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ABSTRACT

Complex Analytic Structure of Stationary Solutions of the Euler Equations

Aleksander Danielski, Ph.D.

Concordia University, 2023

This work is devoted to the stationary solutions of the 2D Euler equations describing the

time-independent flows of an ideal incompressible fluid. There exists an infinite-dimensional

set of such solutions; however, they do not form a smooth manifold in the space of all

divergence-free vector fields tangent to the boundary of the flow domain. This circumstance

hinders the e↵orts to understand the structure of the set of stationary flows, and to further

study other classes of solutions such as the time-periodic or quasiperiodic flows. The previous

authors considered the solutions in the Fréchet space of smooth functions and used powerful

methods such as the Nash-Moser-Hamilton implicit function theorem. However, in their

approach they overlook a surprising feature of the stationary flows which makes the picture

much more transparent, and opens the way to further progress. This is the observation that

the particle trajectories in the flow described by arbitrary solutions of the Euler equations

in domains with analytic boundary are analytic curves, even if the velocity field has a finite

regularity (say, belongs to the Sobolev or Hölder space). In particular, for any stationary

solution, the flow lines are analytic curves, despite limited regularity of the velocity field.

To study the stationary flows we change the viewpoint and consider the flow field as

a family of analytic flow lines non-analytically depending on parameter. We quantify the

analyticity by introducing spaces of functions which have an analytic continuation to some

strip containing the real axis such that on the boundary of the strip the function belongs to

the Sobolev space. Further, we introduce the class of Sobolev functions of two variables which

are analytic (in the above sense) with respect to one variable. Such functions describe the

families of flow lines of stationary flows. These partially-analytic functions form a complex

Banach space. The stationary solutions satisfy (in the new coordinates) a quasilinear elliptic

equation whose local solvability is proved by using the Banach Analytic Implicit Function

Theorem (BAIF Theorem). Thus we prove that the set of stationary flows is an analytic
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manifold in the complex Banach space of the flows (i.e. families of flow lines).

In our previous work ([9]), we realized this idea in the case of stationary flows in a periodic

channel with analytic boundaries. In the present work we study a more complicated case of

flows in a domain close to the disc, having one stagnation point. We use polar coordinates

centered at the (unknown) stagnation point. This results in an elliptic quasilinear equation in

the annulus which is degenerate at one component of the boundary. This makes the analysis

more di�cult. We introduce function spaces which are adaptations of the Kondratev spaces

to the partially-analytic setup, and prove that the problem is Fredholm in those spaces.

Further we use the BAIF Theorem, and prove that in our spaces, the set of stationary flows

is locally a complex-analytic manifold.
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Chapter 1

Introduction

1.1 Euler Equations

The Euler equations, describing the flow of an incompressible, inviscid fluid of uniform

density were first published by Euler in 1757 ([11]). In the absence of external forces, they

take the form:
@u

@t
+ u ·ru+rp = 0, r · u = 0. (1.1)

Here, u(x, t) is a vector field describing the fluid velocity at any moment in time and p(x, t)

is a scalar field describing the pressure exerted on the particle occupying position x by the

surrounding fluid. The first equation is known as the momentum equation. The second

equation is known as the incompressibility condition, which ensures that the volume of any

blob of fluid remains constant as it is carried and deformed by the flow. If the fluid occupies

a domain with boundary, then additionally, a condition is placed requiring u to be tangent

to this boundary.

The standard problem is to find u(x, t) and p(x, t) given an initial velocity u(x, 0). Taking

the divergence of the momentum equation, one sees that p satisfies some Poisson equation

depending on u, and thus up to an additive constant, is uniquely defined by u. For this

reason, when one speaks of the solution to the Euler equation, one typically speaks only of

u.

Though the Euler equations are valid in any spatial dimension, they are most typically
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considered in dimensions two and three. The di↵erence in behaviour of the solutions in 2D

and 3D is more interesting than a mere reduction in dimension. In fact they display strikingly

contrasting behaviour. In 3D turbulence, one typically observes vortices breaking up into

smaller vortices, transferring energy from large scales to small scales. This phenomenon is

known as the energy cascade. In the 2D case, one typically observes the opposite. Vortices

tend to merge with other vortices of like rotation, producing larger vortices, resulting in an

inverse energy cascade where energy flows from small scales to large scales.

While truly 2D fluids are unphysical, our interest in them is not solely a mathematical

one. There are situations in which the motion of a 3D fluid is inhibited in one direction. For

instance, the domain which the fluid occupies may be very thin in one dimension relative

to the other two. Stratification and rotation of a fluid also serve to restrict motion in some

direction. For example, consider the earth’s atmosphere. It is very thin normal to the earth

relative to the surface area of the earth. The atmosphere is stratified by the density of air,

consisting of layers of decreasing density as we move away from earth. Finally, the earth’s

rotation induces a rotation on the atmosphere which further inhibits motion normal to the

earth. The result is the existence of atmospheric phenomena which are dominated by 2D

behaviour, such as hurricanes.

Though written down more than 250 years ago, the Euler equations still contribute a

vast pool of unresolved problems in the mathematical and physical sciences. Let us discuss

some important accomplishments in their mathematical study.

1.2 Properties of Solutions to the Euler Equations

The local in time existence and uniqueness of classical solutions was proved in the mid 1920s

in the works of Lichtenstein ([20]) and Günther ([12]). In two dimension, existence and

uniqueness of global in time classical solutions was proved in 1933 by Wolibner ([32]), and

later by Kato ([18]) in the 1960s. Yudovich ([33]) extended the result in dimension two to

existence and uniqueness of weak solutions with bounded vorticity, i.e. for !0 = r⇥u0 2 L
1.

In modern language, we may state the classical results as follows:
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Theorem 1.1.

Suppose ⌦ 2 Rn and u0(x) 2 H
m(⌦), m > n/2+1. Then there exists some T > 0 depending

on u0 for which the Euler equations 1.1 have a unique solution u(x, t) 2 C
�
[0, T ), Hm(⌦)

�
.

If n = 2, then T = 1.

In the 60s, Arnold ([3]) presented a geometric formulation of the Euler equations. He

interpreted the Euler equations as equations for geodesics on the group of volume preserving

di↵eomorphisms with respect to the metric given by the energy. Doing so revealed that the

Euler equations of fluid dynamics are an infinite dimensional analogue to the Euler equations

of rigid body rotation, whose solutions are geodesics on the group of rotations.

Starting in the 90s, a new striking property of the Euler equations was discovered. Serfati

([27]), Shnirelman ([29]), and other authors ([8], [34], [22], [16], [15]) proved that the particle

trajectories of solutions to Euler equations are real analytic curves, despite limited regularity

of the velocity field. This fact was proved by varying methods, both real and complex. For

example, following the work of Lichtenstein, Shnirelman wrote the equation for the trajecto-

ries as a Banach space-valued ODE with analytic right-hand side and the result follows from

the standard modern theory of such equations. We note, for the time-independent 2D flow,

the particle trajectories, flow lines and vorticity lines coincide, so they are analytic curves.

Theorem 1.2.

Under the assumptions of theorem 1.1, the particle trajectories xa(t), satisfying xa(0) = a,

dxa
dt = u(xa(t), t) are analytic curves.

1.3 Long-time Behaviour of 2D Euler equations

Since in the two dimensional case, the solutions to the Euler equations exist for all time,

it is natural to ask what can be said of these solutions as t ! 1? Turning to computer

simulations ([26], [28]) one sees the following picture: first there is a brief turbulent period

where vortices of like rotation tend to filament under their respective strains and eventually

merge to form larger ones. This process ends with the emergence of a stable system of

coherent structures locked in some orbital ‘dance’. These coherent structures consist of
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vortices which may have islands inside of them as well as satellites orbiting around them.

These islands and satellites may have their own substructures, consisting of subsequent lakes

and/or satellites. It is expected that these coherent structures (in the absence of viscosity)

can form an infinite hierarchy of systems, subsystems, etc.

In light of this observation, Shnirelman ([28]) conjectured the existence of an attractor

for the 2D Euler equations. This attractor is expected to consist of at least stationary, time

periodic and time quasi-periodic flows. Given that for stationary flows, the level lines of

vorticity ! = r ⇥ u are analytic curves, it is conjectured the same property holds true for

time-periodic and time-quasiperiodic flows, as well as for any other elements of the attractor.

Finally, it is conjectured that the components of this attractor are analytic manifolds in the

space of divergence-free vector fields.

The conjecture motivates us to initiate a program to describe said attractor. We should

start with those flows whose existence is known - the stationary ones. In the preceding work

([9]), we obtained the first result in this direction, where we provided a local description of

the set of stationary flows without fixed point in a periodic channel. In a neighbourhood of

the constant parallel flow, we showed this set forms an analytic Banach manifold. The next

logical step is to provide an analogous local description of stationary flows having a single

non-degenerate elliptic fixed point. This thesis is dedicated to accomplishing this task.

Objective. Our goal is to provide a local description of the 2D stationary flows in a sim-

ply connected domain having a single non-degenerate fixed point. Furthermore, we aim to

incorporate the analyticity of the flow (vorticity) lines in this description.

Before we set out to accomplish this, it will be useful to cover some preliminaries relevant

to the 2D stationary Euler equations.

1.4 Stationary Flows of the 2D Euler equation

The stationary (time-independent) incompressible Euler equation in a domain ⌦ is given by

u ·ru+rp = 0, r · u = 0, u tangent to @⌦.
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By taking the curl of the first equation, one can eliminate the pressure term. In two

dimensions, this gives u ·r! = 0, where the vorticity ! = r⇥ u is a vector normal to the

flow and thus taken as a scalar. Observe, this equation says that 2D stationary flows are

precisely those vector fields u which point along the level lines of their vorticity. Next, any

divergence free vector field u can be written as the curl of some vector potential  , unique

up to additive constant, known as the stream function. In two dimensions, it is a scalar

satisfying u = r?
 . It has the property that the flow u points along the level lines of  . In

other words, the integral curves of u coincide with the level lines of  , which we call flow lines.

Finally, it is related to the vorticity by the expression ! = � . The equation of stationary

flow is equivalent to the statement that � is constant along flow lines  = constant. At

least locally, where  is monotone transversal to its level lines, it must satisfy � = F ( ).

Since the flow is tangent to the boundary,  must be constant on each of its components.

From here on, when we refer to stationary flows, they are always understood to be 2D, and

they satisfy the equation:

� = F ( ) in ⌦,  = ci on @⌦i. (1.2)

where @⌦i are the components of the boundary of ⌦.

Stationary flows can be interpreted another way: they are minimizers of the energy

functional on the space of divergence-free vector fields with respect to area preserving dif-

feomorphisms ([4]). To produce a stationary flow, one can imagine deforming some stream

function while preserving the topology of its level lines and area between them, so that it

minimizes the Dirichlet energy kr k2
L2 . One can draw an analogy to a system of elastic

bands, each representing a flow line. They will configure themselves in a way to minimize

their potential energy. This analogy provides intuition for a number of facts relating to

stationary flows. For example, any stationary flow in a parallel channel without fixed point

must necessarily be a parallel flow ([14]). Similarly, any stationary flow in a disk having a

single fixed point must necessarily be a circular flow with fixed point at the disk centre ([31]).

The analyticity of the flow lines can also be intuited through this analogy: any kink present

in the system of flow lines stores some energy which can be relaxed if hammered away.

In the work of Šverák & Cho↵rut ([7]), they produced a smooth local parameterization
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of the manifold of stationary flows on annular domains. The smoothness of their parame-

terization necessitates working in the Fréchet space of smooth functions and thus using the

Nash-Moser-Hamilton implicit function theorem.

Seeking to incorporate the analyticity of flow lines into the solutions, Shnirelman sug-

gested reformulating the problem by representing a flow as a collection of its flow lines. The

central idea he proposed was the coordinate change  (x, y) ! y(x, ). Di↵ering from the

typical picture, the values of the stream function are treated as a variable, and the graphs of

its level lines are treated as the unknown. This nonlinear coordinate change was introduced

by von Mises in 1927 in his work on boundary layers ([30]), and by Dubreil-Jacotin in her

1934 work on free surface waves ([10]). Since Barron’s 1989 ([5]) use of the coordinate change

for the numerical study of flows over airfoils, it has seen numerous applications in computa-

tional problems, where it is known as the computational von Mises transform (see [13] for a

survey). Its success is owed in part to the fact that it converts complicated domains of flow

to rectangular ‘computational’ domains in (x, ) coordinates.

Using this idea in [9], we obtained results analogous to those of Šverák & Cho↵rut with

less technical di�culty. We considered stationary flows without fixed point in a periodic

channel bounded by flow lines  = 0 and  = 1. If these boundary flow lines are the graphs

of functions y = f(x) and y = g(x), then the coordinate change  (x, y) ! y = a(x, )

induces a transformation of equation 1.2 to:

�(a) = F ( ), a(x, 0) = f(x), a(x, 1) = g(x), (1.3)

where the Laplacian � is given by

�(a) = � 1

a 
axx +

2ax
a
2
 

ax � 1 + a
2
x

a
3
 

a  

and the velocity field in (x̂, ŷ) coordinates is

u( , ✓) =
(1, ax)

a 
.

Here, y = a(x, ) are the family of flow lines parameterized by (x, ) 2 T⇥ [0, 1] and � is a

second order quasilinear di↵erential operator which is elliptic away from any fixed points of

the flow. To incorporate the analyticity of flow lines, each flow line along x 2 T is extended
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to the complex domain T� = T ⇥ i(�, �). Spaces X
m

�
(T) and Y

m

�
(T ⇥ [0, 1]) of complex

analytic flow lines and partially complex analytic families of flow lines respectively, were

introduced, with norms:

ka(x)kXm
� (T) = ka(·+ i�)kHm(T) + ka(·� i�)kHm(T),

ka(x, )kY m
� (T⇥[0,1]) = ka(·+ i�, ·)kHm(T⇥[0,1]) + ka(·� i�, ·)kHm(T⇥[0,1]).

By the analytic implicit function theorem in complex Banach spaces, we proved the existence

of a local parameterization of solutions near the constant parallel flow:

Theorem 1.3.

Suppose kf(x)k
X

m�1/2
� (T) < ", kg(x) � 1k

X
m�1/2
� (T) < ", kF ( )kHm�2[0,1] < " and ka(x, ) �

 kY m
� (T⇥[0,1]) < ", with " su�ciently small. Then equation 1.3 has a unique solution a(x, )

near the constant parallel flow which depends analytically on parameters (F, f, g).

In this work, the same governing philosophy of viewing a function as a collection of its

level lines will be used to generalize the above result to stationary flows having a single

elliptic fixed point. We are now ready to formulate how we will do so.

1.5 Stationary Flows with an Elliptic Fixed Point

The prototypical stationary flow having a single, non-degenerate elliptic fixed point is de-

scribed by stream function  = x
2 + y

2, our logical starting point. This flow has constant

vorticity F ( ) = 4 and describes the motion of a fluid rotating as a rigid body. The flow lines

are concentric circles around the origin where the fixed point is located which corresponds

to the level set  = 0. Let us restrict the domain to the unit disk D. Then the boundary

flow line is the level set  = 1.

Suppose there is some suitable perturbation of the domain D ! ⌦ and of the vorticity,

generating a new stationary flow  with the same topological structure. Suppose that this

new stationary flow also satisfies  = 0 at the fixed point and  = 1 on the boundary @⌦.

What can be said of its level sets?

It is known that a stationary flow in a disk having a single fixed point must be circular and

therefore the fixed point must be positioned at the disk’s centre. This implies that should

7



the perturbation of D be a mere translation, the fixed point must translate accordingly. We

expect this rigidity of the fixed point’s orientation to hold for general non-circular flows.

So let us introduce the position of the fixed point p = (px, py) 2 ⌦ as an unknown in the

problem. The remaining flow lines should be close to concentric circles around p. Let (r, ✓)

be the polar coordinates centred at p. Then the flow lines will be graphs of a family of

polar functions r = a( , ✓), parameterized by  2 [0, 1] ranging from the fixed point to the

boundary. Notice, in order for the level set  = 0 to define a single point, we must require

r = a(0, ✓) = 0.

Let us now find an expression for the velocity u = r?
 in the new coordinates. Inverting

the Jacobian @(r,✓)
@( ,✓) of the transformation defined by r = a( , ✓) yields relations @ 

@r
= 1

a 
,

@ 

@✓
= � a✓

a 
, @✓

@r
= 0, @✓

@✓
= 1. By the chain rule, we get @

@r
= 1

a 

@

@ 
and @

@✓
= � a✓

a 

@

@ 
+ @

@✓
. This

gives velocity field

u( , ✓) =
1

a 

�a✓
a
, 1
�

in (r̂, ✓̂) coordinates. We see that to have a well defined stagnation point at  = 0, along

with condition a(0, ✓) = 0, we also require |a ( , ✓)| ! 1 as  ! 0+. Finally, a✓
a

should

remain bounded. Observe for example, if  (r, ✓) = r
2 then a( , ✓) =  

1/2. The critical point

of this paraboloid is transformed to a cusp singularity at  = 0.

Applying the above results, we write � = @
2
 

@r2
+ 1

r

@ 

@r
+ 1

r2
@
2
 

@✓2
in our new coordinates.

We define � = ⌅(a) for which we obtain the expression

⌅(a) = � 1

a
3
 

⇣
1 +

a
2
✓

a2

⌘
a  + 2

⇣
a✓

a2a2
 

⌘
a ✓ �

⇣ 1

a2a 

⌘
a✓✓ +

1

aa 
. (1.4)

⌅(a) is a second order quasilinear di↵erential operator of form Aa  +2Ba ✓+Ca✓✓+D. Such

operators are elliptic if AC �B
2
> 0. A straightforward calculation shows AC �B

2 = 1
a2a4 

.

If we restrict to fixed points that are non-degenerate, then  is some deformed paraboloid

and we expect a( , ✓) to behave like  1/2 as  ! 0+. In this case AC �B
2 ! 0 as  ! 0+.

We conclude that ⌅ is elliptic away from the fixed point, but this ellipticity degenerates as

we approach the fixed point.

We now turn to the boundary condition. The boundary @⌦ is described by the graph

of r = a(1, ✓). This expression is in coordinates (r, ✓), which are centred on the fixed point

at p, which we have determined is part of the solution, an unknown. To meaningfully treat
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the domain as a parameter of the problem, we should represent its boundary as the graph of

some function in a fixed coordinate frame. Since we are deforming a flow whose fixed point

lies at the origin, we expect given a su�ciently small perturbation, that the boundary @⌦

can also be described as the graph of a polar function relative to the origin. So let us define

(⇢,') as the polar coordinates centred at the origin. Then we can treat ⌦ as a parameter

by taking its boundary to be described by the graph of some function ⇢ = b(').

Before we can write down the boundary conditions, we must address an additional ob-

stacle. In terms of equation 1.2, we have a peculiar situation. We are trying to solve for  

with both a boundary condition  |@⌦ = 1, as well as an additional interior point condition

 (p) = 0. From the perspective of solving for the stream function, imposing its value at the

fixed point is unnatural and leads to an overdetermined problem. From the perspective of

solving for the flow lines, it is rather essential. After all, we are deforming a family of flow

lines parameterized by  2 [0, 1], and this domain should be a constant if we are to define

function spaces for our problem, define operators on these spaces, etc.

To gain some intuition how to overcome this issue, let us consider circular flows around

the origin on a disk DR of radius R. Additionally, suppose the vorticity F ( ) = ! is

constant. Then  =  (r) is radial and direct integration of 1.2 yields a general solution

 (r) = !r
2
/4+c ln r+d. Imposing the condition that  = 0 at the origin gives  (r) = !r

2
/4.

Now the boundary condition  (R) = 1 can only be satisfied for a single choice of !. Thus

imposing  both at the fixed point and at the boundary requires some compatibility between

the radius of the domain and scaling of vorticity. We expect this requirement to generalize

to non-circular flows as well. In other words, given any stationary flow in ⌦ with values of  

imposed both at the fixed point and at the boundary, rescaling ⌦ with respect to the fixed

point p yields in our formulation an ill-posed problem. To obtain a well-posed problem then,

we should treat only the ‘shape’ of the domain as a parameter, but not its ‘radius‘ which

instead depends on the vorticity.

To work around this, we introduce an additional degree of freedom R to the solution,

whose role is to solve the following boundary condition: given a domain ⌦, find a solution

a( , ✓) which when rescaled radially by R with respect the fixed point p, matches the bound-

ary condition. In other words, the graph of r = Ra( , ✓) describes said boundary. We refer

9



to the following figure of the boundary condition:

x

y

px

py

✓

r = Ra(1, ✓)

r = a(1, ✓)

'

⇢ = b(')

The inner deformed circle represents the prescribed boundary flow line, defined by the graph of ⇢ = b(').

We seek a family of flow lines a( , ✓) about some fixed point p which when rescaled by some R, matches the

boundary at  = 1. The unscaled flow line r = a(1, ✓), depicted by the outer deformed circle, defines a new

domain of flow of the same shape as the prescribed one, of a radius compatible with the prescribed vorticity.

We obtain the following equations relating b('), R and a(1, ✓):

b(') cos' = px +Ra(1, ✓) cos ✓, b(') sin' = px +Ra(1, ✓) sin ✓.

Squaring and summing these equations yields

b
2(') = R

2
a
2(1, ✓) + 2Ra(1, ✓)

�
px cos ✓ + py sin ✓) + p

2
x
+ p

2
y
.

Dividing yields

tan' =
py +Ra(1, ✓) sin ✓

px +Ra(1, ✓) cos ✓
.

10



Taking the inverse of tan', we can combine these equations to eliminate '. To do so, we

must be careful. Typically, arctan is a function defined to have values in (�⇡

2 ,
⇡

2 ). To have

a meaningful boundary condition, we should instead define ' = arctan(y, x) as the function

onto T, whose values are the angle between plane vector (x, y) and the x-axis. We can then

define the nonlinear boundary map

B(b, R, p, a) = �b
2
⇣
arctan

�
py +Ra(1, ✓) sin ✓, px +Ra(1, ✓) cos ✓

�⌘

+R
2
a
2(1, ✓) + 2Ra(1, ✓)

�
px cos ✓ + py sin ✓) + p

2
x
+ p

2
y
, (1.5)

and the boundary condition to our problem is given by B(b, R, p, a) = 0.

We obtain the following nonlinear boundary value problem for the flow lines of a station-

ary flow having a single elliptic fixed point:
8
>>>>>>>>><

>>>>>>>>>:

⌅(a) = F ( ) in ⇧ = (0, 1]⇥ T,

a(0, ✓) = 0,

lim
 !0+

|a | = 1,

B(b, R, p, a) = 0.

(1.6)

This equation is to be solved for R 2 R, p 2 R2 and function a( , ✓) defined on domain

⇧ = (0, 1]⇥ T, given parameters b(') on T and F ( ) on (0, 1].

The main tool to solve this problem will be the analytic implicit function theorem in com-

plex Banach spaces, which gives condition under which an operator equation with parameter

has a unique local solution.

Theorem 1.4 (Analytic Banach implicit function theorem).

Let X, Y, Z be complex Banach spaces and f : X⇥Y ! Z be an analytic map in a neighbour-

hood of (x0, y0) 2 X ⇥ Y . Suppose f(x0, y0) = 0 and @f

@y
(x0, y0) : Y ! Z is an isomorphism.

Then there exists a neighbourhood of (x0, y0, 0) 2 X⇥Y ⇥Z in which the equation f(x, y) = 0

has a unique solution, which is parameterized by an analytic function y = g(x) : X ! Y .

We look for solutions near the circular flow with constant vorticity  = r
2 in the disk,

described in our coordinates by R = 1, p = 0, a( , ✓) =  
1/2, b(') = 1, F ( ) = 4. The

11



bulk of this thesis, split over the next three chapters, is devoted to defining the appropriate

function spaces for the problem and proving that in these spaces, the conditions of the

analytic implicit function theorem are satisfied. Let us summarize the results which follow.

(i) We start by introducing the Kondratev space of functions u( , ✓) on the strip ⇧ =

(0, 1]⇥ T, with norm

ku( , ✓)k2
Km

� (⇧) =
mX

p+q=0

�� p��
@
p

 
@
q

✓
u( , ✓)

��2
L2(⇧)

< 1.

While such spaces are the natural setting in which the relevant degenerate operators

are Fredholm, their asymptotics as  ! 0+ are more flexible than our solutions permit.

We next construct the spaces of functions of fixed asymptotics:

J
m

�,�
(⇧) =

�
a( , ✓) =  

�
v(✓) + w( , ✓) : v(✓) 2 H

m(T), w( , ✓) 2 K
m

�+�
(⇧)
 
,

whose functions are the sum of a leading term of order  � and a higher order remainder

term taken in the Kondratev space. For � � 1/2, Jm

�,�
(⇧) is a Banach space equivalent

to the direct sum H
m(T)�K

m

�+�
(⇧), with norm defined accordingly.

We adapt the Paley-Wiener theorem to give the above functions a partial complex

analytic structure. Namely, we consider the subset of above functions which can be

analytically continued in ✓ from T to the complex strip T� = T⇥ i(��, �). We define

the space J
m,�

�,�
(⇧) of such partially-analytic functions with norm

ka( , ✓)kJm,�
�,� (⇧) = ka(·, ·+ i�)kJm

�,�(⇧) + ka(·, ·� i�)kJm
�,�(⇧).

For � = 1/2, � > 1/2, m > 1, this space appropriately defines the families of complex

analytic flow lines for our problem. Its functions are continuous in  , analytic in ✓ and

in a su�ciently small neighbourhood of  1/2, define a unique non-degenerate stagnation

point at  = 0. The position of the stagnation point p and the scaling factor R (both

unkowns) are also extended from R2 to C2 and R to C, respectively.

The restriction of functions in J
m,�

1/2,�(⇧) to a given flow line at  = constant defines

the space X
m�1/2
� (T) of individual flow lines which are complex analytic in the strip

T� and Sobolev on the strip boundary. The norm is given by

ka(✓)kXm
� (T) = ka(·+ i�)kHm(T) + ka(·� i�)kHm(T).

12



(ii) We then study the linear problem associated to 1.6. Linearizing with respect to (R, p, a)

at solution (F, b, R, p, a) = (4, 1, 1, 0, 1/2), we obtain maps

a ! @⌅( 1/2)

@a
a = �8 �1/2

h
 

2 @
2

@ 2
+ 2 

@

@ 
+

1

4
(I +

@
2

@✓2
)
i
a( , ✓),

(R, p, a) ! @B(1, 0, 1, 1/2)

@(R, p, a)
(R, p, a) = 2

h
R + px cos ✓ + py sin ✓ + a(1, ✓)

i
.

Without loss of generality, we drop the factors �8 and 2 from the above expressions.

Writing sin ✓ and cos ✓ in terms of exponentials, we get the degenerate elliptic linear

problem 8
><

>:

 
�1/2

h
 

2 @
2

@ 2 + 2 @

@ 
+ 1

4(I +
@
2

@✓2
)
i
a( , ✓) = f( , ✓)

R + (px�ipy

2 )ei✓ + (px+ipy

2 )e�i✓ + a(1, ✓) = g(✓).
(1.7)

We construct explicit solutions by factoring the above second order operator into the

product of two first order degenerate operators, whose inverses are weighted averages.

The Hardy inequality is used to establish Fredholmness of 1.7 in the spaces

C3 ⇥ J
m,�

1/2,�(⇧) ! J
m�2,�
0,� (⇧)⇥X

m�1/2
�

(T).

The presence of a two-dimensional cokernel in the above spaces means invertibility can

only be established on the codimension-two subspace of the target space, defined by:

eJm,�

0,� (⇧) =

⇢
u( , ✓) = v(✓) + w( , ✓) 2 J

m,�

0,� (⇧) :

Z

T
v(✓)e±2i✓ d✓ = 0

�
.

Namely, for 1/2 < � < 1, we prove 1.7 defines a Banach space isomorphism in

C3 ⇥ J
m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T).

(iii) Finally, we study the nonlinear operator (F, b, R, p, a) ! (⌅(a) � F,B), whose zeroes

are the solutions of 1.6.

The analyticity of a ! ⌅(a) : J
m,�

1/2,�(⇧) ! J
m�2,�
0,� (⇧) is reduced to the study of

superposition operators in J
m�2,�
0,� (⇧). We show such maps, defined by composition

with an analytic function, are analytic in this space whenm is su�ciently high. We also

show that ⌅ actually maps to eJm�2,�
0,� (⇧), a crucial parallel to the linear problem. Taking

13



J
m�2
0,� (0, 1] to be the space of complex vorticities, we conclude that in a neighbourhood

of a =  
1/2, the map 1.4

(F, a) ! ⌅(a)� F : Jm�2
0,� (0, 1]⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)

is complex analytic.

Next we study the nonlinear boundary map 1.5. This map contains a coordinate

transformation ✓ ! ' of the complexified polar angle defining the boundary flow line

r = a(1, ✓). This coordinate change is not a self map on the complex strip T�. Instead,

it is some deformation of said strip, depending on the solution itself. For solutions

su�ciently close to R = 1, p = 0, a =  
1/2, the image of every such coordinate change

is contained in some slightly larger strip T⌧ , where ⌧ > �. Analyticity of the boundary

operator, which follows from results on superposition operators on space X
m�1/2
� (T)

requires that the boundary flow line ⇢ = b(') be holomorphic on this larger strip T⌧ .

In particular, it can be taken in any Banach space H(T⌧ ) of functions analytic in T⌧ .

We establish that given any ⌧ > �, there exists a neighbourhood of R = 1, p = 0,

a =  
1/2 for which the boundary map 1.5

(b, R, p, a) ! B : H(T⌧ )⇥ C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)

is complex analytic.

We conclude that for any ⌧ > � and m su�ciently large, the operator (F, b, R, p, a) !

(⌅(a)� F,B) defining 1.6 is complex analytic between Banach spaces

J
m�2
0 (0, 1]⇥ H(T⌧ )⇥ C3 ⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T)

in a su�ciently small neighbourhood of solution (F, b, R, p, a) = (4, 1, 1, 0, 1/2). The

analytic implicit function theorem thus provides a locally unique solution to 1.6.
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Chapter 2

Function Spaces

The theory of elliptic boundary value problems is well established in the standard Sobolev

spaces. The Fredholm property of the associated operators and the results of elliptic regu-

larity make these spaces a natural functional setting for posing such problems. The situation

changes when the ellipticity of an equation degenerates in some part of the domain. New

function spaces must be introduced to obtain results analogous to those of the standard the-

ory. These spaces must reflect the more exotic behaviour of solutions to these equations at

the points of degeneracy. The equations of our study (1.6, 1.7) degenerate at the boundary

{ = 0}, so we too must look beyond the usual Sobolev spaces.

In this chapter, we develop the appropriate function spaces to formally pose and solve the

nonlinear boundary value problem 1.6. We begin by introducing the weighted Sobolev spaces

of Kondratev: the natural setting for our linearized equation. Functions in these spaces have

asymptotic behaviour as  ! 0+ more flexible than our situation permits. We account for

this by defining new spaces of functions of a fixed order leading term plus a higher order

remainder term, taken in an appropriate Kondratev space. Finally, we will extend these

functions to a suitable complex domain to incorporate the partial analytic nature of the

solutions. While seemingly exotic, the resulting spaces are the natural and correct setting

for our problem. The following chapters will confirm the validity of this claim.

Before continuing, we define for the sake of completeness the Sobolev spaces we will use

either explicitly, or that will be relevant to further discussions. Details on their properties

may be found in any standard text, for example ([24]).
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Definition 2.1 (Integer Sobolev space on the circle).

Let m 2 N0. Define H
m(T) to be the space of measurable functions on T with norm

ku(✓)k2
Hm(T) =

mX

p=0

kDp
u(✓)k2

L2(T) < 1.

Definition 2.2 (Non-integer Sobolev space on the circle).

Let m � 0 and let [m] be the integer part of m. Define Hm(T) to be the space of measurable

functions on T with norm

ku(✓)k2
Hm(T) = ku(✓)k2

H[m](T) +

Z

T

Z

T

��D[m]
u(✓)�D

[m]
u(✓0)

��2

|✓ � ✓0|1+2(m�[m])
d✓ d✓0 < 1.

Remark 2.3. The above spaces (m integer and non-integer) have an equivalent norm in terms

of the Fourier series given by

ku(✓)k2
Hm(T) =

X

k

�
1 + k

2
�m |ûk|2 .

Definition 2.4 (Integer Sobolev space on the periodic strip).

Let m 2 N0. Define H
m(⇧) to be the space of measurable functions on ⇧ = (0, 1]⇥ T with

norm

ku( , ✓)k2
Hm(⇧) =

mX

p+q=0

��@p

 
@
q

✓
u( , ✓)

��2
L2(⇧)

< 1.

This space has an equivalent norm in terms of the partial Fourier series given by

ku( , ✓)k2
Hm(⇧) =

mX

p+q=0

X

k

k
2q kDp

ûk( )k2L2(0,1] .

2.1 Kondratev Spaces

It is known that the typical elliptic regularity results fail in the presence of singular points

in the domain. For example, the solution to the Dirichlet problem for the Poisson equation

in a domain with Lipschitz boundary is in general only in H
3/2, even for smooth right-hand

side ([17]). The theory of elliptic equations on domains with conical singularities has been

developed since the mid 1960s, starting with the works of Kondratev ([19]). The spaces

introduced in his work allow for precise description of the singularities of solutions and
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their derivatives at the vertex. Furthermore, one can establish shift theorems between these

spaces, analogous to those of the standard elliptic regularity.

In fact, elliptic equations on manifolds with singularities are intimately connected with

the study of degenerate elliptic equations. See ([23]) for a detailed discussion. To summarize,

in practice, one removes the singular point from the manifold and stretches out the resulting

open submanifold (imagine a cone, stretched into a cylinder after deleting the vertex). In

doing so, the equation on the singular manifold is transferred to a degenerate equation on a

regular manifold with boundary. Let us give a particularly relevant example. Consider the

surface of a right cone with circular base in R3. Let r be the distance to the vertex and ✓

be the polar angle along the circular base. The Laplacian on this surface is given by

� =
1

r2

"✓
r
@

@r

◆2

+ c
2 @

2

@✓2

#
,

where c depends on the angle of cone. Notice, the above operator is a polynomial in r@r, an

order-one degenerate operator.

Let us return to our problem. We have a family of closed level lines parameterized by

 on the periodic strip ⇧. This parameterization degenerates at { = 0} , where the level

lines collapse to a point. On this strip we have a degenerate elliptic equation, with, modulo

a factor of  �1/2, degeneracies of type  @ , like those on the surface of the cone. It appears

then that our problem is quite analogous to the discussion above. We too have a degenerate

equation on a ‘stretched’ domain with a boundary produced by blowing up a point into a

circle. It is not then unreasonable to hope that the function spaces appropriate for posing

elliptic boundary value problems on conical domains can also be adapted to pose our own

degenerate boundary value problem.

Let us now introduce the Kondratev spaces relevant to our problem; spaces on the in-

terval (0, 1] and on the periodic strip ⇧ = (0, 1]⇥ T, with degeneracies at {0} and {0}⇥ T

respectively.

Definition 2.5 (Kondratev space on the interval).

Let m 2 N0 and � 2 R. Define K
m

�
(0, 1] to be the space of measurable functions on (0, 1]
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with norm

ku( )k2
Km

� (0,1] =
mX

p=0

�� p��
D

p
u( )

��2
L2(0,1]

< 1.

Definition 2.6 (Kondratev space on the periodic strip).

Let m 2 N0 and � 2 R. Define K
m

�
(⇧) to be the space of measurable functions on ⇧ with

norm

ku( , ✓)k2
Km

� (⇧) =
mX

p+q=0

�� p��
@
p

 
@
q

✓
u( , ✓)

��2
L2(⇧)

< 1.

By Parseval’s theorem, this space has an equivalent norm in terms of the partial Fourier

series given by

ku( , ✓)k2
Km

� (⇧) =
mX

p+q=0

X

k

k
2q
�� p��

D
p
ûk( )

��2
L2(0,1]

.

These spaces consist of two scales; the usual regularity scale m of integrable weak deriva-

tives, and the scale � which quantifies the strength of the weight at  = 0. To get some

intuition, suppose for a moment that m = 0. If � > 0, then the weight blows up at  = 0,

forcing functions in this space to vanish su�ciently rapidly as  ! 0+. In contrast, if � < 0,

the weight vanishes at  = 0, allowing functions in the space to have some controlled blow

up. In general, the smaller � is, the more singular the functions can be and conversely,

the greater � is, the faster they must decay. Additionally, the weight is homogeneous with

respect to di↵erentiation in  . That is, the order of the weight increases by one with each

derivative in  , balancing the corresponding increase in the order of singularity arising from

such di↵erentiation. To illustrate the advantage of this feature, consider the function u =  
�.

If � /2 N0, then this function is either unbounded or eventually its derivatives are. However,

the inclusion of this function in the spaces depends only on � and not on m. If the weight

was not homogeneous, then the inclusion would necessarily depend on m. In this regard,

the two scales in the above space are uncoupled; m controls the general isotropic regularity,

and � controls the asymptotic behaviour as  ! 0+. These scales can be summarized by

the inclusion K
m1
�1

⇢ K
m2
�2

, for �1 � �2 and m1 � m2.

The first basic property of these spaces worth mentioning is that away from  = 0, they

are equivalent to their unweighted counterparts Hm.
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Proposition 2.7. Away from  = 0, the K
m

�
and H

m norms are equivalent.

Proof. Restrict  to "    1, for some " 2 (0, 1). When p�� � 0, we have "p��   
p�� 

1. Similarly, when p � �  0, we have 1   
p��  "

p�� . Thus, each term in the K
m

�
norm

has the bound

min{1, ✏p��} kDp
u( )k

L2[",1] 
�� p��

D
p
u( )

��
L2[",1]

 max{1, ✏p��} kDp
u( )k

L2[",1]

or analogously, on the strip [", 1]⇥ T. This establishes the equivalence of norms

ckukHm  kukKm
�
 CkukHm

on either the interval [", 1] or the strip [", 1]⇥ T. Note, constants c and C depend on ".

Remark 2.8. We conclude that the spaces above have the desired property of di↵ering from

the standard Sobolev space only in their behaviour as  ! 0+. We expect this of any

candidate function space, because away from  = 0, our operators are standard elliptic

operators and thus the standard theory should apply.

Let us now discuss how multiplication by powers of  and di↵erentiation act on these

spaces.

Proposition 2.9.

1. u( , ✓) !  
↵
u( , ✓) : Km

�
(⇧) ! K

m

�+↵
(⇧) defines an isomorphism (for any ↵ 2 R).

2. u( , ✓) ! @ u( , ✓) : Km

�
(⇧) ! K

m�1
��1 (⇧) is bounded (for m � 1).

3. u( , ✓) ! @✓u( , ✓) : Km

�
(⇧) ! K

m�1
�

(⇧) is bounded (for m � 1).

The first two hold analogously for functions u( ) on the interval (0, 1], replacing @ by D.

Proof.

The statements follow from direct computations, with little di↵erence between the case on

the interval and the case on the strip. We show them on the strip.

For the first statement, by the product rule, we can write

@
p

 
( ↵

u) =
pX

p0=0

cp,p0@
p�p

0

 
( ↵) @p

0

 
(u) =

pX

p0=0

cp,p0,↵ 
↵�p+p

0
@
p
0

 
u.
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Then we get

k ↵
uk2

K
m
�+↵(⇧) =

mX

p+q=0

�� p���↵
@
p

 
@
q

✓
( ↵

u)
��2
L2(⇧)

 c

mX

p+q=0

pX

p0=0

��� p
0��

@
p
0

 
@
q

✓
u

���
2

L2(⇧)

 C kuk2
Km

� (⇧) ,

where the last inequality follows because p
0 in the summation ranges from 0 to m � q.

This gives the boundedness of map u !  
↵
u : Km

�
! K

m

�+↵
as well as its inverse v !

 
�↵

v : Km

�+↵
! K

m

�
, proving the first statement.

For the second statement, we have

k@ uk2Km�1
��1 (⇧) =

m�1X

p+q=0

�� p��+1
@
p

 
@
q

✓
(@ u)

��2
L2(⇧)

=
m�1X

p+q=0

�� p+1��
@
p+1
 

@
q

✓
u
��2
L2(⇧)

 kuk2
Km

� (⇧) ,

where the last inequality follows since q ranges from 0 to m� 1 and p+ 1 ranges from 1 to

m� q.

The third statement follows similarly. We have

k@✓uk2Km�1
� (⇧) =

m�1X

p+q=0

�� p��
@
p

 
@
q

✓
(@✓u)

��2
L2(⇧)

=
m�1X

p+q=0

�� p��
@
p

 
@
q+1
✓

u
��2
L2(⇧)

 kuk2
Km

� (⇧) ,

where this time the last inequality follows since p ranges from 0 to m� 1 and q + 1 from 1

to m� q.

Next, we address the relevant traces of functions in these spaces. Namely, restrictions

from the strip ⇧ to the circle { = constant}. We are particularly interested in restrictions

to the boundaries of the strip, that is to  = 0 and  = 1. We start with the latter, which

follows immediately from the equivalence of Km

�
and H

m away from  = 0.
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Proposition 2.10. Let m > 1/2 and fix 0 <   1. Then the restriction to  defines the

bounded operator

u(·, ·) ! u( , ·) : Km

�
(⇧) ! H

m�1/2(T).

In particular, the restriction to  = 1 is bounded in these spaces.

Proof. As we saw in 2.7, away from  = 0, the spaces K
m

�
(⇧) and H

m(⇧) are equivalent.

Then the result follows from the standard trace theorem in Sobolev spaces, where the re-

striction is bounded from H
m(⇧) to H

m�1/2(T). To be precise, take 0 < " <  . Then we

have the following inequalities:

ku( , ·)kHm�1/2(T)  ckukHm([",1]⇥T)  CkukKm
� ([",1]⇥T)  CkukKm

� (⇧).

Remark 2.11. Notice the above bound is not uniform in  because the constant in the

middle inequality depends on ", which in turn depends on  . This is expected, after all, the

behaviour as  ! 0+ can be singular. The following result improves this estimate to include

the dependence on  , by exploiting a dilation invariance in the K
m

�
norm.

Proposition 2.12. There exists C > 0 depending on �,m, k for which

1.
��Dk

u( )
��  C 

��k�1/2kukKm
� (0,1] for m� k > 1/2

2.
��@k

 
u( , ·)

��
Hm�k�1/2(T)  C 

��k�1/2kukKm
� (⇧) for m� k > 1/2

3.
��@k

 
u( , ✓)

��  C 
��k�1/2kukKm

� (⇧) for m� k > 1.

Proof. The proof is adapted directly from [6]. The Sobolev embeddings in continuous func-

tions and the trace theorems tell us:

1.
��Dk

u( )
��  CkukHm[0,1] for m� k > 1/2,

2.
��@k

 
u( , ·)

��
Hm�k�1/2(T)  CkukHm([0,1]⇥T) for m� k > 1/2,

3.
��@k

 
u( , ✓)

��  CkukHm([0,1]⇥T) for m� k > 1.

21



In what follows, starting with any of the above estimates will yield the corresponding state-

ment of the proposition, with essentially no di↵erence in the proof. We will pick the second.

Define a new coordinate s by the rescaling  = �s, for some � > 0. Then u( , ✓) =

u(�s, ✓) = v(s, ✓). Take, say s 2 (1/2, 1). We have

��@k

s
v(s, ·)

��2
Hm�k�1/2(T)  Ckvk2

Hm([1/2,1]⇥T)

= C

mX

p+q=0

Z 1

1
2

Z

T
|@p

s
@
q

✓
v(s, ✓)|2 d✓ ds .

The change of variables gives us: s =  /�, ds = d /�, @p

s
= �

p
@
p

 
. Applying this to the

inequality above gives

���k
@
k

 
u( , ·)

��2
Hm�k�1/2(T)  C

mX

p+q=0

Z
�

�
2

Z

T

���p
@
p

 
@
q

✓
u( , ✓)

��2 1
�
d✓ d ,

which we can write as

��@k

 
u( , ·)

��2
Hm�k�1/2(T)  C

�
�
��k�1/2

�2 mX

p+q=0

���p��
@
p

 
@
q

✓
u( , ✓)

��2
L2([�/2,�]⇥T) .

Since �/2    �, then for any a 2 R, we have �
a  c 

a where c depends only on a, not

�. In particular,

�
��k�1/2  c1 

��k�1/2 and �
p�k  c2 

p�k
,

where c1 and c2 depend only on �, k and p, not �. We now get

��@k

 
u( , ·)

��2
Hm�k�1/2(T)  C 

2(��k�1/2)
mX

p+q=0

�� p��
@
p

 
@
q

✓
u( , ✓)

��2
L2([�/2,�]⇥T)

or
��@k

 
u( , ·)

��
Hm�k�1/2(T)  C 

��k�1/2kukKm
� ([�/2,�]⇥T).

The above estimate is uniform in �, since the constant C depends on �, m and k but not on �.

In particular, it holds uniformly for all � 2 (0, 1], yielding the statement of the proposition:

��@k

 
u( , ·)

��
Hm�k�1/2(T)  C 

��k�1/2kukKm
� (⇧).

Remark 2.13. The above proposition tells us how the asymptotic behaviour as  ! 0+ of

functions in K
m

�
depends on �. We identify the three cases:
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• For � � 1/2 < 0, functions in K
m

�
can grow unbounded as  ! 0+.

• For � � 1/2 = 0, functions in K
m

�
remain bounded as  ! 0+, though their limit may

fail to exist.

• For � � 1/2 > 0, functions in K
m

�
necessarily vanish as  ! 0+.

We see that only for � > 1/2 can we meaningfully define the restriction of u 2 K
m

�
to the

boundary  = 0 (assuming of course m is su�ciently high), and in this case the restriction

is necessarily zero. Additionally, this means that when functions in K
m

�
are continuous away

from  = 0 (by the equivalence with H
m), the continuity extends up to the boundary  = 0

if � > 1/2. We summarize this in the following corollary.

Corollary 2.14. For � > 1/2, we have the embeddings

• K
m

�
(0, 1] ⇢ C[0, 1] when m > 1/2,

• K
m

�
(⇧) ⇢ C ([0, 1]⇥ T) when m > 1.

Furthermore, under these conditions, functions in K
m

�
vanish as  ! 0+.

The previous results can be viewed as an analogue in the Kondratev spaces to the Sobolev

embedding into continuous functions. It will also be useful to say something about the

Kondratev embeddings into L
p.

Proposition 2.15. K
1
�
(⇧) ⇢ L

p(⇧) when � >
1
2 �

1
p
, with kukLp(⇧)  CkukK1

�(⇧).

Proof. From 2.12, we have ku( , ·)kH1/2(T)  C 
��1/2kukKm

� (⇧). By the Sobolev embedding

theorem in the critical case, for any p < 1, we have ku( , ·)kLp(T)  Cku( , ·)kH1/2(T). This

gives

ku( , ·)kp
Lp(T) =

Z

T
|u( , ·)|p d✓  C 

p(��1/2)kukp
K1

�(⇧).

Integrating over  gives

kukp
Lp(⇧) =

Z 1

0

Z

T
|u( , ·)|p d✓ d  Ckukp

K1
�(⇧)

Z 1

0

 
p(��1/2) d .

The right side is bounded when p(� � 1
2) + 1 > 0, or � >

1
2 �

1
p
.
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We include one more estimate that will prove useful.

Proposition 2.16. Suppose u 2 K
1
�
(⇧). Then I(✓) =

� R 1

0 | 
��
u( , ✓)|2 d 

�1/2 2 C(T) and

|I|  CkukK1
�(⇧).

Proof. For u( , ✓) 2 K
1
�
(⇧), define the vector-valued map ✓ !  

��
u( , ✓). This map belongs

to H
1(T, L2(0, 1]) because

k ��
u( , ✓)k2

H1(T,L2(0,1]) =
���k ��

u( , ✓)kL2(0,1]

���
2

L2(T)
+
���k ��

u✓( , ✓)kL2(0,1]

���
2

L2(T)

 k ��
u( , ✓)k2

L2(⇧) + k ��
u✓( , ✓)k2L2(⇧)

 kuk2
K1

�(⇧),

which follows from the equivalence L
2(T, L2(0, 1]) ⇠= L

2(⇧).

By the embedding H
1(T, L2(0, 1]) ⇢ C(T, L2(0, 1]), the function I(✓) is a composition of

continuous maps ✓ !  
��
u( , ✓) : T ! L

2(0, 1] and k·kL2(0,1] : L2(0, 1] ! R and is thus

continuous. Finally,

|I(✓)| = k ��
u(·, ✓)kL2(0,1]  k ��

ukC(T,L2(0,1])  Ck ��
ukH1(T,L2(0,1])  CkukK1

�(⇧).

Having seen a number of properties of the space K
m

�
, we are now ready to discuss its

suitability for the study of our problem. Our linear operator 1.7 is modulo a factor of  �1/2,

a polynomial of operators ( @ ) and @✓. Both of these operators are bounded from K
m

�
(⇧)

to K
m�1
�

(⇧). Additionally, we have a well defined trace in H
m�1/2(T) at  = 1, where our

boundary data is defined. This puts us in a good position to pose the linear boundary value

problem. In fact, we will see in the following chapter that the linear map is Fredholm on

K
m

�
(⇧) ! K

m�2
��1/2(⇧)⇥H

m�1/2(T) except on a countable set of �. Furthermore, this space

is well suited to include singular functions like  1/2 (the solution near which we aim to solve

the nonlinear problem). Finally, we can guarantee that the functions in this space vanish at

 = 0. After all, to have a meaningful fixed point (level set consisting of a single point), we

require that r = a( , ✓) ! 0 as  ! 0+.

There remains one crucial element we have not accounted for. For our function space to

be suitable, the nonlinear operator must be well defined on this space, at least on functions
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in a su�ciently small neighbourhood of the solution  
1/2. Looking at the operator 1.6, it is

clear this can only occur if the functions r = a( , ✓) do not vanish away from  = 0. We

demonstrate how the space K
m

�
fails in satisfying this condition. To see this, let us start

by checking for which � does solution  
1/2 belong to K

m

�
? This is satisfied if  1/2�� 2 L

2,

which holds for � < 1. So let us fix some � < 1. Next, a function  
µ belongs to this space if

µ > � � 1/2. Since � < 1, we can always find a µ satisfying � � 1/2 < µ < 1/2. Fix such a

µ and define the function a =  
1/2 � " 

µ. We see that k 1/2 � akKm
�
= "k µkKm

�
, which can

be made arbitrarily small by control of ". In other words, for any neighbourhood of  1/2,

we can take " such that a =  
1/2 � " 

µ belongs to this neighbourhood. Finally, notice this

function vanishes at  = 0 as well as  = "
1

1/2�µ . If " small enough, then the latter condition

means that the function a =  
1/2 � " 

µ vanishes at some  2 (0, 1] and thus the nonlinear

operator 1.6 will fail to be well defined there. Let us remind that the value of the function

r = a( , ✓) defines the radial coordinate (with respect to the fixed point) of the level line

given by  . The desired topology of our flows is that of nearly concentric circles around a

fixed point. If r = a( , ✓) were to vanish for some  > 0, we would have some level line

at the least pinching the fixed point, if not completely collapsing to it. We must certainly

exclude such degeneracies. We rectify this issue in the next section.

2.2 Spaces of fixed asymptotics as  ! 0+

The Kondratev space Km

�
introduced in the previous section fail to be suitable because their

functions have asymptotics as  ! 0+ that are too flexible. Any neighbourhood containing

solution  
1/2 necessarily contains lower order asymptotics, which lead to the breakdown

of the topology of the flows we are trying to parameterize. Our candidate solution space

requires the asymptotic behaviour of its functions to be firmly capped from below.

We construct such a space as follows. Starting with the solution  
1/2, allowing for some

angular dependence gives functions of form v(✓) 1/2. If away from  = 0, we require these

functions to be in H
m, then v(✓) should be taken in H

m(T). Next, we wish to include

perturbations by higher order (in  ) terms, which may include angular dependence as well.

These higher order terms can then be taken in K
m

�
(⇧), so long as we ensure to take � such
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that it excludes all terms of order  1/2 and lower. This suggests a space of functions of form

u( , ✓) =  
1/2

v(✓)+w( , ✓), with v(✓) 2 H
m(T) and w( , ✓) 2 K

m

�
(⇧), for appropriate �. It

will be useful to define this space in greater generality, namely for leading terms of arbitrary

order  �.

Definition 2.17 (Space of fixed asymptotics on the interval).

Let m 2 N0, and �, � 2 R with � � 1/2. Define space

J
m

�,�
(0, 1] =

�
u( ) = v 

� + w( ) : v 2 R, w( ) 2 K
m

�+�
(0, 1]

 

with norm

ku( )k2
J
m
�,�(0,1]

= |v|2 + kw( )k2
K

m
�+�(0,1]

.

Definition 2.18 (Space of fixed asymptotics on the strip).

Let m 2 N0, and �, � 2 R with � � 1/2. Define space

J
m

�,�
(⇧) =

�
u( , ✓) = v(✓) � + w( , ✓) : v(✓) 2 H

m(T), w( , ✓) 2 K
m

�+�
(⇧)
 

with norm

ku( , ✓)k2
J
m
�,�(⇧) = kv(✓)k2

Hm(T) + kw( , ✓)k2
K

m
�+�(⇧) .

Remark 2.19. The space Jm

�,�
(0, 1] is only well defined if its elements u( ) uniquely determine

v and w( ) such that u( ) = v 
� + w( ). In other words, if span

�
 

�
 
\ K

m

�+�
= {0}.

Similarly, the analogous statement is required of space J
m

�,�
(⇧). This is equivalent to the

requirement that  �
/2 K

m

�+�
, which holds when � � 1/2. This guarantees that the remainder

term w consists only of asymptotics of order greater than  
�. With this condition, the spaces

J
m

�+�
can be identified as the direct sums:

J
m

�,�
(0, 1] ⇡ R�K

m

�+�
(0, 1],

J
m

�,�
(⇧) ⇡ H

m(T)�K
m

�+�
(⇧).

The parameters �, � and m defining J
m

�,�
can be summarized as follows:

• � defines the leading order asymptotics as  ! 0+.
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• � � 1/2 defines the scale of higher order asymptotics (the greater � is, the greater the

gap between the leading term and higher order terms).

• m is the usual isotropic regularity scale.

Additionally, we have the inclusion J
m1
�,�1

⇢ J
m2
�,�2

for m1 � m2 and �1 � �2, which follows

from the inclusions Hm1 ⇢ H
m2 and K

m1
�+�1

⇢ K
m2
�+�2

.

Next, notice that Jm

�,�
is equivalent to H

m away from  = 0. This follows immediately

from definition, for u( , ✓) 2 J
m

�,�
is the sum of a term v(✓) � (which is in H

m away from

 = 0 if v(✓) is), and a term in K
m

�+�
(which we have already seen is equivalent to H

m away

from  = 0). In fact, all the prior properties of Km

�
hold analogously for the space Jm

�,�
. We

only list them, the proofs follow immediately from definition and the results on K
m

�+�
.

Proposition 2.20.

1. u( , ✓) !  
↵
u( , ✓) : Jm

�,�
(⇧) ! J

m

�+↵,�
(⇧) defines an isomorphism (for any ↵ 2 R).

2. u( , ✓) ! @ u( , ✓) : Jm

�,�
(⇧) ! J

m�1
��1,�(⇧) is bounded (for m � 1).

3. u( , ✓) ! @✓u( , ✓) : Jm

�,�
(⇧) ! J

m�1
�,�

(⇧) is bounded (for m � 1).

The first two hold analogously for functions u( ) on the interval (0, 1], replacing @ by D.

Proposition 2.21. Let m > 1/2. Then the restriction to  = 1 defines the bounded operator

u(·, ·) ! u(1, ·) : Jm

�,�
(⇧) ! H

m�1/2(T).

Proposition 2.22. There exists C > 0 depending on �, �,m, k for which

1. |Dk
u( )|  C 

��k

⇣
|v|+  

��1/2kwkKm
�+�(0,1]

⌘
for m� k > 1/2.

2.
��@k

 
u( , ·)

��
Hm�k�1/2(T)  C 

��k

⇣
kvkHm(T) +  

��1/2kwkKm
�+�(⇧)

⌘
for m� k > 1/2.

3. |@k

 
u( , ✓)|  C 

��k

⇣
kvkHm(T) +  

��1/2kwkKm
�+�(⇧)

⌘
for m� k > 1.

Corollary 2.23. For � � 0, � > 1/2, we have the embeddings

• J
m

�,�
(0, 1] ⇢ C[0, 1] when m > 1/2,
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• J
m

�,�
(⇧) ⇢ C ([0, 1]⇥ T) when m > 1.

Additionally, under these conditions, we have the following point-wise behaviour.

• If � > 0, then functions in J
m

�,�
vanish as  ! 0+.

• If � = 0, then u = v + w 2 J
m

�,�
! v as  ! 0+.

Though we have defined the space J
m

�,�
for arbitrary �, in practice we will only use two

cases. First, the space of solutions, whose leading asymptotics are of order 1/2, is defined

by � = 1/2. Second, the corresponding target space of our di↵erential operators is defined

by � = 0.

Notice that for � = 0 and � > 1/2, functions u( , ✓) in J
m

0,� have the property that

u(0, ✓) = v(✓) 2 H
m(T). Taking � > 1/2 guarantees that the contribution of the term

w 2 K
m

0+�
is continuous and vanishes at  = 0. The functions in J

m

0,� then have the unusual

property that for  6= 0, restrictions u( , ·) belong to H
m�1/2(T), but as  ! 0+, this

restriction bumps up in regularity to H
m(T).

We will find in the following chapter that the cost of seeking solutions in the space

J
m

1/2,�(⇧) is the presence of a two-dimensional cokernel in the linear problem consisting of

span
�
e
±2i✓
 
. To establish our desired isomorphism of the linear boundary value problem

1.7, we are forced to remove this cokernel from the target space. Of course, we will have

to ensure this is accounted for in the nonlinear problem 1.6. This leads us to define the

additional space:

Definition 2.24.

eJm

0,�(⇧) =

⇢
u( , ✓) = v(✓) + w( , ✓) 2 J

m

0,�(⇧) :

Z

T
v(✓)e±2i✓ d✓ = 0

�
.

In this section, we have defined the space J
m

�,�
(⇧) of functions with leading asymptotics

of order  
�. These functions have well defined restrictions to the boundary  = 1 lying

in H
m�1/2(T). For � � 0 and � > 1/2, this space embeds into the continuous functions.

We will show in the following chapter that the linear problem 1.7 defines an isomorphism

R3⇥J
m

1/2,�(⇧) ! eJm�2
0,� (⇧)⇥H

m�1/2(T) for some range of �. Later, we will also demonstrate

the well posedness of the nonlinear problem 1.6 in these spaces. So far, our definitions restrict
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to real valued functions and lack any analytic structure. They will serve as the model spaces

which we will extend to incorporate the desired partial analytic structure.

2.3 Spaces of Partially Analytic Functions

In the previous section, we have defined our model space J
m

�,�
(⇧) for solutions, interpreted

as the graphs of a family of flow lines. We have seen that the restriction to individual flow

lines resides in the space H
m�1/2(T). The flow lines of solutions to the stationary Euler

equation are known to be real analytic curves, that is, functions a( , ✓) in J
m

�,�
(⇧) should be

additionally analytic in ✓. It is our goal in this section to extend (or perhaps better to say

refine) Jm

�,�
(⇧) to include this partial analytic structure. Similarly, the space of restrictions

to individual flow lines, modelled on H
m�1/2(T), should be refined to consist of some subset

of analytic functions.

Since real analytic functions do not form a Banach space, we can instead consider func-

tions having analytic extensions to some suitable complex domain. In our case, it is natural

to extend ✓ 2 T to the complex periodic strip T� = T⇥ i(�, �), where � > 0. With this aim,

our main tool will be the Paley-Wiener theorem - a group of results relating the decay of a

function’s Fourier transform with its extension to a complex domain ([25]). They provide

a description of spaces of holomorphic (and partially holomorphic) functions, akin to the

complex Hardy spaces, defined by an appropriate control of their possible singularities oc-

curring on the boundary of the complex extended domains. This formulation of complexified

stationary flows allows us to employ the tools from the theory of complex Banach spaces.

We should clarify then, from here on after, all function spaces should be understood to be

complex valued (including the real valued spaces defined in the preceding sections).

We now state the following theorem of Paley and Wiener, which characterizes the analytic

extensions of L2(R) functions to the complex strip.

Theorem 2.25 (Paley-Wiener on the complex strip).

Suppose u(x) 2 L
2(R) and � > 0. Then the following statements are equivalent:

1. e
�|⇠|

û(⇠) 2 L
2(R).
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2. u(x) extends to u(z) holomorphic in the strip {z = x+ iy : x 2 R, |y| < �} with

sup
|y|<�

ku(·+ iy)kL2(R) < 1.

This theorem enables us to define the space of holomorphic functions on the complex

strip whose restrictions to the strip boundaries are L
2(R) functions. With a few changes,

we can adapt this theorem to our specific needs. It will be useful to first prove the following

lemma.

Lemma 2.26.

Suppose u(z) is holomorphic on the complex periodic strip T� = {z = ✓ + i⌧ : ✓ 2 T, |⌧ | < �},

with values possibly in a complex Banach space. Then it has the representation:

u(z) =
X

k

ûke
ikz

where

ûk =
1

2⇡

Z

T
u(✓)eik✓ d✓ .

Proof. We start by showing there is a one-to-one correspondence between holomorphic func-

tions in T� and holomorphic functions in the annulus A� = {e��
< |w| < e

�}. Consider map

z ! w = e
iz. It defines a holomorphic bijection from T� to A�. Since

dw
dz 6= 0 everywhere in

T�, then by the inverse function theorem, near any pair (z0, w0) with w0 = e
iz0 , there exists

a holomorphic inverse map z = F0(w).

Now suppose g(w) is holomorphic in A�. Then u(z) = g(eiz) is the composition of two

holomorphic maps and thus holomorphic in T�. Conversely, suppose u(z) is holomorphic in

T�. Near any w0 2 A� we have some representation z = F0(w) and so u(z) = u(F0(w)) =

g(w) is analytic near w0. This holds for all w0 2 A�, so g(w) is analytic in A�. This

establishes the one-to-one correspondence between analytic functions u(z) on the strip, and

the analytic functions g(w) on the annulus, with u(z) = g(eiz).

Given u(z) holomorphic in T�, take g(w) as above, with u(z) = g(eiz). The function

g(w) has the Laurent series about w = 0 given by

g(w) =
X

k

ckw
k
,
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with

ck =
1

2⇡i

I
g(w)

wk+1
dw .

Setting the contour in the above integral to be around the unit circle w = e
i✓, we get

ck =
1

2⇡

Z

T

g(ei✓)

eik✓
d✓ .

Finally, because u(z) = g(eiz), we get

ck =
1

2⇡

Z

T
u(✓)e�ik✓ d✓

and

u(z) =
X

k

cke
ikz

.

All the above results hold for complex Banach space valued holomorphic functions, inter-

preting the integral defining the coe�cients ck as a Bochner integral (see [21]).

Now, let us adapt the prior Paley-Wiener theorem on complex extensions of L2(R) func-

tions to the H
m(T) setting.

Theorem 2.27 (Paley-Wiener for Sobolev functions on the complex periodic strip).

Suppose u(✓) 2 H
m(T), where m is a non-negative real number and let � > 0. Then the

following statements are equivalent:

1. F�1
k!✓

�
e
�|k|

ûk

 
=
P

k
ûke

�|k|
e
ik✓ 2 H

m(T).

2. u(✓) extends to u(z) holomorphic in the complex periodic strip

T� = {z = ✓ + i⌧ : ✓ 2 T, |⌧ | < �} with

sup
|⌧ |<�

ku(·+ i⌧)kHm(T) < 1.

Proof. First, we assume the first statement and prove the second. Given u(✓) 2 H
m(T), we

have the Fourier series:

u(✓) =
X

k

ûke
ik✓

.

Next, we extend ✓ to the complex variable z = ✓ + i⌧ to get

u(z) =
X

k

ûke
ikz =

X

k

ûke
�k⌧

e
ik✓

.
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Now let " > 0 and |⌧ | < � � ✏. We get

|u(z)| 
X

k

|ûke
�k⌧ | = kûke

�k⌧k`1


X

k

|ûk|e|k||⌧ |


X

k

|ûk|e�|k|e(|⌧ |��)|k|


X

k

|ûk|e�|k|e�"|k|

 kûke
�|k|k`2ke�"|k|k`2

< 1.

The second last inequality follows from Cauchy-Schwarz. The last inequality follows from

the assumption, for if F�1
k!✓

�
e
�|k|

ûk

 
2 H

m(T), then equivalently (1 + k
2)m/2

e
�|k|

ûk 2 `
2.

Thus, we have shown that u(z) is well defined for any |⌧ | < � � ".

Next, we will show we can also di↵erentiate u(z) under the summation sign, establishing

the holomorphy of u(z). Set f(z, k) = ûke
ikz. From the above inequalities, we saw f(z, k) 2

`
1 for |⌧ | < � � ". Also, @f

@z
= ikûke

ikz certainly exists for each k and all z. Finally we can

dominate @f

@z
as follows:

|ikûke
ikz|  |kûk|e|k||⌧ |

 |ûke
�|k|||ke(|⌧ |��)|k||

 |ûke
�|k|||ke�"|k||

2 `
1
.

Thus @f

@z
is dominated by an `

1 function independent of z. By the lemma of di↵erentiation

under the integral sign (following from dominated convergence theorem), we conclude that

du(z)

dz
=
X

k

(ik)ûke
ikz

for |⌧ | < � � ", and thus u is holomorphic here. Finally, note because this result holds for

arbitrary " > 0, u(z) is in fact holomorphic for |⌧ | < �.
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To conclude the first part of the proof, the norm equivalence of Hm(T) as a weighted `
2

space gives the estimate

ku(·+ i⌧)kHm(T)  k(1 + k
2)m/2

ûke
�k⌧k`2  k(1 + k

2)m/2
ûke

|k||⌧ |k`2 ,

from which it follows that

sup
|⌧ |<�

ku(·+ i⌧)kHm(T)  k(1 + k
2)m/2

ûke
�|k|k`2 < 1.

Now let us assume the second statement and prove the first. Given u(· + i⌧) 2 H
m(T),

we can write

u(✓ + i⌧) =
X

k

ûk(⌧)e
ik✓

.

The key step here is invoking the prior lemma 2.26: because u(z) is holomorphic in T�, the

above expression instead takes the far more rigid form:

u(✓ + i⌧) =
X

k

ûke
�⌧k

e
ik✓

.

The required estimate then follows again from the equivalence of the space H
m(T) with its

weighted `
2 counterpart.

kF�1
k!✓

�
e
�|k|

ûk

 
kHm(T) = k(1 + k

2)m/2
ûke

�|k|k`2

= sup
|⌧ |<�

k(1 + k
2)m/2

ûke
|⌧ ||k|k`2

 sup
|⌧ |<�

k(1 + k
2)m/2

ûk

�
e
⌧k + e

�⌧k
�
k`2

= sup
|⌧ |<�

ku(·� i⌧) + u(·+ i⌧)kHm(T)

 2 sup
|⌧ |<�

ku(·+ i⌧)kHm(T)

< 1.

This theorem provides a description of the space of holomorphic functions on the complex

periodic strip whose restrictions to the boundary are Sobolev functions. We are now ready

to define the space for the individual analytic flow lines.
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Definition 2.28. Define X
m

�
(T) to be the space of functions satisfying the conditions of

theorem 2.27. We have two equivalent characterizations of this space:

1.

X
m

�
(T) =

�
u(✓) 2 H

m(T) : F�1
k!✓

{ûke
�|k|} 2 H

m(T)
 

with norm

kuk2
Xm

� (T) =
X

k

(1 + k
2)me2�|k||ûk|2.

2. X
m

�
(T) is the space of functions u(z) that are complex analytic in T� and satisfy

sup
|⌧ |<�

ku(·+ i⌧)k
Hm(T) < 1

with norm

kuk2
Xm

� (T) = sup
|⌧ |<�

ku(·+ i⌧)k2
Hm(T)

⇠= ku(·+ i�)k2
Hm(T) + ku(·� i�)k2

Hm(T) .

Remark 2.29. It is straightforward to check that the two norms above are indeed equivalent.

We can thus interpret X
m

�
(T) as the space of analytic flow lines whose possible complex

singularities are described by H
m(T) functions on the strip boundaries.

Remark 2.30. The boundedness of derivative map D : Xm

�
(T) ! X

m�1
�

(T) follows immedi-

ately from the boundedness of D : Hm(T) ! H
m�1(T).

Our next goal is to adapt the Paley-Wiener theorem to characterize the partial analytic

nature of our solutions. We must incorporate this anisotropic analyticity while preserving

the general structure of the space J
m

�,�
(⇧), which we claimed is the appropriate setting for

our boundary value problems. To get an idea of how we can do this, let us for a moment

consider instead the space L
2(R2) of functions u(x, y). How can we define what it means

for such functions to be partially analytic, that is analytic in say x, if they are not a priori

defined point-wise? Let us consider the restriction to vertical sections u(x, ·). If u is only

in L
2(R2) then of course such a restriction map is not meaningfully defined. However, if we

have su�cient additional regularity along x (that is, along the direction perpendicular to

the sections we restrict to) then we can define this trace meaningfully as an L
2(R) function.

Thus, we can define the partial analyticity by analytic Banach valued maps. Namely, we
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can say that u(x, y) 2 L
2(R2) is partially analytic if the map x ! u(x, ·) : R ! L

2(R) is

analytic. We expect the following extension of the Paley-Wiener theorem:

Theorem 2.31 (Partial Paley-Wiener).

Suppose u(x, y) 2 L
2(R2) and � > 0. Then the following statements are equivalent:

1. F�1
⇠!x

�
e
�|⇠|

û(⇠, y)
 
2 L

2(R2).

2. u(x, y) extends to u(z, y) partially analytic in the sense that the map

z ! u(z, ·) : {z = x+ it : |t| < �} ! L
2(R)

is holomorphic and

sup
|t|<�

ku(·+ it, ·)kL2(R2) < 1.

We state this because it serves as an example of how to adapt the Paley-Wiener theorem to

include a notion of partial analyticity, while preserving the properties of the underlying model

space, L2(R2) in the above case. In our case the model space is Jm

�,�
(⇧), which recall is the

space of functions u( , ✓) = v(✓) � +w( , ✓), where v(✓) 2 H
m(T) and w( , ✓) 2 K

m

�+�
(⇧),

and can be identified with H
m(T) � K

m

�+�
(⇧). Since we have already discussed the Paley-

Wiener theorem for analytic extensions of Hm(T) to the strip T�, we need only focus on

adapting the above theorem to K
m

�
(⇧) functions. The main point to underline again is that

we can define partial analytic functions as holomorphic Banach valued functions, which are

valued in the space of restrictions to vertical sections. Where as typically, we expect the

trace of a K
m

�
(⇧) function to lose half an order of regularity (as in the Sobolev case), in our

case the additional regularity in ✓ compensates for this. The proof of the following theorem

is almost identical to the proof of theorem 2.27, only di↵ering in that u(·, z) is Banach

valued.

Theorem 2.32 (Partial Paley-Wiener for Kondratiev functions).

Suppose u( , ✓) 2 K
m

�
(⇧) and � > 0. Then the following statements are equivalent:

1. F�1
k!✓

�
e
�|k|

ûk( )
 
=
P

k
ûk( )e�|k|eik✓ 2 K

m

�
(⇧).
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2. u( , ✓) extends to u( , z) partially analytic in the sense that the map

z ! u(·, z) : T� = {z = ✓ + i⌧ : |⌧ | < �} ! K
m

�
(0, 1]

is holomorphic and

sup
|⌧ |<�

ku(·, ·+ i⌧)kKm
� (⇧) < 1.

Proof. To start, we assume the first statement and prove the second. Given

u( , ✓) =
X

k

ûk( )e
ik✓

we extend to the complex variable z = ✓ + i⌧ to get

u( , z) =
X

k

ûk( )e
ikz =

X

k

ûk( )e
�k⌧

e
ik✓

.

We will now show u(·, z) is well defined in K
m

�
(0, 1]. Let " > 0 and |⌧ | < � � ✏. We have

ku(·, z)k
Km

� (0,1] 
X

k

��ûk( )e
�k⌧
��
Km

� (0,1]


X

k

e
|k||⌧ | kûk( )kKm

� (0,1]


X

k

e
�|k| kûk( )kKm

� (0,1] e
(|⌧ |��)|k|


���
��ûk( )e

�|k|��
Km

� (0,1]

���
`2

��e�"|k|��
`2


 
X

k

mX

p+q=0

(k2)q
�� p��

D
p
ûk( )e

�|k|��
L2(0,1]

!1/2 ��e�"|k|��
`2


��F�1

k!✓

�
e
�|k|

ûk( )
 ��

Km
� (⇧)

��e�"|k|��
`2

< 1

where the fourth inequality follows from Cauchy-Schwarz. This shows that u(·, z) is well

defined in K
m

�
(0, 1] for any |⌧ | < � � ".

Next, we will show we can also di↵erentiate u(·, z) under the summation sign, establishing

the holomorphy of u(·, z) as a K
m

�
(0, 1] valued map. Set f(z, k) = ûk( )eikz. From the above

inequalities, we saw f(z, k) is a K
m

�
(0, 1] valued `

1 sequence for every |⌧ | < � � ". Also,
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@f

@z
= ikûk( )eikz certainly exists for each k and all z. Finally, this derivative is dominated

by ����
@f

@z
(z, k)

����
Km

� (0,1]


��e�|k|ûk( )

��
Km

� (0,1]

��ke�"|k|��

where the right side is an `
1 sequence. Satisfying the conditions of di↵erentiation under the

integral sign we conclude that z ! u(·, z) : T��" ! K
m

�
(0, 1] is holomorphic. Since " > 0 is

arbitrary, holomorphy holds on T�.

To conclude the first part of the proof,

ku(·, ·+ i⌧)k
Km

� (⇧) 
��F�1

k!✓

�
e
|⌧ ||k|

ûk( )
 ��

Km
� (⇧)

from which it follows that

sup
|⌧ |<�

ku(·, ·+ i⌧)k
Km

� (⇧) 
��F�1

k!✓

�
e
�|k|

ûk( )
 ��

Km
� (⇧)

< 1.

Now to prove the converse let us assume the second statement of the theorem and prove

the first. By lemma 2.26 for Banach valued holomorphic functions, u(·, z) takes the form:

u( , ✓ + i⌧) =
X

k

ûk( )e
�k⌧

e
ik✓

.

Expressing the K
m

�
(⇧) norm in terms of the partial Fourier series immediately gives

��F�1
k!✓

�
e
�|k|

ûk( )
 ��2

Km
� (⇧)

=
mX

p+q=0

X

k

(k2)qe2�|k|
�� p��

D
p
ûk( )

��2
L2(0,1]

 sup
|⌧ |<�

mX

p+q=0

X

k

(k2)q
�
e
�2⌧k + e

2⌧k
� �� p��

D
p
ûk( )

��2
L2(0,1]

= sup
|⌧ |<�

⇣
ku(·, ·+ i⌧)k2

Km
� (⇧) + ku(·, ·� i⌧)k2

Km
� (⇧)

⌘

 2 sup
|⌧ |<�

ku(·, ·+ i⌧)k2
Km

� (⇧)

< 1.

Definition 2.33. Define K
m,�

�
(⇧) to be the space of functions satisfying the conditions of

theorem 2.32. We have two equivalent characterizations of this space:
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1.

K
m,�

�
(⇧) =

�
u( , ✓) 2 K

m

�
(⇧) : F�1

k!✓
{ûk( )e

�|k|} 2 K
m

�
(⇧)
 

with norm

kuk2
K

m,�
� (⇧) =

mX

p+q=0

X

k

k
2q
e
2�|k| �� p��

D
p
ûk( )

��2
L2(0,1]

.

2. K
m,�

�
(⇧) is the space of functions u( , z) that are partially analytic in sense that

z ! u(·, z) : T� = {z = ✓ + i⌧ : |⌧ | < �} ! K
m

�
(0, 1]

is a holomorphic Banach valued map, and satisfies

sup
|⌧ |<�

ku(·, ·+ i⌧)k
Km

� (⇧) < 1,

with norm

kuk2
K

m,�
� (Pi) = sup

|⌧ |<�

ku(·, ·+ i⌧)k2
Km

� (⇧)
⇠= ku(·, ·+ i�)k2

Km
� (⇧) + ku(·, ·� i�)k2

Km
� (⇧) .

Having defined the spaces X
m

�
(T) and K

m,�

�
(⇧) it is now straightforward to define the

space of partially analytic flow lines modelled on J
m

�,�
(⇧), as the direct sum of these spaces.

Definition 2.34. For � � 1/2, we define

J
m,�

�,�
(⇧) =

�
u( , ✓) = v(✓) � + w( , ✓) : v(✓) 2 X

m

�
(T), w( , ✓) 2 K

m,�

�+�
(⇧)
 

⇡ X
m

�
(T)�K

m,�

�+�
(⇧)

with norm

ku( , ✓)k2
J
m,�
�,� (⇧) = kv(✓)k2

Xm
� (T) + kw( , ✓)k2

K
m,�
�+�(⇧) .

Additionally, we define the co-dimension two subspace:

Definition 2.35.

eJm,�

0,� (⇧) =

⇢
u( , ✓) = v(✓) + w( , ✓) 2 J

m,�

0,� (⇧) :

Z

T
v(✓)e±2i✓ d✓ = 0

�
.

Remark 2.36. All the properties of propositions 2.20, 2.21, 2.22 and corollary 2.23 hold

analogously in the space Jm,�

�,�
(⇧). This follows immediately from the fact that if u 2 J

m,�

�,�
(⇧),

then on every periodic strip {|⌧ |  � is fixed.}, u(·, ·+ i⌧) belongs to J
m

�,�
(⇧).
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Let us now summarize the results of this chapter by giving some context in terms of the

equation of study 1.6. We have defined the space J
m,�

1/2,�(⇧) of partially complex analytic

flow lines which will serve as the space for solutions r = a( , ✓). For m > 1, � > 1/2, these

functions are continuous. If a( , ✓) =  
1/2

v(✓) +w( , ✓) and v(✓) is never zero, then a( , ✓)

vanishes like  1/2 as  ! 0+ and blows up like  �1/2. Such functions thus have the required

behaviour at  = 0 to properly describe the stagnation point of the associated velocity

field u( , ✓). These functions have well defined restrictions at the boundary { = 1}, which

reside in X
m�1/2
� (T). The space eJm�2,�

0,� (⇧) serves as the target space of our equations. For

m � 2 > 1, � > 1/2, its functions are continuous and have the property that u( , ✓) =

v(✓) + w( , ✓) ! v(✓) as  ! 0+. Finally, the space J
m�2
0,� (0, 1] embeds naturally into

eJm�2,�
0,� (⇧) and serves as the space of complex vorticities F ( ). Functions in this space

are continuous for � > 1/2, and consist of a leading constant term plus a higher order

perturbation. Now that we have defined the relevant function spaces, we can proceed with

establishing the well-posedness of the linear and nonlinear problem in these spaces.
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Chapter 3

Linearized Problem

The goal of this chapter is to prove that the linearization 1.7 of the nonlinear boundary value

problem at solution a( , ✓) =  
1/2 defines an isomorphism between our defined function

spaces. We remind this linearized problem is given by:

Definition 3.1 (Linear Problem).
8
><

>:

 
�1/2

h
 

2 @
2

@ 2 + 2 @

@ 
+ 1

4(I +
@
2

@✓2
)
i
u( , ✓) = f( , ✓)

R + (px�ipy

2 )ei✓ + (px+ipy

2 )e�i✓ + u(1, ✓) = g(✓),

to be solved for R 2 C, p = (px, py) 2 C2 and u( , ✓) 2 J
m,�

1/2,�(⇧), given parameters

f( , ✓) = eJm�2,�
0,� (⇧) and g(✓) 2 X

m� 1
2

� (T).

By remark 2.36 and proposition 2.20, multiplication by  
1/2 defines an isomorphism from

J
m,�

0,� (⇧) to J
m,�

1/2,�(⇧). It is then equivalent to consider instead the problem

8
><

>:

Lu( , ✓) =
h
 

2 @
2

@ 2 + 2 @

@ 
+ 1

4(I +
@
2

@✓2
)
i
u( , ✓) = f( , ✓)

R + (px�ipy

2 )ei✓ + (px+ipy

2 )e�i✓ + u(1, ✓) = g(✓),
(3.1)

where f( , ✓) is now to be taken in eJm�2,�
1/2,� (⇧).

We break down the proof into four parts. First, the boundedness of the linear map in the

above spaces follows immediately from the work done in the previous chapter. Second, we

solve the homogeneous problem when f = 0 and bound the solution by the boundary data.

This requires a restriction on the permissible values of �. Finally, we solve the inhomogeneous
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problem on the component spaces that make up J
m,�

1/2,�(⇧). The linear problem on the leading

term component reduces to an ODE in ✓, solved by Fourier inversion. The bulk of the

work is then dedicated to solving the linear problem on the remainder component term in

K
m,�

1/2+�
(⇧) and establishing the required bounds. Expanding to a Fourier series in ✓ yields a

sequence of second order ODEs in  . Each corresponding second order di↵erential operator

can be factored into the product of two first order operators. Their inverses, which can

be computed explicitly, are operators taking weighted averages. The main tool to establish

their boundedness is the Hardy inequality ([6]), which bounds the L
2 norm of the weighted

average of a function by the L
2 norm of said function:

Theorem 3.2 (Hardy Inequality).

• If ↵ < 1/2, ���y↵�1

Z
y

0

x
�↵

f(x) dx
���
L2[0,1]

 1
1
2 � ↵

kfkL2[0,1].

• If ↵ > 1/2, ���y↵�1

Z 1

y

x
�↵

f(x) dx
���
L2[0,1]

 1

↵� 1
2

kfkL2[0,1].

Let us now proceed, starting with the boundedness of the linear operator.

Proposition 3.3.

The linearized problem 3.1 is bounded from C3 ⇥ J
m,�

1/2,�(⇧) to J
m�2,�
1/2,� (⇧)⇥X

m�1/2
� (T)

Proof. This result follows immediately from the results of the previous chapter. The op-

erators  
2
@
2
 
,  @ and @

2
✓
are bounded from J

m,�

1/2,�(⇧) to J
m�2,�
1/2,� (⇧). This follows from

proposition 2.20, remark 2.36, and the boundedness of the identity map from J
m�1,�
1/2,� (⇧)

to J
m�2,�
1/2,� (⇧). Thus L is bounded in these spaces. Next, by proposition 2.21 and remark

2.36, the trace map u(·, ·) ! u(1, ✓) is bounded from J
m,�

1/2,� to X
m�1/2
� (T). Finally, using

the Fourier series representation of the norm of Xm�1/2
� (T), we get kRk

X
m�1/2
� (T) = |R| and

k(px ⌥ ipy)e±i✓k
X

m�1/2
� (T)  C (|px|+ |px|). Putting it all together gives the bound

kfk
J
m�2,�
1/2,� (⇧) + kgk

X
m�1/2
� (T)  |R|+ |p|+ kukJm,�

1/2,�
(⇧).
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Next, we tackle the homogeneous linear problem.

Proposition 3.4.

Let 1/2  � < 1. Then the homogeneous problem obtained from 3.1 by setting f = 0 is

invertible and its solution has bound

|R|+ |p|+ kukJm,�
1/2,�(⇧)  Ckgk

X
m�1/2
� (T).

Proof. Expanding u( , ✓) in a Fourier series in ✓ gives the family of 2nd order Cauchy-Euler

equations ✓
 

2
D

2 + 2 D +
1� k

2

4

◆
ûk( ) = 0.

Solving gives the general homogeneous solution

u( , ✓) = c0 
� 1

2 + d0 
� 1

2 ln( ) +
X

k 6=0

⇣
ck 

�1+|k|
2 + dk 

�1�|k|
2

⌘
e
ik✓

.

The space J
m,�

1/2,�(⇧) is the direct sum of a leading term of order  
1/2 and a remainder in

K
m,�

1/2+�
(⇧) of higher order terns. Thus we must discard all terms from the homogeneous

solution whose order is less than  
1/2, namely, we must set c0, c±1 and all dk terms to zero.

This gives us the homogeneous solution

u( , ✓) =
X

|k|�2

ck 
�1+|k|

2 e
ik✓

.

Observe that the 0th and 1st order modes are entirely absent from this solution. Their

absence is accounted for by the extra degrees of freedom R and p, provided in the solution.

We split up the solution as follows:

u( , ✓) =  
1
2
�
c2e

2i✓ + c�2e
�2i✓
�
+
X

|k|�3

ck 
�1+|k|

2 e
ik✓

.

The first term is of order  
1/2, and its angular contribution is entire, thus certainly in

X
m

�
(T). We should now guarantee that the remaining sum belongs to K

m,�

1/2+�
(⇧) without

having to discard any additional modes. We need thus ensure that the lowest order term of

the remainder, that is  , is in K
m,�

1/2+�
(⇧). This is satisfied when � < 1. If we were to allow

� � 1, we would have to drop su�cient additional low order modes from the remainder term,

which would render the boundary value problem non-surjective. Also, recall that Jm,�

1/2,�(⇧)
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is only well defined if � � 1/2. Taking the Fourier series of g(✓), we can now match the

boundary condition. We get: 8
>>>>>>>><

>>>>>>>>:

R = ĝ0

px = ĝ1 + ĝ�1

py = i(ĝ1 � ĝ�1)

ck = ĝk for |k| � 2.

Finally, we show the bound on this solution. Substituting the above and from definition of

J
m,�

1/2,�(⇧), we get

|R|2 + |px|2 + |py|2 + ku( , ✓)k2
J
m,�
1/2,�(⇧) = |ĝ0|2 + |ĝ1 + ĝ�1|2 + |ĝ1 � ĝ�1|2

+
��ĝ2e2i✓ + ĝ�2e

�2i✓
��2
Xm

� (T)+
���
X

|k|�3

ĝk 
�1+|k|

2 e
ik✓

���
2

K
m,�
1/2+�(⇧)

.

The last term is bounded as follows:

���
X

|k|�3

ĝk 
�1+|k|

2 e
ik✓

���
2

K
m,�
1/2+�

(⇧)
=

mX

p+q=0

X

|k|�3

(k2)qe2�|k||ĝk|2
�� p� 1

2��
D

p
 

�1+|k|
2

��2
L2(0,1]

=
mX

p+q=0

X

|k|�3

(k2)qe2�|k||ĝk|2cp,k
�� �1��+ |k|

2

��2
L2(0,1]

=
mX

p+q=0

X

|k|�3

Cp,k

(k2)q

�1� 2� + |k|e
2�|k||ĝk|2

 C

X

|k|�3

(1 + k
2)m�1/2

e
2�|k||ĝk|2

where the third equality follows so long as  �1��+ |k|
2 2 L

2(0, 1], which is satisfied given � < 1

and |k| � 3. We thus get the required bound

|R|2 + |px|2 + |py|2 + ku( , ✓)k2
J
m,�
1/2,�

(⇧)  C

X

k

(1 + k
2)m�1/2

e
2�|k||ĝk|2 = Ckg(✓)k

X
m�1/2
� (T).

Let us now tackle the inhomogeneous problem. We write u( , ✓) = v(✓) 1/2 + w( , ✓)

and f( , ✓) = ⇠(✓) 1/2 + ⌘( , ✓), where v 2 X
m

�
(T), w 2 K

m,�

1/2+�
(⇧), ⇠ 2 X

m�2
�

(T) and

⌘ 2 K
m�2,�
1/2+�

(⇧). We can consider the linear problem on components v(✓) 1/2 and w( , ✓)
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separately, so long as we are careful to distribute the boundary condition modes carefully.

Let us start with the first component. We have just seen that v can only account for the

|k| = 2 modes of the boundary condition. Let us then consider the problem

8
><

>:

L
�
v(✓) 1/2

�
= ⇠(✓) 1/2

v̂±2 = 0.
(3.2)

Proposition 3.5.

The linear problem 3.2 is invertible between v(✓) 2 X
m

�
(T) and

⇠(✓) 2 eXm�2
�

(T) =
�
⇠ 2 X

m�2
�

(T) :
R
T ⇠(✓)e

±2i✓ = 0
 
and its solution has bound

kvkXm
� (T)  Ck⇠k

X
m�2
� (T).

Proof. A direct computation shows L(v 1/2) =  
1/2
⇣
v(✓) + D

2
v(✓)
4

⌘
. Taking the Fourier

series, we get the family of algebraic equations (1� k
2
/4) v̂k = ⇠̂k. For |k| = 2, the left side

vanishes. We get the solution

8
><

>:

v̂k = (1� k
2
/4)�1

⇠̂k, for |k| 6= 2,

v̂±2 = 0

and deduce L is not surjective onto X
m�2
�

(T) but rather onto eXm�2
�

(T). To establish the

boundedness of this inverse, we have

kvk2
Xm

� (T) =
X

k

(1 + k
2)me2�|k||v̂k|2

=
X

|k| 6=2

(1 + k
2)me2�|k|

|⇠̂k|2

(1� k2/4)2

 C

X

k

(1 + k
2)m�2

e
2�|k||⇠̂k|2

 Ck⇠k2
X

m�2
� (T).

It remains to solve the inhomogeneous problem on the second component. We must be

careful to distribute the boundary conditions correctly. We have seen that the k = 0 mode of

the boundary condition is controlled for by R. Next, the |k| = 1 modes are controlled for by
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p. Finally, the |k| = 2 modes are controlled for by the first component of u. Thus we should

expect that only the remaining |k| � 3 modes are controlled by the second component. The

inhomogeneous problem then is: given ⌘( , ✓) 2 K
m�2,�
1/2,� (⇧), solve the following equation for

w( , ✓) 2 K
m,�

1/2,�(⇧):

8
><

>:

Lw( , ✓) = ⌘( , ✓)

ŵk(1) =
R
T w(1, ✓)e

�ik✓ d✓ = 0 for |k| � 3.
(3.3)

Proposition 3.6.

Let 1/2 < � < 1. The inhomogeneous problem 3.3 is invertible with bound

kwkKm,�
1/2+�(⇧)  Ck⌘k

K
m�2,�
1/2+� (⇧).

Proof. Expanding in a Fourier series gives the family of ODEs
8
><

>:

Lkŵk( ) = ⌘̂k( )

ŵk(1) = 0 for |k| � 3,

where

Lk =  
2
D

2 + 2 D +
1� k

2

4
I.

We can factor Lk into the product of two 1st order operators as follows:

Lk =

✓
 D +

1 + |k|
2

I

◆✓
 D +

1� |k|
2

I

◆
= L

+
k
· L�

k
.

Next we can rewrite these operators as

L
+
k
=  D +

1 + |k|
2

I =  
1� 1+|k|

2 D

⇣
 

1+|k|
2 I

⌘
,

L
�
k
=  D +

1� |k|
2

I =  
1� 1�|k|

2 D

⇣
 

1�|k|
2 I

⌘
.

We can accordingly define a factorization of L by

L = L+ · L�,

where

L±w( , ✓) =
X

k

L
±
k
ŵk( )e

ik✓
.
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Notice each of these operators is bounded fromK
m,�

1/2+�
(⇧) toKm�1,�

1/2+�
(⇧). Using the boundary

conditions, we can explicitly invert L±
k
to construct L�1

± and show that it is bounded from

K
m�1,�
1/2+�

(⇧) to K
m,�

1/2+�
(⇧). Since L

�1 is the composition of L�1
� and L

�1
+ , it follows that it is

bounded from K
m�2,�
1/2+�

(⇧) to K
m,�

1/2+�
(⇧).

Let us proceed now with inverting L
+
k
and L

�
k
. They take the general form of operator

A�k
=  D + �kI =  

1��kD
�
 

�kI
�
,

where in our case �k =
1±|k|
2 . Writing the equation A�k

wk( ) =  
1��kD

�
 

�kwk( )
�
= ⌘k( ),

we can solve by direct integration to get

wk( ) = A
�1
�k
⌘k( ) =  

��k

Z
 

0

t
�k�1

⌘k(t) dt+ c 
��k ,

or equivalently

wk( ) = A
�1
�k
⌘k( ) = � 

��k

Z 1

 

t
�k�1

⌘k(t) dt+ d 
��k .

Next, we should check for which �k = 1±|k|
2 does the  

��k term belong to K
m,�

1/2+�
, keeping

in mind we have the restriction 1/2  � < 1 from the homogeneous problem. This occurs

only for L
�
k
when |k| � 3, that is, when �k = 1�|k|

2 and |k| � 3. In this case, we need the

boundary condition to find the inverse. Otherwise, we must set constants c or d to zero and

no boundary condition is available. Let us then write the inverses as follows.

�
L
�
k

��1
⌘̂k( ) =

8
><

>:

 
� 1�|k|

2

R
 

0 t
�1�|k|

2 ⌘̂k(t) dt for |k| < 3

� 
� 1�|k|

2

R 1

 
t
�1�|k|

2 ⌘̂k(t) dt for |k| � 3
(3.4)

�
L
+
k

��1
⌘̂k( ) =  

� 1+|k|
2

Z
 

0

t
�1+|k|

2 ⌘̂k(t) dt for all k. (3.5)

Notice that the inverses above are operators that take the weighted average of a Fourier

mode of ⌘ from 0 to  or from  to 1. The choice we made is in anticipation of using the

Hardy inequality 3.2. Also notice the boundary conditions available were each used precisely

once. We have thus constructed explicitly the inverse of L, which can be written as

L
�1
⌘( , ✓) =

X

k

�
L
�
k

��1 ·
�
L
+
k

��1
⌘̂k( )e

ik✓
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and can be described as the Fourier series of the composition of two varying weighted averages

of the Fourier modes of ⌘.

Now, we must demonstrate the boundedness from K
m�1,�
1/2,� (⇧) to K

m,�

1/2,�(⇧) of operators

L
�1
± ⌘( , ✓) =

X

k

�
L
±
k

��1
⌘̂k( )e

ik✓
.

That is, we are looking to establish the bound kL�1
± ⌘( , ✓)kKm,�

1/2+�(⇧)  Ck⌘( , ✓)k
K

m�1,�
1/2+� (⇧)

given norm

kw( , ✓)k2
K

m,�
1/2+�(⇧) =

X

k

mX

p+q=0

(k2)qe2�|k|
�� p�1/2��

D
p
ŵk( )

��2
L2(0,1]

. (3.6)

Having already constructed ŵk( ) in 3.4 and 3.5, we should next find an expression for its

derivatives Dp
ŵk( ). Let us again write

A�k
ŵk( ) = ( D + �kI) ŵk( ) = ⌘̂k( ).

Rearranging, gives

Dŵk( ) =
1

 
⌘̂k( )�

�k

 
ŵk( ).

Continued di↵erentiation and substitution yields the expression

D
p
ŵk( ) =

pX

n=1

(�1)n+1 (�k + p� 1)!

(�k + p� n)!
· 1

 n
·Dp�n

⌘̂k( ) + (�1)p(�k + p� 1)!
ŵk( )

 p
, (3.7)

where we use the factorial sign ! in a modified sense to mean

8
><

>:

(�+ l)! = (�+ l)(�+ l � 1) · · · (�+ 1)(�) for l 2 N0,

(�� 1)! = 1.
(3.8)

Substituting this expression into 3.6 and using triangle inequality for the summations, we

get

kw( , ✓)k2
K

m,�
1/2+�

 C

X

k

mX

p+q=1
p�1

(k2)qe2�|k|
pX

n=1

✓
(�k + p� 1)!

(�k + p� n)!

◆2 �� p�n� 1
2��

D
p�n

⌘̂k( )
��2
L2(0,1]

+ C

X

k

mX

p+q=0

(k2)qe2�|k|
�
(�k + p� 1)!

�2�� � 1
2��

ŵk( )
��2
L2(0,1]

.
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From our modified factorial 3.8 and that �k =
1±|k|
2 , we have that

(�k + p� 1)! ⇠ |k|p as |k| ! ±1

and
(�k + p� 1)!

(�k + p� n)!
⇠ |k|n�1 as |k| ! ±1.

Applying this to the inequality above gives

kw( , ✓)k2
K

m,�
1/2+�

 C

X

k

mX

p+q=1
p�1

pX

n=1

(k2)n�1+q
e
2�|k|�� p�n� 1

2��
D

p�n
⌘̂k( )

��2
L2(0,1]

+ C

X

k

mX

p+q=0

(k2)p+q
e
2�|k|�� � 1

2��
ŵk( )

��2
L2(0,1]

.

Let us split the right hand side into two terms, with

A =
X

k

mX

p+q=1
p�1

pX

n=1

(k2)n�1+q
e
2�|k|�� p�n� 1

2��
D

p�n
⌘̂k( )

��2
L2(0,1]

and

B =
X

k

mX

p+q=0

(k2)p+q
e
2�|k|�� � 1

2��
ŵk( )

��2
L2(0,1]

.

In term A, setting q
0 = n� 1 + q and p

0 = p� n, then p
0 + q

0 = p + q � 1 ranges from 0 to

m� 1. We immediately get

A  C

X

k

m�1X

p0+q0=0

(k2)q
0
e
2�|k|�� p

0� 1
2��

D
p
0
⌘̂k( )

��2
L2(0,1]

= Ck⌘( , ✓)k
K

m�1,�
1/2+� (⇧).

Now we turn to bounding B, starting with the factor
�� � 1

2��
ŵk( )

��
L2(0,1]

in the sum-

mation. To achieve this we will use now the Hardy inequality. Recall, ŵk( ) is given by 3.5

and 3.4, depending on if we are inverting L
+
k
or L

�
k
. This gives us three separate cases of

expressions for ŵk( ).

Let us start with the case when ŵk( ) =
�
L
+
k

��1
⌘̂k( ), and k is arbitrary. In this case,

ŵk( ) =  
� 1+|k|

2

Z
 

0

t
�1+|k|

2 ⌘̂k(t) dt .
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Setting ↵ � 1 = �1
2 � � � 1+|k|

2 , we get ↵ = �� � |k|
2  �� < 1/2 for all k, as long as

� > �1/2. Also set t
�1+|k|

2 ⌘̂k(t) = t
�↵

⇣k(t). Applying Hardy’s inequality for ↵ < 1/2, we get

�� � 1
2��

ŵk( )
��
L2(0,1]

=
��� � 1

2��� 1+|k|
2

Z
 

0

t
�1+|k|

2 ⌘̂k(t) dt
���
L2(0,1]

=
��� ↵�1

Z
 

0

t
�↵

⇣k(t) dt
���
L2(0,1]

 1
1
2 � ↵

k⇣k( )kL2(0,1]

 1
1
2 + � + |k|

2

�� ��� 1
2 ⌘̂k( )

��
L2(0,1]

.

Next, we consider the case when ŵk( ) =
�
L
�
k

��1
⌘̂k( ) and |k| < 3. In this case,

ŵk( ) =  
� 1�|k|

2

Z
 

0

t
�1�|k|

2 ⌘̂k(t) dt .

Setting ↵ � 1 = �1
2 � � � 1�|k|

2 , we get ↵ = �� + |k|
2 < 1/2 for |k|  2, only as long as

� > 1/2. Also set t
�1�|k|

2 ⌘̂k(t) = t
�↵

⇣k(t). Applying Hardy’s inequality for ↵ < 1/2, we get

�� � 1
2��

ŵk( )
��
L2(0,1]

=
��� � 1

2��� 1�|k|
2

Z
 

0

t
�1�|k|

2 ⌘̂k(t) dt
���
L2(0,1]

=
��� ↵�1

Z
 

0

t
�↵

⇣k(t) dt
���
L2(0,1]

 1
1
2 � ↵

k⇣k( )kL2(0,1]

 1
1
2 + � � |k|

2

�� ��� 1
2 ⌘̂k( )

��
L2(0,1]

.

The third case occurs when ŵk( ) =
�
L

�
k

��1
⌘̂k( ) and |k| � 3. In this case,

ŵk( ) = � 
� 1�|k|

2

Z 1

 

t
�1�|k|

2 ⌘̂k(t) dt .

Setting ↵ � 1 = �1
2 � � � 1�|k|

2 , we get ↵ = �� + |k|
2 > 1/2 for |k| � 3, as long as � < 1.

Also set t
�1�|k|

2 ⌘̂k(t) = t
�↵

⇣k(t). Applying Hardy’s inequality now for ↵ > 1/2, we get

�� � 1
2��

ŵk( )
��
L2(0,1]

=
��� � 1

2��� 1�|k|
2

Z 1

 

t
�1�|k|

2 ⌘̂k(t) dt
���
L2(0,1]

=
��� ↵�1

Z
 

0

t
�↵

⇣k(t) dt
���
L2(0,1]

 1

↵� 1
2

k⇣k( )kL2(0,1]

 1

�1
2 � � + |k|

2

�� ��� 1
2 ⌘̂k( )

��
L2(0,1]

.
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We have thus found that in each of the three cases, we get the bound

�� � 1
2��

ŵk( )
��
L2(0,1]

 C�,k

�� � 1
2��

⌘̂k( )
��
L2(0,1]

.

The crucial detail is the additional strict restriction to � > 1/2, which avoids the critical

case of the Hardy inequality when ↵ = 1/2. This ensures the constant C�,k above is bounded

for all k. Note this constant decays like 2/|k|.

Returning to B and applying the above, we get the bound

B =
X

k

mX

p+q=0

(k2)p+q
e
2�|k|�� � 1

2��
ŵk( )

��2
L2(0,1]

 C

X

k

m�1X

q0=0

(k2)q
0
e
2�|k|�� � 1

2��
⌘̂k( )

��2
L2(0,1]

 C k⌘( , ✓)k
K

m�1,�
1/2+� (⇧) .

From A and B, we get

��L�1
± ⌘( , ✓)

��
K

m,�
1/2+�(⇧)

 C k⌘( , ✓)k
K

m�1,�
1/2+�

(⇧)

and thus

kw( , ✓)kKm,�
1/2+�(⇧) =

��L�1
� · L�1

+ ⌘( , ✓)
��
K

m,�
1/2+�(⇧)

 C k⌘( , ✓)k
K

m�2,�
1/2+� (⇧) .

We now have the ingredients to prove the main result of this chapter.

Theorem 3.7. For 1/2 < � < 1, the linear problem 3.1 defines an isomorphism

C3 ⇥ J
m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T).

Proof. By proposition 3.3 and the fact that multiplication by  
�1/2 defines an isomorphism

from J
m�2,�
1/2,� (⇧) to J

m�2,�
0,� (⇧), the linear map is bounded in the above spaces.

To construct and bound the inverse, we must be careful to match the boundary conditions

correctly. Let ug( , ✓) =  
1/2

v(✓) + w( , ✓), where v(✓) is solution to 3.2 and w( , ✓)
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is solution to 3.3. Let uh( , ✓) =
P

|k|�2 ck 
�1+|k|

2 e
ik✓ be the homogeneous solution with

coe�cients ck to be determined. Then the full solution is

u( , ✓) = ug( , ✓) + uh( , ✓)

=  
1
2
�
v̂(✓) + c2e

2i✓ + c�2e
�2i✓
�
+ w( , ✓) +

X

|k|�3

ck 
�1+|k|

2 e
ik✓

=  
1
2

0

@
X

k

v̂ke
ik✓ +

X

|k|=2

cke
ik✓

1

A+
X

k

ŵk( )e
ik✓ +

X

|k|�3

ck 
�1+|k|

2 e
ik✓

.

Now we must match the boundary condition

R + (
px � ipy

2
)ei✓ + (

px + ipy

2
)e�i✓ + u(1, ✓) = g(✓).

Keeping in mind that v̂±2 = 0, and ŵk(1) = 0 for |k| � 3, the boundary condition yields

R + (
px � ipy

2
)ei✓ + (

px + ipy

2
)e�i✓ +

X

|k| 6=2

v̂ke
ik✓ +

X

|k|2

ŵk(1)e
ik✓ +

X

|k|�2

cke
ik✓ =

X

k

ĝke
ik✓

.

This gives us the following set of equations on the Fourier modes

8
>>>>>>>><

>>>>>>>>:

R + v̂0 + ŵ0(1) = ĝ0

px⌥ipy

2 + v̂±1 + ŵ±1(1) = ĝ±1

ŵ±2(1) + c±2 = ĝ±2

v̂k + ck = ĝk, for |k| � 3.

Solving for R, px, py and ck, we get

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

R = ĝ0 � v̂0 � ŵ0(1)

px =
�
ĝ1 + ĝ�1

�
�
�
v̂1 + v̂�1

�
�
�
ŵ1(1) + ŵ�1(1)

�

�ipy =
�
ĝ1 � ĝ�1

�
�
�
v̂1 � v̂�1

�
�
�
ŵ1(1)� ŵ�1(1)

�

c±2 = ĝ±2 � ŵ±2(1)

ck = ĝk � v̂k, for |k| � 3.

Having now constructed the solution to the boundary value 3.1, we can now establish its
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boundedness. We start with

|R|2 + |px|2 + |py|2  C

X

|k|1

�
|ĝk|2 + |v̂k|2 + |ŵk(1)|2

�

 C

⇣
kg(✓)k2

X
m�1/2
� (T)

+ kv(✓)k2
Xm

� (T) + kw(1, ✓)k2
X

m�1/2
� (T)

⌘

 C

⇣
kg(✓)k2

X
m�1/2
� (T)

+ kv(✓)k2
Xm

� (T) + kw( , ✓)k2
K

m,�
1/2+�(⇧)

⌘

 C

✓
kg(✓)k2

X
m�1/2
� (T)

+ k⇠(✓)k2
X

m�2
� (T) + k⌘( , ✓)k2

K
m�2,�
1/2+�

(⇧)

◆

= C

✓
kg(✓)k2

X
m�1/2
� (T)

+ kf( , ✓)k2
J
m�2,�
1/2,� (⇧)

◆
,

where the third inequality follows from the second by boundedness of restriction to  = 1

from K
m,�

1/2+�
(⇧) to X

m�1/2
� (T), and the fourth inequality follows from the third by proposi-

tions 3.5, 3.6.

Next we bound the leading term of the solution

��v(✓) +
X

|k|=2

cke
ik✓
��2
Xm

� (T)  Ckv(✓)k2
Xm

� (T) + C

X

|k|=2

(1 + k
2)me2�|k|

�
|ĝk|2 + |ŵk(1)|2

�

 Ckv(✓)k2
Xm

� (T) + C

X

|k|=2

(1 + k
2)m�1/2

e
2�|k| �|ĝk|2 + |ŵk(1)|2

�

 C

⇣
kv(✓)k2

Xm
� (T) + kg(✓)k2

X
m�1/2
� (T)

+ kw(1, ✓)k2
X

m�1/2
� (T)

⌘

 C

⇣
kv(✓)k2

Xm
� (T) + kg(✓)k2

X
m�1/2
� (T)

+ kw( , ✓)k2
K

m,�
1/2+�(⇧)

⌘

 C

✓
k⇠(✓)k2

X
m�2
� (T) + kg(✓)k2

X
m�1/2
� (T)

+ k⌘( , ✓)k2
K

m�2,�
1/2+�

(⇧)

◆

 C

✓
kg(✓)k2

X
m�1/2
� (T)

+ kf( , ✓)k2
J
m�2,�
1/2,� (⇧)

◆
,

where again we have used the boundedness of the restriction to  = 1 and propositions 3.5,

3.6.
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Finally we bound the remainder term of the solution

��w( , ✓)+
X

|k|�3

ck 
�1+|k|

2 e
ik✓
��2
K

m,�
1/2+�(⇧)

 Ckw( , ✓)k2
K

m,�
1/2+�(⇧) + C

��
X

|k|�3

(ĝk � v̂k) 
�1+|k|

2 e
ik✓
��2
K

m,�
1/2+�(⇧)

 Ckw( , ✓)k2
K

m,�
1/2+�(⇧) + kg(✓)� v(✓)k2

X
m�1/2
� (T)

 Ckw( , ✓)k2
K

m,�
1/2+�(⇧) + kg(✓)k2

X
m�1/2
� (T)

+ kv(✓)k2
X

m�1/2
� (T)

 Ckw( , ✓)k2
K

m,�
1/2+�(⇧) + kg(✓)k2

X
m�1/2
� (T)

+ kv(✓)k2
Xm

� (T)

 Ck⌘( , ✓)k2
K

m�2,�
1/2+�

(⇧)
+ kg(✓)k2

X
m�1/2
� (T)

+ k⇠(✓)k2
X

m�2
� (T)

= C

✓
kg(✓)k2

X
m�1/2
� (T)

+ kf( , ✓)k2
J
m�2,�
1/2,� (⇧)

◆

where we have used propositions 3.4, 3.5 and 3.6.

We have thus established the bound

|R|2 + |p|2 + ku( , ✓)kJm,�
1/2,�(⇧)  C

✓
kg(✓)k2

X
m�1/2
� (T)

+ kf( , ✓)k2
J
m�2,�
1/2,� (⇧)

◆

for the inverse to 3.1.

Finally, since multiplication by  
�1/2 is an isomorphism from J

m�2,�
1/2,� (⇧) to J

m�2,�
0,� (⇧),

we conclude that the linear problem 3.1 defines an isomorphism

C3 ⇥ J
m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T) (3.9)

for 1/2 < � < 1.

Remark 3.8. Let us comment on how the above result compares with the standard boundary

value problem associated to operator 3.1 in the Kondratev space. That is, let’s consider
8
><

>:

Lu( , ✓) = f( , ✓)

u(1, ✓) = g(✓)

in spaces Km

�
(⇧) ! K

m�2
�

(⇧)⇥H
m�1/2(T).

To start, we address the presence of the cokernel given by span{e±2i✓} in 3.5. Solving

Lu =  
1
2 e

±2i✓ explicitly yields solution u = 1
2 

1
2 ln( )e±2i✓. If we take � such that the right
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hand side is in K
m�2
�

(⇧), then the above solution is necessarily in K
m

�
(⇧). The presence of

this cokernel is thus a direct consequence of solving in J
m

1/2,�(⇧), which excludes the above

lower order solutions. On the other hand, the space K
m

�
(⇧) has enough flexibility in the

asymptotics that it contrastingly includes such solutions.

Next, following the proof of 3.6 and applying the Hardy inequality to invert Lk, one

finds that whenever � = k/2, the Hardy Inequality fails to apply as we fall into the critical

case ↵ = 1/2. To avoid this, we must remove � = 0,±1/2,±1,±3/2, etc from the pool of

allowable � values.

Finally, recall that the solution to the homogeneous problem Lu = 0 is given by

u( , ✓) = c0 
� 1

2 + d0 
� 1

2 ln( ) +
X

k 6=0

⇣
ck 

�1+|k|
2 + dk 

�1�|k|
2

⌘
e
ik✓

.

The homogeneous boundary value problem can only be surjective onto H
m�1/2(T) if all

Fourier modes are represented in the above expression. That is, all ck terms should be in

the span of solutions. This necessarily implies that the map is not injective, for if � is such

that c0 
� 1

2 is in K
m

�
(⇧), then d0 

� 1
2 ln( ) is also in K

m

�
(⇧), and thus  

� 1
2 ln( ) belongs

to the kernel of the map. We can summarize with the following observation. The greater

� is, fewer low order modes of u span the solution, and thus the greater the dimension of

the cokernel in the space of boundary value functions. Conversely, the smaller � is, the

greater the dimension of the kernel is, as more dk terms are permitted to exist. The details

are due to the specific coupling defined by L of Fourier modes k and asymptotics  � in the

homogeneous solution.

We find in particular that the above linear problem is Fredholm for � 6= n

2 , n 2 Z.

Furthermore, given n

2 < � <
n+1
2 , the index of the map is equal to �2n � 1. We see then,

that without imposing additional conditions or adding additional degrees of freedom to the

solution (depending on �), the problem is not invertible in these spaces. This parallels our

main result, which requires R and p as part of the solution to achieve surjectivity.

To conclude this chapter, let us summarize our findings. We have shown that the lin-

earization to the nonlinear problem 1.6 at solution  
1/2 defines an isomorphism in our spaces

when 1/2 < � < 1. Recall that J
m,�

�+�
(⇧) is well defined for � � 1/2 and that � quantifies

the gap between the leading term asymptotics of order  � and the order of asymptotics of
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the remainder term. The restriction � < 1 ensures that this gap is small enough that we

have su�cient low order terms to match the boundary condition. The restriction � > 1/2

is needed to apply the Hardy inequality to establish the boundedness of the inverse. Recall

that though J
m,�

�+�
(⇧) is well defined for � � 1/2, it is precisely when � > 1/2 that this

space embeds into continuous functions. Since continuity is certainly not an unreasonable

expectation of our stationary flows, we need not view this restriction on the lower bound of �

as a limitation of our result. Finally, we have seen how the additional degrees of freedom in

the solution provided by R and p are crucial for the surjectivity of the linear problem. They

accommodate for the |k|  1 Fourier modes of the boundary perturbation, corresponding to

dilations and translations of the solution.
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Chapter 4

Nonlinear Results

In the preceding chapters, we defined the function spaces relevant to our problem and es-

tablished the invertibility of the linearization in these spaces. Our task in this chapter is to

prove that the nonlinear map defining the equation of stationary flow is an analytic operator,

at least in a neighbourhood of our reference solution a( , ✓) =  
1/2.

To be precise, given " > 0 su�ciently small and |R � 1| < ", |p| < ", ka( , ✓) �

 
1/2kJm,�

1/2,�(⇧) < ", we want to prove that the operators

�
F ( ), a( , ✓)

�
! ⌅

�
a( , ✓)

�
� F ( )

�
b('), R, p, a( , ✓)

�
! B

�
b('), R, p, a(1, ✓)

�

are well defined into eJm�2,�
0,� (⇧) and X

m�1/2
� (T) respectively, and that these maps are complex

analytic. The choice of function spaces for parameters b(') and F ( ) are flexible in the sense

that they are not explicitly determined by the linear problem. They should be chosen to be as

large as possible (while satisfying the above criteria), so that the resulting parameterization

of solutions given by the implicit function theorem is maximal in the defined solution space

C3 ⇥ J
m,�

1/2,�(⇧).

We split the result between two sections: one for the di↵erential operator and one for

the boundary operator. We will see that the former can be reduced to a study of superposi-

tion operators on space J
m,�

0,� (⇧). The latter involves a study of superposition operators on

X
m�1/2
� (T).

Operators u(x) ! f
�
x, u(x)

�
, called superposition operators, form an extensive field of
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interest ([2]) given the pool of nonlinear problems they generate . A typical question is to

find conditions on f such that u(x) ! f(x, u(x)) maps between two given function spaces.

In our case, the functions f defining the superposition operators are determined by our

problem, and we must verify they are well behaved in our spaces. Let us start with a best

case warm-up: operators of form u(x) ! f
�
u(x)

�
acting on H

m(T) ⇢ C(T) when m > 1/2

is an integer.

Proposition 4.1.

Let f 2 C
m on a domain containing image of u. Then u ! f(u) : Hm(T) ! H

m(T) is well

defined and continuous for integer m > 1/2. Furthermore, if f 2 C
m+1, then this map is

C
1.

Proof. Let u 2 H
m(T) and f 2 C

m on a domain containing image of u. Then we can define

the composition f(u(x)). To show this superposition is in H
m(T), we must estimate the

L
2(T) norm of its derivatives. The p-th derivative in x of function f

�
u(x)

�
has form

D
p
f(u) =

pX

j=1

X

↵1+···+↵j=p

↵i�1

C↵1,...,↵jf
(j)(u)(D↵1u) · · · (D↵ju).

If m > 1/2, then H
m(T) ⇢ C(T) and so f

(j)(u) is the composition of continuous functions

and thus continuous. Next, D↵iu 2 H
m�↵i(T) 2 C(T), unless ↵i = m. First suppose each

↵i < m. Then

kf (j)(u)(D↵1u) · · · (D↵ju)kL2(T)  kf jk1kD↵1uk1 · · · kD↵juk1  CkfkCmkukj
Hm(T).

Next, if some ↵i = m, then because ↵1 + · · ·+ ↵j = p = m and ↵i � 1, then we know j = 1.

In such a case, we have

kf 0(u)Dm
ukL2(T)  kf 0(u)k1kDm

ukL2(T)  kfkCmkukHm(T).

We conclude that f(u) 2 H
m(T) and obtain the estimate

kf(u)kHm(T)  kfkCm

mX

j=0

CjkukjHm(T)  CkfkCm

�
1 + kukm

Hm(T)
�
.

To see this map is continuous, let un ! u 2 H
m(T) and consider f(un)� f(u). The p-th

derivative of this di↵erence is a sum of terms of form

f
(j)(un)(D

↵1un) · · · (D↵jun)� f
(j)(u)(D↵1u) · · · (D↵ju).

57



Let us write Ai(u) = D
↵iu and f

(j)(u) = Aj+1(u). We can add and subtract to the above

expression a term as follows to obtain

A1(un) · · · Aj+1(un)� A1(u) · · · Aj+1(u) = A1(un) · · · Aj(un)
⇣
Aj+1(un)� Aj+1(u)

⌘

+
⇣
A1(un) · · · Aj(un)� A1(u) · · · Aj(u)

⌘
Aj+1(un).

Continuing in this fashion on the second term, we get a sum of terms of form

A1 · · · Ai�1

⇣
Ai(un)� Ai(u)

⌘
Ai+1 · · · Aj+1,

where for k 6= i, Ak indicates either Ak(un) or Ak(u). Now applying the same bounds as

earlier, we get that the L
2(T) norm of the above expression vanishes as n ! 1 because the

bounding factor kun � ukHm(T) for i < j + 1 or kf (j)(un)� f
(j)(u)k1 for i = j + 1 vanishes,

while the other factors remain bounded. This proves the continuity of map u ! f(u) :

H
m(T) ! H

m(T).

Next, the Gâteaux derivative of f(u) in direction v is given by d
dt

��
t=0

f(u+tv) = f
0(u)v. If

f 2 C
m+1, then f

0(u) is a well defined superposition operator on H
m(T). Since this space is

an algebra for m > 1/2, then the multiplication map v ! f
0(u)v : Hm(T) ! H

m(T) is a well

defined linear map with |||f 0(u)|||  Ckf 0(u)kHm(T). If a map has a linear Gâteaux derivative

that is continuous in operator norm, then it is continuously Fréchet di↵erentiable, (see [1]). So

suppose kun�ukHm(T) ! 0 as n ! 1. Then |||f 0(un)� f
0(u)|||  Ckf 0(un)� f

0(u)kHm(T) !

0. The latter follows since u ! f
0(u) : Hm(T) ! H

m(T) is continuous. Thus we have shown

that if f 2 C
m+1, then u ! f(u) is a C

1 map from H
m(T) to itself.

4.1 Di↵erential Operator

In this section we study the di↵erential operator
�
F ( ), a( , ✓)

�
! ⌅

�
a( , ✓)

�
� F ( ),

mapping into space eJm�2,�
0,� (⇧). Since the invertibility of the linearized problem is contingent

on the restriction to 1/2 < � < 1, we need not concern ourselves with � outside this range

for the nonlinear problem.

We start with the observation that the identity map F ( , ✓) = F ( ) naturally embeds

any function F ( ) 2 J
m�2
0,� (0, 1] into Jm�2,�

0,� (⇧). By construction, such functions are constant
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along ✓, so they in fact embed into eJm�2,�
0,� (⇧). Since the above embedding is bounded and

linear from J
m�2,�
0,� (0, 1] to eJm�2,�

0,� (⇧), it is analytic with respect to F . Thus Jm�2
0,� (0, 1] serves

as the natural parameter space of vorticities in our problem.

It remains to show a ! ⌅(a) : Jm,�

1/2+�
(⇧) ! eJm�2,�

0,� (⇧) is analytic near a =  
1/2, where

operator ⌅ is given by the expression:

⌅(a) = � 1

a
3
 

⇣
1 +

a
2
✓

a2

⌘
a  + 2

⇣
a✓

a2a2
 

⌘
a ✓ �

⇣ 1

a2a 

⌘
a✓✓ +

1

aa 
. (4.1)

Notice, this map is a rational function of derivatives of a( , ✓), in other words a superposition

map a ! f(a, a , a✓, a  , a ✓, a✓✓), defined by a rational function f . The trouble is that

these derivatives have distinct leading term asymptotics  �, defined by di↵erent weights of

J
m,�

�,�
(⇧). It is hopeless to expect any general results of superposition operators on such

spaces, regardless of m. To see this, it is enough to compare the di↵erence between how

maps u ! u
2 and u ! 1/u act on u =  

1/2. There is one exception to this observation,

the case when � = 0, and thus the leading term is of order  
0 = 1. In this case, squaring

or taking the reciprocal will still yield a function of leading order 1 (assuming the function

does not vanish). This should remain true for other superposition maps on J
m,�

0,� (⇧). Given

that we require ⌅ to map to J
m�2,�
0,� (⇧), we are motivated to rewrite ⌅ as an operator on

J
m�2,�
0,� (⇧).

To do this, we exploit the first part of 2.20, which tells us a !  
↵
a : J

m,�

1/2+�
(⇧) !

J
m,�

1/2+↵,�
(⇧) is an isomorphism. In particular we observe, if a 2 J

m,�

1/2,�(⇧), then each of the

following functions belongs to J
m�2,�
0,� (⇧):

[ �1/2
a] , [ 1/2

a ] , [ 
�1/2

a✓] , [ 
�1/2

a✓✓] , [ 
1/2

a ✓] , [ 
3/2

a  ].

Writing, a =  
1/2[ �1/2

a], a =  
�1/2[ 1/2

a ], etc, and substituting into ⌅(a), we find

⌅(a) = � 1

[ 1/2a ]3

⇣
1 +

[ �1/2
a✓]2

[ �1/2a]2

⌘
[ 3/2

a  ] + 2
[ �1/2

a✓][ 1/2
a ✓]

[ �1/2a]2[ 1/2a ]2

� [ �1/2
a✓✓]

[ �1/2a]2[ 1/2a ]
+

1

[ �1/2a][ 1/2a ]
.

Notice that all of the  ↵ terms outside of the square brackets have cancelled. What remains

is a rational function of only square brackets. Each of the square brackets is a multiplication

and derivative of a( , ✓) lying in J
m�2,�
0,� (⇧), thus analytically depends on a( , ✓) 2 J

m,�

1/2,�(⇧).
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The rational function defining ⌅ as written above is analytic so long as the denominator is

never zero, that is so long as  
�1/2

a 6= 0 and  
1/2

a 6= 0. Since ⌅(a) is now a sum of

reciprocals and products of functions in J
m�2,�
0,� (⇧), it is enough to prove that the maps

(u, v) ! uv : Jm,�

0,� (⇧)⇥ J
m,�

0,� (⇧) ! J
m,�

0,� (⇧),

u ! 1

u
: Jm,�

0,� (⇧) ! J
m,�

0,� (⇧)

are well defined and analytic. We start with the following result:

Proposition 4.2.

For m > 1 and � > 1/2, Km

�
(⇧) is an algebra with kuvkKm

� (⇧)  CkukKm
� (⇧)kvkKm

� (⇧).

Proof. Suppose m > 1 and � > 1/2. Then K
m

�
(⇧) ⇢ C(⇧) and these functions vanish at

 = 0. Take u, v 2 K
m

�
(⇧). We must show uv 2 K

m

�
(⇧). By the product rule, we can write

@
p

 
@
q

✓
(uv) =

pX

p0=0

qX

q0=0

C
p
0
,q

0

p,q
@
p�p

0

 
@
q�q

0

✓
(u)@p

0

 
@
q
0

✓
(v).

We thus get

kuvk2
Km

� (⇧) =
mX

p+q=0

k p��
@
p

 
@
q

✓
(uv)k2

L2(⇧)

 C

mX

p+q=0

pX

p0=0

qX

q0=0

k p��
@
p�p

0

 
@
q�q

0

✓
(u)@p

0

 
@
q
0

✓
(v)k2

L2(⇧).

To bound each of the terms above, we make use of the following estimate (from 2.12)

|@p

 
@
q

✓
u|  C 

��1/2�pkukKm
� (⇧)  C 

�pkukKm
� (⇧),

which holds for m� (p+ q) > 1, � > 1/2.

First we consider the case when m � (p � p
0 + q � q

0) > 1. Then the previous estimate

yields |@p�p
0

 
@
q�q

0

✓
u|  C 

p
0�pkukKm

� (⇧) which then gives

k p��
@
p�p

0

 
@
q�q

0

✓
(u)@p

0

 
@
q
0

✓
(v)kL2(⇧)  CkukKm

� (⇧)k p
0��

@
p
0

 
@
q
0

✓
(v)kL2(⇧)  CkukKm

� (⇧)kvkKm
� (⇧).

The analogous argument holds if m� (p0+q
0) > 1. It thus remains to consider the case when

both m � (p � p
0 + q � q

0)  1 and m � (p0 + q
0)  1. If we sum these two inequalities we
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get 2m� (p+ q)  2. Rearranging gives 2m� 2  p+ q. But p+ q  m. We conclude that

2m � 2  m and so m  2. Since we must have m > 1, this leaves only m = 2. Thus for

m > 2, the statement is proven. In the case when m = 2, the only terms where the above

arguments don’t apply are

k 2��(@ u)(@ v)kL2(⇧), k 1��(@ u)(@✓v)kL2(⇧), k ��(@✓u)(@✓v)kL2(⇧).

We now apply Hölder’s inequality to get the following three inequalities:

k 2��(@ u)(@ v)kL2(⇧) = k( 1� �
2 @ u)( 

1� �
2 @ v)kL2(⇧)  k 1� �

2 @ ukL4(⇧)k 1� �
2 @ vkL4(⇧),

k 1��(@ u)(@✓v)kL2(⇧) = k( 1� �
2 @ u)( 

� �
2 @✓v)kL2(⇧)  k 1� �

2 @ ukL4(⇧)k � �
2 @✓vkL4(⇧),

k ��(@✓u)(@✓v)kL2(⇧) = k( � �
2 @✓u)( 

� �
2 @✓v)kL2(⇧)  k � �

2 @✓ukL4(⇧)k � �
2 @✓vkL4(⇧).

Notice, function  
1��/2

@ u and  
��/2

@✓u belong to K
1
�/2(⇧). By 2.15, these functions belong

to L
4(⇧) when �

2 >
1
2 �

1
4 , which is precisely when � > 1/2. We thus get the estimates:

k 2��(@ u)(@ v)kL2(⇧)  CkukK2
�(⇧)kvkK2

�(⇧),

k 1��(@ u)(@✓v)kL2(⇧)  CkukK2
�(⇧)kvkK2

�(⇧),

k ��(@✓u)(@✓v)kL2(⇧)  CkukK2
�(⇧)kvkK2

�(⇧).

This proves the m = 2 case and thus concludes the proof of the proposition and establishes

the bound kuvkKm
� (⇧)  CkukKm

� (⇧)kvkKm
� (⇧).

Proposition 4.3.

Let m > 1/2. Given ⇠(✓) 2 H
m(T) and u( , ✓) 2 K

m

�
(⇧), then ⇠u 2 K

m

�
(⇧) with

k⇠ukKm
� (⇧)  Ck⇠kHm(T)kukKm

� (⇧).

Proof. By product rule, we have

k⇠uk2
Km

� (⇧) =
mX

p+q=0

k p��
@
p

 
@
q

✓
(⇠u)k2

L2(⇧)  C

mX

p+q=0

qX

q0=0

k p��
�
D

q�q
0
⇠
��
@
p

 
@
q
0

✓
u
�
k2
L2(⇧).

For m > 1/2, because ⇠(✓) 2 H
m(T), we have |Dq�q

0
⇠|  Ck⇠kHm(T) when q � q

0
< m. In

this case, we immediately get

k p��
�
D

q�q
0
⇠
��
@
p

 
@
q
0

✓
u
�
kL2(⇧)  CkDq�q

0
⇠k1k p��

@
p

 
@
q
0

✓
ukL2(⇧)  Ck⇠kHm(T)kukKm

� (⇧).
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In the case when q � q
0 = m, that is p = 0, q = m, q0 = 0, by 2.16 (since m � 1), we get

k ��(Dm
⇠)ukL2(⇧) =

⇣Z

T
|Dm

⇠|2
� Z 1

0

| ��
u|2 d 

�
d✓
⌘1/2

 kIk1kDm
⇠kL2(T)

 Ck⇠kHm(T)kukKm
� (⇧).

Thus we have shown k⇠ukKm
� (⇧)  Ck⇠kHm(T)kukKm

� (⇧).

Corollary 4.4.

For m > 1 and � > 1/2, Jm,�

0,� (⇧) is an algebra with kuvkJm,�
0,� (⇧)  CkukJm

0,�(⇧)kvkJm,�
0,� (⇧).

Proof. First, let u = v(✓) + w( , ✓), ⇣ = ⇠(✓) + ⌘( , ✓) 2 J
m

0,�(⇧). This means v, ⇠ 2 H
m(T)

and w, ⌘ 2 K
m

�
(⇧). Multiplying, we get u⇣ = v⇠ + v⌘ + ⇠w + w⌘. The leading term v⇠ is

in H
m(T) because this space is an algebra. The remaining terms belong to K

m

�
(⇧), by the

preceding two propositions. Furthermore, from the bounds established previously and the

definition of norm of Jm

0,�(⇧), we have the bound

ku⇣kJm
0,�(⇧) = kv⇠k2

Hm(T) + kv⌘ + ⇠w + w⌘kKm
� (⇧)

 C
�
kvkHm(T)k⇠kHm(T) + kvkHm(T)k⌘kKm

� (T) + k⇠kHm(T)kwkKm
� (T) + kwkKm

� (T)k⌘kKm
� (T)

�

 CkukJm
0,�(⇧)k⇣kJm

0,�(⇧).

This confirms Jm

0,�(⇧) is an algebra. In the case when u, ⇣ 2 J
m,�

0,� (⇧), we have v, ⇠ 2 X
m

�
(T)

and w, ⌘ 2 K
m,�

�
(⇧). Then v⇠ 2 X

m

�
(T) because it is the product of two holomorphic

functions in T� and so holomorphic itself, and since H
m(T) is an algebra, we get

kv⇠kXm
� (T) = kv(·+ i�)⇠(·+ i�)kHm(T) + kv(·� i�)⇠(·� i�)kHm(T)

 Ckv(·+ i�)kHm(T)k⇠(·+ i�)kHm(T) + Ckv(·� i�)kHm(T)k⇠(·� i�)kHm(T)

 CkvkXm
� (T)k⇠kXm

� (T).

Next, if ⇠(✓) 2 X
m

�
(T) and w 2 K

m,�

�
(⇧), then the map ✓ ! ⇠(✓)w(·, ✓) is holomorphic as

a map from T� to K
m

�
(0, 1], with bound k⇠wkKm,�

� (⇧)  Ck⇠kXm
� (T)kwkKm,�

� (⇧), analogously

obtained as above. Finally, the same argument holds for the product of w, ⌘ 2 K
m,�

�
(⇧). It

is the product of holomorphic functions T� ! K
m

�
(0, 1], the latter of which is an algebra
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and so this product is also holomorphic as a Banach valued map. The similar bound applies,

namely that kw⌘kKm,�
� (⇧)  CkwkKm,�

� (⇧)k⌘kKm,�
� (⇧). Putting it all together, we conclude

that Jm

0,�(⇧) is an algebra with ku⇣kJm,�
0,� (⇧)  CkukJm,�

0,� (⇧)k⇣kJm,�
0,� (⇧).

The next step is to prove that multiplication of functions in J
m,�

0,� (⇧) is an analytic

operator.

Proposition 4.5.

The map (u, v) ! uv : Jm,�

0,� (⇧)⇥ J
m,�

0,� (⇧) ! J
m,�

0,� (⇧) is analytic for m > 1, � > 1/2.

Proof. Let X = J
m,�

0,� (⇧), and write (x1, x2) ! B(x1, x2) = x1x2 : X ⇥X ! X. Such a map

is bilinear, and we have just seen it satisfies kB(x1, x2)kX  Ckx1kXkx2kX . The statement

follows almost immediately from these two facts. From bilinearity, we have

B(x1 + h1, x2 + h2) = B(x1, x2) +B(h1, x2) +B(x1, h2) +B(h1, h2).

Next, write A(x)h = B(h1, x2) + B(x1, h2). From the bilinearity and boundedness of B, we

get that A(x) is a bounded linear operator on X, thus a candidate for the Fréchet derivative

of B. We can thus write

B(x1 + h1, x2 + h2)� B(x1, x2)� A(x)h = B(h1, h2).

Since kB(h1, h2)kX  Ckh1kXkh2kX  Ckhk2
X⇥X

, we get that

kB(h1, h2)kX
khkX⇥X

 CkhkX⇥X ! 0 as khkX⇥X ! 0.

Thus by definition (see [1]), the map B : X⇥X ! X is Fréchet di↵erentiable with derivative

DB(x)h = A(x)h = B(h1, x2) +B(x1, h2). By the theory of holomorphy in complex Banach

spaces (see [21]), since X = J
m,�

0,� (⇧) is a complex Banach space and B is complex Fréchet

di↵erentiable, the map is analytic.

Now that we have determined multiplication in J
m,�

0,� (⇧) defines an analytic operator, we

turn to the operator u ! 1
u
on J

m,�

0,� (⇧). In fact, we will consider the more general problem,

of superposition operator u ! f(u).
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Theorem 4.6.

Let f 2 C
m+1 on a domain containing image of u. Then u ! f(u) : Jm

0,�(⇧) ! J
m

0,�(⇧) is

well defined and continuous for m > 1, � > 1/2. Furthermore, if f 2 C
m+2(⌦) then this

map is C1.

Proof. Given u( , ✓) 2 J
m

0,�(⇧), we write u( , ✓) = ⇠(✓) + v( , ✓), where ⇠ 2 H
m(T) and

v 2 K
m

�
(⇧). Recall that for m > 1, � > 1/2, u is continuous and v ! 0 as  ! 0+. In other

words, ⇠ defines the behaviour of u along  = 0, so we write u(0, ✓) = ⇠(✓). By continuity

of f , we have f(⇠ + v) ! f(⇠) as  ! 0+. So the behaviour of f(u) at  = 0 is defined by

f(⇠). We thus have the decomposition f(⇠ + v) = f(⇠) + f(⇠ + v)� f(⇠). Since ⇠ 2 H
m(T),

then by 4.1, f(⇠) 2 H
m(T). This forms the leading term of f(u) 2 J

m

0,�(⇧). The main task

then is to prove that the remainder term, f(⇠ + v) � f(⇠), belongs to K
m

�
(⇧). Intuitively,

this means that this term vanishes as  ! 0+ at the same rate as v does. We must bound

kf(⇠ + v)� f(⇠)k2
Km

� (⇧) =
mX

p+q=0

k p��
@
p

 
@
q

✓

�
f(⇠ + v)� f(⇠)

�
k2
L2(⇧).

To start, given a composition f
�
u( , ✓)

�
, we have the following expressions for its partial

derivatives:

@
p

 
@
q

✓
f(u) =

p+qX

j=1

X

↵1+···+↵j=p

�1+···+�j=q

↵i+�i�1

C
�1,...,�j
↵1,...,↵j

�
@
↵1
 
@
�1
✓
u
�
· · ·
�
@
↵j

 
@
�j

✓
u
�
f
(j)(u).

If p � 1, then @
p

 
@
q

✓
f(⇠) = 0. In this case, with u = ⇠(✓) + v( , ✓), we obtain:

@
p

 
@
q

✓
f(⇠ + v) =

p+qX

j=1

X

↵1+···+↵j=p

�1+···+�j=q

↵i+�i�1

X

or

C
�1,...,�j
↵1,...,↵j

�
@
↵1
 
@
�1
✓
⇠ or v

�
· · ·
�
@
↵j

 
@
�j

✓
⇠ or v

�
f
(j)(⇠ + v),

where the summation over ‘or’ indicates we sum over all choices of ⇠ or v in the above factors.

Note though, since p � 1, at least some ↵i 6= 0 and thus the case when all factors choose ⇠

vanishes. If on the other hand p = 0, then we instead obtain the expression

@
q

✓

⇣
f(⇠ + v)� f(⇠)

⌘
=

qX

j=1

X

↵1+···+↵j=q

↵i�1

C↵1,...,↵j

"⇣
f
(j)(⇠ + v)� f

(j)(⇠)
⌘
(D↵1⇠) · · · (D↵j⇠)

+
X

or

f
(j)(⇠ + v) (D↵1⇠ or v) · · · (D↵j⇠ or v)

#
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where summation over ‘or’ excludes case when all factors choose ⇠.

Let us now start with bounds for the case p � 1. Namely, for 1  j  p + q  m,

↵1 + · · ·+ ↵j = p, �1 + · · ·+ �j = q, ↵i + �i � 1, we must bound

A = k p��
�
@
↵1
 
@
�1
✓
⇠ or v

�
· · ·
�
@
↵j

 
@
�j

✓
⇠ or v

�
f
(j)(⇠ + v)kL2(⇧).

Since f 2 C
m+1(⌦), we immediately get

A  kf (j)k1k p��
�
@
↵1
 
@
�1
✓
⇠ or v

�
· · ·
�
@
↵j

 
@
�j

✓
⇠ or v

�
kL2(⇧).

Next, ⇠ 2 H
m(T) and thus @�i

✓
⇠ 2 C(T) unless �i = m. This occurs only if q = m and thus

p = 0, which is outside of the current case p � 1. Thus we can assume all �i  m and so

each factor @�i
✓
⇠ is continuous, and thus can be factored out of the norm. There are j factors

of form @
↵j

 
@
�j

✓
(⇠ or v), but at most j � 1 of them choose ⇠. We thus get

A  kf (j)k1k⇠k�
Hm(T)k p��

�
@
↵1
 
@
�1
✓
v
�
· · ·
�
@
↵j

 
@
�j

✓
v
�

| {z }
� terms missing

kL2(⇧),

where 0  �  j � 1. Next, if m� (↵i + �i) > 1, then

|@↵i
 
@
�i
✓
v|  C 

��1/2�↵ikvkKm
� (⇧)  C 

�↵ikvkKm
� (⇧),

since � > 1/2. This condition is not satisfied only when ↵i+�i = m� 1 or m. First suppose

↵i + �i = m. Then j = 1 and ↵1 = p and immediately we get

A  kf (j)k1k p��
@
↵1
 
@
�1
✓
vkL2(⇧)  kf (j)k1kvkKm

� (⇧)  kf (j)k1kukJm
0,�(⇧)

Next, assume without loss of generality that ↵1 + �1 = m � 1. Then either j = 1, and the

same estimate as above holds, or j = 2. Either � = 1 and immediately

A  kf (j)k1k⇠kHm(T)k p��
@
↵1
 
@
�1
✓
vkL2(⇧)  kf (j)k1k⇠kHm(T)kvkKm

� (⇧)  kf (j)k1kuk2
J
m
0,�(⇧),

or � = 0. Necessarily (↵2, �2) = (1, 0) or (0, 1). If m� (↵2 + �2) = m� 1 > 1, then

|@↵2
 
@
�2
✓
v|  C 

��1/2�↵2kvkKm
� (⇧)  C 

�↵2kvkKm
� (⇧)

and so

A  kf (j)k1k ↵1+↵2��
�
@
↵1
 
@
�1
✓
v
��
@
↵2
 
@
�2
✓
v
�
kL2(⇧)

 kf (j)k1kvkKm
� (⇧)k ↵1��

�
@
↵1
 
@
�1
✓
v
�
kL2(⇧)

 kf (j)k1kuk2
J
m
0,�(⇧).
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If on the other hand m � ↵2 + �2 = m � 1  1, then m  2, so m = 2, and we have

A = k 2��(@ v)(@ v)f (j)(u)kL2(⇧) or A = k 1��(@ v)(@✓v)f (j)(u)kL2(⇧). We have seen in

4.2, how to bound this expression using Hölder’s inequality and embeddings of  
� �

2 @✓v,

 
1� �

2 @ v into L
4(⇧) bu 2.15. This gives A  kf (j)k1kuk2

J
m
0,�(⇧).

Finally, in the case when ↵i + �i < m� 1, applying the point-wise estimate |@↵i
 
@
�i
✓
v| 

C 
�↵ikvkKm

� (⇧) to all but one factor in the expression

A  kf (j)k1k⇠k�
Hm(T)k p��

�
@
↵1
 
@
�1
✓
v
�
· · ·
�
@
↵j

 
@
�j

✓
v
�

| {z }
� terms missing

kL2(⇧)

 Ckf (j)k1k⇠k�
Hm(T)kvk

j���1
Km

� (⇧)k 
↵i��

@
↵i
 
@
�i
✓
vkL2(⇧)

 Ckf (j)k1kukj
J
m
0,�(⇧).

This concludes the case when p � 1, where we have found each term of k p��
@
p

 
@
q

✓

�
f(⇠ +

v) � f(⇠)
�
kL2(⇧) is bounded by Ckf (j)k1kukj

J
m
0,�(⇧), for 1  j  p + q  m. Thus for p � 1

we can write

k p��
@
p

 
@
q

✓

�
f(⇠ + v)� f(⇠)

�
kL2(⇧)  CkfkCm

�
kukJm

0,�(⇧) + kukm
J
m
0,�(⇧)

�
.

Now we consider the case when p = 0. Recall, @q

✓

�
f(⇠ + v)� f(⇠)

�
is a sum of

qX

j=1

X

↵1+···+↵j=q

↵i�1

C↵1,...,↵j

�
f
(j)(⇠ + v)� f

(j)(⇠)
�
(D↵1⇠) · · · (D↵j⇠)

and
qX

j=1

X

↵1+···+↵j=q

↵i�1

C↵1,...,↵j

X

or

f
j(⇠ + v) (D↵1⇠ or v) · · · (D↵j⇠ or v) .

Bounding the latter is identical to the previous case of p � 1. So we have only the first part

to bound. That is, for 1  j  q  m, ↵1 + · · ·+ ↵j = q, ↵i � 1, we must bound

B = k ��
�
f
(j)(⇠ + v)� f

(j)(⇠)
�
(D↵1⇠) · · · (D↵j⇠)kL2(⇧).

We use the fundamental theorem of calculus to write

f
(j)(⇠ + v)� f

(j)(⇠) =

Z
 

0

f
(j+1)(u)@tv(t, ✓) dt .
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Now we apply Hardy’s inequality. Set �� = ↵ � 1. Then ↵ = 1 � � < 1/2 since � > 1/2.

Also set f (j+1)(u)@tv(t, ✓) = t
�↵

g(t, ✓). We get

B  Ck 1��
f
(j+1)(u) (@ v) (D

↵1⇠) · · · (D↵j⇠)kL2(⇧)

Now suppose each ↵i < m. Then each factor D↵i⇠ is continuous and thus

B  Ckf (j+1)k1k⇠kj
Hm(T)k 

1�� (@ v)kL2(⇧)  Ckf (j+1)k1kukj+1
J
m
0,�(⇧).

If on the other hand ↵1 = m, then necessarily j = 1. We have  v 2 K
m�1
�

(⇧) andm�1 � 1,

thus by 2.16, k 1��
@ v( , ✓)kL2(0,1] is continuous with respect to ✓. We thus get

B  kf (j+1)k1k 1�� (@ v) (D
m
⇠)kL2(⇧)

 kf (j+1)k1
� Z

T
|Dm

⇠|2
Z 1

0

| 1��
@ v|2 d d✓

�1/2

 Ckf (j+1)k1kvkKm
� (⇧)kDm

⇠kL2(T)

 Ckf (j+1)k1kuk2
J
m
0,�(⇧).

We have thus established the bounds for p = 0 case. Together with the prior p � 1 case, we

get

kf(⇠ + v)� f(⇠)kKm
� (⇧)  CkfkCm+1

⇣
kukJm

0,�(⇧) + kukm+1
J
m
0,�(⇧)

⌘
.

Combining this with bound

kf(⇠)kHm(T)  CkfkCm

�
1 + k⇠km

Hm(T)
�

from 4.1, we find our desired bound

kf(u)kJm
0,�(⇧) = kf(⇠)kHm(T) + kf(⇠ + v)� f(⇠)kKm

� (⇧)

 CkfkCm+1

⇣
1 + kukm+1

J
m
0,�(⇧)

⌘
.

The continuity and Fréchet di↵erentiability follow analogously to the proof of 4.1.

Corollary 4.7.

Suppose f is complex analytic on a domain containing image of u. Then u ! f(u) :

J
m,�

0,� (⇧) ! J
m,�

0,� (⇧) is complex analytic for m > 1, � > 1/2.
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Proof. Let u 2 J
m,�

0,� (⇧). Write u = ⇠ + v, with ⇠ 2 X
m

�
(T), v 2 K

m,�

�
(⇧). Now, as in the

proof of the prior theorem, write f(u) = f(⇠)+f(⇠+v)�f(⇠). By definition, ⇠(·+it) 2 H
m(T)

for all |t|  �. By 4.1, f(⇠(· + it)) 2 H
m(T) for |t|  �. Since f(⇠) is the composition of

analytic functions, it is itself analytic in T�, and so f(⇠) 2 X
m

�
(T).

Next, by definition u(·, ·+it) 2 J
m

0,�(⇧) for all |t|  �. From the previous theorem, g(u) =

f(⇠+ v)� f(⇠) 2 K
m

�
(⇧) for each fixed |t|  �. Now fix z 2 T�, then u(·, z) 2 C⇥K

m

�
(0, 1].

All of the prior results in this chapter on K
m

�
(⇧) and J

m

0,�(⇧) likewise apply to K
m

�
(0, 1] and

J
m

0,�(0, 1]. Namely, these spaces are algebras and superposition maps are well defined them.

Thus g(z) = f
�
⇠(z) + v(·, z)

�
� f
�
⇠(z)

�
is a K

m

�
(0, 1] valued map of z. Di↵erentiating gives

g
0(z) = f

0�
⇠(z) + v(·, z)

��
⇠
0(z) + @zv(·, z)

�
� f

0�
⇠(z)

�
⇠
0(z)

=
⇣
f
0�
⇠(z) + v(·, z)

�
� f

0�
⇠(z)

�⌘
⇠
0(z) + f

0(⇠)@zv(·, z)

+
⇣
f
0�
⇠(z) + v(·, z)

�
� f

0(⇠(z)
⌘
@zv(·, z).

The first two terms are products of a K
m

�
(0, 1] function and scalar, the last term is the

product of two K
m

�
(0, 1], which is itself in K

m

�
(0, 1], since this space is an algebra. Thus we

have showed that z ! f
�
⇠(z) + v(·, z)

�
� f
�
⇠(z)

�
is well defined and complex di↵erentiable,

thus analytic. This means f(⇠ + v) � f(⇠) 2 K
m,�

�
(⇧). We conclude that f(u) = f(⇠) +

f(⇠ + v)� f(⇠) 2 J
m,�

0,� (⇧).

We now state the main result of this section.

Theorem 4.8.

For m > 3, � > 1/2, the map a ! ⌅(a) : Jm,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧) is analytic in a neighbour-

hood of a =  
1/2.

Proof. Earlier in this chapter, we showed we can write

⌅(a) = � 1

[ 1/2a ]3

⇣
1 +

[ �1/2
a✓]2

[ �1/2a]2

⌘
[ 3/2

a  ] + 2
[ �1/2

a✓][ 1/2
a ✓]

[ �1/2a]2[ 1/2a ]2

� [ �1/2
a✓✓]

[ �1/2a]2[ 1/2a ]
+

1

[ �1/2a][ 1/2a ]
.

Thus ⌅ is a composition of maps a ! [· · ·] : J
m,�

1/2,�(⇧) ! J
m�2,�
0,� (⇧), which are linear

and thus analytic, and a rational function of the square brackets. Given that the square
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brackets are valued in J
m�2
0,� (⇧), then by 4.5 and 4.7, this rational function is an analytic

map J
m�2
0,� (⇧) ⇥ · · · ⇥ J

m�2
0,� (⇧) ! J

m�2
0,� (⇧) when m � 2 > 1, so long as the denominator

does not vanish. To see it does not, suppose ka �  
1/2kJm,�

1/2,�
(⇧) < ". By boundedness of

multiplication by  
�1/2, we get

k �1/2
a� 1kJm,�

0,� (⇧)  Cka�  
1/2kJm,�

1/2,�(⇧)  C".

By 2.22,

| �1/2
a� 1|  Dk �1/2

a� 1kJm,�
0,� (⇧)  CD".

Taking " small enough, we can ensure  
�1/2

a is close enough to 1 in C that it is never zero.

Similarly, by boundedness of @ ,

ka � 1/2 �1/2k
J
m�1,�
�1/2,�(⇧)  Cka�  

1/2kJm,�
1/2,�(⇧)  C".

By boundedness of multiplication by  
1/2,

k 1/2
a � 1/2k

J
m�1,�
0,� (⇧)  Dka � 1/2 �1/2k

J
m�1,�
�1/2,�(⇧).

By 2.22

| 1/2
a � 1/2|  Ek 1/2

a � 1/2k
J
m�1,�
0,� (⇧)  CDE".

Again, taking " small enough, we can ensure  
1/2

a is close enough to 1/2 in C it is never

zero. Thus we have shown ⌅ : U ! J
m�2,�
0,� (⇧) is an analytic map on a neighbourhood

U ⇢ J
m,�

1/2,�(⇧) of  
1/2.

It remains to show that ⌅ is in fact eJm�2,�
0,� (⇧) valued. This means the leading H

m(T)

term of ⌅(a) has zero second-order Fourier coe�cients. We have seen that for � > 1/2, the

leading term of ⌅(a) depends only on the leading term of the square brackets, which in turn

depend only on the leading term of a( , ✓), that is, depend only on  
1/2

⇠(✓). Thus we must

show
R
T ⌅
�
 

1/2
⇠(✓)

�
e
±2i✓ d✓ = 0. We find

⌅( 1/2
⇠) =

4

⇠2
+

6(D⇠)2

⇠4
� 2D2

⇠

⇠3
.
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We find

Z

T
⌅( 1/2

⇠)e±2i✓ d✓ = 2

Z

T

⇣ 2

⇠2
+

3(D⇠)2

⇠4
� D

2
⇠

⇠3

⌘
e
±2i✓ d✓

= 2

Z

T

⇣ 2

⇠2
± 2i

D⇠

⇠3

⌘
e
±2i✓ d✓

= 2

Z

T

⇣ 2

⇠2
⌥ iD

� 1
⇠2

�⌘
e
±2i✓ d✓

= 0

where we have integrated by parts the last term on the first line, and again the last term

on the third line. We conclude that ⌅(a) 2 eJm�2,�
0,� (⇧), thus the statement of the theorem is

proved.

Remark 4.9. We introduced the space eJm�2,�
0,� (⇧) to establish the bijection of the lineariza-

tion, which kills these second-order Fourier modes of the leading term. The above result

demonstrates that this property is in fact inherited from the nonlinear problem. This fact

is crucial for the successful application of the implicit function theorem.

Corollary 4.10.

For m > 3, � > 1/2, the map (F, a) ! ⌅(a) � F : Jm�2
0,� (0, 1] ⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧) is

analytic in a neighbourhood of F ( ) = 4, a( , ✓) =  
1/2.

To conclude this section, we comment on the structure of the stagnation point of the flows

defined by our function space J
m,�

1/2,�(⇧). In a su�ciently small neighbourhood of a( , ✓) =

 
1/2, the function r = ( , ✓) is never vanishing except as  ! 0+, where it behaves likes

 
1/2. This property confirms that the flow lines do collapse to a single point at  = 0.

Next, a behaves like  
�1/2 and thus blows up as we approach  = 0. This means that the

associated velocity field u( , ✓) = 1
a 

�
a✓
a
, 1) of the fluid does in fact vanish at  = 0 (a✓ and a

have the same asymptotics and thus their ratio remains bounded), defining a true stagnation

point of the fluid. Finally, since a( , ✓) behaves like  1/2 asymptotically, then the associated

stream function  (r, ✓) locally near r = 0 resembles the paraboloid  = r
2, which defines a

non-degenerate stagnation point. To confirm this, the Hessian matrix of stream function  
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in polar coordinates is given by

H (r, ✓) =

0

@  rr
1
r
 r✓ � 1

r2
 ✓

1
r
 r✓ � 1

r2
 ✓

1
r
 r +

1
r2
 ✓✓

1

A .

The coordinate change  (r, ✓) ! r = a( , ✓) gives

Ha( , ✓) =

0

@H11 H12

H21 H22

1

A ,

where

H11 = � 1

a
3
 

a  ,

H12 = H21 =
a✓

aa
3
 

a  � 1

aa
2
 

a ✓ +
a✓

a2a 
,

H22 = � a
2
✓

a2a3
 

a  + 2
a✓

a2a2
 

a ✓ �
1

a2a 
a✓✓ +

1

aa 
.

A similar argument used to prove 4.6 shows that for a( , ✓) ⇠  
1/2, we also have H11 ⇠ 2,

H12 = H21 ⇠ 0, H22 ⇠ 2 and thus |Ha( , ✓)| ⇠ 4, confirming that the stagnation points

generated by functions in J
m,�

1/2,�(⇧) near  
1/2 are indeed non-degenerate.

4.2 Boundary Operator

Having established the analyticity of the nonlinear di↵erential map defining the equation

of stationary flow, we now turn our attention to the nonlinear boundary map. Namely, we

should prove that in a neighbourhood of b(') = 1, R = 1, p = 0, a( , ✓) =  
1/2, the map

B(b, R, p, a) is well defined and analytic into X
m�1/2
� (T). The boundary map B is defined

by

B(b, R, p, a) = �b
2
⇣
arctan

�
py +Ra(1, ✓) sin ✓, px +Ra(1, ✓) cos ✓

�⌘

+R
2
a
2(1, ✓) + 2Ra(1, ✓)(px cos ✓ + py sin ✓) + p

2
x
+ p

2
y
.

We start by generalizing the previous section’s results to superposition maps acting on frac-

tional Sobolev spaces.
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Proposition 4.11.

Let f 2 C
m+1 on a domain containing image of u. Then u ! f(u) : H

m+1/2(T) !

H
m+1/2(T) is well defined and continuous for integer m � 1. Furthermore, if f 2 C

m+2

then this map is C1.

Proof. First, recall the fractional order Sobolev norm:

kuk2
Hm+1/2(T) = kuk2

Hm(T) + kDm
uk2

H1/2(T)

where

kDm
uk2

H1/2(T) =

Z

T

Z

T

|Dm
u(x)�D

m
u(y)|2

|x� y|2
dx dy < 1.

We have already seen in 4.1 that the statement is true for integer order Hm(T). To show

this map is well defined in the fractional order space, it remains to bound the fractional

order part of the norm. We can write

D
m
f
�
u(x)

�
�D

m
f
�
u(y)

�
=

mX

j=1

X

↵1+···+↵j=m

↵i�1

C↵1,···,↵j

⇣
f
(j)(u(x))D↵1u(x) · · ·D↵ju(x)

� f
(j)(u(y))D↵1u(y) · · ·D↵ju(y)

⌘

and so

|Dm
f
�
u(x)

�
�D

m
f
�
u(y)

�
|2  C

mX

j=1

X

↵1+···+↵j=m

↵i�1

���f (j)(u(x))D↵1u(x) · · ·D↵ju(x)

� f
(j)(u(y))D↵1u(y) · · ·D↵ju(y)

���
2

.

First consider the case when each ↵i < m� 1. Then necessarily m > 2. Each D
↵iu 2 C

1(T)

and so f
(j)(u)D↵1u · · ·D↵ju 2 C

1(T). By mean value theorem, we have

���f (j)(u(x))D↵1u(x) · · ·D↵ju(x)� f
(j)(u(y))D↵1u(y) · · ·D↵ju(y)

���

 kD
�
f
(j)(u)D↵1u · · ·D↵ju

�
k1|x� y|

 CkfkCj+1

�
kukj

Hm + kukj+1
Hm

�
.

This gives

kf (j)(u)D↵1u · · ·D↵juk
H1/2(T)  CkfkCm+1

�
kuk3

Hm(T) + kukm+1
Hm(T)

�
.

72



Next, we consider the case when ↵i = m � 1 for some i. Then necessarily j = 2 and

m � 2. Without loss of generality, suppose ↵1 = m� 1 and ↵2 = 1. We have

���f 00(u(x))Dm�1
u(x)Du(x)� f

00(u(y))Dm�1
u(y)Du(y)

���

 |f 00(u(x))Du(x)||Dm�1
u(x)�D

m�1
u(y)|+ |Dm�1

u(y)||f 00(u(x))||Du(x)�Du(y)|

+ |Dm�1
u(y)||Du(y)||f 00(u(x))� f

00(u(y))|

 kf 00k1kDuk1|Dm�1
u(x)�D

m�1
u(y)|+ kf 00k1kDm�1

uk1|Du(x)�Du(y)|

+ kf 000k1kDuk21kDm�1
uk1|x� y|,

where we have used continuity of of Du, Dm�1
u, and mean value theorem on f

00(u). This

gives

kf 00(u)Dm�1
uDukH1/2(T)  CkfkCm+1

�
kuk2

Hm(T) + kuk3
Hm(T)

�
.

Finally, consider the case when ↵1 = m, thus j = 1 and m � 1. We have

|f 0(u(x))Dm
u(x)� f

0(u(y))Dm
u(y)|

 kf 0k1|Dm
u(x)�D

m
u(y)|+ |Dm

u(y)||f 0(u(x))� f
0(u(y))|

and

|f 0(u(x))� f
0(u(y))| 

Z
x

y

|f 00(u(t))Du(t)| dt kf 00k1
Z

x

y

|Du(t)| dt .

Next, Du 2 H
m�1/2 ⇢ H

1/2 for m � 1. By the critical Sobolev embedding, we have Du 2 L
q

for any q 2 (1,1). Let 1/p+ 1/q = 1. By Hölder’s inequality,
Z

x

y

|Du(t)| dt  |x� y|1/pkDukLq .

Finally, for p < 2 (and thus q > 2), we have
Z

T

1

|x� y|2�2/p
dx =

(2⇡ � y)2/p�1 + y
2/p�1

2/p� 1

where the right-hand side is bounded on y 2 T. We thus get the bound

kf 0(u)Dm
uk

H1/2(T)  CkfkCm+1

�
kuk

Hm+1/2(T) + kuk2
Hm+1/2(T)

�
.

Putting the three cases together with the results of 4.1, we have shown that for m � 1,

kf(u)kHm+1/2(T)  CkfkCm+1

�
1 + kukm+1

Hm+1/2(T)

�
.
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The continuity and Fréchet di↵erentiability of u ! f(u) : Hm+1/2(T) ! H
m+1/2(T) follow

analogously as in 4.1.

Remark 4.12. We have thus shown u ! f(u) : Hm�1/2(T) ! H
m�1/2(T) is C

1 when f is

C
m+1 and m � 2.

Corollary 4.13.

Suppose f is complex analytic on a domain containing image of u. Then u ! f(u) :

X
m�1/2
� (T) ! X

m�1/2
� (T) is complex analytic for m � 2.

Proof. If u 2 X
m�1/2
� (T) and f complex analytic on a domain containing image of u, then

f(u) is a composition of holomorphic functions and thus holomorphic in T�. Furthermore,

u(· + it) 2 H
m�1/2(T) for every |t|  � and thus by the previous result, f

�
u(· + it)

�
2

H
m�1/2(T) for every |t|  �. Thus f(u) 2 X

m�1/2
� (T). Additionally, this map is complex

di↵erentiable and thus analytic.

To apply the above result to our boundary map, we define the superposition operators:

(R, p, a) ! X(✓) = px +Ra(1, ✓) cos ✓, (4.2)

(R, p, a) ! Y (✓) = py +Ra(1, ✓) sin ✓, (4.3)

(R, p, a) ! f(✓) = R
2
a
2(1, ✓) + 2Ra(1, ✓)(px cos ✓ + py sin ✓) + p

2
x
+ p

2
y
, (4.4)

(R, p, a) ! '(✓) = arctan
�
py +Ra(1, ✓) sin ✓, px +Ra(1, ✓) cos ✓

�
. (4.5)

Then the boundary map can be written (R, p, a) ! B(✓) = �b
2('(✓)) + f(✓). First we

establish analyticity of superposition maps X, Y and f . Second we will address the map '

and the composition b
2(').

Corollary 4.14.

The maps

(R, p, a) ! X, Y, f : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)

defined in 4.2 are complex analytic for m � 2.

Proof. First, the restriction map a( , ✓) ! a(1, ✓) : Jm,�

1/2,�(⇧) ! X
m�1/2
� (T) is linear and

thus analytic. Multiplication of functions by cos ✓ and sin ✓ is a linear map, well defined into
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X
m�1/2
� (T) and thus also analytic. In particular, the maps (R, p, a) ! X, Y, f can be viewed

as compositions of the linear map

(R, px, py, a( , ✓)) ! (R, px, py, px cos ✓, py sin ✓, a(1, ✓))

C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)⇥ · · ·⇥X
m�1/2
�

(T)| {z }
6 times

,

and a polynomial on C6. By 4.13, these maps are thus analytic C3⇥J
m,�

1/2,�(⇧) ! X
m�1/2
� (T),

so long as m � 2.

Now we must consider the map (R, p, a) ! '(✓). This maps takes the graph of polar

function r = Ra(1, ✓) centered at p and returns the corresponding angle coordinate of this

graph in (⇢,') coordinates centered at the origin. So long as p is close to 0 and the graph

a(1, ✓) is close to a circle so that it corresponds to the graph of a polar function in both

coordinates, then this nonlinear coordinate change will be well defined. In the real case, it

will be some di↵eomorphism of T. In the complex case, we expect a biholomorphism from

T� to a slightly deformed complex periodic strip '{T�}. Since this deformation should be

continuous with respect to (R, p, a), then for any ⌧ > � > 0, we can take (R, p, a) close

enough to (1, 0, 1/2) that we get '{T�} ⇢ T⌧ .

Proposition 4.15.

Let m � 2. For any ⌧ > � > 0, there exists " > 0 small enough such that if |R � 1| < ",

|p| < " and ka�  
1/2kJm,�

1/2,�(⇧) < ", then the map

(R, p, a) ! '(✓) : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)

is analytic and the image '{T�} is contained in T⌧ .

Proof.

In the real case, (x, y) 2 R2 \ {0} ! ' = atan(y, x) is a T-valued function giving

the angle between the plane vector (x, y) and the x-axis. Equivalently, one can think of

atan(y, x) as a (helicoidal) multivalued function with the property that if atan(y, x) = ',

then also atan(y, x) = '+ 2⇡k for any k 2 Z.
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Let us define the usual one-argument arctangent by atan(y/x) 2 (�⇡/2, ⇡/2) for x > 0.

Using the one-argument arctangent, we can for example define the following four charts of

the multivalued arctangent:

atan(y, x) =

8
>>>>>>>><

>>>>>>>>:

atan(y/x) if x > 0

⇡/2� atan(x/y) if y > 0

⇡ � atan(y/x) if x < 0

3⇡/2� atan(x/y) if y < 0.

These charts correspond to values of ' in (�⇡/2, ⇡/2), (0, ⇡), (⇡/2, 3⇡/2) and (⇡, 2⇡) re-

spectively. Adding 2⇡k with k 2 Z defines the remaining charts of the full helicoid.

Next, consider the complexifications x ! X = x + i⇠ and y ! Y = y + i⌘. Analogous

charts of atan(Y,X) for x > 0, y > 0, x < 0 and y < 0 are defined by use of the complex

one-argument function atan(z), with z = X/Y or z = Y/X. The function atan(z), which

is the complex extension of the real one-argument arctangent with values in (�⇡/2, ⇡/2), is

analytic except at {z : Re{z} = 0, |Im{z}| � 1}.

Now, treating R, p, a, ✓ as real, define the complex extensions: px ! px + i⇡x, py !

py + i⇡y, Ra(1, ✓) ! ↵ + i� and ✓ ! ✓ + it. The last extension gives identities

cos(✓ + it) = cos ✓ cosh t� i sin ✓ sinh t , sin(✓ + it) = sin ✓ cosh t+ i cos ✓ sinh t.

These induce complexifications of px +Ra(1, ✓) cos ✓ and py +Ra(1, ✓) sin ✓, given by

X = (px + ↵ cos ✓ cosh t+ � sin ✓ sinh t) + i(⇡x � ↵ sin ✓ sinh t+ � cos ✓ cosh t) = x+ i⇠,

Y = (py + ↵ sin ✓ cosh t� � cos ✓ sinh t) + i(⇡y + ↵ cos ✓ sinh t+ � sin ✓ cosh t) = y + i⌘.

First suppose x > 0. We have

z =
Y

X
=

(xy + ⇠⌘) + i(x⌘ � y⇠)

x2 + ⇠2
.

If Re{z} 6= 0, then atan(z) is analytic. If on the other hand Re{z} = 0, then atan(z) is

analytic when |Im{z}| < 1. So suppose Re{z} = 0. Then xy + ⇠⌘ = 0. Since x > 0, we

have y = �⇠⌘/x. From this we find that Im{z} = ⌘/x. Thus for atan(z) to be analytic, we

require that |⌘/x| < 1, or equivalently, that |⌘| < |x|.

76



Substituting expressions for x, y, ⇠, ⌘ into condition xy + ⇠⌘ = 0 and using identity

cosh2
t� sinh2

t = 1, we get

pxpy + ⇡x⇡y + (↵px + �⇡x) sin ✓ cosh t+ (↵⇡x � �px) cos ✓ sinh t

+ (↵py + �⇡y) cos ✓ cosh t� (↵⇡y � �py) sin ✓ sinh t+ (↵2 + �
2) sin ✓ cos ✓ = 0.

From the statement of the theorem, we have px, py, ⇡x, ⇡y, � ⇠ " and ↵ ⇠ 1. The above

equality implies that the last term of the left hand side is of the same order as the other

terms, thus we deduce sin ✓ cos ✓ ⇠ "(sin ✓+ cos ✓)(cosh t+ sinh t) ⇠ ", since |t| < � and � is

fixed. If " is small enough, then sin ✓ cos ✓ ⇠ " implies either sin ✓ ⇠ " or cos ✓ ⇠ ". Since we

work on the chart x > 0, we can assume without loss of generality that sin ✓ ⇠ ✓ ⇠ " and

thus cos ✓ ⇠ 1. The other case can be handled by charts y > 0 and y < 0.

Returning to the desired estimate |⌘| < |x|, observe ⌘ = ⇡y + ↵ cos ✓ sinh t+ � sin ✓ cosh t

and x = px + ↵ cos ✓ cosh t+ � sin ✓ sinh t. We have

|⌘| = |⇡y + ↵ cos ✓ sinh t+ � sin ✓ cosh t|

 |⇡y|+ ↵ cos ✓|sinh t|+ |� sin ✓| cosh t

= |⇡y|+ |px|� |px|+ (↵ cos ✓ � |� sin ✓|)(|sinh t|� cosh t)� |� sin ✓ sinh t|

+ 2|� sin ✓ sinh t|+ ↵ cos ✓ cosh t

< |⇡y|+ |px|+ 2|� sin ✓ sinh �|+ (↵ cos ✓ � |� sin ✓|)(sinh � � cosh �)

+ |px + ↵ cos ✓ cosh t+ � sin ✓ sinh t|.

Here we have used the fact that |t| < �. Finally, since px, ⇡y, �, sin ✓ ⇠ " and ↵ cos ✓ �

|� sin ✓| ⇠ 1, for any �, we can take " small enough such that |⇡y|+ |px|+ 2|� sin ✓ sinh �|+

(↵ cos ✓ � |� sin ✓|)(sinh � � cosh �) < 0. We thus get |⌘| < |x|.

Analogous arguments hold for the other charts (with z = X/Y for y > 0 and y < 0).

Returning to our standard notation where R, p and a( , ✓) are C-valued, we conclude that

for any � > 0, there exists " > 0 small enough such that for |R � 1| < ", |p| < " and

ka�  
1/2kJm,�

1/2,�(⇧) < ", the multivalued function ' = atan(Y,X) is analytic on the image of

X(✓) = px +Ra(1, ✓) cos ✓, Y (✓) = py +Ra(1, ✓) sin ✓. By 4.13, for m � 2,

(R, p, a) ! (X, Y ) ! atan(X, Y ) : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)⇥X
m�1/2
�

(T) ! X
m�1/2
�

(T)
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is the composition of analytic maps and is thus analytic.

Observe that ' = atan
�
py + Ra(1, ✓) sin ✓, px + Ra(1, ✓) cos ✓

�
defines a conformal map

of ✓ in the periodic strip T� which is conformal to an annulus. Thus its image is some

deformed periodic strip of equal modulus of annulus. By consequence of the above result,

(R, p, a) ! ' : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
� (T) is continuous at (R, p, a) = (1, 0, 1/2), where

we have '(1, 0, 1/2) = atan(sin ✓, cos ✓) = ✓. By continuity of this map and the embedding

X
m�1/2
� (T) 2 C(T�), we can make this deformation arbitrary small. In particular, for any

⌧ > �, we can find " small enough such that '{T�} ⇢ T⌧ .

Re{✓}

Im{✓}

�

��

⌧

�⌧

Re{'}

Im{'}
⌧

�⌧

�

��

The graph of a polar function can be represented in coordinates (r, ✓) and (⇢,'). The map ✓ ! ' takes T� to

some deformed strip (enclosed by the dashed curves on the right side) which is contained in T⌧ . Conversely,

' ! ✓ takes T⌧ to some deformed strip (enclosed by the solid curves on the left side) which contains T�.

Remark 4.16. The point is that the nonlinear coordinate change ✓ $ ' between domains of

analyticity is not a self map on T�. From a reverse perspective, given a prescribed boundary

function ⇢ = b(') analytic on some domain, the domain of analyticity of r = Ra(1, ✓) will

depend on the solution itself (namely the position p). Since we require the pool of solutions to

be taken from the same Banach space, we must fix the domain of solutions. To work around

this, we enlarge the domain of analyticity of prescribed boundary functions ⇢ = b(') to T⌧

with ⌧ > �, so that in a su�ciently small neighbourhood of solution (R, p, a) = (1, 0, 1/2),

all solutions map ✓ ! ' : T� ! T⌧ . That is, we prescribe an analytic boundary function

⇢ = b(') whose complex singularities are restricted to |Im{'}| � ⌧ . Then, we describe our
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solutions on domain ✓ 2 T� with | Im{'(✓)}|< ⌧ so that they do not include the prescribed

singularities. For this reason, these prescribed singularities can be of any strength and

the boundary functions ⇢ = b(') can be taken in any Banach space H(T⌧ ) of functions

holomorphic in T⌧ .

We thus arrive at the main result of this section.

Theorem 4.17.

Let m � 2. For any ⌧ > � > 0, there exists a neighbourhood of solution R = 1, p = 0 and

a( , ✓) =  
1/2 on which the boundary map

(b, R, p, a) ! B : H(T⌧ )⇥ C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)

is analytic, for any Banach space H(T⌧ ) of functions holomorphic in T⌧ .

Proof.

We saw that the composition

(R, p, a) ! (X, Y ) ! ' : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)⇥X
m�1/2
�

(T) ! X
m�1/2
�

(T)

is analytic and the image of '(✓) is contained in T⌧ . By 4.13, the map

(b,') ! b � ' : H(T⌧ )⇥X
m�1/2
�

(T) ! X
m�1/2
�

(T)

is well defined and analytic in '. Also it is linear and thus analytic in b. Thus it is analytic

in the product space H(T⌧ )⇥X
m�1/2
� (T). Again by 4.13, the map

b � ' ! (b � ')2 : Xm�1/2
�

(T) ! X
m�1/2
�

(T)

is analytic. Finally, we saw also that the map

(R, p, a) ! f : C3 ⇥ J
m,�

1/2,�(⇧) ! X
m�1/2
�

(T)

is analytic.Thus, (b, R, p, a) ! B = �b
2(')+ f is the composition and sum of analytic maps

and thus analytic.

Combining with the main result of the previous section, we have proved:
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Theorem 4.18. Let m > 3 and � > 1/2. For any ⌧ > � > 0, there exists a neighbourhood

of (F, b, R, p, a) = (4, 1, 1, 0, 1/2) in which the map

(F, b, R, p, a) !
�
⌅(a)� F,B

�

J
m�2
0,� (0, 1]⇥ H(T⌧ )⇥ C3 ⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T)

is complex analytic.
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Chapter 5

Conclusion

5.1 Main Result

We now have all of the required components to prove our main result. The principle driving

our work is the representation of a flow as a collection of its flow lines. We have introduced

function spaces which describe families of topologically circular flow lines around a single non-

degenerate elliptic fixed point. A partial complex analytic structure on these function spaces

incorporates the flow line analyticity. In our formulation, stationary flows are governed by a

nonlinear degenerate elliptic boundary value problem, which can be expressed as an analytic

operator equation in the defined function spaces.

Theorem 5.1 (Main Result).

Let m > 3, 1/2 < � < 1 and ⌧ > � > 0. There exists a neighbourhood of F ( ) = 4 in

J
m�2
0,� (0, 1], b(') = 1 in H(T⌧ ), R = 1 in C, p = 0 in C2 and a( , ✓) =  

1/2 in J
m,�

1/2,�(⇧),

in which 1.6 has a unique solution that is parameterized by analytic map (F, b) ! (R, p, a) :

J
m�2
0,� (0, 1]⇥ H(T⌧ ) ! C3 ⇥ J

m,�

1/2,�(⇧).

Proof. Equation 1.6 can be written as an operator equation

(F, b, R, p, a) !
�
⌅(a)� F,B

�
= 0

between complex Banach spaces

J
m�2
0,� (0, 1]⇥ H(T⌧ )⇥ C3 ⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T).
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This equation has a solution at (F, b, R, p, a) = (4, 1, 1, 0, 1/2) and in a neighbourhood of

this solution, the above operator is analytic. The linearization

@
�
⌅(a)� F,B

�

@(R, p, a)
: C3 ⇥ J

m,�

1/2,�(⇧) ! eJm�2,�
0,� (⇧)⇥X

m�1/2
�

(T)

at this solution defines a Banach isomorphism. By the analytic implicit function theorem in

complex Banach spaces, the result follows.

Recall that the unknown R was introduced into the solution as an extra degree of freedom

to accommodate the fact that specifying  at the fixed point (as we have done) yields an

overdetermined problem. Under such circumstances, only the vorticity and the ‘shape’ of

domain should be treated as parameters, where as the ‘radius’ of domain depends on vorticity.

In our construction, the solutions for which R 6= 1 are fictitious in that they are produced by

incompatible choices of vorticity and domain. Taking the pre-image of solutions with R = 1

defines a codimension-one submanifold of the parameter space, consisting of precisely the

compatible parameters.

Theorem 5.2.

Under the conditions of 5.1, in a neighbourhood of the circular flow of constant vortic-

ity, the set of stationary flows having a single, non-degenerate elliptic fixed point form a

complex Banach manifold in J
m,�

1/2,�(⇧) parameterized by a codimension-one submanifold of

J
m�2
0,� (0, 1]⇥ H(T⌧ ).

Now let us say something about the analytic structure of these solutions. In the real

picture, our flow lines r = a( , ✓) are parameterized in the plane by concentric circles

(x, y) =  
1/2(cos ✓, sin ✓), i.e. the level sets of  = x

2 + y
2. Complexifying the circle to the

periodic strip ✓ ! ✓+ it : T ! T� induces complexifications x ! x+ i⇠, y ! y + i⌘ and we

get the following domain in C2 parameterizing each flow line:

(x, y) + i(⇠, ⌘) =  
1/2 cosh t(cos ✓, sin ✓) + i 

1/2 sinh t(� sin ✓, cosh ✓).

Thus, ✓ sweeps out circles in the real plane, as well as the complex plane. As  ! 0+, the

parameter domain collapses to a point.
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x

y

w = ±
p
⇠2 + ⌘2

Given coordinates (x + i⇠, y + i⌘) 2 C2, complex flow lines are analytic deformations of the level sets of

 = (x + i⇠)2 + (y + i⌘)2. Passing to coordinates (x, y,±
p
⇠2 + ⌘2), these flow lines can be visualized as

deformations of a family of nested hyperboloids.

To further aid in visualizing these parameterizing domains, the level sets of (x + i⇠)2 +

(y + i⌘)2 =  2 R are defined by two equations:

x
2 + y

2 � ⇠
2 � ⌘

2 =  and x⇠ + y⌘ = 0.

Define coordinate w = ±
p
⇠2 + ⌘2. Then the first equation x

2 + y
2 � w

2 =  defines a

family of hyperboloids in R3. In light of the prior observations, these hyperboloids decrease

in height |w| and collapse to a point as  ! 0+.

The complex flow lines defining our stationary flow are analytic deformations of the

parameter sets in C2 described above, with at worst, weak singularities on their boundary

of Sobolev type.
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Comparing to our previous work [9] in which we obtained an analytic parameterization of

stationary flows in a periodic strip without fixed point, our result here is a touch weaker. The

parameterization of the prior work includes in its description the prescribed singularities of

the boundary flow lines (which may occur along @T�). In the parameterization provided here,

the prescribed singularities are explicitly avoided from the description. The limitation seems

only of a technical nature resulting from the coordinate changes induced by translations

of the fixed point of the flow. In the case of solutions for which the fixed point does not

deviate from the origin, this coordinate change does not occur. We then expect the following

strengthening of our main result:

Theorem 5.3.

Suppose (b, F ) 2 X
m�1/2
⌧ (T)⇥ J

m�2
0,� (0, 1] are such that solution a( , ✓) 2 J

m,�

1/2,�(⇧) has fixed

point at p = 0. Then in fact a( , ✓) 2 J
m,⌧

1/2,�(⇧).

It remains to be seen how to show this improvement. Doing so would bring our result in

exact analogy with the prior work on the periodic strip.

5.2 Considerations and Future Problems

Let us underline the spirit which drove our success: viewing a function as a collection of

its level sets, or specific to our case, a flow as a family of flow lines. First, this formulation

allows us to directly incorporate the analyticity of the flow lines. Second, such constructions

allow us to conveniently single out particular topologies of flow lines we wish to study. Such

a loss in generality in e↵ect transfers to the strength of the results as well as the ease in

acquiring them. In [9], these were flow lines without fixed point in a periodic channel. In

the work presented, these are flow lines with a single non-degenerate elliptic fixed point in

a simply connected domain. The next logical step is to apply these principles to describe

flows with a non-degenerate hyperbolic fixed point.

The prototypical example of such stationary flows is described by  = xy, whose level

curves are hyperbolas in each quadrant pinching on the axes. It seems natural to use a

system of orthogonal hyperbolas to describe their perturbations. The immediate trouble we
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face is that such a coordinate system couples opposing quadrants; level lines of  = xy 6= 0

consist of two curves in opposite quadrants. This introduces an undesirable restriction in

the generality of the problem. To circumvent this, perhaps one can introduce a system

of hyperbolic coordinates, each covering a single half-plane. By patching these coordinate

systems along each quadrant and writing the equations of stationary flow, we expect the

stationary flows to be governed by a system of degenerate elliptic equations.

Additional trouble arises because such flow lines are unbounded. It would be more

appropriate to work with some analogue of the case above, whose flow lines are compact. For

example, one can imagine flows containing a figure-eight. Despite the additional obstacles, it

at least seems reasonable to expect that the general ideas behind this work can be extended

to solve this problem.

Once this is accomplished, we have local descriptions of the set of stationary flows near

three prototypes of distinct topology. From here, more di�cult problems are abundant : pro-

viding local descriptions near arbitrary solutions having a single fixed point or none, patching

such solutions together to produce local descriptions of stationary flows with an arbitrary

number of fixed points, properties of transition maps between charts on the prospective

manifold of solutions and eventually questions regarding the global structure of the set of

stationary flows.

Finally, we remind that the conjectured attractor of the 2D Euler equations consists

of not just stationary flows, but time-periodic and time-quasiperiodic flows as well. Their

existence should be proven. Can we use a similar construction to the ones presented here,

based on the flow lines or perhaps vorticity lines? How do we let them ‘breath’?

As we see, subsequent questions are plentiful. How far can we push the principle philos-

ophy behind this work to answer them?
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Chapter 6
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