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Abstract 

A Comparison of Beam and Solid Element Based Modelling 

Approaches based on a Developed Tool for the Nonlinear Analysis of Reinforced Concrete 

Structural Components 

 

Clement Uwitonze 

 

Nonlinear material models are needed for the capacity analysis of structural components. Often, 1D-beam 

element-based models are preferred over more sophisticated solid element-based modeling approaches due 

to their efficiency. However, their reliance on uniaxial material representations often overlooks the crucial 

influence of shear stresses, potentially leading to inaccuracies in predicting structural responses. In response, 

this study introduces a novel approach by integrating a multi-axial 3D concrete model within a 1D finite 

element framework, effectively capturing the effects of shear stresses. The proposed multi-axial elasto-

plastic concrete model offers a comprehensive representation of concrete behavior under both tension and 

compression, thus enhancing the predictive capabilities of the analysis. By adopting a 1D beam-type finite 

element formulation, the research enables a detailed examination of shear wall behavior under lateral 

loading conditions. The main purpose of the thesis is to validate the developed finite element analysis tool 

which employs a sophisticated 3D concrete material model. The inelastic material behaviour of steel 

reinforcements bars has also been considered in the analysis. For the beam-type finite element, a 2-node 

formulation was adopted based on the Timoshenko theory so that the shear deformation effects are also 

considered in the analysis. For the modelling of the concrete bulk with 3D material model, the 8-node solid 

element with 6-degreesof-freedom per node including the nodal rotations was adopted. The numerical 

formulation is then used for pushover analysis of beams and shear walls and compared with experimental 

results from literature for validation purposes. Five different structural components are tested. Validation 

efforts include comparisons with experimental data from existing literature and alternative modelling 

approaches. Parametric studies are conducted by changing the span sizes of the structural components. 
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Chapter 1  

Introduction 

1.1.Overview 

In the vast majority of civil engineering applications, reinforced concrete beams are used as flexural 

structural components to span distances. On the other hand, Reinforced Concrete Columns and Shear walls 

are also commonly used in building design, where those members are dominantly subjected to compressive 

stresses. 

To forecast their response, analytical and numerical techniques can be adopted. However, analytical 

solutions can only be applied to limited number of cases. For example, analytical solutions of deformations 

and internal forces of a statically determined homogeneous beam can be obtainable only if concrete does 

not crack. To completely describe the "problem," it is required to take into account the sources of cross-

sectional heterogeneity, including the influence of reinforcement, material non-linearity due to concrete 

damage, and the relative slip between constitutive materials. 

Since the problem is no longer statically determinate or linear elastic, a non-linear analysis technique must 

be adopted to obtain the solution that satisfies equilibrium and compatibility conditions along with the 

constitutive material laws. 

In the context of phenomenological material modeling, the inelastic response of materials is associated with 

two distinct mechanical phenomena: plasticity, involving dislocations along slip planes, and damage, which 

entails the nucleation and coalescence of cracks. Phenomenological models grounded in coupled 

elastoplastic-damage theory exhibit the ability to capture both the enduring deformations caused by the 

plastic component and the reduction in elastic moduli resulting from the damage component. 
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1.2.Problem Statement 

Understanding the failure behavior of reinforced concrete structural components is very important in order 

to ensure the safety, durability, and good performance of civil engineering structures. To conduct accurate 

and reliable failure analyses, engineers and researchers rely on advanced computer modeling approaches. 

The modelling approaches for the analysis of structural components made of reinforced concrete are based 

on both beam-element and solid-element modelling. Beam-element models are widely used for the study of 

structural components where uni-axial material models are commonly used due to their computational 

efficiency. However, the significance of shear stresses on the behavior of the material is ignored by such 

material models. 

1.3.Objective 

The objective of this study is a multi-axial elasto-plastic material model for concrete and adopt it for both 

3D solid-element as well as 1D beam-element type modelling to integrate the impacts of confinement 

pressure and shear stresses. In order to do this, a multi-axial elasto-plastic material model for concrete is 

suggested and used for modelling 1D beam elements in along with 3D solid elements. 

 To achieve this objective, the following specific goals will be pursued: 

• Examine the approaches employed in conducting a 3D structural analysis of reinforced 

concrete structural elements, integrating a multi-surface elasto-plastic material model.  

• Validate the developed modelling techniques using the ABAQUS program. 

• Check the correctness of the numerical technique by comparing the findings to prior work's 

experimental results. 

1.4.Scope 

To achieve the objective of this research, computational technology is adopted. The FORTRAN 

programming language is used to implement the numerical procedures. This program offers a user-friendly 

interface that simplifies the process from pre-processing to post-processing. It requires minimal input and 
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the user is guided with keywords throughout the process. The 1D user-guide is described in Appendix 1 and 

the 3D user-guide is in Appendix 2. 

Comparisons are made between Beam and solid type modelling approaches with the purpose of identifying 

the confinement effects. To capture the behavior of concrete beyond elasticity, the material model based on 

the plasticity theory is used Both steel and FRP reinforced concrete beams will be investigated. Various 

failure mechanisms are identified. 

To ensure the reliability of the developed tool, its results with those based on experimental data were 

compared. Additionally, a finite element model is crafted within the ABAQUS software platform to analyze 

reinforced concrete beams and shear walls comprehensively. ABAQUS offers versatile capabilities for 

analyzing such structures, accommodating steel or FRP reinforcements. Consequently, employing 

ABAQUS provides a reliable means to corroborate the findings obtained from the numerical approach. 

1.5.Outline of the Thesis 

The thesis is structured across six chapters, with each contributing distinct insights and analysis to the 

overarching research endeavor. 

• Chapter 2 offers a comprehensive review of modelling techniques, delving into existing 

formulations and models pertinent to reinforced concrete structures. It also provides a succinct 

overview of prior literature and publications in the field, including discussions on finite element 

modelling. Furthermore, this chapter concludes with a detailed presentation of the case study. 

• Chapter 3 elucidates the intricacies of the multi-surface Elasto-Plastic Material Model, outlining 

the behavior of elasto-plastic materials and expounding upon the components of plasticity models. 

• Chapter 4, the finite element model within the ABAQUS software is meticulously delineated, 

encompassing concrete, reinforcement, and FRP elements. 

• Chapter 5 serves as the focal point for presenting the primary findings and results derived from 

the numerical methodology, encompassing both FORTRAN code and ABAQUS simulations. This 

chapter meticulously validates the 3D and 1D material models against ABAQUS simulations and 

experimental data from prior studies. 

• The conclusion and future work recommendation  
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Chapter 2   

Literature review 

2.1.Introduction 

The development of extremely powerful computers and sophisticated non-linear numerical analysis 

software, however, as well as the challenges in finding a prognostic solution for complex structural cases 

have all encouraged the adoption of numerical methods for the majority of engineering applications. The 

most used numerical method right now is the finite element method. If used correctly, it offers quick, 

efficient solution schemes with the accuracy the user specifies, based on the specific instance. 

The adoption of the finite element approach in the given research is decided by a variety of parameters, 

including: 

a. The size of the construction, whether it is a single member or the full structure 

b. The problem's difficulty (one dimension, two dimensions, or three dimensions) 

c. The desired outcomes (global or local features) 

d. The degree of accuracy 

e. The model's limitations (material or mathematical non-linearity, computational apparatuses 

available) 

When performing a limited component examination, the examiner's main pressing concern is usually the 

balance between precision and computational expense. For the global investigation of a huge structure, a 

full model would most likely be computationally "expensive" or even superfluous. When looking at simple 

geometries or structural components, on the other hand, a more sophisticated model that can describe more 

complicated phenomena is often possible and necessary. Non-linearity types that arise from either the 

material manner of behaving or the calculation of the example, as well as nearby scale impacts. To capture 

the aforementioned properties, advanced computational approaches must be created. The term "advanced" 
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can refer to more sophisticated constitutive models for materials or to additional components that must be 

incorporated in addition to the structural components that comprise the majority of the model. 

In structural engineering practice, beam-type one-dimensional finite element formulations are frequently 

utilized as analysis and design tools for structural components. These models offer computational efficiency, 

which is particularly crucial in nonlinear analysis scenarios, and facilitate easier interpretation of results for 

design purposes. Among the various modeling approaches employed for the nonlinear analysis of reinforced 

concrete buildings, the lumped plasticity approach stands out as one of the simplest and most commonly 

adopted methods. This approach leverages the predicted moment distribution in frame buildings subjected 

to earthquake-induced lateral loads, allowing engineers to effectively assess the structural response and 

design appropriate reinforcement strategies. 

2.2. FRP reinforced members 

High­ strength synthetic or organic fibers encased in a resin matrix typically make up FRPs. For applications 

in civil engineering, carbon (CFRP), aramid (AFRP), and glass (GFRP) are the FRPs that are most 

frequently utilized. In the real world, they are used as ground anchors, reinforcement for reinforced and 

prestressed concrete elements, and for strengthening or repairing existing concrete structures. Due to a 

dearth of research information and design guidelines, its extensive application in reinforced concrete 

structural engineering has been severely constrained. 

These materials' strong corrosion resistance, high tensile strength, and light weight are advantages. 

According to the kind of FRP product and surface treatment, other typical features of FRP materials include 

their relatively low modulus of elasticity, linear stress-strain relationship till failure, and varied bond 

properties (Galati et al., 2006). Both the bond performance of reinforcement and the shear strength of FRP 

materials are impacted by their anisotropic behavior. Additionally, splitting cracks and concrete cover 

failure may result from the anisotropic behavior of FRP bars and the high transverse coefficient of thermal 

expansion with respect to concrete (Aiello et al., 2001). 

In comparison to steel bars, FRP bars typically have a lower elastic modulus and a higher tensile strength. 

In order to meet the restrictions of deflection and crack width, FRP reinforced concrete beams must thus be 

over reinforced (Jaeger et al., 1997). As a result, the serviceability limit states frequently determine the 
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design. As a result, numerous research projects have been focused on developing accurate analytical, 

numerical, and design methods for the prediction of deflections and crack width (Gao et al., 1998) as well 

as theoretical advancements regarding specific models of composite structures (Barretta et al., 2015; 

Barretta & Luciano, 2014). Some of the suggested techniques (Gravina & Smith, 2008) make use of the 

local bond slip relationship that distinguishes the FRP-concrete interface and is a distinctive quality of every 

single FRP product. Other studies (Kara et al., 2013) are aimed to calibrate the coefficients of a simple 

equation for the prevision of the deflection in the frame of the Branson's method (Branson, 1977).  

When it comes to FRP and steel bars, the bond to concrete shear stress transmission phenomena is different. 

This is caused by the FRP bars' lower modulus of elasticity, the resin matrix's lower shear strength compared 

to steel, and the different coefficient of thermal expansion. Additionally, in the case of FRP and steel bars, 

the impact of transversal stresses and the size of the concrete cover are also different (Seo et al., 2013). 

There have been several experimental investigations on this subject (Cosenza et al., 1997); some of these 

were based on pull-out tests, which seem inappropriate for examining the bending behavior of concrete parts 

(Oh et al., 2007). To assess the relationship between concrete strength and bond properties, additional 

investigations were carried out. According to Achillides and Pilakoutas (2006), the strength of the concrete 

has no bearing on the binding of FRP bars to it. Concrete with strengths ranging from 29 to 60 MPa was 

used in Okelo and Yuan's (2005)  study of the bond behavior of FRP reinforced parts. They discovered that 

when the concrete grade rises, bond performance is better. According to some research, a strong connection 

is not necessarily desired in FRP bars since it may cause localized overstress and an early failure of the 

member (Darby et al., 2007). 

The absence of plastic deformations in FRP bars indicates that the reinforcements are incompatible with 

ductile behavior, which is needed, for example, in main members (beams and columns) of earthquake-

resistant frame structures. Due to this, the majority of applications for FRP reinforcing bars have focused 

on structural components in many nations, such as floor structures, concrete slabs, and concrete members 

supporting hollow-tile floors, for which ductility is not a major concern (Rizkalla et al., 2003). 

Utilizing FRP bars in the building of bridge decks is another useful usage for them. In this instance, the 

static redundancy of the structure and the FRP bars' superior corrosion resistance properties play a major 
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role in limiting deflections. Additionally, these structures frequently lack transverse reinforcement, leaving 

them vulnerable to a shear-related early collapse (Tureyen & Frosch, 2002). 

In order to resist lateral stresses brought on by wind or seismic occurrences, multistory structures must have 

a suitable amount of stiffness. In compared to alternative lateral-resisting systems, reinforced concrete shear 

walls, which have a high in-plane stiffness, have been shown to provide good, cost-effective lateral 

resistance (Cardenas et al. 1973; Wyllie et al. 1986; Fintel 1995). Shear-wall constructions have the 

advantages of reduced deformation and nonstructural element damage as compared to frame-type structures. 

Despite this, the weather conditions that lead to the extensive use of deicing salts during the winter months 

typically speed up the rusting of steel reinforcement, resulting in the degradation of reinforced concrete 

buildings, particularly bridges and multistory garages. 

One of the various methods proposed to improve the corrosion resistance of reinforced concrete structures 

is the use of fibre reinforced plastic (FRP) rebars in place of steel rebars (Clarke, 1993). Particularly in 

situations where traditional steel-reinforced concrete has produced poor service, FRP rebar provides 

tremendous promise for application in reinforced concrete construction (Neale & Labossière, 1992). 

Due to these circumstances, other forms of reinforcement were required to solve the corrosion issues. ACI 

440R (ACI 2007; Fédération Internationale du Béton (fib) 2007; ISIS Canada 2007) states that the effective 

application of fiber-reinforced polymer (FRP)-reinforcing bars as concrete reinforcement in a wide range of 

building elements has achieved an acceptable level. FRP bars have been used into a variety of building 

elements, including beams, one-way and two-way slabs, and columns (Kassem et al. 2011; Bakis et al. 2002; 

El-Salakawy et al. 2005; Sharbatdar and Saatcioglu 2009; Tobbi et al. 2012). This is because of their 

benefits. More than 20 years ago, the initial use of FRP bars in reinforcing beams demonstrated how 

expensive they were compared to steel bars. Although FRP materials are more expensive than steel, they 

also have cheaper shipping and handling expenses as a result of the smaller weight of the components. In 

addition, compared to steel-reinforced structures, FRP-reinforced structures require far less long-term 

maintenance. Investigation of the inelastic behavior of shear walls completely reinforced with FRP is 

required in order to construct a multistory building with acceptable stiffness employing FRP reinforcement. 
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Yamakawa and Fujisaki (1995) examined seven carbon-FRP (CFRP) grid-reinforced, one-third scale shear 

walls with dimensions of 800 mm by 950 mm by 80 mm. The walls have double-layered CFRP grid 

reinforcement with 100 mm meshes, giving them a 0.8% reinforcement ratio. When 1% drift and minimal 

energy dissipation were attained, the specimens quickly lost their ability to support lateral loads. This 

decrease in capacity was caused by three major flaws: 

(1) The CFRP grids could not support compressive stress and broke under low compressive 

stresses; 

(2) Adequate development lengths needed to be designed to prevent the reinforcing bars from 

pulling out of the wall base; and 

(3) The CFRP grid reinforcement did not provide concrete confinement. 

According to research on concrete shear walls reinforced with steel bars, factors affecting the behavior of 

shear walls, such as wall aspect ratio and configuration, axial load, shear-stress demand, and wall 

reinforcement ratios, have received the majority of attention (Barda et al. 1977; Wallace and Moehle 1992; 

Sittipunt et al. 2001). The design of reinforced concrete shear walls is governed by code provisions such as 

CSA A23.3 (CAN/CSA 2004) and ACI 318 (ACI 2008), which place emphasis on providing the necessary 

strength and stiffness to prevent or reduce damage from frequent earthquakes while ensuring adequate wall-

deformation capacity (Massone and Wallace, 2004). 

Therefore, this study focused on the behavior of shear walls with a medium aspect ratio, which are typical 

in parking garages and medium-rise structures. According to Jiang and Kurama (2010), the majority of shear 

walls built in the US and Canada are classed as medium rise structures with wall aspect ratios that generally 

range from 2 to 4. The lateral response of such shear walls is greatly influenced by nonlinear flexural and 

nonlinear shear deformations (Massone et al., 2006). 

2.3.Modelling of Structural Components 

2.3.1. Introduction 

The process of creating a three-dimensional representation of an object or system using computer software 

is referred as 3D modeling. It allows the visualization and analyze of complex structures in a virtual 

environment. Simplified models or reduced-order models (ROMs) also known as reduced models, are 



9 

 

approximations of complex systems. They aim to capture essential behavior while minimizing 

computational effort. applying a single axial load (force or displacement) along one direction to a structure, 

the Sugano model is a uni-axial model that considers axial stress-strain relations along the longitudinal 

fiber. This modeling approaches determine material properties and behavior under simple loading 

conditions. 

Since 3D solid components demand more computing work than 1D structural elements or 2D continuum 

elements, beams are often not simulated with them. The use of 3D features has several benefits. They are 

able to detect failure modes that other types of elements cannot, such as spalling and anchoring failure in 

support zones. Various modelling techniques may be used to represent the reinforcement in 3D solid parts. 

Each bar is represented by one 3D solid element with a different constitutive relation in a 3D solid element. 

With this approach, it is feasible to represent the reinforcement as embedded, allowing for complete 

interaction between the two materials, or to put an interface layer between the concrete and steel. The 

interface layer needs to be defined using a constitutive model in order to be able to prescribe the bond-slip 

action between the two materials. The reinforcement can alternatively be described as a 1D truss with each 

bar's cross section defined within a 3D solid or as a 2D plane with an equivalent thickness of reinforcement 

layer. According to Lykidis et al. (2008) in both situations, it is possible to represent the bond-slip relation 

in commercial software using specific interface components, such as embedded reinforcement or line-solid 

interfaces for 1D and plane-solid interfaces for 2D. 

In general, a line with a specific cross-sectional area represents a one-dimensional element. It can be 

composed of a single material, which would make it homogeneous, or of multiple materials, which are then 

homogenized across the cross-section. The simplest FE model that can be implemented, which consists of 

two-node bar or truss elements with one or two translational degrees of freedom per node. Higher order 1D 

elements are also used when capturing more complex phenomena, which contain more than two nodes and 

higher order approximating functions. Beam or structural elements occupy a unique position within the 

'family' of 1D elements. 

As depicted in Figure 2-1, they exist in their simplest form as two-node elements with a vertical translational 

and rotational degree of freedom per node. It is likely the most well-known and extensively used finite 

element, owing primarily to the simplifications that typically underlie its constitutive theories and its 
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minimal computational cost, which make it very user-friendly. The principle that "plane sections remain 

plane and perpendicular to the reference axis of the beam," also known as the Euler-Bernoulli beam theory, 

covers an important section of such theories (Ottosen and Petersson, 1992). When the global response of a 

structure as a whole is desired, or when structural cases of extreme deformation are examined, they could 

be employed. 

 

Figure 2-1. Euler-Bernoulli beam theory 

The Timoshenko beam theory is also often used (Hjelmstad, 2005). This theory says that plane parts stay 

flat, but they don't have to be perpendicular to the reference line. Timoshenko bar component models are 

also employed for the global primary analysis; they offer benefits comparable to those of Euler-Bernoulli 

components, but their major usage is when shear activity is believed to be crucial for the prediction of the 

reaction of the part viable (Figure 2-2). 
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Figure 2-2. Timoshenko beam theory  

The plane-frame element can be used with either of the two beam theories talked about so far, and it also 

takes into account the axial shift of the element's reference axis (Figure 2-3). The pertinent component is 

typically used in applications where the hub movement of the framework is important, such as recreations 

of plane casing structures. Consideration of the axial displacement degree of freedom is beneficial for 

modelling effects and geometries that occur and exist in the axial direction of the model, such as the 

reinforcement effect and the bold-slip in reinforced concrete members. 

 

Figure 2-3. Plane-frame element 

In addition to the previously mentioned fundamental structural elements, more advanced 1D beam-type 

models have been created. These are typically composed of multiple materials, homogenized across the 

cross-section, and modelled using more specialized techniques. The development of such models was 

necessitated by the need to account for more complex tasks in a simplified but nonetheless representative 

manner. These tasks may involve several localized phenomena that would be impossible to capture using 

the Euler-Bernoulli or Timoshenko beam theory alone. 

As previously mentioned, simulating large civil engineering structures may be challenging. Therefore, a 

simplified technique has been developed. As a result, a method that has been developed has been provided 

(Spacone et al., 1996; Mazars et al., 2004; Kotronis and Mazars, 2005). Specifically, the assembly under 

consideration is discretized into beam elements that adhere to Euler-Bernoulli or Timoshenko beam theory 

Typically, beams and other flexural members are analyzed using the Euler-Bernoulli beam theory. When 

shear effects are stronger, the Timoshenko theory for beams is used for understanding them. The unique 

aspect of the applicable method is the subdivision of the cross-section into fibres (Figure 2-4). In Figure 2-

4, (i) Reinforced concrete specimen (ii) Discretization into elements, nodes, degrees of freedom (iii) 

Separation of the cross-section into fibers. Each fibre represents a finite cross-sectional area and is created 

from one of the constituent materials, concrete or steel. 
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Figure 2-4. Multi-fiber beam model  

The basic presumption that plain portions stay planar stays true in the suggested method's implementation 

strategy. The well-known beam theories discussed in the preceding paragraph are relevant based on that 

supposition. 

The model's calculation is carried out at three different levels: 

a) the element level; 

b) the sectional level; and 

c) the fiber levels. The nodal displacements of the simulated member are connected to the 

normal strains (in the case of the Euler-Bernoulli beam theory) through the fundamental 

beam theories using a connection of the form. 

 
𝜀𝑥𝑥 =

𝜕𝑢𝑜

𝜕𝑥
+ 𝑧

𝜕2𝑤

𝜕𝑥2
 Eq.  2.1 

Where, 𝜕𝑢𝑜 𝜕𝑥⁄ , accounts for the axial deformation of the reference axis of the beam,𝜕2𝑤 𝜕𝑥2⁄  is the 

curvature, and z denotes the position of the fiber along the cross-section of the beam. In order to determine 

the stress at the location where the fiber resides along the cross-sectional height, the sectional strain of each 
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fibre as determined by Eq.  2.1 is then placed into the constitutive law that is allocated for the material of 

the fibre. 

Composites in the infrastructure sector have the potential to offer considerable cost and durability reductions 

if used properly. High strength-to-weight and stiffness-to-weight ratios, chemical and corrosion resistance, 

adjustable thermal expansion and damping properties, and electro­ magnetic neutrality are additional 

benefits. These benefits might result in improved safety and life expectancy as well as cost savings for 

equipment, fabrication, and maintenance. 

Although Galileo's simple theories may have inspired early plasticity theories (Jirásek & Bazant, 2002), the 

linear-elastic model, which takes Hooke's rule as a given, has become the most widely used material model. 

But as processing power has increased and numerical analysis methods have been developed, nonlinear 

material models and analysis methodologies have advanced. The two primary methodologies created for 

the investigation of nonlinear material behavior can be seen to be the theory of plasticity and damage theory. 

The idea of plasticity, which first emerged in the late nineteenth century, has been the preeminent framework 

for studying material nonlinearity. However, the method's predictive capability was not as great for brittle 

materials (like concrete and rock) as it was for ductile materials (like metals). 

The continuum damage theory was first published by Kachanov (1958a), in which a damage variable was 

used to describe the flaws in the material matrix. Although defects can be studied at the micro, meso, and 

macroscale levels, the mechanical behavior of various materials, such as metals and rocks, is similar enough 

that their common mesoscopic properties by using a few energy mechanisms in the context of damage 

mechanics can be understood. (Lemaitre, 1985). 

Although they are very effective methodologies, plasticity and damage theories can capture various aspects 

of a material's inelastic response. For instance, whereas damage models might take material moduli 

deterioration into account, plasticity models are founded on the idea of persistent (irreversible) deformation.  

One can account for both persistent deformations and the degradation of material moduli brought on by 

inelastic processes by coupling the plastic and damage models. A number of coupled elastoplastic-damage 
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models have been used to simulate the non-elastic mechanical behavior of a variety of materials, including 

steel, concrete, porous metals, and geomaterials. 

2.3.2. Concrete Modelling 

The field of constitutive modelling in concrete is a complex and diverse area of study, encompassing 

numerous proposed methodologies. The primary objective of this work is to examine the modelling of 

concrete through the utilization of plasticity and continuum damage theories.  

Concrete is a material that exhibits sensitivity to pressure, with distinct variations in its behavior when 

subjected to compressive and tensile forces. When subjected to uniaxial tensile loading, the initiation of 

tensile cracks occurs in a direction perpendicular to the primary tensile stress. These cracks have the 

potential to merge together, resulting in the formation of bigger cracks.  

As a result, once the tensile strength threshold is attained, a decline in strength becomes evident by a 

pronounced decrease in stiffness on the stress-strain curve. Moreover, the existence of tensile cracks also 

leads to a decline in material moduli. In order to incorporate the aforementioned attributes of concrete inside 

the plastic-damage constitutive modelling framework, the process of softening is typically represented by 

the progressive development of yield criteria. Additionally, the deterioration of material moduli is accounted 

for by incorporating damage factors. It is important to acknowledge that instead of being distributed 

uniformly over the entire volume, inelastic strains tend to concentrate in the proximity of macro fractures.  

Therefore, it may be inferred that plasticity and damage models, which are grounded in the continuum 

framework, can only offer imprecise predictions. 

The inelastic behavior of concrete under uniaxial compression loading is typically characterized by the 

formation of compression cracks that frequently emerge in a direction parallel to the applied compressive 

stress. The tangential stiffness of a material decreases as it is subjected to increasing deformation beyond 

its elastic limit, ultimately leading to a reduction in its ability to resist tangential forces. Additionally, the 

compression stress experienced by the material reaches its maximum value at the point of compressive 

strength. Under conditions of continuous loading, a regime of softening occurs. Just like in the case of tensile 

strength, the moduli of materials also experience degradation due to inelastic processes. 
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The behavior of concrete can undergo considerable changes, particularly in the case of multiaxial stress, 

with a notable impact observed in triaxial compressive loading scenarios. The strength and ductility of 

concrete exhibit a significant rise as the confining pressure is elevated. Hence, it is crucial to consider and 

incorporate this particular attribute of concrete in constitutive models, especially where confinement 

pressure plays a key role. In the context of multiaxial tensile testing, it is observed that the inelastic 

behaviour is mostly influenced by the maximum tensile stress.  

The aforementioned factors lead to the prevalence of Rankine-type yield surfaces, characterised by 

triangular shapes in the deviatoric plane, in tensile modelling. Conversely, Drucker-Prager type yield 

surfaces, which exhibit round shapes in the deviatoric plane, offer superior performance in compressive 

modelling of concrete. Simultaneous utilisation of several yield criteria, such as the Rankine criterion for 

tension and the Drucker-Prager criterion for compression, is a prevalent practice in order to get a more 

precise representation of both compressive and tensile features. The utilisation of a multi-surface technique 

enables the incorporation of distinct damage evolutions in both tension and compression, hence enhancing 

the model's capacity to accurately represent the observed behaviour. 

The authors Feenstra and de Borst (1996) proposed a multi-surface plasticity model to analyse the behaviour 

of plain and reinforced concretes subjected to monotonic biaxial loading. The composite yield surface is 

comprised of the Rankine criterion for tension and the Drucker-Prager criterion for compression. As 

previously stated, the corners resulting from the junction of various yield requirements were addressed 

through the use of Koiter's rule. The authors place significant emphasis on the fact that their model does not 

take into account the loss of rigidity. 

Although the yield requirements and hardening/softening formulas exhibit variations, Erkmen & Sarikaya 

(2019) and Feenstra & de Borst (1996) demonstrate certain similarities. The utilisation of two distinct 

surfaces to represent tension and compression, and their ability to undergo distinct hardening or softening 

processes, has enabled enhanced control in the simulation of concrete. The model proposed by Feenstra & 

de Borst (1996) is appealing due to its incorporation of connection between various damage variables. 
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The hardening plasticity model for planar concrete under multiaxial compression was developed by Grassl, 

et al. in 2002. The yield surface proposed in the work of Menetrey and Willam (1995) was utilised by the 

study authors. 

Subsequently, Grassl and Jirásek (2006a) proposed an integrated plastic-damage model to analyse the 

behaviour of concrete subjected to different types of stress, including tension, shear, and multiaxial 

compression. One notable aspect of the paper involves the examination of the requirements pertaining to 

local uniqueness in the context of coupled plasticity-damage. According to the paper, the assurance of local 

uniqueness was observed in cases where the plasticity component of the linked plasticity-damage model 

relied on the effective stress formulation. However, the authors assert that this was not consistently observed 

in the coupled scenario involving the nominal stress-based plasticity component. 

According to the model proposed by Grassl and Jirásek (2006a), the process of hardening is influenced by 

the plastic hardening variable. Conversely, the softening behaviour is achieved by the evolution of the 

damage loading function, which is controlled by the damage-driving variable. One notable aspect of the 

model is the definition of the damage-driving variable, which is expressed as a function of plastic strain.  

The model demonstrated a satisfactory level of accuracy in predicting the inelastic behaviour of concrete 

and reinforced concrete parts. The authors also said that the model shown greater suitability for monotonic 

loadings compared to tension-compression cyclic loadings, primarily because it employed a single damage 

variable for all loading regimes. 

Subsequently, Grassl et al. (2013) made enhancements to their prior model (Grassl & Jirásek 2006a), 

referred to as 'Concrete Damage Plasticity Model 1' (CDPM1), while introducing a new model known as 

'Concrete Damage Plasticity Model 2' (CDPM2). One notable enhancement was the implementation of 

distinct damage variables for tension and compression, enabling the modelling of varying stiffness 

properties of concrete during tension-compression loading cycles. In addition, the authors have addressed 

the mesh-dependency problem that is inherent in CDPM1 by incorporating complete plasticity in the post-

peak area. The authors incorporated the concept of hardening plasticity into the post-peak regime within the 

CDPM2 model. The significance of employing distinct damage criteria in concrete models, particularly 
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during tension-compression cycles, is exemplified by the contrast between CDPM1 and CDPM2 (Sarikaya 

et al., 2021). 

The proposition of employing distinct damage factors has been put forth in various other scholarly 

investigations. Lee and Fenves (1998) introduced a coupled plasticity-damage model that incorporates 

changes in the compressive and tensile stiffness of concrete through the utilization of distinct damage 

variables for compression and tension.  

One notable feature of the model is the coupling of the tension and compression damage variables. The 

phenomenon of tensile fracture closure can be observed by the recovery of stiffness when switching from 

tensile loading to compressive loading. 

In their study, Červenka and Papanikolaou (2008) put out a model that combines plasticity and fracture. The 

fracture component of the analysis is derived from the Rankine criterion, and a smeared crack technique is 

utilised in the analysis.  The plasticity component, however, relies on the Menetrey-Willam yield surface 

that was previously examined. The Rankine criterion and the yield surface given by Menetrey and Willam 

(1995) were utilised by the writers. The study conducted by Sarikaya and Erkmen (2019) utilises various 

aspects of the concrete model proposed by Červenka and Papanikolaou (2008), as well as its earlier iteration 

by Papanikolaou and Kappos (2007). However, the expression for hardening was altered as a result of the 

infinite derivative produced after the onset of hardening. 

In several prior models, the consideration of degradation in material characteristics, such as a decrease in 

strength or material moduli, was achieved by implementing external reduction factors, rather of deriving 

these reductions as a result of the model. Subsequent studies introduced plasticity-based models as a means 

to effectively represent the strength, as exemplified by the work of Ulm et al. (2002). In a similar vein, many 

scholars have employed damage-based models to effectively represent the decrease in material moduli, as 

demonstrated by the work of Comi et al. (2009).  

In recent studies, researchers have employed coupled plastic-damage models, as demonstrated by Grimal et 

al. (2008a) and Morenon et al. (2019). The plasticity-damage model proposed by Sarikaya et al. (2021) in 

their thesis might also be included in the aforementioned category. The inclusion of the plasticity component 

allows for the simultaneous analysis of both the development of permanent displacements and the evolution 
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of material strength. The damage component, however, enables the capture of the deterioration in the 

material moduli. When these two components are integrated, they form a precise analysis tool that is 

applicable in circumstances where the behaviour is governed by inelastic material characteristics. 

In the context of plasticity theory, it is necessary to have a yield function and a flow rule in order to establish 

the permissible stresses and plastic (permanent) strains. In contrast, beliefs pertaining to damage exhibit a 

greater degree of diversity. However, Armero and Oller (2000a) demonstrated that many damage 

mechanisms can be consolidated and incorporated into the conventional plasticity approach. The 

incorporation of damage strain as an additional component of total strains facilitated the attainment of this 

outcome. Given the overall independence of plasticity and damage components, it becomes imperative to 

establish distinct yield functions for each component. Sarikaya and Erkmen (2019) introduced a novel direct 

connection technique that enables the utilisation of a shared yield surface for both plasticity and damage.  

Concrete is a multifaceted substance that exhibits a stress-strain relationship that is not linear in nature. The 

observed data reveals a notable disparity in the compressive and tensile strengths, with the strength being 

contingent upon the applied pressure, specifically influenced by the confinement pressure. In order to 

discuss the aforementioned aspects, Sarikaya et al. (2020-2022) formulated an innovative composite yield 

surface and conducted an analysis of the stress integration circumstances. 

2.3.3. Computational Plasticity 

In general, engineering problems present difficulty in geometry, boundary conditions, actions, and 

constitutive behavior that is extremely challenging to address analytically. Computational methods like the 

finite element method (FEM) are used to solve these difficult problems. The FEM can be used to solve the 

overall problem of determining strains and stresses (thus, forces and displacements) in the framework of 

continuum mechanics. However, in order to link strains and stresses, the FEM needs the constitutive model 

to be implemented. The constitutive relations make up the local component of the issue in the context of 

plasticity. 

2.3.3.1. Integration schemes 

Integration schemes are commonly categorized into two main types: explicit and implicit. In the explicit 

situation, the present solution is dependent on the prior solutions, but in the implicit case, the current answer 
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is found to be self-dependent. Within the realm of algorithmic stability, implicit schemes exhibit a higher 

level of superiority due to their reduced susceptibility to the influence of step size. In the case of fully 

implicit schemes, stability is guaranteed regardless of the step size, thereby rendering them unconditional 

in their stability. Conversely, explicit systems typically possess conditional stability. In contrast, explicit 

schemes are more computationally efficient as they do not necessitate an additional step of solving a system 

of equations, which is typically required for implicit systems.  

Moreover, the categorization of integration schemes can be determined by the quantity of steps incorporated 

in the integration process (Scalet & Auricchio, 2018). For example, if the variables at time 𝑡𝑛+1 are 

calculated only based on the variables obtained at the previous step 𝑡𝑛, the process can be considered as a 

single step. If the process involves multiple steps, it can be classified as a multi-step method. One-step or 

multi-step frameworks can be utilised to design both implicit and explicit schemes. 

The seminal research conducted by Wilkins (1963) can be regarded as a forerunner to contemporary 

integration methods. The radial return approach was developed for J2 elastoplasticity in the study. 

Subsequently, the scholarly contributions of Simo and Taylor (1985) and Ortiz and Popov (1985) have 

emerged as very significant exemplars of one-step integration techniques within the realm of plasticity 

theory. 

The study conducted by Ortiz and Popov (1985) extensively examines the precision and reliability of two 

integration algorithms, specifically the generalised trapezoidal and generalised mid-point rules. Their work 

demonstrated that the generalised trapezoidal and mid-point algorithms had the ability to combine explicit 

and implicit strategies. The authors demonstrated that, in circumstances involving ideal plasticity and certain 

no associative flow scenarios, the mid-point algorithm exhibited higher stability performance compared to 

the trapezoidal rule. 

In a significant study, Simo and Taylor (1985) established the concept of algorithmically consistent tangent 

moduli, which effectively maintained the quadratic rate of convergence of the implicit integration scheme. 

Subsequently, Simo and Taylor (1986) demonstrated the necessity of imposing the consistency constraint 

on the generalized mid-point state in order to maintain the symmetry of the consistent tangent moduli (Eq.  

2.2). 
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   𝑓𝑛+𝜃 = 𝑓(𝜎𝑛+𝜃 , 𝑞𝑛+𝜃) Eq.  2.2 

Subsequently, Ortiz and Martin (1989) demonstrated that just the fully implicit variant of Simo and Taylor's 

(1985) approach could guarantee the symmetry of the consistent tangent moduli. The researchers conducted 

an investigation into the criteria that preserve symmetry in algorithmic moduli within return mapping 

techniques. In their work, Simo and Govindjee (1991) introduced a set of algorithms that rely on fully 

associative models. These algorithms aim to achieve symmetry and enforce the consistency criterion, as 

described in Eq.  2.2 mentioned before, which pertains to consistency upon reaching the mid-point state. 

2.3.3.2. Plastic-Damage Coupling 

The development of coupled plastic-damage constitutive models has been undertaken in order to ascertain 

the mechanical behavior of materials that demonstrate both persistent deformations and degradation of 

material moduli. These models have been utilized for the purpose of simulating the inelastic behavior of 

many materials, including concrete, geomaterials, and metals. An example of this may be seen in the work 

of Jason et al. (2006), where they proposed a linked plastic-damage model that effectively accounts for the 

irreversible deformations and stiffness degradation observed in concrete materials. As elucidated in their 

scholarly publication, neither a purely damage-based nor a purely plasticity-based model is capable of 

accurately representing the stiffness of a concrete element experiencing inelastic deformations. The 

underlying factors can be attributed to the fact that in a purely damage-based model, the stress-strain curve 

is centered around the origin, while in a purely plasticity-based model, the initial stiffness remains constant 

during the unloading process. However, as illustrated in Figure 2-5, a connected model has the ability to 

address these limitations. 

a. strain fully reversible   b. strain partially irreversible 
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Figure 2-5. Unloading to the origin (Jirasek & Bazant, 2002) 

In contrast to the prevailing plasticity hypothesis, the methodologies within the damage mechanics 

framework exhibit a notable degree of diversity. One of the strategies utilised in damage modelling is 

founded on the effective stress notion, which can be dated back to.  

The introduction of a continuous damage variable to account for the impact of microscale faults on the 

macroscale was initially proposed by Kachanov in 1958b. In the scenario of isotropy, the scalar damage 

variable 𝜑, ranging from 0 to 1, quantifies the proportion of areas that have undergone damage in relation 

to the areas that remain undamaged (intact) under the influence of stress. Based on the aforementioned 

observations, it is possible to create the idea of effective stress, which corresponds to the stress exerted on 

the undisturbed surface. Theories that are grounded in the concept of effective strain have also been 

formulated in a comparable manner. Simo and Ju (1987, 1989), Lubliner et al. (1989), and Luccioni et al. 

(1996) represent notable instances of damage formulations that rely on the effective stress notion. 

The incorporation of spatial orientation as a factor in the effective stress/strain approach leads to the 

consideration of damage tensors in the characterization of anisotropic damage. Several examples of relevant 

literature include Murakami's (1993) work, Chaboche's publication from 1984, and the study conducted by 

Voyiadjis and Park in 1997.  

Models that employ the fourth-order compliance tensor as the primary internal variable represent a distinct 

category within the field of continuum damage mechanics. The derivation of the evolution of the compliance 

tensor often follows a thermodynamically consistent framework, such as the principle of maximal damage 

dissipation. There are numerous similarities seen between the aforementioned technique and the associative 

plasticity framework. In the current study, it is aimed to establish a coupled damage-plasticity model by 

leveraging this similarity. Ortiz (1985) and Simo and Ju (1987) can be regarded as pioneer exemplifications 

utilising the compliance tensor methodology. Additional examples of relevant studies in the field include 

the works of Hansen and Schreyer (1994), Govindjee et al. (1995), Ibrahimbegović, et al. (2003), 

Ibrahimbegović and Markovič (2003), Ibrahimbegović et al. (2008), as well as Brancherie and 

Ibrahimbegovic (2009). 
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The literature also presents an alternative class of models, known as smeared crack damage models, which 

address the formation and advancement of macrocracks resulting from the commencement and progression 

of microcracks. In the earlier studies, such as the one conducted by Rashid (1968), it was thought that the 

direction of the crack would remain constant. The introduction of the idea of fracture rotation was observed 

in subsequent investigations (Gupta & Akbar, 1984). Subsequently, Jirásek and Zimmermann (1998) 

demonstrated that the rotating crack model exhibited the stress locking phenomenon previously seen in 

models utilising a non-aligning finite element mesh with crack orientation. 

In relation to the smeared crack approach, it is important to highlight the kinematic decomposition, which 

involves separating the total strain into elastic and inelastic components. This decomposition is expressed 

as follows: 

 𝜀 = 𝜀𝑒 + 𝜀𝑐 Eq.  2.3 

Here, 𝜀 represents the total strain tensor, which consists of the elastic strain tensor 𝜀𝑒 and the crack strain 

tensor 𝜀𝑐. The crack strain tensor is specifically associated with the inelastic deformations, as described by 

Jirásek and Zimmermann (1998). 

In the context of classical plasticity, the primary strategy involves the additive decomposition of the strain 

tensor 𝜀 into its elastic 𝜀𝑒 and plastic 𝜀𝑝 components, as expressed by the Eq.  2.4. 

 𝜀 = 𝜀𝑒 + 𝜀𝑝 Eq.  2.4 

One of the primary differentiating factors among the several alternative damage models lies in the manner 

in which kinematic decomposition is implemented. Hence, many formulations emerge within the context of 

coupled damage-plasticity frameworks. In several studies, the overall strain is divided exclusively into 

elastic (𝜀𝑒) and plastic (𝜀𝑝) components, as demonstrated by Lemaitre (1985), Ju (1989), Hansen & Schreyer 

(1994), Cicekli et al. (2007), Grassl et al. (2013), and Alfarah et al. (2017). In certain literature, however, 

an additional component known as the damage strain (𝜀𝑑) has been incorporated into the strain 

decomposition, represented as 
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 𝜀 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑑 Eq.  2.5 

Previous studies have explored the division of total strain into elastic, plastic, and damaging strains. Notable 

contributions in this area include the research conducted by Klisiński & Mróz (1988), as well as the work 

of Yazdani & Schreyer (1990). Subsequently, several research have incorporated coupled constitutive 

models that incorporate a damage strain component. These studies include Armero and Oller (2000a), Al-

Rub and Voyiadjis (2003), Ibrahimbegović et al. (2008), Ayhan et al. (2013), and Wu and Cervera (2016). 

In addition to the aforementioned sources, Sarikaya et al. (2021) conducted a detailed examination of the 

works by Armero & Oller (2000a) and Armero & Oller (2000b) in order to provide a more comprehensive 

analysis of their plastic-damage coupling method within the context of the current study. Armero and Oller 

(2000a) proposed a novel conceptual framework that allows for the integration of various alternative damage 

therapies, as previously stated, into a coherent approach. The central significance in their architecture is 

attributed to the concept of damage strain, which allows for the inclusion of various damage mechanisms. 

The authors of the study have adopted the additive decomposition of the strain tensor, which is consistent 

with the formulation presented in Eq.  2.5. The damage strain, denoted as 𝜀𝑑, is composed of various 

contributions originating from different damage mechanisms. 

 

𝜀𝑑 = ∑ 𝜀𝑑𝑖

𝑛𝑑𝑎𝑚

𝑑𝑖=1

 Eq.  2.6 

Each damage mechanism is represented by 𝑑𝑖, where 𝑖 is the corresponding number assigned to the 

mechanism. The overall number of damage mechanisms is denoted as 𝑛𝑑𝑎𝑚. 

It is worth mentioning that Armero and Oller (2000a) classify the damage strains as recoverable. The 

recoverability of damage strains can be attributed to the correlation between each damage mechanism and 

its corresponding damage energy potential. Based on the aforementioned information, the stored energy 

function 𝑊 was expressed by Sarikaya et al. (2021) by incorporating the damage terms, 

 

𝑊 = 𝑊𝑒(𝜀𝑒) + ℶ
𝑝(𝐾𝑃) + ∑ 𝑊𝑑𝑖(𝜀𝑑𝑖 , 𝐾𝑑𝑖)

𝑛𝑑𝑎𝑚

𝑑𝑖=1

 Eq.  2.7 
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The variables 𝑊𝑒 and 𝑊𝑒 represent the stored energy associated with elasticity and damage, respectively. 

The symbol ℶ𝑝 is used to denote the potential related to the plastic hardening process, which is influenced 

by the development of the internal plastic hardening variable 𝐾𝑃. Likewise, 𝐾𝑑 denotes the variable 

associated with damage hardening. 

One notable aspect of Armero & Oller's (2000b) work is the similarity between the stress return algorithms 

for plasticity and damage models. Furthermore, the modular treatment of the numerical integration problem 

is facilitated by representing each damage mechanism according to its contribution to the total damage 

strain. 

Subsequently, Ibrahimbegovic et al. (2003, 2008) incorporated the coupled plasticity-damage framework 

proposed by Armero and Oller (2000a) and its numerical implementation (Armero and Oller 2000b) in 

several studies, including Ibrahimbegović et al. (2003), Ibrahimbegović and Markovič (2003), 

Ibrahimbegović et al. (2008), and Ayhan et al. (2013). These studies focused on utilising this framework for 

constitutive modelling of concrete and other materials.  

It is important to acknowledge that the concept of damage strain is employed in many ways within the 

existing body of literature.  

In the studies conducted by Armero & Oller (2000a), Ibrahimbegović (2009), and Wu & Cervera (2016), 

the damage strain is found to be recoverable. However, in the works of Al-Rub & Voyiadjis (2003) and 

Brünig & Michalski (2017), the damage strain is associated with permanent deformations. The observed 

disparity arises as a result of variations in the conceptualization and operationalization of damage and strain. 

The authors of the Sarikaya et al. (2021) study chose to utilise the linked plasticity-damage framework 

developed by Armero & Oller (2000a) and Armero & Oller (2000b) due to its straightforward nature and 

computational effectiveness. The authors proposed a direct coupling strategy to modify the framework 

developed by Armero and Oller (2000a), resulting in a more streamlined and computationally efficient 

algorithm. Instead of employing distinct yield (and potential) functions for plasticity and damage, the 

researchers developed a framework that use a single yield (and potential) function to encompass both 

plasticity and damage components. The research article by Sarikaya and Erkmen (2019) presents a study on 
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the direct coupling method and its utilization in analyzing the behavior of concrete subjected to compressive 

forces. 

Other research in the literature have also recommended the utilisation of a solitary yield function to 

encompass both plasticity and damage. In the study conducted by Meschke et al. (1998), it was observed 

that both plastic and damage strains can be associated with a common yield surface. In contrast to employing 

distinct energy potentials for plasticity and damage, the formulation uses a single potential, hence restricting 

the ability to get individual plasticity and damage strains from the optimisation problem. The distinction 

between plastic and damage strains is established by incorporating a participation factor, denoted as β, which 

satisfies the condition 0 ≤  β ≤  1. This factor enables the consideration of three distinct scenarios: pure 

elastoplastic behaviour when 𝛽 = 0, pure elastic-damage behaviour when β =  1, and coupled plastic-

damage behaviour for intermediate values of β. The determination of the participation factor was achieved 

through calibration with experimental data. Subsequently, Wu and Cervera (2016) employed a comparable 

methodology to develop a cohesive elastoplastic-damage framework, serving as a foundation for the 

modelling of strain localizations characterised by pronounced discontinuities in quasi-brittle materials. 

In relation to the utilisation of a singular yield function for plasticity and damage, it is pertinent to engage 

in a discourse concerning a specific category of interconnected plastic-damage modelling methodologies. 

These methodologies are founded upon the principles of thermodynamics, incorporating internal factors. In 

the pursuit of thermodynamic consistency, potential functions are commonly employed within the 

framework. 

Houlsby and Puzrin (2000) developed a framework for a constitutive model that is thermodynamically 

consistent. This was achieved by incorporating two thermodynamic potentials, specifically the energy 

potential and the dissipation potential. These two potentials are the sole determinants of the constitutive 

behaviour, eliminating the requirement for any extra ad-hoc assumptions. The model is sometimes referred 

to as the hype plasticity model, which suggests the significance of prospective functions. One notable aspect 

of the hyperplastic model is its ability to derive the yield surface directly using the Legendre transformation 

of the dissipation function. The historical data pertaining to the material is encapsulated inside the internal 

variables, such as the plastic strain. 
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The coupled and uncoupled plasticity damage model created by Einav et al. (2007) can be viewed as an 

expansion of the thermodynamically consistent hyper plasticity model proposed by Houlsby and Puzrin 

(2000) to incorporate the hyper-plastic-damage formulation. The introduction of damage as an internal 

variable is a key aspect in the development of both pure damage and coupled plastic-damage constitutive 

models. In this manner, it is possible to derive both the yield surface and the damage internal variable 

through the dissipation potential. 

2.3.3.3. Lumped plasticity 

Lumped Plasticity is a modeling technique used in structural analysis, particularly in the context of seismic 

performance assessment. This method leverages the simplicity of the plastic hinge by separating a line 

element into inelastic and elastic components. Michael et al. (2008) conducted an assessment of models 

applicable to Performance-Based Earthquake Engineering (PBEE) of bridge columns. Their evaluation 

encompassed novel formulations for effective elastic stiffness, plastic-hinge length, and strain thresholds 

for the onset of bar buckling. A dataset comprising 37 tests of large-scale circular bridge columns was 

utilized to refine and assess these models. The primary objective of this investigation was to formulate 

expressions compatible with existing lumped-plasticity models, thereby enhancing the efficacy of 

performance-based design methodologies for bridge columns. The findings underscored the viability of 

incorporating the proposed expressions, along with the recommended effective stiffness expressions and 

strain thresholds specific to the plastic-hinge length formulation, into existing models. Notably, the study 

concluded that the incorporation of existing expressions with the newly proposed parameters yielded 

satisfactory predictions of the force-displacement behavior and the corresponding displacements associated 

with various damage thresholds. 

In their work, Fablo and Mazza (2010) introduced a lumped plasticity model (LPM) tailored for nonlinear 

static and dynamic analyses of three-dimensional reinforced concrete (r.c.) frames. The model incorporates 

a bilinear moment curvature law and an interaction surface axial force-biaxial bending moment relationship. 

For nonlinear dynamic analyses, a two-parameter implicit integration scheme coupled with an initial-stress 

like iterative strategy, following the Haar–Kàrmàn principle, was employed. The study revealed that the 

nonlinear seismic response, as predicted by the LPM, is highly sensitive to the selection of strength and 

stiffness input parameters, such as the reduction factor in flexural stiffness and the hardening ratio in the 
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bilinear moment-curvature law. These parameter choices significantly influence the maximum response 

parameters, waveform characteristics, and periodicity of the seismic response time histories. Comparative 

analysis with a refined fibre model demonstrated that the LPM adequately captures the flexural hysteretic 

behavior of r.c. frame elements, particularly in low- and medium-risk seismic regions, thereby offering a 

viable simulation approach for seismic performance assessment. 

In the study conducted by Mohammadreza et al. (2019), the efficacy of the lumped plasticity model in 

predicting the nonlinear response of reinforced concrete frames subjected to gradually increasing vertical 

loads was studied. To this end, two full-scale RC frames featuring varying shear spans were fabricated and 

subjected to vertical loading applied through their beams. Finite element (FE) models of these experimental 

specimens were developed using SAP2000 software, enabling a comparison between numerical predictions 

and experimental findings. The investigation encompassed an analysis of the impact of different plastic 

hinge lengths, initial effective stiffness values, and plastic hinge locations on the accuracy of the FE models. 

It was observed that irrespective of the selected plastic hinge lengths, the FE models effectively 

approximated the yield and ultimate loads of the frames. However, discrepancies arose in accurately 

estimating the corresponding vertical displacements at yield and ultimate load stages. The study also 

highlighted the significant influence of chosen plastic hinge locations on the predicted yield and ultimate 

loads. Furthermore, the FE models tended to underestimate the damage levels at mid-span of beams 

compared to experimental observations upon reaching the ultimate load conditions. 

Chang et al. (2021) conducted a study focusing on the parameter estimation of a lumped plasticity model 

designed to accurately replicate the nonlinear load-deformation behavior exhibited by circular reinforced 

concrete columns subjected to cyclic lateral loading. The calibration of model parameters relied on a 

comprehensive experimental dataset comprising 210 circular columns, each characterized by a variety of 

input parameters including material strength, reinforcement arrangement, specimen geometry, and testing 

configuration. Specifically, parameter values for initial stiffness, plastic rotation capacity, moment strength, 

and cyclic damage parameters were fine-tuned to match the first-cycle envelope of individual test datasets. 

To facilitate parameter estimation, empirical predictive equations were formulated, correlating model 

parameters with input parameters through four distinct regression techniques: stepwise, ridge, lasso, and 

elastic net regression. The implementation of the proposed lumped plasticity model yielded a notable 
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reduction in computational time, approximately 50% lower compared to the distributed plasticity model. 

Furthermore, as ground motion intensity escalated, disparities in response between the two models became 

more pronounced. The predictive accuracy of the bridge class response was significantly influenced by bent 

configuration and deck mass. Notably, due to the concentration of nonlinear response at column ends and 

the linear pre-yield behavior, the proposed lumped plasticity model demonstrated a lesser susceptibility to 

record-to-record variability compared to the existing distributed plasticity model. 

2.4.Uni-axial material models 

When using beam-type 1D elements to accommodate various loading conditions, it becomes imperative to 

establish inelastic behavior at the stress-strain level, especially when dealing with arbitrary stress 

distributions. These one-dimensional generalized stress-strain relationships are contingent upon 

preconceived conditions, such as assumed confinement pressures, which must be defined prior to 

conducting the analysis. 

The analytical model proposed by Saatchioglu and Razvi (1992) comprises a parabolic ascending segment 

followed by a linear descending portion described in Eq.  2.8. This model is rooted in the computation of 

lateral confinement pressure induced by both circular and rectilinear reinforcement, aiming to enhance the 

strength and ductility of confined concrete. Through meticulous analysis of extensive test data 

encompassing various levels of confinement, ranging from poorly confined to well-confined concrete 

specimens, the parameters of the analytical model were rigorously established. The strength and 

corresponding strain of confined concrete were characterized in relation to the equivalent uniform 

confinement pressure exerted by the reinforcement configuration. This equivalent uniform pressure was 

derived from the average lateral pressure determined based on sectional and material characteristics. The 

combined effect of different types of lateral reinforcement configurations was assessed by superimposing 

individual confinement effects. The stress-strain relationships delineated by the proposed methodology 

exhibited notable concordance with those derived from column tests featuring diverse geometries and 

reinforcement schemes, conducted under both concentric and eccentric loading conditions. 
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Where 𝐾 = 𝑘1𝑓𝑙𝑒 𝑓𝑐𝑜
′⁄ , 𝑘1 = 6.7(𝑓𝑙𝑒)

−0.17, 𝑓𝑙𝑒 being the effective uniform confining pressure in Mpa 

𝑓𝑐𝑜
′  and 𝑓𝑐𝑐

′  unconfined and confined strengths of concrete in a member respectively. 

𝜀1is peak stress 

The ductility of ultra-high-strength concrete columns undergoes substantial influence from both axial 

compression levels and the effectiveness of lateral reinforcement. A pertinent indicator for assessing 

ductility is the capacity of lateral reinforcement normalized by concrete strength. To gauge displacement 

ductility, Sugano (1996) introduced empirical Eq.  2.9, derived from a comprehensive regression analysis 

of available column data for high-strength concrete. Despite the inherently brittle nature of ultra-high-

strength concrete, effective confinement can still be achieved through the utilization of high- or ultra-high-

strength lateral reinforcement. It is noteworthy that achieving adequate ductility in ultra-high-strength 

concrete demands a relatively greater capacity of lateral reinforcement compared to lower-strength concrete 

scenarios. 

 
𝛿𝑓 = 0.127

(𝜌𝑐 × 𝑓𝑦𝑡)

𝑓𝑐
− 0.052 (

𝜎𝑐
𝑓𝑐
) + 0.041 Eq.  2.9 

Where 𝜌𝑐 is the Area ratio of ties, 𝑓𝑦𝑡 is the Yield strength of ties, 𝑓𝑐 is the compressive strength of concrete 

cylinder and 𝜎𝑐is the axial stress. 

In the study conducted by Okan et al. (2010), it was determined that augmenting the confinement ratio 

resulted in enhanced ultimate drift capacities for reinforced columns subjected to strengthening measures. 

They introduced a drift-based equation incorporating key parameters such as longitudinal reinforcement 

ratio, axial load level, and confinement ratio. Through this equation, the drift capacities of the columns 

within the experimental dataset were accurately estimated, aligning closely with standard engineering 

expectations. 

Fabio et al. (1991), Enrico et al. (1996), Bulent and Donald (2005), Ashraf (2006), Erkmen and Attard 

(2011), Saritas and Filippou (2013), and Pisca et al. (2017) have extensively explored beam element-based 
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modeling approaches employing inelastic uni-axial stress-strain relations. These formulations, commonly 

referred to as fibre elements in academic discourse, operate under the assumption that plane sections remain 

plane and normal to the longitudinal axis. Within this framework, the intricate interplays of shear and bond-

slip phenomena are often disregarded, reflecting a simplified representation of structural behavior. 

2.5.Multi-axial material models 

Multi-surface plasticity techniques are widely employed in various engineering disciplines, encompassing 

the characterization of concrete and geomaterials in constitutive modelling, as well as in crystal plasticity 

scenarios involving multiple slip planes. The concept revolves around the introduction of multiple plasticity 

yield functions, each corresponding to distinct surfaces within the principal stress space. This approach aims 

to more accurately capture the material's response under various conditions, such as disparities in 

compressive and tensile behavior. 

The existence of several yield surfaces is a hurdle due to the occurrence of discontinuities in the stress space 

at specific spots. In situations when two surfaces cross in a non-smooth manner, it is commonly observed 

that the normal at the point of intersection lacks a well-defined value. Therefore, it is necessary to expand 

both the rate and incremental forms of plasticity equations in order to address non smooth sections, 

sometimes referred to as corners. 

One of the techniques suggested in scholarly literature for addressing no smooth regions involves the 

incorporation of smoothing functions to mitigate sharp edges. In the study conducted by Nayak and 

Zienkiewicz (1972), a straightforward averaging method was utilized in the proximity to singularities. In 

numerous instances, the substitution of a segment of a criterion with an alternative lead to the introduction 

of additional corners at the points of intersection (de Borst, 1987). 

The authors of Abbo & Sloan (1995) utilized a hyperbolic approximation to address the singularity issue 

associated with the apex point in the Mohr-Coulomb criterion. Furthermore, it should be noted that a yield 

criterion may exhibit discontinuous gradients at certain points, resulting in distinct boundaries in the major 

stress space. This phenomenon is observed in many criteria such as Tresca, Mohr-Coulomb, and Rankine 

criteria. 



31 

 

Menetrey and Willam (1995) suggested a failure criterion that includes common strength assumptions for a 

range of engineering materials and captures the key characteristics of triaxial concrete strength. The 

verification cases showed that the suggested failure criterion may capture information on biaxial and triaxial 

strength. They established that the von-Mises, Drucker-Prager, and Rankine criteria can all be included in a 

framework that uses the three-parameter failure criterion. The linear Mohr-Coulomb criterion's extension 

and compression meridians are also where the generalized failure envelope degenerates. It also reduces to 

the approximate parabolic two-invariant form of the Leon criteria. The unified formulation has the benefit 

of include several well-known failure criteria as special instances. Their proposed criterion integrated the 

traditional Rankine criterion for maximum tensile strength with the Mohr-Coulomb hypothesis governing 

shear strength. This amalgamation offered a balanced depiction of both the tensile/cohesive strength of 

cementitious materials and the shear strength of frictional materials. The three-parameter failure criterion 

devised for concrete is expressed as a function of the three stress invariants and is formulated using the 

Haigh-Westergaard coordinates, facilitating straightforward geometric interpretation. Notably, its cohesion 

and friction parameters are decoupled, enabling direct manipulation for hardening/softening extensions. 

Moreover, the criterion simplifies to the parabolic two-invariant approximation of the Leon criterion. The 

unified nature of this formulation proves advantageous as it encompasses numerous well-established failure 

criteria as special cases, consolidating diverse theoretical frameworks into a cohesive conceptual model. 

As previously stated, the occurrence of corners can be attributed to the simultaneous utilization of many 

yield criteria. For example, the utilization of distinct yield requirements for compression and tension has 

been implemented in many concrete models, such as the ones proposed by Feenstra and de Borst (1996) and 

Červenka and Papanikolaou (2008). Compression caps and tension cut-offs are frequently utilized in the 

modelling of geomaterials. Some models in the literature, such as Dolarevic and Ibrahimbegovic (2007), 

favored a seamless transition between distinct surfaces. However, numerous other models employed 

Koiter's rule, which explicitly addresses corners. 

Numerous models have been developed in the literature, drawing upon Koiter's rule as a foundational 

principle. As an example, de Borst (1987) examined a specific scenario involving two yield surfaces and 

devised a comprehensive backward-Euler integration technique. This method was further expounded upon 

in relation to yield functions of the Mohr-Coulomb and Tresca types. The single-point integration method 
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does not require any iterations throughout the integration process. At the conclusion of the step, the 

consistency criterion was met. This was observed specifically in the scenario where hardening was modelled 

as a linear function solely dependent on the plastic strain. The author suggests use iterations for the case of 

nonlinear hardening. In order to ascertain the appropriate choice between the standard single-surface return 

method and the multi-surface return algorithm, de Borst devised a singularity indicator. Subsequently, an 

erroneous formula within his research was rectified in the study conducted by de Borst et al. (1991). 

The classical work by Simo et al. (1988) is widely regarded as a significant contribution to the field of multi-

surface plasticity. The researchers demonstrated that the Koiter's requirements are fundamentally identical 

to the optimality conditions of the corresponding convex mathematical programme. Additionally, they 

devised a comprehensive closest-point return mapping method for multi-surface plasticity that is associated 

with these circumstances. One notable aspect of their work involves the utilisation of the discrete 

formulation of Karush-Kuhn-Tucker (KKT) conditions.  

One of the primary difficulties encountered when employing the elastic predictor-plastic corrector scheme 

is the limited availability of prior knowledge regarding the active surfaces for a particular trial stress state 

in multi-surface plasticity. This poses a significant difficulty when applying the discrete form of the Karush-

Kuhn-Tucker (KKT) conditions. 

This issue has been found in several investigations within the existing literature, such as the works of Simo 

et al. (1988) as well as Simo and Hughes (1998). In contrast, within the context of single-surface plasticity, 

the activation of the yield surface occurs directly when the trial stress exceeds the permissible stress. This 

characteristic of single-surface plasticity offers computational convenience.  

In their classical work, Simo et al. (1988) put out a pair of methodologies, one conceptual and one practical, 

aimed at systematically identifying the active surfaces involved in the return mapping process. Both 

approaches were devised specifically for the instance of related plasticity. 

The multi-surface plasticity algorithm established by Simo et al. (1988) remains widely recognized in the 

field because to its broad applicability. However, it is important to note that this method was specifically 

designed with associative plasticity in mind. The proposed approach systematically decreases the quantity 

of active surfaces until the resulting solution converges and meets the consistency criterion. Pramono and 
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Willam (1989) demonstrated that in instances of softening, there might be an increase in the quantity of 

active surfaces, contrary to the expected decrease. An alternative technique was proposed, wherein surfaces 

are engaged sequentially, beginning with the most dominant surface and subsequently including the next 

surface into the active set. Therefore, the collection of active surfaces expands until the consistency 

conditions are satisfied for all criteria. 

In addition to the overarching multi-surface stress return methods, a substantial body of literature exists that 

examines specific criteria, such as the Tresca and Mohr-Coulomb yield surfaces. Pankaj and Bićanić (1997) 

devised a singularity indicator to assess if the trial stress conforms to the corner zone or not, specifically for 

the Mohr-Coulomb yield criteria with isotropic hardening. Perić and Neto (1999) introduced a stress-return 

algorithm for Tresca plasticity, utilising a geometrical perspective. This methodology was subsequently 

expanded upon by Neto et al. (2008) to encompass yield requirements of the Mohr-Coulomb type. In their 

study, Borja et al. (2003) examined the efficacy of integration algorithms in relation to smooth three-

invariant representations of the Mohr-Coulomb model, such as the Lade-Duncan and Matsuoka-Nakai 

models. 

Despite their higher computational demands, multi-axial material models offer the advantage of directly 

incorporating the influences of shear and confinement pressure, a capability stemming from the 

comprehensive nature of 3D analysis. Consequently, there has been substantial research interest and 

adoption of elasto-plastic material models for simulating concrete structural components. 

In 1977, Ottosen introduced a failure criterion characterized by four parameters 𝐴, 𝐵, 𝐾1, 𝐾2 encompassing 

all three stress invariants as shown Eq.  2.10.  

 
𝑓(𝐼1, 𝐽2, cos 3𝜃) = 𝐴

𝐽2

𝜎𝑐
2 + 𝜆

√𝐽2
𝜎𝐶

+ 𝐵
𝐼1
𝜎𝐶
− 1 = 0 Eq.  2.10 

Where 𝐴 and 𝐵 are parameter and 𝜆 is a function of cos 3𝜃. It was suggested by the author that 𝜆 =

𝜆(cos 3𝜃) could be represented as follow; 

 𝜆 = 𝐾1𝑐𝑜𝑠 [
1

3
arccos (𝐾2𝑐𝑜𝑠3𝜃)]                                         for 𝑐𝑜𝑠3𝜃 ≥ 0 Eq.  2.11 
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𝜆 = 𝐾1𝑐𝑜𝑠 [
𝜋

3
−
1

3
arccos (−𝐾2𝑐𝑜𝑠3𝜃)]                               for 𝑐𝑜𝑠3𝜃 ≤ 0 

In which parameters 𝐾1and 𝐾2are size and shape factor respectively (0 ≤ 𝐾2 ≤ 1). This criterion delineated 

a smooth convex failure surface with meridians curving in the negative direction of the hydrostatic axis. 

Additionally, the trace in the deviatoric plane transitioned from an almost triangular to a more circular shape 

as hydrostatic pressure increased. Empirical verification confirmed the criterion's validity under short-time 

monotonic loading conditions. 

Han et al. (1987) introduced a constitutive model aimed at capturing the intricate behavior of concrete 

materials within elastic-plastic regimes. This model, rooted in a modified plasticity theory, effectively 

delineates strain-hardening through stress-space plasticity mechanisms and strain-softening via strain-space 

plasticity principles. Key attributes of Ottosen's model encompass the utilization of sophisticated failure 

criteria such as the Willam-Warnke five-parameter or Hsieh-Ting-Chen four-parameter model, 

incorporation of a closed-shape yield surface, implementation of a nonuniform hardening rule, and 

modulation of plasticity modulus dependent on hydrostatic pressure and Lode angle. Additionally, the 

model adopts a no-associated flow rule and employs a dual criterion based on stress and strain to discern 

various failure modes. It also features linear tensile softening to simulate cracking behavior and multiaxial 

softening to replicate mixed failure modes. They validated their innovative work-hardening model across a 

diverse spectrum of experimental data, consistently achieving commendable agreement between theoretical 

predictions and empirical observations. 

Nevertheless, in simulating the concrete material behavior using plasticity theory, the adoption of a non-

associative flow rule becomes imperative due to dilatation effects. Consequently, a potential function 

distinct from the yield surface is required to accurately determine the volumetric component of the plastic 

flow. Previous investigations into non-associative plasticity models, particularly those predicated on 

pressure-sensitive yield criteria for compressive concrete behavior, are exemplified in studies such as Kang 

& Willam (1999), Grassl et al. (2002), Grassl (2004), and Bao et al. (2013). 

For a comprehensive structural analysis, it is imperative to define the tensile behavior of concrete material 

as well. The delineation between compressive and tensile behavior in concrete failure criteria, stemming 

from their disparate phenomenological characteristics, is well-documented in both experimental and 
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theoretical literature. Research focusing on developing concrete failure criteria primarily emphasizes 

compressive behavior, deeming tensile behavior relatively insignificant in reinforced concrete structural 

analysis. For tension failure, the adoption of Rankine’s maximum tensile stress cut-off with strain softening 

is commonplace (Jirasek & Bazant, 2001). 

In addressing the fluctuations of the carefully selected compressive yield surface of concrete under 

hardening and softening laws, the implementation of a tensile cut-off mechanism serves to mitigate 

unrealistic tensile strength. Numerous researchers such as Wan (1992), Fuschi et al. (1994), Bao et al. 

(2013), Papanikolaou & Kappos (2007) and Yu et al. (2010) have ventured into the development of multi-

surface plasticity models for concrete. 

The successful integration of elasto-plastic material modeling of concrete with multi-surface yield criteria 

into 3D structural level analyses has been achieved by various scholars, including Červenka & Papanikolaou 

(2008), Galic et al. (2011) and Lu et al. (2016). However, concerns regarding the robustness of numerical 

treatment have surfaced since the 1970s, as indicated by studies such as Červenka (1971) and Bergan & 

Holand (1979). Despite the extensive history of research in nonlinear finite element analysis, particularly 

concerning the 2D or 3D material nonlinear analysis of concrete structures, investigations into numerical 

robustness remain ongoing. Various aspects of numerical algorithms, including element and integration 

types, return mapping strategies at the material level, and adaptability of global equilibrium path-finding 

strategies, are known to impact convergence characteristics, especially when encountering softening and 

bifurcation points, as detailed in Geers (1999) and Hofstetter & Valentini (2013). 

To address potential shear and volumetric locking issues, especially during plastic analysis of 3D solids, 

alternative numerical integration schemes have been developed, as seen in works such as Hu & Nagy (1997), 

Liu et al. (1994), and Olovsson et al. (2006). The introduction of multiple yield surfaces into material models 

necessitates specialized return mapping algorithms. For geo-materials and concrete specifically, multi-

surface return mapping methodologies involving cut-off surfaces have been devised by researchers such as 

Pramono & Willam (1989), Hofstetter et al. (1993), Feenstra & De Borst (1996), Dolarevic & 

Ibrahimbegovic (2007), Adhikary et al. (2017) and Pech et al. (2021). Meanwhile, regularization techniques 

aimed at ensuring numerical stability in cases of softening have been proposed by De Borst (1987), De Borst 

(2001), Dias da Silva (2004), Engen et al. (2019) and De Borst & Duretz (2020). 
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2.6.Case studies 

In order to perform numerical modeling to predict the behavior of beam and solid elements, experimental 

data were obtained from literatures Focacci et al. (2016), Benmokrane et al. (1995), Mohamed et al. (2014) 

and Qian & Chen (2005). The experimental program consisted of 3 beams and 2 shear walls. The choice of 

the beams, shear walls and FRP reinforcement is based on the fact that they generate tensile regions to test 

Multi-Surface Plasticity model and that the yielding occurs in concrete only when FRP rebars are used. 

Focacci et al. (2016) investigated the response of FRP-reinforced members without shear reinforcement. 

Two series of specimens were tested in flexure, Shallow and deep rectangular cross section. All specimens 

were reinforced only in flexure with Steel, Carbon and Glass FRP bars. Over a clear span L of 2000 mm, 

the specimens were exposed to a one-point transverse force that was monotonically applied until failure. A 

response steel frame with a mechanical actuator to convey the displacement controlled transverse action 

was used for the tests. Shallow FRP-reinforced specimens failed in flexure and the deep FRP-reinforced 

specimens failed early due to shear. 

Benmokrane et al. (1995) experimented span to depth ratio on glass fibre reinforced plastic concrete beams 

test to investigate their flexural behavior. This experimental program consisted of three series of reinforced 

concrete beams (Isorod, Kodiak GFRP and steel rebars) having different surface deformations. The beams 

were subjected to two equal symmetrical loads on a 3000 mm span. The research found that the span-to-

height ratio would be crucial to consider when designing GFRP rebar-reinforced beams in order to manage 

deflection and fracture width. The GFRP rebars performed well and appeared to be a promising alternative 

to steel reinforcements. They claimed that GFRP rebars would work well in situations requiring long-term 

corrosion resistance, low conductivity to electrical and electromagnetic fields, high strength-to-weight 

ratios, and other similar qualities. 

Qian & Chen (2005) conducted nine shear wall specimens experiment to verify the finite element-based 

macro model that the authors proposed. Two different sorts of elements made up the model: an RC column 

element for modelling boundary zones and an RC membrane element for modelling beams. Both elements' 

stiffness matrices were developed. Experimental findings for nine shear wall specimens confirmed the 

accuracy and applicability of the established analytical model. The analytical findings showed that the most 
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important factors affecting the load carrying capacity and deformation capacity of shear walls are the axial 

load ratio, the confinement index of the boundary zone, and the boundary zone length ratio. The higher the 

axial load ratio, the larger the confinement index of the boundary zone, and the greater the boundary zone 

length ratio should be in order to generate the necessary deformation capacity for a shear wall. It was advised 

that as the axial load ratio changes, not only the border zone length ratio but also the confinement index 

should change as well. 

In order to meet the appropriate strength and drift criteria outlined in various codes, Mohamed et al. (2014) 

researched the applicability of reinforced concrete shear walls completely reinforced with glass fiber-

reinforced polymer (GFRP) bars. Three GFRP-reinforced specimens, were tested to failure as part of the 

experimental program. To guarantee flexural dominance and prevent slide and shear failures, they were 

constructed with an appropriate quantity of distributed and concentrated reinforcement. Without any 

indication of early shear, sliding shear, bond and anchorage failure, or instability failure, all specimens 

reached their flexural strength. Shear walls with GFRP reinforcement may achieve high strength, 

deformation capacity, and adequate energy dissipation. This means that shear walls with GFRP 

reinforcement can be employed as lateral resisting systems. 

The specimens that were selected in this research for validation purposes were subjected to monotonic 

compression load until failure. The mechanical properties of concrete, steel reinforcement and FRP 

reinforcements are discussed in section 4.2.  
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Chapter 3  

Material FORTRAN code model 

3.1.Introduction 

In this chapter, the work of Sarikaya et al. (2020-2022) is presented. In order to model the mechanical 

behavior of concrete, they created a coupled plastic-damage multi-surface constitutive model. In their 

attempt to do this they introduced the direct coupling technique, in which they suggested connections 

between the plasticity and damage parts of the plastic-damage constitutive model. They created an explicit 

integration algorithm for a multi-surface plasticity framework. Then, in an effort to accurately portray 

concrete's behavior, they suggested the three-surface concrete plasticity model. 

The infinitesimal framework was established by Sarikaya et al. (2021) through the utilization of Koiter's 

rule in conjunction with the linear complementarity problem (LCP). The need of utilizing the Linear 

Complementarity Problem (LCP) to derive uniqueness requirements was underscored. An explicit 

integration algorithm for multi-surface plasticity has been devised based on the infinitesimal formulation. 

One of the primary challenges posed by multi-surface plasticity is that the trial state alone is insufficient to 

fully characterize the conditions of inelastic loading and unloading, as is the case in single-surface plasticity. 

In the context of the incremental formulation of multi-surface plasticity, it is important to note that the 

presence of a yield function with a positive value does not automatically imply the activation of the 

corresponding surface. A method was devised to ascertain the borders of the corner zone for the incremental 

scenario. A proposal was put out to modify the plasticity multipliers in order to enhance the precision of the 

approach. According to Pramono and Willam (1989), the quantity of active surfaces can exhibit variability 

as a result of the occurrence of hardening or softening. The approach has the capability to analyze the active 

surfaces throughout each iteration, enabling it to track the progression of surfaces over time. 
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3.2.Non-associative Multi-surface Plasticity 

In structural analyses involving materials exhibiting distinct strengths when subjected to tensile and 

compressive loads, employing multiple yield surfaces to delineate the stress-strain behavior for each loading 

condition proves advantageous. Multi-surface plasticity models offer a pragmatic solution as they are 

simpler to establish and calibrate in comparison to intricate single yield surfaces. Consequently, composite 

yield surfaces find widespread application in modeling various geomaterials such as soil, rock, and concrete. 

A fundamental principle involves the additive decomposition of the total strain increment, 

 𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝 Eq.  3.1 

In the given expression, 𝜀 represents the overall strain experienced by the material, where 𝜀𝑒 denotes the 

elastic strain component and 𝜀𝑝 signifies the plastic strain component and 𝑑 is the differential operator. 

3.2.1. Plastic Flow Rule 

Plastic potential is a function used to determine the direction of plastic strain increment in the material under 

load. If the plastic potential is the same as the yield surface, the plastic flow rule is called an associated flow 

rule, Otherwise, it is called a non-associated flow (Figure 3-1). 

 

Figure 3-1. Comparison between the Associative Flow rule and the Non-associative Flow rule 
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Within the framework of non-associative mechanics, the plastic flow direction stems from the plastic 

potential function. In scenarios involving multi-surface plasticity, the flow rule extends its scope through 

the integration of multiple plastic functions. Thus, the increment in rate-independent plastic strain adheres 

to Koiter's rule (Warner, 1953), encapsulating the essence of plastic deformation mechanics.  

 

 

𝑑𝜀𝑝 =∑𝑑𝜆𝑝𝑖𝐠𝑝𝑖 , 𝝈

𝑀

𝑖=1

 Eq.  3.2 

In the presented formulation, 𝐠𝑝𝑖(𝝈, 𝜅𝑝𝑖) represents an active potential surface, while 𝑑𝜆𝑝𝐼  signifies the 

associated proportionality factor, with 𝑀 denoting the total number of active potential surfaces. The terms 

featuring indices separated by a comma, such as 𝑔𝑝𝑖 , 𝝈 = 𝜕𝑔𝑝𝑖 𝜕𝝈⁄ , indicate partial differentiation, 

representing the gradient of the potential function regarding the stress tensor. In this discourse, each active 

yield surface is denoted as 𝑓𝑝𝑖(𝝈, 𝜅𝑝𝑖), and for an associative flow rule, the potential function 𝑔𝑝𝑖 aligns with 

the corresponding yield function 𝑓𝑝𝑖. Both the potential and hardening surfaces are dependent on the stress 

state 𝝈 and a hardening function 𝜅𝑝𝑖, which tracks the plasticity evolution for each active surface. 

Consequently, the increment in the plastic hardening function 𝜅𝑝𝑖 can be expressed in terms of the plastic 

proportionality factor. 

 𝑑𝜅𝑝𝑖 = 𝑑𝜆𝑝𝑖𝑐𝑝𝑖 Eq.  3.3 

𝑐𝑝𝑖(𝝈, 𝑑𝜆𝑝𝑖) is the equivalent hardening factor to be calibrated on physical basis. 

3.2.2. Plastic Consistency Condition 

The consistency condition should be assumed in order to obtain a whole relationship between stress and 

strain. For strain hardening solids, the consistency condition means that the stress remains on the new yield 

surface (expanded, contracted, or translated). In other words, plastic loading is known as a consistency 

condition where loading from a plastically deforming state leads to another plastically deforming state. 

In the context of plastic deformations, it is imperative for stresses to remain confined within the yield 

surface. Consequently, the yield surface attains a value of zero during plastic flow to maintain this constraint. 
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Moreover, the proportionality factor, inherently non-negative, serves to prevent plastic unloading owing to 

the irreversible nature of plastic deformations. A proportionality factor of zero signifies exclusively elastic 

deformations. These principles, encapsulated within the Kuhn-Tucker conditions of plasticity, delineate the 

requisite conditions for plastic behavior and its constraints. 

 𝑑𝜆𝑝𝑖 ≥ 0,    𝑓𝑝𝑖 ≤ 0,    𝑑𝜆𝑝𝑖𝑓𝑝𝑖 = 0,    0 < 𝑖 ≤ 𝑁  Eq.  3.4 

where 𝑁 is the number of total surfaces out of which only 𝑀 surfaces can be plastically active at a time but 

one of the Kuhn-Tucker conditions always apply. In a scenario where the initial M surfaces exhibit plastic 

activity, while the remaining surfaces remain inactive, one can derive the subsequent equations for each 

distinct group. 

 𝑓𝑝𝑖 = 0,     𝑑𝜆𝑝𝑖 > 0,     0 < 𝑖 ≤ 𝑀 

𝑓𝑝𝑖 < 0,    𝑑𝜆𝑝𝑖 = 0,      M< 𝑖 ≤ 𝑁 

Eq.  3.5 

During a plastic process, when the yield surface function value remains at zero, the increase in the yield 

function is also zero, denoted as 𝑑𝑓𝑝𝑖 = 0. This condition holds true as the yield surface is dependent on the 

stress state 𝝈 and the corresponding hardening function 𝜅𝑝𝑖. Consequently, the cumulative increment of 

each active yield surface during plastic deformations can be expressed as, 

 𝑑𝑓𝑝𝑖 =
𝜕𝑓𝑝𝑖
𝜕𝝈

∶  𝑑𝝈 +
𝜕𝑓𝑝𝑖
𝜕𝜅𝑝𝑖

𝑑𝜅𝑝𝑖 = 0,     ,     0 < 𝑖 ≤ 𝑀 Eq.  3.6 

Both 𝜕𝑓𝑝𝑖 𝜕𝝈⁄  and 𝝈 represent second-order tensors, denoted by the symbol (:), indicating the tensorial 

product. Assuming that stress increments are solely elastic, expressed as 𝑑𝝈 = 𝑬 ∶ 𝑑𝜀𝑒, and leveraging 

equations Eq.  3.1 and Eq.  3.2 along with Eq.  3.6, results in the derivation of Eq. 3.7. 

 

d𝛔 = 𝐄 ∶ (𝑑𝜀 −∑𝑑λ𝑝j𝐠𝒑𝒋 , 𝝈

𝑀

𝑗=1

) Eq.  3.7 

𝐄 is the fourth order elasticity tensor. By using Eq.  3.3 and Eq.  3.6 in Eq.  3.7, the consistency condition 

can be re-written as 
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𝑑𝑓𝑝𝑖 =
𝜕𝑓𝑝𝑖
𝜕𝝈

∶  𝐄 ∶ (𝑑𝜀 −∑𝑑𝜆𝑝𝑗𝐠𝒑𝒋 , 𝛔

𝑀

𝑗=1

− 𝑑𝜀𝑝) +
𝜕𝑓𝑝𝑖
𝜕𝜅𝑝𝑖

𝑑𝜆𝑝𝑖𝑐𝑖 = 0,    0 < 𝑖 ≤ 𝑀 Eq.  3.8 

Eq.  3.8 represents the formulation for each of the 𝑀 active surfaces, necessitating the determination of 𝑀 

proportionality factors, 𝑑𝜆𝑝𝑖. Consequently, these proportionality factors, 𝑑𝜆𝑝𝑖, assume the role of primary 

unknowns, as they dictate the increments in plastic strain and the hardening function as depicted in Eq.  3.2 

and Eq.  3.3 respectively. Once established, these factors enable the determination of stresses as updated in 

Eq.  3.7. However, it's worth noting that Eq.  3.8 poses a non-linear differential equation, typically 

necessitating a numerical approach for resolution. 

3.3.Computational Algorithm 

In formulating the numerical algorithm, express the equations in finite incremental form as indicated by Eq.  

3.9: 

 𝝈(𝑛) = 𝐄(𝜀(𝑛) + 𝜀𝑝(𝑛)) Eq.  3.9 

Here, the subscript (𝑛) denotes the last converged step of the material level stress return algorithm, 

signifying 𝝈(𝑛) as the last converged stress. It is essential to recognize that algorithm-related indices are 

denoted within parentheses. Step subscripts and iteration superscripts are employed accordingly. Moving 

forward to the subsequent step (𝑛 + 1), following convergence, extract the strain 𝜀(𝑛+1) from the global 

algorithm. Initially, presume the strain increment ∆𝜀(𝑛+1) = 𝜀(𝑛+1) − 𝜀(𝑛) to be fully elastic. Consequently, 

establish the trial stress assuming a complete elastic increment, expressed as: 

 𝝈(𝑛+1)
𝑡𝑟𝑖𝑎𝑙 = 𝝈(𝑛) + 𝐄∆𝜀(𝑛+1) Eq.  3.10 

In the numerical computations, opt to utilize the Voigt notation, thus simplifying the treatment of stress, 

strain, and elastic tensors as vectors and matrices. When assessing the trial stress outlined in Eq.  3.10, 

should it fall within the elastic boundaries of the yield surface—potentially occurring during unloading or 

re-loading— accept this trial stress as the converged stress. Conversely, if the trial stress state surpasses the 

elastic threshold, indicating plastic deformation, trigger the plastic return mapping algorithm. This algorithm 

facilitates the adjustment of stress according to Eq.  3.11. 
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 𝝈(𝑛+1) = 𝝈(𝑛) + 𝐄(∆𝜀(𝑛+1) − ∆𝜀𝑝(𝑛+1)) Eq.  3.11 

In the context provided, 𝝈(𝑛+1) denotes the stress subsequent to the plastic return mapping convergence at 

the conclusion of the present step (𝑛 + 1). Eq.  3.11 delineates ∆𝜀𝑝(𝑛+1) as the cumulative total of plastic 

strain accrued during step (𝑛 + 1), typically necessitating iterative computations. 

 ∆𝜀𝑝(𝑛+1)
(𝑘)

= ∆𝜀𝑝(𝑛+1)
(𝑘−1)

+ 𝛿𝜀𝑝(𝑛+1)
(𝑘)

 Eq.  3.12 

In the iterative process (𝑘), the symbol 𝛿 represents the increment within each iteration, distinguished from 

the symbol ∆, which denotes the total increment within the step (𝑛 + 1). Upon achieving convergent 

mapping after the final iteration, the updated strain produces ∆𝜀𝑝(𝑛+1) = ∆𝜀𝑝(𝑛+1)
(𝑘𝑓𝑖𝑛𝑎𝑙)

. 

3.3.1. Plastic deformation 

The total plastic strain accumulated within step (𝑛 + 1)have already been determined, the next step is is to 

determine the plastic strain increment, denoted as 𝛿𝜀𝑝(𝑛+1)
(𝑘)

, within each iteration (𝑘) of the current step (𝑛 +

1). To achieve this, recall Eq.  3.2, 

 

𝛿𝜀𝑝(𝑛+1)
(𝑘)

= ∑ 𝛿𝜆𝑝𝑗
(𝑘)
𝑔𝑝𝑗
(𝑘)
, 𝜎

𝑁=2

𝑗=1

 Eq.  3.13 

The subscript (𝑛 + 1) is omitted from the right-hand side of Eq.  3.13 for the sake of notation simplicity. 

Nevertheless, it is implicit that the iterations consistently occur within the current step (𝑛 + 1). In Eq. 3.13, 

both the proportionality factor and the gradient of the potential function are denoted with the superscript 

(𝑘), signifying that their values are refreshed in each iteration. The iterative proportionality factor stands as 

the primary unknown, which is determined from the iterative incremental expression of Eq.  3.8, expressed 

as 

 𝛿𝐟(𝑘) = 𝛿𝐛(𝑘) − 𝐀(𝑘)𝛿𝛌(𝑘) Eq.  3.14 

In accordance with the consistency condition, 𝛿𝐟(𝑘) is a zero vector. Eq.  3.14 facilitates the determination 

of the proportionality factor 𝛿𝛌(𝑘). 
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 𝛿𝛌(𝑘) = 𝐀(𝑘)
−1
𝛿𝐛(𝑘) Eq.  3.15 

In order to delineate the constituents outlined in Eq.  3.15 with precision, introduce the premise that the total 

count of active surfaces is limited to a maximum of two. Subsequently, in Section 3.4, elaborated is multi-

surface plasticity framework tailored for concrete, wherein the system incorporates solely two surfaces, 

denoted as 𝑁 = 2. In the context of a broad two-surface plasticity framework, the matrix 𝐀(𝑘) articulated in 

Eq.  3.14 can be explicitly expressed as such: 

 

𝐀(𝑘) = [
𝑎11
(𝑘)

𝑎12
(𝑘)

𝑎21
(𝑘)

𝑎22
(𝑘)
] = [

𝐧1
(𝑘)𝑇

𝐑(𝑘)𝐦1
(𝑘)
+ 𝑓𝑝1,𝜅1

(𝑘)
𝑐1
(𝑘)

𝐧1
(𝑘)𝑇

𝐑(𝑘)𝐦2
(𝑘)

𝐧2
(𝑘)𝑇

𝐑(𝑘)𝐦1
(𝑘)

𝐧2
(𝑘)𝑇

𝐑(𝑘)𝐦2
(𝑘)
+ 𝑓𝑝2,𝜅2

(𝑘)
𝑐2
(𝑘)
] Eq.  3.16 

Where 

 𝐦𝑖
(𝑘)

= 𝐠𝑝𝑖,𝝈
(𝑘)
,        0 < 𝑖 ≤ 2 Eq.  3.17 

 𝐧𝑖
(𝑘)

= 𝐟𝑝𝑖,𝝈
(𝑘)
,        0 < 𝑖 ≤ 2 Eq.  3.18 

 𝐑(𝑘) = (𝐄−1𝐐(𝑘))
−1

 Eq.  3.19 

The hardening functions in Eq.  3.16 are assumed uncoupled. The matrix 𝐐𝐢 is 

 

𝐐(𝑘) = (𝐈 + 𝐄∑ ∆𝜆𝑝𝑗
(𝑘)
𝐇𝑗
(𝑘)

𝑁=2

𝑗=1

) Eq.  3.20 

where 𝐈 represents the identity matrix and 𝐇𝑖 denotes the Hessian matrix of the active potential surface. 

 𝐇𝑖
(𝑘)

= 𝐦𝑖,𝝈
(𝑘)
,     0 < 𝑖 ≤ 2 Eq.  3.21 

On the other hand, the vector 𝛿𝐛(𝑘)in Eq.  3.14 can be written as 

 𝛿𝐛(𝑘) = 𝐟(𝑘) − 𝐡(𝑘) Eq.  3.22 
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in which 𝐟 = 〈𝑓𝑝1 𝑓𝑝2〉T and the superscript (𝑘) indicates that the yield surface values used in Eq.  3.22 

are updated in each iteration, i.e. 

 𝑓𝑝𝑖
(𝑘)

= 𝑓𝑝1(𝝈(𝑛+1)
(𝑘)

, 𝑘𝑝𝑖
(𝑘)
)     0 < 𝑖 ≤ 2 Eq.  3.23 

Where 

 𝝈(𝑛+1)
(𝑘)

= 𝝈(𝑛) + 𝐄(∆𝜀(𝑛+1) − ∆𝜀𝑝(𝑛+1)
(𝑘)

) Eq.  3.24 

And 

 𝜅𝑝𝑖
(𝑘)

= 𝜅𝑝𝑖
(𝑘−1)

+ 𝛿𝜅𝑝𝑖
(𝑘)
     0 < 𝑖 ≤ 2 Eq.  3.25 

In Eq.  3.22 the vector 𝐡(𝑘) is defined as 

 
𝐡(𝑘) = {

ℎ1
(𝑘)

ℎ2
(𝑘)
} Eq.  3.26 

whose components can be written as 

 ℎ𝑖
(𝑘)

= 𝐧𝑖
(𝑘)𝑇

𝐑𝑖
(𝑘)
𝐄−1𝐫𝑖

(𝑘)
          0 < 𝑖 ≤ 2 Eq.  3.27 

To derive vector 𝛿𝐛(𝑘) in Eq.  3.14 in finite incremental form, the consistency condition, 𝑑𝐛 = 𝒇,𝝈 ∶ 𝐄 ∶ 𝑑𝜀 

is replaced with the finite incremental form of the consistency condition. For this purpose, first refer to the 

finite form of the yield condition i.e. 𝑓𝑝𝑖
(𝑘)

= 0, which is then truncated using first order Taylor series 

approximation in the neighbour of the trial stress 𝝈(𝑛+1)
(𝑡𝑟𝑖𝑎𝑙)

. From Eq.  3.11, the converged stress state that 

satisfies the consistency condition can be written in terms of the trial stress as 

 𝝈(𝑛+1) = 𝝈(𝑛+1)
𝑡𝑟𝑖𝑎𝑙 − 𝐄∆𝜺𝒑(𝑛+1) Eq.  3.28 

Backward-Euler finite difference procedures derived from the first order Taylor series expansion are 

commonly adopted as time-stepping procedures in, (Pramono and Willam, 1989), which in our context lead 

to Eq.  3.14. Furthermore, two of the most commonly adopted time stepping procedures for plasticity are 



46 

 

Closest Point Projection and Cutting Plane Algorithms. Both are Elastic-Prediction-Plastic-Correction 

procedures in which, when triggered the return mapping to yield surface is performed after a full elastic 

assumption, for which the second term on the right of Eq.  3.28 is pursued. Thus, plastic strain is assumed 

zero for the initial iteration, i.e. 𝛿𝜀𝑝(𝑛+1)
(0)

= 𝟎. On the other hand, the stress state in the gradients of the 

potential and yield surfaces in Eq.  3.17 and Eq.  3.18, respectively determine whether the algorithm is 

Cutting Plane or Closest Point Projection. For calculating the gradients, while the former algorithm uses the 

stress state at the end of the previous iteration, i.e. 𝝈(𝑛+1)
(𝑘−1)

, the later uses the updated stress state, i.e. 𝝈(𝑛+1)
(𝑘)

. 

To implement the Cutting Plane Algorithm, one enforces the satisfaction of the yield condition in iterations 

i.e., 𝑓𝑝𝑖
(𝑘)

< 𝑡𝑜𝑙. In addition, the Closest Point Projection Algorithm employs the first order Taylor 

approximation of the finite form of the flow rule so that the direction between the trial and the converged 

stress is enforced to be the closest-point projection direction from the trial stress point 𝝈(𝑛+1)
𝑡𝑟𝑖𝑎𝑙  towards the 

last updated stress 𝝈(𝑛+1)
(𝑘)

, i.e. 

 

𝐫(𝑘) = 𝝈(𝑛+1)
(𝑘)

− 𝝈(𝑛+1)
𝑡𝑟𝑖𝑎𝑙 + 𝐄∑ ∆λ𝑝𝑗

(𝑘)
𝐦𝑗
(𝑘)

𝑁=2

𝑗=1

 Eq.  3.29 

Where 𝐫(𝑘) is a residual vector that should also vanish at the end of the iterations, i.e. 

‖∑ ∆λ𝑝𝑗
(𝑘)
𝐦𝑗
(𝑘)
− ∆𝜀𝑝(𝑛+1)

(𝑘)𝑁=2
𝑗=1 ‖ < 𝑡𝑜𝑙. The proportionality factor components in Eq.  3.20 and Eq.  3.29 are 

updated as 

 ∆λ𝑝𝑖
(𝑘)

= ∆λ𝑝𝑖
(𝑘−1)

+ 𝛿λ𝑝𝑖
(𝑘)
           0 < 𝑖 ≤ 2 Eq.  3.30 

To find a solution that satisfies both conditions 𝑓𝑝𝑖
(𝑘)

= 0 and ‖𝐫(𝑘)‖ = 0 of Closest Point Projection 

Algorithm, one can implement the Newton-Raphson solution scheme. Thus, from the linearization of Galic 

et al. (2011) and 𝑓𝑝𝑖
(𝑘)

= 0, respectively one obtains 

 

𝐫(𝑘) + 𝛿𝝈(𝑘) + 𝐄∑ ∆λ𝑝𝑗
(𝑘)
𝐇𝑗
(𝑘)
𝛿𝝈(𝑘) +

𝑁=2

𝑗=1

𝑬∑ ∆λ𝑝𝑗
(𝑘)
𝒎𝑗
(𝑘)

𝑁=2

𝑗=1

= 0 Eq.  3.31 
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And 

 𝑓𝑝𝑖
(𝑘)
+ 𝐧𝑖

(𝑘)𝑇
𝛿𝝈(𝑘) + 𝑓𝑝𝑖,𝜅𝑖

(𝑘)
𝑐𝑝𝑖
(𝑘)
𝛿λ𝑝𝑖

(𝑘)
= 0,         0 < 𝑖 ≤ 2 Eq.  3.32 

where Eq.  3.3 was used in iterative-incremental form, i,e, 𝛿𝜅𝑝𝑖 = 𝛿𝜆𝑝𝑖𝑐𝑝𝑖. Solving for 𝛿𝝈(𝑘) from Eq.  3.31 

produces 

 

𝛿𝝈(𝑘) = −𝐐−𝟏 (r(𝑘) + 𝐄∑ ∆λ𝑝𝑗
(𝑘)
𝐦𝑗
(𝑘)

𝑁=2

𝑗=1

) Eq.  3.33 

Substituting Eq.  3.33 into Eq.  3.32 produces the vector of proportionality factors as in Eq.  3.15, i.e. 

 
𝛿𝛌(𝑘) = {

𝛿λ𝑝1
(𝑘)

𝛿λ𝑝2
(𝑘)
} Eq.  3.34 

The solutions of 𝛿λ𝑝1
(𝑘)

 are then used in Eq.  3.13 to update the plastic strain increment within the current 

step (𝑛 + 1). On the other hand, to implement the Cutting Plane Algorithm as a special case, one needs to 

assume that the residual vector r(𝑘) in Eq.  3.29 a-priori vanishes and 𝐑 = 𝐄 in all iterations, which bypasses 

the need for the calculation of the Hessian matrix Hi of the active surfaces in Eq.  3.21, which might be 

difficult to obtain analytically if the potential surface function is complicated. Nevertheless, the potential 

surface’s function adopted in this study conveniently vanishes, i.e. 𝐑 = 𝐄 is valid also for the Closest-Point 

Projection Algorithm by virtue of the concrete material model adopted in Section 3.4 due to the fact that 

selected potential functions are low order. Thus, which of the algorithms used in this study is only a matter 

of whether the vanishing of the residual vector r(𝑘) is adopted as a condition or not. 

It is also important to note that to obtain a unique solution for 𝛿𝛌(𝑘) from Eq.  3.15, the matrix 𝐀(𝑘) should 

be invertible. In associative perfect plasticity, the uniqueness conditions are automatically met. For the case 

with associative plasticity with hardening, hardening-related terms enforce a limit on uniqueness of the 

solution (Simo & Hughes, 2006). 
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On the other hand, for the general case, where plastic flow is non-associative and hardening takes place, the 

uniqueness of the solution relies on all terms of the matrix 𝐀(𝑘). For the matrix 𝐀(𝑘) to be invertible, the 

conditions can be written as 

 𝑎11
(𝑘)

> 0, 𝑎22
(𝑘)

> 0, 𝑑𝑒𝑡(𝐀(𝑘)) = |𝐀(𝑘)| = 𝑎11
(𝑘)
𝑎22
(𝑘)
− 𝑎12

(𝑘)
𝑎12
(𝑘)
 > 0 Eq.  3.35 

in which the first two conditions are related to the single-surface plasticity while the third condition arises 

when both surfaces are active. If any of the three conditions in Eq.  3.35 is not satisfied due to the fact that 

𝑓𝑝1,𝜅1
(𝑘)

𝑐1
(𝑘)

< 0 or 𝑓𝑝2,𝜅2
(𝑘)

𝑐2
(𝑘)

< 0  in the softening regions, then assign 𝑓𝑝1,𝜅1
(𝑘)

𝑐1
(𝑘)

= 0 and/or 𝑓𝑝2,𝜅2
(𝑘)

𝑐2
(𝑘)

= 0, 

where necessary to prevent premature convergence failures. 

3.3.2. Possible Scenarios of the Return Algorithm 

When both surfaces are active, refer to it as the first scenario, which is when the non-converged stresses are 

in the corner zone region of the stress space. On the other hand, during the return mapping process at the 

intermediate iterations, if the stress state is outside of the corner zone, then it yields to the classical single-

surface plasticity problem. When only the first surface is active, refer to it as the second scenario and when 

only the second surface is active, refer to it as the third scenario. Finally, when no surface is active and thus, 

the stress is in the elastic region, refer to it as scenario zero. Figure 3-2, the boundaries between corner zone 

and single-surface zones are denoted with the symbols 𝜕𝐶1 and 𝜕𝐶2 on both sides. In the following, 

introduce the criteria for the selection of the active surface. 

3.3.2.1. Scenario 1 – Both surfaces are Active 

When both surfaces are active at the initial iteration, the Kuhn-Tucker conditions given in Eq.  3.5 for 𝑀 =

2 produces 

 𝑓1
0 > 0         δλ1

0 > 0 

𝑓2
0 > 0         𝛿λ2

0 > 0 

Eq.  3.36 

It should be noted that Eq.  3.36 is implemented in a finite incremental fashion therefore, before convergence 

is achieved both yield conditions are violated which makes the surfaces active during the iterations. As 
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mentioned above, select the scenario to implement out of the four possible scenarios after evaluating the 

yield surface values of the initial iteration, i.e. 𝑓𝑖
0 > 0. On the other hand, from, Eq.  3.15 requirement of a 

solution for positive proportionality factors, i.e., δλ𝑖
0 > 0, produces 

 
δλ1

0 =
𝑎22
0 𝛿𝑏1

0 − 𝑎12
0 𝛿𝑏2

0

|𝐀0|
 

𝛿λ2
0 =

−𝑎21
0 𝛿𝑏1

0 + 𝑎11
0 𝛿𝑏2

0

|𝐀0|
 

Eq.  3.37 

From Eq.  3.37, the criteria to activate Scenario 1 can be obtained as 

 𝑎22
0 𝑓1

0 ≥ 𝑎12
0 𝑓2

0 

𝑎11
0 𝑓2

0 ≥ 𝑎21
0 𝑓1

0 

Eq.  3.38 

which are in addition to the uniqueness conditions provided in Eq.  3.35 and violation of yield conditions in 

Eq.  3.36 for the initial iteration. 

3.3.2.2. Scenario 2 – Only Surface 1 is Active 

When only the first surface is active at the initial iteration, the Kuhn-Tucker conditions given in Eq.  3.5 

produces 

 𝑓1
0 > 0         δλ1

0 > 0 

𝑓2
0 = 0         𝛿λ2

0 > 0 

Eq.  3.39 

From, Eq.  3.15 requirement of a solution for positive proportionality factor for 𝑖 = 1, i.e., δλ1
0 > 0, 

produces 

 𝑎22
0 𝑓1

0 ≥ 𝑎12
0 𝑓2

0 Eq.  3.40 

 𝑎21
0 𝑓1

0 > 𝑎11
0 𝑓2

0 Eq.  3.41 
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It is also interesting to note that, in this case the return point is affected by whether the algorithm is Closest-

Point Projection or Cutting-Plane. 

3.3.2.3. Scenario 3 – Only surface 2 is Active 

For when only the second surface is active, the Kuhn-Tucker conditions produces 

 𝑓2
0 = 0         δλ1

0 > 0 

𝑓1
0 > 0         𝛿λ2

0 > 0 

Eq.  3.42 

From, Eq.  3.15 requirement of a solution for positive proportionality factor for 𝑖 = 2, i.e., δλ2
0 > 0, 

produces 

 𝑎12
0 𝑓2

0 > 𝑎22
0 𝑓1

0 Eq.  3.43 

 𝑎11
0 𝑓2

0 ≥ 𝑎21
0 𝑓1

0 Eq.  3.44 

Similar to Scenario 2, again the converged stress point is affected by whether the algorithm is Closest-Point 

Projection or Cutting-Plane. 

3.3.2.4. Scenario 0 – No Surface is active 

When the Kuhn-Tucker conditions at initial iterations are such that 

 𝑓1
0 < 0         δλ1

0 = 0 

𝑓2
0 < 0         𝛿λ2

0 > 0 

Eq.  3.45 

then there is no active surface and accept the trial stress as the final stress within the incremental step (𝑛 +

1). 

3.3.3. Parameters Considering Viscosity update 

The viscous behavior can be considered as a modification to the values obtained after the above time 

integration algorithm described based on the rate-independent plasticity assumption. This approach is often 
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referred to as Duvaut and Lions model (Ibrahimbegovic, 2009), in which the final value of stresses as well 

as hardening parameters are expressed as a linear combination of the trial elastic value and the converged 

stress of the rate independent algorithm, where the weighting factors are functions of the time step and the 

retardation time. Introducing viscous effects improves the numerical stability which may be required in the 

case of strain softening (Simo & Hughes, 2006). According to Duvaut and Lions model, the updated stress 

and evolution parameters can be written as 

 
𝝈(𝑛+1)
𝑓𝑖𝑛𝑎𝑙

= 𝝈(𝑛)𝑒
−𝛽∆𝑡 + 𝝈(𝑛+1)(1 − 𝑒

−𝛽∆𝑡) +
(1 − 𝑒−𝛽∆𝑡)

𝛽∆𝑡
𝐄∆𝜀(𝑛+1) Eq.  3.46 

And 

 𝜅𝑖
𝑓𝑖𝑛𝑎𝑙

= 𝜅𝑖(𝑛)𝑒
−𝛽∆𝑡 + 𝜅𝑖(𝑛+1)(1 − 𝑒

−𝛽∆𝑡) Eq.  3.47 

in which 𝛽 = 1 𝜏⁄ , where 𝜏 is the retardation time and ∆𝑡 is the time increment of the step. The retardation 

time is a viscosity related material property which refers to the necessary time for complete stress relaxation 

to the final state. Thus, under the rate independent plasticity assumption of no relaxation, i.e., 𝜏 → 0, for 

any ∆𝑡, Eq.  3.46 and Eq.  3.47 regenerate 𝝈(𝑛+1) and 𝜅𝑖(𝑛+1), respectively, which are the last converged 

values of the rate-independent plasticity algorithm described above. 

3.3.4. Material Definition in Heigh-Westergaard Coordinates 

As isotropic material assumption is adopted, Heigh-Westergaard coordinates for its convenience will be 

used. The return mapping will take place in the Rendulic plane due to the fact that the plastic return direction 

being limited to Rendulic plane as a result of the selected potential functions. Figure 3-2 depicts a generic 

two surface model in Rendulic plane, where 𝜉 is a measure of the volumetric component of the stress state 

and 𝜌 is a measure of deviatoric component of the stress state, i.e. 

 
𝜉 =

1

√3
𝑡𝑟(𝝈) Eq.  3.48 

 𝜌 = √2𝐽2 Eq.  3.49 

Heigh-Westergaard coordinates are related to the principal stress components as 
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{

𝜎1
𝜎2
𝜎3
} =

1

√3
{

𝜉
𝜉
𝜉
} + √

2

3
𝜌

{
 
 

 
 

cos 𝜃

cos (𝜃 −
2𝜋

3
)

cos (𝜃 +
2𝜋

3
)
}
 
 

 
 

 Eq.  3.50 

 

Figure 3-2. Two surface model in Rendulic Plane 

in which 𝜃 is the Lode angle that defines the orientation according to the polar coordinate system within the 

deviatoric plane of the Heigh-Westergaard space. 

For further details about Heigh-Westergaard coordinate system one is referred to (Jirasek & Bazant, 2001). 

The Lode angle θ is related to the deviatoric stress tensor components as 

 
cos 3𝜃 =

3√3

3

𝐽3

𝐽2
3 2⁄

 Eq.  3.51 

In Eq.  3.49, Eq.  3.53 and Eq.  3.51, the following stress tensor invariants have been used. 

 
𝜎𝑉 =

𝐼1
3
=
1

3
𝑡𝑟(𝝈) 

𝐽2 =
1

2
𝑡𝑟(𝒔𝟐) 

Eq.  3.52 
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𝐽3 =
1

3
𝑡𝑟(𝒔𝟑) = det (𝒔) 

in which 𝑡𝑟 is trace operator, 𝜎𝑉 is the volumetric stress and 𝒔 is the deviatoric stress components of the 

stress tensor 𝝈, i.e. 

 𝒔 = 𝝈 − 𝜎𝑉𝜹 Eq.  3.53 

where 𝜹 is the Kronecker’s delta 

 
𝛿𝑖𝑗 = {

1,   𝑖 = 𝑗
0,   𝑖 ≠ 𝑗

 Eq.  3.54 

Material Parameters in terms of Bulk and Shear Moduli 

By virtue of the material model selected in Section 3.4, the matrix 𝐀 used in Eq.  3.15 for plastic stress 

return calculations can be conveniently expressed in terms of the bulk and shear moduli. For the alternative 

expression of 𝐀, first refer to the elastic stress due to elastic strain. From Eq.  3.53, one obtains 

 𝝈 = 𝒔 + 𝜎𝑉𝜹 = 𝐄 ∶ 𝛆 = 3Kϵ𝑉𝜹 + 2𝐺𝒆 Eq.  3.55 

 

Where 

 
𝐾 =

𝐸

3(1 − 2𝜐)
 Eq.  3.56 

And 

 
𝐺 =

𝐸

2(1 + 𝜐)
 Eq.  3.57 

written above in terms of the Elasticity Modulus 𝐸 and Poisson’s ratio 𝜐 and in Eq.  3.55, volumetric strain 



54 

 

 
𝜖𝑉 =

𝑡𝑟(𝜀)

3
 Eq.  3.58 

and deviatoric strain 

 𝒆 = 𝜀 − 𝜖𝑉𝜹 Eq.  3.59 

definitions were used. From the definition in Eq.  3.55 to Eq.  3.59, one obtains the relation 

 𝝈𝑽 = 3𝐾𝜖𝑉 Eq.  3.60 

 𝒔 = 2𝐺𝒆 Eq.  3.61 

Note that for shear stress-shear strain relations in Voigt vector notation Eq.  3.61 should be evaluated as 

 𝝉 = 𝐺𝛄 Eq.  3.62 

This difference between the values in tensor and vector notations for shear strain components, i.e. γ = 2𝒆, 

in which 𝒆 refers to the last three components of the six-dimensional deviatoric strain tensor. Thus, shear 

strains should be treated with caution in numerical calculations. By using Eq.  3.50, Eq.  3.60 and Eq.  3.61, 

𝑓𝑝,𝜎
T𝐄𝑔𝑝,𝝈 can be written alternatively as 

 
𝑓𝑝𝑖,𝝈

T𝐄𝑔𝑝,𝝈 = 3𝐾𝑓𝑝𝑖,𝜉𝑔𝑝𝑖,𝜉 + 2𝐺𝑓𝑝𝑖,𝜌𝑔𝑝𝑖,𝜌 +
2𝐺

𝜌2
𝑓𝑝𝑖,𝜃𝑔𝑝𝑖,𝜃 ,      0 < 𝑖 ≤ 2 Eq.  3.63 

from which by substituting into Eq.  3.16, one obtains 

𝐀(0) = [
3𝐾𝑓𝑝1,𝜉

0 𝑔𝑝1,𝜉
0 + 2𝐺𝑓𝑝1,𝜌

0 𝑔𝑝1,𝜌
0 + 𝑓𝑝1,𝜅1

0 𝑐1
0 3𝐾𝑓𝑝1,𝜉

0 𝑔𝑝2,𝜉
0 + 2𝐺𝑓𝑝1,𝜌

0 𝑔𝑝2,𝜌
0

3𝐾𝑓𝑝2,𝜉
0 𝑔𝑝1,𝜉

0 + 2𝐺𝑓𝑝2,𝜌
0 𝑔𝑝1,𝜌

0 3𝐾𝑓𝑝2,𝜉
0 𝑔𝑝2,𝜉

0 + 2𝐺𝑓𝑝2,𝜌
0 𝑔𝑝2,𝜌

0 + 𝑓𝑝2,𝜅2
0 𝑐2

0
] Eq.  3.64 

where 𝑔𝑝𝑖,𝜃 = 0 for 0 < 𝑖 ≤ 2 was used to eliminate the last term in Eq.  3.63. In Eq.  3.64, the superscript 

indicates the initial iteration, i.e., (𝑘) = 0. Eq.  3.64 have been obtained for the initial iteration for the 

purpose of identifying the target yield surface. As it will be discussed next, in this algorithm the return 

surface have been selected at the initial iteration based on Eq.  3.64, after which the procedure explained in 

Section 3.3.1 above, is used to update the stresses. It should be noted that 𝑓𝑝,𝜎 and 𝑔𝑝,𝝈 are generally tensors, 
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however, all terms on the right-hand side of Eq.  3.63, e.g. 𝑓𝑝,𝜉, are conveniently scalar quantities which are 

provided in Section 3.4. 

3.4.Material Model Specifics 

3.4.1. Menetrey-Willam Yield Surface for Compression 

The yield surfaces are described in terms of Haigh-Westergaard in stress space. Haigh-Westergaard 

coordinates are (𝜉, 𝜌, 𝜃), where 𝜉 is the hydrostatic stress invariant, 𝜌 is the deviatoric stress invariant, 𝜃 is 

the deviatoric polar angle as described in Section 3.3.4. The yield surface proposed by Menetrey & Willam 

(1995) is given by the following equation: 

 
𝑓𝑝1(𝜉, 𝜌, 𝜃) = 1.5 (

𝜌

𝑓𝑐
)
2

+ 𝑞ℎ(𝜅𝑝)𝑚 (
𝜌

𝑓𝑐√6
𝑟 +

𝜉

𝑓𝑐√3
) − 𝑞ℎ(𝜅𝑝)𝑞𝑠(𝜅𝑝) ≤ 0 Eq.  3.65 

where 𝑓𝑐 is the uni-axial compressive strength. In Eq.  3.65, 𝑚 is introduced as a measure of frictional 

strength in Menetrey & Willam (1995) and it can be written as 

 
𝑚 = 3

𝑓𝑐
2 − 𝑓𝑡

2

𝑓𝑐𝑓𝑡

𝑒

𝑒 + 1
 Eq.  3.66 

in which 𝑓𝑡 is the uniaxial tensile strength and 𝑒 is called eccentricity which describes the out-of-roundness 

of the yield surface in the deviatoric plane (Figure 3-3). 

 
𝑒 =

1 + 𝜖

2 − 𝜖
 Eq.  3.67 

Where 

 
𝜖 =

𝑓𝑡
𝑓𝑏

𝑓𝑏
2 − 𝑓𝑐

2

𝑓𝑐
2 − 𝑓𝑡

2 Eq.  3.68 

In Eq.  3.65, 𝑟 is the radius in the deviatoric plane which is a function of the deviatoric polar angle 𝜃 and 

the eccentricity 𝑒 i.e. 
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𝑟(𝜃, 𝑒) =

𝜐(𝜃, 𝑒)

𝑠(𝜃, 𝑒) − 𝑡(𝜃, 𝑒)
 Eq.  3.69 

Where 

 𝜐(𝜃, 𝑒) = 4(1 − 𝑒2) cos2 𝜃 + (2𝑒 − 1)2 Eq.  3.70 

 𝑠(𝜃, 𝑒) = 2(1 − 𝑒2) cos 𝜃 Eq.  3.71 

 𝑡(𝜃, 𝑒) = (2𝑒 − 1)[4(1 − 𝑒2) cos2 𝜃 + 5𝑒2 − 4𝑒]
1
2⁄  Eq.  3.72 

 

Figure 3-3. Deviatoric Plane Menetrey & Willam (1995) 

Hardening and softening functions 

An isotropic hardening law based on which hardening and softening functions is adopted, i.e., 𝑞ℎ and 𝑞𝑠 

respectively, only change the size of the yield surface, controlled by the hardening/softening parameter 𝜅𝑝1 . 

Following Grassl et al. (2002), select the hardening parameter to be the plastic volumetric strain 𝜀𝜐
𝑝

. i.e. 

 
𝜅̇𝑝1 = 𝜀𝜐̇

𝑝
= 𝜆̇𝑝

√3

𝑞ℎ𝑞𝑠
 Eq.  3.73 
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where superimposed ∙ indicates rate. The function 𝑞ℎ is active in the hardening region and it is unity beyond 

the peak strain whereas 𝑞𝑠 is active in the softening region. According to the hardening law in Grassl et al. 

(2002), the hardening function in Eq.  3.65 can be written as 

 

𝑞ℎ(𝜅𝑝1) = 𝑞ℎ(𝜀𝜐
𝑝
) = 𝑘0 + (1 − 𝑘0)√1 − (

𝜀𝜐0
𝑝
− 𝜀𝜐

𝑝

𝜀𝜐0
𝑝 )

2

 Eq.  3.74 

Where 

 𝑘0 = 𝜎𝑐0 𝑓𝑐⁄  Eq.  3.75 

in which 𝜎𝑐0 is the uniaxial concrete stress at the onset of plastic flow. In Eq.  3.74, 𝜀𝜐0
𝑝

 is the threshold 

value for the volumetric plastic strain at uniaxial concrete strength, i.e. 

 
𝜀𝜐0
𝑝
=
𝑓𝑐
𝐸𝑐
(1 − 2𝜐𝑐) Eq.  3.76 

where 𝐸𝑐 and 𝜐𝑐 are the Young’s modulus and Poisson ratio for concrete, respectively. 

 𝑞(𝜅𝑝1) = 𝑞ℎ(𝜅𝑝1)𝑞𝑠(𝜅𝑝1) Eq.  3.77 

The softening function 𝑞𝑠 is unity during the hardening range and its value is updated only beyond the peak 

compressive strain, i.e. 

 

𝑞𝑠(𝜅𝑝1) = (
1

1 + (
𝑛1 − 1
𝑛2 − 1

)
2)

2

 Eq.  3.78 

Where 

 
𝑛1 =

𝜀𝜐
𝑝

𝜀𝜐0
𝑝  Eq.  3.79 

And 
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𝑛2 =

𝜀𝜐0
𝑝
+ 𝑡𝑐

𝜀𝜐0
𝑝  Eq.  3.80 

in which 𝑡𝑐 is a calibrated parameter and considering MPa as the stress unit, it is recommended to use 𝑡𝑐 =

𝑓𝑐/15000, (Papanikolaou & Kappos, 2007). 

3.4.2. Potential Function for Compression 

The linear potential function proposed in (Lee & Fenves, 1998) is adopted, which can be expressed in 

Haigh–Westergaard coordinates as 

 𝑔𝑝1(𝜉, 𝜌) = −𝐵𝜌 + 𝜉 − 𝑎 Eq.  3.81 

where 𝐵 controls the slope in Rendulic Plane and it is chosen to give proper dilatancy. Lee & Fenves (1998) 

suggested a value between -6.6 and -5 in their case studies, which is adopted herein. The effect of slope B 

will be shown in Chapter 5 Numerical Results. It should be noted that more sophisticated potential functions 

that describe the confined concrete behaviour more accurately were discussed by Grassl et al. (2002) and 

Papanikolaou & Kappos (2007), which may cause some differences in results when the concrete is confined. 

However, in our experience the linear potential function selected herein performs well in numerical 

simulations as will be shown in Chapter 5, while other alternatives may cause convergence issues especially 

when tensile stresses are involved. It should also be noted that as the gradient of the potential function is 

used and not the potential function value itself, the value of a in Eq.  3.81 has no influence in the derivation 

of equations and results. It is a constant introduced to adjust the position of the potential function to be 

meaningful, i.e., to meet with the point of current stress state. 

3.4.3. Rankine Yield Surface for Tension Cut-off 

In tensile region, non-associative flow rule is also adopted to be able to use a potential function that is 

independent of the polar angle 𝜃, while using the Rankine yield surface to limit the maximum stress at the 

tensile strength. In Haigh–Westergaard coordinates the Rankine surface can be written as 

 𝑓𝑝2(𝜉, 𝜌, 𝜃) = √2𝜌 cos 𝜃 + 𝜉 − √3𝑓𝑡 Eq.  3.82 

On the other hand, the potential function is obtained by removing the dependence to angle 𝜃 in Eq. 3.82 as 
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 𝑔𝑝2(𝜉, 𝜌) = √2𝜌 + 𝜉 − 𝑏 Eq.  3.83 

By adopting the potential function in Eq.  3.83, assure that the condition 𝑔𝑝2,𝜃 = 0, which was used in the 

derivation of Eq.  3.64 is valid in the tension zone. Similar to the compressive potential surface constant 𝑎, 

the value of 𝑏 in Eq.  3.83 has no influence in the derivation of the equations. 

3.5. Solution of the Global Equilibrium Equations 

3.5.1. Variational Form of the Equilibrium Equations 

To refer to difference in the finite element solution, first start with the general equilibrium equations based 

on the principle of virtual work i.e. 

 𝛿𝚷 = 𝛿𝐖𝑖𝑛𝑡 − 𝛿𝐖𝑒𝑥𝑡 = 0 Eq.  3.84 

where 𝛿𝐖𝑖𝑛𝑡 is the variation of the internal work, i.e., 

 
δ𝐖𝑖𝑛𝑡 = ∫δε𝐓𝛔𝑑𝑉

 

V

 Eq.  3.85 

And 𝛿𝐖𝑒𝑥t is the virtual work done by the external loads, i.e., 

 δ𝐖𝑒𝑥𝑡 = δd𝐓𝐏𝑒𝑥𝑡 Eq.  3.86 

where 𝐏𝑒𝑥𝑡 is the vector of the external nodal forces and δ𝐝 is the vector of the displacement variations. In 

the finite element form, refer to vector δ𝐝 as the nodal displacement vector. A relation can be directly built 

between the variations of strains and the variations of nodal displacements in the form of 

 δ𝜀 = 𝐁δ𝐝𝒆 Eq.  3.87 

where 𝐝𝒆 is the element displacement vector and matrix 𝐁 forms the element level discretized strain-

displacement relations, which depends on the selected finite element interpolation field. For matrix 𝐁 

geometrically linear small-strain assumptions have been adopted. 

3.5.2. Linearization of the Equilibrium Equations 

Linearization of Eq.  3.84 produces 
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δd. ∇𝑑δ𝚷 = ∫𝐁

T𝐂𝑒𝑝𝐁𝑑𝑉
 

V

= δ𝐝𝐓𝐊𝐺𝑡δ𝐝 Eq.  3.88 

Conventional displacement has been adopted based finite element formulations with standard assemblage 

procedures. Therefore, the formation of the nodal displacement vector 𝐝 as an assemblage of element 

displacements 𝐝𝒆 and all the relevant procedures are standard. Transition from the element level matrix 𝐁 

to global level relations in Eq.  3.87 are not further elaborated herein and further details can be found in 

Robert et al., (2007). In Eq.  3.88, 𝐊𝐺𝑡 denotes the tangent stiffness matrix and ∇𝑑 is the gradient with 

respect to the nodal displacement vector. In Eq.  3.88, 𝐂𝑒𝑝 is the material level tangent modulus which can 

be written as 

 𝐂ep = 𝐄[I − mbA
−1na

TE] Eq.  3.89 

Where 

 
na

T = {
n1
T

n2
T} Eq.  3.90 

 
mb

T = {
m1
T

m2
T} 

Eq.  3.91 

were used. In deriving Eq.  3.89, the differential equations 𝑑𝛌 = 𝐀−𝟏𝐧𝐚
𝐓𝐄𝑑𝜀 and 𝑑𝜀𝑝 = 𝐦b were 

substituted into 𝑑𝛔 = 𝐄(𝑑𝜀 − 𝑑𝜀𝑝). The Newton-Raphson solution of the non-linear equilibrium equation 

in Eq.  3.84 produces 

 
[
𝑲𝐺𝑡 −𝑷𝑒𝑥𝑡

𝒂𝑻(j) 𝑏(𝑗)
] {𝛿𝒅

(𝑗)

𝛿𝚲(𝑗)
} = −{

𝐫𝐝
(𝑗)

𝑐(𝑗)
} Eq.  3.92 

where 𝚲(𝑗) is a scaling factor that sets up the applied load level within each global iteration (𝑗) and 𝐫𝐝
(𝑗)

 is 

the residual of the global equilibrium condition in Eq.  3.84 calculated at the end of each iteration. To solve 

the above augmented system of equations more efficiently the iterative displacement vector can be 

decomposed as 
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 δd(j) = δ𝚲(j)δ𝐝𝐩
(j) + δ𝐝𝐫

(j)
 Eq.  3.93 

where δ𝐝𝐩
(j) = 𝐊𝐺𝑡

−𝟏𝐏𝐞𝐱𝐭 and δ𝐝𝐫
(j) = 𝐊𝐺𝑡

−𝟏𝒓𝒅
(𝒋)

 From the second row of the augmented equation in Eq.  

3.93 and using the displacement components, one obtains 

 
δ𝚲(j) =

c(𝑗) − 𝐚𝐓(𝑗)𝜹𝐝𝐫
(𝒋)

𝐚𝐓(𝑗)𝛅𝐝𝐩
(𝒋)

 Eq.  3.94 

In Eq.  3.93 and Eq.  3.94, the vector a(𝑗) and the constant c(𝑗) enforces a constraint condition at each global 

iteration (𝑗), which allows selection of alternative control parameters while keeping the load scaling factor 

𝚲 a variable. It should be noted that the equations is solved in an incremental-iterative manner, where a 

modified Newton-Raphson procedure is adopted and thus, update the stiffness matrix only at the beginning 

of the initial iteration. Therefore, 𝐂ep and accordingly 𝐊𝐺𝑡 are presented without any reference to iteration 

(𝑗). However, they are updated after each converged increment. Adopted is the displacement control method 

to be able to trace the load-deflection curve beyond the peak strength. For the displacement-control method, 

the constraint conditions are such that the vector a(𝑗) is composed of zero components except a unity at the 

controlled degree-of-freedom and the constant c(𝑗) takes the prescribed displacement value. Further details 

on the displacement-control algorithm can be found in the literature of Batoz & Dhatt (1979).  

3.5.3. Selected Finite Element Types 

In the modeling process of the concrete bulk utilizing a 3D material model, the 8-node solid element 

featuring 6-degrees-of-freedom per node is used, including nodal rotations, as outlined by Ibrahimbegovic 

& Wilson (1991). The steel reinforcement bars and stirrups are frame element type with 6-degrees-of-

freedom and are represented using 2-node 1D elements. The beam type elements incorporating both 

translational and rotational degrees-of-freedom are adopted to ensure compatibility between solid and re-

bar elements. 

3.5.4. Uni-axial Sugano Model for 1D Beam-Type Analysis 

In the realm of structural engineering, plain concrete exhibits a brittle behavior when subjected to uniaxial 

compression. However, the deformability of concrete experiences enhancement when subjected to 

confinement. Confinement effectively enables concrete to endure higher strains at the peak load, often 
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exhibiting minimal strength decay thereafter. The strain observed at peak stress is intricately tied to the 

effectiveness of the confinement mechanism. Building upon the work of previous researchers such as 

Saatcioglu and Razvi (1992) and Mander et al. (1988), an expression has been identified to yield accurate 

predictions of experimentally obtained strain values corresponding to peak stress 𝜀𝑐𝑐.  

 
𝜀𝑐𝑐 = 𝜀𝑐𝑜 (1 + 5(

𝑓𝑐𝑐
′

𝑓𝑐𝑜
′ − 1)) Eq.  3.95 

Where 

 

𝑓𝑐𝑐
′ = 𝑓𝑐𝑜

′ + (−1.254 + 2.254√1 + 7.94
𝑓𝑙
𝑓𝑐𝑜
′ − 2

𝑓𝑙
𝑓𝑐𝑜
′ ) Eq.  3.96 

It is imperative to note that 𝜀𝑐𝑜, denoting the strain corresponding to peak stress of unconfined concrete, 

must be determined under the same rate of loading employed for the confined concrete. In instances where 

experimental data is lacking, a value of 0.002 may be deemed appropriate for 𝜀𝑐𝑜 under a slow rate of 

loading condition. 

Eq.  3.96 denotes the compressive strength of confined concrete and was defined by Mander et al. (1988). 

 𝑓𝑙 = 0.5𝑘𝑒𝜌𝑐𝑓𝑦𝑡 Eq.  3.97 

𝑓𝑙  represents the effective lateral confining stress on the concrete (Saatcioglu & Razvi, 1992). 𝑘𝑒 =
𝐴𝑒

𝐴𝑐𝑐
 is 

the confinement effectiveness coefficient. 𝑓𝑦𝑡 denotes the yield strength of transverse reinforcement. 𝜌𝑐 =

4𝐴𝑠𝑡

𝑏𝑠𝑠
 is area ratio of transverse confinement reinforcement. 𝐴𝑠𝑡 is the area of transverse reinforcement within 

spacing 𝑠. 

 𝑓𝑐𝑜
′ = 0.85𝑓𝑐 Eq.  3.98 

where 



63 

 

 
𝑓𝑐 =

1

𝛿𝑓 − 0.041
(0.127𝑓𝑦𝑡𝜌𝑐 − 0.052𝜎𝑐) Eq.  3.99 

In which 𝛿𝑓 is the ultimate displacement defined as the displacement angle at which 80% of the maximum 

strength is sustained in load versus displacement angle curve based on some experimental data carried out 

by Sugano (1997) thus Eq.  3.99 was acquired. 
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Chapter 4  

Description of the finite element 

models 

4.1.ABAQUS Model 

4.1.1. Concrete model in ABAQUS 

The values of said parameters were utilized in accordance with the specifications outlined in the 

experimental data. The finite element software ABAQUS was used for comparison purposes, in which a 

coupled plastic damage model for concrete is available. The concrete damage plasticity (CDP) constitutive 

model is employed by ABAQUS to represent inelastic behavior. The model under consideration takes into 

account two primary failure processes, namely tensile cracking and compressive crushing (ABAQUS, 

2008). 

The CDP model in ABAQUS is derived from plastic behavior, compressive behavior, and tensile behavior. 

The investigation of the compressive behavior of concrete necessitates the establishment of a correlation 

between the yield stress and inelastic strain. The CDP model primarily focuses on the development of 

reinforced concrete structures. Therefore, the implementation of a stress-strain model for concrete, 

specifically the design-oriented model proposed by Milad et al. (2017), was carried out. 

In order to establish the plasticity model of concrete, it is necessary to determine certain key parameters. 

The parameters under consideration include the dilation angle (𝜓), the plastic potential eccentricity (𝑒), the 

ratio of the initial equibiaxial compressive yield stress to the initial uniaxial compressive yield stress 

𝑓𝑏0/𝑓𝑐0, the ratio of the second stress invariant on the tensile meridian which governs the shape of the yield 

surface (𝑘𝑐), and the viscosity (𝑢). The dilation angle was selected as 31 degrees based on the calibration 

process. Milad et al. (2017) provided definitions for the eccentricity (𝑒), the ratio of the distance between 
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the foci to the length of the major axis (𝑓𝑏0/𝑓𝑐0), the constant 𝑘𝑐, and the parameter (𝑢). Specifically, the 

values assigned to these variables were 0.1, 1.16, 2/3, and zero, respectively. 

4.1.2. Reinforcements in ABAQUS 

The behavior of steel and FRP was modelled as elastic perfectly plastic model. The parameters which were 

used to define the model are modulus of elasticity, yield stress, and Poisson’s ratio. Figure 4-1 illustrates 

the reinforcement arrangement for SW-1 in ABAQUS. 

 

Figure 4-1. Reinforcement configuration in ABAQUS. 

4.1.3. Finite Element Types and Meshing in ABAQUS 

To effectively simulate the concrete column in ABAQUS, distinct element types have been employed to 

represent the various components of the beams and shear walls. The primary materials included in the model 

are concrete, steel, and fiber-reinforced polymer (FRP). The primary material used for the concrete is 

represented in the model as a homogeneous 8-node 3D brick element, specifically the C3D8R element. 

Additionally, the longitudinal and transverse steel and FRP materials are represented in the model as linear 

truss elements, namely the T3D2 element. 

In order to simulate the interaction between the concrete and the reinforcement, a constraint is applied to 

the embedded region. The purpose of the embedded contact region is to ensure that the number of 
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translational degrees of freedom (DOF) at a node on the embedded element is equivalent to the number of 

translational degrees of freedom at a node on the host element (referred to as Compatible DOF). The 

reinforcement was incorporated within the concrete, which is regarded as the host region. Hence, it can be 

observed that the concrete and reinforcement elements are interconnected at a common node, assuming an 

ideal link between them. 

It is imperative that all elements possess a congruent degree of freedom and are interconnected via a 

common node. Consequently, in order to assure the accuracy of the results derived from the finite element 

model, all the utilized elements in the model were uniformly allocated the same mesh size. The model 

utilizes a mesh size of 25 mm in order to attain optimal outcomes while maintaining a suitable simulation 

pace. 

4.1.4. Boundary Condition and Loading in ABAQUS 

In the ABAQUS analysis, the shear walls were subjected to fixed boundary conditions at the bottom in all 

directions, while being freed at the top, except at the location where the load was applied. The beams, on 

the other hand, were supported using pinned connections (pin and roller). To determine the load-deflection 

characteristics of the simulated beams and shear walls, a static monotonic load was applied at the designated 

loading location. The displacement control approach was utilized to apply loading till failure. The 

displacement increments were modified to 1 millimeter for each successive step. 

4.2.Model properties 

4.2.1. Beams 

Three reinforced concrete beams were modelled, D-C1 × 9, S-C1 × 9 and ISO30-1. D-C1 × 9 and S-C1 × 9 

were 2800mm long; the total length includes two parts of 400 mm beyond supports providing an additional 

bond length for the intrados reinforcing bars. ISO30-1 was 3000mm long; 200mm × 300 mm (width × 

depth). The first specimen S-C1 × 9 had a shallow rectangular cross section 200mm × 100 mm (width × 

depth) as described in Figure 4-2 to Figure 4-4. The second beam D-C1 × 9 had a deep cross section 100 

mm × 200 mm (width × depth) as between Figure 4-5 and Figure 4-7. Given cube concrete strength values 

were converted into cylindrical concrete strength values by multiplying them with 0.83 (Focacci et al. 2016). 

fc= 66.6 MPa and the Modulus of elasticity of 38882 MPa are the material characteristics of deep and 
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shallow beams. FRP reinforcements with db= 9 mm. Both the deep and shallow beams in ABAQUS were 

fixed in the bottom in all directions and released at the top except the top middle point where the load was 

applied. 

 

Figure 4-2. Shallow S-C1-9 beam test setup and dimensions (units in mm) 

 

 

Figure 4-3. ABAQUS Depiction of S-C1-9 beam (top: meshed beam, bottom: reinforcement) 

 

 

Figure 4-4. Shallow S-C1-9 beam FEAViewer configuration 
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Figure 4-5. Deep D-C1-9 beam test setup and dimensions (units in mm) 

 

 

Figure 4-6. ABAQUS Depiction of D-C1-9 beam (top: meshed beam, bottom: reinforcement) 

 

 

Figure 4-7. Deep D-C1-9 beam FEAViewer configuration 

The third beam was 200 mm wide and 300 mm high Benmokrane et al. (1995). As shown in Figure 4-8 to 

Figure 4-10, it was simply supported on a span of 3000 mm and was subjected to two equal loads 
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symmetrically placed about the mid-span. The modulus of elasticity of concrete was 32 GPa and fc=44 MPa. 

Yielding stress for steel rebars was taken as 480 MPa, the ultimate strength was taken as 600 MPa and the 

modulus of elasticity was taken as 200 GPa. Conventional steel stirrups (10 mm diameter) were used in the 

non-constant moment zones, to prevent shear failure. The diameter of the reinforcement was maintained 

constant (19.1 mm diameter) and this beam was reinforced by two identical rebar as resumed in Figure 4-8. 

 

Figure 4-8. Reinforcement details of ISO30-1 beam (Benmokrane et al. (1995) 

 

 

Figure 4-9. ABAQUS Depiction of ISO30-1 beam (top: meshed beam, bottom: reinforcement) 
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The elastic performance of concrete was determined based on the elastic modulus and Poisson’s ratio. The 

values of those parameters were used as specified in the experimental data. For the inelastic behavior, 

ABAQUS uses the concrete damage plasticity (CDP) constitutive model. This model considers two main 

failure mechanisms, which are tensile cracking and compressive crushing ABAQUS (2008). 

The CDP model in ABAQUS forms from plastic behavior, compressive behavior, and tensile behavior. The 

compressive behaviour of concrete requires determining the relationship between the yield stress and 

inelastic strain. The CDP model is primary developed for reinforced concrete structures. Thus, a design-

oriented stress-strain model for concrete Lam & Teng (2003b) was implemented. 

 

 

Figure 4-10. ISO30-1 beam FEAViewer configuration 
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4.2.2. Shear walls 

Two rectangular shear wall was modeled from the study of Qian and Chen (2005) – SW-1and Mohamed et 

al. (2014) – G-15. The SW-1 wall by Qian and Chen (2005) was fixed at bottom and free at the top. The 

specimen had a height of 1900 mm and length of 1000 mm. The material properties of steel bars are listed 

in Table 4.1. welded hot-rolled steel bar (HRB400) fabrics, welded cold-rolled ribbed steel bar (CRB550) 

fabrics and CD, cold-drawn steel bar was used. The concrete cube compressive strength used 25.2 MPa, 

774.4 kN as the axial load applied at top of specimen. 

Table 4.1. Properties of SW-1 reinforcements 

Grade of bar Location d: mm fy:MPa fu:MPa Es: GPa 

HRB 400 Distributed reinforcements 6 451.7 631.7 200 

HRB 335 Vertical reinforcements in boundary zones 10 395 595 194 

CD Hoops in boundary zones 4 631.7 671.7 209 

Reinforcement details of shear walls are given below from Figure 4-11 and Figure 4-14, all units are in 

millimeters 

 

Figure 4-11. Top view dimensions and reinforcement details of SW-1 
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Figure 4-12. Elevation of SW-1 

 

Figure 4-13. ABAQUS Depiction of SW1 shear wall (Left: meshed beam, Right: reinforcement) 
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Figure 4-14. SW-1 Shear wall FEAViewer configuration 

The specimen G-15 by Mohamed et al. (2015) represent a single shear wall complying with the special 

seismic requirements specified in CSA A23.3 (CAN/CSA 2004) and ACI 318 (ACI 2007) for the seismic-

force resisting systems (SFRSs). The minimum thickness and reinforcement details were according to CSA 

S806 (CAN/CSA 2012) and ACI 440.1R-06 (ACI 2006) were applied for the GFRP-reinforced walls. The 

wall specimens were 3,500 mm in height, 200 mm thick and was 1,500 mm in length as shown in Figure 

4-15. G-15 concrete dimensions and details of reinforcement configuration 
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Figure 4-15. G-15 concrete dimensions and details of reinforcement configuration 

 

Figure 4-16. ABAQUS Depiction of shear wall G15 (Left: meshed version, Right: reinforcement) 
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Figure 4-17. G15 Shear wall FEAViewer configuration 

The nominal concrete compressive strength used for G15 was 40 MPa. An axial load of 0.07. 𝑏𝑤 . 𝑙𝑤. 𝑓𝑐
′ was 

applied at the top of the wall. #3 for vertical bars (𝑓𝑓𝑢 = 1,412 𝑀𝑃𝑎, 𝐸𝑓 = 66.9 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 2.11%, 𝐴𝑓 =

71.3 𝑚𝑚2) and spiral ties (for straight portions 𝑓𝑓𝑢 = 962 𝑀𝑃𝑎, 𝐸𝑓 = 52 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 1.85%, 𝐴𝑓 =

71.3 𝑚𝑚2; for bent portions: 𝑓𝑓𝑢 = 500 𝑀𝑃𝑎 and #4 for horizontal bars (𝑓𝑓𝑢 = 1,392 𝑀𝑃𝑎, 𝐸𝑓 =

69.6 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 2%,𝐴𝑓 = 126.7 𝑚𝑚
2).  
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Chapter 5  

Numerical results 

5.1.Introduction 

The results of the Beam and Solid element based finite element models, as well as those based on ABAQUS 

and experimental results in literature are presented in this chapter. With the help of load-displacement 

curves, all the data are graphically shown. In the load-deflection figures, the vertical axis is for the load and 

the horizontal axis for the displacement. In Section 5.2, the validation studies of the developed numerical 

technique are presented and comparisons with ABAQUS and those of experimental results. In Section 5.3, 

results of members whose span is half of the original length and in Section 5.4, doubled the spans.  

5.2.Validation of the Numerical Model 

5.2.1. Beams 

Figure 5-1 displays the force-displacement curves for a specimen of the ISOROD GFRP reinforced beam. 

The graphic clearly shows the good agreement between the results of the 1D and 3D material model, the 

experimental and ABAQUS models. The 1D and 3D model can therefore accurately reproduce the 

mechanical behavior of reinforced concrete columns. 

The load-displacement curves for a deep section reinforced with one CFRP reinforcement in flexural and a 

shallow section reinforced with one CFRP beam are shown in Figures 5-2 and 5-3, respectively. The 

performance of the beams based on the 1D and 3D material models is well-aligned with the findings from 

ABAQUS and the experimental data. All approaches failed in flexural. The models behaved according to a 

load-displacement relationship consisting of two nearly linear branches representing the elastic uncracked 

phase and the elastic-cracked phase. Direct1DSugano was softer as it doesn’t consider shear stress effects. 

It can be seen that all the models present similar stiffness in the uncracked phase. Due to high tensile strength 

of the GFRP the concrete failed in compression before the failure of the FRPs. 
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Figure 5-1. Force – Displacement curve for shallow CFRP beam (S-C1 × 9) 

 

Figure 5-2. Force - Displacement curve for Deep CFRP beam (D-C1 × 9) 
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Figure 5-3. Force – Displacement for ISOROD GFRP beam (ISO30-1) 

5.2.2. Shear walls 

Figures 5-4 and 5-5 show the obtained monotonic curves of the lateral load against top lateral displacement 

of the shear walls. The 1D and 3D numerical models’ performance are in good agreement with the results 

of the experiment and ABAQUS, which makes it evident from the data that it can accurately represent the 

behavior of reinforced walls. The initial stiffness until initial crack formation of G15 in the 3 proposed 

models is the same but higher than the literature and the ABAQUS. After the initial crack formation, there 

was a reduction of stiffness resulting in linear behavior until failure. For the SW-1, the 1D and literature 

were in good agreement up to the end unlike the fails earlier than the others. The 3D also fails before the 

other two though it behaved accordingly with the literature, ABAQUS and the 1D. 

The use of several material models for concrete and various finite element types could account for any 

discrepancy in findings between the material model and ABAQUS. 
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Figure 5-4. Force – Displacement curve for G15 shear wall 

 

Figure 5-5. Force - Displacement curve for SW-1 shear wall 

5.3.Parametric Studies on Shortened members 

In this section, the above five cases used for validation purposes are changed by reducing the member sizes 

to half of their original length.    
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5.3.1. Beams 

The beams analysed in Section 5.2.1 are re-analysed after reducing their spans to half to increase 

the effect of shear deformation.  

 

Figure 5-6. Depiction of the Shortened D-C1-9 (Right: meshed version, Left: reinforcement) 

 

Figure 5-7. Load - deflection curve for the Shortened D-C1-9 

 

Figure 5-8. Depiction of Shortened S-C1-9 (Left: meshed version, Right: reinforcement) 
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Figure 5-9. Load - deflection curve for the Shortened S-C1-9 

5.3.2. Shear walls 

In this example, the shear wall analysed in Section 5.2.2 are re-analysed after reducing their spans to half to 

increase the effect of shear deformation. When the spans of structural components are reduced, the 1D beam 

formulations become overly stiff compared to the 3D solid-element based formulation. 

   

Figure 5-10. Depiction of the Shortened SW-1 (Left: meshed version, Right: reinforcements) 
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Figure 5-11. Load - deflection curve for the Shortened SW-1 

 

Figure 5-12. Depiction of the Shortened G15(Left: meshed version, Right: reinforcements)  
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Figure 5-13. Load - deflection curve for the Shortened G15 

5.4.Parametric Studies on Elongated members 

5.4.1. Beams 

The beams analysed in Section 5.2.1 are re-analysed after increasing their spans to double to 

decrease the effect of shear deformation.  

 

 

Figure 5-14. Depiction of the elongated D-C1-9 (Top: meshed version, Bottom: reinforcement) 



84 

 

 

Figure 5-15. Load - deflection curve for the elongated D-C1-9 

 

 

Figure 5-16. Depiction of elongated S-C1-9 (top: meshed version, bottom: reinforcement) 
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Figure 5-17. Load - deflection curve for the elongated S-C1-9 

  

Figure 5-18. Depiction of the elongated ISO30-1(Left: meshed version, Right: reinforcements)  
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Figure 5-19. Load - deflection curve for the elongated ISO30-1 

5.4.2. Shear walls 

In this example, the shear wall analysed in Section 5.2.2 are re-analysed after increased their spans to double 

to decrease the effect of shear deformation. 

  

Figure 5-20. Depiction of the elongated SW-1 (Left: meshed version, Right: reinforcements) 
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Figure 5-21. Load - deflection curve for the elongated SW-1 

 

Figure 5-22. Depiction of the elongated G15(Left: meshed version, Right: reinforcements) 
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Figure 5-23. Load - deflection curve for the elongated G15 

5.5.Limitations 

As observed from section 5.2, the proposed modelling program has some limitation that need further 

investigation. calibration and sensitivity studies are needed to limit any discrepancy that was observed in 

this work.  
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Conclusions  

Two nonlinear structural analysis tools were developed. The first one employs 3D solid-type Finite 

Elements whereas the second one employs 1D 2-node Finite Elements for modelling of structural 

components.  The tool was equipped with easy model generation and graphical representation options in 

order to reduce the risk of modelling errors. The inelastic material behaviour of steel reinforcements bars 

has also been considered in the analysis. Details of a proposed multi-axial elasto-plastic material model 

that can be used for the simulation of the concrete material under both tension and compression 

were described. The formulation for the material is implemented in the context of a 3D solid-

element and 1D beam-element based formulations. 1D beam formulation was implemented using 

two alternative material models. The reduced model is obtained by removing all 3D stresses except 

the beams axial and vertical shear stress acting on the cross-section. On the other hand, what is 

referred to as the Sugano model is a uni-axial model which only considers the axial stress-strain 

relations along the longitudinal fibre.  The modelling approach was used for simulating the 

behaviour of shear walls and beams under static loading causing tension and compression in 

various parts of the structural components. The model predictions were compared with three 

experimental results from literature as well as models developed in ABAQUS commercial 

software. Good agreement between the results were observed between the alternative modelling 

approaches.  
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Future work recommendation 

Future research work can be conducted in the following topics: 

• Alternative structural elements such as columns as well as stirrup and rebar arrangements 

can be tested to illustrate the performance of the developed tool. 

• A sensitivity study on material parameters can be conducted to illustrate the effects on 

structural behaviour. 

• Performance of alternative yield and potential surface types of the plasticity model can be 

tested.  

• The elasto-plastic material model can be extended to include a damage component to be able 

to simulate structures under cyclic loads.  
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APPENDIX 1 

SE_Plasticity_Plane User Guide 

A1.1. Data entry and solutions 

Program accepts a group of input data files with .TXT extension and creates another group of output files 

with. DAC extension. 

A1.1.1. Input files for static 1D Beam-Type model 

The input files required for the 1D Beam-Type model analyses are: 

• CoorBOUNDSE 

• CoorLoadSE 

• GEOSE 

• PROPERTY_CONCRETE 

• ReinforcementSE 

• SEC 

• Solution_ParameterSE 

• Step_Guide 

• SWITCHB 

• Current_PlasticDamageParam 

A1.1.2. Output files for static 1D Beam-Type model 

The output files created after the 1D Beam-Type model static analysis 

• DEP_X 

• DEP_Y 

• ELEM_MATRIX 

• INPUT_CHECK 
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• Lamda 

• ROT_Z 

• STATIC_DISPLACEMENTS 

• TRANS 

A1.2. Input files 

• CoorBOUNDSE.TXT: Support Information 

-EnterWithKeywords- 

EnterNewBoundaryCoordinatesYorN: Y for a new boundary condition 

BoundaryCoordinatesX-Y: Coordinates at which the support is applied 

FixedDirection: 1 for horizontal and 2 for vertical 

EnterNewBoundaryCoordinatesYorN: If there is no support information put N 

• CoorLoadSE.TXT: Nodal loads 

-EnterWithKeywords- 

EnterNewLoadCoordinatesYorN: Y for a new load 

LoadCoordinatesX-Y: Coordinate at which the node is applied 

LoadDirection: Direction of the nodal loading (1 or 2) 

LoadValue: Value of the nodal loading 

EnterNewLoadCoordinatesYorN: If there is no loading information put N  

• GEOSE.TXT: Structural geometry information 

-EnterWithKeywords- 

NumNodes: 

NumElems: 

NodeCoor: X-Coordinate, Y-Coordinate 

ElemConnect: 
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• PROPERTY_CONCRETE.TXT: Properties of the concrete bulk 

-EnterWithKeywords- 

ConcreteElasticityModulus: Modulus of elasticity, E 

ConcretePoissonRatio: Poisson ratio, μ 

ConcreteCompressiveStress: Compressive Stress, 𝑓𝑐 

OnsetRatioPlaticFlow: 

CompressivePeakStrain: 

ConcreteTensileStress: 

TensionSofteningPower: 

FactorIntersectTensionCompressionSurface: 

PotentialSurfaceType: 

SlopeLinearPotentialSurface: 

TensionSurfaceType1Rankine_2Mixed: 

CornerReturnTypeAssociative0orNon1: 

DamageEvolutionFactorCompression: 

DamageEvolutionFactorTension: 

AnalysisTypeIsotropic0Anisotropic1: 

ConfinementCoefficientXdirection: 

ConfinementCoefficientYdirection: 

ProducePlasticReturnGraphAtSpecificPointYorN: 

• ReinforcementSE.TXT: Properties of the reinforcements 

-EnterWithKeywords- 

NumberOfRebarProperties:  

NumberOfRebarsInTheGroup: 

RebarElasticityModulusOfTheGroup: 

RebarYieldStressOfTheGroup: 

RebarHardeningModulusOfTheGroup: 

RebarAreaAndLocationInEachGroup: 
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ApplyAllElementsYorN: 

EnterStirrupsYorN: 

ReportReinforcementPlasticReturn: 

• SEC.TXT: Cross section of the concrete bulk 

-EnterWithKeywords- 

EnterWidthDepthEachElement: The width and depth of the bulk 

• Solution_ParameterSE.TXT: Parameters needed for running 

-EnterWithKeywords- 

ElementType: 

NumIntPoint: 

SectionWidthIntegPoint: 

SectionHeightIntegPoint: 

AnalysisTypeNoShear0Shear1: 

AnalysisTypeStatic1Dynamic2Both3: 

ControlTypeLoad1Displacement2: 

ControlNodeCoordinates: 

ControlDirection: 

StepSize: 

StepNumberLimit: 

HardeningType_1volum_2mixed: 

HardeningUpdateLevel_1GlobalStep_2GlobalIteration_3PlasticIteration: 

PlasticReturnType_1CuttingPlane_2CPP: 

AlgorithmStabilizationYorN: 

PlasticReturnIterationLimit: 

ViscosityRate_0Independent_1ViscoPlastic_2ViscosRegularization: 

GlobalAlgorithm_ErrorMargin: 

PlasticityAlgorithm_ErrorMargin: 
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• Step_Guide.TXT: Setting the number of cycles 

-EnterWithKeywords- 

NumberOfCycles: 

ControlType1or2: 

NumberOfStepsEachCycle: 

• SWITCHB.TXT: Activating option to consider during analysis 

-EnterWithKeywords- 

LoadGenerateUsingCoordinatesYorN: 

BoundaryGenerateUsingCoordinatesYorN: 

MassGenerateUsingCoordinatesYorN: 

• Current_PlasticDamageParam: Parameters of analysis 

-EnterWithKeywords- 

MaterialModels_1Reduce3D_2Direct1DSugano_3Direct1DSaatchi: 

DirectUniaxialModelPostpeakCalibrationFactor: 

CurrentCompressionPlasticityParameter: 

CurrentTensionPlasticityParameter: 

CurrentCompressionDamageParameter: 

CurrentTensionDamageParameter: 

Solution_ParameterSE, SWITCHB and Current_PlasticDamageParam.txt files are analysis information 

needed to smoothly run the program. The analysis type, the choice of solution control, Step size, Step number 

limit and stabilization parameters are defined. We didn’t need them in this work. 

NumIntPoint: the number of integration points refers to the discretization of an element into smaller segments 

for numerical computation. In this program, integration is defined along the length of the element and on the 

cross section of the element. Analysis Type: is whether the run will be shear or non-shear based. In this work, 

the analysis type chosen is shear based. 
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Displacement control was employed for the analysis of structural elements in this work. 

Control Node Coordinates or Control Node Number is the coordinates of interest. The program gives the 

outputs based on this coordinate. In SWITCHB, that’s where commands are activated or disactivated. There 

were introduced to give options to the user on how to use the program. There is a choice of using coordinates 

or nodes to apply load, supports or mass (in case it is dynamic analysis). 

A1.3. Example 1. Beam Analysis 

The beam ISO30-1 is 200 mm wide and 300 mm high, as shown in Figure 4-8 to Figure 4-10, it is supported 

on a span of 3000 mm and is subjected to two equal loads symmetrically placed about the mid-span. The 

modulus of elasticity of concrete is 32 GPa and fc=44 MPa. Yielding stress for steel rebars is taken as 480 

MPa, the ultimate strength is taken as 600 MPa and the modulus of elasticity is taken as 200 GPa. 

Conventional steel stirrups (10 mm diameter) is used in the non-constant moment zones, to prevent shear 

failure. The diameter of the reinforcement is maintained constant (19.1 mm diameter) and this beam is 

reinforced by two identical rebar as resumed in Figure 4-8. 

A1.3.1. Input files 

GEOSE.TXT 

The geometry of the member to be analyzed is defined. The number of nodes, number of elements and each 

nodes’ coordinates. For the example given, the member is 3000mm and is divided in 30 members (31 nodes). 

ElemConnect stands for the connection of each node. 
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PROPERTY_CONCRETE.TXT 

The solver requires the concrete material properties in order to analyze the system. Concrete Elasticity 

Modulus, Poisson Ratio, Compressive Stress, Tensile stress, peak strain and Onset ratio Plastic Flow are 

defined. 
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CoorBOUNDSE.TXT 

In order to analyse the system, the finite element solver requires boundary conditions to be defined. Boundary 

conditions should be able to provide equilibrium to the system. In this example, the beam is supported at 

each end in such a way that it can freely rotate and translate vertically, it cannot resist horizontal movement 
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and. Y means Yes there is support at coordinate X-Y, 1 means it is fixed in global X-direction and 2 means 

fixed in global Y-direction. 

 

CoorLoadSE.TXT 

Nodal load data is inputted. As shown in below, the coordinate where the load is applied is defined and the 

direction of the load which is perpendicular to the direction of the member. The load value is in N. The 

program has also the capabilities to support multiple loading points. 
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Current_PlasticDamageParam.TXT 

 

 

SEC.TXT 



118 

 

 

 

ReinforcementSE.TXT 

In this .TXT file longitudinal and transversal reinforcements are inputted. 

Number of rebar properties stands for group of longitudinal reinforcements in the whole member, i.e. in 

the following figure, there is a specific property for reinforcements in compression zone that are different 

from what is in tension zone hence 2. 

Number of rebars in the group is the number of rebars in a specific group of reinforcements with the same 

properties. The Elastic modulus, yield and hardening stress of the bars in this specific group are defined. 

The cross-sectional area of each bar in the group and its location in the cross section of the member are 

defined. This step should be repeated in respect to the number of rebar properties set previously. In case 

there is ties in the member, EnterStirrupsYorN is set to Y as shown in the Error! Reference source not 

found.. The average spacing between them is also defined and their cross-sectional area. 
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Solution_ParameterSE.TXT 
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Step_Guide.TXT 
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SWITCHB.TXT 
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A1.3.2. Input check 
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A1.3.3. Output files 

• DEP_X, DEP_Y records deflections values along x and y-axis of the node selected in 

Solution_Parameters at the end of each step. 

• Lamda is the factor to describe the amount of force that was required to have a respective deflection. 

This is later multiplied by the nodal load to get the Force-displacement graph. 

• ELEM_MATRIX, ROT_Z, STATIC_DISPLACEMENTS and TRANS are additional outputs that 

describe the behavior of each element at the end of each step in the program run. 
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DEP_X 
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DEP_Y 
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ELEM_MATRIX 

 



132 
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Lamda 
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ROT_Z 

 



137 

 

STATIC_DISPLACEMENTS 
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TRANS 
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A1.4. Example 2. Shear Wall Analysis 

The specimen G-15 represent a single shear wall. The wall specimens were 3,500 mm in height, 200 mm 

thick and was 1,500 mm in length as shown in Figure 4-15. G-15 concrete dimensions and details of 

reinforcement configuration The nominal concrete compressive strength used for G15 was 40 MPa. An axial 

load of 0.07. 𝑏𝑤. 𝑙𝑤. 𝑓𝑐
′ was applied at the top of the wall. #3 for vertical bars (𝑓𝑓𝑢 = 1,412 𝑀𝑃𝑎, 𝐸𝑓 =

66.9 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 2.11%, 𝐴𝑓 = 71.3 𝑚𝑚
2) and spiral ties (for straight portions 𝑓𝑓𝑢 = 962 𝑀𝑃𝑎, 𝐸𝑓 =

52 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 1.85%, 𝐴𝑓 = 71.3 𝑚𝑚
2; for bent portions: 𝑓𝑓𝑢 = 500 𝑀𝑃𝑎 and #4 for horizontal bars (𝑓𝑓𝑢 =

1,392 𝑀𝑃𝑎, 𝐸𝑓 = 69.6 𝐺𝑃𝑎, 𝜀𝑓𝑢 = 2%,𝐴𝑓 = 126.7 𝑚𝑚
2). 

A1.4.1. Input files 

GEOSE.TXT 
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PROPERTY_CONCRETE.TXT 

 

 

Current_PlasticDamageParam.TXT 
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CoorLoadSE.TXT 

 

 

CoorBOUNDSE.TXT 
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SEC.TXT 
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ReinforcementSE.TXT 
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Solution_ParameterSE.TXT 
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Step_Guide.TXT 

 

SWITCHB.TXT 
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A1.3.2. Input check 
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A1.3.3. Output files 

DEP_X 
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DEP_Y 
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ELEM_MATRIX 
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Lamda 
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ROT_Z 
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STATIC_DISPLACEMENTS 
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TRANS 
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APPENDIX 2 

ReinCon3D6DOF User Guide 

A2.1. Data entry and solutions 

Program accepts a group of input data files with .TXT extension and creates another group of output files 

with. DAC extension. 

A2.1.1. Input files for static 3D model 

The input files required for the 3D model analyses are: 

• Auto_Mesh_SOLID 

• Auto_Mesh_STIRRUP 

• coorGEO_BAR 

• PROPERTY_CONCRETE 

• CoorLoad 

• DirectEndConditions 

• PROPERTY_BAR 

• PROPERTY_SOLID 

• SEC_BAR 

• Solution_Parameters 

• Step_Guide 

• SWITCH_A 

• SWITCH_B 

Longitudinal reinforcements are defined in coorGEO_BAR by specifying the coordinates at both ends of 

the rebar while the stirrups (Auto_Mesh_STIRRUPS) are are defined by the spacing between them. It is 

possible to define regions of stirrups. The dimensions of the reinforcements are inputted in SEC_BAR. 

Note that while inputting the rebars are registered and after comes the stirrups.  
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NumberOfBarsWithFollowingSection(Ordered) means the total number of one group of reinforcements in 

all the elements. 

A2.1.2. Output files for static 3D model 

The output files created after the 3D model static analysis 

• Bar_Coor_Ini 

• Bar_Strain 

• Bar_Stress 

• file1 

• file2 

• fileline1 

• hile1 

• hloads 

• hnodes 

• hsupports 

• Solid_Coor_Ini 

• Solid_StrainXX, Solid_StrainXY, Solid_StrainXZ, Solid_StrainYY, Solid_StrainYZ, 

Solid_StrainZZ 

• INPUT_CHECK 

• Lamda 

• U_Y 

A2.2. Input files 

• DirectEndConditions: Support Information 

-EnterWithKeywords- 

FirstEnd_0Free_1Fixed_2Pinned_3Roller_4Sliding: 

SecondEnd_0Free_1Fixed_2Pinned_3Roller_4Sliding: 

EnterNewPlaneRestraintYorN: 



178 

 

EnterNewLineRestraintYorN: 

EnterNewPlaneConstraintYorN: 

EnterNewLineConstraintYorN: 

LineConstraint-X-Y-Z-CoordinatesAtBothEnds: 

LineConstraintDirection: 

LineConstraintMasterX-Y-Z-Coordinates: 

EnterNewLineConstraintYorN: 

 

• CoorLoad.TXT: Nodal loads 

-EnterWithKeywords- 

EnterNewLoadCoordinatesYorN: Y for a new load 

LoadCoordinatesX-Y-Z: Coordinate at which the node is applied 

LoadDirection: Direction of the nodal loading (1 or 2) 

LoadValue: Value of the nodal loading 

EnterNewLoadCoordinatesYorN: If there is no loading information put N  

• Auto_Mesh_SOLID.TXT: Structural geometry information 

-EnterWithKeywords- 

NumberOfPiecesSeperatesWidthX: 

EnterWidthsX: 

NumberOfSeperationsEachWidthX: 

NumberOfPiecesSeperatesWidthY: 

EnterWidthsY: 

NumberOfSeperationsEachWidthY: 

NumberOfPiecesSeperatesWidthZ: 

EnterWidthsZ: 

NumberOfSeperationsEachWidthZ: 
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CrossSectionTrim_YorN: 

CoverTrim_YorN: 

• Auto_Mesh_STIRRUP.TXT: Stirrup geometry information 

-EnterWithKeywords- 

NumberOfStirrupRegions: 

BeginningHeightToEndHeightEachRegion: 

LowerBoundOfSpacingEachRegion: 

 

• PROPERTY_SOLID.TXT: Properties of the concrete bulk 

-EnterWithKeywords- 

 ConcreteElasticityModulus: 

 ConcretePoissonRatio: 

 ConcreteCompressiveStress: 

 OnsetRatioPlaticFlow: 

 CompressivePeakStrain: 

 ConcreteTensileStress: 

 TensionSofteningPower: 

 FactorIntersectTensionCompressionSurface: 

 PotentialSurfaceType: 

 SlopeLinearPotentialSurface: 

 TensionSurfaceType1Rankine_2Mixed: 

 CornerReturnType: 

 DamageEvolutionFactorCompression: 

 DamageEvolutionFactorTension: 

 AnalysisTypeIsotropic0Anisotropic1: 

 ProducePlasticReturnGraphAtSpecificPointYorN: 
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• PROPERTY_BAR.TXT: Properties of the reinforcements 

-EnterWithKeywords- 

NumberOfBarsWithFollowingProperty(Ordered): 

BarElasticityModulus: 

BarYieldStressLimit: 

BarHardeningModulus: 

NumberOfBarsWithFollowingProperty(Ordered): 

BarElasticityModulus: 

BarYieldStressLimit: 

BarHardeningModulus: 

• SEC_BAR.TXT: Cross section of the reinforcements 

-EnterWithKeywords- 

 NumberOfBarsWithFollowingSection(Ordered): 

 WidthAndHeight: 

 NumberOfBarsWithFollowingSection(Ordered): 

 WidthAndHeight: 

• Step_Guide.TXT: Setting the number of cycles 

-EnterWithKeywords- 

NumberOfCycles: 

ControlType1or2: 

NumberOfStepsEachCycle: 

• SWITCH_A.TXT: Activating option to consider during analysis 

-EnterWithKeywords- 

 AutoGenerateSolidMeshYorN: 

 AutoWrapYorN(RequiresAutoGenerateSolid): 
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 ConnectRebarsUsingCoordinatesYorN: 

 AutoStirrupYorN(RequiresAutoGenerateSolid): 

• SWITCH_B.TXT: Activating option to consider during analysis 

-EnterWithKeywords- 

 LoadGenerateUsingCoordinatesYorN: 

 BoundaryGenerateUsingCoordinatesYorN: 

 MPCGenerateUsingCoordinatesYorN: 

 DirectEndConditionsYorN: 

 

• Solution_ParameterSE.TXT: Parameters needed for running 

-EnterWithKeywords- 

 ElementType: 

 PrevRunYorNorS: 

 NumberOfIntegrationPointsSolid: 

 NumberOfIntegrationPointsReinforcement: 

 NumberOfIntegrationPointsWrap: 

 ControlTypeLoad1Displacement2: 

 ControlNodeCoordinates: 

 ControlDirection: 

 StepSize: 

 StepNumberLimit: 

 HardeningType_1volum_2mixed: 

 HardeningUpdateLevel_1GlobalStep_2GlobalIteration_3PlasticIteration: 

 PlasticReturnType_1CuttingPlane_2CPP: 

 TangentModulusType_0Elastic_1Plastic: 

 AlgorithmStabilizationYorN: 

 PlasticReturnIterationLimit: 



182 

 

 ViscosityRate_0Independent_1ViscoPlastic_2ViscosRegularization: 

 NumberOfStepsExtractGraphicalOutput: 

 AmplificationFactorForGraphicalOutput: 

 NumberOfCollectedOutputFiles: 

 CollectedOutputFileNames: 

 GlobalAlgorithm_ErrorMargin: 

 PlasticityAlgorithm_ErrorMargin: 

 IdentifyFirstPointofYieldYorN: 

A2.3. Example 1. Beam Analysis 

The beam ISO30-1 is 200 mm wide and 300 mm high, as shown in Figure 4-8 to Figure 4-10, it is supported 

on a span of 3000 mm and is subjected to two equal loads symmetrically placed about the mid-span. The 

modulus of elasticity of concrete is 32 GPa and fc=44 MPa. Yielding stress for steel rebars is taken as 480 

MPa, the ultimate strength is taken as 600 MPa and the modulus of elasticity is taken as 200 GPa. 

Conventional steel stirrups (10 mm diameter) is used in the non-constant moment zones, to prevent shear 

failure. The diameter of the reinforcement is maintained constant (19.1 mm diameter) and this beam is 

reinforced by two identical rebar as resumed in Figure 4-8. 

A1.3.1. Input files 

Auto_Mesh_SOLID.TXT 
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Auto_Mesh_STIRRUP.TXT 

 

CoorLoad.TXT 
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SWITCH_A.TXT 

 

SWITCH_B.TXT 

 

DirectEndConditions.TXT 
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In order to analyze the system, the finite element solver requires boundary conditions to be defined. 

Boundary conditions should be able to provide equilibrium to the system. Additional to the conventional 

boundary conditions, an option to plane restrain the structure was introduced to be able to extend the 

member beyond supports providing an additional bond length. In this example, a constraint was used too to 

distribute the load between the nodes. This was done after it was constated that the tip load was causing 

stress concentration around a node hence convergence issues. The load node was the master coordinate the 

slave being a plane or line around it. 
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PROPERTY_SOLID.TXT 
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coorGEO_BAR.TXT 

 

SEC_BAR.TXT 
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PROPERTY_BAR.TXT 

 

Step_Guide.TXT 
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Solution_Parameter.TXT 
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A1.3.2. Input check 

 



192 

 

 



193 

 

 



194 

 

 



195 

 

  

 



196 

 

 



197 

 

 



198 

 

 



199 

 

 



200 

 

 



201 

 

 



202 

 

 



203 

 

 



204 

 

 



205 

 

 



206 

 

 



207 

 

 



208 

 

 



209 

 

 



210 

 

 



211 

 

 



212 

 

 



213 

 

 



214 

 

 



215 

 

 



216 

 

 



217 

 

 



218 

 

 



219 

 

 



220 

 

 



221 

 

  



222 

 

 



223 

 

  



224 

 

A1.3.3. Output files 

U_Y 
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Lamda 
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