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Abstract

Unsupervised Learning Based on Multivariate
Libby-Novick Beta Mixture Model for Medical Data

Analysis

Niloufar Samiee

This thesis proposes a set of innovative clustering techniques that lever-
age finite and infinite mixture models to analyze medical data and images
of cells. The proposed approaches are designed to improve the accuracy
and efficiency of clustering in these domains. These models utilize a flexible
distribution, the Libby-Novick Beta distribution, to better model data with
varying shapes due to an additional shape parameter compared to the con-
ventional Beta distribution. In this study, our initial approach involves the
use of deterministic learning techniques, with a focus on maximum likelihood
using the expectation-maximization approach. To achieve accurate data rep-
resentation in unsupervised learning, it is crucial to determine the optimal
number of clusters. So, we expand the minimum message length (MML)
principle to ascertain the number of clusters in Libby-Novick Beta mixtures.
In order to overcome the challenge of estimating the number of mixture com-
ponents, we extend our finite mixture model to an infinite one. Nonpara-
metric Bayesian techniques can effectively capture data distribution with an
unknown number of components. This approach is useful for complex data
sets and can lead to more accurate predictions and better decision-making.
Our models are evaluated for different medical applications throughout the
entire process, and they consistently show superior performance over tradi-
tional alternatives. This study reveals the significance of the Libby-Novick
Beta distribution and the recommended mixture models in converting medi-
cal data into practical insights. This conversion aids healthcare professionals
in making more accurate decisions, thereby advancing the overall healthcare
field.
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Chapter 1
Introduction

1.1 Introduction and Related Work

In today’s world, data play an increasingly critical role, which makes the
need to analyze various types of data inevitable. Machine learning is be-
coming more prevalent in analyzing complex data in a wide range of fields
as a result [1–7]. The annotation of large datasets is a time-consuming and
expensive process in many fields, including medical datasets. In such circum-
stances, unsupervised methods are very useful. A number of sophisticated
unsupervised machine learning techniques are available to analyze data, in-
cluding Principal Component Analysis (PCA), Anomaly Detection (AD),
Autoencoders, and clustering. The clustering method is one way of dividing
data points into groups based on similarities between them. The increasing
dimension and sparsity of data sets make clustering more challenging. Fi-
nite mixture models are highly regarded statistical learning techniques for
clustering [8–13]. These models allow to determine the probability of each
data point to be assigned to a given cluster or component, making them
particularly suitable for modeling complex datasets. To effectively describe
the model’s components, it is critical to identify the most appropriate proba-
bility distribution. Gaussian mixture models (GMM) are frequently utilized
for clustering tasks due to their exceptional flexibility in modeling complex
data distributions in diverse and challenging conditions [14, 15]. However,
in practical situations, the assumption of a Gaussian distribution may not
be suitable, particularly in cases where the data are asymmetric and do not
conform to the Gaussian distribution [16–21]. Therefore, it is important to
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identify alternative probability distributions that can effectively model the
data to obtain accurate and meaningful results. It has been demonstrated
that alternative distributions, such as Beta [19, 22], Dirichlet [23–27], and
McDonald’s Beta [28], may provide superior performance than Gaussian dis-
tributions for data clustering in a wide range of applications [28].

The Libby-Novick beta distribution is employed in the development of a
new finite mixture model proposed in this thesis. Our reason for choosing
this distribution is based on its increased flexibility in comparison to the
conventional Beta distribution, due to an additional shape parameter. It is
noteworthy to highlight that the Libby-Novick distribution, as a member of
the Beta distribution family, includes the Gaussian distribution as a special
case when specific parameters are chosen. Accordingly, the Libby-Novick dis-
tribution reduces to the Gaussian distribution under certain circumstances,
demonstrating its flexibility and inclusivity in accommodating a broad range
of data patterns. This allows us to achieve a good fit even for non-Gaussian
and asymmetric data, with highly promising results observed in real-world
datasets. As such, our approach represents a compelling alternative to the
traditional Gaussian distribution.

When using mixture models, we confront two main challenges. The first
challenge involves learning model’s parameters. In addition, estimating the
complexity of the model, which takes into account the number of clusters,
is the second problem. Model’s parameters can be estimated using a va-
riety of methods including deterministic and Bayesian approaches. Deter-
ministic approaches, such as maximum likelihood (ML) estimation via the
expectation-maximization (EM) algorithm are among the most commonly
used techniques for estimating model’s parameters [29] due to their sim-
plicity and low computational complexity. The EM algorithm, despite its
advantages, is known to have problems with convergence to local maxima
and dependence on initialization [30]. Furthermore, these deterministic tech-
niques have limited capacity to assess the model’s complexity. As a result
of these limitations, clustering tasks may not be as effective as they should be.

By contrast, Bayesian methods are more flexible and do not suffer from
the limitations of deterministic methods. In the Bayesian framework, Bayes’
theorem is employed to determine probability distribution properties from
data [31]. We combine our prior beliefs about parameters with knowledge
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derived from observations in order to determine posterior probability. Sam-
pling is a key component of Bayesian approaches. Monte Carlo Markov Chain
(MCMC) sampling algorithms can be used for Bayesian inference to generate
samples from a probability distribution [32,33].

Despite the fact that Bayesian learning of finite mixtures overcomes a
great deal of the limitations associated with deterministic methods, we still
face the challenge of selecting the optimal number of clusters. Indeed, it is
essential to determine the optimal number of clusters in a data set in clus-
tering, and this is the case in many fields, including medical applications,
particularly when it comes to making sense of large, complex datasets fre-
quently encountered in healthcare and medical research. In that context, we
propose an infinite multivariate Libby-Novick Beta mixture model based on
a Bayesian framework, using a mixture of Dirichlet processes to extend the
finite mixture model to infinity. The use of nonparametric Bayesian method-
ologies allows for an infinite increase in the number of mixture components.
Thus, it overcomes the model’s selection problem and makes the resulting
model more flexible and practical for use in real-world problems.

1.2 Contributions

The main contributions of this thesis are as follows:

• We introduce a new finite mixture model based on the Libby-Novick
Beta distribution, which is an extension of the Beta distribution. This
approach provides a flexible and superior means of fitting non-Gaussian
and asymmetric data. The proposed approach addresses the limitations
of traditional mixture models and offers an improved alternative for
modeling complex data. We propose a finite mixture model with a
focus on deterministic learning techniques to estimate the parameters
of finite mixture models such as ML via EM using Newton Raphson’s
method.

• We tackle a crucial issue in unsupervised learning: identifying the ideal
number of clusters to accurately represent the data. Our approach
involves expanding upon the minimum message length (MML) princi-
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ple, allowing us to determine the optimal number of clusters in Libby-
Novick Beta mixtures.

• We propose an extension of the finite multivariate Beta mixture model
to the infinite case. Our proposed model is developed within a nonpara-
metric Bayesian framework that uses the Markov Chain Monte Carlo
technique to estimate the posterior distribution. This approach allows
for flexible and scalable modeling of the underlying distributions, mak-
ing it suitable for a wide range of applications in various fields such as
statistics, machine learning, and data science.

1.3 Thesis Overview

This thesis is organized as follows:

□ Chapter 2: We propose a Libby-Novick Beta mixture model, which
is based on a generalization of Beta distribution. As a result of hav-
ing an additional shape parameter, the Libby-Novick Beta distribution
provides more flexibility than conventional Beta distribution or other
common distributions such as Gaussian distribution. To estimate the
parameters of this novel mixture model, we applied the maximum likeli-
hood technique. To demonstrate the robustness of our proposed model,
we compared it to other alternatives. We tested this novel unsupervised
model on three real and publicly available medical datasets.

□ Chapter 3: We extend the minimummessage length (MML) principle to
determine the optimal number of clusters in a finite Libby-Novick Beta
mixture model. Using unsupervised algorithms, such as clustering,
involves determining the number of clusters that best represent the
data. We have evaluated our model against three publicly available
and real-world medical datasets.

□ Chapter 4: The present study proposes a nonparametric Bayesian
methodology that employs a multivariate Libby-Novick Beta mixture
model to tackle clustering challenges in data analysis, such as deter-
mining the optimal number of mixture components and estimating the
model’s parameters. To address this problem, we extend the finite
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Libby-Novick Beta mixture model (FLNBMM) into an infinite model.
This extension allows us to accurately represent the data distribution
by accommodating an unspecified number of mixture components. We
develop a Bayesian learning strategy that employs the Markov Chain
Monte Carlo technique to estimate the posterior distribution, which
provides robust power and flexibility for modeling and analyzing intri-
cate data. We evaluate the effectiveness of our proposed method on
three real-world applications.

□ Chapter 5: We provide a brief and clear summary of the contributions
we have made.

1.4 Publications

This thesis is based on three manuscripts. Two manuscripts are accepted as
conference papers and the third one is submitted.

□ Chapter 2: Niloufar Samiee, Narges Manouchehri, Nizar Bouguila,
”Maximum Likelihood-Based Estimation of Finite Multivariate Libby-
Novick Beta Mixture Models in Medical Applications”, 2023 IEEE In-
ternational Conference on Industrial Technology (ICIT) [34].

□ Chapter 3: Niloufar Samiee, Narges Manouchehri, Nizar Bouguila, ”Fi-
nite Libby-Novick Beta Mixture Model: An MML-Based Approach”,
Intelligent Information and Database Systems (ACIIDS), 2023 [35].

□ Chapter 4: Niloufar Samiee, Narges Manouchehri, Nizar Bouguila,
”A Nonparametric Bayesian Framework for Multivariate Libby-Novick
Beta Mixture Models”, Control, Decision and Information Technologies
(CoDIT), 2024, submitted [36].
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Chapter 2
Maximum Likelihood-Based
Estimation of Finite Multivariate
Libby-Novick Beta Mixture Models in
Medical Applications

In this chapter, we propose to develop a model called the Libby-Novick Beta
Mixture Model (LNBMM), which is based on the Libby-Novick distribution
as a member of the Beta distribution family. Since it has more shape pa-
rameters, it can be fitted to the data more flexibly than conventional Beta
distributions. In addition to this, the estimation of model parameters is
another key challenge in mixture models. To address this, we employ the
maximum likelihood (ML) and Newton-Raphson methods to accurately es-
timate the model parameters.

2.1 Model Specification

2.1.1 Libby-Novick Beta Distribution

We will consider xi as a random variable, such that 0 < xi < 1. We suppose
that xi is following a Libby-Novick Beta distribution (LNB) with parameters
aj, bj, λj > 0 [37]. Based on this assumption, we can formulate the joint
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density function p(xi | aj, bj, λj) as follows:

p(xi | aj, bj, λj) =
λ
aj
j xi

aj−1(1− xi)
bj−1

B(aj, bj){1− (1− λj)xi}aj+bj
(2.1)

where:

B(aj, bj) =

∫ 1

0

taj−1(1− t)bj−1dt =
Γ(aj)Γ(bj)

Γ(aj + bj)
(2.2)

As mentioned earlier, Libby-Novick Beta is an extension of Beta distribution
with an extra shape parameter which can control skewness as well as kurtosis
at the same time [38]. In other words, Beta distribution can be obtained by
setting shape parameter λ to one. Fig. 2.1 illustrates some examples of this
distribution showing how LNB can capture patterns of data with different
shapes merely by varying the value of the additional shape parameter λ.

2.1.2 Finite Libby-Novick Beta Mixture Model

We assume to have a D-dimensional data point raising from a LNB dis-
tribution represented by X⃗i =

(
xi1, . . . , xiD

)
such that 0 < xid < 1 and

d = 1, . . . , D. To express a finite Libby-Novick Beta mixture including M
components, we have:

p
(
X⃗i | π⃗, θ⃗

)
=

M∑
j=1

πjp
(
X⃗i | θ⃗j

)
(2.3)

θ⃗j = (⃗aj, b⃗j, λ⃗j) and πj are the set of parameters and weight of component

jth, respectively, where j = 1, . . . ,M . π⃗ = (π1, . . . , πM) and θ⃗ =
(
θ⃗1, . . . , θ⃗M

)
are the complete set of mixture parameters that we call them Θ = {π⃗, θ⃗},
such that

∑M
j=1 πj = 1 and πj >= 0 for j = 1, . . . ,M . a⃗ =

(
a⃗1, . . . , a⃗M

)
,

b⃗ =
(⃗
b1, . . . , b⃗M

)
, λ⃗ =

(
λ⃗1, . . . , λ⃗M

)
are the parameters of mixture model.

a⃗j =
(
aj1, . . . , ajd

)
, b⃗j =

(
bj1, . . . , bjd

)
, λ⃗j =

(
λj1, . . . , λjd

)
such that ajd > 0,

bjd > 0, λjd > 0 for d = 1, . . . , D. In order to model X = {X⃗1, . . . , X⃗N}
as a dataset with N D-dimensional independent and identically distributed
observations, we have Libby-Novick Beta mixture model as follows:
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p
(
X | π⃗, θ⃗

)
=

N∏
i=1

[
M∑
j=1

πjp
(
X⃗i | θ⃗j

)]

=
N∏
i=1

[
M∑
j=1

πj

D∏
d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

]
(2.4)

Four instances of this distribution are depicted in Fig. 2.2, demonstrating
the adaptability of LNBMM in modelling different data patterns.
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Figure 2.1: Libby-Novick Beta distribution

Figure 2.2: Libby-Novick Beta distribution
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2.2 Model Learning

2.2.1 Maximum Likelihood and EM Algorithm

In order to estimate model parameters, we use ML methods to determine
which parameters maximize the probability density function associated with
the data [39]. In ML, the parameters of a mixture model are estimated to
maximize the log-likelihood, which is defined as:

L(Θ,X ) = log p(X | Θ
)
=

N∑
i=1

log
M∑
j=1

πjp(X⃗i | θ⃗j
)

(2.5)

=
N∑
i=1

log
M∑
j=1

πj

D∏
d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

As each X⃗i is assigned to a component j, we define a vector Z⃗i = (Zi1, ..., Zij)

such that Zij = 1 if X⃗i belongs to component j, else 0 and
M∑
j=1

Zij = 1. For

X , we define a set of membership vectors Z = {Z1, . . . , ZN}.

Zij =

{
1 ifX⃗i in cluster j

0 otherwise
(2.6)

It is also important to note that each vector X⃗i is assigned to one of the M
clusters based on its posterior probability as follows:

Ẑij = p
(
j | X⃗i, θ⃗j

)
=

πjp(X⃗i, θ⃗j
)

M∑
j=1

πjp(X⃗i, θ⃗j
) (2.7)
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As a result, the log-likelihood can be formulated as follows:

L(Θ,Z,X ) =
M∑
j=1

N∑
i=1

Ẑij

[
log πj (2.8)

+ log
D∏

d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

]

=
M∑
j=1

N∑
i=1

Ẑij(log πj +
D∑

d=1

[
ajd log λjd + ajd log xid

− log xid + bjd log(1− xid)− log(1− xid)

+ log Γ(ajd + bjd)− log Γ(ajd)− log Γ(bjd)

− ajd log(1− (1− λjd)xid)− bjd log(1− (1− λjd)xid)

]
We calculate the gradient of the log-likelihood with respect to the param-

eters in order to maximize the complete log-likelihood.

∂L(Θ,Z,X )

∂Θ
= 0 (2.9)

2.2.2 Newton-Raphson Method

As there is no closed-form solution to (4.8), Newton-Raphson is used to up-
date the parameters iteratively [40]. G is the gradient, which is the first
derivative of L(Θ,Z,X ) with respect to the parameters and H is the Hes-
sian matrix, which is the second and mixed derivatives of L(Θ,Z,X ) with
respect to the parameters. The following steps are followed in order to update
parameters:

âj
new = aj

old −Hj
−1Gj (2.10)

b̂j
new

= bj
old −Hj

−1Gj

λ̂j
new

= λj
old −Hj

−1Gj

In the next step, we calculate the derivatives with respect to ajd, bjd and

λjd. Assuming that ψ = Γ′(X)
Γ(X)

, the following equations can be obtained:
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G1jd =
∂L(Θ,Z,X )

∂ajd
(2.11)

=
N∑
i=1

Ẑij

[
log λjd + log xid − ψ(ajd) + ψ(ajd + bjd)

− log(1− (1− λjd)xid)

]

G2jd =
∂L(Θ,Z,X )

∂bjd
(2.12)

=
N∑
i=1

Ẑij

[
log(1− xid)− ψ(bjd) + ψ(ajd + bjd)

− log(1− (1− λjd)xid)

]

G3jd =
∂L(Θ,Z,X )

∂λjd
=

N∑
i=1

Ẑij

[
ajd
λjd

(2.13)

− ajdxid
(1− (1− λjd)xid)

− bjdxid
(1− (1− λjd)xid)

]
In order to calculate the Hessian matrix, we compute the second and

mixed derivatives of the log-likelihood function.
- Derivatives with respect to ajd, ajd:

Hajd,ajd =
∂2L(Θ,Z,X )

∂a2jd
(2.14)

=
N∑
i=1

Ẑij[ψ
′(ajd + bjd)− ψ′(ajd)]

∂2L(Θ,Z,X )

∂ajdg∂ajdh
= 0, dg ̸= dh (2.15)
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- Derivatives with respect to bjd, ajd:

Hbjd,ajd =
∂2L(Θ,Z,X )

∂bjd∂ajd
(2.16)

=
N∑
i=1

Ẑij[ψ
′(ajd + bjd)]

∂2L(Θ,Z,X )

∂bjdg∂ajdh
= 0, dg ̸= dh (2.17)

- Derivatives with respect to ajd, λjd:

Hλjd,ajd =
∂2L(Θ,Z,X )

∂λjd∂ajd
(2.18)

=
N∑
i=1

Ẑij[
1

λjd
− xid

(1− (1− λjd)xid)
)]

∂2L(Θ,Z,X )

∂λjdg∂ajdh
= 0, dg ̸= dh (2.19)

- Derivatives with respect to ajd, bjd:

Hajd,bjd =
∂2L(Θ,Z,X )

∂ajd∂bjd
(2.20)

=
N∑
i=1

Ẑij[ψ
′(ajd + bjd)]

∂2L(Θ,Z,X )

∂ajdg∂bjdh
= 0, dg ̸= dh (2.21)

- Derivatives with respect to bjd, bjd:

Hbjd,bjd =
∂2L(Θ,Z,X )

∂b2jd
(2.22)

=
N∑
i=1

Ẑij[ψ
′(ajd + bjd)− ψ′(bjd)]

∂2L(Θ,Z,X )

∂bjdg∂bjdh
= 0, dg ̸= dh (2.23)
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- Derivatives with respect to λjd, bjd:

Hλjd,bjd =
∂2L(Θ,Z,X )

∂λjd∂bjd
(2.24)

=
N∑
i=1

Ẑij[−
xid

(1− (1− λjd)xid)
]

∂2L(Θ,Z,X )

∂λjdg∂bjdh
= 0, dg ̸= dh (2.25)

- Derivatives with respect to ajd, λjd:

Hajd,λjd
=
∂2L(Θ,Z,X )

∂ajd∂λjd
(2.26)

=
N∑
i=1

Ẑij[
1

λjd
− xid

(1− (1− λjd)xid)
]

∂2L(Θ,Z,X )

∂ajdg∂λjdh
= 0, dg ̸= dh (2.27)

- Derivatives with respect to bjd, λjd:

Hbjd,λjd
=
∂2L(Θ,Z,X )

∂bjd∂λjd
(2.28)

=
N∑
i=1

Ẑij[−
xid

(1− (1− λjd)xid)
]

∂2L(Θ,Z,X )

∂bjdg∂λjdh
= 0, dg ̸= dh (2.29)

- Derivatives with respect to λjd, λjd:

Hλjd,λjd
=
∂2L(Θ,Z,X )

∂λ2jd
(2.30)

=
N∑
i=1

Ẑij[
ajdx

2
id

(1− (1− λjd)xid)2
− ajd
λ2jd

+
bjdx

2
id

(1− (1− λjd)xid)2
]

∂2L(Θ,Z,X )

∂λjdg∂λjdh
= 0, dg ̸= dh (2.31)
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Our Hessian matrix is a 3D by 3D matrix as shown below:

Hj =

H(ajd,ajd) H(ajd,bjd) H(ajd,pjd)

H(bjd,ajd) H(bjd,bjd) H(bjd,pjd)

H(pjd,ajd) H(pjd,bjd) H(pjd,pjd)

 (2.32)

To estimate the values of mixing proportion we will follow this equation:

πj =

N∑
n=1

p
(
j | X⃗i, θ⃗j

)
N

(2.33)

In order to determine the initial mixing proportions, we use K-means [41].
Our model’s performance will be optimal if initialization is performed appro-
priately to avoid convergence to a local maximum, which cannot be guaran-
teed using EM.

2.2.3 Parameter Estimation Algorithm

We summarize all steps of our model in the following algorithm:

Algorithm 1 Parameter Estimation Algorithm

1. Input X and the number of clusters M .

2. Use K-Means algorithm to initialize the M clusters.

3. Initialize the parameters.
Repeat

4. EM algorithm

(a) E step: Compute Ẑnj.

(b) M step: Update parameters and mixing proportions.

(c) If πj < ϵ then delete component j return to E step

until Convergence
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2.3 Experimental Results

In this part of our research, we applied our suggested algorithm to three real-
world medical imaging applications, including images of lung tissue samples,
histological breast tissue images, and histological malaria images. In order to
apply our models to these datasets, we must extract first features from images
and apply some preprocessing. For feature extraction we used Scale-invariant
Feature Transform (SIFT) [42] and Bag of Visual Words (BoVW) [43]. A bag
of visual words depicts images as patches and their distinctive patterns are
derived from each image. For the purpose of extracting these visual features,
we use SIFT as a feature detector. During preprocessing, we normalized our
datasets by applying the min-max method since we suppose all input values
are between (0,1):

X =
X −Xmin

Xmax −Xmin

(2.34)

The performance of our model is compared with that of Gaussian mixture
models and Beta mixture models. Our performance was evaluated using
four metrics: accuracy, precision, recall, and FPR (False Positive Rate) or
F1-score.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.35)

Precision =
TP

TP + FP
(2.36)

Recall =
TP

TP + FN
(2.37)

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.38)

2.3.1 Breast Tissue Analysis

Breast cancer is the most prevalent cancer among women and the main cause
of cancer-related mortality globally [44]. As breast cancer cells can spread to
other areas of the body if they enter the bloodstream or lymphatic system,
it is very critical to detect and treat the disease early in order to increase the
chance of survival. As the disease is diagnosed at a very late stage in many
cases, the strategies proposed to reduce mortality and manage this disease
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have not been as successful as expected. A mammogram or ultrasound is
typically the first imaging tool that detects breast cancer in the majority of
cases. For a precse diagnosis of a radiographic abnormality, a tissue sample
is necessary. An expert pathologist evaluates tissues in order to determine
whether they are benign or malignant (cancerous). Breast tissue samples
can be obtained through different methods of biopsy. The tissue from the
biopsy is processed in the pathology lab. Microscopically examining a biopsy
or surgical specimen on a glass slide is considered histopathology, the study
of disease signs. One or more stains are used to dye tissue sections under
a microscope so that different components of the tissue can be visualized.
Evaluation of breast cancer histology involves microscopic analysis of the
chemical and cellular characteristics of cells from a suspicious tumor. On
the basis of histological characteristics, benign and malignant lesions can be
distinguished. Fig. 4.4 shows a few samples of breast tissues. According
to both groups of images, darker, more violet-colored tissue is more likely
to be cancerous than those with rose colors. But as you can see, this is
not always true, so learning the model becomes more challenging. Machine
learning techniques could reduce the number of false diagnoses and increase
the precision of breast cancer diagnosis. We tested our method on a pub-
licly available dataset with malignant and benign labels, each containing 500
samples [45]. We find that our proposed model performs better than GMM
and BMM according to Table II.

Figure 2.3: Breast tissue samples. First and second rows show benign and
malignant samples.
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Table 2.1: Results on Breast Tissue Dataset

Method Accuracy Precision Recall F1-score
LNBMM 88.0.72 86.54 90.01 88.24
GMM 73.7 82.11 60.6 69.73
BMM 75.04 74.05 78.2 76.01

2.3.2 Malaria Detection

Malaria is a potentially fatal disease caused by parasites transferred to hu-
mans by the bites of infected female Anopheles mosquitoes. There are mea-
sures that can be taken to prevent and treat it. The diagnosis of malaria
must be made in a timely and precise manner in order to provide effective
treatment [46]. In some cases, malaria may require immediate medical atten-
tion depending on its severity. The delay in diagnosing and treating malaria
reduces the likelihood of survival for patients, and it causes the deaths of
many people in some parts of the world. The use of microscopes is one of the
most common methods of diagnosing malaria. In order to identify malaria
parasites, a drop of blood can be spread on a microscope slide to form a
”blood smear”. Typically, a blood smear determines the number and shape
of blood cells. Malaria is diagnosed by microscopists via finding malaria-
infected blood cells in blood smears. There is a small clot inside infected
cells, whereas uninfected cells have no clot. A few images of blood cells are
shown in Fig. 4.2. A malaria parasite causes small protein nodules called
knobs to appear on the surface of red blood cells, which normally have a
smooth surface. It is quite challenging for humans to find positive results in
a large number of smears and to verify every sample accurately. Additionally,
diagnosis depends on the quality of the microscope and the experience of the
technician. As a result of the reasons mentioned above, the use of a reliable
machine learning technique can be very valuable in diagnosing this disease.
In this research, we used a cell image dataset from NIH [46, 47], including
2000 samples, to assess our model.
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Figure 2.4: Samples of infected and uninfected cells are shown in the first
and second rows, respectively.

Table 2.2: Results on Malaria Dataset

Method Accuracy Precision Recall F1-score
LNBMM 88.63 85.13 93.61 89.16
GMM 83.3 74.96 100 85.68
BMM 73.05 70.80 78.45 74.43

2.3.3 Lung Cancer Diagnosis

In the second part of our experiment, we applied our model to lung histopatho-
logical images [48]. In this dataset, there are 2500 images that include be-
nign, adenocarcinoma, and squamous cell carcinoma tissues related to lung
cancer. Fig. 4.3 shows an example of each class. As with other types of
cancer, an early and accurate diagnosis is critical for the treatment of lung
cancer. In Table 4.2, we demonstrate that our proposed algorithm has better
performance than the GMM and BMM.

Figure 2.5: Images of three types of lung tissues, including benign ones,
adenocarcinomas, and squamous cell carcinomas.
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Table 2.3: Results on Lung Cancer Dataset

Method Accuracy Precision Recall F1-score
LNBMM 91.31 93.33 88.61 90.91
GMM 83.33 79.88 80.43 81.58
BMM 79.33 72.73 86.12 78.86
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Chapter 3
Finite Libby-Novick Beta Mixture
Model: An MML-Based Approach

In this chapter, we propose an unsupervised algorithm for learning the op-
timal number of clusters in a finite Libby-Novick Beta mixture model. In
unsupervised learning, it is crucial to determine the number of clusters that
best describes the data. By extending the minimum message length (MML)
principle [49], we are able to determine the number of clusters in Libby-
Novick Beta mixtures.

3.1 Model Specification

3.1.1 Finite Libby-Novick Beta Mixture Model

We assume that X⃗i =
(
xi1, . . . , xiD

)
, a D-dimensional vector such that

0 ≤ xid ≤ 1 and d = 1, . . . , D, follows a Libby-Novick Beta mixture model
[37,38]. We consider X = {X⃗1, . . . , X⃗N} as a dataset withN independent and
identically distributed D-dimensional observations. In the following equa-
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tion, we have the Libby-Novick Beta mixture model:

p
(
X | π⃗, θ⃗

)
=

N∏
i=1

[
M∑
j=1

πjp
(
X⃗i | θ⃗j

)]

=
N∏
i=1

[
M∑
j=1

πj

D∏
d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

]
(3.1)

The parameters of component jth and its weight are given by θ⃗j = (⃗aj, b⃗j, λ⃗j)

and πj, where j = 1, . . . ,M . π⃗ = (π1, . . . , πM), θ⃗ =
(
θ⃗1, . . . , θ⃗M

)
, and Θ =

{π⃗, θ⃗}, the complete set of mixture parameters that
∑M

j=1 πj = 1 and πj >= 0

for j = 1, . . . ,M . a⃗ =
(
a⃗1, . . . , a⃗M

)
, b⃗ =

(⃗
b1, . . . , b⃗M

)
, λ⃗ =

(
λ⃗1, . . . , λ⃗M

)
are

the parameters of mixture model, such that ajd > 0, bjd > 0, λjd > 0
for d = 1, . . . , D. In the following subsection, we give a brief summary
of the maximum likelihood approach that we developed in [34] to estimate
the parameters of the proposed mixture model. The estimation of these
parameters is an important step towards developing the MML criterion.

3.1.2 Maximum Likelihood and EM Algorithm

As part of the estimation process, our model parameters are calculated using
ML estimation within an EM framework, which determine the parameters
that maximize the model’s likelihood function. In fact, ML estimates mixture
model parameters in order to maximize the log-likelihood [34]. We define a

vector Z⃗i = (Zi1, ..., Zij) such that Zij = 1 if X⃗i belongs to component j and 0

otherwise and
M∑
j=1

Zij = 1. As a result, we define a set of membership vectors

Z = {Z1, . . . , ZN} for the set X = {X⃗1, . . . , X⃗N}. The posterior probability

of each vector X⃗i determines its assignment to one of the M clusters, as
follows:

Ẑij = p
(
j | X⃗i, θ⃗j

)
=

πjp(X⃗i, θ⃗j
)

M∑
j=1

πjp(X⃗i, θ⃗j
) (3.2)
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This leads to the following formulation for log-likelihood:

L(Θ,Z,X ) =
M∑
j=1

N∑
i=1

Ẑij

[
log πj (3.3)

+ log
D∏

d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

]

=
M∑
j=1

N∑
i=1

Ẑij(log πj +
D∑

d=1

[
ajd log λjd + ajd log xid

− log xid + bjd log(1− xid)− log(1− xid)

+ log Γ(ajd + bjd)− log Γ(ajd)− log Γ(bjd)

− ajd log(1− (1− λjd)xid)− bjd log(1− (1− λjd)xid)

]
In order to maximize the complete log-likelihood, we compute the gradient of
log-likelihood with respect to the parameters. In this case, Newton-Raphson
is used as an iterative method to update the parameters [34], as there is no
closed-form solution to following equation:

∂L(Θ,Z,X )

∂Θ
= 0 (3.4)

For more details about the parameters estimation, the reader is referred
to [34].

3.1.3 The MML Criterion For a Finite Libby-Novick
Beta Mixture

As a model selection technique, MML (minimum message length) is used in
this section. According to information theory, the optimal number of clusters
transmits data from sender to receiver efficiently with the least amount of
information. As a result, MML can be defined as follows for a mixture of
distributions:

MML = − log(
h(Θ)p(X | Θ

)√
| F (Θ) |

) +Np(−
1

2
log(12) +

1

2
) (3.5)
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where h(Θ) is prior probability distribution, p(X | Θ
)
is the complete data

log-likelihood, F (Θ) is the expected Fisher information matrix computed
by taking the second derivative of the negative log-likelihood, and |F (Θ)|
is its determinant. Np represents the number of free parameters and equals
(M(2D + 1))− 1.

3.1.4 Fisher Information for Libby-Novick Beta mix-
ture model

As the expected value of the negative of the Hessian matrix, the Fisher ma-
trix, also known as the curvature matrix, describes the curve of the likelihood
function around its maximum. Since MML is based on a Hessian matrices, it
takes on a sophisticated analytical form that is difficult to reproduce. As a re-
sult, we will approximate this matrix using these two following assumptions:
First, it is important to keep in mind that θ⃗ and the vector π⃗ are independent,
as one’s preconceived notions about the value of the mixing parameter vector
π⃗ do not typically influence one’s notions about θ⃗. Moreover, we presume
that the θ⃗ components are also independent. Fisher information matrix can
be calculated after clustering data vectors according to a mixture model. A
Fisher information matrix has the following determinant:

|F (Θ)| = |F (π⃗)|
M∏
j=1

|F (θ⃗j)| (3.6)

|F (π⃗)| is the determinant of Fisher information of mixing parameters

πj and |F (θ⃗j)| is the determinant of Fisher information with regard to the

vector θ⃗j = (⃗aj, b⃗j, p⃗j) of a single Libby-Novick Beta distribution. As a result,
we can compute the Fisher information matrix determinant by assuming
a generalized Bernoulli process where there are M possible results for M
clusters for each trial as follows:

|F (π⃗)| = NM−1∏M
j=1 πj

(3.7)

The Fisher information for our mixture is as follows:

log(|F (Θ)|) = (M − 1) log(N)−
M∑
j=1

log(πj) +
M∑
j=1

log(|F (θ⃗j)|) (3.8)
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3.1.5 Determinant of the Fisher information

Assuming the mixture model procedure is followed, Xj = (X⃗t, . . . , X⃗t+nj−1)
samples of data are allocated to cluster jth, such that t ≤ N and nj is the
number of samples assigned to cluster j.

− log p(X | Θ
)
= − log(

t+nj−1∏
n=t

p(X⃗ | θ⃗M)) (3.9)

= −(

t+nj−1∑
n=t

log p(X⃗ | θ⃗M))

F (θ⃗j) is defined as the negative of the second derivative of complete log-
likelihood. In accordance with the parameters ajd, bjd, λjd, we calculate the
second and mixed derivatives:

- Derivatives with respect to ajd, ajd:

Fajd,ajd = −
∂2 log p(X | Θ

)
∂a2jd

= −nj(ψ
′(ajd + bjd)− ψ′(ajd)) (3.10)

−
∂2 log p(X | Θ

)
∂ajds∂ajdt

= 0, ds ̸= dt (3.11)

- Derivatives with respect to ajd, bjd:

Fajd,bjd = −
∂2 log p(X | Θ

)
∂ajd∂bjd

= −nj(ψ
′(ajd + bjd)) (3.12)

−
∂2 log p(X | Θ

)
∂ajds∂bjdt

= 0, ds ̸= dt (3.13)

- Derivatives with respect to ajd, λjd:

Fajd,λjd
= −

∂2 log p(X | Θ
)

∂ajd∂λjd
= −

N∑
i=1

Ẑij[
1

λjd
− xid

(1− (1− λjd)xid)
)] (3.14)

−
∂2 log p(X | Θ

)
∂ajds∂λjdt

= 0, ds ̸= dt (3.15)
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- Derivatives with respect to bjd, ajd:

Fbjd,ajd = −
∂2 log p(X | Θ

)
∂bjd∂ajd

= −nj(ψ
′(ajd + bjd)) (3.16)

−
∂2 log p(X | Θ

)
∂bjds∂ajdt

= 0, ds ̸= dt (3.17)

- Derivatives with respect to bjd, bjd:

Fbjd,bjd = −
∂2 log p(X | Θ

)
∂b2jd

= −nj(ψ
′(ajd + bjd)− ψ′(bjd)) (3.18)

−
∂2 log p(X | Θ

)
∂bjds∂bjdt

= 0, ds ̸= dt (3.19)

- Derivatives with respect to bjd, λjd:

Fbjd,λjd
= −

∂2 log p(X | Θ
)

∂bjd∂λjd
= −

N∑
i=1

Ẑij[−
xid

(1− (1− λjd)xid)
] (3.20)

−
∂2 log p(X | Θ

)
∂bjds∂λjdt

= 0, ds ̸= dt (3.21)

- Derivatives with respect to λjd, ajd:

Fλjd,ajd = −
∂2 log p(X | Θ

)
∂λjd∂ajd

= −
N∑
i=1

Ẑij[
1

λjd
− xid

(1− (1− λjd)xid)
] (3.22)

−
∂2 log p(X | Θ

)
∂λjds∂ajdt

= 0, ds ̸= dt (3.23)

- Derivatives with respect to λjd, bjd:

Fλjd,bjd = −
∂2 log p(X | Θ

)
∂λjd∂bjd

= −
N∑
i=1

Ẑij[−
xid

(1− (1− λjd)xid)
] (3.24)

−
∂2 log p(X | Θ

)
∂λjds∂bjdt

= 0, ds ̸= dt (3.25)
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- Derivatives with respect to λjd, λjd:

Fλjd,λjd
= −

∂2 log p(X | Θ
)

∂λ2jd
(3.26)

= −
N∑
i=1

Ẑij[
ajdx

2
id

(1− (1− λjd)xid)2
− ajd
λ2jd

+
bjdx

2
id

(1− (1− λjd)xid)2
]

−
∂2 log p(X | Θ

)
∂λjds∂λjdt

= 0, ds ̸= dt (3.27)

The F (θ⃗j) is a 3D by 3D matrix as follows:

Fj =

F(ajd,ajd) F(ajd,bjd) F(ajd,λjd)

F(bjd,ajd) F(bjd,bjd) F(bjd,λjd)

F(λjd,ajd) F(λjd,bjd) F(λjd,λjd)

 (3.28)

3.1.6 Prior distribution

We must choose the model’s parameters’ prior distribution h(Θ) in order to
calculate the MML criterion. We define h(Θ) as follows:

h(Θ) = h(π⃗)h(⃗a)h(⃗b)h(λ⃗) (3.29)

For modelling proportional vectors, we assume a Dirichlet distribution for
h(π⃗) where η⃗ = (η1, η2, . . . , ηM):

h(π1, π2, . . . , πM) =

Γ(
M∑
j=1

ηj)∏M
j=1 Γ(ηj)

M∏
j=1

π
ηj−1
j (3.30)

By calculating a uniform prior for the parameter η, (η1 = 1, ..., ηM = 1), we
can simplify (3.30) as follows:

h(π⃗) = (M − 1)! (3.31)
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We assume that dimensions are independent, so we have:

h(⃗a) =
M∏
j=1

D∏
d=1

h(ajd) (3.32)

The assumption is that we do not have any prior information regarding pa-
rameter ajd in this case. Consequently, we use a simple uniform prior in
accordance with Ockham’s razor, which has shown to be effective in produc-
ing effective results, to ensure that its effect on the posterior is minimal [50].
h(bjd) and h(λjd) will be chosen in the same way:

h(ajd) = e−6 ajd
||aj||

, h(bjd) = e−6 bjd
||bj||

, h(λjd) = e−6 λjd
||λj||

(3.33)

Log of prior is provided by:

log(h(Θ)) = −D
M∑
j=1

log(||aj||) +
M∑
j=1

D∑
d=1

log(ajd) (3.34)

−D
M∑
j=1

log(||bj||) +
M∑
j=1

D∑
d=1

log(bjd)

−D
M∑
j=1

log(||λj||) +
M∑
j=1

D∑
d=1

log(λjd) +
M−1∑
j=1

log(j)− 18MD

3.1.7 Full Learning Algorithm

Here is a summary of all the steps in our method:
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Algorithm 2 Full Learning Algorithm

1. Input X and the number of clusters M .

2. Use K-Means algorithm to initialize the M clusters.

3. Initialize the parameters.
Repeat

4. EM algorithm [34]

5. MML

(a) Calculate the criterion of MML(M).

(b) Find the optimal M∗ i.e. M∗ = argminM MML(M).

3.2 Experimental Results

In this part of our research, we begin by extracting features from images
and preprocessing our data. We employed Scale-invariant Feature Transform
(SIFT) and Bag of Visual Words (BoVW) as feature extraction methods
[42, 43]. Using a bag of visual words, images are presented as patches, with
distinctive patterns derived from each one. SIFT is used as a feature detector
for the extraction of these visual characteristics. Based on the assumption
that all input values fall between 0 and 1, we normalized our datasets using
the min-max method:

X =
X −Xmin

Xmax −Xmin

(3.35)

In the following, three real-world medical imaging applications were used to
evaluate our algorithm, including images of lung tissue samples, histological
malaria images, and histological images of breast tissue.

3.2.1 Malaria Detection

Malaria is a parasitic disease. Individuals can become infected with a parasite
when bitten by a mosquito. Using a microscope is the most common method
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Figure 3.1: Plot of message length for the Malaria detection dataset. Clusters
are represented on the X-axis, while message length is represented on the Y-
axis.

of diagnosing malaria. Microscopists diagnose malaria by identifying malaria-
infected blood cells in blood smears. Unlike uninfected cells, infected cells
have a small clot. Humans find it difficult to detect positive results among a
large number of smears and to verify each sample precisely. For this reason,
using a dependable machine learning technique to diagnose this disease can
be extremely helpful. As part of this study, we evaluated our model by
analyzing images of 2,000 cells from the National Institutes of Health and
determined the optimal number of clusters for modeling this dataset [46,47].
Our algorithm was able to determine the optimal number of clusters as shown
in Fig.3.1.

3.2.2 Breast Tissue Analysis

In the world, breast cancer is the leading cause of cancer-related death. Ac-
cording to current estimates, 12.9% of American women will suffer from
breast cancer during their lifetimes [51]. In order to increase the chance of
survival, it is essential to identify breast cancer cells at an early stage and
start treatment. During the diagnostic process, an expert pathologist evalu-
ates tissues and identifies whether they are benign or malignant (cancerous)
based on their histological characteristics. It is important to note that cancer
diagnosis by specialists is not error-free. Therefore, machine learning tech-
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Figure 3.2: Plot of message length for the breast tissue dataset. Clusters are
represented on the X-axis, while message length is represented on the Y-axis.

niques could be used to reduce the number of erroneous diagnoses as well
as improve accuracy in breast cancer diagnosis. A publicly available dataset
containing 500 samples, each with malignant and benign labels was used to
evaluate our algorithm [45]. Fig.4.4 illustrates how our algorithm was able
to determine the optimal number of clusters.

3.2.3 Lung Cancer Diagnosis

Considering that smoking is one of the major causes of lung cancer, we are
seeing a large number of lung cancer cases around the globe with the in-
crease in the number of smokers. Smoking is estimated to be responsible for
approximately 80% of all lung cancer deaths [52]. This part of the paper de-
scribes how our model was applied to lung histopathological images. There
are 2500 images in this dataset of lung cancer tissues including benign, ade-
nocarcinoma, and squamous cell carcinoma [48].An example of each cluster is
shown in Fig. 4.3. A timely and accurate diagnosis of lung cancer is crucial
to its successful treatment, as with any other type of cancer. We were able
to determine the optimal number of clusters using our algorithm, which can
be seen in Fig.4.3.

31



Figure 3.3: An illustration of benign lung tissue, adenocarcinoma, and squa-
mous cell carcinoma.

Figure 3.4: Plot of message length for lung cancer dataset. Clusters are
represented on the X-axis, while message length is represented on the Y-
axis.
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Chapter 4
A Nonparametric Bayesian Framework
for Multivariate Libby-Novick Beta
Mixture Models

This chapter presents a nonparametric Bayesian approach based on a mul-
tivariate Libby-Novick Beta mixture model to address clustering challenges.
Using mixture models can be challenging due to the difficulty of determin-
ing the optimal number of mixture components. To address this issue, we
expand the finite Libby-Novick Beta mixture model (FLNBMM) to an in-
finite model. This enables us to accurately represent the data distribution
by accommodating an unspecified number of mixture components. We de-
velop a Bayesian learning strategy that uses the Markov Chain Monte Carlo
technique to estimate the posterior distribution, which provides strong power
and flexibility for modeling and analyzing complicated data.

4.1 Model Specification

4.1.1 Libby-Novick Beta Distribution

Let us consider a random variable xi, 0 < xi < 1, that follows a Libby-Novick
Beta distribution (LNB) with parameters aj, bj, λj > 0 [37]. The joint density
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function of this observation p(xi | aj, bj, λj) is formulated as the following:

p(xi | aj, bj, λj) =
λ
aj
j xi

aj−1(1− xi)
bj−1

B(aj, bj){1− (1− λj)xi}aj+bj
(4.1)

where:

B(aj, bj) =

∫ 1

0

taj−1(1− t)bj−1dt =
Γ(aj)Γ(bj)

Γ(aj + bj)
(4.2)

As previously mentioned, LNB is a generalization of the Beta distribution
with one additional shape parameter that controls both the skewness and
kurtosis simultaneously [38]. By setting the shape parameter λ to 1, we can
get the Beta distribution.

4.1.2 Finite Libby-Novick Beta Mixture Model

We can formulate a finite Libby-Novick Beta mixture with M components
by assuming that we have a D-dimensional data point, following a sum of
weighted LNB distributions, indicated by X⃗i =

(
xi1, . . . , xiD

)
where 0 ≤

xid ≤ 1 and d = 1, . . . , D. This gives us:

p
(
X⃗i | π⃗, θ⃗

)
=

M∑
j=1

πjp
(
X⃗i | θ⃗j

)
(4.3)

πj and θ⃗j = (⃗aj, b⃗j, λ⃗j) are the weight and set of parameters of component jth,

respectively where j = 1, . . . ,M . π⃗ = (π1, . . . , πM) and θ⃗ =
(
θ⃗1, . . . , θ⃗M

)
are

the complete set of mixture parameters such that
∑M

j=1 πj = 1 and πj >= 0

for j = 1, . . . ,M . a⃗ =
(
a⃗1, . . . , a⃗M

)
, b⃗ =

(⃗
b1, . . . , b⃗M

)
, λ⃗ =

(
λ⃗1, . . . , λ⃗M

)
are

the parameters of mixture model. a⃗j =
(
aj1, . . . , ajD

)
, b⃗j =

(
bj1, . . . , bjD

)
,

λ⃗j =
(
λj1, . . . , λjD

)
such that ajd > 0, bjd > 0, λjd > 0 for d = 1, . . . , D.

A few examples of this distribution can be seen in Fig. 4.1, which illus-
trates the capability of LNB to capture data patterns of various shapes.

Figure 4.1: Libby-Novick Beta distribution
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We formulate LNB mixture model (LNBMM) as below in order to model

X = {X⃗1, . . . , X⃗N} as a dataset with N D-dimensional independent and
identically distributed observations.

p
(
X | π⃗, θ⃗

)
=

N∏
i=1

[
M∑
j=1

πjp
(
X⃗i | θ⃗j

)]
= (4.4)

N∏
i=1

[
M∑
j=1

πj

D∏
d=1

λ
ajd
jd xid

ajd−1(1− xid)
bjd−1

B(ajd, bjd){1− (1− λjd)xid}ajd+bjd

]

4.2 Model Learning

4.2.1 Bayesian Learning Framework

The process of implementing mixture models involves dealing with two main
challenges. Firstly, there is the issue of accurately estimating the model pa-
rameters, which can be a complex task. Secondly, it is important to determine
the optimal number of components for the model, as this can significantly
impact the accuracy and effectiveness of the model [53]. Choosing the ap-
propriate number of components requires careful consideration and analysis
to ensure that the resulting model is both reliable and useful. A popular
method for estimating model parameters in statistical modeling is to employ
the EM algorithm. This algorithm maximizes the likelihood function of the
data by introducing a latent indicator variable Z = {Z⃗1, . . . , Z⃗N}. For each
observation X⃗i, Z⃗i = (Zi1, . . . , ZiM) indicates which component it belongs

to [54], [55]. Therefore, if X⃗i is the most likely to belong to cluster j, Zij = 1
and for other clusters Zij = 0. In view of the membership vectors for X , we
then have the complete form of data as (X ,Z), which follows p(X ,Z | Θ).

The symbol Θ = (θ⃗, π⃗) indicates the complete set of parameters. As a result,
the likelihood function of complete data can be defined as follows:

p
(
X ,Z | Θ

)
=

N∏
i=1

M∏
j=1

(
p
(
X⃗i | θ⃗j

)
πj

)Zij

(4.5)

In the context of learning model parameters, we propose employing a Bayesian
framework for LBNMM, given its exceptional properties and benefits over
likelihood-based approaches. Bayesian inference aims to estimate the distri-
bution over the model parameters, as opposed to a single set of parameters,
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which distinguishes it from likelihood-based methods [21,31,56–58]. This fun-
damental difference in approach can have significant implications for model
performance and reliability [59]. In the Bayesian learning framework, esti-
mating the posterior distribution of the mixture model is done by Markov
Chain Monte Carlo (MCMC) and by employing Gibbs sampling which is the
most commonly used simulation technique. Using this method, each parame-
ter is updated based on its conditional posterior distribution. In the Bayesian
framework, determining posteriors is the most important step. It is necessary
to define a prior distribution for each parameter to determine our conditional
distribution’s posterior distribution. Given that the parameters of the model
are all positive, we suppose that all of the priors are generated using Gamma
distributions. For the Gamma distribution, we use u⃗, v⃗, r⃗, s⃗, f⃗ , g⃗ which are
all positive hyper-parameters. In this regard, the prior distribution can be
formulated as follows:

p(θ⃗ | u⃗, v⃗, r⃗, s⃗, f⃗ , g⃗) =
M∏
j=1

D∏
d=1

p (ajd | ujd, vjd)

p (bjd | sjd, rjd) p (λjd | fjd, gjd) (4.6)

To calculate further Bayesian inference, we conditioned our likelihood on Z
as follows:

p(X | Z, θ⃗) =
N∏
i=1

M∏
j=1

(
πj

D∏
d=1

p(xid | θjd)
)Zij

(4.7)

Following the determination of the priors and likelihoods, the conditional
posterior distributions can be calculated as follows:

p(ajd | Z,X , θ⃗) ∝ p (ajd | ujd, vjd) p(X | Z, θ⃗)
p(bjd | Z,X , θ⃗) ∝ p (bjd | sjd, rjd) p(X | Z, θ⃗)
p(λjd | Z,X , θ⃗) ∝ p (λjd | fjd, gjd) p(X | Z, θ⃗) (4.8)

4.2.2 Infinite Multivariate Libby-Novick Beta Mixture
Model

Designing mixture models involves selecting an appropriate number of clus-
ters M to describe the data accurately. However, choosing an appropriate
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number of clusters M can be challenging. Consequently, approaches based
on finite mixtures have a significant limitation in determining the number of
components in advance. In order to overcome this limitation, nonparametric
Bayesian approaches have been proposed, which can automatically estimate
the number of clusters and increase it to infinity based on the specific choice
of priors for mixing weights.
As previously explained in the finite mixture model, each vector X⃗i can be
derived from one of M LNB distributions. In the following, we assume that
the Dirichlet process of LNB distributions will be able to model our observa-
tions. A Dirichlet process mixture model is then illustrated, along with its
ability to create or remove clusters. For π⃗, the mixing weights coefficients,
we know that it is defined on (π1, . . . , πM) :

∑M−1
j=1 πj < 1, then an option to

consider as a prior is a symmetric Dirichlet distribution with a concentration
parameter η

M
.

p(π⃗ | η) = Γ(η)∏M
j=1 Γ(

η
M
)

M∏
j=1

π
η
M

−1

j (4.9)

we also have:

p(Z | π⃗) =
M∏
j=1

πj
nj (4.10)

where nj =
∑N

i=1 IZij=1 represents the number of elements in cluster j. Due
to the fact that Dirichlet is a conjugate prior to the multinomial, it will be
possible to integrate the mixing proportions π⃗ to obtain the prior for Z:

p(Z | η) =
∫
π⃗

p(Z | π⃗)p(π⃗ | η)dπ⃗ (4.11)

=
Γ(η)

Γ(N + η)

M∏
j=1

Γ( η
M

+ nj)

Γ( η
M
)

By combining all (4.9) to (4.11), (4.12) can be written as follows:

p(π⃗ | Z, η) = Γ(η +N)∏M
j=1 Γ(

η
M

+ nj)

M∏
j=1

π
nj+

η
M

−1

j (4.12)
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which illustrates a Dirichlet distribution with parameter (n1 +
η
M
, . . . , nM +

η
M
). The conditional prior for one indicator is outlined in [60]:

p(Zij = 1 | η,Z−i) =
n−ij +

η
M

N − 1 + η
(4.13)

where Z−i = {Z1, . . . , Zi−1, Zi+1, . . . , ZN} , n−i,j is the number of observa-

tions excluding X⃗i in component j. After this, the conditional posterior is
calculated by multiplying the prior (4.13) by the likelihood of X⃗i.
As we have mentioned, an essential task in adopting mixture models is to
select the complexity of the model. In this section we address this problem
by considering M → ∞ in (4.13) which provides the following limits [61]:

p(Zij = 1 | η;Z−i) =

{
n−i,j

N−1+η
if n−i,j > 0 (j ∈ R)

η
N−1+η

if n−i,j = 0 (j ∈ U)
(4.14)

where R and U denote the sets of represented and unrepresented clusters,
respectively. According to this equation, each observation has a certain prob-
ability of being assigned to either a represented component or one that is
unrepresented. In the case of a represented component, the conditional prior
is determined based on the number of observations already assigned to the
cluster. However, for a new component (unrepresented), the conditional prior
is only proportional to η and N . We can determine the conditional posteriors
based on the conditional priors in (4.14) as follows [60], [62]:

p(Zij = 1 | θ⃗j, η;Z−i) =


n−i,j

N−1+η
p(X⃗i | θ⃗j, Zi) if j ∈ R∫ ηp(X⃗i|θ⃗j ,Zi)p(θ⃗j)

N−1+η
dθ⃗j if j ∈ U

(4.15)

The equation that describes a Dirichlet process mixture of LNB distribu-
tions indicates the presence of an empty cluster whenever an observation is
assigned to generate accordingly. This reinforces the idea of an infinite mix-
ture model. If all observations are assigned to other clusters during sampling
iterations, the represented cluster becomes empty and transforms into an
unrepresented cluster. The model proposed here is comparable to a Chinese
restaurant process, featuring a restaurant with an infinite number of tables.
In this process, a restaurant boasting infinitely many tables is seen as a mix-
ture of components. At the outset of the process, the first customer (i.e.
data observation) takes up the initial table. As the process nears its end, the
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second-to-last customer may either select the first unoccupied table or opt
for an occupied one with a probability dependent on the number of people
already seated there [60].

4.2.3 Complete Algorithm

The posterior distribution for infinite LNBMM is estimated using MCMC
methods. These statistics-based sampling methods can be used to generate
samples from complex distributions appropriately. In order to cope with the
intractable forms of posterior distributions in mixture models, Gibbs sam-
pling and Metropolis-Hastings (M-H) MCMC techniques have been employed
in our study [59,63]. First, during the initialization step, we assume that all
observations belong to the same cluster. In the following step, we update
the number of represented components based on the previous step, which is
the generation of the Z⃗i. Accordingly, when a sample is assigned to an un-
represented cluster, M increases by one, and if a component becomes empty
during the iterations, M decreases by one [64]. It should be noted that, to

obtain a sample of the vector Z⃗i, we must evaluate the integral in (4.15),
which is an analytically intractable problem. Thus, we used the technique
proposed in [62], [60] to approximate this integral. This method produces a

Monte Carlo estimate by sampling from the priors of α⃗j, β⃗j and γ⃗j. According

to the method proposed in [63], [65], we can simulate from the α⃗j, β⃗j and γ⃗j
posterior distributions by applying the Metropolis-Hastings method. Since
the conditional posterior given by (4.8) is not widely known, this method is
used to avoid direct sampling of mixture parameters. To simulate the latent
variable δ⃗j = {θ⃗j} from its posterior distribution, we employ the Metropolis-
Hastings approach, a widely used technique for Bayesian inference. A crucial
initial step in this methodology is the definition of a suitable proposal dis-
tribution that facilitates the exploration of the posterior distribution. In the
present study, we adopt a random walk Metropolis-Hastings (M-H) approach

to propose new values for δ⃗j. Specifically, our chosen proposal distribution is
expressed as follows for all positive δ̃jd > 0, where d ranges from d = 1, . . . , D:

δ̃jd ∼ LN (log(δ
(t−1)
jd ), σ2) (4.16)

LN (log(δ
(t−1)
jd ), σ2) is the log-normal distribution with mean log(δ

(t−1)
jd ) and

variance σ2. Note that (4.16) can be expressed as log(δ̃jd) = log(δ
(t−1)
jd ) + ϵ1,
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Algorithm 3 Nonparametric Bayesian learning of MBMM

1. Process

2. initialize assignments and parameters

3. repeat

4. Generate Z⃗i and then update nj, for i = 1, . . . , N , j = 1, . . . ,M .

5. Update the number of represented components denoted by M.

6. Update the mixing parameters for the represented components by πj =
nj

N+η
, j = 1, . . . ,M

7. Update the mixing parameters πU = η
N+η

of the unrepresented clusters.

8. Generate the mixture parameters α⃗j, β⃗j and γ⃗j from (4.8) for j =
1, . . . ,M using Metropolis-Hastings

9. until Convergence

where ϵ1 ∼ N (0, σ2). In the subsequent phase of the Metropolis-Hastings (M-
H) algorithm, it is imperative to establish an acceptance ratio r to determine
whether the newly generated samples at iteration t should be accepted or
rejected for the subsequent iteration. The acceptance ratio is defined as
follows:

k =
π(δ̃j | Z,X )

∏D
d=1 LN ((δ

(t−1)
jd ) | log(δ̃jd), σ2)

π(δ⃗
(t−1)
j | Z,X )

∏D
d=1 LN (δ̃jd | log(δ(t−1)

jd ), σ2)
(4.17)

In outlining the entire Bayesian learning method proposed in this study, Algo-
rithm 3 provides a step-by-step procedure based on the Metropolis-Hastings-
within-Gibbs sampler.

4.3 Experimental Results

In this part of our research, we implemented our proposed algorithm across
three real-world medical images involving lung tissue samples, histological
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breast tissue images, and histological malaria images. To effectively apply
our models to these datasets, a preliminary step involves extracting features
from images, accompanied by requisite preprocessing. Feature extraction was
conducted utilizing the Scale-invariant Feature Transform (SIFT) [42,66] and
Bag of Visual Words (BoVW) [43]. The Bag of Visual Words method repre-
sents images as patches, with distinctive patterns derived from each image.
SIFT served as the feature detector in this process. As part of the pre-
processing phase, we normalized the datasets using the min-max method
(X = X−Xmin

Xmax−Xmin
), presuming that all input values fall within the range of

(0,1). We assess the efficacy of our proposed algorithm against FLNBMM us-
ing the MCMC-based Bayesian approach, IGMM, and EM-based GMM. The
accuracy is assessed through a confusion matrix comparing predicted labels
with the actual ones. To evaluate our model performance against other meth-
ods, we use standard metrics based on the confusion matrix, which are de-
fined as follows: Accuracy = TP+TN

TP+TN+FP+FN
, P recision = TP

TP+FP
, Recall =

TP
TP+FN

, F1− score = 2 ∗ Precision∗Recall
Precision+Recall

. In this context, TP (true positives),
TN (true negatives), FP (false positives), and FN (false negatives) denote
the respective total counts, providing a comprehensive representation of the
classification outcomes.

4.3.1 Malaria Detection

Malaria is potentially a fatal disease and it is essential to be diagnosed quickly
and accurately [46]. One of the most common methods of diagnosing malaria
is through microscopic inspection. Microscopists use a ”blood smear tech-
nique”. By examining the amount and shape of blood cells, they can detect
the presence of malaria-infected cells. Infected cells have a small clot, while
uninfected cells do not. For reference, some images of blood cells are pictured
in Fig 4.2. The process of diagnosing diseases through analyzing smears is
a complex as it requires the examination of a large number of samples with
utmost accuracy. So, integration of a reliable machine learning approach
can offer significant benefits in detecting such diseases. In our research, we
evaluated the performance of our model using a cell image dataset of 2000
samples obtained from the National Institutes of Health.
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4.3.2 Lung Cancer Diagnosis

Lung cancer is one of the most common causes of cancer-related deaths world-
wide, and early detection is crucial for the patient’s survival. Lung cancer
can spread quickly if not detected in the early stages. Therefore, an accurate
diagnosis is necessary to ensure timely treatment and increase the chances
of a successful recovery. In our experiment’s second phase, we applied our
model to analyze lung histopathological images [48]. Our dataset contained
1500 images that featured benign, adenocarcinoma, and squamous cell carci-
noma tissues related to lung cancer. To provide a better understanding, we
have included an example of each class in Fig. 4.3.

4.3.3 Breast Tissue Analysis

Breast cancer represents a significant health concern for women worldwide.
Unfortunately, it is often a leading contributor to cancer-related fatalities
[44]. Early detection is crucial in improving survival rates. Despite exist-
ing strategies, current approaches to combat breast cancer have not been as
practical as desired. Evaluating breast cancer histology involves analyzing
the chemical and cellular features of cells from a suspicious tumor, allow-
ing for the distinction between benign and malignant lesions based on these
histological characteristics [67]. Fig. 4.4 exhibits some breast tissue sam-
ples.The provided image samples of breast tissues demonstrate that darker,
more violet-colored tissue is more likely to be cancerous than those with rose
colors. However, it is worth noting that this is only sometimes the case,
making the learning model more challenging. The use of machine learning
techniques can improve the precision of breast cancer diagnosis and reduce
the number of false diagnoses. We tested our method on a publicly available
dataset with 500 samples for each malignant and benign label.

Figure 4.2: Samples of infected and uninfected cells.

42



Table 4.1: Results on Malaria Dataset

Method Accuracy Precision Recall F1-score
ILNBMM 89.48 88.16 91.20 89.65
FLNBMM 87.45 85.87 89.65 87.72
FGMM 85.80 84.66 87.45 86.03
IGMM 85.25 84.32 86.60 85.45

Figure 4.3: Images of three types of lung tissues.

Table 4.2: Results on Lung Cancer Dataset

Method Accuracy Precision Recall F1-score
ILNBMM 86.27 90.10 89.20 89.65
FLNBMM 84.13 89.12 86.80 87.94
FGMM 80.00 88.97 79.90 84.19
IGMM 79.47 88.53 79.50 83.77

Figure 4.4: Benign and malignant samples of breast tissue.

Table 4.3: Results on Breast Tissue Dataset

Method Accuracy Precision Recall F1-score
ILNBMM 84.60 87.28 81.00 84.02
FLNBMM 82.60 84.24 80.20 88.17
FGMM 77.07 86.12 78.20 81.97
IGMM 76.00 85.04 77.61 81.15
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Chapter 5
Conclusion

The focus of this thesis was to develop a range of unsupervised methods and
apply them to medical problems with the primary objective of providing po-
tent alternatives to commonly utilized models such as the Gaussian Mixture
Model. Our proposed models are based on Libby-Novick Beta (LNB), which
is a member of the Beta family. In comparison to the conventional Beta
distribution, the LNB has more shape parameters, providing considerable
flexibility when fitting data. In real-world data modeling, LNB can capture
skewness and kurtosis of data because of this characteristic [68]. According
to previous research [34, 37], LNB mixture model (LNBMM) has demon-
strated convincing results in some applications including pattern recognition
and image analysis.

First, we introduced a novel finite mixture model that is based on the
Libby-Novick Beta distribution. To estimate the parameters of our mixture
model, we utilized a deterministic methodology, maximum likelihood, via an
expectation maximization algorithm and Newton-Raphson was used to up-
date the parameters iteratively. To evaluate our model we used three medical
applications and compared its performance with two other mixture models:
Gaussian mixture model and Beta mixture model. Our results indicate that
Libby-Novick Beta mixture model performs better than conventional and
commonly used methods.

Then we have discussed a method for selecting the number of components
in Libby-Novick Beta mixtures based on MML. According to the results, the
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MML model selection method performs well on real-world data. The reason
for this can be attributed to the fact that the prior term in this criterion is
present in a manner that is not present in the other criteria. Our algorithm
was evaluated for three medical applications at the end.

Finally, we proposed a nonparametric Bayesian framework for multivari-
ate Libby-Novick Beta mixture models. In particular, we used the Dirichlet
process to extend the finite model to the infinite case in order to determine
the optimal number of components. The motivation for employing Bayesian
learning for parameter estimation is in its ability to integrate prior knowl-
edge about parameters, hence mitigating the risks of under- or over-fitting.
In practical implementations, our proposed framework demonstrated supe-
rior performance when compared to both GMM and FLNBMM.

To conclude, our proposed models are robust and flexible according to
the results of our real-world experiments.
For future research directions, incorporating feature selection into our pro-
posed frameworks could be beneficial. Additionally, evaluating our Bayesian
models across different applications could provide a more comprehensive un-
derstanding of their performance.
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