Complex Analytic Structure of Stationary Solutions

of the Euler Equations

Aleksander Danielski

A Thesis
in the Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy (Mathematics)
at Concordia University

Montreal, Quebec, Canada

November 2023
(© Aleksander Danielski, 2023



CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Aleksander Danielski

Entitled: Complex Analytic Structure of Stationary Solutions of the Euler equations

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Mathematics)
complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:
Chair

Dr. Ali Nazemi

External Examiner

Dr. Vladimir Sverak

Arm's Length Examiner

Dr. Maria Ntekoume

Examiner

Dr. Marco Bertola

Examiner

Dr. Dmitry Korotkin

Thesis Supervisor (s)

Dr. Alexey Kokotov

Approved by

Dr. Lea Popovic Chair of Department or Graduate Program Director

Dec 20, 2023
Date of Defence

Pascale Sicotte Dean, Faculty of Arts and Science



ABSTRACT
Complex Analytic Structure of Stationary Solutions of the Euler Equations

Aleksander Danielski, Ph.D.
Concordia University, 2023

This work is devoted to the stationary solutions of the 2D Euler equations describing the
time-independent flows of an ideal incompressible fluid. There exists an infinite-dimensional
set of such solutions; however, they do not form a smooth manifold in the space of all
divergence-free vector fields tangent to the boundary of the flow domain. This circumstance
hinders the efforts to understand the structure of the set of stationary flows, and to further
study other classes of solutions such as the time-periodic or quasiperiodic flows. The previous
authors considered the solutions in the Fréchet space of smooth functions and used powerful
methods such as the Nash-Moser-Hamilton implicit function theorem. However, in their
approach they overlook a surprising feature of the stationary flows which makes the picture
much more transparent, and opens the way to further progress. This is the observation that
the particle trajectories in the flow described by arbitrary solutions of the Euler equations
in domains with analytic boundary are analytic curves, even if the velocity field has a finite
regularity (say, belongs to the Sobolev or Holder space). In particular, for any stationary
solution, the flow lines are analytic curves, despite limited regularity of the velocity field.

To study the stationary flows we change the viewpoint and consider the flow field as
a family of analytic flow lines non-analytically depending on parameter. We quantify the
analyticity by introducing spaces of functions which have an analytic continuation to some
strip containing the real axis such that on the boundary of the strip the function belongs to
the Sobolev space. Further, we introduce the class of Sobolev functions of two variables which
are analytic (in the above sense) with respect to one variable. Such functions describe the
families of flow lines of stationary flows. These partially-analytic functions form a complex
Banach space. The stationary solutions satisfy (in the new coordinates) a quasilinear elliptic
equation whose local solvability is proved by using the Banach Analytic Implicit Function

Theorem (BAIF Theorem). Thus we prove that the set of stationary flows is an analytic
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manifold in the complex Banach space of the flows (i.e. families of flow lines).

In our previous work ([9]), we realized this idea in the case of stationary flows in a periodic
channel with analytic boundaries. In the present work we study a more complicated case of
flows in a domain close to the disc, having one stagnation point. We use polar coordinates
centered at the (unknown) stagnation point. This results in an elliptic quasilinear equation in
the annulus which is degenerate at one component of the boundary. This makes the analysis
more difficult. We introduce function spaces which are adaptations of the Kondratev spaces
to the partially-analytic setup, and prove that the problem is Fredholm in those spaces.
Further we use the BAIF Theorem, and prove that in our spaces, the set of stationary flows

is locally a complex-analytic manifold.
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Chapter 1

Introduction

1.1 Euler Equations

The Euler equations, describing the flow of an incompressible, inviscid fluid of uniform
density were first published by Euler in 1757 ([11]). In the absence of external forces, they
take the form:

ou

E+U'Vu+Vp:0, V-u=0. (1.1)

Here, u(x,t) is a vector field describing the fluid velocity at any moment in time and p(z, t)
is a scalar field describing the pressure exerted on the particle occupying position x by the
surrounding fluid. The first equation is known as the momentum equation. The second
equation is known as the incompressibility condition, which ensures that the volume of any
blob of fluid remains constant as it is carried and deformed by the flow. If the fluid occupies
a domain with boundary, then additionally, a condition is placed requiring v to be tangent
to this boundary.

The standard problem is to find u(z, t) and p(z, t) given an initial velocity u(z,0). Taking
the divergence of the momentum equation, one sees that p satisfies some Poisson equation
depending on wu, and thus up to an additive constant, is uniquely defined by u. For this
reason, when one speaks of the solution to the Euler equation, one typically speaks only of
u.

Though the Euler equations are valid in any spatial dimension, they are most typically



considered in dimensions two and three. The difference in behaviour of the solutions in 2D
and 3D is more interesting than a mere reduction in dimension. In fact they display strikingly
contrasting behaviour. In 3D turbulence, one typically observes vortices breaking up into
smaller vortices, transferring energy from large scales to small scales. This phenomenon is
known as the energy cascade. In the 2D case, one typically observes the opposite. Vortices
tend to merge with other vortices of like rotation, producing larger vortices, resulting in an
inverse energy cascade where energy flows from small scales to large scales.

While truly 2D fluids are unphysical, our interest in them is not solely a mathematical
one. There are situations in which the motion of a 3D fluid is inhibited in one direction. For
instance, the domain which the fluid occupies may be very thin in one dimension relative
to the other two. Stratification and rotation of a fluid also serve to restrict motion in some
direction. For example, consider the earth’s atmosphere. It is very thin normal to the earth
relative to the surface area of the earth. The atmosphere is stratified by the density of air,
consisting of layers of decreasing density as we move away from earth. Finally, the earth’s
rotation induces a rotation on the atmosphere which further inhibits motion normal to the
earth. The result is the existence of atmospheric phenomena which are dominated by 2D
behaviour, such as hurricanes.

Though written down more than 250 years ago, the Euler equations still contribute a
vast pool of unresolved problems in the mathematical and physical sciences. Let us discuss

some important accomplishments in their mathematical study.

1.2 Properties of Solutions to the Euler Equations

The local in time existence and uniqueness of classical solutions was proved in the mid 1920s
in the works of Lichtenstein ([20]) and Giinther ([12]). In two dimension, existence and
uniqueness of global in time classical solutions was proved in 1933 by Wolibner ([32]), and
later by Kato ([18]) in the 1960s. Yudovich ([33]) extended the result in dimension two to
existence and uniqueness of weak solutions with bounded vorticity, i.e. for wg = V xuy € L.

In modern language, we may state the classical results as follows:



Theorem 1.1.

Suppose Q € R™ and uy(z) € H™(2), m > n/2+ 1. Then there ezists some T > 0 depending
on ug for which the Euler equations 1.1 have a unique solution u(z,t) € C([0,T), H™(Q)).
Ifn=2, then T = .

In the 60s, Arnold ([3]) presented a geometric formulation of the Euler equations. He
interpreted the Euler equations as equations for geodesics on the group of volume preserving
diffeomorphisms with respect to the metric given by the energy. Doing so revealed that the
Euler equations of fluid dynamics are an infinite dimensional analogue to the Euler equations
of rigid body rotation, whose solutions are geodesics on the group of rotations.

Starting in the 90s, a new striking property of the Euler equations was discovered. Serfati
([27]), Shnirelman ([29]), and other authors ([8], [34], [22], [16], [15]) proved that the particle
trajectories of solutions to Euler equations are real analytic curves, despite limited regularity
of the velocity field. This fact was proved by varying methods, both real and complex. For
example, following the work of Lichtenstein, Shnirelman wrote the equation for the trajecto-
ries as a Banach space-valued ODE with analytic right-hand side and the result follows from
the standard modern theory of such equations. We note, for the time-independent 2D flow,

the particle trajectories, flow lines and vorticity lines coincide, so they are analytic curves.

Theorem 1.2.

Under the assumptions of theorem 1.1, the particle trajectories x4(t), satisfying x,(0) = a,

dzg

o = u(w4(t),t) are analytic curves.

1.3 Long-time Behaviour of 2D Euler equations

Since in the two dimensional case, the solutions to the Euler equations exist for all time,
it is natural to ask what can be said of these solutions as ¢t — oo? Turning to computer
simulations ([26], [28]) one sees the following picture: first there is a brief turbulent period
where vortices of like rotation tend to filament under their respective strains and eventually
merge to form larger ones. This process ends with the emergence of a stable system of

coherent structures locked in some orbital ‘dance’. These coherent structures consist of



vortices which may have islands inside of them as well as satellites orbiting around them.
These islands and satellites may have their own substructures, consisting of subsequent lakes
and /or satellites. It is expected that these coherent structures (in the absence of viscosity)
can form an infinite hierarchy of systems, subsystems, etc.

In light of this observation, Shnirelman ([28]) conjectured the existence of an attractor
for the 2D Euler equations. This attractor is expected to consist of at least stationary, time
periodic and time quasi-periodic flows. Given that for stationary flows, the level lines of
vorticity w = V X u are analytic curves, it is conjectured the same property holds true for
time-periodic and time-quasiperiodic flows, as well as for any other elements of the attractor.
Finally, it is conjectured that the components of this attractor are analytic manifolds in the
space of divergence-free vector fields.

The conjecture motivates us to initiate a program to describe said attractor. We should
start with those flows whose existence is known - the stationary ones. In the preceding work
([9]), we obtained the first result in this direction, where we provided a local description of
the set of stationary flows without fixed point in a periodic channel. In a neighbourhood of
the constant parallel flow, we showed this set forms an analytic Banach manifold. The next
logical step is to provide an analogous local description of stationary flows having a single

non-degenerate elliptic fixed point. This thesis is dedicated to accomplishing this task.

Objective. Our goal is to provide a local description of the 2D stationary flows in a sim-
ply connected domain having a single non-degenerate fixed point. Furthermore, we aim to

incorporate the analyticity of the flow (vorticity) lines in this description.

Before we set out to accomplish this, it will be useful to cover some preliminaries relevant

to the 2D stationary Euler equations.

1.4 Stationary Flows of the 2D Euler equation
The stationary (time-independent) incompressible Euler equation in a domain €2 is given by

u-Vu+ Vp =0, V-u=0, u tangent to 0S).



By taking the curl of the first equation, one can eliminate the pressure term. In two
dimensions, this gives u - Vw = 0, where the vorticity w = V X u is a vector normal to the
flow and thus taken as a scalar. Observe, this equation says that 2D stationary flows are
precisely those vector fields u which point along the level lines of their vorticity. Next, any
divergence free vector field u can be written as the curl of some vector potential v, unique
up to additive constant, known as the stream function. In two dimensions, it is a scalar
satisfying v = V+1). It has the property that the flow u points along the level lines of 1. In
other words, the integral curves of u coincide with the level lines of ¢, which we call flow lines.
Finally, it is related to the vorticity by the expression w = At). The equation of stationary
flow is equivalent to the statement that At is constant along flow lines 1) = constant. At
least locally, where 1 is monotone transversal to its level lines, it must satisfy Ay = F(v)).
Since the flow is tangent to the boundary, ¥ must be constant on each of its components.
From here on, when we refer to stationary flows, they are always understood to be 2D, and

they satisfy the equation:
Ay =F(¢) in Q, Y =c¢ on 0. (1.2)

where 0€); are the components of the boundary of €.

Stationary flows can be interpreted another way: they are minimizers of the energy
functional on the space of divergence-free vector fields with respect to area preserving dif-
feomorphisms ([4]). To produce a stationary flow, one can imagine deforming some stream
function while preserving the topology of its level lines and area between them, so that it
minimizes the Dirichlet energy ||[V¢||7,. One can draw an analogy to a system of elastic
bands, each representing a flow line. They will configure themselves in a way to minimize
their potential energy. This analogy provides intuition for a number of facts relating to
stationary flows. For example, any stationary flow in a parallel channel without fixed point
must necessarily be a parallel flow ([14]). Similarly, any stationary flow in a disk having a
single fixed point must necessarily be a circular flow with fixed point at the disk centre ([31]).
The analyticity of the flow lines can also be intuited through this analogy: any kink present
in the system of flow lines stores some energy which can be relaxed if hammered away:.

In the work of Sverédk & Choffrut ([7]), they produced a smooth local parameterization



of the manifold of stationary flows on annular domains. The smoothness of their parame-
terization necessitates working in the Fréchet space of smooth functions and thus using the
Nash-Moser-Hamilton implicit function theorem.

Seeking to incorporate the analyticity of flow lines into the solutions, Shnirelman sug-
gested reformulating the problem by representing a flow as a collection of its flow lines. The
central idea he proposed was the coordinate change ¢ (z,y) — y(z,v). Differing from the
typical picture, the values of the stream function are treated as a variable, and the graphs of
its level lines are treated as the unknown. This nonlinear coordinate change was introduced
by von Mises in 1927 in his work on boundary layers ([30]), and by Dubreil-Jacotin in her
1934 work on free surface waves ([10]). Since Barron’s 1989 ([5]) use of the coordinate change
for the numerical study of flows over airfoils, it has seen numerous applications in computa-
tional problems, where it is known as the computational von Mises transform (see [13] for a
survey). Its success is owed in part to the fact that it converts complicated domains of flow
to rectangular ‘computational’” domains in (z, ) coordinates.

Using this idea in [9], we obtained results analogous to those of Sverdk & Choffrut with
less technical difficulty. We considered stationary flows without fixed point in a periodic
channel bounded by flow lines ) = 0 and ¢ = 1. If these boundary flow lines are the graphs
of functions y = f(x) and y = g(z), then the coordinate change ¥ (z,y) — y = a(z,)

induces a transformation of equation 1.2 to:

®(a) = F(¢),  a(z,0)= f(x),  alz,1)=g(x), (1.3)

where the Laplacian A is given by

1 2a, 1+ a?
D(a) = ——auy + —5 gy — ~a
(a) a A B

and the velocity field in (z, ) coordinates is

Here, y = a(z, ) are the family of flow lines parameterized by (x,9) € T x [0,1] and ® is a
second order quasilinear differential operator which is elliptic away from any fixed points of

the flow. To incorporate the analyticity of flow lines, each flow line along = € T is extended



to the complex domain T, = T X i(0,0). Spaces X2*(T) and Y*(T x [0,1]) of complex
analytic flow lines and partially complex analytic families of flow lines respectively, were

introduced, with norms:

la(z)[|xm ) = [la(- +i0)|| gm ) + [|a(- = i0) | zm(T),
la(z, V) |lym o)) = lla(- + i, ) |[amrxpa) + |a(- =i, ) || amrxo)-

By the analytic implicit function theorem in complex Banach spaces, we proved the existence

of a local parameterization of solutions near the constant parallel flow:

Theorem 1.3.
Suppose || £(2)]l gorvzmy < 0 19(2) = Ulgpra < & IF@)lam 20 <  and [la(, ) -
Yllymrxpa)) < €, with € sufficiently small. Then equation 1.3 has a unique solution a(x,1))

near the constant parallel flow which depends analytically on parameters (F, f,g).

In this work, the same governing philosophy of viewing a function as a collection of its
level lines will be used to generalize the above result to stationary flows having a single

elliptic fixed point. We are now ready to formulate how we will do so.

1.5 Stationary Flows with an Elliptic Fixed Point

The prototypical stationary flow having a single, non-degenerate elliptic fixed point is de-
scribed by stream function ¢ = 22 + 2, our logical starting point. This flow has constant
vorticity F'(1) = 4 and describes the motion of a fluid rotating as a rigid body. The flow lines
are concentric circles around the origin where the fixed point is located which corresponds
to the level set ¢ = 0. Let us restrict the domain to the unit disk D. Then the boundary
flow line is the level set ¢ = 1.

Suppose there is some suitable perturbation of the domain D — €2 and of the vorticity,
generating a new stationary flow ¢ with the same topological structure. Suppose that this
new stationary flow also satisfies ¢» = 0 at the fixed point and 1 = 1 on the boundary 0f2.
What can be said of its level sets?

It is known that a stationary flow in a disk having a single fixed point must be circular and

therefore the fixed point must be positioned at the disk’s centre. This implies that should
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the perturbation of D be a mere translation, the fixed point must translate accordingly. We
expect this rigidity of the fixed point’s orientation to hold for general non-circular flows.
So let us introduce the position of the fixed point p = (p,,p,) € Q as an unknown in the
problem. The remaining flow lines should be close to concentric circles around p. Let (r, 6)
be the polar coordinates centred at p. Then the flow lines will be graphs of a family of
polar functions r = a(v,0), parameterized by ¢ € [0, 1] ranging from the fixed point to the
boundary. Notice, in order for the level set 1 = 0 to define a single point, we must require
r=a(0,0) =0.

Let us now find an expression for the velocity ©w = V+ in the new coordinates. Inverting

the Jacobian g((;%) of the transformation defined by r = a(v,0) yields relations 8—1/’ = i,
‘?)—15 = gi, 5 =0, gz = 1. By the chain rule, we get = al 8‘1 and a =~ %—1-599 This
gives velocity field
1 Qg
0)=—(—,1
) = - (21)

in (7, é) coordinates. We see that to have a well defined stagnation point at i) = 0, along
with condition a(0,0) = 0, we also require |ay (¢, 0)] — oo as ¢» — 07. Finally, % should
remain bounded. Observe for example, if ¥(r, #) = r2 then a(1), ) = 1»'/2. The critical point
of this paraboloid is transformed to a cusp singularity at ¥ = 0.

Applying the above results, we write Ay = 2% + igf + %2(32712& in our new coordinates.

We define Ay = Z(a) for which we obtain the expression

(@) =~ (14 DYy +2( 2 sy~ (Yoo + —— (14)

aj a*aZ, a’ay, aay,

[1]

E(a) is a second order quasilinear differential operator of form Aayy+2Bayg+Cagg+D. Such
operators are elliptic if AC — B? > 0. A straightforward calculation shows AC — B? =

T
If we restrict to fixed points that are non-degenerate, then v is some deformed parabolo?d
and we expect a(¢, §) to behave like 1)'/2 as 1) — 0*. In this case AC — B% — 0 as ¢ — 0%,
We conclude that = is elliptic away from the fixed point, but this ellipticity degenerates as
we approach the fixed point.

We now turn to the boundary condition. The boundary 0f2 is described by the graph
of r = a(1,60). This expression is in coordinates (r,#), which are centred on the fixed point

at p, which we have determined is part of the solution, an unknown. To meaningfully treat



the domain as a parameter of the problem, we should represent its boundary as the graph of
some function in a fixed coordinate frame. Since we are deforming a flow whose fixed point
lies at the origin, we expect given a sufficiently small perturbation, that the boundary 02
can also be described as the graph of a polar function relative to the origin. So let us define
(p, ) as the polar coordinates centred at the origin. Then we can treat {2 as a parameter
by taking its boundary to be described by the graph of some function p = b(¢p).

Before we can write down the boundary conditions, we must address an additional ob-
stacle. In terms of equation 1.2, we have a peculiar situation. We are trying to solve for ¢
with both a boundary condition 9|sq = 1, as well as an additional interior point condition
¥ (p) = 0. From the perspective of solving for the stream function, imposing its value at the
fixed point is unnatural and leads to an overdetermined problem. From the perspective of
solving for the flow lines, it is rather essential. After all, we are deforming a family of flow
lines parameterized by ¢ € [0, 1], and this domain should be a constant if we are to define
function spaces for our problem, define operators on these spaces, etc.

To gain some intuition how to overcome this issue, let us consider circular flows around
the origin on a disk Dg of radius R. Additionally, suppose the vorticity F(¢) = w is
constant. Then ¢ = 1(r) is radial and direct integration of 1.2 yields a general solution
Y(r) = wr?/4+cInr+d. Imposing the condition that 1) = 0 at the origin gives ¥ (r) = wr?/4.
Now the boundary condition 1)(R) = 1 can only be satisfied for a single choice of w. Thus
imposing 1) both at the fixed point and at the boundary requires some compatibility between
the radius of the domain and scaling of vorticity. We expect this requirement to generalize
to non-circular flows as well. In other words, given any stationary flow in 2 with values of
imposed both at the fixed point and at the boundary, rescaling {2 with respect to the fixed
point p yields in our formulation an ill-posed problem. To obtain a well-posed problem then,
we should treat only the ‘shape’ of the domain as a parameter, but not its ‘radius‘ which
instead depends on the vorticity.

To work around this, we introduce an additional degree of freedom R to the solution,
whose role is to solve the following boundary condition: given a domain €2, find a solution
a(1, 0) which when rescaled radially by R with respect the fixed point p, matches the bound-
ary condition. In other words, the graph of r = Ra(v, ) describes said boundary. We refer



to the following figure of the boundary condition:

Y
r=a(l,0)

The inner deformed circle represents the prescribed boundary flow line, defined by the graph of p = b(yp).
We seek a family of flow lines a(1), §) about some fixed point p which when rescaled by some R, matches the
boundary at ¢» = 1. The unscaled flow line r = a(1,6), depicted by the outer deformed circle, defines a new

domain of flow of the same shape as the prescribed one, of a radius compatible with the prescribed vorticity.

We obtain the following equations relating b(¢), R and a(1,60):
b(p) cos p = p, + Ra(1,0) cos, b(p)sinp = p, + Ra(1,0)sin 6.
Squaring and summing these equations yields
V() = R*a*(1,0) + 2Ra(1, 9)(]% cos B + p,sinf) + p2 + pz.
Dividing yields

py + Ra(1,0)sind
pr + Ra(1,0) cos




Taking the inverse of tan ¢, we can combine these equations to eliminate ¢. To do so, we
must be careful. Typically, arctan is a function defined to have values in (-7, 5). To have
a meaningful boundary condition, we should instead define ¢ = arctan(y, z) as the function
onto T, whose values are the angle between plane vector (x,y) and the z-axis. We can then

define the nonlinear boundary map

B(b,R,p,a) = —b2(arctan (py + Ra(1,0)sinb, p, + Ra(1,0) cos 0))

+ R*a*(1,0) + 2Ra(1,0) (py cos 0 + p,sin ) + p2 +p;, (1L.5)

and the boundary condition to our problem is given by B(b, R,p,a) = 0.
We obtain the following nonlinear boundary value problem for the flow lines of a station-

ary flow having a single elliptic fixed point:

(

a(0,0) =0, 1.6
I - '
Jim fay| = oo,

B(b, R,p,a) = 0.

0
This equation is to be solved for R € R, p € R? and function a(¢,6) defined on domain
IT = (0,1] x T, given parameters b(¢) on T and F(¢) on (0, 1].

The main tool to solve this problem will be the analytic implicit function theorem in com-
plex Banach spaces, which gives condition under which an operator equation with parameter

has a unique local solution.

Theorem 1.4 (Analytic Banach implicit function theorem).

Let X, Y, Z be complex Banach spaces and f : X XY — Z be an analytic map in a neighbour-
hood of (xo,y0) € X X Y. Suppose f(xo,y0) =0 and g—i(xo,yo) .Y — Z is an isomorphism.
Then there exists a neighbourhood of (xg,yo,0) € X XY X Z in which the equation f(z,y) =0

has a unique solution, which is parameterized by an analytic function y = g(x) : X —» Y.

We look for solutions near the circular flow with constant vorticity ¢ = r? in the disk,

described in our coordinates by R = 1, p = 0, a(¢,0) = ¢/2, b(p) = 1, F()) = 4. The

11



bulk of this thesis, split over the next three chapters, is devoted to defining the appropriate
function spaces for the problem and proving that in these spaces, the conditions of the

analytic implicit function theorem are satisfied. Let us summarize the results which follow.

(i) We start by introducing the Kondratev space of functions (1), 6) on the strip II =
(0,1] x T, with norm

a0, 0) I m rry = Z [ =5 fu(w, )]} 1y < o

p+q=0

While such spaces are the natural setting in which the relevant degenerate operators

are Fredholm, their asymptotics as ¢ — 0 are more flexible than our solutions permit.

We next construct the spaces of functions of fixed asymptotics:

T3 (1) = {a(,0) = & 0(0) + w(y,0): v(0) € H™(T),w(s,0) € K3\, (1)},

whose functions are the sum of a leading term of order ¢)* and a higher order remainder
term taken in the Kondratev space. For v > 1/2, J}" (II) is a Banach space equivalent

to the direct sum H™(T) @ K}

(IT), with norm defined accordingly.

We adapt the Paley-Wiener theorem to give the above functions a partial complex
analytic structure. Namely, we consider the subset of above functions which can be
analytically continued in 6 from T to the complex strip T, = T x i(—0c, ). We define

the space J)".7(IT) of such partially-analytic functions with norm
la(, O)|lyeqry = lla(-, - + i)l qny + llal, - — o) o @)

For A =1/2, v > 1/2, m > 1, this space appropriately defines the families of complex
analytic flow lines for our problem. Its functions are continuous in ¢, analytic in 6 and
in a sufficiently small neighbourhood of 1/!/2, define a unique non-degenerate stagnation
point at ¢» = 0. The position of the stagnation point p and the scaling factor R (both

unkowns) are also extended from R? to C? and R to C, respectively.

The restriction of functions in J;7; (IT) to a given flow line at ) = constant defines

1/2,y

the space X5~ 1 2("I[‘) of individual flow lines which are complex analytic in the strip

T, and Sobolev on the strip boundary. The norm is given by
1a (@)l xp(m) = lla(- + o) || gmer) + [[a(- — io)|[rm(m)

12



(ii) We then study the linear problem associated to 1.6. Linearizing with respect to (R, p, a)

(iii)

at solution (F,b, R, p,a) = (4,1,1,0,%'/?), we obtain maps

O=(p12) Y 0? o 1 0?
a — —8CL a——8¢ ! 2[¢28—W+2¢%+1(I+w)]a(w76)7
0B(1,0,1,¢'/?)

B2 T R pa)

(R,p,a) = 2[R+pxcose +pysin9+a(1,9)}

Without loss of generality, we drop the factors —8 and 2 from the above expressions.
Writing sin @ and cos 6 in terms of exponentials, we get the degenerate elliptic linear
problem

v [0 20+ LI+ )| a(w,0) = 1(1,6)

R+ (B52)el + (B52)e ™ + a(1,0) = g(6).

(1.7)

We construct explicit solutions by factoring the above second order operator into the
product of two first order degenerate operators, whose inverses are weighted averages.

The Hardy inequality is used to establish Fredholmness of 1.7 in the spaces

C3 x J™2 () — JJ 27 (I1) x XM= Y2(T).

1/2,y 0,y

The presence of a two-dimensional cokernel in the above spaces means invertibility can

only be established on the codimension-two subspace of the target space, defined by:

Ty () = {uw.6) = 0(6) + w(w,0) € ) [ u(e) a0 —of
T
Namely, for 1/2 < v < 1, we prove 1.7 defines a Banach space isomorphism in

C* x Jyjy (T) = Jom27 (1) x X"~ V2(T).

Finally, we study the nonlinear operator (F,b, R,p,a) — (E(a) — F, B), whose zeroes

are the solutions of 1.6.

The analyticity of a — Z(a) : Ji)y (1) — J(TV_Q’U(H) is reduced to the study of

superposition operators in J(T W_Q’O(H). We show such maps, defined by composition

with an analytic function, are analytic in this space when m is sufficiently high. We also

Jm—2,o

0y (II), a crucial parallel to the linear problem. Taking

show that = actually maps to
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J(TW_Q(O, 1] to be the space of complex vorticities, we conclude that in a neighbourhood

of a = /2, the map 1.4

(Fa) = S(a) = F 2 Ji 20,1 < T () = i (1)

is complex analytic.

Next we study the nonlinear boundary map 1.5. This map contains a coordinate
transformation 6 — ¢ of the complexified polar angle defining the boundary flow line
r = a(1,0). This coordinate change is not a self map on the complex strip T,. Instead,
it is some deformation of said strip, depending on the solution itself. For solutions
sufficiently close to R =1, p = 0, a = ¢'/?, the image of every such coordinate change
is contained in some slightly larger strip T,, where 7 > ¢. Analyticity of the boundary
operator, which follows from results on superposition operators on space X' -1/ 2(']1‘)
requires that the boundary flow line p = b(yp) be holomorphic on this larger strip T,.
In particular, it can be taken in any Banach space H(T,) of functions analytic in T,.
We establish that given any 7 > o, there exists a neighbourhood of R = 1, p = 0,
a = 1'/? for which the boundary map 1.5

(b, R,p,a) = B H(T,) x C* x J77 (1) = X7 ~V/*(T)

1/2y
is complex analytic.
We conclude that for any 7 > ¢ and m sufficiently large, the operator (F,b, R, p,a) —

(E(a) — F, B) defining 1.6 is complex analytic between Banach spaces

J2(0,1] x H(T,) x €2 x Jyj7 (1) = Ji 27 (1) x X 1/2(T)

1/277 077

in a sufficiently small neighbourhood of solution (F,b, R,p,a) = (4,1,1,0,¢2). The

analytic implicit function theorem thus provides a locally unique solution to 1.6.
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Chapter 2

Function Spaces

The theory of elliptic boundary value problems is well established in the standard Sobolev
spaces. The Fredholm property of the associated operators and the results of elliptic regu-
larity make these spaces a natural functional setting for posing such problems. The situation
changes when the ellipticity of an equation degenerates in some part of the domain. New
function spaces must be introduced to obtain results analogous to those of the standard the-
ory. These spaces must reflect the more exotic behaviour of solutions to these equations at
the points of degeneracy. The equations of our study (1.6, 1.7) degenerate at the boundary
{1» = 0}, so we too must look beyond the usual Sobolev spaces.

In this chapter, we develop the appropriate function spaces to formally pose and solve the
nonlinear boundary value problem 1.6. We begin by introducing the weighted Sobolev spaces
of Kondratev: the natural setting for our linearized equation. Functions in these spaces have
asymptotic behaviour as ¢ — 07 more flexible than our situation permits. We account for
this by defining new spaces of functions of a fixed order leading term plus a higher order
remainder term, taken in an appropriate Kondratev space. Finally, we will extend these
functions to a suitable complex domain to incorporate the partial analytic nature of the
solutions. While seemingly exotic, the resulting spaces are the natural and correct setting
for our problem. The following chapters will confirm the validity of this claim.

Before continuing, we define for the sake of completeness the Sobolev spaces we will use
either explicitly, or that will be relevant to further discussions. Details on their properties

may be found in any standard text, for example ([24]).
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Definition 2.1 (Integer Sobolev space on the circle).

Let m € Ny. Define H™(T) to be the space of measurable functions on T with norm

w(O) [z ) ZIIDU M2 <

Definition 2.2 (Non-integer Sobolev space on the circle).
Let m > 0 and let [m] be the integer part of m. Define H™(T) to be the space of measurable

functions on T with norm

2

D™y (0) — DMy (')
Ot = WO+ [ [ L2 F o <o

Remark 2.3. The above spaces (m integer and non-integer) have an equivalent norm in terms

of the Fourier series given by
2
@) [y = D (1K) il
k

Definition 2.4 (Integer Sobolev space on the periodic strip).
Let m € Ny. Define H™(II) to be the space of measurable functions on II = (0, 1] x T with

norm

)y = 3 10208, 0) 2y < o0

p+q=0

This space has an equivalent norm in terms of the partial Fourier series given by

HU(%@)Hi{m Z ZquHDpuk HL2(0 1]

p+q=0 &k

2.1 Kondratev Spaces

It is known that the typical elliptic regularity results fail in the presence of singular points
in the domain. For example, the solution to the Dirichlet problem for the Poisson equation
in a domain with Lipschitz boundary is in general only in H?/?, even for smooth right-hand
side ([17]). The theory of elliptic equations on domains with conical singularities has been
developed since the mid 1960s, starting with the works of Kondratev ([19]). The spaces

introduced in his work allow for precise description of the singularities of solutions and
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their derivatives at the vertex. Furthermore, one can establish shift theorems between these
spaces, analogous to those of the standard elliptic regularity.

In fact, elliptic equations on manifolds with singularities are intimately connected with
the study of degenerate elliptic equations. See ([23]) for a detailed discussion. To summarize,
in practice, one removes the singular point from the manifold and stretches out the resulting
open submanifold (imagine a cone, stretched into a cylinder after deleting the vertex). In
doing so, the equation on the singular manifold is transferred to a degenerate equation on a
regular manifold with boundary. Let us give a particularly relevant example. Consider the
surface of a right cone with circular base in R3. Let r be the distance to the vertex and ¢

be the polar angle along the circular base. The Laplacian on this surface is given by

o\ L,
(7’5) +Cw y

where ¢ depends on the angle of cone. Notice, the above operator is a polynomial in r9,, an

order-one degenerate operator.

Let us return to our problem. We have a family of closed level lines parameterized by
¥ on the periodic strip II. This parameterization degenerates at {¢) = 0} , where the level
lines collapse to a point. On this strip we have a degenerate elliptic equation, with, modulo
a factor of /=12, degeneracies of type 1d,, like those on the surface of the cone. It appears
then that our problem is quite analogous to the discussion above. We too have a degenerate
equation on a ‘stretched” domain with a boundary produced by blowing up a point into a
circle. It is not then unreasonable to hope that the function spaces appropriate for posing
elliptic boundary value problems on conical domains can also be adapted to pose our own
degenerate boundary value problem.

Let us now introduce the Kondratev spaces relevant to our problem; spaces on the in-
terval (0,1] and on the periodic strip IT = (0, 1] x T, with degeneracies at {0} and {0} x T

respectively.

Definition 2.5 (Kondratev space on the interval).

Let m € Ny and 7 € R. Define K7'(0, 1] to be the space of measurable functions on (0, 1]

17



with norm

(e ”Km01 ZHW) " DPu(d) HLQOH o0

Definition 2.6 (Kondratev space on the periodic strip).
Let m € Ng and v € R. Define K7'(II) to be the space of measurable functions on II with

norm

(2, 6) 5y cmy = > o apuce, 0)|[72my < o°-

p+q=0

By Parseval’s theorem, this space has an equivalent norm in terms of the partial Fourier

series given by

la(, Ollepay = Y DR [0 DPin(@)|[fago

p+a=0 k

These spaces consist of two scales; the usual regularity scale m of integrable weak deriva-
tives, and the scale v which quantifies the strength of the weight at ¢ = 0. To get some
intuition, suppose for a moment that m = 0. If v > 0, then the weight blows up at ¢ = 0,
forcing functions in this space to vanish sufficiently rapidly as ¢» — 0. In contrast, if v < 0,
the weight vanishes at ¢ = 0, allowing functions in the space to have some controlled blow
up. In general, the smaller ~ is, the more singular the functions can be and conversely,
the greater « is, the faster they must decay. Additionally, the weight is homogeneous with
respect to differentiation in 1. That is, the order of the weight increases by one with each
derivative in 9, balancing the corresponding increase in the order of singularity arising from
such differentiation. To illustrate the advantage of this feature, consider the function u = 1.
If A ¢ Ny, then this function is either unbounded or eventually its derivatives are. However,
the inclusion of this function in the spaces depends only on v and not on m. If the weight
was not homogeneous, then the inclusion would necessarily depend on m. In this regard,
the two scales in the above space are uncoupled; m controls the general isotropic regularity,
and v controls the asymptotic behaviour as ¢ — 07. These scales can be summarized by
the inclusion K’;}l C K;’f, for 71 > v and my > mo.

The first basic property of these spaces worth mentioning is that away from ¢ = 0, they

are equivalent to their unweighted counterparts H™.
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Proposition 2.7. Away from ¢ =0, the KI' and H™ norms are equivalent.

Proof. Restrict ¢ to e <1 < 1, for some ¢ € (0,1). When p—~ > 0, we have =7 < P77 <
1. Similarly, when p — v < 0, we have 1 < ¢P77 < P77, Thus, each term in the K7" norm

has the bound
min{1, &7} | DPu(y)|| pope 1) < HW_WDPU(@D)HLQ[EJ] < max{1, "7} | DPu(v)]| oy
or analogously, on the strip [e, 1] x T. This establishes the equivalence of norms
cllullpm < ullxp < Clluflgm
on either the interval [e, 1] or the strip [, 1] x T. Note, constants ¢ and C' depend on e. [

Remark 2.8. We conclude that the spaces above have the desired property of differing from
the standard Sobolev space only in their behaviour as v — 07. We expect this of any
candidate function space, because away from 1 = 0, our operators are standard elliptic

operators and thus the standard theory should apply.

Let us now discuss how multiplication by powers of v and differentiation act on these

spaces.
Proposition 2.9.

1ou(,8) = u(y,0): Km(I) — K

T o(I1) defines an isomorphism (for any o € R).

2. u(),0) — Opu(vp,0): KM(IT) — K" (11) is bounded (for m >1).

v

3. u(y,0) — dpu(v,0): KJ(II) — K7'~'(II) is bounded (for m >1).

o

The first two hold analogously for functions u() on the interval (0, 1], replacing Oy by D.

Proof.
The statements follow from direct computations, with little difference between the case on
the interval and the case on the strip. We show them on the strip.

For the first statement, by the product rule, we can write

P P
9, (Vu) = Z o0y T (V) Oy (u) = Z Cp,p’,a?/faipﬂ)laf; u.
p'=0

p'=0
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Then we get

leullin, = D (770508 (™)}
p+q=0
m p
<e Y Y|

p+q=0p’=0

W08 O

2

L2(ID)
2

<C HUHKgn(H) 5

where the last inequality follows because p’ in the summation ranges from 0 to m — q.

This gives the boundedness of map u — ¢¥%u: K" — KI'  as well as its inverse v —

Yt+a
v~ KT

e K ~'s proving the first statement.

For the second statement, we have

m—1
D O LA’ A2 A0 [

p+q=0

m—1
= > o gl

p+q=0
< HUHiqn(n) )
where the last inequality follows since ¢ ranges from 0 to m — 1 and p + 1 ranges from 1 to
m —q.
The third statement follows similarly. We have

m—1
|0l = D [ 50% @)},

p+q=0

m—1
= > 3505 ull

p+q=0
2
< HUHK;n(H)a
where this time the last inequality follows since p ranges from 0 to m — 1 and ¢ + 1 from 1

tom —q. ]

Next, we address the relevant traces of functions in these spaces. Namely, restrictions
from the strip II to the circle {¢) = constant}. We are particularly interested in restrictions
to the boundaries of the strip, that is to ¢y = 0 and ¢ = 1. We start with the latter, which

follows immediately from the equivalence of K7" and H™ away from ¢ = 0.
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Proposition 2.10. Let m > 1/2 and fir 0 < ¢ < 1. Then the restriction to 1 defines the
bounded operator

U(-, ) — u(w7 ) K?(H) — Hm71/2(T)'
In particular, the restriction to 1 =1 is bounded in these spaces.

Proof. As we saw in 2.7, away from 1 = 0, the spaces K'(II) and H™(II) are equivalent.
Then the result follows from the standard trace theorem in Sobolev spaces, where the re-
striction is bounded from H™(II) to H™ '/?(T). To be precise, take 0 < ¢ < 1. Then we

have the following inequalities:

lu(@, M mrr2qry < ellullam ey < Cllullgpenxm < Cllullep -
[

Remark 2.11. Notice the above bound is not uniform in 1 because the constant in the
middle inequality depends on &, which in turn depends on . This is expected, after all, the
behaviour as 1) — 07 can be singular. The following result improves this estimate to include

the dependence on ¢, by exploiting a dilation invariance in the K" norm.
Proposition 2.12. There exists C' > 0 depending on v, m, k for which

1. ‘Dku(w)‘ < va_k_l/zﬂuHKwoJ] form —k>1/2

2. H@@u(w, ‘)HHm_k_l/Q(T) < Cz/ﬂ_’“_l/QHuHKmn) form—k >1/2

3. |05y, 0)| < CY 12 | gy for m —k > 1.

Proof. The proof is adapted directly from [6]. The Sobolev embeddings in continuous func-

tions and the trace theorems tell us:
L |D*u(y)| < Cllull o for m —k > 1/2,
2. H@{Zu(@b, -)HHm*k*l/Q(T) < Cllul|gm o)<y for m —k > 1/2,

3. |0bu(, 0)| < Cllul|gmo,yyxr) for m —k > 1.
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In what follows, starting with any of the above estimates will yield the corresponding state-
ment of the proposition, with essentially no difference in the proof. We will pick the second.

Define a new coordinate s by the rescaling ¢» = s, for some A > 0. Then u(¢,0) =
u(As,0) = v(s,0). Take, say s € (1/2,1). We have

2
H@fv(s, ')HHmfkfl/Q( < CH”H%{M( [1/2,1]xT)
=C Z / /|apagvs 0)>dods.
p+4¢=0
The change of variables gives us: s = /A, ds = dy /A, O = )\pﬁi. Applying this to the
inequality above gives
k 21
N0 ) oy <€ / [ veseguw. o) S avd,
p+q=0
which we can write as
k 2 —k—1 2
Haw“w? ')HHm*kfl/Q(’]l‘) <C (X* / Z ”/\p Wapaq (¥, )HL2 (IV/2A]XT) *
p+q=0

Since A/2 < 1 < A, then for any a € R, we have \* < ¢i)® where ¢ depends only on a, not
A. In particular,

>\fy—k—1/2 < Clw'y—k—l/2 and )\p—k < Cpr—k7

where c; and ¢y depend only on «, k£ and p, not A\. We now get

1081, )|y ay < COXOF1) Z =083, O ry ey

p+q=0

or
05 Mmooy < OOl vz em

The above estimate is uniform in A, since the constant C' depends on v, m and k& but not on \.

In particular, it holds uniformly for all A € (0, 1], yielding the statement of the proposition:

105, M| i oy < CT 2l e

]

Remark 2.13. The above proposition tells us how the asymptotic behaviour as ¢» — 0" of

functions in K7 depends on 7. We identify the three cases:
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e For v —1/2 <0, functions in K7 can grow unbounded as 1) — 0.

e For v —1/2 = 0, functions in KT remain bounded as 1) — 07, though their limit may

fail to exist.
e For v —1/2 >0, functions in K7 necessarily vanish as 1) — 0.

We see that only for v > 1/2 can we meaningfully define the restriction of u € K" to the
boundary 1) = 0 (assuming of course m is sufficiently high), and in this case the restriction
is necessarily zero. Additionally, this means that when functions in K" are continuous away
from 1) = 0 (by the equivalence with H™), the continuity extends up to the boundary ¢ =0

if v > 1/2. We summarize this in the following corollary.
Corollary 2.14. For v > 1/2, we have the embeddings
e KI'(0,1] C C0,1] when m > 1/2,
e KI'(II) C C([0,1] x T) when m > 1.
Furthermore, under these conditions, functions in KI* vanish as ¢ — 0.

The previous results can be viewed as an analogue in the Kondratev spaces to the Sobolev
embedding into continuous functions. It will also be useful to say something about the

Kondratev embeddings into LP.

Proposition 2.15. K(IT) C LP(IT) when v > § — 5, with |[ul| oy < Cllullgzqm).-

Proof. From 2.12, we have |[u(), )| g1/2(m) < O~ 1/2||U”Km . By the Sobolev embedding
theorem in the critical case, for any p < oo, we have |[u(¢),)||zo(r) < Cllu(®), )| g1/2¢r)- This
gives

e / [u(ie, )46 < Cwro 1D Ju,

Integrating over v gives

1
7 //|u Wb, |Pd9d1/z<0||u||K1(H)/ PO Q.
0

The right side is bounded when p(y — %) +1>0,o0r~y> % — %.
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We include one more estimate that will prove useful.

Proposition 2.16. Suppose u € K (II). Then I(0) = (f01|¢*7u(¢,0)|2d¢)1/2 € C(T) and

1] < Cllull ey -

Proof. Foru(y,0) € Ki(l_[), define the vector-valued map 6 — 1p~"u(1), 6). This map belongs
to H'(T, L?(0,1]) because

0w, )l 220 = [|I16770(,Ollz2g0,y

2 2
- 9 ’
L2(T) * HW uo(®,0) 120 L2(T)

< [ ul@, 072 + 10w (W, 0)[[72(m
< ||U||12rq(n)7

which follows from the equivalence L*(T, L*(0,1]) = L*(TI).
By the embedding H'(T, L?(0,1]) € C(T, L*(0, 1]), the function I(#) is a composition of
continuous maps ¢ — ¥ 7u(¢,6) : T — L*(0,1] and [|-||2; : L*(0,1] — R and is thus

continuous. Finally,

[L(O)] = 1o ul- )220 < [0 ulloer 200 < CllY " ullmier 2001y < Cllullxa .
OJ

Having seen a number of properties of the space K, we are now ready to discuss its

suitability for the study of our problem. Our linear operator 1.7 is modulo a factor of ¢~1/2,

a polynomial of operators (10,) and 9. Both of these operators are bounded from K7*(IT)
to K" '(IT). Additionally, we have a well defined trace in H™ */2(T) at ¢) = 1, where our
boundary data is defined. This puts us in a good position to pose the linear boundary value
problem. In fact, we will see in the following chapter that the linear map is Fredholm on
K1) — K;”_712/2(H) x H™Y/2(T) except on a countable set of 7. Furthermore, this space
is well suited to include singular functions like )'/2 (the solution near which we aim to solve
the nonlinear problem). Finally, we can guarantee that the functions in this space vanish at
1 = 0. After all, to have a meaningful fixed point (level set consisting of a single point), we
require that r = a(y,0) — 0 as ¢ — 0%,

There remains one crucial element we have not accounted for. For our function space to

be suitable, the nonlinear operator must be well defined on this space, at least on functions
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in a sufficiently small neighbourhood of the solution /2. Looking at the operator 1.6, it is
clear this can only occur if the functions r = a(1,0) do not vanish away from ¢ = 0. We
demonstrate how the space K" fails in satisfying this condition. To see this, let us start
by checking for which v does solution ¢'/? belong to K*? This is satisfied if ¢'/27" € L?,
which holds for v < 1. So let us fix some v < 1. Next, a function ¥* belongs to this space if
>~ —1/2. Since v < 1, we can always find a u satisfying v — 1/2 < u < 1/2. Fix such a
pu and define the function a = /% — ey, We see that [[¢'/? — al|gm = e|¢*|

Km, which can
be made arbitrarily small by control of €. In other words, for any neighbourhood of /2,
we can take e such that a = /2 — e* belongs to this neighbourhood. Finally, notice this
function vanishes at ¢ = 0 as well as ¢ = £, If ¢ small enough, then the latter condition
means that the function a = ¥'/? — ey* vanishes at some ¢ € (0, 1] and thus the nonlinear
operator 1.6 will fail to be well defined there. Let us remind that the value of the function
r = a(1),0) defines the radial coordinate (with respect to the fixed point) of the level line
given by 1. The desired topology of our flows is that of nearly concentric circles around a
fixed point. If r = a(v,6) were to vanish for some ¢ > 0, we would have some level line
at the least pinching the fixed point, if not completely collapsing to it. We must certainly

exclude such degeneracies. We rectify this issue in the next section.

2.2 Spaces of fixed asymptotics as 1) — 0"

The Kondratev space K" introduced in the previous section fail to be suitable because their
functions have asymptotics as ¢ — 0T that are too flexible. Any neighbourhood containing
solution /2 necessarily contains lower order asymptotics, which lead to the breakdown
of the topology of the flows we are trying to parameterize. Our candidate solution space
requires the asymptotic behaviour of its functions to be firmly capped from below.

We construct such a space as follows. Starting with the solution '/2, allowing for some
angular dependence gives functions of form v(6)y'/2. If away from 1) = 0, we require these
functions to be in H™, then v(#) should be taken in H™(T). Next, we wish to include
perturbations by higher order (in %) terms, which may include angular dependence as well.

These higher order terms can then be taken in K ;”(H), so long as we ensure to take v such

25



that it excludes all terms of order /2 and lower. This suggests a space of functions of form
u(y, 0) = Y 20(0) +w(, 0), with v(d) € H™(T) and w(v,d) € K™ (II), for appropriate 7. It
will be useful to define this space in greater generality, namely for leading terms of arbitrary

order .

Definition 2.17 (Space of fixed asymptotics on the interval).
Let m € Ny, and A, € R with v > 1/2. Define space

J3(0,1] = {u(y) = = +w(): v e R wy) € Ky (0,17}

with norm

2 2 2
Hu(w)lbgvm,u = |v|” + |‘w(w)HKT+7(O,1} :

Definition 2.18 (Space of fixed asymptotics on the strip).
Let m € Ny, and A,y € R with v > 1/2. Define space

T3 () = {u(¥, 0) = v(0)¢* +w(®,0): v(0) € H™(T), w(v,0) € K}y, ()}

with norm

o, O 1y = 10Oy + 0, Ol -

Remark 2.19. The space J3" (0, 1] is only well defined if its elements u (1) uniquely determine
v and w(y) such that u(y) = vip* + w(y). In other words, if span {¢*} N KY = {0}.
Similarly, the analogous statement is required of space J/\W(H). This is equivalent to the
requirement that 1* ¢ K., which holds when v > 1 /2. This guarantees that the remainder
term w consists only of asymptotics of order greater than ¢)*. With this condition, the spaces

Jj{}m can be identified as the direct sums:
(0,1 ~ R Ky (0,1],

Jy, (1) =~ H™(T) @ K} (IT).
The parameters A,y and m defining JY", can be summarized as follows:

e )\ defines the leading order asymptotics as ¢ — 0.
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e 7 > 1/2 defines the scale of higher order asymptotics (the greater + is, the greater the

gap between the leading term and higher order terms).
e m is the usual isotropic regularity scale.

Additionally, we have the inclusion J;?,;l C J;?jQ for my > my and 7 > 7, which follows

from the inclusions H™ C H™* and K| C K¢ .

Next, notice that J}" is equivalent to H™ away from ¢ = 0. This follows immediately
from definition, for u(z,0) € J3°, is the sum of a term v(0)y* (which is in H™ away from
Y = 0if v(f) is), and a term in K} (which we have already seen is equivalent to H™ away
from 1) = 0). In fact, all the prior properties of K7 hold analogously for the space J3,. We

only list them, the proofs follow immediately from definition and the results on K7 .
Proposition 2.20.
1. u(¥,0) — Y*u(y,0): JTL (1) — JY, (II) defines an isomorphism (for any a € R).
2. u(y,8) — Oyu(,0): J (1) — J;’L_E;(H) is bounded (for m > 1).
3. u(y,0) — Ogu(ep,0): J (1) — Jf\’:‘;l(H) is bounded (for m >1).

The first two hold analogously for functions u() on the interval (0, 1], replacing Oy by D.
Proposition 2.21. Let m > 1/2. Then the restriction to 1) = 1 defines the bounded operator
u(+, ) = u(l, ) JP () — H™V2(T).

Proposition 2.22. There exists C' > 0 depending on \,vy, m, k for which

1. |Dku(@/1)| < C«w)\fk <|’U| +¢'Y*1/2||w||;qn+v(071]> form —k > 1/2.

sy < CO ([0l + 72wl @) form =k > 1/2.
5. |0ku(,0)] < Cyt (||U\|Hmm + 1D7—1/2||w||;cg\n+w(n)> form —k > 1.

Corollary 2.23. For A > 0, v > 1/2, we have the embeddings
e J'(0,1] C C0,1] when m > 1/2,
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e JU (II) C C([0,1] x T) when m > 1.

Additionally, under these conditions, we have the following point-wise behaviour.
o [f A >0, then functions in J\ vanish as ¢ — 0t.
o IfA=0, thenu=v+we€J —vasy— 0"

Though we have defined the space J)", for arbitrary A, in practice we will only use two
cases. First, the space of solutions, whose leading asymptotics are of order 1/2, is defined
by A = 1/2. Second, the corresponding target space of our differential operators is defined
by A = 0.

Notice that for A = 0 and v > 1/2, functions u(¢,0) in Jg% have the property that
u(0,0) = v(0) € H™(T). Taking v > 1/2 guarantees that the contribution of the term

w € Ky}, is continuous and vanishes at ¢ = 0. The functions in Jg?

then have the unusual
property that for ¢ # 0, restrictions u(s,-) belong to H™ /2(T), but as ¢» — 0%, this
restriction bumps up in regularity to H™(T).
We will find in the following chapter that the cost of seeking solutions in the space
f}M(H) is the presence of a two-dimensional cokernel in the linear problem consisting of
span {eﬂw}. To establish our desired isomorphism of the linear boundary value problem
1.7, we are forced to remove this cokernel from the target space. Of course, we will have

to ensure this is accounted for in the nonlinear problem 1.6. This leads us to define the

additional space:

Definition 2.24.

j[)”:‘,y(l'[) = {u(w, 0) =v(0) +w(v,0) € Jg (I): /TU(G)eﬂw do = 0} .

In this section, we have defined the space J/(C‘V(H) of functions with leading asymptotics
of order 1*. These functions have well defined restrictions to the boundary ¢ = 1 lying
in H™12(T). For A > 0 and v > 1/2, this space embeds into the continuous functions.
We will show in the following chapter that the linear problem 1.7 defines an isomorphism
R 1"/L2,7

the well posedness of the nonlinear problem 1.6 in these spaces. So far, our definitions restrict

(1) — %”77_2(11) x H™~'/2(T) for some range of . Later, we will also demonstrate
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to real valued functions and lack any analytic structure. They will serve as the model spaces

which we will extend to incorporate the desired partial analytic structure.

2.3 Spaces of Partially Analytic Functions

m

v+, (IT) for solutions, interpreted

In the previous section, we have defined our model space
as the graphs of a family of flow lines. We have seen that the restriction to individual flow
lines resides in the space H™ /2(T). The flow lines of solutions to the stationary Euler
equation are known to be real analytic curves, that is, functions a(, #) in JY" (II) should be
additionally analytic in #. It is our goal in this section to extend (or perhaps better to say
refine) J;\’fv(ﬂ) to include this partial analytic structure. Similarly, the space of restrictions
to individual flow lines, modelled on H™~1/2(T), should be refined to consist of some subset
of analytic functions.

Since real analytic functions do not form a Banach space, we can instead consider func-
tions having analytic extensions to some suitable complex domain. In our case, it is natural
to extend 6 € T to the complex periodic strip T, = T X i(o, o), where 0 > 0. With this aim,
our main tool will be the Paley-Wiener theorem - a group of results relating the decay of a
function’s Fourier transform with its extension to a complex domain ([25]). They provide
a description of spaces of holomorphic (and partially holomorphic) functions, akin to the
complex Hardy spaces, defined by an appropriate control of their possible singularities oc-
curring on the boundary of the complex extended domains. This formulation of complexified
stationary flows allows us to employ the tools from the theory of complex Banach spaces.
We should clarify then, from here on after, all function spaces should be understood to be
complex valued (including the real valued spaces defined in the preceding sections).

We now state the following theorem of Paley and Wiener, which characterizes the analytic

extensions of L?(R) functions to the complex strip.

Theorem 2.25 (Paley-Wiener on the complex strip).

Suppose u(z) € L*(R) and o > 0. Then the following statements are equivalent:

1. e“kla(¢) € LA(R).
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2. u(x) extends to u(z) holomorphic in the strip {z =z +iy: x € R, |y| < o} with

sup [|u(- +iy) || L2m) < 00.
lyl<o

This theorem enables us to define the space of holomorphic functions on the complex
strip whose restrictions to the strip boundaries are L*(R) functions. With a few changes,
we can adapt this theorem to our specific needs. It will be useful to first prove the following

lemma.

Lemma 2.26.
Suppose u(z) is holomorphic on the complex periodic strip T, = {z =0+ ir: 0 € T,|7| < o},

with values possibly in a complex Banach space. Then it has the representation:

u(z) = Z G
k

where

1 .
(o u(h)e™* dg .

=5 :
Proof. We start by showing there is a one-to-one correspondence between holomorphic func-
tions in T, and holomorphic functions in the annulus A, = {¢™7 < |w| < ¢”}. Consider map
2z — w = e, It defines a holomorphic bijection from T, to A,. Since %U # 0 everywhere in
T,, then by the inverse function theorem, near any pair (zq, wp) with wy = €**°, there exists
a holomorphic inverse map z = Fy(w).

Now suppose g(w) is holomorphic in A,. Then u(z) = g(e**) is the composition of two
holomorphic maps and thus holomorphic in T,. Conversely, suppose u(z) is holomorphic in
T,. Near any wy € A, we have some representation z = Fy(w) and so u(z) = u(Fy(w)) =
g(w) is analytic near wy. This holds for all wy € A,, so g(w) is analytic in A,. This
establishes the one-to-one correspondence between analytic functions u(z) on the strip, and
the analytic functions g(w) on the annulus, with u(z) = g(e*).

Given u(z) holomorphic in T,, take g(w) as above, with u(z) = g(¢**). The function

g(w) has the Laurent series about w = 0 given by

g(w) = Z Ckwk,
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with

1 [ g(w)
Cr = 2—7” wlﬁ"l dw.
Setting the contour in the above integral to be around the unit circle w = €¥, we get
1 16
S G Py
2T T elka
Finally, because u(z) = g(e'®), we get
1 —ik6
ek =— [ u(@)e " do
2 Jr

and

u(z) = Z cpe®?.

k

All the above results hold for complex Banach space valued holomorphic functions, inter-

preting the integral defining the coefficients ¢;, as a Bochner integral (see [21]).

Now, let us adapt the prior Paley-Wiener theorem on complex extensions of L*(R) func-

tions to the H™(T) setting.

Theorem 2.27 (Paley-Wiener for Sobolev functions on the complex periodic strip).

Suppose u(0) € H™(T), where m is a non-negative real number and let o > 0. Then the

following statements are equivalent:
1. Filg {eoMay} =37, dge*le™® € H™(T).

2. u(0) extends to u(z) holomorphic in the complex periodic strip

T,={z=0+ir: 0T, |r| <o} with

|S|up lu(- 4+ i7) || g ry < 00.
T|I<Oo

Proof. First, we assume the first statement and prove the second. Given u(f) € H™(T), we

have the Fourier series:
u(f) = E Gge™.
k

Next, we extend 6 to the complex variable z = 6 + iT to get
u(z) = Z pe™ = Zﬁke_l’”eike.
k k
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Now let € > 0 and |7] < 0 —e. We get
[u(2)] < ) lane™ | = |lige™ |
[

< ka’elkllfl
k

< 3 fagle Hlelr=oli
k

< Z|ak|e"‘k‘e‘€|k|
k

< [lie”™ || | e~ ]| 2

< Q.

The second last inequality follows from Cauchy-Schwarz. The last inequality follows from
the assumption, for if %, {e“"a,} € H™(T), then equivalently (1 + k*)™/2e7 gy € (2.
Thus, we have shown that u(z) is well defined for any |7| < 0 — €.

Next, we will show we can also differentiate u(z) under the summation sign, establishing
the holomorphy of u(z). Set f(z, k) = Gxe’**. From the above inequalities, we saw f(z, k) €
0 for |7| < 0 —e. Also, 2L = ikiye™ certainly exists for each & and all z. Finally we can

dominate g—J; as follows:
ik e™?| < |ktiy|e!*!I"!
< mkeo\k\‘|k€(\7|70)lkl|
< Jae || ke =]
et

Thus % is dominated by an ¢! function independent of z. By the lemma of differentiation

under the integral sign (following from dominated convergence theorem), we conclude that

du(Z> 1\ tkz
P :;(zk)uke

for || < 0 — ¢, and thus u is holomorphic here. Finally, note because this result holds for

arbitrary € > 0, u(z) is in fact holomorphic for |7| < o.

32



To conclude the first part of the proof, the norm equivalence of H™(T) as a weighted ¢

space gives the estimate
- + i)l rmery < 11+ &)™ e |2 < [[(1+ K2)™ 2agel]| 2,
from which it follows that
sup -+ i) ey < 01+ 9 iy < oo

Now let us assume the second statement and prove the first. Given u(- +ir) € H™(T),

we can write
u(f + i) E Uy, Zke.

The key step here is invoking the prior lemma 2.26: because u(z) is holomorphic in T,, the

above expression instead takes the far more rigid form:

u(f +i7) g e re k0

The required estimate then follows again from the equivalence of the space H™(T) with its

weighted ¢? counterpart.

1Fi s {7 ™y Hlmery = |1 + &)™ iae” ™| 2

= sup||(1+ kz)m/2ﬁke‘7|‘k‘ || ¢

|T|<o

< sup |[(1 + kQ)m/2ﬁk (eTk + e’T'“) ||

|T|<o

= supfu(- —i7) + (- +i7) | ()

|T|<o

< 2 sup[u(- + 1) [ rrm(r)

|T|<o

< 00.

]

This theorem provides a description of the space of holomorphic functions on the complex
periodic strip whose restrictions to the boundary are Sobolev functions. We are now ready

to define the space for the individual analytic flow lines.
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Definition 2.28. Define X”'(T) to be the space of functions satisfying the conditions of

theorem 2.27. We have two equivalent characterizations of this space:

X2(T) = {u(6) € H™(T) : Fi 2ty {ine™) € H™(T)}

with norm

lullfepemy = Y (L + K2 ay
k

2. X'(T) is the space of functions u(z) that are complex analytic in T, and satisfy

‘S‘up [l + 47| gron gy < 00
T|I<Oo
with norm

2 - N 2
HUH_ZX;“(T) = ﬂlp [ul- +47) [[gmry = ul- + i0)[[gm ey + [[ul- = 10)[gmer -
TI<O

Remark 2.29. Tt is straightforward to check that the two norms above are indeed equivalent.
We can thus interpret X' (T) as the space of analytic flow lines whose possible complex

singularities are described by H™(T) functions on the strip boundaries.

Remark 2.30. The boundedness of derivative map D: X™(T) — X7 (T) follows immedi-
ately from the boundedness of D: H™(T) — H™(T).

Our next goal is to adapt the Paley-Wiener theorem to characterize the partial analytic
nature of our solutions. We must incorporate this anisotropic analyticity while preserving
the general structure of the space Q}V(H), which we claimed is the appropriate setting for
our boundary value problems. To get an idea of how we can do this, let us for a moment
consider instead the space L?(R?) of functions u(z,y). How can we define what it means
for such functions to be partially analytic, that is analytic in say z, if they are not a priori
defined point-wise? Let us consider the restriction to vertical sections u(x,-). If u is only
in L?(R?) then of course such a restriction map is not meaningfully defined. However, if we
have sufficient additional regularity along x (that is, along the direction perpendicular to

the sections we restrict to) then we can define this trace meaningfully as an L?(R) function.

Thus, we can define the partial analyticity by analytic Banach valued maps. Namely, we
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can say that u(x,y) € L*(R?) is partially analytic if the map z — u(z,-): R — L*(R) is

analytic. We expect the following extension of the Paley-Wiener theorem:

Theorem 2.31 (Partial Paley-Wiener).

Suppose u(x,y) € L*(R?) and o > 0. Then the following statements are equivalent:
1 FE, (el )} € LR,
2. u(zx,y) extends to u(z,y) partially analytic in the sense that the map
z—=u(z,-): {z=a+it: |t| <o} = L*(R)

1s holomorphic and

|s‘upHu(~ +it, )| 22y < 00.
tl<o

We state this because it serves as an example of how to adapt the Paley-Wiener theorem to
include a notion of partial analyticity, while preserving the properties of the underlying model
space, L*(R?) in the above case. In our case the model space is J{* (IT), which recall is the
space of functions u(1, ) = v(0)Y* + w (1, 8), where v(f) € H™(T) and w(v,0) € Ky, (II),
and can be identified with H™(T) @ K} (II). Since we have already discussed the Paley-
Wiener theorem for analytic extensions of H™(T) to the strip T,, we need only focus on
adapting the above theorem to K7'(II) functions. The main point to underline again is that
we can define partial analytic functions as holomorphic Banach valued functions, which are
valued in the space of restrictions to vertical sections. Where as typically, we expect the
trace of a KI'(II) function to lose half an order of regularity (as in the Sobolev case), in our
case the additional regularity in # compensates for this. The proof of the following theorem
is almost identical to the proof of theorem 2.27, only differing in that u(-,z) is Banach

valued.

Theorem 2.32 (Partial Paley-Wiener for Kondratiev functions).
Suppose u(1,0) € KI'(I) and o > 0. Then the following statements are equivalent:

1. Filt g {eMag ()} = 30, dn(1)e”Me*? e Km(IT).
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2. u(v,0) extends to u(v, z) partially analytic in the sense that the map
z—=u(2): To ={z=0+ir: |7| <o} — KI'(0,1]
1s holomorphic and

‘SFp [ - +47) |k any < 0.
TI<O

Proof. To start, we assume the first statement and prove the second. Given
0) = ()™’
k
we extend to the complex variable z = 6 + i7 to get
_ Z ﬁk( 'Lkz Z uk kTeikB.
k
We will now show u(-, z) is well defined in K7"(0,1]. Let € > 0 and || < 0 — e. We have

—kT

o

< Zelkuﬂ [k (v HKm (0,1]
< Z Il | dug (1 ||K (o, ellI=o)lk|

flu(-, Z)”K;n(o,l] =

< HI!flMe”"“‘!!Kmu P el PP
m 1/2
< (Z 2. <k2>qH¢p”Dpak(we”"“'lle(o,u) le="]l..
k p+q=0

H]:kae {eglkmk(@b)}HK;n(n) ||€_E|k|”e2

< 00

where the fourth inequality follows from Cauchy-Schwarz. This shows that u(-, z) is well
defined in K7'(0, 1] for any |7| < o —¢.

Next, we will show we can also differentiate u(+, z) under the summation sign, establishing
the holomorphy of (-, z) as a KI*(0,1] valued map. Set f(z,k) = i, (¢)e’**. From the above

inequalities, we saw f(z,k) is a K7"(0,1] valued £* sequence for every |7| < 0 —e. Also,
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% = ikt (1))e™** certainly exists for each k and all z. Finally, this derivative is dominated
by

< [|e” Mg (1)
K7(0,1]

fs\kw

Hg(z,k

HK;VL(OJ] ‘k:e

where the right side is an ¢! sequence. Satisfying the conditions of differentiation under the
integral sign we conclude that z — u(-,2): Ty—. — K7'(0, 1] is holomorphic. Since ¢ > 0 is
arbitrary, holomorphy holds on T, .

To conclude the first part of the proof,

- -+ 87 | gemqary < 172, {e Mg () }|

szn (H)

from which it follows that
. ~1 k| 5
|31|1p [Ju(:, -+ ZT)HKZYH(H) < H‘Fk—>9 {ea| ‘uk(w)}HK;n(H) < 0o0.
T|<o
Now to prove the converse let us assume the second statement of the theorem and prove

the first. By lemma 2.26 for Banach valued holomorphic functions, u(-, z) takes the form:
u(v, 0 + iT) Z G (1) e e,

Expressing the K'(II) norm in terms of the partial Fourier series immediately gives

| Fite {6”‘k‘ﬁk(¢)}}|i«;ﬂ<n> = D ) D ()]
p+q=0 k

<sup YD (R (7 4 ) [0 D) oo

IT|<o p+q=0 k

. 2 . 2
= sup <||U('7 4T ey + Il = ”)“m(m)

|T|<o

. 2
<2 sup [fu(-,- + i) 2

|T|<o
< Q.

]

Definition 2.33. Define KI"(II) to be the space of functions satisfying the conditions of

theorem 2.32. We have two equivalent characterizations of this space:
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K1) = {u(y,0) € K7'(10) : Flp{an(v)e”™} € K1)}

with norm

lulleroy = > D kK22 FH |y DPy ()] |72 ., -

p+q=0 k&

2. K77(IT) is the space of functions u(i, z) that are partially analytic in sense that
z—=u(2): T, ={2z=0+ir: |7| <o} — KJ'(0,1]
is a holomorphic Banach valued map, and satisfies

‘Sl‘lp Ju, -+ 47 ey < 00,
TI<O

with norm

. 2 ~ . 2 . 2
[ullzemepiy = sup [l -+ i) ey = Nl -+ i0) ey + 1wl - = i0) ey -
T|<o

Having defined the spaces X*(T) and KI™(II) it is now straightforward to define the

space of partially analytic flow lines modelled on J/@/(H), as the direct sum of these spaces.

Definition 2.34. For v > 1/2, we define

Je (M) = {u(y, 0) = v(@)* +w(y,0): v(d) € X;'(T), w(y,0) € K3} (1)}
~ X2(T) @ Ky (1)
with norm
\IU(%@)\ﬁgjf(n) = [[0(0)I5pnmy + I\w(w,9)|!§<;¢;<n) :

Additionally, we define the co-dimension two subspace:

Definition 2.35.

Joo (1) = {uw,e) = v(0) +w(y,0) € Jgu7(II): /T v(0)e 49 = o},

Remark 2.36. All the properties of propositions 2.20, 2.21, 2.22 and corollary 2.23 hold
analogously in the space Jy7 (IT). This follows immediately from the fact that if u € Jy%7(II),
then on every periodic strip {|7| < o is fixed.}, u(-,- +i7) belongs to J3" (II).
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Let us now summarize the results of this chapter by giving some context in terms of the
equation of study 1.6. We have defined the space Jln;’;ﬁ(l_[) of partially complex analytic
flow lines which will serve as the space for solutions r = a(¢, ). For m > 1, v > 1/2, these
functions are continuous. If a(¢), §) = ¥/?v(0) +w(v), ) and v(f) is never zero, then a(1, 0)
vanishes like ¢'/2 as ¢y — 07 and blows up like ¢»~'/2. Such functions thus have the required
behaviour at ¢» = 0 to properly describe the stagnation point of the associated velocity
field u(1), 0). These functions have well defined restrictions at the boundary {¢) = 1}, which
reside in X0 *(T). The space JN(TW_Q’J(H) serves as the target space of our equations. For
m—2 > 1, v > 1/2, its functions are continuous and have the property that u(y,0) =
v(0) + w(p,0) — v(f) as » — 0F. Finally, the space J§ *(0,1] embeds naturally into
(70"?7_2’”(11) and serves as the space of complex vorticities F'(¢)). Functions in this space
are continuous for v > 1/2, and consist of a leading constant term plus a higher order

perturbation. Now that we have defined the relevant function spaces, we can proceed with

establishing the well-posedness of the linear and nonlinear problem in these spaces.
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Chapter 3

Linearized Problem

The goal of this chapter is to prove that the linearization 1.7 of the nonlinear boundary value
problem at solution a(1,8) = 1'/? defines an isomorphism between our defined function

spaces. We remind this linearized problem is given by:

Definition 3.1 (Linear Problem).

22T 2 2 4+ LT+ ) (@, 6) = f(,6)
R+ (px_;py>ei9 + (px-;ipy)e—ie + u(l,@) _ 9(9)7

to be solved for R € C, p = (ps,py) € C* and u(¢,0) € J{'/L’QUW(H), given parameters

F(0,0) = T"2(T1) and g(8) € X2 % (T).

= Y0y

By remark 2.36 and proposition 2.20, multiplication by 1'/? defines an isomorphism from

Jon (1) to Jy (IT). It is then equivalent to consider instead the problem

Lu(v,0) = |02 Zs + 268 + 21+ &) |u(v, 0) = f(1,6)

R+ (B5P)e” + (P52 )e™ +u(1,0) = g(0),

where f(1,6) is now to be taken in J?/L;ia(ﬂ)

We break down the proof into four parts. First, the boundedness of the linear map in the
above spaces follows immediately from the work done in the previous chapter. Second, we
solve the homogeneous problem when f = 0 and bound the solution by the boundary data.

This requires a restriction on the permissible values of 7. Finally, we solve the inhomogeneous
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problem on the component spaces that make up Jf;;v(ﬂ)‘ The linear problem on the leading
term component reduces to an ODE in 6, solved by Fourier inversion. The bulk of the
work is then dedicated to solving the linear problem on the remainder component term in
K I’}’QZW(H) and establishing the required bounds. Expanding to a Fourier series in 6 yields a
sequence of second order ODEs in v. Each corresponding second order differential operator
can be factored into the product of two first order operators. Their inverses, which can
be computed explicitly, are operators taking weighted averages. The main tool to establish
their boundedness is the Hardy inequality ([6]), which bounds the L? norm of the weighted

average of a function by the L? norm of said function:

Theorem 3.2 (Hardy Inequality).

o Ifar<1/2,

Y 1
yo! / o f @) de| <[l
0

201 T 5 -«

o [fa>1/2,

£l 220,17

! 1
T / = f(z)dw <
)

= I
2 —_ =
20,1 T o — 3

Let us now proceed, starting with the boundedness of the linear operator.

Proposition 3.3.

The linearized problem 5.1 is bounded from C3 x ‘]177207(1_[) to J{'};i’o(ﬂ) X Xgl_lﬂ(T)

Proof. This result follows immediately from the results of the previous chapter. The op-

erators ¥?0;, ¥0y and Jj are bounded from Jy}7 (IT) to Jy), 370(1_[). This follows from

proposition 2.20, remark 2.36, and the boundedness of the identity map from J{?; i’U(H)

to Jf;; 3’”(11). Thus L is bounded in these spaces. Next, by proposition 2.21 and remark

2.36, the trace map u(-,-) — u(1,0) is bounded from Jf}’% to Xg"_l/Q(']I‘). Finally, using

the Fourier series representation of the norm of X2 “/*(T), we get HRHXWUQ(T) = |R| and

|(pe F Z'py>€:ti9||X;n—1/2(T) < C(|pz| + |pz|)- Putting it all together gives the bound

1Ly + gl ey < VRI+ o]+l oo,

1/2,y
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Next, we tackle the homogeneous linear problem.

Proposition 3.4.
Let 1/2 < v < 1. Then the homogeneous problem obtained from 3.1 by setting f = 0 is

invertible and its solution has bound
|R| + |p‘ + HU’HJT;’;’Y(H) S CHgHX;n_1/2(T)'

Proof. Expanding u(1, ) in a Fourier series in 6 gives the family of 2nd order Cauchy-Euler

equations
1 — k2

(WD2 +2¢D + ) ty (1) = 0.

Solving gives the general homogeneous solution

_1 _1 —1tk| ZlR
u(,0) = cotp™% + doyy "2 In(y) + Y (cw 2t dy )e K.
k0
The space J{%‘;(H) is the direct sum of a leading term of order /2 and a remainder in

KIY/L’Q"_H(H) of higher order terns. Thus we must discard all terms from the homogeneous
solution whose order is less than 1'/2, namely, we must set ¢, cx1 and all dj, terms to zero.
This gives us the homogeneous solution
u(y,0) = Z ckw%weike.
|k[>2
Observe that the Oth and 1st order modes are entirely absent from this solution. Their

absence is accounted for by the extra degrees of freedom R and p, provided in the solution.

We split up the solution as follows:

. . —14|k| .
U(w, 6’) = w% (026219 + C_2€_226) + Z Ckl/J 1; 6zk0.
|k|>3
The first term is of order ¢'/2, and its angular contribution is entire, thus certainly in
X7(T). We should now guarantee that the remaining sum belongs to K f}’;ﬂ(ﬂ) without
having to discard any additional modes. We need thus ensure that the lowest order term of
the remainder, that is 1, is in K 177’217(1_[). This is satisfied when v < 1. If we were to allow
~v > 1, we would have to drop sufficient additional low order modes from the remainder term,

which would render the boundary value problem non-surjective. Also, recall that Jln}’;w(ﬂ)
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is only well defined if v > 1/2. Taking the Fourier series of g(f), we can now match the

boundary condition. We get:

Py =i(G1 — §-1)

| ¢k = G for |k| > 2.
Finally, we show the bound on this solution. Substituting the above and from definition of

J1)n~(I1), we get

B+ 1pal” + pyl” + 1w, ) [ Gme ) = 190l + 161 + G " + 91 — 5

+ 219+ —2460 » +H _H—‘kl sz‘ .
| g2e g-2e HX |;>3gk1/1 K ()

The last term is bounded as follows:

DOl WD S S L AL M T

|k|>3 172410 p+q=0|k|>3

= 3 S W M g e[

p+Q*0\k\>3
_ Z Sy, —" 201kl 5, 2
p+q=0 k>3 =27+ k]

< C Z(]- + k2>m—1/2620|k||gk‘2
k>3

where the third equality follows so long as w_l_“”@ € L*(0, 1], which is satisfied given v < 1
and |k| > 3. We thus get the required bound

R+ [pal? + 1oy * + 10w, 0) 5 my < C (L4 K22 M|gel = Cllg(0)l] ypp-172
k
O

Let us now tackle the inhomogeneous problem. We write u (1, 8) = v(0)y'/? + w(v, 0)
and f(v,0) = £O0)¢'* +n(,0), where v € X7/(T), w € KJj7 (1), € € X7**(T) and
ne kK

m—2,0

1/2+y (I). We can consider the linear problem on components v(0)? and w(v, 0)
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separately, so long as we are careful to distribute the boundary condition modes carefully.
Let us start with the first component. We have just seen that v can only account for the

|k| = 2 modes of the boundary condition. Let us then consider the problem

L (v(0)y'/?) = ()"
/&j:Q - O
Proposition 3.5.
The linear problem 3.2 is invertible between v(0) € X (T) and
£(0) € Xm2(T) = {€¢ e X12(T): [,£(0)e™® =0} and its solution has bound

xpm < Cllllxm—2)-

0]

Proof. A direct computation shows L(viyp!/2) = /2 (v(&) + DQZ(G)). Taking the Fourier

series, we get the family of algebraic equations (1 — k2/4) 9, = &. For |k| = 2, the left side

vanishes. We get the solution
ik = (1 — k2/4) "', for |k| #£2,
@:‘:2 = 0

and deduce L is not surjective onto X™ 2(T) but rather onto X™ 2(T). To establish the

boundedness of this inverse, we have

Il () = Z(l + k2" et oy

_ 1+ k2 m 2a|k| |£l€|
-2 T

< C«Z(l + k2)m—2€20\k\|ék|2
k
< C”fl@(;n—?(qr)

[]

It remains to solve the inhomogeneous problem on the second component. We must be
careful to distribute the boundary conditions correctly. We have seen that the £ = 0 mode of

the boundary condition is controlled for by R. Next, the |k| = 1 modes are controlled for by
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p. Finally, the |k| = 2 modes are controlled for by the first component of u. Thus we should
expect that only the remaining |k| > 3 modes are controlled by the second component. The

inhomogeneous problem then is: given (1, 0) € K7, >?(II), solve the following equation for

1/2,y
w(v,0) € Ky (II):

Lw(y,0) = n(1,0)
= [rw(1,0)e=*dh =0 for k| > 3.

Proposition 3.6.
Let 1/2 < v < 1. The inhomogeneou