabilistic maturation reaction norms (PMRNs) in eight Cape Race brook trout populations, 

based on empirical data from 2010-2022. Individual length observations are plotted against age estimated using finite mixture models 

(transparent points). Lester growth curves (solid lines) assuming average population-specific biomass and growing season temperature 

are shown separately for maturation at age-2 or age-3. Population-specific PMRN intercepts were estimated using logistic regression 

(dotted lines) and PMRN slopes were assumed to be zero, with a constant width of 20mm (transparent bands). Populations are colored 

according to their stream thermal regime, with cooler groundwater-dominated streams in blue and warmer rainfall-dominated streams 

in red (see Chapter 3). 
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Figure 4.3: Climate change scenarios experienced by eight Cape Race brook trout populations. Air temperature increased by 0°C 

(solid lines), 3°C (dotted lines), or 6°C (dashed lines) during the last 100 years of each simulation, which then affected stream 

temperatures experienced by each population during the growing season and summer. Slopes and intercepts for converting air 

temperature to population-specific stream temperature are shown in Table 4.1. Populations are colored according to their stream 

thermal regime, with cooler groundwater-dominated streams in blue and warmer rainfall-dominated streams in red (see Chapter 3). 
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Figure 4.4: Effects of climate change on evolving traits of Cape Race brook trout populations. 

Results are displayed as violin plots (polygons) that summarize changes in mean genotype values 

during the last 100 years from twenty independent simulations (points), organized by three traits 

(rows; top: PMRN intercept, middle: PMRN slope, bottom: maximum growth rate) and three 

climate scenarios (columns; magnitude of air temperature warming over the same 100 years). 

Populations are colored according to their stream thermal regime, with cooler groundwater-

dominated streams in blue and warmer rainfall-dominated streams in red (see Chapter 3). No 

data are shown for ‘No Evolution’ scenarios, where all three traits were fixed through time. 
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Figure 4.5: Effects of climate change on abundance of Cape Race brook trout populations. 

Results are displayed as violin plots (polygons) that summarize the percent change in total 

abundance during the last 100 years from twenty independent simulations (points), organized by 

two evolutionary scenarios (rows; whether evolution occurred or not) and three climate scenarios 

(columns; magnitude of air temperature warming over the same 100 years). Declines of 100%, in 

which population extirpation occurs, are shown for reference (dashed lines). Populations are 

colored according to their stream thermal regime, with cooler groundwater-dominated streams in 

blue and warmer rainfall-dominated streams in red (see Chapter 3).  
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Figure 4.6: Effects of climate change on biomass of Cape Race brook trout populations. Results 

are displayed as violin plots (polygons) that summarize the percent change in total biomass 

during the last 100 years from twenty independent simulations (points), organized by two 

evolutionary scenarios (rows; whether evolution occurred or not) and three climate scenarios 

(columns; magnitude of air temperature warming over the same 100 years). Declines of 100%, in 

which population extirpation occurs, are shown for reference (dashed lines). Populations are 

colored according to their stream thermal regime, with cooler groundwater-dominated streams in 

blue and warmer rainfall-dominated streams in red (see Chapter 3).  
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Figure 4.7: Effects of climate change on growth curves of Cape Race brook trout populations. Results are displayed as average size-

at-age across twenty independent simulations. Growth curves are shown for simulation years 100 (high transparency), 200 

(intermediate transparency), and 299 (no transparency), and for climate change scenarios corresponding to 0°C (solid lines), 3°C 

(dotted lines), or 6°C (dashed lines) of warming over the last 100 simulation years. Populations are colored according to their stream 

thermal regime, with cooler groundwater-dominated streams in blue and warmer rainfall-dominated streams in red (see Chapter 3).
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VI. General Conclusion 

The central question of my thesis was “What are the mechanisms that drive variation in 

contemporary and future demographic responses to climate change among salmonid fish 

populations?” In particular, I was interested in exploring the extent and spatial scale of 

population diversity in salmonids, as well as the processes that underpin this diversity. 

Salmonids are an excellent model for pursuing these questions because populations are often 

highly subdivided and occupy variable freshwater habitats, which can generate significant 

demographic differences across multiple scales (Schindler et al. 2010). Moreover, the basic 

ecology and evolution of salmonids is well-studied (Stearns and Hendry 2004), while most 

species are targeted by conservation and management efforts because they support valuable 

subsistence, recreational, and commercial fisheries (ASF 2011, PSC 2017). As climate change 

continues to increase air temperature and alter precipitation patterns over the coming decades, it 

is more important than ever to understand how population variation in demography, life history 

traits, and physical habitats can buffer salmonids against severe declines, and potentially inform 

the conservation of many less-studied species (Moore and Schindler 2022). 

By combining a global meta-analysis across 23 species (Chapter 1) and fine-scale studies of 

multiple populations of brook trout (Salvelinus foninalis) in eastern Canada (Chapters 2, 3, and 

4), my research suggests that salmonids exhibit highly variable responses to climate change, 

spanning multiple scales and arising through multiple mechanisms. Together, these features 

should stabilize salmonid abundance at large spatial scales through portfolio effects and reduce 

the likelihood of rapid climate-induced range shifts. Nonetheless, I identified some geographic 

and hydrological contexts, notably those linked to excessive stream temperatures, which 

appeared to disproportionately increase the risk of population extirpation under climate change. 

My findings have significant implications for the conservation and management of salmonids in 

a changing world, and may provide insights into the effects of climate change on other species 

with large ranges, fine-scale population differentiation, and diverse thermal habitats. 

Extent of variation: 

How common is variation in responses to climate change among salmonid populations? My 

thesis suggests that it is nearly ubiquitous, but the magnitude of variation is not always the same. 

For example, in Chapter 1, I showed that effects of temperature and precipitation on salmonid 

demography (i.e. abundance and individual growth rates) varied considerably around the world, 

and were mostly unexplained by spatial, temporal, or biological covariates. This was especially 

true for the effects of climate on abundance (variance explained: 5-10%), while covariates were 

more informative for explaining effects on growth (variance explained: 30-41%). Similarly in 

Chapter 2, I showed that abundance patterns among neighboring brook trout populations in Cape 

Race (Newfoundland, Canada) were highly asynchronous and largely unrelated to climate, while 

growth was synchronized and positively influenced by stream temperature. A consistent positive 

effect of temperature on brook trout growth was further corroborated in young-of-the-year 

individuals in Chapter 3. Therefore, salmonid growth appears to exhibit stronger and less 

variable relationships with climate than abundance. However, this could mostly be because 

temporal variation in abundance far exceeds variation in growth. For example, in Cape Race 

brook trout, abundance of age-1 juveniles fluctuated 3- to 9-fold over time, while juvenile 

growth only varied 1.3- to 1.5-fold (see Chapter 2). Although linking abundance to climate 

change to is difficult, it should remain a research priority because abundance is most crucial for 



100 
 

determining rates of biomass production (Lobón-Cerviá 2009) and ecosystem services provided 

by salmonid populations (e.g. harvest; Hilborn et al. 2003, Connors et al. 2022). 

Other studies of salmonids have emphasized the role of connectivity, habitat characteristics, and 

anthropogenic disturbance in determining the extent of population variation in responses to 

climate change, particularly for abundance. For example, neighboring populations of brook trout 

(Bassar et al. 2016, Andrew et al. 2022) and other fish species (Alonso et al. 2011, Larsen et al. 

2021) within dendritic stream networks often exhibit similar abundance patterns. This is mostly 

thought to be due to physical connectivity and exchange of individuals, as well as relatively 

small differences in stream temperature and streamflow among adjacent mainstem streams, 

which together should drive more similar population dynamics (Larsen et al. 2021; but see 

Rogers and Schindler 2008). Likewise, salmonid abundance trends are often less variable in 

areas that have been heavily impacted by human activities, especially damming, introduction of 

captive-bred individuals, and overharvest, leading to a collapse of regional portfolio effects 

(Moore et al. 2010, Carlson and Satterthwaite 2011, O’Sullivan et al. 2020). Researchers have 

also noted that land use practices such as increasing impervious surface area (Stranko et al. 

2008), withdrawing groundwater (Lapides et al. 2022), or clearing forests (Hartman et al. 1996) 

can degrade salmonid habitats, and make some streams entirely unsuitable through changes in 

thermal regimes and sediment loads. Overall, anthropogenic impacts often homogenize habitats 

and reduce ecological contrast among salmonid populations, thereby eroding demographic 

variation. Therefore, the portfolio effect driven by asynchronous abundance that I observed 

across Cape Race brook trout populations in Chapter 2 might arise from the pristine and isolated 

nature of the study area, similar to other systems with minimal human impacts (e.g. sockeye 

salmon in Bristol Bay, Alaska; Schindler et al. 2010). Overall, my thesis supports prior assertions 

that natural habitat variation should be conserved as much as possible in order to maximize 

demographic diversity and stability of salmonid populations under future climate change 

(Schindler and Hilborn 2015). 

Spatial scale: 

At what spatial scale does most variation occur in salmonid population responses to climate 

change? My thesis could not answer this question definitively, but I uncovered important sources 

of variation at continental (entire watersheds across >1,000 kilometers), regional (collections of 

subwatersheds across 10s to 100s of kilometers), and local scales (individual streams separated 

by <10 kilometers). At continental and regional scales, my work in Chapter 1 showed that 

although most variation was unexplained, demographic responses to temperature in salmonid 

populations were strongly linked to latitude and elevation. Specifically, warmer temperatures 

were associated with reduced growth and abundance at low latitudes and elevations, while 

opposite patterns were observed at high latitudes and elevations. However, at the local scale, my 

research on Cape Race brook trout in Chapter 2 suggested that substantial variation in 

demography and climate impacts can exist among salmonid populations separated by <5 

kilometers. In Chapter 3, I further suggested that local thermal habitat differences played an 

instrumental role in generating variation in phenology, growth, and survival among Cape Race 

populations. Thermal habitat was also a key determinant of population-specific responses to 

future warming uncovered by eco-genetic models in Chapter 4. Importantly, local-scale habitat 

diversity in Cape Race was not obviously related to large-scale processes, since every stream had 

very similar latitude, elevation, air temperature, precipitation, vegetation, and underlying 

geology. Altogether, my research suggests that salmonid population responses to climate change 
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are related to large-scale gradients in latitude and elevation, but local variation is likely more 

prevalent and less predictable. Therefore, I caution against over-relying on coarse-scale spatial 

assessments of conservation status and climate vulnerability (e.g. Clark et al. 2001, Flebbe et al., 

2006), and suggest integrating data across scales is most crucial for predicting responses in 

salmonids and other species (see below). 

Similar to stream-dwelling salmonids, many species consist of numerous genetically and 

ecologically distinct populations distributed over a large area, which thereby sample diverse 

regional climates and local habitat types. This is perhaps most common in species occupying 

fragmented landscapes such as many freshwater systems, isolated habitat patches such as springs 

or wetlands, and rugged terrain such as mountains or outcrops (Johansson et al. 2007, 

Waterhouse et al. 2017, Pearson et al. 2018; see Chapter 2). To confidently predict responses to 

future climate change in these species, data describing local population demography, habitat 

conditions, and climate exposure should ideally be gathered from many representative locations 

across the species range, then analyzed together. Although local-scale biological and habitat data 

are expensive and labor-intensive to collect (Iacona et al. 2018), this task can be accomplished 

through long-term monitoring and targeted range-wide collaboration. For example, wood frogs 

(Rana sylvatica) have been monitored by multiple research groups for decades across hundreds 

of sites in North America, informing studies that link local-scale population demography to 

climate change (e.g. Miller and Grant 2015, Rowland et al. 2022). Local data has also been 

pooled to identify range-wide patterns in population responses to climate, spanning nearly 20 

latitudinal degrees (Amburgey et al. 2018). This approach offers promise for other species, 

including salmonids such as brook trout (see section below: Implications for future research). 

Underlying mechanisms: 

What are the mechanisms that generate variation in salmonid population responses to climate 

change? Given the importance and idiosyncratic nature of local-scale variation in population 

demography (see previous section), I emphasize two mechanisms operating at small spatial 

scales within my study system in Cape Race, which are likely broadly relevant for salmonids. 

First, my research in Chapter 3 showed that brook trout populations were exposed to vastly 

different thermal regimes due to variation in stream groundwater inputs, which has been 

observed in other trout streams in the United States (Snyder et al. 2015, Carlson et al. 2019) and 

Canada (Daigle et al. 2019). Thermal regimes in Cape Race appeared to be linked to local 

geomorphology, especially stream gradient and the prevalence of ponds within drainages, while 

other studies have found that groundwater inputs can differ based on underlying geology (Hitt et 

al. 2023, Ishiyama et al. 2023). Other processes can also generate fine-scale variation in stream 

thermal regimes, such as snowmelt contributions, forest cover, and upstream land use (DeWeber 

and Wagner 2014, Lisi et al. 2015). Combined, these processes likely produce massive range-

wide temperature variation for salmonids and other freshwater species, and will play a key role 

in determining population-specific exposure to atmospheric warming. Nonetheless, future stream 

temperatures will likely exceed salmonid thermal limits in many areas, so local coldwater refugia 

will be vital for maintaining viable populations (Isaak and Young 2023, Mejia et al. 2023). 

Second, my work in Chapter 4 and past research in Cape Race (Hutchings 1993, Fraser et al. 

2019) suggest that neighboring brook trout populations have evolved distinct life histories that 

are adapted to local habitat conditions, affecting individual schedules of survival, growth, and 

reproduction. Furthermore, projections from mechanistic models in Chapter 4 suggested that 
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Cape Race brook trout possess considerable adaptive potential that should allow populations to 

persist in a warming climate through a combination of life history evolution and phenotypic 

plasticity. Although contemporary life history patterns and future projections were also 

influenced by stream thermal regimes in Cape Race, these results highlight the crucial role of 

fine-scale local adaptation and evolutionary potential in diversifying population responses to 

climate change. The importance of evolutionary processes to the demography and persistence of 

salmonids is well-established (Fraser et al. 2011, Reed et al. 2011), but my research is the first to 

compare adaptive responses to climate change among many salmonid populations separated by 

<3 kilometers. Similar local-scale evolutionary responses to climate change have been 

documented in wood frogs (Skelly et al. 2007, Arietta and Skelly 2021), suggesting that potential 

for rapid adaptation may be common in other wide-ranging vertebrates (but see Radchuk et al. 

2019 for an exception in birds). 

Implications for future research: 

How should researchers study population variation in demographic responses to climate change 

in the future? I contend that brook trout can serve as a useful model for integrating data across 

scales to inform conservation and management under climate change in a wide range of species. 

Brook trout are native to 21 US states and seven Canadian provinces (NatureServe 2022), and 

have a strong propensity for fine-scale genetic and phenotypic differentiation (Hutchings 1993, 

Zastavniouk et al. 2017), resulting in thousands of unique populations. Importantly, because 

brook trout support lucrative recreational fisheries, hold cultural significance, and serve as a 

coldwater indicator species, they are among the most data-rich freshwater species, with 

researchers and agencies monitoring population abundance over multiple decades in hundreds of 

locations (e.g. Zorn and Nuhfer 2007, Kanno et al. 2015, Kratzer et al. 2021). However, much 

like the species itself, monitoring efforts are highly fragmented and exchange across 

management jurisdictions is limited, making it difficult to quantify abundance trends throughout 

the species range. Building collaborative networks to gather these data and analyze them together 

(similar to Amburgey et al. 2018) would be enormously beneficial for brook trout. Indeed, a 

recent study synthesized brook trout abundance data from nine agencies in the southeastern 

United States, which generated novel insights into the spatial scale of population asynchrony, as 

well as the effects of seasonal temperature and precipitation patterns on demography (Valentine 

et al. 2024). Expanding the spatial scale of this database to include the rest of the native range in 

the United States and Canada is a clear next step. Bayesian state-space models can be applied to 

estimate demographic trends in brook trout populations while accounting for the hierarchical 

structure of stream networks, with individual stream segments nested within small subwatersheds 

and larger watersheds (Pregler et al. 2019). Coupled with information on the spatial scale of 

population differentiation in brook trout (Kazyak et al. 2022), and improved fine-scale stream 

temperature models (e.g. DeWeber and Wagner 2014, Walker et al. 2020), it may be possible to 

predict the range-wide biogeography of brook trout responses to future climate change with rare 

confidence and mechanistic detail. Similar research efforts that integrate multiple datasets across 

spatial scales have been attempted in populations of Pacific salmon (Mueter et al. 2002) and 

European brown trout (Parra et al. 2009, Donadi et al. 2023), and could potentially be applied to 

a wide range of species (Nadeau et al. 2017a, 2017b). 

Finally, further research is needed to determine the extent to which existing trait variation and 

evolutionary potential can buffer species against extirpation in a changing world. This is 

especially relevant for widespread species with highly subdivided populations, which may be 
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most likely to display local-scale variation in life history, thermal tolerance, and other traits 

(Richardson et al. 2014). Salmonid populations often exhibit well-studied genetic and phenotypic 

differences at small scales (Schindler et al. 2010), and can therefore serve as a useful model for 

researching trait variation and evolvability more generally (Stearns and Hendry 2004, Carlson 

and Seamons 2008). However, these processes have not been studied as extensively in brook 

trout as in many other salmonid species. For example, while life history patterns in lentic brook 

trout populations have been explored in some parts of Canada and the Great Lakes (Magnan et 

al. 2005, Ridgway 2008, Adams et al. 2016), very little published information exists for stream-

dwelling populations, especially in southern regions that are most vulnerable to warming (see 

Chapter 1). Similarly, common garden experiments are rarely conducted in brook trout, so 

heritabilities and genetic variances of life history traits and thermal tolerances are unknown in 

the vast majority of populations (but see Wells et al. 2016, Fraser et al. 2019). A collaborative 

approach to studying range-wide life history variation in brook trout could reveal spatial 

correlates and constraints on adaptive potential, which could then be built into mechanistic 

models to explore their effects on future demography (see Chapter 4). Overall, brook trout 

demonstrate that better data, models, and collaborations should help improve predictions of 

evolutionary responses to climate chance among natural populations, which should also be 

beneficial for many other species (Urban et al. 2023).
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VIII. Appendices 

Appendix 1: Chapter 1 Supplementary Materials 

A1.1 - Database construction: 

In addition to correlations and sample sizes, other data of interest were compiled within and 

among studies using information provided by authors. Studies were assigned a unique name and 

number, then we recorded the publication year, study species (common name, genus, species), 

location (country, region, system name), habitat type (lotic or lentic), migration behavior 

(anadromous or freshwater resident), and range portion (native or non-native) associated with 

each correlation. The precise response and predictor used in each correlation were noted, as were 

overarching variable types that were eventually used to distinguish different data sets (abudance 

or growth for responses; temperature or precipitation for predictors). In addition, we included 

more detailed categorizations of the reponse type (abundance, population growth, stock-

recruitment, survival, length, weight, or growth rate) and predictor type (average, maximum, 

minimum, percentile, PCA, or degree-day). Details about study design (spatial or temporal), data 

transformation (yes or no, based on whether the correlation contained any type of transformed 

data), and the data extraction method (correlations directly reported by authors, or based on data 

extracted from figures or tables) were also documented.  

Three descriptors of temporal context were initially recorded: age-class (0, 1, 2+, multiple), 

season (fall, spring, summer, winter, multiple), and life-stage (incubation, emergence, growing 

season, overwintering, reproduction, migration, multiple). For age-class, age-0 and age-1 

observations were required to be from single cohorts, while age-2+ observations could contain 

multiple cohorts as long as they were all age-2 or older. We adopted a similar protocol as 

Kovach et al. (2016) to differentiate seasons, using author descriptions when possible but 

otherwise assigning specific months to spring (March-May), summer (June-August), fall 

(September-November), and winter (December-February). To add more detail, life-stages were 

based on author descriptions of reproductive phenology (e.g. most salmonids spawn in fall or 

spring) and growing season (e.g. shorter at high latitudes). Another temporal variable was later 

created for life-stage*age, which was the same as life-stage but with observations from the 

growing season (which had the largest sample sizes) broken up by age-class. For all temporal 

variables, instances where multiple shorter time-periods within the level of interest were used 

(e.g. separate correlations based on mean temperatures for June, July, and August), these were 

specified to be the same level and treated as repeated measures. Conversely, the ‘multiple’ 

category was used for observations where a mix of other age-class categories were sampled (e.g. 

population size), or if the time-period assessed overlapped with multiple seasons or life-stages 

(e.g. annual average temperature or precipitation). 

In cases authors where authors did not provide sufficient information to confidently infer the 

factors described above (especially range portion and life-stage), we referred to species 

summaries on FishBase (Froese and Pauly 2010) to guide decision-making. Similar to Kovach et 

al. (2016), we also flagged instances where a variable used in the correlation was inversely 

related to the process of interest for responses (e.g. mortality, which is negatively related to 

abundance) or predictors (e.g. winter severity or drought severity, where high values correspond 

to low temperature or precipitation, respectively). We identified 21 observations from 9 studies 

with this issue, and corrected it by simply multiplying these correlations by -1. In addition, for 

cases where coefficients of determination were provided by authors based on non-linear 
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regression (e.g. Isaak and Hubert 2004, Lobón‐Cerviá and Mortensen 2005), we manually 

extracted the data and re-calculated the correlation coefficient based on linear regression. 

Finally, the database was georeferenced in order to index study locations as continuous variables 

that could be linked to other spatial data. Coordinates (in decimal degrees) were inputted directly 

if they were reported by authors, or estimated in Google Maps (WGS 84 Web Mercator 

coordinate system) based on information provided in the study. For studies conducted over large 

areas, the location of the centermost sampling site was used. After georeferencing, elevation data 

(in meters above sea level) were inputted directly if reported by authors, or extracted using the 

get_elev_point() function from the Elevatr package in R based on coordinates within Amazon 

Web Service Terrain Tiles (Hollister et al. 2021). The median elevation was used for large study 

areas with data provided across sampling sites (e.g. in a table), or otherwise inferred from the 

centermost sampling site. A comparison of elevations directly reported by authors and those 

estimated in Elevatr (n=544) suggested that the two methods yielded similar results (R2=0.80) 

and that bias was minimal. 

A1.2 - Critical appraisal and data filtering: 

Once the initial database was completed (1,735 correlations from 182 studies), B.K.G. conducted 

a critical appraisal based on thorough evaluations of each study to ensure the suitability, 

comparability, and independence of observations to the extent possible. Observations from each 

study were sequentially screened in six steps, as follows:  

1.) We verified that the correlation was ascribed to temporal (i.e. same location sampled over 

multiple years) or spatial (i.e. a wide area sampled over a short timespan) climate 

variation based on study design, and that salmonid data were not completely fishery-

dependent (e.g. landings from commercial or recreational fisheries). Observations were 

removed if data were fishery-dependent or if spatial and temporal variation were 

confounded, but retained if they were only partly fishery-dependent (e.g. recruits per 

spawner based on catch and escapement, growth or year-class strength derived from 

fishery samples). 

2.) We removed any observation where stocking of the focal population with hatchery fish 

during the study period was explicitly mentioned. We chose to retain observations from 

naturalized non-native populations or from situations where stocked fish were 

differentiated (e.g. through unique fin clips or hatchery marks) and removed from 

calculations.  

3.) We excluded any correlations based on data that were potentially incomparable to 

measures of salmonid abundance (e.g. percentage of total abundance in a given age-

class), salmonid growth (e.g. body condition, size data not standardized by age), or the 

central tendency of a climate variable (e.g. variation in discharge). 

4.) We ensured that correlations and sample sizes were entered correctly based on reporting 

in full-texts or raw data files, and verified that the response and predictor in the 

correlation were matched at the appropriate temporal or spatial scale (e.g. salmonid data 

from September could only be linked to climate variables from previous months or 

seasons). All correlations based on mismatched data were excluded. Observations based 
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on raw data from figures were also excluded if data could not be confidently extracted 

(e.g. many overlapping data points). 

5.) We removed any duplicate observations within each study and identified cases where 

multiple studies reported data for the same population. These studies were subsequently 

screened for duplicates, identifying cases where the exact same response and predictor 

variables were used across multiple studies. In these cases, we only retained the 

observation with the largest sample size or, if sample sizes were equivalent, from the 

most recent study. 

6.) Any observations with a sample size less than five were removed, because it is not 

possible to estimate the sampling variance when calculating standardized effect sizes for 

these data (Koricheva et al. 2013). 

After critical appraisal and filtering, the final database contained 1,321 correlations from 156 

studies. 

A1.3 - Publication bias in the Abundance-Precipitation data set: 

Significant publication bias was detected in the best-fit model for the Abundance-Precipitation 

data set (see Results), and a series of follow-up analyses were conducted to identify individual 

studies that contributed most to this pattern. First, residuals were plotted as a function of sample 

size, which showed a cluster of negative residuals associated with studies with intermediate 

sample sizes (visible in points with low standard errors in Figure A1.4a). Subsequently, the A-P 

data set was filtered to retain observations with residuals between -2 and 0, and sample sizes 

between 15 and 30, which allowed us to identify eleven studies that exhibited negitively skewed 

residuals (Hartman et al. 1996, Jensen and Johnsen 1999, Carline 2006, Clews et al. 2010, 

Copeland and Meyer 2011, Kennedy and Meyer 2015, Myrvold and Kennedy 2015b, 

Neuswanger et al. 2015, Zimmerman et al. 2015, Grossman et al. 2017, Manhard et al. 2017). 

These studies provided 96 observations, and nearly half of them (n=42) were from a single study 

by Copeland and Meyer (2011). The eleven studies were not representative of the A-P data set as 

a whole (total n=362), and were spatially skewed towards two study areas within the Clearwater 

River drainage in Idaho (Copeland and Meyer 2011, Kennedy and Meyer 2015, Myrvold and 

Kennedy 2015b), and Spruce Creek in Pennsylvania (Carline 2006, Grossman et al. 2017). The 

season moderator that was included in best-fit models was also skewed, with 51% of 

observations in the eleven studies categorized at the ‘multiple’ level where precipitation was 

often averaged over 9-12 months (section A1), whereas this level accounted for 35% of 

observations in the entire data set. Similarly, there were almost no observations from the fall 

(n=2, or 2% of observations) or spring (n=1, or 1%) in the eleven studies, but these were much 

more prominent in the full data set (n=25, or 7% for fall; n=34, or 9% for spring). We do not 

believe these studies were deliberately biased in any way, but rather were impacted by the over-

representation of ‘multiple’ seasons and a broader lack of seasonal contrast. The reason why 

residuals from the eleven studies are skewed negative is unclear, but may be related to the low 

number and uneven spatial distribution of observations, coupled with random among-study 

heterogeneity.  

As a first attempt to reduce bias, we removed Copeland and Meyer (2011) from the data set and 

re-ran the best-fit model, but this did not alleviate funnel plot asymmetry and the Egger test 

remained significant (p<0.05). We subsequently repeated this procedure after removing all 
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eleven studies listed above, which lessened asymmetry in the funnel plot and yielded a 

marginally non-significant Egger test (p=0.064). Collinearity was also significantly reduced 

when the eleven studies were excluded, with the ‘winter’ (VIF=2.70) and ‘multiple’ (VIF=1.87) 

levels of the season moderator exhibiting much lower VIF values compared to the best-fit model 

based on the entire data set (VIF=6.43 and 6.12, respectively; Table S2; see section 3.3). 

Estimated coefficients were similar and showed substantial overlap in 95% confidence intervals 

for best-fit models with (fall LCI, UCI=-0.25, 0.38; multiple=-0.50, -0.04; spring=-0.89, -0.31; 

summer=-0.40, 0.05; winter=-0.49, -0.02; temporal=0.10, 0.60) and without the eleven studies 

(fall LCI, UCI=-0.16, 0.56; multiple=-0.48, 0.04; spring=-0.85, -0.25; summer=-0.44, 0.02; 

winter=-0.41, 0.11; temporal=0.17, 0.69). 

A1.4 - ‘Multiple’ levels within temporal covariates: 

Over-aggregated climate data created several challenges in interpreting effects of temporal 

covariates on salmonid-climate relationships, especially for the season variable. Specifically, the 

practice of averaging climate data over 6-12 month periods was common in many studies and 

inhibited the ability to identify seasons or other time-periods with disproportionate impacts on 

productivity. Moreover, because the ‘multiple’ season category contained any estimate that could 

not be ascribed to a single season (see section A1), it includes some effects from the incubation 

period (late-fall to early-spring in many fall-spawning salmonids) and growing season (late-

spring to early-fall in many low-latitude salmonids). Indeed, we believe that this temporal 

overlap with other time-periods explains why observations from ‘multiple’ seasons contributed 

to collinearity (VIF>6) in the best-fit Abundance-Precipitation model, while it was also partly 

responsible for publication bias in this dataset (see section A1.3). 

In order to test whether the inclusion of ‘multiple’ levels within temporal covariates significantly 

impacted results in best-fit models, we removed all such observations and re-ran the same model 

structure in each dataset. Because different temporal covariates were chosen via model selection 

for each dataset (Tables 1.2 and 1.3), the specific covariate from which observations were 

removed differed in each case. Specifically, we removed ‘multiple’ observations from the season 

covariate (n=129) in the Abundance-Precipitation dataset, from the age-class covariate (n=240) 

in the Abundance-Temperature dataset, from the life-stage covariate (n=16) in the Growth-

Precipitation dataset, and from the life-stage*age covariate (n=45) in the Growth-Temperature 

dataset. This substantially reduced sample sizes (n=430 observations removed in total), but 

model coefficients after removing ‘multiple’ levels had 95% confidence intervals that overlapped 

substantially with those from the original best-fit model in all four datasets. Therefore, the 

inclusion of ‘multiple’ levels did not appear to significantly alter the results or interpretation of 

my best-fit models. 
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Table A1.1: Model results for omnibus test of covariates (Wald-type test statistic with p-values 

based on a Chi-squared distribution), and fixed effect coefficients for best-fit models from each 

data set (Abundance-Precipitation (A-P), Abundance-Temperature (A-T), Growth-Precipitation 

(G-P), Growth-Temperature (G-T)). Covariate abbreviations used for coefficients are from Table 

1.1. 

Dataset Omnibus Test Coefficient Estimate SE df p-value 

A-P 4.36 SE(Fall) 0.0769 0.1645 356 0.6403 

  (p=0.001)* SE(Multiple) -0.2134 0.1213 356 0.0795 

    SE(Spring) -0.5827 0.1507 356 <0.001* 

    SE(Summer) -0.2219 0.1177 356 0.0601 

    SE(Winter) -0.2268 0.1212 356 0.0622 

    S(Temporal) 0.3316 0.1312 356 0.0119* 

              

A-T 5.46 Intercept -1.2878 0.3255 602 <0.001* 

  (p<0.001)* Latitude 0.0189 0.0061 602 0.002* 

    Elevation 0.0002 0.0001 602 0.0011* 

    AC(1) 0.1383 0.073 602 0.0586 

    AC(2+) -0.1145 0.0712 602 0.1082 

    AC(Multiple) 0.0019 0.0677 602 0.9776 

    S(Temporal) 0.1961 0.0881 602 0.0264* 

    N(Non-Native) 0.3064 0.0983 602 0.0019* 

              

G-P 7.08 LS(Multiple) -0.0795 0.1675 59 0.6368 

  (p<0.001)* LS(Emergence) 0.0532 0.2307 59 0.8186 

    LS(Growing Season) 0.6091 0.1106 59 <0.001* 

    LS(Incubation) -0.9576 0.3196 59 0.004* 

    LS(Overwintering) 0.2410 0.1795 59 0.1844 

    LS(Reproduction) 0.4776 0.1758 59 0.0086* 

    A(Anadromous) -0.3613 0.1559 59 0.024* 

              

G-T 4.08 Intercept 0.0815 0.4845 270 0.8665 

  (p<0.001)* Latitude 0.0067 0.0072 270 0.3554 

    Elevation 0.0004 0.0002 270 0.0122* 

    LSA(Emergence) 0.0282 0.1741 270 0.8713 

    LSA(Growing Season_0) 0.0612 0.1352 270 0.6511 

    LSA(Growing Season_1) -0.2080 0.1321 270 0.1164 

    LSA(Growing Season_2+) -0.2222 0.1261 270 0.0793 

    LSA(Growing Season_Multi) 0.1335 0.2594 270 0.6071 

    LSA(Incubation) 0.4604 0.2102 270 0.0293* 

    LSA(Migration) -0.1516 0.2886 270 0.5998 

    LSA(Overwintering) -0.5486 0.1436 270 <0.001* 

    LSA(Reproduction) 0.0637 0.394 270 0.8717 

    H(Lotic) -0.3374 0.1564 270 0.0318* 
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Table A1.2: Summary of post-hoc tests of model assumptions, collinearity (variance inflation 

factors calculated across all levels of each covariate and within levels of temporal covariates), 

publication bias, taxonomic effects, and robustness of model results to methodological factors 

(see Table 1.1) or the inclusion of outlier studies. Results are shown separately for Abundance-

Precipitation (A-P), Abundance-Temperature (A-T), Growth-Precipitation (G-P), and Growth-

Temperature (G-T) datasets. Asterisks (*) denote significant results, while non-significant 

statistical tests are marked with NS. Detailed contrasts for robustness tests are shown in Table 

A1.3. 

Best-Fit Model Test A-P A-T G-P G-T 

Homoscedasticity         

Visual assessment Yes Yes Yes Yes 

          

Collinearity         

Max VIF (All) 4.31 1.39 2.11 1.43 

Min VIF (All) 4.31 1.04 2.11 1.22 

          

Max VIF (Temporal) 6.43 1.33 2.27 2.84 

Min VIF (Temporal) 1.91 1.24 1.00 1.08 

          

Publication Bias         

Funnel plot asymmetry Yes No No No 

          

Egger test (SE) 0.83 -0.03 -0.43 -0.04 

p-value 0.01* 0.90 0.55 0.91 

          

Year slope -0.04 -0.01 0.03 -0.02 

p-value <0.01* 0.17 0.15 0.03* 

          

Taxonomic Effects         

Species contrasts NS NS   NS 

Difference in 95% CI NS NS   NS 

          

Robustness         

Response type NS NS * * 

Predictor type NS NS NS * 

Data transformation NS * NS NS 

Extraction method NS * NS NS 

          

Outlier Exclusion         

Cook's D threshold 1 0.5 1 1 

N influential studies 3 6 3 5 

Difference in 95% CI NS NS NS NS 
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Table A1.3: Detailed results of robustness tests where four methodological variables were added to the best-fit model for each data set 

(see Methods; variable descriptions and abbreviations in Table 1.1). Contrast coefficients and their p-values are shown, as well as a 

description of the variable levels used in each contrast. Results are shown separately for Abundance-Precipitation (A-P), Abundance-

Temperature (A-T), Growth-Precipitation (G-P), and Growth-Temperature (G-T) datasets. Significant contrasts and p-values are 

highlighted in bold italic text with an asterisk (*).       

Variable 

Added 

Reference 

Level 

Contrast 

Level 

A-P 

Contrast p-value 

A-T 

Contrast p-value 

G-P 

Contrast p-value 

G-T 

Contrast p-value 

RT Abundance Pop. growth 0.046 0.814 0.181 0.231     

  Stock-recruit -0.189 0.322 -0.228 0.111     

  Survival 0.117 0.237 -0.211 0.069     

 Growth rate Length     0.153 0.219 0.064 0.602 

  Weight     -0.686 <0.001* 0.520 0.001* 

           
PT Average Degree day   -0.005 0.970   -0.011 0.955 

  Maximum -0.035 0.743 0.024 0.741 -0.196 0.360 0.099 0.292 

  Minimum 0.021 0.844 0.036 0.733 0.078 0.696 -0.267 0.011* 

  PCA -0.024 0.900 0.253 0.530 -0.068 0.790 -0.653 0.062 

  Percentile   -0.121 0.485 -0.294 0.130 0.054 0.878 

           
DT Raw data Transformed 0.140 0.311 0.191 0.047* 0.039 0.906 0.558 0.052 

           

DM 

Extracted 

manually 

Directly 

reported -0.086 0.412 -0.147 0.040* 0.162 0.425 0.017 0.872 
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Figure A1.1: Study screening summary, showing each step from the original Web of Science 

search to the final database after critical appraisal and filtering (see Section A1.3). Flow chart 

made through the ROSES online tool provided by Haddaway (2020).
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Figure A1.2: Map of georeferenced observations from each dataset. Shape files were taken from the Maps package in R (Deckmyn et 

al. 2021). Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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Figure A1.3: Plots of residuals against predicted values from the best-fit models for the 

Abundance-Precipitation (a), Abundance-Temperature (b), Growth-Precipitation (c), and 

Growth-Temperature (d) data sets. Details on model structure in each case can be found in Table 

1.3. 



139 
 

 

Figure A1.4: Funnel plots showing residual values (x-axis) and standard errors (y-axis) of each 

observation from the best-fit models for the Abundance-Precipitation (a), Abundance-

Temperature (b), Growth-Precipitation (c), and Growth-Temperature (d) data sets. Note the 

residual asymmetry in panel a, where publication bias is evident in observations with low 

standard error that are skewed towards negative residual values. Corresponding Egger test results 

are in Table A1.2. 
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Figure A1.5: Plots of residuals against publication year from the best-fit models for the 

Abundance-Precipitation (a), Abundance-Temperature (b), Growth-Precipitation (c), and 

Growth-Temperature (d) data sets. Temporal patterns are visualized with a loess smoother (blue) 

and its confidence interval (grey shading) in each case. Statistical tests of linear trends with 

publication year are in Table A1.2. 
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Figure A1.6: Species contrasts and 95% confidence intervals for Abundance-Precipitation (a), 

Abundance-Temperature (b), and Growth-Temperature (c) datasets subsetted to contain the five 

species with the greatest sample size in each case. Contrasts were obtained by adding species as 

an additional covariate to each best-fit model structure (see Methods; Table 1.3). Note that all 

confidence intervals contain zero, and that the first species listed was used for reference in each 

set of contrasts. 
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Appendix 2: Chapter 2 Supplementary Materials 

A2.1 - Age-specific demographic data: 

Histograms of individual fork lengths for each population each year were visually inspected to 

separate age-1 from age-2+ brook trout. A length cutoff of ~100mm was used in the field for 

almost all available observations, but these field-based cutoffs were inadequate in many cases, 

with some populations consistently displaying breaks in their size distributions at smaller or 

larger lengths. Therefore, we adjusted length cutoffs manually in 5mm increments until age-

classes were visually well-separated in histograms. Adjustments were allowed to vary among 

years but were in the same direction across all years for each population (i.e. cutoffs were only 

adjusted downwards or upwards, never both). In total, length cutoffs were adjusted for 40 out of 

110 observations, with adjustments applied upwards in eight populations (BC, DY, HM, MC, 

UC, UO, WC, and WN; n=27; range: 105-110mm) and downwards in three populations (LC, 

LO, and STBC; n=13; range: 80-95mm). The length data with adjusted cutoffs were 

subsequently filtered to remove all observations <35mm (n=125; <0.5% of total) because these 

were likely misclassified age-0 fish or data entry errors, and observations from the fall 

(September or October) were removed unless they were the only data available. This process of 

yielded 110 years of suitable data from 11 populations (Figure A2.2). While this retrospective 

adjustment of size cutoffs was not ideal, it was justified because sampling dates varied by 2-4 

months among years and Cape Race populations are known to exhibit significant differences in 

growth, life history, and density-dependence (Hutchings 1993, Fraser et al. 2019, Matte et al. 

2020). Moreover, this approach maximized data availability because the data necessary to obtain 

age-specific mark-recapture estimates were rarely recorded before 2015. 

Finally, to calculate age-specific census population size, we multiplied the total census 

population size (which included all individuals age-1 and older; see Methods) in each population 

each year by the corresponding proportion of individuals that were classified as age-1 or age-2+ 

based on filtered and adjusted size distributions. When proportions could not be calculated from 

length-frequency data (n=12 observations), they were inferred from direct counts of age-1 and 

age-2+ fish reported in field notebooks during marking (n=10) or recapture events (n=2; Figure 

A2.3). Similarly, juvenile somatic growth rates were calculated by taking the median fork length 

of age-1 fish for each population and year, then dividing it by the estimated age in years at the 

time each age-class was sampled (units of mm·year-1). Ages were determined by subtracting the 

mean population-specific date of reproduction (derived from Wood and Fraser 2015) from the 

year-specific sampling date and dividing by 365 (Figure A2.4). All growth rates based on sample 

sizes less than five age-1 individuals (n=5) were removed. 

A2.2 - Model robustness: 

To ensure that conclusions were robust to connectivity and gaps in time-series, all DFA and 

GLMM models (described in Sections 2.4 and 2.5) were re-run with a smaller subset of eight 

populations. WN was excluded because it had a four-year gap (sampling years: 2017-2020) in 

the middle of its demographic time-series, and MC was removed due to its connectivity with 

both UC and LC (see Table 2.1). Since LO and UO effectively form a meta-population within 

the O’Beck drainage (Bernos et al. 2016), data were combined by summing Nc values and 

calculating the weighted average growth rate across both populations each year. Data from the 

O’Beck drainage and the seven remaining populations (BC, DY, HM, LC, STBC, UC, WC) 

formed the subset of demographically independent populations used to re-run models. 
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Models yielded broadly similar results when data from a subset of eight demographically 

independent populations were used. Specifically, the re-fitted recruitment DFA had a nearly 

identical common trend and similar population loadings (r=0.99) to the model based on all data 

(Figure 2.2a,b), providing further support for a pattern of asynchronous recruitment. The re-fitted 

growth DFA exhibited different patterns in its common trend (r=-0.01) and loadings (r=-0.09), 

but loadings were still positive in most populations and displayed more synchrony than 

recruitment patterns. Similarly, all five re-fitted GLMMs (see Table 2.2) yielded similar fixed 

effect estimates and the same results when comparing the relative strength of fixed and random 

effects via variance partitioning. Comparing AICc values of re-fitted models to identify the best-

fit DFA covariates and stream temperature metrics also did not change model selection results. 

Overall, demographic patterns appeared to be largely robust to the influence of connectivity (for 

MC, LO, and UO) and gaps in time-series (for WN). Moreover, it is notable that removing these 

populations would have significantly reduced the number of available observations for 

recruitment (n=93 vs. 122) and juvenile growth (n=78 vs. 105). 

A2.3 - Effects of climate extremes: 

To assess the influence of climate extremes in Cape Race, we used DayMet data since 1980 (see 

Section 2.3) to calculate maximum air temperature and precipitation values for the focal time-

periods affecting brook trout recruitment (reproduction, incubation, emergence, summer, and 

winter) and juvenile growth (growing and non-growing season). We then used simple 

correlations to describe relationships between mean and maximum values, and re-ran all 

dynamic factor analysis (DFA) models with maximums used as covariates instead of means 

(n=10 for juvenile growth, n=55 for recruitment; see Section 2.4). 

Means and maximums exhibited strong positive correlations during reproduction, emergence, 

summer, winter, and growing season (r=0.48-0.75). Correlations were weaker during the 

incubation period and non-growing season (r=0.14-0.52), which were overlapping 5-month 

periods dominated by winter conditions. Similarly, when maximum values were used as DFA 

covariates, model selection results were similar to those reported using means (Table A2.1). 

Specifically, the model with no covariates substantially outperformed all models with a single 

covariate in analyses of recruitment (ΔAICc>14.3) and juvenile growth (ΔAICc>16.3), which in 

turn outperformed all models with two covariates (ΔAICc>38.3). This result is likely due to my 

modest sample sizes, and the fact that adding a covariate to DFA models (regardless of whether 

it is an average or maximum) requires 11 additional parameters to be estimated. It remains 

possible that climate extremes are important for Cape Race brook trout demography, but we 

were unable to detect this effect in the current study, or distinguish it from the effect of average 

climate conditions within a given period. 

A2.4 - Non-linearity in GLMMs: 

To assess potential non-linearity in demographic relationships and responses to stream 

temperature (see Section 2.5), we fit alternative generalized linear mixed models (GLMMs) with 

a quadratic term added as a fixed effect to each model. However, because the stock-recruitment 

relationship was fitted as a linearized form of a Ricker stock-recruitment curve, non-linear 

GLMMs were not explored for this relationship. In all other cases, the quadratic estimate and its 

standard error were recorded for all models, and the AICc of the non-linear model was compared 

to the original linear model. During model selection, both linear and non-linear GLMMs were 

run using maximum likelihood, allowing different fixed effect structures to be compared. 
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The effect of the quadratic term was generally weak when added to recruit-adult (estimate=-0.02, 

SE=0.09), density-dependent growth (estimate=0.16, SE=0.09), temperature-recruitment 

(estimate=0.06, SE=0.11), and temperature-growth relationships (estimate= 3.2e-06, SE=2.1e-

05). Additionally, the non-linear model failed to outperform the linear model in all cases, 

including recruit-adult (ΔAICc= 2.23), density-dependent growth (ΔAICc=-0.45), temperature-

recruitment (ΔAICc=1.96), and temperature-growth relationships (ΔAICc=2.29). In cases where 

linear and non-linear models were within two AICc units of each other (density-dependent 

growth and temperature-recruitment relationships), the linear model was selected because it is 

more parsimonious. Thus, the current study found little support for incorporating non-linear 

relationships into GLMMs, although this could change if more monitoring data are added in 

future years. 
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Table A2.1: Model selection results from dynamic factor analysis of recruitment (top) and 

juvenile growth (bottom) time-series in Cape Race brook trout. All models were run with an 

identity variance-covariance matrix, and only the top 15 models are shown for recruitment (55 

models overall). Note that in both cases, AICc values were lowest in the model with no 

covariates, which significantly outperformed all models with one covariate (T=air temperature, 

P=precipitation), which in turn outperformed models with two covariates. The number of 

parameters estimated (k) increased substantially every time a covariate was added to the model. 

DFA Response Rank k Covariates AICc ΔAICc 

Recruitment 1 11 None 343.4 0.0 

  2 22 T_Emergence 356.0 12.7 

  3 22 T_Incubation 359.3 15.9 

  4 22 P_Reproduction 364.0 20.7 

  5 22 P_Winter 364.7 21.3 

  6 22 T_Winter 365.4 22.1 

  7 22 P_Incubation 365.5 22.1 

  8 22 P_Emergence 366.4 23.0 

  9 22 T_Reproduction 366.5 23.1 

  10 22 T_Summer 366.5 23.1 

  11 22 P_Summer 370.1 26.7 

  12 33 T_Incubation + T_Emergence 382.3 38.9 

  13 33 T_Emergence + P_Reproduction 384.0 40.6 

  14 33 T_Emergence + P_Winter 384.6 41.2 

  15 33 T_Emergence + P_Incubation 384.7 41.3 

  … … … … … 

            

Juvenile Growth 1 11 None 306.4 0.0 

  2 22 T_Growing Season 321.0 14.6 

  3 22 P_Non-Growing Season 329.8 23.4 

  4 22 P_Growing Season 331.1 24.7 

  5 22 T_Non-Growing Season 331.4 25.0 

  6 33 T_Growing Season + P_Non-Growing Season 354.4 48.0 

  7 33 T_Growing Season + P_Growing Season 354.9 48.5 

  8 33 T_Growing Season + T_Non-Growing Season 356.5 50.2 

  9 33 T_Non-Growing Season + P_Non-Growing Season 363.4 57.0 

  10 33 P_Growing Season + P_Non-Growing Season 364.2 57.8 
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Table A2.2: Model selection results from generalized linear mixed models (GLMMs) relating 

recruitment and juvenile growth to various measures of stream temperature. Average stream 

temperature (T) and degree-days since November 1st (DD) were estimated based on empirical 

air-stream temperature relationships from 2012-2021 (see Chapter 3 for details). 

GLMM Relationship Fixed Effect AICc ΔAICc 

Temperature-recruitment T_Reproduction 319.0 2.5 

  T_Incubation 320.2 3.7 

  T_Emergence 316.5 0.0 

  T_Summer 320.2 3.7 

  T_Winter 320.0 3.5 

        

Temperature-growth T_Growing Season 552.3 12.6 

  DD_May1 549.9 10.2 

  DD_August31 539.7 0.0 
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Figure A2.1: Map of the study area, with labels denoting codes for the eleven brook trout populations (red circles) studied in Cape 

Race, Newfoundland. The full names for each population are provided in Table 2.1. 
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Figure A2.2: Size distributions for eleven Cape Race brook trout populations. Distributions are displayed as smoothed kernel 

densities for age-1 (pink) and age-2+ individuals (blue) within each population (rows) and year (columns). Empty panels had no data 

available (see Section A2.1). 
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Figure A2.3: Recruitment time-series for eleven Cape Race brook trout populations. Recruitment was estimated as the total census 

population size multiplied by the proportion of age-1 individuals derived from length distributions or age-specific counts (see Section 

A2.1 and Figure A2.2). 95% confidence intervals (error bars) were estimated based on recapture proportions observed across all ages. 
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Figure A2.4: Juvenile growth rate time-series for eleven Cape Race brook trout populations. Growth rates were estimated as the 

median length of age-1 individuals divided by their estimated age at the time of sampling (see Section A2.1).
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Appendix 3: Chapter 3 Supplementary Materials 

Table A3.1: Catchment survey data for ten streams in Cape Race, Newfoundland, Canada. Drainage area is expressed in km2, gradient 

is reported as the percent change in elevation divided by stream length, depth is shown in cm, velocity is in m·s-1, and relative pond 

area was calculated as the total perimeter of all ponds divided by stream length. Sinuosity and the width:depth ratio are unitless. Full 

details on survey methodology are available in Wood et al. (2014). 

Stream 

Thermal 

Regime 

Drainage 

Area Sinuosity Gradient pH Depth Width:Depth Velocity 

Relative 

Pond Area 

BC Intermediate 1.4 1.29 24.4 6.32 16.7 15.1 2.01 66 

DY Intermediate 0.1 1.37 2.8 5.83 23.4 5.4 1.50 11 

HM Rainfall - - - 6.27 42.2 34.8 0.00 300 

LC Groundwater 0.1 1.16 51.1 6.28 11.4 10.6 0.99 0 

LO Rainfall 0.2 1.07 10.6 6.57 19.5 18.1 1.77 0 

STBC Groundwater 0.4 1.33 38.2 6.09 21.7 10.4 0.48 0 

UC Intermediate 0.0 1.20 22.1 5.32 24.3 8.8 0.02 16 

UO Rainfall 3.1 1.86 10.6 6.20 20.8 19.2 2.07 82 

WC Intermediate 0.4 1.23 23.8 6.26 17.7 12.9 0.64 20 

WN Intermediate 6.4 1.33 10.3 6.64 23.0 21.5 1.50 0 
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Table A3.2: Relationships between young-of-the-year brook trout length and degree-days 

accumulated from November 1st the previous year until the date of capture (see Figure 6). 

Intercepts, slopes, sample sizes (N), and R2 values (treating degree-days as a fixed effect) are 

shown for linear regression models run separately for each stream with no random effects. The 

same outputs are also shown for a generalized linear mixed model that included stream as a 

random effect on intercepts and slopes (bottom), where R2 Fixed and R2 Random correspond to 

the variance explained by the fixed and random effects, respectively. Intercept and slope 

estimates with a p-value <0.05 are marked with an asterisk (*), while those with a p-value 

<0.001 are marked with two asterisks (**). 

Stream Thermal Regime Intercept Slope N R2 Fixed R2 Random 

BC Intermediate 11.35** 0.029** 1,660 0.38 - 

DY Intermediate -2.66 0.039** 194 0.54 - 

HM Rainfall -6.23 0.035** 29 0.44 - 

LC Groundwater 10.16** 0.017** 294 0.19 - 

LO Rainfall 11.54** 0.019** 119 0.25 - 

STBC Groundwater -14.31** 0.041** 410 0.36 - 

UC Intermediate 5.90* 0.028** 110 0.60 - 

UO Rainfall 8.92** 0.029** 699 0.33 - 

WC Intermediate 9.09** 0.027** 598 0.29 - 

WN Intermediate 3.71* 0.029** 1,418 0.41 - 

              

GLMM All 4.54* 0.028** 5,531 0.27 0.35 
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Table A3.3: Correlations between stream characteristics from habitat surveys (predictors) and 

parameter estimates for non-linear relationships between daily average air temperature and 

stream temperature in ten streams in Cape Race, Newfoundland, Canada. Significant correlations 

without multiple comparison adjustments (p <0.05) are shown in bold italic text. For reference, µ 

is the minimum stream temperature, α is the maximum stream temperature, γ is the slope at the 

inflection point, and β is the temperature where the inflection point occurs (see Equation 3.1). 

Note that all significant correlations became non-significant when applying Bonferroni multiple 

comparison adjustments (p >0.0016). 

Predictor µ α γ β 

Drainage Area -0.48 0.45 -0.84 0.48 

Sinuosity -0.28 0.34 -0.30 0.37 

Gradient 0.85 -0.87 0.29 -0.69 

pH -0.15 0.19 -0.35 0.37 

Depth -0.12 0.54 0.14 0.48 

Width:Depth Ratio -0.20 0.63 -0.07 0.67 

Velocity -0.64 0.33 -0.48 0.26 

Relative Pond Area -0.01 0.54 0.21 0.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 
 

 

Figure A3.1: Examples of groundwater- and rainfall-dominated streams harboring brook trout in 

Cape Race, Newfoundland, Canada (photo credits: Dylan Fraser). Panel A (facing upstream) and 

B (facing downstream, same position): a groundwater seep entering the upper section of Lower 

Coquita (LC). The seep pours out of the ground 3 m above the confluence with the stream and 

directly influences the flow, acidity and vegetation downstream. For example, note the tannin-

colored water in the bottom right corner of panel B upstream of the groundwater seep that is 

devoid of aquatic vegetation – here the stream pH is ~5.0-5.3, whereas below the groundwater 

seep the pH is ~6.3-6.6 and aquatic vegetation is abundant. Panel C: the presence of Miner’s 

Lettuce (Montia fontana) (the bright green aquatic plant) below a large groundwater seep that 

enters a small pond within Bob’s Cove River (BC). Panel D: a groundwater-dominated stream 

characterized by very low current velocity and choked aquatic vegetation (Still There by Chance; 

STBC). Panels E and F: example of fluctuating streamflow in a rainfall-dominated stream 

(Upper O’Beck; UO) in the same location in July 2021 (E) and October 2022 (F). 
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Figure A3.2: Autocorrelation functions based on residual values from air-stream temperature 

relationships in ten streams in Cape Race, Newfoundland, Canada. Correlations in residuals 

across various daily time lags (vertical bars) and significance thresholds (blue dashed lines) are 

shown in each case. 
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Figure A3.3: Effects of daily precipitation on residual values from air-stream temperature 

relationships in ten streams in Cape Race, Newfoundland, Canada (panels). A linear trend is 

shown for each stream (red line), along with its estimated intercept and slope (text in top right 

corner). Note that all streams exhibit negative slopes. 

 

 

 

 

 



157 
 

 

Figure A3.4: Temporal trends in reconstructed mean stream temperature during the growing 

season (April-November) in ten streams in Cape Race, Newfoundland, Canada. Estimated 

intercepts and slopes are shown in the top-left of each panel (see also Table 3.2). Note the lower 

average temperatures and reduced slopes predicted in the two groundwater-dominated streams 

(LC and STBC). 
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Figure A3.5: Annual variation in reconstructed degree-day accumulation since November 1st in 

ten streams in Cape Race, Newfoundland, Canada from 1980-2020. Horizontal lines are shown 

at 500 and 750 degree-days to denote putative thresholds for the timing of hatch and emergence, 

respectively. The most recent years are plotted in yellow, illustrating phenological shifts (see 

Table 3.3). Note the earlier phenology and reduced inter-annual variation predicted in the two 

groundwater-dominated streams (LC and STBC). 
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Figure A3.6: Violin plots showing within-stream spatial variation in water temperature recorded 

during transect surveys in ten streams in Cape Race, Newfoundland, Canada. Transects were 

performed during four summers between mid-June and early-August (see Wood et al. 2014 for 

details), but not all streams were sampled each year and were not always sampled in the same 

order or during the same time of day within years. Note that spatial variation in temperature 

exceeded 5°C in the majority of cases. 

 

 

 


