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Abstract

Machine Learning-Driven Strategies for Efficient Resource Management in Cloud Data
Centers

Mustafa Daraghmeh, Ph.D.

Concordia University, 2024

Cloud computing is one of the major paradigms in the information technology industry, offer-

ing diverse scalable on-demand services over the Internet. Nevertheless, managing and predicting

workloads in cloud data centers is a challenging task due to the dynamic nature of cloud services.

In order to reduce costs and improve performance while managing cloud resources efficiently, it is

essential to obtain highly accurate projections and estimations. Therefore, this thesis proposes a

methodological framework that integrates multiple machine learning models to improve estimation

accuracy and enable better decision-making within cloud data centers. In terms of clustering, we

develop segmentation pipelines that incorporate various clustering techniques with different data

preprocessing methods to improve the cloud workload segmentation process. This process aims to

reveal hidden patterns within workloads to obtain segmentation based on various data-driven per-

spectives. In predictive modeling, we delve into the enhancement of prediction precision, focusing

on single-output and multi-output forecasting models. For single-output-based prediction, we pro-

pose a multilevel learning-based model for resource utilization prediction that leverages anomaly,

clustering, and ensemble methods to improve prediction outcomes. Also, we present a proactive

regression-based cost estimation approach, navigating the complexities of prediction-based cloud

service pricing and the effect of various target transformation methods on prediction accuracy. In

addition, we propose a host load prediction, leveraging both imbalance and ensemble learning meth-

ods to improve prediction and handle the challenge of the imbalance states within cloud computing

systems. For multi-output-based prediction, advanced predictive models are proposed to forecast

function invocation patterns at the user, application, and function levels within serverless computing
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environments. In this thesis, we conducted research that utilizes advanced data analysis techniques,

including windowing, dimensionality reduction, and ensemble learning, to enhance the robustness

and precision of workload segmentation and predictive models within cloud environments. We

evaluated the proposed models based on their efficiency in processing real cloud workloads using

various performance metrics. The findings of this thesis hold the potential to revolutionize cloud

resource management, leading to more intelligent, adaptable, and cost-effective cloud operations.
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Chapter 1

Introduction

1.1 Cloud Computing and the Quest for Efficiency: Overview

Cloud computing represents a significant paradigm shift in the way businesses and individu-

als access and use computing resources. This paradigm provides scalable, on-demand access to

vast cloud services, ranging from software applications to storage and computing power, deliv-

ered over the Internet [1]. Pay-per-use models, governed by Service Level Agreement (SLA), allow

cloud users to avoid substantial upfront development costs and operational expenses associated with

maintaining physical infrastructure. This flexibility and cost-effectiveness make cloud computing an

integral component of various emerging technologies such as the Internet of Things (IoT), Vehicular

Ad-hoc Network (VANET), e-health, and extensive data management [2], [3].

Central to cloud computing’s efficiency is virtualization technology. It bridges operational envi-

ronments and the underlying hardware, offering a versatile approach to provisioning and managing

various Virtual Machine (VM)s and containers on heterogeneous physical machines [2]. This adapt-

ability is crucial to optimize resource usage and minimize operational costs.

An essential strategy to improve resource and energy efficiency in cloud data centers is dynamic

workload consolidation. This approach consolidates workloads within fewer hosts by reallocating

them from underutilized hosts to other fitted ones, reducing energy consumption and related costs

[4]. However, balancing effective consolidation while maintaining high Quality of Service (QoS) is

challenging, as overconsolidation can affect the performance of computing systems [5].

1



Machine Learning (ML) techniques such as regression, classification, clustering, and anomaly

detection are crucial in improving the efficiency of cloud computing. By incorporating highly ac-

curate models, we can optimize various aspects of cloud operations, such as efficiently allocating

resources, detecting and addressing system overloads and underloads, and making informed deci-

sions [6]. The dynamic learning and adaptation capabilities of the ML models to the ever-changing

cloud environment significantly improve the performance of cloud data centers.

However, cloud computing continues to evolve, driven by the need for more efficient, cost-

effective, and sustainable operations. Integrating highly precise ML models represents the forefront

of this evolution. These advances aim to meet the growing demands of users and applications while

ensuring adherence to the QoS standards. As this field continues to grow, the quest for efficiency in

cloud computing remains a central theme that shapes the development of new strategies, technolo-

gies, and innovative ML models.

1.2 Problem Statement

The resource capacities of cloud data centers are enormous but not boundless. A typical data

center comprises thousands of servers with varying characteristics. Inefficient resource management

increases cloud operational costs. Therefore, elastic resource management approaches are needed

to optimize resources and energy efficiency. On-demand resource provisioning remains the most

significant challenge in developing robust and adaptable techniques based on intelligent models.

Dealing with resource overprovisioning and underprovisioning problems is necessary to determine

the most resilient elastic resource management solutions [7].

The problem of resource overprovisioning arises when the allocated resources required to carry

out users’ application needs exceed the actual demands, as shown in Figure 1.1 (a). This condition

may ensure that applications run without SLA violations. However, it remains a significant issue

that increases resource waste and incurs additional costs. On the other hand, a resource underpro-

visioning problem occurs when the available resources are insufficient to fulfill the application’s

needs, resulting in unexpected SLA violations and performance degradation within the computing

systems. Figure 1.1 (b) shows this state, where the shaded area indicates a lack of resources relative

2



Figure 1.1: Resource over and under provisioning problems [7].

to the needs of the running applications. This problem also risks losing income from users who may

permanently opt out of services due to poor QoS experiences over time, as seen in Figure 1.1 (c).

Cloud data centers comprise highly dynamic workloads with various usage patterns. This vari-

ety can result in imbalanced server loads, resulting in hot and cold spots within the data center [2].

The Cloud Resource Management System (CRMS) should be equipped with the appropriate pro-

cedures to identify and collect information on active workloads to avoid these potential problems.

Various ML models can be used to improve selection and decision-making within data centers.

However, a data preprocessing pipeline should be applied to the data collected from various sources

before creating ML models for more reliable results. It is a crucial step because it affects the learning

process of the ML models, in which the inadequate pipeline results in incorrect interpretation [8].

Cloud workload is characterized by a high fluctuation load containing multiple hidden patterns that

change over time, complicating the knowledge discovery process. Thus, a proper data preparation

pipeline will improve data quality and provide valuable insight for efficient model learning, which

turns into adequate estimations that can be incorporated into the decision and selection modules of

CRMS to achieve efficient cloud resource management.

In conclusion, cloud data centers face significant challenges in effectively managing and pre-

dicting workloads, a crucial aspect for optimizing performance and cost efficiency. One central area

of concern is the segmentation of cloud workloads, where traditional clustering techniques often fall

short due to the dynamic and multifaceted nature of cloud environments. Furthermore, predicting

various operational parameters, such as resource utilization, cost, and load balancing, is increasingly

complex. This complexity stems from the rapidly evolving and heterogeneous nature of cloud in-

frastructure, which requires more sophisticated predictive modeling techniques. Both single-output
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and multi-output predictive models are under scrutiny to enhance their accuracy and efficiency. In

serverless computing, specifically, the need for efficient predictive methods to manage function in-

vocation patterns is paramount, given the intricate interplay of user, application, and function levels

in these architectures. The overarching problem is thus developing a framework that incorporates

advanced clustering and predictive modeling techniques that can effectively navigate and harness

the complexities inherent in cloud computing environments.

1.3 Research Motivation

In an era where cloud computing serves as the foundation for a wide range of applications, the

dynamic nature of cloud environments poses unique challenges. This thesis investigates advanced

clustering and predictive modeling techniques to address these challenges, emphasizing the impor-

tance of highly accurate and adaptable models in cloud operations.

The segmentation of cloud workloads using sophisticated clustering methods is critical for gain-

ing detailed insights into resource management. Given novel models that aim to adapt to changing

workloads while revealing hidden patterns from multiple perspectives is essential. Such advance-

ments are required for effective resource monitoring and strategic management in cloud environ-

ments. Equally important is the evolution of predictive modeling. Traditional approaches often

need to be more generalized in the complex world of cloud operations. This thesis advocates for

novel multilevel and multi-output predictive models incorporating various analytical techniques to

accurately forecast critical aspects like resource requirements, cost estimation, and load prediction.

These models go beyond traditional forecasting by being more generalized and enabling more ro-

bust proactive strategies to operate cloud services smoothly.

Using ML models is critical in implementing the aforementioned advanced techniques, enabling

intelligent strategies driven by data. The rich open-source libraries, such as scikit-learn [9], com-

bined with powerful scientific libraries such as [10] and SciPy [11], support a wide range of algo-

rithms for regression, classification, anomaly detection, and clustering. These open-source libraries

with comprehensive documentation enable the creation of intelligent models for CRMS, which can

transform workload management through predictive analytics and insightful data interpretation.
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In summary, the motivation behind exploring novel advanced clustering and various predictive

modeling techniques in cloud computing is driven by the imperative to incorporate management

operations with highly accurate models that align with the dynamic nature of cloud workloads. This

thesis emphasizes the potential for ML and advanced analytical techniques to revolutionize cloud

resource management. By leveraging these technologies with high precision, we can improve cloud

management operation efficiency and pave the way for more intelligent, adaptable, generalized, and

efficient computational models to meet the ever-changing demands.

1.4 Research Objectives

The main goal of this research is to enhance the decision-making efficiency of cloud opera-

tional management through integrating distinct high-precision clustering and predictive modeling

techniques into the CRMS. The primary objectives are as follows.

(1) Develop Advanced Clustering Techniques for Cloud Workload Segmentation: The pri-

mary objective is to revolutionize traditional clustering methodologies by exploring and re-

vealing hidden patterns from multiple perspectives during the data preprocessing stage instead

of using a fixed preparation pipeline. By doing so, we aim to create novel adaptable models

for the dynamic and complex nature of cloud workloads, enhancing segmentation efficiency

and applicability considering different forms of data. Moreover, incorporating a novel ensem-

ble clustering method that considers different clustering schemes from different perspectives

leads to adequate partitioning of cloud workloads with more reliable clustering results.

(2) Enhance Predictive Modeling Accuracy in Cloud Computing: The imperative objective is

to improve the precision of single-output predictive models in different aspects within cloud

data centers by incorporating various analytical analysis and ML techniques. This objective

includes developing novel and sophisticated models that incorporate multilevel learning and

analysis methods for predicting resource utilization requirements, cost estimation, and host

load status, addressing the heterogeneous and evolving nature of cloud infrastructure.

(3) Optimizing the Prediction of Invocation Patterns in Serverless Computing: The main
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objective is to enhance the simplicity and efficiency of invocation pattern predictions within

serverless environments through multi-output regression models. These models are employed

to predict function invocation patterns at different levels, such as user, application, and func-

tion. We aim to deliver accurate predictions by incorporating various analytical analyses,

enabling more generalized models and better decision-making at each level of analysis.

(4) Integrate Advanced Data Analysis Techniques: The primary objective is to analyze the in-

fluence of techniques such as windowing, dimensionality reduction, multilevel and ensemble

learning, and various data preparation methods on improving predictive model performance.

This objective delves into the various techniques to manage complex and large-scale data

within cloud environments. We aim to provide a comprehensive understanding of the roles of

these techniques and how they can be leveraged to optimize the performance of the prediction

and estimation models with decision-making systems in the cloud data centers.

(5) Contribute to the Body of Knowledge in Cloud Computing: The main objective is to

provide valuable insights and methodologies to both academic and industry fields. We are

focused on presenting new benchmark models that can help improve the operational man-

agement of cloud workloads and predictive modeling within the cloud data centers, thereby

enabling the further development of cloud decision-making systems in various settings.

The objectives mentioned above collectively desire to address crucial challenges in cloud com-

puting by pushing the limits of current capabilities in workload management and predictive model-

ing. The research aims to establish more effective, adaptable, generalized, and cost-effective models

for the operational management of cloud computing solutions.

1.5 Methodological Framework

The proposed methodology operates in multiple interconnected layers to ensure a cohesive and

elastic CRMS. The framework combines continuous monitoring with intelligent decision-making

enabled by advanced learning models incorporating workload segmentation and various predictive

modeling methods driven by data. Below is an elaborate explanation of the framework elements.
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(1) Cloud Subscribers Interface and Monitoring Component: Cloud subscribers engage with

cloud services using a variety of interfaces. The CRMS relies on the usage patterns and

requests as a primary source to form operational actions. The REST API is a line for commu-

nication between cloud subscribers and cloud resources. The monitoring component tracks all

real-time subscriber interactions, resource usage, and system health. The centralized database

stores all monitored data, serving as a repository for analytics and decision-making processes.

(2) Learning Models: This central component enables intelligent decision-making within CRMS.

It consists of diverse ML models that execute tasks such as clustering, anomaly detection,

classification, and regression. These models analyze the collected data from various to iden-

tify usage patterns, predict future demands, and detect irregularities.

(3) Global Manager: This component acts as the central brain of the methodological framework

of CRMS, interpreting the insights derived from the learning models. It makes informed

decisions about resource allocation and manages workload distribution across the cloud data

Figure 1.2: The proposed methodological framework.
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center, incorporating the selection and decision-making subsystem. This subsystem works

closely with the Global Manager to select the best-fitting resources for incoming workloads

and to make strategic decisions about scaling, load balancing, and other operational aspects

managed by local and workload managers.

(4) Cloud Data Center Resources Utilization: At the base of the framework lies the physical

resources of the cloud data center. The VMs and containers are managed by Hypervisors and

Container Managers, respectively. Local managers supervise and manage resource utilization

at the node level, ensuring optimal performance and resource usage.

(5) Feedback Loop: A critical aspect of the framework is the feedback loop. Decisions and

actions at the cloud data center layer are monitored and fed back into the system. This infor-

mation helps to refine learning models and decision-making processes continuously.

This framework aims to create a self-optimizing, scalable, and efficient CRMS that can adapt

to the dynamic needs of cloud subscribers while minimizing operational costs and maximizing

resource utilization. Integrating advanced ML models with real-time monitoring and strategic

decision-making actions is at the core of this innovative approach to cloud resource management.

1.6 Research Contributions

The research presented in this thesis delves into cutting-edge techniques that aim to improve

workload segmentation and predictive modeling in cloud computing environments, offering valu-

able insights for cloud decision-making systems. The main contributions are outlined below.

1.6.1 Clustering Techniques for Cloud Workload Management

Within the scope of this research, we make a substantial contribution by creating a cluster-

ing methodology specifically tailored for dividing cloud workloads into segments. The proposed

method considers various perspectives to form the clustering results influenced by the workload

preparation process. It can adjust to ever-changing and complex cloud environments, verified by
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utilizing actual cloud workloads. The main objective is to enhance monitoring performance and

clustering quality within the data centers. The primary contributions are as follows.

(1) Exploration of Clustering Techniques: The study delves into various clustering methods,

each with unique attributes, making them suitable for different data preprocessing contexts.

The focus is on automating workload categorization within cloud data centers using cluster-

ing and advanced data preprocessing methods. The research underscores the critical role of

advanced data preprocessing techniques, integrated seamlessly with clustering methods, to

achieve precise workload segmentation considering various perspectives.

(2) Advanced Ensemble Clustering Technique: We propose an innovative ensemble clustering

approach designed to meet the challenges of the dynamic nature of cloud workloads. This

approach offers a clustering for cloud workloads supported by various segmentation schemes.

The novelty of this technique involves combining various data preprocessing pipelines with

different base-clustering models. The outcomes of the base-clustering pipelines are filtered

and then fed into a meta-clustering model to produce the final clustering results.

(3) Optimization of Clustering Model Selection: To select the most effective base-clustering

pipelines, we proposed a combined scoring mechanism based on the Silhouette score, Calinski-

Harabasz index, and Davies-Bouldin index. This score selected the high clustering quality of

various perspectives, improving the final workload segmentation efficacy.

This research contributes to cloud workload management by introducing advanced clustering

techniques optimized for the unique challenges of cloud workloads. The focus on automated work-

load categorization, coupled with the strategic use of ensemble clustering and comprehensive eval-

uation methods, sets a new standard in cloud resource management and segmentation quality.

1.6.2 Single-Output Prediction for Cloud Computing

This research delves into single-output predictive modeling within cloud environments, pre-

senting a series of methodological advancements and innovations to manage the cloud data center

in various aspects. The exploration is structured into three key contributions, each focusing on a

distinct aspect of predictive modeling within the cloud data centers, outlined as follows.
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(1) Advanced Multilevel Learning Model: This study segment investigates a novel multilevel

learning model to forecast CPU utilization in cloud data centers. The model stands out for its

high prediction accuracy, achieved by integrating anomaly, clustering, and ensemble-based

prediction models across three distinct learning stages. This advanced approach is pivotal for

enhancing prediction precision in resource utilization within cloud infrastructure.

(2) Proactive Cost Estimation Approach: We introduce a proactive, regression-based predic-

tive modeling strategy for cost estimation incorporating various target transformation meth-

ods to boost the prediction accuracy. This approach is particularly valuable for navigating the

complexities of prediction-based pricing models in cloud services. It allows both cloud ser-

vice providers and users to estimate costs more accurately, leading to more effective pricing

strategies and financial planning.

(3) Imbalance and Ensemble Learning for Load Prediction: We proposed a novel prediction

model incorporating both imbalance and ensemble learning techniques to refine load predic-

tion accuracy. The objective is to enhance host load prediction precision within cloud com-

puting systems, a crucial component for optimal resource management in ever-evolving cloud

environments. This approach addresses the challenges of the imbalanced computing systems

posed by fluctuating workloads and diverse resource demand patterns, ensuring more efficient

and responsive cloud operations.

These contributions offer a comprehensive insight into the latest developments in predictive

modeling within cloud data centers using the combination of standard ML techniques and various

analysis methods. They showcase technological advances and highlight their practical applications,

underlining their significance in improving operational management. Therefore, this research rep-

resents a significant step forward in the field of cloud computing, offering both theoretical and

practical advancements in cloud resource management and operational efficiency.

1.6.3 Multi-Output Prediction in Serverless Computing

In the rapidly advancing field of serverless computing, the demand for effective predictive tech-

niques for function invocation becomes crucial. This research study presents a comprehensive set
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of innovations to enhance invocation predictability in serverless architectures at various levels. This

approach enables the uncovering of detailed insights into the specific behaviors of workloads from

different perspectives. The following are the key contributions.

(1) Function Invocation Predictive Modeling: We present a predictive modeling framework

that employs multi-output regression models to predict the occurrence of function invocation

at different levels of analysis. This framework is intended to forecast the upcoming function

invocation patterns in serverless environments at the user, application, and function levels,

resulting in a more accurate, generalized, and cost-effective prediction mechanism.

(2) Advanced Windowing Technique Analysis: We explore the impact of varying window-

ing configurations on the performance of predictive models for each level of analysis. Our

comprehensive analysis of window sizes, step sizes, and target window sizes combining di-

mensionality reduction offers significant insights into their effects on the accuracy and com-

putational load of multi-output regression models.

(3) Dimensionality Reduction and Data Complexity: We provide an investigation into dimen-

sionality reduction using Principal Component Analysis (PCA). This analysis simulates the

interaction between different window sliding configurations, examining the influence of di-

mensionality reduction on the data size complexities and the model’s efficacy. We propose a

strategic methodology for large-scale data that optimizes the trade-off between maintaining

data goodness and enhancing computational efficiency.

(4) Comparative Analysis Framework Development: We establish a robust comparative anal-

ysis framework that evaluates an array of inherently multi-output regression models under

different windowing configurations. Based on real workload data derived from the Azure

Functions dataset, ensuring practical applicability, we evaluate the models’ performance us-

ing multiple performance metrics to identify optimal model configurations.

Collectively, these contributions offer a thorough examination of the suitability of multi-output

regression models that integrate diverse analysis techniques to streamline and forecast function

invocation across different tiers in serverless computing despite their intricate characteristics.
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1.7 Thesis Organization

The structure of this thesis is organized as follows: Chapter 2 delves into a comprehensive re-

view of the existing literature, focusing on key components of cloud resource management, such as

workload segmentation, predictive modeling techniques, and multi-output prediction strategies in

serverless architectures. Chapter 3 explores advanced clustering methods in cloud workload man-

agement, detailing different techniques and their application in cloud environments, and introduces

a new ensemble clustering approach. Chapter 4 is dedicated to single-output predictive modeling

in cloud computing, discussing a multilevel learning model for CPU utilization, regression-based

methods for cost estimation, and imbalance and ensemble learning for load prediction within cloud

data centers. In Chapter 5, the focus shifts to multi-output predictive modeling for serverless com-

puting, examining the use of multi-output regression models for function invocation prediction and

the impact of various analysis methods on these models. The thesis concludes with Chapter 6, which

synthesizes the research findings, outlines the contributions of this study, and proposes directions

for future work in the field of cloud computing technologies.
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Chapter 2

Background and Literature Review

This chapter presents an in-depth analysis of various methods used to manage cloud resources.

In Section 2.1, we explore different approaches used for the segmentation process of cloud work-

loads. Section 2.2 examines predictive modeling techniques used in cloud resource management.

Finally, in Section 2.3, we investigate multi-output prediction strategies in serverless architectures.

2.1 Segmentation Strategies in Cloud Workloads

Cloud services are offered in various categories, such as infrastructure, platform, or application-

based, customized to meet users’ distinct needs [12]. Given the limited resources boundary within

the data centers, implementing effective resource management strategies is imperative to maximize

provider profits and meet user demands [13]. However, significant emphasis has been placed on

improving the efficiency and effectiveness of workload categorization in cloud computing systems

[14]. This section reviews several prevalent techniques, outlines their strengths and limitations, and

sets the stage for the innovative approach proposed in this study.

2.1.1 Conventional Clustering Methods

Conventional clustering techniques, such as KMeans and hierarchical clustering (with an early

stop of tree construction), have been widely used for the cloud workload categorization process

[15]–[24]. Implementing these methods offers a streamlined and efficient approach to handling
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various data sets. Their simplicity provides a greater degree of manageability, providing a reliable

means of data management that can prove invaluable in various professional settings. However,

these clustering algorithms have limitations. KMeans requires the user to pre-determine the number

of clusters and uses a random selection of initial centroids. Hierarchical clustering can be compu-

tationally expensive and requires the user to pre-determine the number of clusters. Early stopping

reduces computational costs but may lead to suboptimal results [9].

Density-based clustering algorithms have been proposed to overcome some of the limitations of

traditional clustering techniques, which can be helpful to cluster cloud workloads efficiently based

on density [25]–[28]. Compared to more conventional algorithms, these are more versatile because

they can detect clusters of arbitrary shapes and do not require a predefined number of clusters.

However, high-dimensional data and clusters of varying densities present challenges [29].

Deep learning-based methods such as autoencoder networks have emerged, allowing the han-

dling of high-dimensional data and the discovery of complex patterns [30]–[35]. However, these

methods require large amounts of data for training and can be computationally intensive. Addition-

ally, they often behave like a black box, offering trim insight into the underlying clustering process.

2.1.2 Advanced Ensemble Clustering

Strehl et al. [36] introduced three heuristics for the cluster ensemble. The Cluster-based Simi-

larity Partitioning Algorithm (CSPA) establishes pairwise similarity among cluster objects to form

a unified clustering. The HyperGraph Partitioning Algorithm (HGPA) approximates mutual infor-

mation, turning the ensemble problem into a hypergraph partitioning task. The Meta-CLustering

Algorithm (MCLA) focuses on identifying and merging groups of clusters by addressing cluster

correspondence. Another significant work in ensemble clustering is by Topchy et al. [37], who

introduced a graph-based methodology. The approach combines different clusterings in a hyper-

graph, where each hyper-edge represents a cluster. They then proposed a graph partitioning algo-

rithm to find the consensus function. Meta-clustering approach has also been explored [38]–[41].

In this method, they treated each base clustering solution as an entity. They are subjected to another

clustering round to identify analogous solutions, culminating in a consensus solution. Nevertheless,

it is crucial to develop a method that is suitable for the diverse data sets and tasks, considering the
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range of techniques at hand, as no single method can universally accommodate all data forms.

It is essential to note that even modern clustering techniques inevitably exhibit inherent lim-

itations in categorizing cloud workloads. The inherent complexity and diverse characteristics of

cloud workloads frequently challenge the suitability of traditional clustering algorithms. Moreover,

the effectiveness observed with a specific data set rarely guarantees consistent performance across

different data sets, emphasizing the need for more flexible and multifaceted techniques. The rapid

advancement of technology has resulted in greater diversity and variability in cloud workloads, cre-

ating a need for robust and adaptable clustering methodologies. Ensemble clustering strategies are

promising and productive methods that combine the benefits of multiple distinct group schemas.

Combining different clustering results enhances categorization reliability and effectively addresses

the limitations of individual approaches.

2.1.3 Summary

It is necessary to investigate the use of clustering techniques to categorize cloud workloads, par-

ticularly when combined with sophisticated data preprocessing pipelines. This investigation enables

us to reveal the hidden structure within the data, resulting in multiple legitimate clustering schemes.

Ensemble clustering is regarded as a promising approach in this context. We are motivated to con-

duct this research to bridge the existing gap by effectively integrating different clustering techniques

and overcoming their limitations seamlessly. The efficacy of ensemble clustering is acknowledged,

but its application in cloud workloads involving multiple data preprocessing pipelines has yet to be

explored. This research aims to be at the forefront of this field, providing in-depth understanding

and practical solutions that align with the complex nature of cloud workloads.

2.2 Predictive Modeling for Cloud Resource Management

The ability to predict and effectively manage system performance, resource utilization, and cost

is paramount in cloud computing. The following sections present a detailed exploration of various

cloud management methods, highlighting the pursuit of more efficient, reliable, and cost-effective

solutions based on high prediction accuracy. We provide insights into challenges and advancements
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of strategically predicting performance and managing resources in cloud environments.

2.2.1 Multilevel Learning-Based CPU Utilization Prediction

The imperative to predict CPU utilization accurately finds its roots in both performance opti-

mization and efficient resource allocation within cloud computing systems. This section follows the

development of CPU prediction models, highlighting how different ML methods have been used to

address the difficulties associated with them effectively.

Historically, the initial approach to CPU utilization prediction was based primarily on time se-

ries analysis [42], [43]. Techniques such as AutoRegressive Integrated Moving Average (ARIMA)

have been famous for their ability to model and forecast time series data [44]. Autoregressive mod-

els, which predict future data as a linear function of past values, found their place in early cloud

environments. Exponential smoothing assigns exponentially decreasing weights to past observa-

tions and is commonly used for prediction [45]. The Holt-Winters method based on exponential

smoothing is more flexible to capture trends and seasonality in data [46], [47]. While these models

were adept at dealing with stable and repetitive patterns in CPU utilization, they struggled when

faced with rapid and unpredictable fluctuations common in modern, dynamic cloud environments.

Anomaly detection identifies data points that deviate significantly from expected patterns, in-

dicating potential issues or unusual occurrences. In CPU utilization, sudden spikes or drops can

indicate system malfunctions or other unexpected events. Techniques such as the Isolation Forest

[48], [49], One-Class Support-Vector Machine (SVM) [50], and the Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) [51], [52] have been widely employed to detect

anomalies within resource utilization. The Isolation Forest algorithm has gained recognition for

its effectiveness in identifying anomalies in datasets with a high-dimensional feature space, which

is often found within cloud environments.

Using clustering techniques, we can group data points that exhibit similar attributes or patterns.

This technique is instrumental in CPU prediction, as it aids in the identification and classification of

different utilization patterns. Conventional clustering techniques, such as KMeans and hierarchical

clustering, have been used for the resource usage categorization process [19], [53]. The KMeans

clustering technique segments the data by detecting similarities in CPU utilization patterns based on
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randomly initial centroids. On the other hand, hierarchical clustering offers a tree-based depiction of

data groupings, enabling a more profound understanding of hierarchical patterns and dependencies

on CPU utilization. Performing clustering as a preliminary step can enhance prediction accuracy by

grouping similar data points with shared characteristics, thereby improving the subsequent learning

process upon including the cluster information.

Regression models, which employ historical data analysis to predict continuous values, have

typically served as the basis for forecasting CPU utilization. These foundational methods operate

under the assumption of a linear correlation between input variables and output. However, with

the increasing complexity and dynamic of cloud environments that lead to more complex usage

patterns, non-linear regression models such as polynomial regression [54], [55], support vector

regression [56], [57], and random forests [58], [59] have been explored by many researches. Recent

trends have also seen the adoption of deep learning-based regression models, particularly neural

networks. Recurrent Neural Network (RNN)s [60], [61] and Long Short-Term Memory (LSTM)

networks [62], [63] have shown a potential to capture long-term dependencies in time series data,

making them suitable for predicting various CPU utilization patterns in cloud data centers.

Developing techniques to forecast CPU utilization has moved from traditional time series mod-

els to more complex ML approaches. As cloud systems become increasingly complex and dynamic,

the combination of anomaly detection, clustering, and regression models offers a promising way to

address the multifaceted issues of CPU prediction. By combining these models, a comprehensive

approach to CPU prediction can be achieved, which involves detecting anomalies, grouping similar

data points, and creating regression models, considering the results of the segmentation models to

make precise predictions. This approach allows cloud providers to optimize system performance

and avoid expensive downtime. Furthermore, this strategy can be applied to other data analysis and

prediction areas, making it a valuable asset in various fields.

2.2.2 Imbalance and Ensemble Methods in Cloud Load Prediction

In cloud environments, host load prediction is a helpful tool for system administrators to plan

and optimize resource usage, preventing performance bottlenecks or failures. Researchers use vari-

ous approaches to manage cloud data center infrastructure to reduce energy consumption and avoid
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SLA violations while maximizing resource utilization.

Many approaches have been developed for performance prediction, ranging from simple statisti-

cal models and time-series analysis to more complex ML and Artificial Intelligence (AI) techniques

[64]. Lu et al. [65] proposed a forecasting model that uses an improved version of the KMeans clus-

tering algorithm and a Back-Propagation Neural Network (BPNN) to predict changes in workload

in a cloud system. Gao et al. [66] proposed a Bidirectional Long-Short Term Memory (Bi-LSTM)

recurrent neural network for forecasting task failures in a large-scale cloud data center. Jodayree et

al. [67] provided a rule-based algorithm for predicting maximum workload in cloud computing sys-

tems to enhance resource management ability to assign workloads and avoid network overloading

dynamically. They compare predicted workloads using historical data to assess whether an over-

load scenario occurs. However, biased outcomes may occur when evaluating overload scenarios in

a prediction without considering the imbalanced state of the hosts.

For prediction models based on ensemble learning techniques, Kim et al. [68] introduced an

ensemble workload prediction framework that combines the strengths of several ML predictors to

accurately forecast workload characteristics in cloud data centers. The framework employs a multi-

class method to dynamically assign weights to each predictor based on their accuracy over time.

Feng et al. [69] proposed an ensemble model for workload prediction with adaptive sliding win-

dow and time locality integration. The adaptive sliding window algorithm improves accuracy and

minimizes overhead by accounting for trend correlation, time correlation, and random workload

fluctuations during online prediction. They also proposed an error-based integration strategy incor-

porating a time locality concept and a multi-class algorithm to combine the models.

Precisely predicting system performance can enhance efficiency and reliability, guaranteeing

that users’ needs are met promptly. Despite the widespread use of various techniques, they have

significant limitations. Statistical techniques often make strong assumptions about the data, such

as linearity and normality, which may not hold in dynamic cloud computing environments. Time-

series analysis techniques can capture complex temporal patterns. However, fitting a separate model

for each host in the cloud data center can be computationally expensive.

In addition, ML techniques typically assume balanced data. However, in practice, the data

distribution for physical machines’ overload, underload, and normal load states is often imbalanced,
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with one state occurring more frequently than others. This imbalance can lead to biased models

towards the more common state, reducing their accuracy for predicting less common states. Given

these limitations, there is a clear need for better predictive models incorporating advanced methods

to forecast load states accurately in cloud computing systems. Advanced ML techniques, such as

imbalance and ensemble learning, offer promising alternatives for overcoming these challenges.

2.2.3 Summary

The literature highlights a variety of methodologies and strategies employed to predict system

performance, anticipate workload changes, and optimize cost efficiency within cloud environments.

These include using statistical models and ML techniques, each catering to different aspects of cloud

computing challenges. The reviewed studies highlight the need for continuous refinement, particu-

larly in handling dynamic cloud computing workloads. The literature delves into the prediction of

CPU utilization, a critical component of performance optimization. Traditional time series models

have evolved into more sophisticated ML approaches to address the dynamic nature of cloud sys-

tems. Incorporating anomaly detection and clustering methods with the prediction models provides

a robust framework for understanding and predicting CPU usage patterns. Also, when designing ap-

proaches that can cater to multiple hosts, it is crucial to consider the generalization problem. With

this consideration, we can ensure that the approaches developed are reliable and effective across

various platforms to achieve desirable outcomes.

In addition, using ensemble and imbalance methods in cloud load prediction is very important.

These advanced techniques are presented as solutions to overcome the limitations of traditional

predictive models, especially in producing highly accurate predictions while handling imbalanced

data distributions and rapidly changing load states. Integrating multiple predictors and employing

strategies such as multilevel learning, sliding windows, and ensemble models can be a desired solu-

tion to improve the accuracy, generality, and adaptability in performance prediction of the running

deployments and hosts within the cloud data centers.
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2.3 Multi-Output Prediction in Serverless Computing

This section reviews the existing research studies on function invocation within serverless com-

puting environments, focusing on predictive analysis. This review seeks to investigate the com-

plexities of serverless computing, focusing on the necessity and potential of multi-output prediction

models. This exploration is essential in order to comprehend and improve the effectiveness and

accuracy of function invocation at multilevel pattern architecture, a key element of serverless com-

puting that needs to be sufficiently examined in this rapidly advancing area.

2.3.1 Overview of Serverless Computing

Serverless computing is an innovative approach in cloud computing that involves a significant

change in the way architectures are designed, moving away from traditional server-focused models

and instead abstracting server management. The evolution of this computing concept has been

extensively documented, demonstrating the progression from an emerging idea to a widely accepted

cloud service model [70], [71].

Serverless computing is characterized by its ability to allocate resources on-demand and unique

billing models, setting it apart from traditional cloud services. Serverless architectures dynamically

allocate resources based on specific function calls or events. This process guarantees that users are

only charged for the resources that are actually utilized. This strategy provides both cost advan-

tages and is well-suited to the flexible demand of cloud-based applications, enhancing the power

and energy efficiency of cloud data centers [70], [72]. The act of calling functions in serverless

computing is fundamental to its operational framework. Functions, which are self-contained units

of application logic, are executed in response to various events or triggers. This model promotes a

flexible and responsive environment, making serverless computing highly suitable for event-driven

applications [73], [74]. The effectiveness and reliability of these calls are essential, as they directly

influence the efficiency and cost-efficiency of the serverless infrastructure [75], [76].

Furthermore, the rise of AI and ML has introduced new dimensions to serverless computing.

Advanced techniques such as AI-based resource allocation and adaptive auto-scaling are being in-

tegrated to optimize function invocation and resource management. This phenomenon signifies the

20



continuous advancement and growing complexity of serverless architectures [77].

Serverless computing has emerged as a revolutionary aspect of cloud computing because of its

ability to allocate resources on demand, its cost-efficient billing models, and its focus on executing

functions. The ongoing evolution of this framework, characterized by progress in AI and ML and

its increasing compatibility with contemporary computing needs, underscores its expanding signifi-

cance in the field of cloud computing. Function invocation is essential in this model, as it forms the

basis for the efficient operation and economic sustainability of serverless architectures.

2.3.2 Function Invocation in Serverless Computing

Invoking functions in serverless architecture is fundamental for applications to respond to dif-

ferent events, representing a shift from conventional server-based methods. This section examines

the mechanics of function invocation, examines research that concentrates on optimization and dis-

cusses the consequences of invocation patterns on resource management and system performance.

In a serverless environment, functions are invoked in a manner that is driven by events. These

functions are executed in response to specific triggers, such as HTTP requests, file uploads, or

other events that occur in the cloud. These invocations follow a model where the cloud provider

dynamically handles the allocation and scaling of the underlying infrastructure. The execution of

serverless applications, encompassing both cold and warm starts, has a substantial impact on their

performance and responsiveness [74], [78]. The optimization of the invocation process primarily fo-

cuses on minimizing latency and resolving cold start problems. Cold starts happen when a function

is called after being inactive, necessitating the cloud provider to assign resources before execution.

This delay can negatively impact the user experience. Studies have investigated different approaches

to reduce these delays, including examining tail latency in serverless clouds [79], comprehending

the variability in function invocation times [80], and creating techniques to reduces the service time

and enhance the warming of serverless functions [81].

The manner in which functions are called has direct consequences for the management of re-

sources and the overall performance of the system. Optimal invocation prediction strategies can

result in enhanced resource allocation, reduced expenses, and enhanced user satisfaction. The diffi-

culty lies in precisely forecasting the patterns of invocation and adjusting the allocation of resources
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accordingly. The studies reviewed offer valuable insights into the optimization of serverless comput-

ing for handling diverse workloads, thereby ensuring optimal performance and efficient utilization

of cloud resources [74], [78].

2.3.3 Use of Cloud Workload Traces for Predictive Analysis

The utilization of cloud workload trace has emerged as an essential tool in serverless computing

for predictive analysis, facilitating a more sophisticated comprehension of serverless environments.

This section provides an overview of important studies that have utilized different types of evidence,

examining their research methods, results, and the wider significance of using real-world data to

forecast serverless computing workloads.

Cloud workload traces, which are essentially logs of past server utilization and user request

patterns, offer invaluable data for simulating and analyzing serverless computing environments.

These traces provide valuable information about common usage patterns, resource demands, and

performance limitations, which are essential for optimizing serverless infrastructures [80], [82].

Cloud workload tracers have been utilized in numerous studies to conduct predictive analysis

in the field of serverless computing. The FaaS-sim framework utilizes workload traces obtained

from real-world testbeds to simulate execution time and resource utilization on various comput-

ing hardware. Similarly, the research presented in [83] employs cloud workload traces to predict

serverless computing workloads using advanced ML techniques like the Wasserstein Adversarial

Transformer (WAT). Another study addressing the mitigation of the cold start problem in serverless

computing [84] analyzes sudden spikes in workload traces and their impact on service delivery.

Utilizing cloud workload traces for predictive analysis provides numerous advantages. It allows

for a more precise evaluation of resource requirements and user demand patterns, which aids in

improved capacity planning and resource distribution. This approach also aids in the identification

and resolution of performance issues, such as latency and cold starts, by offering a practical frame-

work for simulation and testing [85], [86]. Nevertheless, there are constraints to this methodology.

Examining real-world workload traces at a specific pattern architecture level may occasionally pro-

vide a reliable representation of load patterns, but this is limited by the ever-changing nature of

user behavior and technological progress. Furthermore, the utilization of real user data gives rise to
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concerns regarding privacy and data security [87].

The use of cloud workload traces in the development of serverless computing operational man-

agement offers a practical approach for performing predictive analysis, thereby significantly en-

hancing the optimization of serverless platforms. Incorporating actual data from the real world into

the development of serverless computing prediction models is extremely beneficial for enhancing

efficiency and responsiveness despite the specific difficulties it may present.

2.3.4 Multi-Output Prediction Models

In serverless computing, where dynamic resource allocation and efficient service delivery are

paramount, multi-output prediction models emerge as a critical tool for managing complex work-

load patterns. This section examines multi-output prediction models, their significance in serverless

computing, and their potential to improve the invocation prediction process.

Multi-output prediction models are sophisticated analytical instruments that have the ability

to predict multiple dependent variables or outputs simultaneously. Within the realm of serverless

computing, these models hold significant importance as they possess the capability to examine and

forecast various aspects of a function invocation, including invocation frequency, execution dura-

tion, and resource utilization. These factors are essential for the enhancement of serverless plat-

forms [88]. By utilizing these models, serverless computing systems can attain enhanced resource

provisioning accuracy, reduce latency, and enhance overall service performance.

The literature reveals a growing interest in employing multi-output prediction models in cloud

computing and related fields. For example, the study by Liu and Xu utilizes a Multi-output Support

Vector Regression (MSVR) model combined with a Immune Clone Selection Algorithm (ICSA)

to improve big data in cloud computing platforms [89]. This approach highlights the capability of

multi-output prediction models in dealing with intricate, high-dimensional data that is frequently

encountered in cloud environments. Another noteworthy contribution is the TPPFaaS framework,

which models serverless function invocations using Temporal Point Processes (TPPs), providing

insights into workload prediction in serverless computing [88].

Serverless computing enables multi-output prediction models that can simultaneously predict

multiple critical aspects of function invocation. These models can forecast invocation frequency,
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helping to anticipate demand spikes and scaling resources accordingly. In addition, they can ap-

proximate the time it takes for a task to be completed, which is crucial for effectively managing

time-sensitive tasks and minimizing the occurrence of cold starts. Also, they can forecast resource

utilization patterns, which improve computational resources and optimization of costs. The litera-

ture review showcases the adaptability and efficacy of these models, emphasizing their increasing

significance in the changing realm of cloud computing.

2.3.5 Summary

Although there is an increasing amount of research on serverless computing, there are still ar-

eas for improvement, especially when it comes to multilevel predictive analysis. Contemporary

research, despite being thorough, typically requires a multifaceted methodology for predictive anal-

ysis. Research primarily examines particular aspects of serverless environments, such as cost or

performance, without effectively incorporating these factors into a comprehensive predictive frame-

work. There is a significant gap in current research regarding the need for comprehensive models

that can address multiple aspects of serverless computing. These aspects include continuous invo-

cation frequency at the application level for resource allocation, cost estimation at the user level,

and execution timing at the function level.

The current predictive models frequently encounter difficulties in accurately predicting server-

less computing workloads because of the extremely dynamic and event-driven characteristics of

serverless computing. These models have to include the inherent variability and unpredictability

present in the time series of function invocation trace. The difficulty lies in developing models that

possess sufficient flexibility and generalizability to effectively manage diverse event-driven func-

tions across different time intervals within serverless environments.

There is a distinct requirement for more sophisticated and subtle predictive models that can

accommodate the ever-changing characteristics of serverless computing. These models need to

have the ability to perform multilevel analysis, forecast diverse outcomes, and adjust to dynamic

conditions in real time. Such predictive models allow serverless computing to effectively adapt to

the changing requirements of contemporary cloud-based applications and services.
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Chapter 3

Advanced Clustering Techniques in

Cloud Workload Management

In this chapter, we delve into the sophisticated realm of clustering techniques, focusing on the

segmentation of cloud workloads. The effective segmentation of workloads in cloud environments

is crucial for optimizing performance, cost efficiency, and scalability. Initially, we explore various

clustering techniques for workload segmentation, highlighting their unique attributes and suitabil-

ity in different data pipelines (Section 3.1). Then, we explore an advanced concept of ensemble

clustering (Section 3.2). This section explores how combining multiple clustering approaches can

provide a more comprehensive and nuanced analysis of cloud workloads. This innovative strategy

is particularly pertinent to address the multifaceted challenges posed by the dynamic nature of cloud

environments, ensuring more efficient and effective workload management.

3.1 Dynamic Workload Segmentation based on Multiple Data Pipelines

Integrating ML technology into CRMSs marks a significant step for cloud providers to under-

stand and address customer needs, thus refining their decision-making processes. This advancement

is crucial for streamlining business operations and increasing customer satisfaction. Central to the

development of effective ML models is the preprocessing of observed data, a stage that critically

shapes the learning process and the accuracy of predictions [8]. This preprocessing involves several
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key tasks: data cleaning, integration, transformation, and reduction. Each of these tasks is geared

towards enhancing the data’s quality and utility for ML model development.

In the realm of cloud computing, workloads are characterized by their high variability and the

presence of unforeseen patterns, presenting unique challenges in knowledge discovery. This com-

plexity necessitates the deployment of robust data preparation pipelines. Properly executed, these

pipelines not only improve the quality of the data but also facilitate the extraction of valuable in-

sights. When data is meticulously preprocessed, the resulting ML models are not only more precise

but also more reliable. These enhanced models can then be seamlessly integrated into the Selection

and Decision-Making (SDM) modules of CRMSs. This integration is crucial for achieving efficient

and effective resource management in cloud data centers, ensuring that resources are optimally al-

located to meet diverse and dynamic workload demands.

Categorizing cloud workloads is vital for improving monitoring procedures and managing cloud

resources. This process can help allocate resources more effectively, reduce waste, and prioritize

critical workloads and their requirements [23], [90]. This study introduces a methodology for cat-

egorizing cloud workloads by employing clustering techniques and multiple data pipelines. We

emphasize the importance of employing precise data preprocessing techniques to guarantee precise

and reliable clustering results based on different perspectives.

3.1.1 Workload Clustering Framework

The proposed framework utilizes clustering methods to partition the workload into subsets with

similar characteristics to estimate performance metrics based on different data views. Different

criteria are used to evaluate the clustering quality and determine the optimal number of clusters for

the partitioning process within the cloud data centers. The labels produced by the clustering process

serve as unique identifiers for distinct sets of tasks that share commonalities. The cloud provider can

then use the cluster estimations to calibrate the task scheduling and placement algorithms to dispatch

jobs into logical Virtual Computing Instance (VCI)s such as VMs and containers. Therefore, by

providing valuable insights into the characteristics and behavior of cloud workloads, it enables

more efficient and effective management of cloud resources.
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3.1.1.1 Typical System Design

The typical CRMS comprises global, workload, and local agent managers, distributed through-

out the data center’s higher and lower logical layers. The global manager resides in a controller

node at a higher layer, connected to workload managers and all distributed local managers at the

lower layer. Each physical node is connected to a local manager that manages the node’s resources

through VCI managers (Virtual Machine Manager (VMM) and Container Manager (CM)). They

oversee to collaborate with the associated global manager to provision resources and accommodate

the workload requirements. However, the CRMS utilizes task delivery modules working together

to complete user requests on properly organized resources that adhere to SLA requirements. The

following additional information pertains to each module:

Figure 3.1: End-to-End machine learning development lifecycle workflow.
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Monitoring Module: Within data centers, the monitoring module is a crucial component de-

signed to assist cloud managers in keeping track of the workload and infrastructure resources. It

allows managers to keep a close eye on the performance of various systems and helps them make

informed decisions about resource allocation and utilization. This module collects user request re-

quirements, resource capabilities, VCI utilization, and the status of physical nodes. The collected

data is then stored in a data storage facility accessible by all data center managers. The monitor-

ing module also coordinates with the learning module to preprocess the collected data. The data

passes through given data pipelines in a predetermined order to prepare it for clustering. The output

samples are then used to train the desired clustering models based on a predetermined model and

configuration list. With the help of the monitoring module, cloud managers can ensure that their

systems are functioning optimally and provide high-quality segmentation.

Learning Module: This module comprises the data preparation and the ML development and

evaluation phases, as shown in Figure 3.1. The data preparation phase applies different data prepro-

cessing and feature engineering techniques to form data pipelines and their configurations. These

pipelines help transform the data into a suitable format for training and evaluating ML models.

In the ML development and evaluation phase, the transformed data is used to train, assess, and

hyper-parameter tune predetermined clustering models. The global manager utilizes the clustering

outcomes to form actions like VCI migration maps through the SDM module and feeds the work-

load and local managers accordingly to optimize the cloud resource. Nonetheless, this study focuses

on this module, which is discussed in detail in Section 3.1.1.2.

Selection and Decision-Making Module: This module manages the resources of the data cen-

ter following the characteristics of the workload and the required resource demands by forming the

operational management of CRMS. It plays a significant role in keeping the dynamic workload

scheduling and consolidation process running smoothly. It involves cluster identification, a data-

driven problem of identifying VCI configuration that conform to task-defined usage patterns and

access policies with minimal overhead. Also, it coordinates with the information-gathering module

that provides the expected future load demands and the required resource capacities of active VCI,

including the current state of the physical resources. The SDM module uses this information to

generate scaling and migration maps that optimize resource allocation and workload scheduling.
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3.1.1.2 Clustering Workflow Pipelines

The workload clustering model classifies given tasks into k groups based on their characteristics

such as resource utilization and execution costs. Two algorithms are proposed to create workflow

clustering pipelines. These algorithms enable the learning module to preprocess the traces in various

formats and build clustering models accordingly. The details of each algorithm are as follows.

Data Preprocessing and Feature Engineering: Data pipelines are a sequence of organized

methods used to preprocess and engineer features in a prescribed manner. They implement pro-

cedures configured based on predetermined setups PC = {PC1, PC2, PC3, ..., PCd}, where d

represents the number of data pipelines, considering various transformation layouts.

Algorithm 3.1 shows the preprocessing workflow. It starts by extracting a subset of the trace

based on a given window size (W ). This parameter determines the duration of the trace to be

analyzed and used in the clustering process. This step is helpful when workload patterns change over

time, as it allows us to capture and analyze the variations separately and form actions accordingly.

Next, it extracts features based on resource usage and date and time indexes. The first step involves

Algorithm 3.1 Data Preprocessing and Feature Engineering
Input: Tr ← SchedulingTrace, PC ← Config
Output: CP {DataPipelinesWorkflow}

1: CP ← [ ]
2: for PCi in PC do
3: P.Sampling(PCi[W ])
4: P.FeatureExtractionBasedOnResourceUsage()
5: P.ExtractDateT imeFeatures()
6: P.OrdinalEncoder()
7: P.OneHotEncoder()
8: P.CounterEncoder()
9: if PCi[Polynomial] == True then

10: P.ProducePolynomialFeatures(PCi[D])
11: end if
12: P.FeatureSelection(V T,MT )
13: if PCi[ReduceDimensionality] == True then
14: P.Reduction(PCi[COMPONENT])
15: end if
16: P.FeaturesTransformation()
17: P.FeaturesScaling()
18: CP.Append(P.F it(Tr, PCi))
19: end forreturn CP
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transforming variables from the trace data that capture the resource utilization patterns of the tasks.

These variables may include CPU utilization, memory utilization, disk I/O, network utilization,

and other pertinent metrics. This step aims to identify the most informative variables that can

differentiate between various task types and provide insight into the resource demands.

The second step involves obtaining essential information from the task timestamps. This infor-

mation contains indexes such as year, month, day, hour, minute, and weekday, which indicate when

each task was initiated and completed. By extracting these indexes, we can gain insight into how

the workload fluctuates over time and how the clustering outcomes may be influenced by external

factors such as seasonality and time of day and adapt resource management decisions accordingly.

The categorical variables are then converted into a numerical form that can be used to build

ML algorithms. Categorical data is any information that consists of non-numerical values, such

as subscription index, deployment index, VCI type, CPU core bucket, and memory bucket. In

the proposed algorithm, three types of encoders are considered. 1) Ordinal encoding is a process

for assigning a distinct integer to each category, such as CPU core bucket and memory bucket,

ordered based on size. 2) One-hot encoding is a technique that produces a new binary variable for

each category, such as VCI type. 3) Counter-encoding is a technique used to encode categorical

variables by replacing each category, such as subscription and deployment indexes, with a count of

its appearances in the data set while preserving the frequency-based ordering of the categories.

Subsequently, a polynomial function is utilized to produce new attributes by amalgamating ex-

isting numerical features, thus facilitating the capture of non-linear relationships between them.

The degree of polynomiality (D) determines the degree of transformation. It is essential to exercise

caution when selecting D, as increasing it produces excessive polynomial features that can lead to

overfitting. This consideration highlights the essentiality of thoughtful decision-making when se-

lecting the degree to be included in the model. Then, feature selection methods are applied to ensure

that only informative variables are retained by removing less important ones. The low variance vari-

ables are less critical elements that can be removed according to a given threshold (V T ). Pearson

correlation can determine the correlation between the features within the given data set. Then, we

can identify the features with multicollinearity, a statistical phenomenon representing two or more

highly correlated variables that can be dropped according to a given threshold (MT ).
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Algorithm 3.2 Workload Clustering Workflow
Input: Tr ← SchedulingTrace, W ←WindowSize
Output: TCM {TrainedClusteringModels}

1: PC ← GetP ipelinesConfig(W )
2: CP ← GetDataP ipelinesWorkflow(Tr, PC)
3: TCM ← [ ]
4: for CPi in CP do
5: Xtrain, Xtest ← DataPreprocessing(T,CPi)
6: M,MC ← GetClusteringModels&Configs()
7: for Mi,MCi in zip(M,MC) do
8: Mi.T rain(Xtrain,MCi)
9: Fi ←Mi.Evaluate(Xtrain, Xtest)

10: if Tunable(Mi) then
11: TMCi ← Tune(Xtrain, Xtest,Mi,MCi, Fi)
12: Mi.Update(TMCi)
13: end if
14: TCM.Append(Mi)
15: end for
16: end forreturn TCM

After that, PCA is employed to reduce the dimensionality of complex data sets while main-

taining the most significant components that effectively capture the highest degree of variation in

the original data. This approach selects appropriate components based on an explained variance

threshold determined using a knee method proposed in [91]. This process can also help improve

ML models’ performance by reducing the amount of noise and irrelevant information in the data.

Finally, feature transformation and scaling techniques are utilized to normalize the produced

data features to have similar scales and ranges. In feature transformation, a mathematical function

is applied to the features to transform them into a new space, whereas, in feature scaling, the features

are rescaled using a standard scaler method. This process is vital in ML because some algorithms

are sensitive to the scale of the input features.

Workload Clustering Workflow: Multiple models for workload clustering are created for each

data pipeline in this module. Algorithm 3.2 shows the steps of the clustering process, including the

evaluation and tuning processes. The scheduling trace Tr is used as input data, filtered using a

window size W . Then, fetch the planned list of data pipelines CP based on given setups PC. The

workload manager forms the configuration policies of each data pipeline workflow. For each CPi,

data samples are produced by implementing a batch preprocessing stage that handles imputations
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and feature extraction, using Algorithm 3.1. Afterward, the clustering models undergo training,

evaluation, and tuning through a predetermined set of models M and their corresponding parameter

setups MC. The superior models are then recorded and made available for utilization by the data

center managers. The information-gathering module groups the workload into segments based on

the best model clustering outcome. It then constructs estimations for each data segment using

descriptive statistics or ML models such as regression or classification. Based on these estimations,

the SDM module generates a VCI scaling and migration map. This map is then used to schedule,

balance, and consolidate the active workloads.

3.1.2 Experimental Setup and Evaluation

The proposed model is evaluated using real cloud workloads, three clustering algorithms, and

four distinct data pipeline configurations. Various performance metrics are used to examine the

ideal number of clusters and the quality of the segmentation. More details are outlined below.

3.1.2.1 Clustering Evaluation Metrics

Clustering performance is crucial, as data clusters are often examined manually and qualitatively

to determine their significance. When the ground truth label is unknown, the performance of the

clustering method can be examined utilizing different intrinsic metrics. In this study, we used the

most popular metrics, which are described as follows.

Silhouette Coefficient: The Silhouette Coefficient (SC) score is a metric for evaluating the

clustering quality using the maximum internal coherence and separation of clustering outcomes

[92]. This score concisely illustrates how clustering is performed within each cluster and between

neighboring clusters. The SC score varies from -1 to 1, allowing us to evaluate the consistency

within data clusters. The mean score can also show the overall clustering performance. The higher

score indicates that the cluster data points are farther away from the neighboring points, while a

negative score means that the cluster data points might be in the wrong group. A cluster with a

score of zero or close to it indicates that the data points in the cluster are close to the boundaries and

may overlap with other clusters. The SC score is calculated using the following formula.
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SC =
b− a

max (a, b)
(1)

where a is the mean intra-cluster distance (mean distance between a data point and all others

within a cluster), and b is the mean nearest-cluster distance (mean distance between a data point

and all other ones in other clusters). Euclidean distance can be used to calculate the mean distance.

Generally, for two points p and q given by Cartesian coordinates in n-dimensional Euclidean space,

the distance d can be calculated as the following equation.

d(p,q) =

√√√√ n∑
i=1

(qi − pi)2 (2)

Calinski-Harabasz Index: The Calinski-Harabasz Index (CHI), also known as the Variance

Ratio Criterion, can be used to evaluate the clustering outcomes [93]. It is a metric that estimates

the dispersion ratio within a cluster and the mean dispersion between clusters. The dispersion can be

determined by summing the squared distances. The higher value of CHI indicates a better-defined

clustering performance that includes dense and well-separation groups. The CHI can be easily

calculated as the following equation.

CHI =
tr (Bk)

tr (Wk)
× nE − k

k − 1
(3)

where nE is the size of a sample data set E that has been clustered into k clusters, tr (Bk) is the

trace matrix of the dispersion between clusters, and tr (Wk) is the trace matrix of the dispersion

within the cluster, defined as follows:

Wk =

k∑
q=1

∑
x∈Cq

(x− cq) (x− cq)
T (4)

Bk =

k∑
q=1

nq (cq − cE) (cq − cE)
T (5)

where Cq refers to a group of data points within the cluster labeled as q. The variable nq represents

the total number of data points within cluster q, while cq denotes the center of the same cluster. cE
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refers to the center of the sample data set, while the symbol T denotes the transpose of the matrix.

Davies-Bouldin Index: The Davies-Bouldin Index (DBI) is another evaluation metric for clus-

tering algorithms. It measures the similarity between two clusters by calculating the ratio of within-

cluster distances to the distance between the other clusters [94]. The minimum value of DBI is

zero, and the model with a lower value indicates further apart and less scattered within the data,

representing better clustering performance. The DBI can be computed using the following formula.

DBI =
1

k

k∑
i=1

max
i ̸=j

Rij (6)

where k is the total number of clusters, Rij is a measure that represents how good the clustering

scheme is between ith and jth clusters, calculated as follows.

Rij =
si + sj
dij

(7)

where s represents the average distance between each data point of a cluster and its centroid value

calculated for both ith and jth clusters, dij is the distance between cluster centroids i and j. Small

s and large dij give a minimum DBI value that indicates the best partitioning outcomes.

3.1.2.2 Microsoft Azure Public Workload

Microsoft Azure is a cloud computing platform that offers various services, including comput-

ing, storage, analytics, and networking, enabling businesses to build, deploy, and manage applica-

tions and services globally [95]. Cloud users may submit multiple jobs to any regional data center

using single or multiple subscriptions. Each task operates on a VM within a deployment that pro-

vides the required resources for each task to run efficiently, considering its particular requirements.

In our experiments, we used a random data set of 10000 VMs (running for one month) derived

from the Azure Public Data set v2 [96]. The trace includes subscriptions and deployments indexes

for each VM described as nominal categories. It also includes ordinal categories to show the CPU

core and memory buckets of the VM and a nominal category representing the VM type. It also

contains timestamps for starting and stopping VM, maximum and average CPU utilization, and the

95th percentile of maximum CPU utilization as numerical features.
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3.1.2.3 Pipeline Setups and Evaluation Results

Scheduling trace with a window size (W ) of 30 days is subjected to various data pipeline se-

tups, each employing a unique combination of preprocessing and feature engineering techniques in

preparation for clustering. These setups may differ in the parameters used or the inclusion/exclusion

of specific data preparation methods for each clustering technique. The results of each configura-

tion are then compared to determine which configuration and methods perform the best in terms of

the clustering quality evaluation metrics. With this flexibility, the best settings for each clustering

method can be chosen and applied to the data for optimal clustering. However, we evaluate the pro-

posed data pipeline configurations using three clustering algorithms (KMeans [97], Agglomerative

[98], and MeanShift [99]) based on the implementation of sklearn [9]. The chosen clustering algo-

rithms offer a diverse range of techniques for different data characteristics and use cases. KMeans

provides a scalable, efficient centroid-based clustering. Hierarchical, particularly the Agglomerative

method, offers a tree-structured approach for interpreting data hierarchies. MeanShift complements

these by offering a density-based clustering ideal for complex data shapes and varying densities.

Together, these methods form a comprehensive toolkit for addressing various clustering challenges.

Choosing the optimal number of clusters is among the most challenging aspects of the clustering

process. The KMeans and hierarchical clustering algorithms require the number of clusters to be

defined to group the data points accordingly. The distortion score can be used to choose the optimal

number of clusters for each data pipeline. This score calculates the sum of the squared distances

between each data point and its cluster centroid. The lower the score value, the better the clustering

performance. However, by plotting the score for different clusters, we can choose the number of

clusters that results in the most significant decrease in the distortion score. This spot is referred to

as the elbow point because it is typically where the plot begins to flatten. However, mathematically,

the distortion score can be expressed as:

D =

k∑
i=1

∑
x∈Ci

||x− µi||2 (8)

where k is the number of clusters, Ci is the set of data points assigned to cluster i, x is a data point,

and µi is the centroid of cluster i. The objective of the clustering process is to reduce this score
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to the greatest extent possible. In this study, using this score, we employed a knee point detection

algorithm proposed in [91] to automatically detect the elbow point that corresponds to the optimal

value of k, ensuring a reliable and objective analysis.

As previously mentioned, the parameters utilized or the inclusion/exclusion of specific methods

for each clustering technique may vary across data pipeline configurations. By experimenting with

different configurations, we can evaluate their effectiveness and select the optimal configuration for

each clustering method. Detailed descriptions of the utilized pipeline configurations, including the

evaluation results and comparison, are provided as follows.

Standard Pipeline (SP): The data pipeline is a systematic approach to preparing data for clus-

tering, and it involves a series of steps to ensure that the data is in a suitable format and good quality.

The pipeline includes several preprocessing techniques, such as sampling, feature extraction based

on resource usage, and creation and deletion timestamps of VCI. One of the principal steps in the

pipeline is encoding categorical variables, which involves converting categorical data into a nu-

merical format that the learning process can understand. This step is essential because many ML

algorithms can only work with numerical data. Another important step is removing features with

zero variance and those with perfect collinearity (V T = 0 and MT = 0.99). Features with per-

fect collinearity provide identical information, and their inclusion in the model does not add value

to the learning process. Zero variance features have the same value for every data point in a data

set, and their elimination enhances model performance and decreases computational complexity.

After removing redundant features, the pipeline performs feature transformation and scaling. Fea-

ture transformation involves converting the data into a more suitable format for analysis. Scaling

involves standardizing the data to a standard scale to prevent any one feature from dominating the

analysis. By following these steps, the data pipeline ensures that the data is of high quality and sets

the stage for an accurate and reliable data clustering process.

After that, we used the quantile transformation method to transform the features into a uniform

distribution using sklearn implementation [9]. This method transforms skewed data into a normal

distribution by calculating the quantiles of the initial data and mapping them to the quantiles of the

normal distribution. We also utilized the min-max normalization method to scale numerical data in

a fixed range between 0 and 1. It is applied to change all the features of the data set to the same
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Figure 3.2: Explained variance plot for the transformed data using Standard Pipeline (SP), excluding
the normalization and transformation methods.

Figure 3.3: KElbow plots with distortion scores and training time for KMeans and Agglomerative
clustering methods utilizing the Standard Pipeline (SP), with and without the application of PCA.

scale. The formula to perform min-max normalization on a feature X is:

Xnorm =
X −Xmin

Xmax −Xmin
(9)

where Xmin and Xmax represent the minimum and maximum values for the given feature X .
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Table 3.1: Comparison of Clustering Methods Utilizing the Standard Pipeline (SP), with and with-
out the application of PCA.

Metrics KMeans Agglomerative MeanShift Pipeline

CHI
14532.47 13886.72 5856.82 SP PCA
2090.31 1654.79 1377.47 SP

DBI
0.62 0.66 0.70 SP PCA
1.52 1.93 1.09 SP

SC
0.56 0.55 0.52 SP PCA
0.21 0.13 0.44 SP

Figure 3.4: Intercluster distance map for KMeans and MeanShift clustering methods using the
Standard Pipeline (SP), with and without the application of PCA embedded via the MDS into two
features (P1, P2).
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Figure 3.5: Silhouette analysis plot of KMeans clustering method utilizing the Standard Pipeline
(SP), with and without the application of PCA.

Furthermore, the reduction in dimensionality based on PCA is applied before scaling and trans-

formation as another version of this pipeline (SP PCA). Figure 3.2 shows the total variability in

the SP data is explained by the first 17 components. We examine the cumulative explained variance

to select the most informative components, observing that the first three capture 99.4% of the total

variance, where the PCA components are chosen accordingly.

The elbow analysis is depicted in Figure 3.3 for KMeans and Agglomerative clustering methods.

It shows the distortion score and the training time, considering different values of cluster number

k (2 to 18), whereas the dashed line represents the selected k for each pipeline. The performance

of clustering methods utilizing the SP and SP PCA data pipelines is compared in Table 3.1. The

results show that using the PCA improves clustering quality for SP data pipeline, confirmed by

all evaluation metrics for all clustering algorithms. This finding underscores the importance of

incorporating PCA into the data analysis process to achieve optimal results.

The map in Figure 3.4 displays the intercluster distance in two-dimensional space for the KMeans

and MeanShift clustering methods, utilizing SP data pipeline with and without PCA. The mapping

is done by multidimensional scaling (MDS). This technique transforms high-dimensional data into

a low-dimensional space while preserving the pairwise distances between data points as much as

possible. It is crucial to note that just because two clusters overlap in the 2D space does not mean

they also overlap in the original feature space. The clusters are sized according to membership, and
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we can visually see the relative importance of each cluster accordingly. It can help determine the

most significant clusters in the data and make decisions based on their characteristics.

Figure 3.5 shows silhouette plots for KMeans clustering for both data pipelines, where the

dashed line represents the average scores. The average silhouette score for SP PCA is higher than

that for SP, which indicates that the clustering performance is better for the SP PCA pipeline. It

demonstrates the effectiveness of incorporating PCA components into the clustering process, as it

helps reduce the dimensionality and capture more meaningful features.

Poly Pipeline (PP): The polynomial function generates new features in the poly pipeline by

combining the numeric features of standard pipeline exclusion, transformation, and normalization

methods based on a given polynomial degree. Suppose we have a data set with n observations and

2 original features, denoted as X = [x1, x2]. A new feature matrix Xpoly can be generated by

applying a polynomial function of degree D = 2 to X as follows:

Xpoly = [1, x1, x2, x
2
1, x1x2, x

2
2] (10)

observe that a column of ones is included in Xpoly to account for the intercept term in the model.

The polynomial function can help capture nonlinear relationships between the features, but

including too many polynomial features can lead to overfitting and increases computational com-

plexity. Therefore, it is crucial to carefully select the degree of the polynomial function (D) and

Figure 3.6: Explained variance plot for the transformed data using Poly Pipeline (PP), excluding
the normalization and transformation methods
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Figure 3.7: KElbow plots with distortion scores and training time for KMeans and Agglomerative
clustering methods utilizing the Poly Pipeline (PP), with and without the application of PCA.

the features to be included in the model. For PP setups, the 22 features of SP (excluding the nor-

malization and transformation methods) are used as input to a polynomial function with a degree

of D = 2, producing 238 new features. The process of filtering new features involves applying

specific variance and multicollinearity thresholds. In this case, the given thresholds are V T = 0.05

and MT = 0.90. Applying these thresholds aims to identify and keep only the most informative

features. After applying the filters, the number of features is reduced to 113. These 113 features are

the most informative ones identified through the filtering process.

Similar to SP, the dimensionality reduction is applied before the scaling and transformation as

another version of the PP data pipeline (PP PCA). Figure 3.6 shows the total variability in the PP

data, observing that the first four capture 95.2% of the total variance. Thus, we only keep the first

four components and disregard the others, which do not provide any extra informative variation.

Figure 3.7 illustrates the analysis of the elbow for KMeans and Agglomerative clustering meth-

ods, considering the PP data pipeline, with and without the use of PCA. This figure compares

distortion scores and training times for various cluster numbers (k) ranging from 2 to 18. Notably,

each pipeline’s chosen cluster number is denoted by a dashed line. The performance of clustering

methods utilizing the PP and PP PCA data pipelines is compared in Table 3.2. The PCA based
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Table 3.2: Comparison of Clustering Methods Utilizing the Poly Pipeline (PP), with and without
the application of PCA.

Metrics KMeans Agglomerative MeanShift Pipeline

CHI
10537.35 9153.70 9997.13 PP PCA
2812.71 2582.08 637.91 PP

DBI
0.61 0.74 0.60 PP PCA
1.39 1.31 1.23 PP

SC
0.65 0.60 0.65 PP PCA
0.37 0.37 0.29 PP

Figure 3.8: Intercluster distance map for KMeans and MeanShift clustering methods using the Poly
Pipeline (PP), with and without the application of PCA embedded via the MDS into two features
(P1, P2).
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Figure 3.9: Silhouette analysis plot of KMeans clustering method utilizing the Poly Pipeline (PP),
with and without the application of PCA.

PP data pipeline, like SP, considerably enhances the quality of clustering across all clustering al-

gorithms. The evaluation metrics obtained in Table 3.2 provide sufficient evidence to support this

assertion. Figure 3.8 shows the intercluster distance map in two-dimensional space for the KMeans

and MeanShift clustering methods, and Figure 3.9 shows silhouette plots for KMeans clustering,

using PP data pipeline with and without PCA.

In the comprehensive evaluation of clustering methodologies, the results accentuated the pre-

eminence of the PP PCA pipeline. When assessed based on performance metrics like the average

silhouette score, PP PCA consistently outperformed other pipelines such as SP, PP, and SP PCA

across all the clustering algorithms. The elevated efficacy of PP PCA is attributed to its integration

of PCA with polynomial functions. This unique amalgamation facilitates the capture of salient fea-

tures and simultaneously reduces data dimensionality, enhancing the robustness and generalizability

of the resulting clustering models. These findings emphasize the significance of careful preprocess-

ing decisions and provide a path for improved VCI data analysis and system enhancements.

3.1.3 Conclusion

Workload categorization in cloud environments is imperative for consolidating workloads with

homogenous characteristics. This study introduced a workload categorization method that under-

went rigorous evaluation using real cloud workload. Our findings underscored the significance of
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advanced data preprocessing and its seamless integration into clustering techniques, ensuring metic-

ulous segmentation. Our exploration highlighted the superior performance achieved when dimen-

sionality reduction converges with polynomial functions within the clustering pipeline. This study

has been published in [100], and a similar study has been conducted and published in [101], in-

vestigating further clustering methods and data preparation configurations. Our next objective is to

develop a clustering ensemble framework. The goal is to align the clustering results obtained from

different pipelines used in base learners to discover powerful and precise clustering results. Com-

bining these models creates a composite ensemble, which incorporates each member’s advantages

and ensures a more comprehensive and precise representation of workload categorization.

3.2 Ensemble Clustering for Multi-Perspective Workload Analysis

The accurate classification of cloud workloads is crucial for making informed decisions about

load scheduling and resource allocation, leading to substantial improvements in the overall opera-

tional management of the infrastructure [14]. The sheer volume, velocity, and variety of workloads

in large-scale cloud environments make it challenging for conventional clustering methods to pro-

duce accurate and meaningful results. Although these methods are somewhat effective, they have

limitations when dealing with the diverse and multifaceted nature of cloud workloads [102]. The

scalability and heterogeneity of the cloud environment frequently result in overlapping and nested

clusters that are challenging to manage with conventional clustering methods.

In addition, hidden within the complexity of cloud workloads are multiple valid categorization

perspectives that single clustering methods may overlook. This obfuscation compromises the ef-

ficiency of resource and task scheduling strategies in cloud data centers, resulting in suboptimal

performance, increased costs, and diminished service quality. Therefore, a more adaptable and

nuanced approach to workload categorization in cloud systems is necessary and timely.

Moreover, it is crucial to preprocess the observed data to ensure the precision of ML models.

This process involves cleaning, integrating, transforming, and reducing the data to improve its qual-

ity and usefulness [8]. In cloud computing, acquiring knowledge can be challenging due to the

diverse workloads being executed. In order to improve data quality and obtain valuable insights, it
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is crucial to have adequate data preparation pipelines. Using efficient ones in clustering and pre-

diction models can lead to more reliable and accurate results, optimizing the CRMS operational

outcomes, which ensures efficient and effective resource utilization.

Given the limitations inherent in current clustering methods, this research aims to elevate work-

load segmentation by leveraging an advanced ensemble clustering approach. This study intends to

refine the categorization process by employing enhanced data preprocessing and clustering method-

ologies tailored to cloud workloads’ multifarious nature. The main contributions of this study can

be summarized as follows.

• The formulation of a novel ensemble clustering technique that amalgamates diverse data pre-

processing pipelines with varied base clustering learners, thereby ensuring a comprehensive

understanding of intricate cloud workload patterns.

• Empirical validation of the proposed technique using real-world trace data derived from the

Microsoft Azure workload, attesting to its robustness, precision, and relevance in identifying

complex workload attributes.

• Introduction of a unique scoring method that integrates the Silhouette Coefficient (SC), Calinski-

Harabasz Index (CHI), and Davies-Bouldin Index (DBI) metrics. This score facilitates the

discerning selection of optimal clustering models and preprocessing mechanisms, illuminat-

ing the nuanced interplay between distinct pipeline configurations and arrangements.

• Detailed analysis of the interactions between different clustering algorithms and a combi-

nation of transformation and normalization methods, offering profound insights into their

collective influence on the workload categorization process efficacy.

• To increase the adaptability of the reduction of data dimension, we combine the Kneedle

method [91] with PCA, as detailed in Algorithm 3.5. This novel fusion approach autonomously

determines the optimal PCA components that can be used count the inflection in the cumula-

tive variance curve, obviating predefined thresholds and enhancing processing effectiveness.

The significance of this study lies in its potential to markedly enhance workload segmentation

efficiency, paving the way for nuanced analyses and optimized cloud infrastructure management.
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By highlighting the efficacy of ensemble clustering in addressing the multifaceted nature of cloud

workloads, this research seeks to propel advancements in the field. Furthermore, the proposed en-

semble clustering approach underscores a promising avenue for superior cloud workload clustering.

The proposed approach exemplifies the integration potential of sophisticated clustering strategies

within real-world cloud resource management contexts.

3.2.1 Proposed Ensemble Clustering Approach

Data preprocessing pipelines are a systematic sequence of steps used to clean and transform

raw data into a format suitable for analysis, ensuring consistent and efficient data processing [8].

On the other hand, ensemble clustering merges multiple clustering algorithms or configurations to

categorize data [103]. This combination aims to maximize the strengths and minimize the weak-

nesses of individual methods, yielding more accurate and robust groupings of data points. Both

concepts underscore the value of integrating various methods to achieve enhanced results. The pro-

posed methodology involves the integration of base clustering pipelines, which comprise multiple

algorithms and data preprocessing pipelines, to enhance the categorization of cloud workloads. A

graphical illustration of the ensemble clustering approach is provided in Figure 3.10, while Table

3.3 presents the notation definitions.

Figure 3.10: Visual representation of the proposed ensemble clustering model showcasing the pro-
cesses the original workload trace goes through to perform the segmentation process.
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Table 3.3: Table of Definitions

Symbol Definition

X Workload trace data matrix
P Set of data preprocessing processes
B Set of base clustering algorithms
CP List of combined clustering pipelines
CPij Clustering pipeline combining the i-th of P with the j-th of B
X ′

ij Data post application of CPij

Lij Clustering labels from CPij

SCv, CHIv, and DBIv SC, CHI, DBI score lists for CP
SCij , CHIij , and DBIij Evaluation scores for CPij

SC ′
ij , CHI ′ij , and DBI ′ij Normalized scores of CPij

CS Combined score list for CP
CSij Combined score for CPij

SP Pipeline selection criteria
T Threshold based on SP
CP ′ Selected top-performing pipelines
M Meta clustering algorithm
k Specified cluster count
k′ ’Knee’ point in variance data
a Flag for applying PCA to base clustering outputs
X ′′ Input data matrix for PCA
u Flag for using Kneedle algorithm [91] in PCA
E PCA variance ratio
v Explained variance threshold for PCA
C Cumulative variance ratio in PCA
L Label list from selected top-performing pipelines CP ′

LT Transposed version of L
Len Counter-encoded labels of LT

L′
en PCA-transformed Len

L′ Final ensemble labels

The approach begins by constructing base clustering pipelines, each comprising a unique com-

bination of data preprocessing and base clustering algorithms. These candidate pipelines are then

evaluated and selected based on their partitioning quality. The selected pipelines generate clusters

whose labels are encoded using a count encoder. A PCA-based dimensionality reduction can be ap-

plied to handle potential high dimensionality in the label space. Lastly, a meta-clustering algorithm

consolidates the results from the selected base clustering pipelines, producing a final ensemble clus-

tering output. Thus, this approach leverages the strengths of various clustering algorithms and data

preprocessing methods, providing robust and reliable categorization of cloud workloads.
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3.2.1.1 Building Base Clustering Pipelines

The Algorithm 3.3 outlines the first significant step in our ensemble clustering approach - Build-

ing Base Clustering Pipelines. This step is critical to preparing a comprehensive set of base cluster-

ing pipelines that constitute the building blocks of our ensemble approach. These pipelines combine

each data preprocessing method, denoted by P , with each base clustering algorithm, denoted by B.

Both P and B are lists; P consists of different data preprocessing pipelines such as normalization,

standardization, PCA-based dimensionality reduction, and other feature engineering methods as re-

quired based on the data structure. While B comprises various base clustering algorithms such as

the KMeans, Agglomerative, and MeanShift algorithms as required based on the given data.

In detail, the algorithm begins by initializing an empty list CP to hold the resulting base clus-

tering pipelines (Line 1). It then proceeds with two nested loops to iterate over every possible

combination of elements from lists P and B (Lines 2 to 7). In each iteration, a base clustering

algorithm Bj is combined with a preprocessing data pipeline Pi to form a new clustering pipeline,

denoted by CPij (Line 4). The clustering pipeline is basically a sequence of preprocessing steps

Pi that need to be applied to the data X and ends with the clustering algorithm Bj . Each created

pipeline CPij is then added to the list CP (Line 5), which includes a pool of pipeline combinations.

This systematic process ensures that every potential combination of preprocessing and base

clustering methods is considered, thus increasing the likelihood of finding a set of pipelines that

offer high-quality clustering results. At the end of the algorithm, the list CP is returned (Line 8).

The list CP contains base clustering pipelines to be scored and evaluated in the next step of the

ensemble clustering approach, known as Base Clustering Pipeline Selection. This step is not a mere

cursory evaluation. It is a pivotal juncture where the theoretical constructs of our approach meet

empirical validation. We undertake a rigorous quality assurance process by scoring and evaluating

the pipelines stored in CP . This step ensures that only the most efficacious pipelines, which are

in harmony with the intrinsic data structure, are retained. Such precision-driven selection amplifies

the robustness of our ensemble clustering, ensuring that our final model is not just a conglomeration

of various clustering pipelines, but a synergized ensemble informed by data-driven insights. Using

this selection mechanism, we can confidently guarantee the highest accuracy and reliability in the
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Algorithm 3.3 Building Base Clustering Pipelines
Input

X Original workload trace data matrix
P = P1, P2, ..., Ps Data Pipeline List
B = B1, B2, ..., Bc Base Clustering Algorithms

Output
CP = CPij : CPij is a clustering pipeline that combines Pi and Bj ▷ List of clustering pipelines

1: CP ← Empty list ▷ Initialize the pipeline list
2: for each Pi in P do ▷ Iterate over preprocessing methods
3: for each Bj in B do ▷ Iterate over base algorithms
4: Combine Bj with Pi based on X and obtain CPij ▷ Create a clustering pipeline CPij

5: Add CPij to CP ▷ Add the pipeline to the list
6: end for
7: end for
8: return CP ▷ Return the list of pipelines

Algorithm 3.4 Base Clustering Pipeline Selection
Input

X Original workload trace data matrix
P = {P1, P2, ..., Ps} Data Pipeline List
B = {B1, B2, ..., Bc} Base Clustering Algorithms
SP Selection policy

Output
CP ′List of selected clustering pipelines

1: CP ← Call Algorithm 3.3 with X , P , and B ▷ Construct base clustering pipelines
2: Initialize SCv , CHIv , DBIv as empty lists ▷ Initialization of lists to store clustering validity scores
3: for each CPij in CP do ▷ Iterate over all pipeline combinations
4: Fit CPij on X to get labels Lij and transformed data X′ ▷ Process data using current pipeline
5: Calculate SCij , CHIij , and DBIij scores using X′ and Lij ▷ Evaluate the base clustering pipelines
6: Append SCv , CHIv , and DBIv with SCij , CHIij , and DBIij , respectively.
7: end for
8: Initialize CS as empty list ▷ Prepare for combined validity scores
9: for (SCij , CHIij , DBIij) in zip(SCv , CHIv , DBIv) do ▷ Iterate over clustering validity scores

10: Normalize the validity scores according to Equations 11, 12, and 13 to obtain SC′
ij , CHI′ij , and DBI′ij .

11: Compute Combined Score CSij according to Equation 14 ▷ Aggregate the normalized scores
12: Append CSij to CS ▷ Add aggregated score to the list
13: end for
14: Calculate threshold T using the selection policy SP applied on CS ▷ Determine cut-off score for selection
15: CP ′ ← base clustering pipelines with CS above T from CP ▷ Filter pipelines surpassing the threshold
16: return CP ′ ▷ Return the subset of top-performing pipelines

clustering process, placing our approach above conventional ensemble clustering methods.

3.2.1.2 Base Clustering Pipeline Selection

Algorithm 3.4 presents the second major step of our proposed ensemble clustering approach -

Base Clustering Pipeline Selection. The primary aim of this step is to identify the top-performing

base clustering pipelines that will contribute to the final ensemble clustering solution. This pro-

cess is achieved by evaluating each pipeline’s clustering performance on the trace data, X , using a

Combined Score (CS) of a set of evaluation metrics. The clustering pipelines are then filtered based

on a threshold T calculated based on a criterion defined by the selection policy, SP , such as the top
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Algorithm 3.5 PCA-based Dimensionality Reduction
Input

X′′ = {X′′
1 , X

′′
2 , ..., X

′′
n} Input Data Matrix

u Use Kneedle True or False
v Explained Variance Threshold

Output
X′ Transformed X′′ after applying PCA

1: Apply PCA on X′′ and get explained variance ratio E ▷ Apply PCA and Compute variance ratios for data
2: Cumulative Explained Variance Ratio C← Cumulative Sum of E ▷ Get cumulative sum of variances
3: if u then ▷ Check if Kneedle method is to be used
4: Use Kneedle to find knee k′ from C ▷ Identify the ’knee’ point in the cumulative variance
5: if knee k′ is None then ▷ Check if no knee point was found
6: k ← first index where C exceeds v ▷ Determine number of components based on threshold
7: end if
8: else
9: k ← first index where C exceeds v ▷ Determine number of components directly based on threshold

10: end if
11: Apply PCA with k′ components to X′′ and get X′ ▷ Apply dimensionality reduction
12: return X′ ▷ Return transformed data

Algorithm 3.6 Counter Encoder-based Ensemble Clustering
Input

X Original workload trace data matrix
CP ′List of selected base clustering pipelines
M Meta Clustering Algorithm
k number of clusters
a Apply PCA to base Clustering Algorithms Results {True or False}
u Use Kneedle {True or False}
v Explained Variance Threshold

Output
L′ Ensemble Clustering Labels

1: if k is not None and has M.n clusters then ▷ Check if a specific number of clusters is provided
2: M.n clusters← k
3: end if
4: L as empty list ▷ Initialize list for base clustering labels
5: for each CP ′

ij in CP ′ do ▷ Iterate over selected base clustering pipelines
6: Fit CP ′

ij on X and get labels Lij ▷ Compute labels using each pipeline
7: Append Lij to L
8: end for
9: LT ← transpose of L ▷ Transpose to structure data for encoding

10: Encode LT using counter encoding method and get encoded labels Len ▷ Counter encode the labels
11: if a then ▷ Check if PCA is to be applied
12: L′

en ← Call Algorithm 3.5 with Len, u, and v
13: else
14: L′

en ← Len

15: end if
16: Fit M on L′

en ▷ Apply meta clustering on encoded labels
17: L′ ←M .labels ▷ Retrieve the final ensemble labels
18: return L′ ▷ Return the final ensemble clustering labels

models m or the medium score threshold.

The choice of clustering evaluation metrics is grounded in thoughtful deliberation. We have

chosen SC, CHI, and DBI metrics for their proven track record and effectiveness across several

studies, detailed in Section 3.1.2.1. These metrics provide a comprehensive assessment of clustering

quality: SC measures the tightness and isolation of clusters, CHI evaluates intra-cluster cohesion,
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and DBI inspects the distinctness between clusters. By adopting a multifaceted approach to the

evaluation process, we can ensure that clustering results are robust and holistic.

To initiate, the algorithm first constructs the base clustering pipelines by invoking Algorithm

3.3, with the original data X , the list of data preprocessing pipelines P , and the base clustering

algorithms B as input parameters (Line 1). Following this, it initializes three empty lists, SCv,

CHIv, and DBIv, which will, respectively, store the SC, CHI, and DBI scores for each base clus-

tering pipeline (Line 2). In detail, the algorithm performs the following operations for each pipeline

CPij in the constructed list of base clustering pipelines, CP . It first fits the pipeline CPij on the

original data X to produce the cluster labels Lij and transformed data X ′ (Line 4). It then calcu-

lates the SC, CHI, and DBI scores using the transformed data X ′ and labels Lij , and appends these

scores to the respective lists SCv, CHIv, and DBIv (Lines 5 to 6).

Once the evaluation metrics have been calculated for each pipeline, the algorithm calculates a

CS (Lines 8 to 13). It first normalizes the SC, CHI, and DBI values using Equations 11, 12, 13,

to generate normalized scores SC ′ij, CHI ′ij, and DBI ′ij respectively. Then, it calculates the

combined score CSij for each pipeline according to Equation 14. Following the computation of

the combined scores, the selection policy SP is applied to the list CS to determine a threshold T to

select the best performing pipelines (line 14). Those pipelines whose combined score CS is above

the threshold T are selected and stored in the list CP ′ (Line 15).

It is crucial to specify the precise context in which the proposed combined score operates opti-

mally. This metric has been judiciously designed to amalgamate the outcomes, namely SCv, CHIv,

and DBIv, derived from various candidate clustering pipelines. Through rigorous normalization

procedures, the inherent diversity in the value ranges of these metrics is harmonized to fit a con-

sistent scale, ensuring a holistic and equitable synthesis into the combined score. It is noteworthy,

however, that this combined metric is tailored for appraising an ensemble of clustering pipelines.

For evaluating an individual clustering algorithm, such as the final ensemble clustering algorithm,

the utility of the combined score is constrained. In such instances, the conventional metrics, specif-

ically SC, CHI, and DBI, proffer a more immediate and illustrative assessment.

In summary, Algorithm 3.4 effectively ranks and selects the base clustering pipelines based on
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their clustering performance, represented by a combined score of multiple validity indices. The out-

put is a subset of the original list of base clustering pipelines, CP ′, that contains the top-performing

pipelines selected for the final ensemble clustering.

3.2.1.3 Counter Encoder-based Ensemble Clustering

Firstly, in Algorithm 3.6 - Counter Encoder-based Ensemble Clustering, it takes as input the

original workload trace data matrix, X , the list of selected base clustering pipelines, CP ′, the meta

clustering algorithm, M , and a few additional parameters. If a specific number of clusters, k, has

been provided and the meta clustering algorithm M has an attribute n clusters, the algorithm sets

M.n clusters to k (Lines 1 to 3). For each selected base clustering pipeline, CP ′ij, in the list

CP ′, the algorithm fits the pipeline on the data X and retrieves the cluster labels Lij (Line 6).

These labels are added to an initially empty list, L (Line 7). After obtaining the cluster labels from

all selected pipelines, the algorithm transposes the list L to LT (Line 9). The counter-encoding

method is then applied to LT , resulting in the encoded labels Len (Line 10).

Following the counter encoding process, Algorithm 3.5 - PCA-based Dimensionality Reduction

is applied if the flag a is set to True. As an optional process, this algorithm leverages PCA to reduce

the dimensionality of the encoded labels, Len, and transform them into a lower-dimensional space

that maintains most of the original data variance. There are two recommended methods to determine

the optimal PCA components. The first involves utilizing a Kneedle algorithm [91] to identify the

inflection point. Alternatively, a threshold for the explained variance, denoted by the v, can be set

to attain the desired outcome. Both approaches are practical and depend on the specific needs of

the analysis. However, Algorithm 3.5 applies PCA on Len, yielding an explained variance ratio,

E (Line 1). The cumulative explained variance ratio, C, is calculated as the cumulative sum of E

(Line 2). If the use Kneedle flag, u, is set to True, a Kneedle algorithm finds a knee point, k′, from

C (Line 4). If no knee point is found, or if u is set to False, k′ is determined as the first index where

C exceeds the explained variance threshold, v. Lastly, PCA is applied with k′ components to Len,

resulting in the transformed encoded labels L′en (Line 11).

In Algorithm 3.5, the number of PCA components is determined primarily using the Kneedle

algorithm. This technique is tailored to detect the knee point in the cumulative variance curve,
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configured as ”concave” and ”increasing”. The knee represents a critical inflection where further

inclusion of components offers diminishing explanatory returns. However, we adopt an intuitive

selection approach when the Knee Locator fails to identify a clear knee. We can select a variance

threshold v, typically between 95% and 99%, which a systematic trial-and-error tuning process can

guide to achieve optimal performance.

After the dimensionality reduction, in Algorithm 3.6, the final step is to fit the meta clustering

algorithm M on L′en (Line 16). The ensemble clustering labels, L′, are obtained as M labels (Line

17). The algorithm then returns these labels (Line 18), thus completing the ensemble clustering

process based on multi-perspective data preprocessing and clustering pipelines.

In summary, the Counter Encoder-based Ensemble Clustering algorithm and the PCA-based

Dimensionality Reduction algorithm work synergistically to transform the base clustering results

into a suitable format, reduce their dimensionality and generate the final ensemble clustering. This

combination provides a practical and adaptable approach to ensemble clustering based on multi-

perspective pipelines. Thus, employing various clustering algorithms in this context can signifi-

cantly improve overall performance compared to relying solely on a singular clustering algorithm.

3.2.1.4 Mathematical Formulations

Our ensemble clustering method uses a set of mathematical procedures to achieve robust cluster-

ing outcomes. These processes encompass pipeline evaluation, score normalization, counter encod-

ing, and the final meta-clustering. In order to measure the effectiveness of the essential clustering

pipelines, we utilize three commonly used clustering metrics (SC, CHI, and DBI). These metrics

are detailed in Section 3.1.2.1. Each of these metrics provides valuable insights into the quality of

the clustering generated by a base clustering pipeline CPij on a given data set X , resulting in a

corresponding label set Lij . These metrics for each pipeline coalesce into metric vectors, namely

SCv, CHIv, and DBIv. However, these metrics vary in their ranges, making direct comparisons

challenging. Thus, we normalize these metrics to ensure they reside on a uniform scale, as follows:

SC ′ij =
SCij −min(SCv)

max(SCv)−min(SCv)
(11)
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CHI ′ij =
CHIij −min(CHIv)

max(CHIv)−min(CHIv)
(12)

DBI ′ij = 1− DBIij −min(DBIv)

max(DBIv)−min(DBIv)
(13)

Each normalized score now falls within the interval [0, 1], facilitating their amalgamation into a

combined score CSij using weights α, β, and γ for each respective metric. The optimal value corre-

sponds to the maximum score in the context of these normalized scores and the resulting combined

one. The maximum value represents the highest performance level achievable among the clustering

pipelines. It serves as the ultimate goal in the pipeline selection process. The combined score is

calculated as follows:

CSij = α · SC ′ij + β · CHI ′ij + γ ·DBI ′ij (14)

where the weights α, β, and γ reflect the relative importance of each metric in the combined score.

With CSij for each pipeline, we choose base clustering pipelines that surpass a certain threshold T

for the final ensemble clustering step. The user-defined selection policy SP influences the threshold

T by using, for instance, the median of the CS vector or top n clustering pipelines.

Following the selection of the base clustering pipelines, their produced labels are encoded using

the Counter Encoding method. This method treats each unique set of labels across the pipelines

as a separate group. It replaces them with the count of their occurrences, effectively transforming

the categorical labels into numerical features. These encoded labels are then subjected to PCA for

dimensionality reduction. PCA is a sophisticated mathematical technique that can minimize the

number of correlated variables in a given data set. This process transforms these variables into a

smaller set of uncorrelated variables called principal components. The first principal component

captures as much data variability as possible, and each subsequent component captures as much of

the remaining variability as possible. It is an effective tool for simplifying complex data sets and

extracting meaningful information.
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Finally, these transformed and reduced labels serve as input to the chosen meta-clustering algo-

rithm M , which applies its mathematical formulation to produce the final ensemble clustering labels

L′. The specific formulation varies based on the type of meta-clustering algorithm used. Overall,

the mathematical formulations in the proposed ensemble clustering approach are span normaliza-

tion, weighting, encoding, dimensionality reduction, and clustering, creating a robust and adaptive

framework for clustering tasks.

3.2.1.5 Time and Space Complexity Analysis

Understanding the time and space complexity of the Counter Encoder-based Ensemble Cluster-

ing method is crucial for evaluating its efficiency and scalability. The algorithm consists of multiple

steps, each with its associated computational complexity. The time complexity of a base cluster-

ing pipeline (CPij) is the sum of the time complexities of its data preprocessing steps (Pi) and its

base clustering algorithm (Bj). Similarly, the space complexity of a base clustering pipeline is the

maximum of the space complexities of its data preprocessing steps and its base clustering algorithm.

The counter-encoding step transforms the categorical labels into numerical values. The time

complexity of this operation is O(n · m), where n is the number of data instances and m is the

number of selected base clustering pipelines. The space complexity remains O(n ·m) as well, as

we need to store the encoded labels for each data instance from each pipeline. If PCA is applied

to reduce the dimensionality of the encoded labels, the time complexity would be O(n · m2), as

PCA requires calculating the covariance matrix and performing eigenvalue decomposition. The

space complexity here depends on the number of principal components selected but would be at

most O(n · m). Upon transforming the labels, the time complexity of fitting the meta-clustering

algorithm M is subject to variation based on the selected algorithm, where the space complexity is

O(n) as we store the final clustering labels for each data instance.

By denoting the time complexity of M as TM , we can represent a formal representation as

follows. For instance, if M were to be instantiated as the KMeans algorithm, TM would manifest

as O(I × k × n), where I represents the number of iterations, k the number of clusters, and n

the number of data instances. Conversely, if M was a hierarchical clustering algorithm, the upper

bound on the complexity could be O(n3), albeit more efficient variations could proffer a complexity
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of O(n2 log n). Thus, the definitive characterization of TM remains contingent upon the specific

algorithmic nature of M . In practical applications, it is crucial to recognize the variability and

choose an appropriate value for M that balances computational efficiency and clustering accuracy

while also considering the operational constraints of the application domain.

The overall time complexity of the ensemble clustering approach is thus the time complexity of

applying all base clustering pipelines plus the time complexity of the meta-clustering algorithm. The

overall space complexity is the maximum of the space complexities of all base clustering pipelines

and the space complexity of the meta clustering algorithm. Nevertheless, it is essential to note

that the specific time and space complexity can vary greatly depending on the specific details of

the data sets and the algorithms used. While the method may have relatively high computational

requirements due to multiple stages of computations, its advantages in terms of robustness and

flexibility can justify the computational cost in many practical scenarios, mainly when efficient

clustering algorithms are used for base clustering pipelines and the meta-clustering process.

3.2.2 Experimental Setup and Evaluation

Our proposed ensemble clustering approach for workload categorization is evaluated using ac-

tual cloud data center workloads. Different clustering algorithms and data pipeline setups are em-

ployed. Additionally, various intrinsic performance metrics are used to assess the quality of the

clustering results. More details are outlined as follows.

3.2.2.1 Workload Description and Initial Data Preparation

The data set used in this study is derived from the Azure Public Data set v2 [96]. Given the

extensive size of the data set, we employed a stratified sampling to ensure manageable computa-

tional requirements while maintaining representativeness. A sample of 15,000 VMs is chosen for

our examination, comprising an even distribution across the three VM types: Interactive, Delay-

insensitive, and Unknown. Specifically, 5,000 instances of each type are randomly selected, ensur-

ing a diverse and comprehensive representation of workloads for our clustering tasks.
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Standard Preprocessing Pipeline: A standardized preprocessing pipeline is employed to pre-

pare the data set for subsequent analysis. It identifies additional characteristics, including the differ-

ence between the peak and average CPU usage (referred to as ”Diff 1”) and the difference between

the 95th percentile of maximal and average CPU usage (referred to as ”Diff 2”). The pipeline also

extracts various representative time-related data from the VM creation and deletion timestamps,

including the year, month, day, hour, minute, and weekday indexes.

The categorical variables are then converted to numerical values using three types of encoders.

• Ordinal Encoder: This encoder assigns a distinct integer to each CPU core and memory

bucket category based on their respective sizes. This encoder is commonly used in data

analysis to simplify ordinal categories while preserving their magnitudes.

• One-hot Encoder: This encoder generates a binary representation for each VM type. This

approach ensures that nominal categories are structured and organized, facilitating efficient

handling and processing.

• Counter Encoder: This encoder replaces each category label with a numerical count of its

appearances while maintaining the frequency-based ordering of the categories. Using this

approach, we can better understand the distribution of these high cardinal nominal indexes

within the data set, facilitating more representative numerical details.

Finally, we identified features with high inter-correlation using the absolute Pearson correlation

coefficient. Any features with a correlation value greater than the 0.99 threshold are deemed ex-

cessively correlated; of these, only the first feature in each correlated set is retained. Additionally,

we eliminated features with zero variance, as they fail to provide meaningful differentiation. These

feature selection measures ensure the retention of only the most relevant and informative features,

thereby enhancing the efficiency and effectiveness of subsequent analyses.

3.2.2.2 Experimental Setup

This section details the methodologies employed for constructing and assessing clustering pipelines.

Initially, the base clustering pipelines and selection setups are created using a combination of trans-

formation and normalization methods and a PCA-based dimensionality reduction technique. Three
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Table 3.4: The number of PCA components and cumulative explained variance utilizing various
combinations of transformation and normalization methods.

P Transformation Normalization PCA Components C

P1 None None 3 0.99
P2 None Z-Score 8 0.84
P3 None Min-Max 8 0.89
P4 None MaxAbs 8 0.89
P5 None Robust 6 0.86
P6 Yeo-Johnson None 4 1.00
P7 Yeo-Johnson Z-Score 8 0.89
P8 Yeo-Johnson Min-Max 8 0.91
P9 Yeo-Johnson MaxAbs 8 0.91
P10 Yeo-Johnson Robust 8 0.90
P11 Quantile None 7 0.92
P12 Quantile Z-Score 8 0.87
P13 Quantile Min-Max 7 0.92
P14 Quantile MaxAbs 7 0.92
P15 Quantile Robust 6 0.90

clustering algorithms serve as base clustering methods, and the optimal pipelines are chosen using

a combined score derived from various normalized metric scores. The selected pipelines form a

refined list, serving as inputs to the ensemble clustering task. Furthermore, we introduce the en-

semble clustering approach setups based on the counter encoder. Finally, we introduce a strategy

to select the ideal number of clusters using a distortion score, quantifying the divergence between

data points and their respective cluster centers. The optimal elbow value, indicative of the optimal

cluster count, is automatically identified through the knee point detection algorithm, providing a

complete setup for our ensemble clustering task.

Base Clustering Pipelines and Selection Setups: The clustering pipelines are built on different

data pipeline setups, each utilizing a standard preprocessing pipeline. The pipelines are formulated

with PyCaret, a top-tier Python ML library [104]. These pipelines use various transformation and

normalization techniques and instances where they are not used.

Among the transformations utilized is the Yeo-Johnson method, a power transformation de-

signed to stabilize variance and make the data more closely follow a Gaussian distribution. This

transformation is remarkably versatile as it can handle zero and negative values, making it suit-

able for different data aspects in many data sets. Another transformation employed is the Quantile
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Transformation, which transforms the features to follow a uniform or a Gaussian distribution. This

method is beneficial in mitigating the effects of outliers, hence improving the performance of sub-

sequent clustering algorithms [9].

For normalization, we employed multiple techniques to ensure data consistency and compara-

bility. The Z-Score normalization standardizes the features by removing the mean and scaling to the

standard deviation, which results in features with a mean of zero and a variance of one. Min-Max

normalization scales the data between a specific range, in our use case [0 to 1], ensuring every fea-

ture equivalently contributes to distance computations in clustering. MaxAbs normalization scales

each feature by its maximum absolute value, ensuring that the maximal absolute value of each fea-

ture in the training set will be 1.0. It is noteworthy that MaxAbs does not shift or center the data,

preserving any inherent sparsity in the data set. The Robust normalization method, resilient to out-

liers, scales features using the median and the interquartile range, making it an optimal choice for

data sets with notable outliers [9].

These setups may differ in the inclusion/exclusion of specific methods for each base clustering

pipeline. The data pipelines incorporate Algorithm 3.5 to reduce the dimensionality of the original

data. It applies a Kneedle method by setting True to the u parameter to determine the PCA compo-

nents. In situations where the identification of the knee index is not feasible, we set a threshold of

95% explained variance v to attain the intended objective. This crucial step entails transforming the

data into a lower-dimensional space while preserving most of the original variance, considering the

selected transformation and normalization setups.

Table 3.4 shows the results of PCA components and cumulative explained variance (C) for vari-

ous combinations of transformation (None, Yeo-Johnson, and Quantile) and normalization methods

(None, Z-Score, Min-Max, MaxAbs, and Robust). This table provides insights into how differ-

ent combinations of methods can affect the optimal number of PCA components and the C that

indicates the variance in the data explained by the selected components. It allows for comparing

the performance of different setups and identifying the configurations that yield higher explained

variance, serving as a reference for understanding the influence of the given setups.

Three clustering algorithms (KMeans [97], Hierarchical clustering - Agglomerative (with an

early stop of tree construction) [98], and MeanShift [99]) are employed as base clustering methods
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using the implementation of sklearn [9]. Accordingly, Algorithm 3.3 generates all possible cluster-

ing pipelines based on the given setups. This process is considered the first step in the Algorithm

3.4 to formulate a comprehensive set of pipelines incorporating various setups.

In our selection of clustering algorithms, we are driven by a desire to encompass diverse algo-

rithmic philosophies that cater to varied data characteristics and use cases. The KMeans algorithm,

as elucidated by Sculley [97], offers a centroid-based clustering mechanism renowned for its scal-

ability and efficiency, making it indispensable for large data sets. The Hierarchical clustering -

Agglomerative method, showcased in [98], lends a tree-structured representation qualified for inter-

preting hierarchical relationships within data. Lastly, MeanShift, referenced in [99], complements

the prior methods by offering a density-based clustering paradigm, adept at discerning clusters of

arbitrary shapes, and excelling in scenarios with intricate data densities. These methods provide a

robust and comprehensive toolkit, each contributing a unique perspective and addressing specific

clustering challenges.

Nevertheless, Algorithm 3.4 selects the optimal base clustering pipelines using a combined

score. Equation 14 calculates this score, with weightings assigned to each normalized metric score

of the base clustering pipelines. The weights α, β, and γ are set to 34%, 33%, and 33%, respectively,

indicating equal importance for all contributed metrics. In order to be considered for selection,

pipelines must exceed a predetermined threshold T , which is determined by the selection policy

SP . This study has set T to the median of the combined score vector, allowing for a flexible

practice in selecting the most appropriate pipelines for the final ensemble clustering task, enabling

consideration of various data preprocessing perspectives.

In summary, Algorithm 3.3 generates a list of all potential clustering pipelines according to the

given specifications, denoted as CP . Algorithm 3.4 accurately evaluates and chooses the best base

clustering pipelines by considering their performance in various validity indices. The outcome is a

refined list, denoted as CP ′, which comprises the top-performing pipelines chosen for the ultimate

ensemble clustering solution.

Counter Encoder-based Ensemble Clustering Setup: As a meta-clustering method, we ex-

amined the same clustering algorithms used in building the base clustering pipelines (KMeans,
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Agglomerative (with an early stop of tree construction), and MeanShift) based on the implementa-

tion of sklearn [9]. Once the cluster labels are acquired for each selected base clustering pipeline, a

counter encoder based on the implementation introduced in [105] transforms them into a numerical

flavor. The cluster labels for each pipeline are replaced with their frequency, resulting in the encoded

labels Len. Similar to the dimensionality reduction that is used in building the data pipelines, we

use Algorithm 3.5 as a second-stage encoding for the Len to reduce the dimensionality into a lower

space that maintains most of the original variance of the base clustering outcomes. Setting True to

the u parameter applies a Kneedle method to determine the PCA components. If it is unattainable to

accurately and precisely determine the knee index, the explained variance threshold is used instead,

in which v is set to 95% to achieve the desired goal.

Selecting the Ideal Number of Clusters: Determining the optimal number of clusters is among

the most challenging aspects of the clustering process. For example, the KMeans and hierarchical

clustering algorithms require the number of clusters to be determined to group the data points ac-

cordingly. The distortion score helps identify the best number of clusters needed for clustering

algorithms that require it. The score calculation involves determining the degree of divergence be-

tween each data point and its respective cluster center, with the result being the sum of squared

distances. A higher score means the clustering outcome is less effective, while a lower score indi-

cates the best effectiveness. Optimal cluster sizes can be determined by plotting the score against

different cluster sizes and identifying the elbow point, the point at which the plot begins to level off.

According to [106], the distortion score is mathematically expressed as:

D =

k∑
i=1

∑
x∈Ci

||x− µi||2 (15)

where k is the number of clusters, Ci is the set of data points allocated to cluster i, x data points

∈ Ci, and µi is the centroid of cluster i. The goal of clustering is to minimize the score as much as

possible. Using this score in this study, we employed the knee point detection algorithm proposed

in [91] to automatically identify the optimal elbow value for the number of clusters k, simplifying

this critical process.
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Table 3.5: Comparison of various pipelines using KMeans as a base clustering model.

(a) Data pipelines without PCA reduction

P k SC CHI DBI
P1 4 0.7117 99388.6100 0.4755
P2 5 0.2186 3620.2148 1.8650
P3 5 0.3437 7154.0491 1.5209
P4 5 0.3441 7162.4272 1.5148
P5 4 0.3514 7669.0127 1.3448
P6 5 0.6020 18893.5850 0.9479
P7 5 0.2185 4133.8027 1.7617
P8 5 0.3037 6794.3161 1.4906
P9 5 0.3041 6726.1254 1.5256
P10 5 0.2264 4206.1589 1.5352
P11 4 0.4624 11827.3598 1.2293
P12 5 0.2045 3627.9506 1.8595
P13 4 0.4624 11827.3598 1.2293
P14 4 0.4624 11827.3598 1.2293
P15 5 0.3264 4040.4576 1.3211

(b) Data pipelines with PCA reduction

P k SC CHI DBI
P1 4 0.7539 130024.7564 0.4165
P2 4 0.2626 5793.9210 1.6221
P3 5 0.4105 10377.3437 1.2641
P4 5 0.4110 10401.4950 1.2573
P5 4 0.4471 11913.9534 1.0607
P6 5 0.6079 19117.8225 0.9420
P7 5 0.2527 5186.1798 1.5283
P8 5 0.3537 8986.5988 1.2605
P9 5 0.3560 8869.1916 1.2949
P10 5 0.2577 5349.1903 1.3634
P11 4 0.5415 16482.6017 1.0515
P12 5 0.2427 4635.1435 1.6448
P13 4 0.5415 16482.6017 1.0515
P14 4 0.5415 16482.6017 1.0515
P15 5 0.4000 5080.3153 1.1497

Table 3.6: Comparison of various pipelines using Agglomerative as a base clustering model.

(a) Data pipelines without PCA reduction

P k SC CHI DBI
P1 4 0.7101 98356.3247 0.4758
P2 6 0.1891 3033.9224 1.8813
P3 4 0.3747 7851.7142 1.4039
P4 4 0.3746 7845.6106 1.4036
P5 4 0.3037 6929.9167 1.5351
P6 5 0.5753 16729.9033 1.0706
P7 5 0.1953 3749.2588 1.8909
P8 4 0.3373 7569.2856 1.4782
P9 4 0.3403 7457.5812 1.4719
P10 5 0.1630 3603.6385 1.7260
P11 5 0.4942 11072.0702 1.1251
P12 6 0.1779 2889.3170 1.8894
P13 5 0.4942 11072.0702 1.1251
P14 5 0.4942 11072.0702 1.1251
P15 5 0.3278 3504.2283 1.4003

(b) Data pipelines with PCA reduction.

P k SC CHI DBI
P1 4 0.7275 103705.2861 0.4620
P2 5 0.2462 4701.0041 1.7023
P3 5 0.4041 10154.6949 1.2841
P4 4 0.4401 10905.5294 1.2039
P5 4 0.3858 10287.4223 1.1625
P6 4 0.5823 17582.1233 1.0915
P7 5 0.2337 4799.6949 1.6786
P8 4 0.3846 9646.3802 1.3170
P9 4 0.3886 9505.3736 1.3100
P10 5 0.1930 4501.7227 1.4896
P11 5 0.5806 16557.4135 0.9216
P12 6 0.2215 3904.0858 1.6708
P13 5 0.5806 16557.4135 0.9216
P14 5 0.5806 16557.4135 0.9216
P15 5 0.3457 4202.0616 1.2989

3.2.2.3 Results and Discussion

Base Clustering Pipelines and Selection Results: We evaluated different data pipelines incor-

porating KMeans, Agglomerative, and MeanShift as base clustering models, analyzing their effec-

tiveness with and without the implementation of PCA for dimensionality reduction, with setups as

specified in Table 3.4.

The use of KMeans as a base clustering model, as shown in Table 3.5a and Table 3.5b, resulted

in an overall enhancement of the structure of clusters with the application of PCA, as evidenced
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Table 3.7: Comparison of various pipelines using MeanShift as a base clustering model.

(a) Data pipelines without PCA reduction

P k SC CHI DBI
P1 4 0.7117 99382.9519 0.4756
P2 1 0.0000 0.0000 0.0000
P3 2 0.4027 10750.5777 1.1190
P4 2 0.4021 10718.7755 1.1199
P5 2 0.6520 8809.2248 0.5717
P6 2 0.6390 27583.7521 0.6433
P7 2 0.3412 7833.7724 1.3410
P8 2 0.4066 11688.5227 1.0823
P9 2 0.4011 11176.1000 1.0955
P10 1 0.0000 0.0000 0.0000
P11 1 0.0000 0.0000 0.0000
P12 1 0.0000 0.0000 0.0000
P13 1 0.0000 0.0000 0.0000
P14 1 0.0000 0.0000 0.0000
P15 11 0.3375 918.1624 1.2530

(b) Data pipelines with PCA reduction.

P k SC CHI DBI
P1 4 0.7539 129966.3486 0.4165
P2 1 0.0000 0.0000 0.0000
P3 2 0.4426 13342.4127 0.9922
P4 2 0.4420 13304.9449 0.9928
P5 3 0.4553 12577.8194 0.9602
P6 3 0.5849 18447.7587 1.2694
P7 2 0.3685 9344.9197 1.2211
P8 2 0.4383 13870.9523 0.9830
P9 2 0.4321 13218.1198 0.9952
P10 1 0.0000 0.0000 0.0000
P11 3 0.5167 16090.8737 0.8242
P12 1 0.0000 0.0000 0.0000
P13 3 0.5167 16090.8737 0.8242
P14 3 0.5167 16090.8737 0.8242
P15 14 0.3356 914.3008 1.1252

Table 3.8: The selected clustering pipelines based on their combined scores: Results from Algorithm
3.4.

P Base Model k SC ′ CHI ′ DBI ′ CS

P1 KMeans 4 100.0 % 100.0 % 75.53 % 91.93 %
P1 MeanShift 4 100.0 % 99.96 % 75.53 % 91.91 %
P1 Agglomerative 4 96.5 % 79.76 % 72.86 % 83.17 %
P6 KMeans 5 80.63 % 14.7 % 44.66 % 47.01 %
P14 Agglomerative 5 77.01 % 12.73 % 45.86 % 45.52 %
P13 Agglomerative 5 77.01 % 12.73 % 45.86 % 45.52 %
P11 Agglomerative 5 77.01 % 12.73 % 45.86 % 45.52 %
P13 MeanShift 3 68.54 % 12.38 % 51.58 % 44.41 %
P11 MeanShift 3 68.54 % 12.38 % 51.58 % 44.41 %
P14 MeanShift 3 68.54 % 12.38 % 51.58 % 44.41 %
P6 Agglomerative 4 77.24 % 13.52 % 35.88 % 42.56 %
P11 KMeans 4 71.83 % 12.68 % 38.23 % 41.22 %
P13 KMeans 4 71.83 % 12.68 % 38.23 % 41.22 %
P14 KMeans 4 71.83 % 12.68 % 38.23 % 41.22 %
P6 MeanShift 3 77.58 % 14.19 % 25.43 % 39.45 %
P5 MeanShift 3 60.39 % 9.67 % 43.59 % 38.11 %
P8 MeanShift 2 58.14 % 10.67 % 42.25 % 37.23 %
P3 MeanShift 2 58.71 % 10.26 % 41.71 % 37.11 %
P4 MeanShift 2 58.63 % 10.23 % 41.68 % 37.06 %
P9 MeanShift 2 57.32 % 10.17 % 41.54 % 36.55 %
P5 KMeans 4 59.3 % 9.16 % 37.69 % 35.63 %

by the improved SC. In particular, P1 showcased the most substantial improvement, from 0.7117

without PCA to 0.7539 with PCA. Furthermore, the CHI increased across several pipelines when

PCA is used, suggesting denser and more separated outcomes. For instance, P1’s CHI value rose
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from 99388.6100 without PCA to 130024.7564 with PCA. However, some pipelines such as P2,

P7, and P12 showed only minor improvements. The DBI, which has lower values indicating better

clustering, generally decreased with PCA, signifying improved cluster compactness and separation.

The most significant improvement is in P1, as its DBI value decreased from 0.4755 to 0.4165.

In comparing Agglomerative clustering pipelines, we observed consistent improvements across

all evaluation metrics when PCA is applied. As shown in Table 3.6a and Table 3.6b, there is an

upward trend in the SC values with the application of PCA, indicating more coherent clusters. For

instance, in P1, the SC rose from 0.7101 to 0.7275, improving cluster quality outcomes. The CHI

values also saw a general increase, suggesting that the clusters are better separated and denser with

the implementation of PCA. Specifically, in pipeline P1, the CHI increased from 98356.3247 to

103705.2861. Moreover, the DBI values generally decreased with PCA, indicating an enhancement

in cluster compactness and separation. For example, the DBI in P1 decreased from 0.4758 to 0.4620,

showing a better-defined cluster structure.

By comparing various data pipelines using MeanShift clustering as a base model, we can ob-

serve a similar trend to KMeans and Agglomerative clustering pipelines, with PCA generally im-

proving clustering performance across all evaluation metrics. As shown in Table 3.7a and Table

3.7b, pipelines with PCA show higher SC values, indicating that the PCA-reduced data produced

more distinct and compact clusters. For instance, in P1, the SC increased from 0.7117 to 0.7539.

The CHI values also generally increased, indicating that clusters are better separated and denser

when the data underwent PCA. It is particularly noticeable in pipeline P1, where the CHI increased

from 99382.9519 to 129966.3486 after PCA reduction. The DBI values generally showed a de-

crease with PCA reduction, demonstrating an improvement in the compactness and separation of

clusters. In P1, the DBI decreased from 0.4756 to 0.4165.

However, not all clustering pipelines benefited from PCA reduction and transformation using the

MeanShift algorithm based on the default sklearn implementation, which estimates the bandwidth

parameter that dictates the region’s size to search through based on a heuristic technique. Pipelines

P2, P10, and P12 are unable to find meaningful clusters (k=1), with SC, CHI, and DBI all at 0.0.

In the case of P15, it is observed that the number of clusters increased from 11 to 14 after applying

PCA. This finding could complicate the interpretation of the results and render them less desirable
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for specific applications.

Although PCA improved the overall clustering performance in many instances, it is worth not-

ing that not all pipelines saw enhancement, especially when the original data structure is not well

suited for linear transformation. The performance largely depends on the specific nature of the data

transformation and normalization methods used within each pipeline. Thus, applying PCA should

be considered in conjunction with these factors for optimal performance. Accordingly, the base

clustering pipelines that incorporate applying PCA are scored and evaluated using Algorithm 3.4 -

Base Clustering Pipeline Selection. This algorithm ranks and selects the best clustering pipelines

based on their combined score of multiple validity indices representing their clustering performance.

The output is a subset CP ′ from the initial grouping of base clustering pipelines, consisting of the

highest-performing pipelines chosen for the final ensemble clustering solution.

Table 3.8 shows the selected clustering pipelines CP ′, sorted by their combined scores. These

pipelines are selected based on a threshold set to the median of the combined score vector. Here, the

combined score measures the overall performance of each pipeline considering all three normalized

metrics (SC ′, CHI ′, and DBI ′). As seen in the table, the pipeline P1 with KMeans as the base

model has the highest combined score and thus is the top selected model for the meta-clustering in

the ensemble process. It is closely followed by the pipeline P1 with MeanShift and Agglomerative

as the base models, which also have high combined scores. On the lower end of the selection

spectrum, we see that the pipelines using MeanShift on P8, P3, P4, and P9, and KMeans on P5 have

combined scores around 35-37%, still making the cut threshold for the ensemble process. This table

represents the most promising combination of preprocessing and clustering algorithms for the final

ensemble process. The aim is to combine these selected pipelines to leverage their strengths, thus

creating an ensemble model with potentially better performance than any single model.

Counter Encoder-based Ensemble Clustering Results: The efficacy of the proposed ensem-

ble clustering approach is evaluated using the selected clustering pipelines CP ′, shown in Table 3.8,

employing several meta-clustering models, including KMeans, Agglomerative, and MeanShift algo-

rithms. Our approach’s effectiveness is evaluated using three clustering metrics (SC, CHI, and DBI)

and with and without implementing dimensionality reduction based on PCA to the base clustering

labels as a second encoding stage.
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Table 3.9: Comparative performance of various meta-models with the proposed ensemble cluster-
ing: A juxtaposition of outcomes from base clustering and original data.

Comparison with Meta Model k PCA SC CHI DBI

(a)
Respect to the
Base Clustering
Outcomes

KMeans 4 False 0.7297 25159.6013 0.8914
KMeans 4 True 0.7371 27000.0676 0.8669

Agglomerative 4 False 0.7223 23192.8589 0.8567
Agglomerative 4 True 0.7171 23115.8426 0.7872

MeanShift 64 False 0.9254 44697.3547 0.1536
MeanShift 44 True 0.9283 61871.5461 0.3304

(b) Respect to the Orig-
inal Data

KMeans 4 False 0.7605 102978.2505 4.4805
KMeans 4 True 0.7605 102978.2505 4.4805

Agglomerative 4 False 0.7762 148892.2541 12.7522
Agglomerative 4 True 0.7877 188882.5009 2.8508

MeanShift 64 False 0.0793 22850.4584 96.6447
MeanShift 44 True 0.2371 29348.1181 217.7144

For clarity, it is imperative to note that the metrics presented here have been intentionally pre-

sented in their unnormalized form. This decision is based on the rationale that a direct and un-

ambiguous juxtaposition of raw scores across distinct models would be more illuminating. The

proposed normalization methodology is meticulously formulated to serve the nuanced requirements

of the clustering pipeline selection context rather than the general application.

Table 3.9a details the results of our proposed ensemble clustering approach concerning the base

clustering outcomes. As we can see, each ensemble model version performs differently in terms of

the used evaluation metrics. The MeanShift meta model with PCA produces the highest SC (0.9283)

and CHI (61871.5461), indicating high separation and compactness among the clusters. Also, its

DBI (0.3304), though not the lowest, is relatively low, which means there is less overlap between

clusters. This finding suggests that the MeanShift meta model with PCA and 44 clusters yields

the best overall performance considering the base clustering outcomes. However, it is essential to

note that MeanShift results in a relatively high number of clusters (k) compared to KMeans and

Agglomerative models. This case can increase the complexity of interpretation and may only be

appropriate for some use cases. By utilizing the KMeans and Agglomerative models, we can achieve

fewer clusters and fairly excellent scores, even without implementing dimensionality reduction.

This outcome makes them a suitable and more accessible option for interpretation.
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Figure 3.11: K-Elbow plots display the distortion score and fitting time in seconds for KMeans and
Agglomerative clustering methods with and without applying dimensionality reduction using PCA.

In Table 3.9b, we present the results of our ensemble clustering approach, taking into account

the original data projected into singular dimensions using PCA, as well as the clustering outcomes

of all the meat clustering models with and without PCA consideration. The results show that using

hierarchical clustering with PCA reduction resulted in the best performance. Specifically, it pro-

duced the highest SC (0.7877) and CHI (188882.5009), which indicates a high degree of separation

and compactness among the clusters. The DBI (2.8508) is the lowest among all models, suggesting

minimal overlap between the clusters. Meanwhile, using the MeanShift model shows considerably

lower SC and CHI scores and notably higher DBI with and without PCA consideration. This case

indicates that the MeanShift as a meta-clustering model produces less cohesive and more overlap-

ping clusters than the other models due to the highest cluster numbers.

Interestingly, the PCA and non-PCA variants of the KMeans model yield identical results con-

cerning the projected original data into a singular dimension. It suggests a robust inherent structure
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in the data, where PCA’s dimensionality reduction does not significantly alter the primary clustering

patterns. Such congruence implies that the clusters identified are defined by substantial structural

differences that remain consistent irrespective of the PCA transformation. The stability in cluster-

ing outcomes across both variants underscores the strong, intrinsic data patterns and the KMeans

model’s sensitivity to these overarching patterns.

Nevertheless, each model has distinct strengths and limitations. The selection between them

should be judiciously based on the intricacies of the data set in use and the overarching goals of

the clustering endeavor. For instance, in a data set where the first few principal components pri-

marily capture the variance, the PCA variant might be more efficient by reducing computational

costs without sacrificing clustering accuracy. Conversely, for a data set where vital information is

dispersed across multiple components, the non-PCA version might be better suited to capture the

slight difference in the data. Nevertheless, such a form will increase the computational costs.

However, in Figure 3.11, we present the elbow analysis for KMeans and Agglomerative meta

clustering models, both with and without dimensionality reduction. The graph displays the distor-

tion score for various cluster numbers (k) ranging from 2 to 10. Importantly, the chosen k is shown

as a dashed line for each model.

Figure 3.12 visually represents the intercluster distance in a two-dimensional space. This figure

showcases the outcomes of KMeans and MeanShift meta-clustering models, both with and with-

out dimensionality reduction. The feature space is embedded using a Multi-Dimensional Scaling

(MDS) algorithm presented in [106]. It aims to transform the base clustering outcomes into a low-

dimensional space while preserving the pairwise distances between the original points as much as

possible. Correspondingly, it is paramount to underscore that the overlapping of two clusters in the

2D space does not inherently signify an overlap in the original feature space. The clusters’ size

indicates membership, allowing for a visual gauge of the relative importance of each cluster. This

visual helps to identify the important clusters and facilitates decisions based on their characteristics.

Lastly, Figure 3.13 displays silhouette analysis plots for KMeans meta clustering both with and

without the application of dimensionality reduction. The dashed line in the figure indicates the

average scores, which are observed to be nearly equal. It is noteworthy to mention that despite the

dimensionality reduction, the clustering results of both versions are congruent. This consistency
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Figure 3.12: Intercluster distance map for KMeans and MeanShift clustering methods with and
without implementing dimensionality reduction, embedded via the MDS.

Figure 3.13: Silhouette analysis plot of KMeans clustering method with and without implementing
dimensionality reduction.

underpins the robustness of the underlying data structure and the model’s ability to discern intrinsic

patterns, regardless of the application of dimensionality reduction.
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3.2.3 Conclusion

In this study, we have introduced a novel ensemble clustering technique for categorizing cloud

workloads. The proposed approach, coupling multiple data preprocessing pipelines with diverse

base clustering learners, has demonstrated remarkable potential for uncovering and capturing com-

plex categorization perspectives. Through rigorous testing using real-world trace data from Mi-

crosoft Azure, we have provided empirical evidence of the effectiveness of our approach. A unique

combined scoring method is proposed to select the most influential models and preprocessing se-

tups, providing valuable insights into the performance of various combinations of clustering al-

gorithms and data preprocessing techniques. Our findings pave the way for a new perspective in

managing cloud resources, whereby an advanced ensemble clustering approach can effectively nav-

igate the multifaceted nature of cloud workloads.

This study has been published in [107], and our future research is to explore additional ways

to enhance this approach, incorporating additional machine learning techniques and fine-tuning the

preprocessing pipelines to accommodate the evolving nature of cloud workloads. Additionally,

investigating the applicability of our approach in different cloud environments beyond Microsoft

Azure may provide further insight into its universal applicability and robustness. As cloud com-

puting grows in complexity and scale, it becomes crucial to discover the latent categorization per-

spectives inherent in cloud data center workloads. By doing so, we can gain deeper insight, facil-

itating improved decision-making processes in resource allocation, performance optimization, and

workload balancing within cloud data centers. It can also increase overall operational efficiency,

translating into improved business results and customer experiences. Therefore, the methodology

presented in this study provides a robust framework for optimizing future cloud resources.
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Chapter 4

Enhanced Single-Output Predictive

Modeling in Cloud Computing

In this chapter, we explore various methodologies and innovations in predictive modeling within

the realm of cloud computing. This exploration is segmented into three pivotal sections, each ad-

dressing a unique aspect of predictive modeling in cloud environments. In the beginning, we explore

an advanced multilevel learning model specifically created to forecast CPU utilization in cloud data

centers, as described in Section.4.1. This model is crucial for providing high prediction precision

by incorporating various machine learning models at three levels of learning. Next, the focus shifts

to the economic aspects of cloud computing in Section 4.2. This section presents a regression-based

approach for proactive predictive modeling, which is instrumental in navigating the complexities

of a prediction-based cloud service pricing model. Finally, the chapter concludes with Section 4.3,

where we explore the use of imbalance and ensemble learning methods. This section focuses on

enhancing load prediction in cloud computing systems, a key factor for ensuring efficient resource

management in dynamic cloud environments. Each section of this chapter collectively contributes

to a deeper understanding of predictive modeling in cloud computing, showcasing the latest ad-

vancements and their practical applications.
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4.1 A Multilevel Learning Model for Predicting CPU Utilization in

Cloud Data Centers

In the contemporary era of cloud computing, efficient and precise prediction of CPU utilization

ensures optimal performance and energy efficiency in data centers. Traditional predictive models

often need to be improved as these data centers grow in complexity and scale, necessitating more

nuanced and integrative solutions. This study introduces an advanced multilayered learning frame-

work meticulously designed to meet the demands of modern cloud data centers. Our innovative ap-

proach synergistically combines anomaly detection, data clustering, and ensemble-based regression

prediction. The Isolation Forest algorithm is used during the preliminary stage to identify and ad-

dress anomalies within the data. Subsequent phases harness the KMeans clustering algorithm, refine

data categorization based on recurrent CPU usage patterns, and employ multilevel ensemble-based

prediction models for accurate forecasting rooted in historical and real-time data trends. Through

comprehensive evaluations, our model demonstrates significant improvements in prediction accu-

racy and robustness against the dynamism inherent in cloud environments. Our research paves the

way for a more resilient, proactive, and efficient approach to CPU utilization prediction, laying the

foundational stone for future innovations in cloud computing resource management.

4.1.1 Initial data preparation

As shown in Figure 4.1, the model architecture involves acquiring time series data related to

CPU utilization of hosts running multiple VCIs. A sliding windowing method is applied to the col-

lected data as part of the initial data preparation. This process involves identifying the feature space

derived from the host CPU utilization and the target value as the subsequent CPU utilization. These

values are determined based on a prescribed window size (w) and a step size (s). In addition, we

extract date-time indexes, such as month, day, hour, and minute, from each derived window times-

tamp, including information about the host, such as the count of hosts VCI and the available CPU

and memory capacities. The gathered information is then used to build the ultimate feature space,

which is used to train ML algorithms. In anomaly detection and clustering processes, the extracted

feature space is ultimately reduced to a single component using PCA, a popular dimensionality
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Figure 4.1: Proposed Model Architecture

reduction technique.

4.1.2 Detecting and identifying anomalies

Following the initial phase of data preparation, the next step in our framework is dedicated to

detecting and identifying anomalies within the data set that can potentially negatively impact the

precision of predictive models. To achieve this objective, we employ the Isolation Forest algorithm,

which is highly regarded for its effectiveness in identifying and isolating anomalous data points.

The algorithm under consideration is an unsupervised learning technique that uses a stochastic fea-

ture selection procedure, subsequently determining a split value within the range of minimum and

maximum values of the chosen feature [108]. This process makes it inherently easier to isolate

anomalies than regular observations. The contamination parameter, denoted as F , within the con-

text of the isolation forest algorithm, represents the ratio of outliers present within a given data set.

The parameter can be adjusted to refine the threshold limit distinguishing outliers from regular ob-

servations. On execution of the algorithm, an anomaly score is assigned to each data point, in which
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instances that exceed the contamination threshold are classified as anomalies.

4.1.3 Data Clustering

Following anomaly detection, the next step involves grouping similar data points considering

the anomaly information. We employ the KMeans clustering algorithm, a popular partition-based

clustering technique [97]. The KMeans algorithm operates by initializing the centroids k in the data

space, where k represents the predetermined number of clusters. During each iteration, data points

are assigned to the nearest centroid. Afterward, the centroids are recalculated by taking the average

of the data points that have been assigned. This process iterates until the centroids stabilize and no

longer change significantly or until a predefined number of iterations is reached. One of the primary

advantages of KMeans is its efficiency, especially with large datasets.

However, determining the optimal number of clusters poses a significant challenge in cluster-

ing. Utilization of distortion score is employed in order to determine the most suitable number of

clusters. The score is computed by adding the squared distances between each data point and its

corresponding cluster centroid. A higher clustering performance is associated with lower score val-

ues. By graphing the scores for various clusters, one can determine the optimal number of clusters

that leads to the most substantial reduction in the distortion score. This location is known as the

elbow point because it is where the plot typically begins to flatten. The distortion score can be

mathematically defined as:

D =

k∑
i=1

∑
x∈Ci

||x− µi||2 (16)

where k is the number of clusters, Ci is the set of data points assigned to cluster i, x is a data point,

and µi is the centroid of cluster i. Using this score, we employ a knee point detection algorithm

proposed in [91] to identify the elbow point that represents the optimal k. This approach ensures

a reliable and unbiased analysis. Once each data point is clustered, we calculate the Silhouette

Coefficient (SC) score for each data point and transform the cluster labels using one-hot encoding.

Section 4.1.5.2 presents more details about SC score.
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4.1.4 Ensemble-based Prediction

Based on previous results, this phase uses multilevel ensemble-based regression models to pre-

dict future CPU utilization. Ensemble learning techniques leverage the principle that the combina-

tion of multiple models can often lead to improved performance over any individual model [109].

In the context of our research, this approach is particularly potent, given the dynamism and variabil-

ity inherent in cloud data center CPU utilization patterns. Initially, we employ a series of baseline

ensemble models, including popular methods such as random forests, gradient boost machines, and

AdaBoost. Each of these models aggregates the predictions of several base estimators, usually

decision trees, to produce a final forecast. These models are systematically trained and validated

on our clustered data, and their performances are compared using a predefined metric such as the

coefficient of determination.

Upon evaluation, the top models M that demonstrate the highest predictive accuracy and ro-

bustness against overfitting are selected for further ensemble process. To take our ensemble strategy

a step further, these M models are integrated using advanced techniques such as stacking or voting

regression. The stacking regression is operated by training a meta-model on the predictions of the

selected M models [110]. Essentially, while the initial models make their predictions, the meta-

model learns how to combine these predictions to yield a final, more refined output. The Voting

Regressor, on the other hand, functions by taking an average or weighted average of the predictions

of the selected models [111].

Following this second level of an ensemble, a rigorous evaluation is conducted to determine

which method, Stacking or Voting, offers superior performance. The best model is then selected

for deployment accordingly, ensuring that the CPU utilization predictions are accurate and robust,

accounting for many potential scenarios in cloud data centers. The abstract steps of the proposed

multilevel learning model for CPU predictions are outlined in Algorithm 0.

However, it should be noted that ensemble techniques can increase the accuracy of the prediction

and introduce additional complexity. Therefore, a careful balance between model performance

and interpretability is maintained throughout our methodology. In culmination, our multifaceted

approach delivers precise, actionable insights, drawing from the strengths of each component to
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Algorithm 4.1 Multilevel Learning Model for CPU Predictions

Require: Time series data (Hosts CPU utilization)
Require: Window size w, Step size s
Require: Contamination parameter F
Require: Predefined number of iterations mi for KMeans
Require: Baseline ensemble models B
Require: Meta-model m for stacking
Ensure: Best ensemble model

1: Collect hosts data
2: Apply sliding window method with size w and step s
3: Extract date-time indexes and host information
4: Reduce the feature space using PCA for anomaly detection and clustering processes
5: Use Isolation Forest with contamination parameter F to detect anomalies
6: Assign an anomaly score to each data point
7: Classify instances that exceed the contamination threshold as anomalies
8: Determine the optimal k using the distortion score (Equation 16) and the knee point detection

algorithm [91]
9: Group the data using KMeans clustering with initialized centroids k and max iterations mi

10: Calculate the silhouette coefficient score for each data point using Equation 1
11: Transform the cluster labels using the one-hot encoding
12: Train baseline ensemble models B
13: Select the top models M based on predictive precision and robustness using Equation 20
14: Combine the M models by utilizing a Stacking Regressor based on the meta-model m
15: Combine the M models by utilizing a Voting Regressor
16: Evaluate the performance of Stacking vs. Voting Regressors and determine the best model using

Equation 20
return Best ensemble model

address the multifaceted challenges posed by modern cloud data centers.

4.1.5 Experimental Setup and Evaluation

The evaluation of our proposed model involves using a real workload and various metrics to

assess the effectiveness of anomaly detection, data clustering, and ensemble prediction processes.

More details about the evaluation metrics, experimental setup, and results are given below.

4.1.5.1 Evaluation for Anomaly Detection

In the absence of ground-truth labels, evaluating the results of unsupervised anomaly detection

requires an alternative approach. A prominent technique that we used is Kernel Density Estima-

tion (KDE) [112]. The KDE is a nonparametric technique that can provide insight into anomaly

76



distribution by estimating the probability density function of continuous variables (which have been

reduced to a single component using PCA in our assessment). By plotting KDE, we display the

density of the anomaly, facilitating the intuitive identification of potential threshold values that dis-

tinguish between anomalous and regular data points.

4.1.5.2 Evaluation Metrics for Clustering

Similarly to anomaly detection, we use KDE to show the distribution of data clusters by es-

timating the probability density function of the reduced data to a single component using PCA.

Furthermore, the performance of the clustering is examined using different intrinsic metrics such as

SC [92], CHI [93], and DBI [94], which are explained in Section 3.1.2.1 of the previous Chapter 3.

4.1.5.3 Evaluation Metrics for Regression-based Prediction

A set of metrics is used to evaluate the performance of the regression-based ensemble predic-

tions. As outlined in [113], each metric provides a unique prediction accuracy and perspective on

error dispersion. Assume that ŷi is a predicted value for i-th point, yi its actual value and n is the

dataset size; below are more details of each metric comprising its respective equation.

Mean Absolute Error (MAE) calculates the mean of the absolute differences between the pre-

dicted and actual values. It assigns a linear penalty for each unit of the discrepancy between the

predicted and observed values.

MAE =
1

n

n∑
i=1

|yi − ŷi| (17)

Mean Squared Error (MSE) computes the average squared difference between the predicted and

actual values. It gives a higher penalty for larger errors, making it more sensitive to outliers than the

MAE metric.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (18)

Root Mean Squared Error (RMSE) is the square root of MSE. RMSE has the benefit of pun-

ishing larger errors more severely like MSE. Additionally, it is measured in the same unit as the
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dependent variable.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (19)

Coefficient of Determination (R2) metric indicates the model’s goodness of fit. It represents the

proportion of variance in the dependent variable that is predictable from the independent variables.

An R2 of 1 indicates perfect prediction, while an R2 of 0 indicates that the model does not improve

the prediction over the mean of the target.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(20)

Mean Absolute Percentage Error (MAPE) is a relative measure of the accuracy, which calculates

the average percentage error between the predicted and actual values.

MAPE =
100

n

n∑
i=1

|yi − ŷi|
yi

(21)

4.1.5.4 Experimental Setup

The core of our experimental data is sourced from the CoMon project, which captures the work-

load of more than 1,000 VMs running on 800 hosts over two days. We used the CloudSim simulation

tool to execute the workload, focusing on adherence to a specific VM selection policy (focusing on

minimizing migration time) and a VM allocation policy (based on a static threshold). These policies

are proposed in [114], based on which the host’s CPU utilization is extracted. The initial prepro-

cessing step involves using the sliding window to simplify the subsequent analysis. It is done using

a window of one hour (window size w) and advancing in 5-minute intervals (step size s).

For the anomaly detection process, we used the Isolation Forest algorithm with 100 base esti-

mators and the contamination parameter F calibrated to 0.05. For the clustering process, we used

the KMeans algorithm with maximum iterations mi set to 300 to guarantee the computational ef-

ficiency and dependability of the results. We used multiple baseline ensemble models B for the

ensemble-based prediction process. These encompassed: Gradient Boosting Regressor, Random

Forest Regressor, Extra Trees Regressor, CatBoost Regressor, Light Gradient Boosting Machine,
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Extreme Gradient Boosting, and AdaBoost Regressor. The best model threshold M is set to 4, se-

lected for the second ensemble process based on R2. All these models, including the Voting and

Stacking regressors (with RidgeCV as meta-model m), are initialized and operated using the default

settings provided by the scikit-learn [9], and time series cross-validatora with three folds.

4.1.5.5 Evaluation Results

Anomaly detection results The graph in Figure 4.2 shows the KDE distribution of the first

principal component for both normal and abnormal classes in the training and testing datasets.

It provides a smoothed representation of the distribution of data points, with the first principal

component (PCA0) on the x-axis and the density of occurrences on the y-axis. By distinguishing

the data based on their class labels (1 anomaly or 0 norm), the graph illustrates how each data class

is spread across the principal component.

However, the graph in the training and testing datasets of the KDE plots reveals distinct modes

and peaks. As observed, a prominent peak represents normal data, while secondary peaks and ex-

tended tails signify anomalies. Additionally, the trough between these peaks serves as a natural

threshold for classification, proving to be particularly helpful for displaying anomaly score distribu-

tions after reducing the dimensions of the data set to one. In general, these graphs present a valuable

visual representation of the distribution of the data in reduced dimensions, helping to identify pat-

terns, separations, and overlaps that influence the analysis and modeling decisions.

Figure 4.2: KDE distribution plots of the first principal component for normal and anomalous
classes in training and testing datasets
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Figure 4.3: KElbow and silhouette analysis plots of KMeans clustering method

Data clustering results Figure 4.3 shows the KElbow and silhouette coefficient analyses of the

KMeans clustering method. The point at the elbow indicates the most suitable number of clusters

observed at (k = 4). It suggests that increasing the number of clusters beyond four would not

significantly reduce the within-cluster sum of squares; therefore, four is the optimal number of

clusters for the given data set. However, the silhouette coefficient analysis provides information

about the separation distance between the resulting clusters. Higher average silhouette coefficients

indicate that clusters are well separated. As observed, the mean SC for the clustering solution with

(k = 4) is 0.6256, which is a reasonably high score. It indicates that the data points in each of the

four clusters are, on average, closer to other data points in their cluster and farther away from the

data points in other clusters. In addition, CHI is 106520.0213, which is a high value indicating that

the clusters are dense and well separated, which means that the KMeans algorithm has partitioned

the data into potentially meaningful clusters. The DBI is recorded at 0.5044. This value is closer to

0, which indicates better partitioning, and the low value here suggests that the clusters generated by

the KMeans algorithm are distinctly separated from each other.

In general, the metrics presented point towards an effective clustering of the data by the KMeans

algorithm, characterized by well-defined, well-separated, and not overlapping clusters. Figure 4.4

shows the KDE distribution graphs of the first principal component for grouping classes in the

training and testing datasets, which confirms this finding.

Ensemble-based prediction results Table 4.1 presents a comparative analysis of the perfor-

mance of various baseline ensemble models used in the ensemble-based prediction. Seven distinct
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Figure 4.4: KDE distribution plots of the first principal component for clustering classes in training
and testing datasets

Table 4.1: Comparison results of baseline ensemble models

Model MAE MSE RMSE R2 MAPE

Gradient Boosting 0.0509 0.0058 0.0758 0.9450 21.4249
Random Forest 0.0516 0.0060 0.0772 0.9429 17.8271
Extra Trees 0.0518 0.0060 0.0773 0.9428 19.2034
CatBoost 0.0517 0.0060 0.0776 0.9424 17.9577
Light Gradient Boosting 0.0518 0.0060 0.0777 0.9422 19.5736
Extreme Gradient Boosting 0.0550 0.0068 0.0826 0.9347 18.1816
AdaBoost 0.0718 0.0083 0.0909 0.9209 103.1659

models are evaluated using multiple metrics. The results show that all models performed relatively

accurately, as indicated by their respective R2 values. The Gradient Boosting Regressor emerges

as the top performer with a R2 value of 0.9450, which suggests that the model explains approxi-

mately 94.50% of the variability in the target variable. It is closely followed by the Random Forest

Regressor and the Extra Trees Regressor with R2 values of 0.9429 and 0.9428, respectively.

In order to accurately assess the precision of the model’s prediction, it is essential to take into

account various error metrics. For instance, in terms of MAE, the Gradient Boosting Regressor has

the slightest error, denoting its superiority in terms of absolute deviations from the actual values.

The same model also performed commendably in terms of RMSE and MSE. Interestingly, although

the AdaBoost Regressor has a respectable R2 value of 0.9209, it shows significantly higher MAE

and MAPE, suggesting larger deviations in predictions on an absolute scale and percentage-wise.

Another crucial factor to consider, especially for real-time applications or large datasets, is the time
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Table 4.2: Cross-validation scores by fold for Stacking Regressor

Fold MAE MSE RMSE R2 MAPE

0 0.0515 0.0059 0.0769 0.9440 21.9566
1 0.0504 0.0056 0.0748 0.9460 18.2230
2 0.0497 0.0057 0.0753 0.9455 18.1845
Mean 0.0505 0.0057 0.0757 0.9452 19.4547
Std 0.0007 0.0001 0.0009 0.0009 1.7692

Table 4.3: Cross-validation scores by fold for Voting Regressor

Fold MAE MSE RMSE R2 MAPE

0 0.0517 0.0060 0.0773 0.9435 20.6737
1 0.0506 0.0056 0.0751 0.9455 18.5245
2 0.0501 0.0057 0.0758 0.9448 18.0903
Mean 0.0508 0.0058 0.0761 0.9446 19.0961
Std 0.0006 0.0001 0.0009 0.0009 1.1295

Table 4.4: Performance Results of Stacking Regressor versus Voting Regressor on a Test Dataset

Model MAE MSE RMSE R2 MAPE

Stacking Regressor 0.0512 0.0061 0.0783 0.9409 34.9491
Voting Regressor 0.0513 0.0062 0.0788 0.9401 27.4202

taken for training. Extreme Gradient Boosting, with its remarkable efficiency, took the least time of

0.2533 seconds, even though it had to compromise slightly on some error metrics.

In the context of the ensemble-based prediction process mentioned, the top four models, based

on R2, that would be selected for the second ensemble process are Gradient Boosting Regressor,

Random Forest Regressor, Extra Trees Regressor, and CatBoost Regressor. This ensemble process

combines multiple models’ predictions to obtain more accurate results. As we explained earlier,

stacking and voting regressors are two popular techniques used in this process. Stacking involves

combining the outputs of several models and using them as input to a meta-model. The meta-

model then learns how to combine the predictions of the base models to achieve better performance.

Voting, on the other hand, involves combining the predictions of the base models by taking a simple

majority vote. The stacking and voting regressors are used as a second level of the ensemble process

to further improve the accuracy of the predictions.

Table 4.2 presents the cross-validation results of the Stacking Regressor over three folds. The
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Figure 4.5: Residuals and prediction error plots for the Stacking and Voting Regressors without the
consideration of the cross-validation process

mean R2 value stands at 0.9452, indicating that the model explains approximately 94.52% of the

variance in the data set. Similarly, Table 4.3 presents the cross-validation metrics for the Voting

Regressor. It shows a comparable mean R2 of 0.9446. Although both ensemble strategies appear to

have performed closely in cross-validation, it is crucial to note the performance on an unseen test

data set for a more holistic understanding of their robustness. Table 4.4 presents the performance

of the Stacking and Voting Regressors on a test data set. Accordingly, the Stacking Regressor will

be selected for deployment, with a slightly higher R2 of 0.9409 compared to the Voting Regressor’s

0.9401, indicating a marginal superiority. However, the Voting Regressor exhibits a somewhat lower

MAPE, which might indicate better general performance in specific applications.

83



In Figure 4.5, we investigate the residuals and prediction errors of the Stacking and Voting Re-

gressors, bypassing the lens of the cross-validation process. The Stacking Regressor demonstrates

consistent performance with an R2 of 0.972 on the training set and 0.951 on the test set. On the other

hand, the Voting Regressor boasts an R2 of 0.988 for the training data but slightly trails the Stacking

Regressor on the test set with 0.950. These results suggest that while both models are highly effec-

tive, there is a subtle trade-off between fitting the training data and generalizing it to new data. The

choice between these ensemble strategies can be application-specific and depends on the trade-offs

one is willing to make in terms of predictive accuracy, interpretability, or computational efficiency.

4.1.6 Conclusion

In the ever-evolving landscape of cloud computing, ensuring efficient CPU utilization remains

a pressing concern. This study introduced a novel approach that combines anomaly detection, clus-

tering, and multilevel ensemble-based predictions to predict CPU usage. At the heart of our solution

lies the harmonious integration of three distinctive techniques. The Isolation Forest algorithm, adept

at recognizing outliers, ensures robustness. Applying the KMeans clustering algorithm refines the

data, increasing the prediction granularity. Finally, a multilevel ensemble prediction, which har-

nesses foundational ensemble models and advanced meta-ensembling techniques like Stacking and

Voting regressors, ensures that the forecasts are precise and adaptable to the multifaceted dynamics

of cloud data centers. This study is published in [115] and sets the foundation for improving cloud

resource management and can guide future research on predictive analytics in cloud computing.

Future work could improve our architecture using hybrid models and real-time adaptation.

4.2 Regression-Based Approach for Proactive Predictive Modeling of

Efficient Cloud Cost Estimation

Businesses increasingly lean on cloud-based solutions in the contemporary digital landscape,

drawn by their scalability and adaptability. Navigating the financial intricacies of cloud subscrip-

tion models, particularly when intertwined with software-defined systems, remains a formidable
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challenge. This challenge is accentuated by dynamic pricing structures, making accurate cost fore-

casting a critical but complex endeavor. This research unveils an innovative methodology designed

to meticulously forecast the financial costs of cloud subscription tasks based on resource allocation

characteristics. Our approach centers around a robust model carefully created through particu-

lar preparation and modeling stages that incorporate a pricing model for various virtual machines

and utilize different advanced regression algorithms to navigate the complex world of cloud sub-

scription services. The results of our study, which analyzed real cloud workloads, indicate that

equipping businesses with a powerful predictive tool can lead to improved financial planning and

strategic decision-making in their cloud operations. This study aims to guide businesses in the

ever-changing field of cloud technology, focusing on promoting financial efficiency and improving

decision-making strategies in their cloud initiatives.

4.2.1 Model Design

The architecture of the proposed model, as illustrated in Figure 4.6, provides a comprehensive

representation of its structure and emphasizes its systematic methodology to forecast cloud sub-

scription costs through a regression model. Each model segment’s design has been subjected to

detailed design considerations, utilizing advanced methodologies and iterative refinement processes

to create a robust and reliable system.

The initial phase of the model workflow is the extraction stage. The model gleans VMs traces

from various cloud subscriptions. The specificity of these traces, defined by a set temporal window,

ensures that the data capture the intricacies and evolving trends characteristic of the selected time

frame. Such precision is vital, as it directly influences subsequent stages and the overarching fidelity

of the predictions. After data extraction, the model delves into a comprehensive data preparation

stage, explored in detail in Section 4.2.2. An essential procedure in this phase involves calculating

the aggregate price associated with each subscription. This calculation is not trivial; it requires

integrating a VM pricing model, as described in Section 4.2.3.

The model embarks on its evaluative journey once the data have been assimilated and adequately

prepared. The vast realm of ML offers a myriad of regression algorithms, each with distinct advan-

tages and limitations. In this model, a set of regression candidates is subjected to rigorous testing
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and evaluated against performance benchmarks. The objective is not solely to discover a model that

exhibits high performance on the training data set but also to ascertain a model that can effectively

generalize to unseen data. This procedure is essential to build a reliable ML model.

At the end of the evaluation phase, when a superior regression model has been identified, it

is subjected to a registration process. Selection and activation of the desired model play a crucial

role in enabling real-time predictions, facilitating interaction with live data streams with Software-

Defined Systems (SDS) interfaces, and providing valuable feedback information. However, the

journey of the model does not conclude post-deployment. Given the inherently dynamic nature of

the cloud computing sphere, it is imperative that the model continuously adapts. As such, ingrained

within the model’s architecture are mechanisms dedicated to its ongoing monitoring. These periodic

evaluations ensure its performance, ensuring that its efficacy remains undiminished. If performance

aberrations or a discernible decline in predictive accuracy are detected, the model’s recalibration

procedure is invoked. This iterative mechanism guarantees that the model remains consistently at

the forefront of accuracy and relevance, irrespective of evolving external parameters.

To achieve a comprehensive understanding of the flow of the proposed model, Algorithm 4.2

presents a systematic outline that covers the entirety of the process, starting from the extraction of

Figure 4.6: Schematic representation of the proposed model architecture.
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Algorithm 4.2 Cloud Subscription Pricing Prediction Model

Require: Cloud subscription trace data S, window time W , candidate models M , threshold T ,
optimization metric m

Ensure: Predictive model for cloud subscription pricing
1: Extract VMs Trace:
2: VMs data← ExtractTrace(S, W )
3: Data Preparation:
4: VMs lifetime← ComputeLifetime(VMs data)
5: TagUninterruptedVMs(VMs data)
6: ComputeHourlyPriceForVMs(VMs data)
7: ComputeTotalPrice(VMs data, VMs lifetime)
8: OneHotEncodeFeatures(VMs data)
9: Aggregated data← GroupBySubscription(VMs data)

10: Features, Target← FeatureEngineering(Aggregated data)
11: TransformedTarget← TransformTarget(Target)
12: Train data, Test data← SplitData(Features, TransformedTarget)
13: Model Creation:
14: Initialize ModelList as an empty list
15: for model in M do
16: FittedModel← BuildAndEvaluate(model, Train data, Test data, m)
17: Append FittedModel to ModelList
18: end for
19: best model← SelectBestModel(ModelList, m)
20: Model Serving:
21: ModelRegistry(best model)
22: while best model is active do
23: MonitorPerformance(best model, m)
24: if best model performance drops below T then
25: Update W and S
26: goto Extract VMs Trace
27: end if
28: end while

the initial data and ending with the deployment of the model and its subsequent monitoring.

4.2.2 Data Preparation

As detailed in steps 2 to 10 of Algorithm 4.2, the data preparation phase plays a crucial role

in determining the fundamental structure of the model. This stage meticulously transforms the raw

data into a structured format, prepping them for ingestion by the subsequent model training and

evaluation processes. The following elucidates the systematic steps undertaken during this phase:

(1) Lifetime Computation: The genesis of this stage involves computing the lifetime of each
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VM. This process is achieved by discerning the difference between the creation and deletion

timestamps. Such a computation is paramount as it underpins many subsequent calculations

and helps to understand VM usage patterns.

(2) Tagging Uninterrupted VMs: After the lifetime computation, the data set undergoes a clas-

sification process where Uninterrupted VMs are identified and tagged. Recognizing these

VMs is crucial, as they have unique usage patterns that can influence model prediction.

(3) Pricing Calculation: Each VM’s hourly cost is computed next, considering various param-

eters, including its type and resource allocations. The aggregate cost of a VM over its entire

lifetime is then determined by multiplying the hourly cost by the lifetime. This step translates

resource utilization into monetary metrics, laying the foundation for cost predictions.

(4) Categorical Feature Transformation: The data set, at this point, often contains categorical

variables such as the VM type, the core bucket, and the memory bucket. These categorical

variables are subjected to a transformation procedure using the OneHotEncoder to improve

their incorporation into ML models. This transformation converts the variables into a format

more suitable for processing by a model.

(5) Feature Aggregation and Engineering: Data instances are grouped according to the sub-

scription index for aggregation purposes. Various aggregation functions are utilized according

to the characteristics of each feature. This procedure is critical in feature engineering because

it manipulates the data set and determines the feature space and the target variable.

(6) Target Transformation: The dependent variable, denoting the subscription cost within a

specified time frame (total cost of all allocated VMs), necessitates transformations to conform

to the modeling assumptions and enhance the model’s performance. This step ensures that

the target variable is transformed to the optimal state for training using a predefined method.

(7) Data Splitting: The data set is divided into training and testing subsets as a final step in

data preparation. This separation ensures a robust model evaluation with a training set that

facilitates model learning and a testing set that serves as a benchmark for model performance.
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4.2.3 VM Pricing Model

The pricing model presents an intricate yet systematic methodology to compute the hourly price

of a VM. The model has several determinants: VM category, allocated core count, provisioned

memory, and commitment lifetime duration. This segment delves into the mathematical underpin-

nings and foundational constructs of the model.

Central to this model are four crucial variables. The variable Pv is the base pricing correspond-

ing to a VM of the category v. The multiplier Cc is adjusted for the core count specific to c. The

multiplier Mm is aligned with the memory specification denoted by m. Finally, L(d) is a func-

tion that measures the lifetime discount concerning a commitment that lasts for d days. With these

variables in place, the hourly price, H , for a VM, can be concisely expressed as:

H(v, c,m, d) = Pv × Cc ×Mm × L(d) (22)

In order to facilitate a thorough comprehension, Section 4.2.4.1 presents the precise values and

elaborate illustrations for Pv, Cc, Mm, and L(d). Thus, it exemplifies adaptability, allowing precise

evaluations in various configurations.

4.2.4 Experimental Setup and Evaluation

The efficiency of the proposed model is evaluated using baseline regression models and various

evaluation metrics. The evaluation results and additional details are described below.

4.2.4.1 Experimental Setup

Constants of the VM pricing model The proposed pricing model utilizes several constants to

calculate the hourly price, denoted as H(v, c,m, d), for using a VM. This price is influenced by

various components, including the base hourly rate for the specific category of VM Pv, the multiplier

associated with the number of cores Cc, the multiplier related to the memory specification Mm, and

the discount multiplier for a lifetime commitment of d days L(d).

Table 4.5 consolidates the base hourly prices, the core count multipliers, the memory multi-

pliers, and the lifetime discounts, providing a comprehensive overview of the pricing structure for
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Table 4.5: Pricing information for the proposed VM pricing model, including VM categories, CPU
cores, memory, and lifetime discounts.

VM Category Core Count Memory (GB) Lifetime (Days)
Type (v) Base Pricing (Pv, per hour) Count (c) Multiplier (Cc) Amount (m) Multiplier (Mm) Duration (d) Multiplier (L(d)) Discount
General Purpose $0.02 2 1 2 1 <7 1.0 0%
Delay-insensitive $0.03 4 2 4 1.5 7 - 13 0.95 5%
Interactive $0.04 8 4 8 2 14 - 19 0.90 10%
- - 24 6 32 2.5 ≥20 0.85 15%
- - >24 8 64 3 - - -
- - - - >64 3.5 - - -

different VM categories, core counts, memory amounts, and commitment durations. It allows for

the transparent and deterministic computation of the hourly pricing of a VM using equation 22,

facilitating a clear understanding and application of the pricing model’s components.

Workload and preparation setups Microsoft Azure offers a range of cloud computing ser-

vices, including computing, storage, analytics, and networking. These services enable enterprises

to implement and oversee cloud-based applications on a global scale [95]. Cloud users can submit

multiple jobs to a regional data center using a single or multiple subscriptions. Each task is executed

on a VM within a deployment, ensuring that the necessary resources are available for each task to

operate optimally, considering its specific requirements.

Our experiments used a data set derived from the Azure Public Dataset v2 [96]. The duration

of the trace is 30 consecutive days, including 6,687 Azure subscriptions with 2,695,548 VMs. The

trace schema includes ordinal categories to show the CPU core and memory buckets of a VM and

a nominal category representing the VM type. It also contains creation and deletion timestamps

of VMs (used to calculate their lifetime), maximum and average CPU utilization, and the 95th

percentile of maximum CPU utilization. Figures 4.7 and 4.8 show, respectively, the distribution of

lifespan and total price (lifetime in hours × price per hour) of VMs and the interrelations between

different factors such as VMs’ types, CPU cores, and memory buckets.

Algorithm 4.2, Steps 9 to 10 involve feature engineering related to subscriptions. This process

computes the frequency of each categorical feature. Aggregates by subscription identifier, consider-

ing the average for numerical features and the sum of prices for all VMs as the target value. In Step

11, we examine the untransformed target to transformed one using the Yeo-Johnson and quantile

methods based on scikit-learn implementation [9].
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Figure 4.7: Boxen plot illustrating the distribution and interrelations among VMs’ lifetime, type,
CPU core count, and memory allocation.

Regression models and setups Our experiments compared the proposed model using 17 re-

gression models of various types. All model configurations adhere to the default settings and im-

plementations established by PyCaret [104], an open source ML library.

4.2.4.2 Evaluation Metrics

In order to ensure that the predictions are reliable and accurate, we employ a set of metrics that

have been proven to evaluate performance effectively. The Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of Determination (R2), and

Mean Absolute Percentage Error (MAPE), which are explained in details in Section 4.1.5.3. With
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Figure 4.8: Boxen plot illustrating the distribution and interrelations among VMs’ total price, type,
CPU core count, and memory allocation.

these measurements, we can confidently assess the quality of the model’s predictions.

4.2.4.3 Detailed Evaluation Results

Various regression models are meticulously evaluated to determine their predictive prowess

in a workload trace derived from Microsoft Azure subscriptions. The employed models include

CatBoost Regressor (CBR), Gradient Boosting Regressor (GBR), Extra Trees Regressor (ETR),

Light Gradient Boosting Machine (LGBM), Random Forest Regressor (RFR), Extreme Gradient

Boosting (XGB), Decision Tree Regressor (DTR), k-Nearest Neighbors (KNN), Elastic Net (ENet),

Lasso Regression (Lasso), Linear Regression (LR), Lasso Least Angle Regression (LAR), Ridge
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Table 4.6: Comparison of baseline regression models in the absence of target value transformation.

Model MAE MSE RMSE R2 MAPE TT (Sec)

CBR 364.024 6.364667e+06 2220.172 0.893 98.921 1.850
GBR 460.949 5.893016e+06 2199.897 0.891 212.761 0.297
ETR 362.199 6.808405e+06 2276.330 0.889 2.219 0.371
LGBM 434.902 6.575011e+06 2298.479 0.887 24.592 0.151
RFR 408.271 7.187883e+06 2376.625 0.880 2.491 0.963
XGB 408.565 7.085286e+06 2390.678 0.878 19.804 0.104
DTR 606.390 1.377838e+07 3480.050 0.716 1.754 0.025
KNR 712.620 1.618294e+07 3751.296 0.698 43.866 0.026
ENet 948.224 1.573679e+07 3715.407 0.693 1250.508 0.031
Lasso 948.190 1.573145e+07 3714.751 0.693 1249.030 0.035
LinR 947.209 1.587267e+07 3733.273 0.688 1243.444 0.726
LAR 951.135 1.590327e+07 3733.039 0.688 1190.015 0.018
Ridge 949.387 1.591703e+07 3735.930 0.687 1248.688 0.018
BRidge 949.220 1.593580e+07 3738.584 0.686 1272.094 0.019
AdaBoost 5743.391 3.926062e+07 6215.810 0.042 18909.765 0.107
DR 2501.602 5.010490e+07 6858.399 -0.003 6029.865 0.017
OMP 2446.427 5.425584e+07 6999.914 -0.024 5709.812 0.018

Note: Models are sorted using the R2 score, and the TT values vary depending on the computational node used.

Regression (Ridge), Bayesian Ridge (BRidge), AdaBoost Regressor (AdaBoost), Dummy Regres-

sor (DR), and Orthogonal Matching Pursuit (OMP). These models are selected based on their

extensive utilization and the demonstrated efficacy in addressing diverse regression challenges. We

thoroughly examine their predictive abilities concerning the subscription cost, considering differ-

ent scenarios involving transforming target values, measured through a 10-fold cross-validation

approach.

Scenario 1 (Absence of Target Value Transformation): In the given context, a thorough in-

vestigation is carried out to determine the effectiveness of a model when the target value is not

transformed. The CBR approach surpasses its counterparts by achieving a low value of R2. How-

ever, it is essential to acknowledge the significance of MSE and RMSE, as the dominance of GBR

implies unparalleled reliability and precision in its predictive capabilities. In situations that require

quick analytical responses, the LGBM algorithm stands out for its low Training Time (TT) among

the top five R2 score models, and it is essential for real-time applications. The ETR and DTR al-

gorithms demonstrate exceptional performance in terms of MAE and MAPE metrics, respectively,

showcasing their proficiency in reducing prediction inaccuracies.
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Table 4.7: Comparison of baseline regression models with target value transformation using the
Yeo-Johnson method.

Model MAE MSE RMSE R2 MAPE TT (Sec)

CBR 0.258 0.220 0.468 0.976 0.691 1.914
LGBM 0.277 0.248 0.497 0.973 0.681 0.134
ETR 0.269 0.277 0.525 0.969 0.535 0.322
XGB 0.299 0.283 0.531 0.969 0.760 0.136
RFR 0.278 0.298 0.544 0.967 0.636 0.703
GBR 0.352 0.320 0.565 0.965 1.523 0.295
DTR 0.413 0.645 0.802 0.929 0.474 0.027
AdaBoost 0.947 1.329 1.152 0.854 7.338 0.114
KNR 0.815 1.796 1.339 0.803 2.335 0.026
Lasso 1.911 6.796 2.601 0.255 15.154 0.042
LAR 1.911 6.793 2.601 0.255 15.152 0.024
ENet 1.909 6.862 2.612 0.247 14.965 0.039
BRidge 1.909 6.897 2.615 0.245 15.018 0.025
Ridge 1.908 6.919 2.619 0.242 14.950 0.021
LinR 1.909 7.101 2.645 0.223 14.940 0.021
DR 2.322 9.155 3.024 -0.002 22.303 0.017
OMP 2.318 9.906 3.123 -0.082 22.194 0.024

Note: Models are sorted using the R2 score, and the TT values vary depending on the computational node used.

Scenario 2 (Incorporation of Yeo-Johnson Transformation): The Yeo-Johnson transforma-

tion has positively impacted the performance of CBR over other competing methods, underscoring

the consistent and superior predictive accuracy and reliability. This scenario highlights the excep-

tional computational efficiency of LGBM among the top five R2 score models, underscoring its

suitability for applications that require rapid processing. Simultaneously, ETR exhibits a notable

performance in terms of MAPE, demonstrating its effectiveness in reducing percentage errors, par-

ticularly in applications requiring high accuracy levels.

Scenario 3 (Incorporation of Quantile Transformation): By implementing the Quantile

transformation method in this scenario, CBR maintains its prevailing position, showcasing unparal-

leled dependability and precision. The ETR algorithm is notable for its ability to achieve low MAPE

values, indicating its proficiency in minimizing percentage errors. On the other hand, the LGBM

algorithm demonstrates superior computational performance, making it particularly valuable for

applications that require strict time limitations.

Conclusive Insights: The comprehensive examination of various scenarios reveals that using
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Table 4.8: Comparison of baseline regression models with target value transformation using the
Quantile method.

Model MAE MSE RMSE R2 MAPE TT (Sec)

CBR 0.092 0.027 0.164 0.973 0.412 2.011
LGBM 0.098 0.031 0.174 0.970 0.416 0.168
ETR 0.095 0.034 0.182 0.967 0.328 0.332
XGB 0.103 0.033 0.181 0.967 0.394 0.198
RFR 0.097 0.036 0.188 0.965 0.339 0.710
GBR 0.126 0.044 0.208 0.957 0.680 0.315
DTR 0.141 0.071 0.265 0.930 0.600 0.025
AdaBoost 0.313 0.161 0.401 0.842 1.854 0.106
KNR 0.269 0.193 0.439 0.810 1.248 0.024
LAR 0.670 0.769 0.875 0.245 1.693 0.018
Lasso 0.667 0.770 0.876 0.244 1.702 0.035
ENet 0.663 0.774 0.878 0.240 1.820 0.034
BRidge 0.663 0.792 0.886 0.224 1.920 0.020
Ridge 0.663 0.794 0.888 0.221 1.944 0.019
LinR 0.663 0.812 0.896 0.205 1.939 0.019
DR 0.801 1.020 1.009 -0.002 1.000 0.020
OMP 0.800 1.102 1.041 -0.075 1.017 0.018

Note: Models are sorted using the R2 score, and the TT values vary depending on the computational node used.

the Yeo-Johnson transformation technique in Scenario 2 significantly improves the model’s pre-

dictive capabilities. In this context, it is worth noting that using the CBR algorithm demonstrates

exceptional accuracy and reliability. Table 4.9 provides strong evidence supporting the outstanding

performance of CBR when applied with the Yeo-Johnson transformation. It highlights the consis-

tent accuracy and reliability of CBR across different folds, making it a favorable option for a wide

range of applications that require optimized and reliable results. Nevertheless, the uniform com-

putational efficiency demonstrated by LGBM, including the balanced adaptability demonstrated by

other models, provides a wide range of options that can be customized to meet different application

requirements. The present synthesis of perspectives argues in favor of a methodical and comprehen-

sive strategy for selecting models, considering accuracy, reliability, and computational efficiency.

Figure 4.9 illustrates the intricate dynamics of the learning curve, prediction error, and residuals

for the paramount model in each delineated scenario, incorporating both the training and segregated

hold-out data, albeit the deliberate omission of the k-fold cross-validation. In Scenarios 1, 2, and

3, the acquired R2 values from training data are 1.000, 0.994, and 0.993, respectively, presenting a
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Figure 4.9: Comparative Analysis of Learning Curves, Prediction Errors, and Residuals Across
Optimal Models in Different Target Transformation Scenarios.

stark contrast with the R2 values from hold-out data, calculated as 0.685, 0.979, and 0.970. This

conspicuous contrast in Scenario 1 unveils a substantial overfitting phenomenon, emphasized by

the significant disparity in R2 values between the meticulous training and the equally meticulous

hold-out datasets. This overfitting phenomenon implies that the model, although performing with

exemplary accuracy on the training set, fails to generalize effectively to unseen data (new data),

indicative of a potential compromise in its predictive reliability. Interestingly, the overfitting is

subtly alleviated by incorporating k-fold cross-validation, as seen in the learning curve, which can

reduce model overfitting and foster a balanced, generalized performance.

Nonetheless, the strategic introduction of transformation techniques in Scenarios 2 and 3 ef-

fectively ameliorates the previously observed overfitting, substantiating the heightened efficacy of

96



Table 4.9: The 10-fold cross-validation scores for the CatBoost Regressor with target value trans-
formation using the Yeo-Johnson method.

Fold MAE MSE RMSE R2 MAPE

0 0.262 0.197 0.443 0.976 0.791
1 0.271 0.256 0.506 0.971 0.645
2 0.248 0.210 0.458 0.977 0.604
3 0.253 0.230 0.480 0.975 0.715
4 0.261 0.227 0.477 0.973 0.280
5 0.255 0.205 0.453 0.979 0.317
6 0.248 0.183 0.428 0.982 0.775
7 0.260 0.238 0.488 0.972 0.542
8 0.252 0.183 0.428 0.982 1.253
9 0.272 0.274 0.524 0.970 0.993
Mean 0.258 0.220 0.468 0.976 0.691
Std 0.008 0.029 0.030 0.004 0.277

CBR when synergistically aligned with the Yeo-Johnson transformation method. This correction

is particularly pronounced in Scenario 2, where CBR achieves unparalleled accuracy and depend-

ability, marking an R2 of 0.979 on the hold-out data, thus reinforcing its supremacy amongst the

plethora of evaluated models and transformation strategies.

The empirical evidence from these transformation scenarios unequivocally attests to the models’

enhanced adaptability and predictive prowess, particularly CBR, under the transformative influence

of evolved methodologies like the Yeo-Johnson transformation. This superior model performance

under transformation accentuates the relevance and impact of employing transformation techniques.

It underlines the importance of appropriately aligned methodologies to ensure optimal model gen-

eralization and predictive reliability across diverse and unseen datasets. These insights facilitate

a deeper comprehension of the intrinsic model dynamics, the implications of overfitting, and the

profound impact of transformation techniques, thereby guiding informed and enlightened model

selection, deployment, and application in real-world scenarios.

4.2.5 Conclusion

In our previous research, we performed various studies using various prediction methods to fore-

cast different aspects associated with resource planning and power management within cloud data

centers [116]–[121]. However, this research has elucidated the complexities of forecasting financial
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costs in cloud subscriptions and is published in [122]. Through employing various regression al-

gorithms on real-world cloud workloads, this study has unveiled the potential for refined accuracy

in predicting costs, enabling enhanced financial planning and strategic business decision-making.

The proposed model serves as a cornerstone for addressing the challenges of predicting subscription

costs, fostering transparency in cloud services, and benefiting service providers and consumers by

mitigating risks related to improper pricing and resource allocation. Subsequent research will focus

on integrating multilevel ensemble learning to enhance the model’s adaptability across varied cloud

service paradigms. The inclusion of diverse datasets is also planned to improve model robustness

and precision in response to the complexities of cloud services. In conclusion, this study serves as

a foundational step in predictive analytics for cloud computing, offering a path for innovations in

optimizing cloud subscription pricing models.

4.3 Leveraging Imbalance and Ensemble Learning Methods for Im-

proved Load Prediction in Cloud Computing Systems

Predicting load demand is critical to effective resource management in cloud computing. This

process ensures optimal performance and efficiency by predicting the overload, underload, and

normal load status of the physical machines. However, achieving accurate predictions remains chal-

lenging due to the highly dynamic and often non-linear workload patterns typical in cloud environ-

ments. Traditional methods, while helpful, have shown limitations in handling these complexities.

Machine learning techniques, specifically imbalance and ensemble learning, have shown potential

to improve prediction accuracy. Imbalance learning addresses the uneven distribution of load states,

while ensemble learning combines multiple models to achieve better predictive performance. It

is possible to create a more robust and accurate load prediction system by leveraging these two

methods. This study explores the application of imbalance and ensemble learning to improve load

prediction in cloud computing systems. Through an experimental study, we illustrate how these

techniques outperform traditional methods, offering potential improvements to the performance and

efficiency of cloud computing operations.
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4.3.1 Host Load Characteristics

In cloud computing environments, the concept of host load is central to the effective manage-

ment of resources. Three critical states define host load: overload, underload, and normal load. The

following describes each state and its impact on cloud computing performance:

Overload State: When computing resources are insufficient to meet demand, an overload oc-

curs, resulting in suboptimal system performance. This state can cause delays in task processing,

system slowdowns, or failures, negatively impacting the user experience and harming the service

provider’s reputation. Furthermore, prolonged high loads can lead to hardware stress and early

failure, which increases maintenance and replacement costs.

Underload State: On the other hand, when computing resources are not being used efficiently,

it results in a state of underutilization. Although it may not immediately cause functional problems

like overload, it still means that resources are not being allocated efficiently, leading to a waste of

capacity. This state can negatively impact overall system efficiency and increase operating costs as

hardware and energy resources are consumed without delivering adequate computational value.

Normal Load State: Maintaining a state of equilibrium is a fundamental requirement for any

cloud computing infrastructure. This state ensures the resource supply aligns with the demand,

facilitating optimal performance and efficiency. A stable load promotes seamless system operation,

judicious energy consumption, and a gratifying user experience.

Predicting these load states accurately is essential for maintaining system performance and op-

erational efficiency. Accurate load prediction allows for effective resource allocation and manage-

ment, preventing overload and underload conditions and promoting sustained operation at or near

the normal load state. However, due to the dynamic nature of cloud workloads, accurately predict-

ing these states remains a significant challenge. The following sections discuss how imbalance and

ensemble learning techniques can enhance load prediction accuracy in cloud computing environ-

ments. Accordingly, we propose a load prediction model based on a combination of imbalance and

ensemble learning for cloud computing systems to improve the overall prediction accuracy.
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4.3.2 Imbalance Learning for Load Prediction

Imbalanced learning deals with the issue of imbalanced data sets, where one class of data is

greatly underrepresented compared to the others. This situation is common in cloud-based load

prediction, where normal load states occur far more frequently than overload or underload states.

Traditional ML algorithms often struggle with unbalanced data, tending to bias their predictions

towards the majority class. Thus, it leads to poor predictive performance for the minority classes,

which is problematic when these classes are of particular interest, as is the case with overload

and underload states in cloud computing. The goal of imbalance learning is to fix any bias by

either adjusting the class distribution in the training by resampling data or modifying the learning

algorithm to focus more on the minority class at the algorithm level [123].

In resampling methods (our focus in this study), either the minority group is oversampled, the

majority group is undersampled, or both are employed. Oversampling can be accomplished by

duplicating minority class examples or creating synthetic examples, as in the Synthetic Minority

Over-sampling Technique (SMOTE) [124]. In contrast, undersampling reduces the number of ex-

amples from the majority class. In the context of load prediction in cloud computing, imbalance

learning can improve prediction accuracy by reducing the bias towards the normal load state. We

can achieve more reliable predictions across all load states by ensuring the model pays sufficient

attention to the overload and underload states. Thus, it can contribute to more effective resource

management and higher system performance.

One possible example is implementing SMOTE with logistic regression for load prediction. It

would involve creating synthetic examples of the minority class (overload and underload states) to

balance the training data, then applying logistic regression to the balanced data to predict future

load states. However, it is crucial to bear in mind that the choice of suitable methods for addressing

imbalanced data sets is contingent on the specific characteristics of the data. Thus, achieving optimal

results can involve a degree of trial and error to identify the most efficacious approach.
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4.3.3 Ensemble Learning for Load Prediction

Ensemble learning is a highly effective type of ML where several models, also known as base

learners, are trained to address the same problem and combined to achieve improved results. It is

based on the principle that a group of weak learners can form a strong learner [125]. This approach

enhances the model’s generalization ability, prediction accuracy, robustness, and stability in the

cloud-based load prediction context.

Load prediction can be complex due to cloud workloads’ non-linear and dynamic nature. An

ensemble of models, each trained on a different subset of the training data, can reduce the risk of

overfitting (through bootstrap aggregating or bagging). For example, this method could involve

creating an ensemble of decision trees where each tree is trained on a different bootstrap sample

of the data. If the problem is that individual models are too simple and underfit the data (high

bias), then boosting can be a helpful approach. Boosting involves training an ensemble of models

sequentially, where each model tries to correct the mistakes of the previous ones. This method

can increase the complexity of the overall model and reduce bias. An example might be using

the AdaBoost algorithm for load prediction. Stacking involves training multiple models and using

another ML model to combine their predictions. This method can capture each model’s strengths

and improve the predictions’ robustness.

The voting classifier is another popular method for blending different ML algorithms. It works

by training several models independently and then taking their predictions’ mode for classification.

The final prediction is the one that gets the most votes from all the classifiers. In a hard voting

scheme, the final prediction is based on the most common output (majority vote) from all the clas-

sifiers. It does not consider the certainty of any individual model’s prediction. In soft voting, on

the other hand, the final prediction is based on the averaged probabilities calculated by each of the

classifiers, giving more weight to highly confident class votes.

The appropriate choice of the ensemble learning method and base learners depends on the data’s

characteristics and the problem’s specific requirements. For example, bagging might be more suit-

able if the data is highly noisy. If the base learners are too simple and underfit the data, boosting

could help. If different models capture different patterns in the data, stacking might be beneficial.
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However, the voting classifier can be particularly valuable in cloud-based load prediction, as it can

leverage the strengths of different models to improve overall prediction accuracy. For example, one

model might be good at predicting underload situations, while another might excel at predicting

overload situations. Combining these models in a voting classifier can achieve more accurate and

robust predictions across all load situations.

4.3.4 Imbalance and Ensemble Learning based-Load Prediction

Cloud-based load prediction can be challenging due to data imbalances. Minority classes like

”Under Load” and ”Over Load” can perform poorly, but imbalance and ensemble learning methods

can create a more effective system. Imbalance learning addresses the issue by resampling data or

adapting the model, while ensemble learning improves accuracy by combining multiple models.

This study proposes a model for load prediction combining both techniques. Algorithm 4.3 outlines

the process, which operates as follows:

Datasets Preparation: The first step is to use a set of imbalance learning techniques on the

data. This step could involve oversampling the minority classes (’Under Load’ and ’Over Load’) or

undersampling the majority class (’Normal Load’) to balance the data based on the given imbalance

learning techniques list. The result is a variety of resampled data sets.

Creating Base Learners: After balancing the data using various imbalance learning methods,

we train and fine-tune the given base learners in each data set. Then, the best-performing pipelines

are chosen based on a given threshold of a selected performance metric. Each of these models’

pipelines can capture different patterns in the data, which can be used for a blending process.

Blending Process: This step combines the selected classifier pipelines using a voting classifier.

The voting classifier utilizes the predictions from each pipeline and determines the final prediction

by taking the majority vote, depending on the selected voting scheme (soft or hard). Then, the

weights of the pipelines for the base classifiers are adjusted to optimize the score of the chosen

performance metric. It guarantees that each base classifier plays a role in the ensemble process that

leads to the greatest overall improvement in performance. By addressing the class imbalance issue

and leveraging the strengths of multiple model pipelines, this approach provides a more sensitive

and robust solution for load prediction.
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Algorithm 4.3 Blended Imbalance and Ensemble Learning

Require: Datasets D, Performance metric m, Threshold t, Imbalance learning methods B =
{b1, b2, ..., bn}, Base classifier C, Voting scheme v

Ensure: Blended Classifier BC
1: for each imbalance learning method bi in B do
2: di ← Apply imbalance learning techniques bi to D
3: ci ← Train C on di
4: Tune hyperparameters of ci to maximize m on di
5: Compute performance metric mi of ci on di
6: if mi ≥ t then
7: Add ci to list of selected classifier pipeline S
8: end if
9: end for

10: BC ← Voting Classifier(S, v)
11: Tune weights of BC to maximize performance metric m

return BC

4.3.5 Experimental Setup and Evaluation

4.3.5.1 Performance Metrics

The model’s ability to classify instances correctly in classification tasks can be evaluated using

various performance metrics. According to [126], we used the most vital metrics to evaluate the

proposed model based on the scikit-learn [9] implementation, which are outlined below.

Accuracy: It is a typical metric for evaluating classification model performance. It measures

the percentage of correct predictions out of total predictions. It can be calculated as the number of

correct predictions (True Positives (TP) plus True Negatives (TN)) divided by the total number of

predictions (TP, TN, False Positives (FP), and False Negatives (FN)).

Precision: This metric measures how accurately a model predicts positive outcomes. Specifi-

cally, it calculates the ratio of true positive predictions to all positive predictions made by the model

(TP/(TP + FP)). High precision suggests that the model can identify positive instances well but

may not be equally proficient at identifying negative outcomes.

Recall: This metric determines how well the model can identify all positive cases in the data

set. It is calculated by dividing the number of correct positive predictions made by the model by

the total number of positive cases in the dataset (TP/(TP + FN). When a model has high recall, it

means that it can recognize a lot of positive instances. However, this does not guarantee that it can
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also avoid making false positive predictions.

F-measure: It combines precision and recall and is often used to provide a single overall score

for the model’s performance. There are several different ways to define an F-measure. The most

commonly used is the F1 score, defined as the harmonic mean of precision and recall F1 = 2 ∗

(precision∗recall)/(precision+recall). The F1 score is a measure of performance that considers

both precision and recall. A higher score indicates better performance.

Area under the curve Regarding ML and statistical modeling, the AUC is a commonly used

evaluation metric to measure the effectiveness of classification models. It is insensitive to the bal-

ance of the classes in the dataset and is not affected by the absolute values of the predicted probabil-

ities. The idea behind it is the Receiver Operating Characteristic (ROC) curve, which is a graphical

graph that illustrates the relationship between the True Positive Rate (TPR) and the False Positive

Rate (FPR) of a model at various classification thresholds. The AUC is calculated as the area under

the ROC curve. It is a value between 0 and 1, with a higher value indicating better performance. An

AUC of 0.5 corresponds to a model that is not better than random guessing, while an AUC of 1.0

corresponds to a perfect model that makes no mistakes.

Cohen’s kappa score: The Cohen’s kappa (kappa) score is a statistic used to measure the

agreement between two annotators or raters who are classifying the instances. The kappa score is

based on the proportion of agreement between the two annotators or raters, adjusted for the amount

of agreement expected by chance alone. It can take on values from -1 to 1, with a value of 0

indicating no agreement beyond chance and a value of 1 indicating perfect agreement. The kappa

score is calculated as follows:

κ = (po − pe)/(1− pe) (23)

where po is the proportion of items classified by annotators or raters, and pe is the proportion of

items expected to be classified the same way by chance alone. The kappa score is considered a

more reliable measure of agreement than a simple percentage agreement because it considers the

possibility of agreement occurring by chance.

Matthews correlation coefficient: The Matthews Correlation Coefficient (MCC) is employed

in the field of ML to assess the efficacy of binary (two-class) classifications. The measure considers
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both true and false positives and negatives and is commonly considered a balanced metric that

can be applied even when the classes have significantly different sizes. The MCC is a correlation

coefficient that ranges from -1 to +1. A coefficient of +1 indicates a perfect prediction, 0 signifies

an average random prediction, and −1 denotes an opposite prediction. The statistic is alternatively

referred to as the phi coefficient.

In the context of binary classification, tp, tn, fp, and fn represent the counts of correctly

identified positive instances, correctly identified negative instances, incorrectly identified positive

instances, and incorrectly identified negative instances, respectively. The MCC that can quantify

the quality of binary classification predictions is calculated using the following formula:

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(24)

Multiclass evaluation: In multiclass classification, the goal is to classify instances into one of

several classes. All of the above metrics can be used to evaluate the performance of a multiclass

classification model. Accuracy, Precision, Recall, F1-score, AUC, and kappa scores can be calcu-

lated using either macro-averaging or micro-averaging. The macro-averaging involves calculating

individual scores for each class and then computing their average. In contrast, micro-averaging cal-

culates the scores globally by counting the total number of true positives, false positives, and false

negatives. Both macro-averaging and micro-averaging have their advantages and disadvantages.

Macro-averaging gives equal weight to each class, regardless of its size, while micro-averaging

gives equal weight to each instance, regardless of its class. In general, macro-averaging is preferred

when the classes are balanced, while micro-averaging is preferred when the classes are imbalanced.

For the MCC in the multiclass scenario, it can be precisely defined using a confusion matrix

C for K classes. In order to provide a more concise explanation, we introduce the concept of

intermediate variables as follows: tk =
∑K

i Cik (the number of times class k truly occurred), pk =∑K
i Cki (the number of times class k was predicted), c =

∑K
k Ckk (the total number of samples

correctly predicted), and s =
∑K

i

∑K
j Cij (the total number of samples). Then, accordingly, the

multiclass MCC score is defined as:
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MCC =
c× s−

∑K
k pk × tk√

(s2 −
∑K

k p2k)× (s2 −
∑K

k t2k)
(25)

However, MCC will vary between −1 and +1 when there are more than two labels. The min-

imum value could potentially fall within the range of −1 and 0, depending on the quantity and

arrangement of the truth labels. The maximum value is consistently +1.

4.3.5.2 Experimental setup

In our experiment setups, we utilized data from the CoMon project, monitoring over 1,000

VM on 800 hosts for two days running on CloudSim. We used a VM selection policy (minimum

migration time) and a VM allocation policy (static threshold) proposed in [114]. We used a one-

hour sliding window with 5 minutes as a utilization interval to capture the features alongside the

date time indexes and total potential of CPU and main memory needs. Instances are classified as

overloaded if the host’s CPU utilization exceeds 95% during the upcoming interval, underloaded

if below 10%, and normal load if it falls within these limits. The training dataset is split into

three subsets using a time series cross-validator, each representing a different period. The model

is then trained and evaluated three times, with different combinations of folds used as training and

validation data. This method ensures that the model is tested on a diverse dataset, resulting in a

more precise estimation of its performance.

For Algorithm 4.3 setup, we utilized a list of imbalance learning methods proposed in [127] to

resample the original dataset. We used a logistic regression model as the base model classifier and

a voting classifier as the blending classifier, provided in [9]. We also examine both hard and soft

voting schemas of the voting classifier. The optimization of the models has been conducted using

BayesSearchCV, provided in [9] as well, to maximize the F1 score as a performance metric. The

selection of the imbalance learning models that perform best with the base classifier is based on the

F1 score as an optimizing metric, with a threshold of 90%.
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Table 4.10: Comparison of target class distribution and resampling time of different imbalance
learning techniques

Fix Imbalance Method Train Size Normal-Load Over-Load Under-Load RT

SMOTETomek 53359 37.38% 29.74% 32.88% 16.86
SMOTEENN 44539 35.04% 17.19% 47.77% 17.71
SVMSMOTE 45897 43.99% 17.99% 38.01% 36.05
BorderlineSMOTE 54795 37.68% 29.76% 32.56% 6.35
ADASYN 54681 37.75% 29.47% 32.78% 6.39
SMOTEN 54795 37.68% 29.76% 32.56% 124.79
SMOTE 54795 37.68% 29.76% 32.56% 5.89
RandomOverSampler 54795 37.68% 29.76% 32.56% 5.52
TomekLinks 24548 70.95% 2.77% 26.28% 6.75
RandomUnderSampler 2067 62.35% 9.48% 28.17% 5.09
OneSidedSelection 18503 89.03% 3.42% 7.55% 8.47
NeighbourhoodCleaningRule 22561 69.94% 2.96% 27.11% 7.8
NearMiss 2067 62.35% 9.48% 28.17% 4.84
InstanceHardnessThreshold 12642 63.01% 4.44% 32.55% 134.85
AllKNN 21204 69.63% 3.10% 27.27% 8.83
RepeatedEditedNearestNeighbours 19959 69.67% 3.24% 27.10% 11.25
EditedNearestNeighbours 20803 70.49% 3.14% 26.36% 6.07
CondensedNearestNeighbour 2777 71.90% 8.80% 19.30% 3221.16
NA 25774 70.82% 2.67% 26.51% 6.41

4.3.5.3 Evaluation Results

Table 4.10 compares various techniques for imbalance methods regarding target class distribu-

tion and Resampling Time (RT). Table 4.11 shows the performance of a logistic regression classifier

under various imbalance methods, sorted based on the F1 score, including the Training Time (TT).

We have selected the top nine models for the blending process based on their F1 scores, which are

higher than the given threshold. Table 4.12 shows the cross-validation scores for a soft-voting clas-

sifier. It can be observed that the classifier has performed consistently across the three folds with a

minimal standard deviation in the performance metrics with mean outperformed the other methods.

Figure 4.10 shows AUC and the trade-off between the precision and the recall of the soft-voting

classifier, with 0.96 of the weighted average precision.

4.3.6 Conclusion

This study explored the fusion of ensemble and imbalance learning to improve load predic-

tion in cloud computing systems. The proposed model uses a combination of both techniques to
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Table 4.11: Comparison of logistic classifier utilizing various imbalance methods, sorted by F1
score, including the train time

Fix Imbalance Method AUC Accuracy F1 Kappa MCC Precision Recall TT

AllKNN 0.979 0.9454 0.9344 0.8683 0.8701 0.9337 0.9454 1.25
NeighbourhoodCleaningRule 0.9799 0.9457 0.9342 0.8694 0.8711 0.9338 0.9457 1.01
NA 0.9805 0.9458 0.9336 0.8696 0.8714 0.9349 0.9458 0.88
EditedNearestNeighbours 0.9795 0.9444 0.9332 0.8662 0.8679 0.9334 0.9444 1.2
TomekLinks 0.9802 0.945 0.9331 0.8672 0.8693 0.9324 0.945 1.14
RepeatedEditedNearestNeighbours 0.9797 0.9439 0.9331 0.8653 0.8668 0.9323 0.9439 0.96
SMOTEN 0.9618 0.9158 0.9186 0.8094 0.8118 0.9225 0.9158 2.07
InstanceHardnessThreshold 0.9359 0.9279 0.9156 0.8309 0.834 0.9058 0.9279 0.15
SVMSMOTE 0.9803 0.9076 0.9141 0.7991 0.8053 0.9268 0.9076 4.14
SMOTEENN 0.9789 0.8801 0.8983 0.7528 0.7665 0.9292 0.8801 3.72
SMOTE 0.9769 0.8729 0.8965 0.7415 0.7578 0.9346 0.8729 3.19
RandomUnderSampler 0.9735 0.8742 0.8959 0.7444 0.7602 0.9314 0.8742 0.22
SMOTETomek 0.9767 0.8694 0.8947 0.7354 0.7526 0.9354 0.8694 4.33
BorderlineSMOTE 0.9774 0.8679 0.8908 0.735 0.7535 0.9306 0.8679 2.85
ADASYN 0.9779 0.8623 0.8869 0.7241 0.7436 0.9294 0.8623 5.34
RandomOverSampler 0.977 0.8116 0.8549 0.6497 0.6898 0.9347 0.8116 5.6
CondensedNearestNeighbour 0.9097 0.7957 0.8311 0.5978 0.6169 0.8885 0.7957 0.26
OneSidedSelection 0.9072 0.7524 0.786 0.5166 0.5492 0.8742 0.7524 1.47
NearMiss 0.9682 0.6603 0.6807 0.4329 0.5084 0.8428 0.6603 0.3

Table 4.12: Soft-based voting classifier cross-validation scores

Fold Accuracy AUC Recall Precision F1 Kappa MCC

0 0.9432 0.9805 0.9432 0.9348 0.9376 0.8656 0.8661
1 0.9465 0.9833 0.9465 0.9425 0.9442 0.8753 0.8754
2 0.9407 0.9781 0.9407 0.9309 0.9342 0.8591 0.8597
Mean 0.9435 0.9806 0.9435 0.9361 0.9387 0.8667 0.8671
Std 0.0024 0.0021 0.0024 0.0048 0.0042 0.0067 0.0065

Figure 4.10: AUC and precision/recall plots for soft-based voting classifier
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improve sensitivity and reliability in load prediction. Although our approach showed promising re-

sults, several potential directions could further enhance the prediction of host loads. Incorporating

more diverse base classifiers into the ensemble could lead to more robust predictions. Instead of

a simple voting classifier, more advanced ensemble methods could be explored to better leverage

the strengths of individual models. This research is published in [128] and opened new avenues

for predicting host load in cloud computing. By further refinement, we anticipate even greater im-

provements in prediction accuracy, thus optimizing resource allocation and enhancing the overall

efficiency of cloud computing systems.
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Chapter 5

Innovative Strategies in Multi-Output

Predictive Modeling for Serverless

Computing

This chapter introduces a comprehensive suite of innovations to improve the predictability of in-

vocation within serverless architectures. By employing multi-output regression models, we perform

a multilevel analysis of invocation patterns across user, application, and function levels, revealing

insights into granular workload behaviors. We investigate the impact of windowing techniques and

the reduction in dimensionality on model performance considering PCA, offering a nuanced under-

standing of the complexities of data and the computational implications. The proposed comparative

framework meticulously evaluates the performance considering various windowing configurations,

utilizing the Azure Functions dataset for real-world applicability.

5.1 Introduction

Serverless computing, also known as Function-as-a-Service (FaaS), has become a cornerstone

in the evolution of cloud computing [70]. FaaS is a cloud computing model in which providers

dynamically manage resource allocation, allowing users to run event-driven applications without

the complexity of managing the underlying infrastructure [129]. This model is recognized for its
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efficient utilization and cost-effectiveness, offering a flexible solution for many applications [79].

The adoption of native cloud technologies, such as microservices and containers, has dramati-

cally increased the popularity of serverless computing as an architectural choice and programming

model. Detailed discussions on this topic can be found in [130] and [75], which also explore the

context of serverless architecture orchestration. However, as a relatively recent innovation in the

cloud computing landscape, serverless computing is still navigating its early stages of exploration

and development. This growth phase aims to address critical challenges, particularly by improving

the predictability and efficiency of function invocations, which are receiving more research attention

[84]. Therefore, the burgeoning field of serverless computing represents fertile ground for research,

especially in optimizing and refining these core aspects [131].

Serverless computing, although increasingly popular, faces various challenges, specifically in

effectively handling the dynamic and unpredictable nature of function invocation [70]. The in-

herent unpredictability of the system adds complexity to resource management and performance

optimization, which are particularly crucial in the context of High-Performance Computing (HPC)

[132]. HPC entails performing computations at a higher performance level than general-purpose

computing. This model requires a more resilient and efficient management system in serverless

environments [133]. The practice of warming up functions, which involves prepping functions in

advance for anticipated execution, is an approach to tackle these intricacies [81].

5.2 Methodological Framework

5.2.1 Analyzing Function Invocation at Different Levels

This section explains how to analyze function invocation in serverless computing at different

levels. The methodology covers three primary levels: the user, the application, and the function.

Each level of analysis is critical for understanding the various aspects of function invocation and

their impact on the serverless environment.
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5.2.1.1 Data Preparation for Analysis Perspectives

The trace data serves as an essential component of software systems that enable analysts to

comprehend the system’s operations and pinpoint areas for improvement. In cloud data centers, the

trace data refers to the set of records of events and activities that occur within the system, and it is

systematically collected through a monitoring agent. This agent is connected to a workflow engine,

which manages the sequence of tasks in a process, and a FaaS system, which allows the execution

of functions in response to specific events.

In this study, the monitoring agent systematically records the rate at which invocations of func-

tions occur over time at regular intervals. It keeps track of each function’s invocation frequency

within a designated time period. The raw data set of the time series D is represented by tuples con-

sisting of (ho, ha, hf , T, c1, c2, . . . , cN ) for each record. In this context, ho represents the identifier

for the user, ha represents the identifier for the application, and hf represents the identifier for the

function. The value of T represents the type of trigger, which indicates the event that caused the

function to be called. The variable ci represents the number of times the function was called during

the ith time interval from the N observations within a designated period. The raw data set D is

manipulated to facilitate analysis from various perspectives: User, application, and function. The

preparation involves aggregating the invocation counts based on different grouping criteria:

(1) User Perspective: At the user level, we examine how users interact with the serverless plat-

form, focusing on the frequency and patterns of function invocations. Thus, D is aggregated

by user and trigger type (excluding ha and hf ) to focus on usage patterns at the user level.

The resulting data set Dho is defined as:

Dho =
∑
ho,T

ci ∀i ∈ invocation counts intervals, grouped by ho and T (26)

The summation is applied to all N function invocation counts for each unique combination of

user and trigger type, with ho subsequently excluded to emphasize trigger-based aggregation.

(2) Application Perspective: Application-level analysis focuses on how serverless applications,
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as a whole, invoke functions. Aggregation is performed by application and trigger type (ex-

cluded ho and hf ) to understand application-specific invocation patterns. The resulting data

set Dha is given by:

Dha =
∑
ha,T

ci ∀i ∈ invocation counts intervals, grouped by ha and T (27)

Similarly to Dho , the summation is applied to all invocation counts of functions N , focusing

on combinations of application and trigger type, with ha subsequently excluded.

(3) Function Perspective: The function level focuses on the invocation characteristics of indi-

vidual functions. Function-level performance analysis involves examining the data without

considering the specific user or application context. The resulting data set Dhf
focuses solely

on trigger type and invocation counts:

Dhf
= {T, c1, c2, . . . , cN} excluding ho, ha, and hf (28)

This structured data preparation process transforms the raw time series data set D into subsets

of time series data sets that facilitate the targeted analysis of user behavior, application performance,

and function utilization, providing a comprehensive view of the system’s operational dynamics.

However, the produced subsets time series data sets (Dho , Dha , and Dhf
) go through window

sliding operation (detailed below) that transform the time series data into patterns that suit for the

multi-output regression models. This windowing operation enables a more accurate and insightful

analysis of the system’s operational dynamics by transforming the time-series data into patterns

suitable for our intended analysis.

5.2.1.2 Window Sliding Operation for Invocation Time Series Data

The windowing process is a fundamental technique used in the analysis of time series data,

particularly useful in ML and signal processing. Consider a discrete time series {xt}Nt=1 where xt

represents the value of the series at time t and N is the total number of observations. The objective
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Figure 5.1: Sequential illustration of the windowing process applied to synthetic time series data.
The figure displays four consecutive windows, with turquoise patterned areas representing in-
put windows (z1, z2, z3, z4) and green patterned areas indicating corresponding target windows
(y1, y2, y3, y4). The red dashed lines mark the initiation of new windows, underscoring the step
size between them.

of windowing is to transform this series into a set of overlapping subsequences that can be used to

predict subsequent values or detect patterns.

A window, often called a frame, is defined by two parameters: the window size Wz and the step

size S. The window size Wz determines the number of data points included in each subsequence,

while the step size S dictates the displacement between the start of consecutive windows. The target

window size Wy specifies the subsequence length we aim to predict.

Given the window size Wz , the step size S, and the target window size Wy, the i-th input

window is represented as {xi, xi+1, ..., xi+Wz−1}, and the corresponding target window is given by

{xi+Wz , xi+Wz+1, ..., xi+Wz+Wy−1}. The process iterates over the entire series, starting at i = 1

and increasing with the size of the step S to i+Wz +Wy − 1 ≤ N .

Figure 5.1 illustrates the windowing process applied to synthetic data. It facilitates an intuitive

grasp of how the windowing process prepares time series data for further analytical tasks. Four

consecutive windows are depicted to demonstrate the time series segmentation into input and target

windows. Vertical dashed lines delineate the boundaries of each window, and the patterned areas

signify the input and target data points within the time series. The progression of the windowing

process is visually indicated by the red dashed line, which represents the step size.

The window sliding operation, described in Algorithm 5.1, is crucial in converting unprocessed
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Algorithm 5.1 Window Sliding Operation

Require: ts (invocation time series data), Wz (window size), S (step size), Wy (target window
size)

1: Initialize features list, targets list
2: if step size < 1 then
3: step size← 1
4: end if
5: R← Compute range of iteration: [tsstart to tsend − (Wz +Wy)] with steps of S
6: for start slice in R do
7: end slice← start slice+Wz

8: target slice← end slice+Wy

9: Extract feature and target windows from ts using start slice, end slice, and target slice
10: Add the corresponding Trigger type T into feature windows
11: Append feature and target windows to features list and targets list
12: end for
13: Concatenate features list and targets list into X Pattern and y Pattern
14: Remove the duplicate patterns, considering combined X Pattern and y Pattern
Ensure: Return X Pattern and y Pattern

time series data into organized patterns appropriate for multi-output regression models. This tech-

nique is precious in serverless computing, where understanding the temporal dynamics of function

invocation at different levels is vital for enhancing performance and managing resources.

The algorithm begins by initializing the lists to hold the features and targets for each window.

It then iterates over the time series data, segmenting it into overlapping windows of size Wz with

a step size of S and a corresponding target window of size Wy. For each iteration, it extracts

the relevant feature and target windows, adding the corresponding trigger type T to enhance the

data context. The final result is a pair of data sets XPattern and yPattern, respectively, consisting of

features and target patterns, with duplicates removed to ensure uniqueness. However, the application

of the window sliding operation to time series data is fundamental for comprehensively analyzing

serverless systems for several reasons:

• Extraction of Temporal Features: This technique is highly effective in extracting time-

related characteristics from data, accurately capturing the patterns and timing of function

invocations. Extracting this information is crucial for understanding the frequency, order, and

timing of function calls, which are essential to predict the behavior of invocation at the related

level and optimize performance accordingly.
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• Pattern Identification and Prediction: This method is instrumental in identifying recur-

rent and unique patterns in function invocation, providing a basis for detecting regularities

and predicting future system states. These patterns are invaluable for forecasting workloads,

identifying potential bottlenecks, and preventing system failures or anomalies. By actively

removing redundant patterns, this approach ensures the uniqueness and significance of the

identified patterns. This refinement step improves the predictive accuracy and efficiency of

the system by focusing on distinct informative patterns that contribute to a more nuanced un-

derstanding of system behavior and potential future states. It helps to maintain a streamlined

pattern data, reducing noise, and improving the speed and quality of the analytics.

• Structural Transformation for Analytical Modeling: By restructuring raw time series data

into a sequence of overlapping windows, the operation converts variable-length sequences

into a suitable consistent format for analysis. This structured approach is not only beneficial

for ML algorithms but is also essential for multi-output models, which rely on a fixed-size

input to forecast multiple points. The resultant structured data is thus more amenable to a

wide variety of analytical models, enhancing the accuracy and insight of the analysis.

• Generic Modeling: The sliding window technique facilitates the creation of a single generic

model applicable to multiple time series, diverging from the traditional approach in which

each series requires its own model. This method significantly improves scalability and flexi-

bility. This process promotes more efficient resource utilization and enables faster adaptation

to new data or changing conditions in serverless environments. By reducing the need for in-

dividual model tuning and maintenance, it streamlines the analytical process, making it more

robust and adaptable to various types of time series data.

In essence, the window sliding technique transforms the subsets of time series data sets (Dho ,

Dha , and Dhf
) into patterns aligned with the analytical objectives of multi-output regression mod-

els intended in this study. This transformation is essential to dissecting and understanding the intri-

cate operational dynamics of serverless systems, enabling stakeholders to make informed decisions

based on comprehensive temporal analysis and predictions.
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Studies such as [134], [135], and [136] have emphasized the importance of windowing tech-

niques in time series analysis, particularly in the context of cloud computing, serverless, and predic-

tive modeling. Adapting this technique to serverless computing allows a deeper understanding of

the dynamics of function invocation, which is essential to optimize performance, manage resources

effectively, and reduce operational costs.

In conclusion, the window sliding operation detailed in Algorithm 5.1 is a foundational step in

the preparation of the time series datasets for in-depth analysis. Systematically segmenting the data

into meaningful subsequences facilitates a range of analytical tasks and enhances our understanding

of the intricate dynamics of serverless systems at user, application, and function levels, fostering a

more precise prediction mechanism.

5.2.1.3 Invocation Pattern Preparation for Multi-Output Regression Models

For the practical application of multi-output regression models in serverless computing, it is

imperative to prepare the invocation patterns that align with the predictive modeling requirements.

The window sliding operation detailed in Algorithm 5.1 produces two key data sets: XPattern,

representing the features of the invocation patterns, and yPattern, representing the corresponding

target. These data sets are further refined to fit the structure and demands of multi-output regression

models. The preparation process is described methodically in Algorithm 5.2, which explains how

to transform the invocation patterns into a suitable format for predictive modeling. This process

involves a series of steps that include encoding, feature selection, and dimensionality reduction.

Initially, the invocation pattern datasets XPattern and yPattern, derived from the window sliding

operation, are split into training and testing sets based on the specified test size and random state.

This division is crucial for assessing the model’s performance and ensuring that it can generalize

well to new data. After splitting, OneHotEncoder is initialized to convert the categorical trigger type

T feature in XPattern into a one-hot numeric array, effectively transforming categorical data into a

numerical format appropriate for regression analysis. The OneHotEncoder is fitted in Xtrain and

then used to transform both Xtrain and Xtest, replacing the trigger column with encoded features.

This process ensures that categorical variables are appropriately handled in the model.

Subsequently, a VarianceThreshold is initialized and fitted Xtrain to remove all features with
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Algorithm 5.2 Prepare Data for Multi-Output Regression Models

Require: XPattern, yPattern, apply pca, variance threshold, test size, random state,
objects path

1: Split XPattern and yPattern into Xtrain, Xtest, ytrain, ytest random subsets based on test size
and random state

2: Initialize OneHotEncoder ▷ To encode categorical features as a one-hot numeric array
3: Fit OneHotEncoder on X train and transform X train and X test ▷ Update X train and

X test by replacing ’Trigger’ with encoded features
4: Save OneHotEncoder object into objects path ▷ To be used for the Hold-Out Data
5: Initialize VarianceThreshold with (threshold = 0.0) ▷ To keep all features with non-zero

variance
6: Save VarianceThreshold object into objects path ▷ To be used for the Hold-Out Data
7: Fit VarianceThreshold on X train and transform X train and X test
8: if apply pca is True then
9: Initialize PCA Transformer with variance threshold and random state ▷

To keep only the first PCA components where the cumulative sum of explained variance ratio
exceeds variance threshold

10: Fit PCA Transformer on X train and transform X train and X test
11: Save PCA Transformer object into objects path ▷ To be used for the Hold-Out Data
12: end if
Ensure: Return transformed Xtrain, Xtest, ytrain, ytest

Algorithm 5.3 Prepare Hold-Out Data for Multi-Output Regression Models

Require: Xholdout, yholdout, objects path, apply pca
1: Load OneHotEncoder from objects path
2: Transform Xholdout using the fitted OneHotEncoder ▷ Encode ’Trigger’ feature as done in

training
3: Load V arianceThreshold from objects path
4: Transform Xholdout using the fitted V arianceThreshold ▷ Apply Variance Threshold as done

in training
5: if apply pca is True then
6: Load PCA Transformer from objects path
7: Transform Xholdout using the fitted PCA Transformer ▷ Apply PCA transformation as

done in training
8: end if

Ensure: Return transformed Xholdout, yholdout

zero variance, effectively streamlining the input data by eliminating redundant or noninformative

variables. This step is crucial for enhancing the model’s performance by focusing on relevant fea-

tures. The fitted VarianceThreshold is then used to transform both Xtrain and Xtest, ensuring con-

sistency in the feature space between the training and testing data sets. If PCA is to be applied, in-

dicated by apply pca being True, a PCA Transformer is initialized with the specified variance
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threshold and random state. This transformer is fitted to Xtrain to identify the principal compo-

nents that cumulatively explain a proportion of variance that exceeds the given variance threshold.

Then both Xtrain and Xtest are transformed using this fitted PCA Transformer, reducing the

dimensionality of the data while attempting to preserve as much of the original variance as possible.

Ensuring consistency and reliability in model predictions requires applying the same transfor-

mation process to hold-out data as was used during training. As described in Algorithm 5.3, the

fitted OneHotEncoder, V arianceThreshold, and PCAT ransformer from the training phase

are used to systematically transform the hold-out data Xholdout. This method includes encoding

categorical features, removing features with zero variance, and applying dimensionality reduction,

each using only the transform method of the respective object. Such a consistent application of

transformations ensures that the inputs to the model maintain uniform structure and scale across

training and hold-out data sets, leading to reliable predictions. This rigorous adherence to a stan-

dardized transformation process is pivotal for maintaining the integrity and efficacy of multi-output

regression models, especially in the dynamic contexts of serverless computing environments.

In conclusion, Algorithms 5.2 and 5.3 systematically process the data to ensure that multi-output

regression models receive input that are encoded, selected, and dimensionally reduced in a manner

that maximizes their predictive performance. This preparation is fundamental to leveraging the full

potential of multi-output regression models in serverless computing, providing insights into function

invocation patterns and aiding in optimizing and effectively managing serverless architectures.

5.2.2 Adaptive Optimization Framework for Serverless Time Series Analysis

In the domain of serverless computing, understanding and optimizing the performance of multi-

output regression models is crucial for effective resource management and service quality. This sec-

tion outlines a comprehensive methodology for training, evaluating, and optimizing these models on

time series data, particularly focusing on serverless function invocation patterns. The methodology

relies on two key algorithms: Algorithm 5.4 for training and evaluating models and Algorithm 5.5

for optimizing the window sliding parameters in time series patterns.

The algorithm 5.4 describes the process of training and evaluating a multi-output regression

model on time series patterns. Initially, the data is prepared using Algorithm 5.2, which ensures that
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Algorithm 5.4 Train and Evaluate Multi-Output Regression Model for Time Series Patterns

Require: XPattern, yPattern, model, metric, data prepare param, models path
1: Prepare XPattern, yPattern based on data prepare param and get Xtrain, Xtest, ytrain, ytest

▷ Using Algorithm 5.2
2: Train model on Xtrain and ytrain
3: Save model into models path
4: Predict with model on Xtest to obtain ypred
5: Replace all negative values in ypred with zeros
6: Convert ypred to integer
7: Calculate score using metric(ytest, ypred)

Ensure: Return the calculated score

XPattern and yPattern are appropriately transformed for the modeling process. The model is then

trained on the resultant Xtrain and ytrain datasets. After training, the model is saved to a specified

path for future inference or comparison. Predictions are made on the testing data set Xtest, and

post-processing steps are applied to ensure that the predictions are in the correct format (e.g., non-

negative and integer values). Finally, the performance of the model is evaluated using a specified

metric, which compares the predicted values ypred with the actual values ytest.

The performance of time series models can often be significantly affected by the choice of pa-

rameters for window sliding. The algorithm 5.5 outlines an approach to optimize these parameters

for a given time series data set ts. It iteratively explores combinations of window sizes Wz , step

sizes S, and target window sizes Wy within the specified window param ranges. For each com-

bination of parameters, the algorithm applies window sliding to the time series data to generate

XPattern and yPattern using Algorithm 5.1. Each generated pair of feature and target data sets is

then evaluated using Algorithm 5.4, which trains a model on the data and calculates a score rep-

resenting the model’s performance. These scores are collected for all combinations of parameters,

and the best performing combination is determined based on whether the goal is to minimize or

maximize the given performance metric.

Subsequently, the most effective arrangement and model derived from Algorithm 5.5 are imple-

mented on data that has not been previously observed. This deployment entails the execution of the

model on each of the subsets generated from time series data sets (Dho , Dha , and Dhf
), which were

previously defined to represent different levels of analysis from the user, application, and function

perspectives, respectively. Deploying the model is crucial to evaluate its ability to perform well and
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Algorithm 5.5 Optimize Window Sliding Parameters for Time Series Patterns

Require: ts, window param ranges, model, metric, data prepare param, optimize
1: Initialize scores as an empty list
2: for each window size Wz in window param ranges[′window size′] do
3: for each step size S in window param ranges[′step size′] do
4: for each target window size Wy in window param ranges[′target window size′] do
5: Apply window sliding to ts with Wz , S, Wy and gets XPattern and yPattern ▷

Using Algorithm 5.1
6: Evaluate model on XPattern, yPattern, & data prepare param and get score ▷

Using Algorithm 5.4
7: Append (score,Wz, S,Wy,model, data prepare param) to scores
8: end for
9: end for

10: end for
11: if optimize is ’minimize’ then
12: Sort scores in ascending order
13: else
14: Sort scores in descending order
15: end if
16: return scores[: 1] ▷ Return the best performing configurations

be effective in a live serverless environment, replicating real-life scenarios where the model will

generate predictions on new data.

In a dynamic serverless environment, the performance of deployed models must be continu-

ously monitored to ensure sustained effectiveness. As function invocation patterns and workload

characteristics may change over time, it is critical to closely track the model’s performance metrics.

If a performance drop is detected, indicating a possible shift in the underlying data patterns or their

distribution, the entire process from data preparation to model optimization will be re-applied us-

ing the most recent invocation data. This re-application ensures that the model stays updated and

aligned with the latest trends and changes in the serverless architecture, maintaining its accuracy

and reliability. Continuous monitoring and periodic re-optimization embody a proactive approach

to maintaining model performance, thereby ensuring that predictive capabilities are always tuned to

the highest standard of efficiency and effectiveness.

To summarize, the comparative analysis methodology offers a strong framework for construct-

ing multi-output regression models within the realm of serverless computing at different levels of
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analysis perspectives. The methodology improves the understanding and effectiveness of the mod-

els in time series data by methodically preparing the data, training the models, and optimizing the

window sliding parameters. The deployment of the optimized model on unseen data provides ad-

ditional assurance that the model is theoretically sound and practically effective. This approach

plays a crucial role in advancing serverless computing by facilitating a more efficient allocation of

resources, enhancing service quality, and improving predictive capabilities.

5.3 Experimental Results and Analysis

5.3.1 Azure Functions Workload

The study presented in [137] performs an in-depth analysis of the production Azure Functions

workload. It provides critical insights into the characteristics and invocation frequencies of real-

world functions, illuminating the operational demands placed on cloud service providers. An im-

portant observation from the study is the notably short duration of functions within the FaaS work-

load, particularly compared to other cloud workloads. For example, data from Azure VM workload

[96] indicates that while 63% of all VM allocations last longer than 15 minutes, less than 8% of

VMs persist for 5 minutes or less. This stark contrast highlights the unique challenges of FaaS envi-

ronments, which impose strict requirements on providers for rapid resource allocation and scaling.

Such quick turnaround times are essential to meet the dynamic and fleeting nature of serverless

function executions, necessitating efficient and agile infrastructure management.

The study also underscores the importance of comprehensively characterizing the production

FaaS workload. It encompasses an array of parameters, including fundamental function types, trig-

ger mechanisms, frequency of invocations, and the corresponding resource requirements. Address-

ing the scarcity of publicly available data on real-world FaaS workloads, the study emphasizes the

need for detailed information on the cumulative demand faced by cloud providers. It also explores

the challenges of managing cold starts and proposes a predictive policy employing time series anal-

ysis techniques such as ARIMA modeling. This policy aims to forecast subsequent invocations and

optimize resource allocation accordingly.

In the context of this study, the Azure Functions data set version 2019 presented in [137] is
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used, which provides granular data on the invocation counts of functions, the execution durations,

and the metrics of memory usage. A specific focus is placed on analyzing the function invocation

counts at different levels to discern usage patterns and operational characteristics. The data set

comprises multiple files, each representing function invocations over 24 hours. Collectively, these

files provide detailed insights into function usage and operational characteristics over a long period.

The analysis in this study predominantly uses the first 12 days of this dataset. We employ the

first day of the dataset for training and testing the model, ensuring a robust foundation for model

development. The subsequent 11 days are utilized as hold-out data, providing a comprehensive and

extended assessment of the model’s predictive accuracy and generalization capabilities on unseen

function invocation patterns. The schema of the data set includes the following fields for each day.

• HashOwner: Identifier for the owner of the application (represented as ho in our model).

• HashApp: Identifier for the application (represented as ha in our model).

• HashFunction: Identifier for the function within the application (represented as hf in our

model).

• Trigger: Trigger that initiates the function, classified into various types (represented as T in

our model).

• [1 .. 1440]: Columns representing the number of invocations per minute for 24 hours (repre-

sented as (c1, c2, . . . , cN ) in our model).

In particular, all identifiers are unique and hashed using HMAC-SHA256 with secret salts to

maintain consistency between data, enabling association between owners, applications, and func-

tions. The Trigger field categorizes the function’s initiation mechanism into seven distinct groups,

including HTTP, timer, event, queue, storage, orchestration, and others. The invocation fields pro-

vide a minute-by-minute account of function executions, offering a detailed view of usage patterns

and demands on the Azure Functions infrastructure. This data set is invaluable for researchers who

want to optimize performance or better understand the behaviors of cloud functions.
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5.3.2 Azure Functions Workload Analysis with Multi-Output Regression Models

The comprehensive study of Azure Function workload provides a pivotal foundation for apply-

ing advanced analytical methods. Notably, multi-output regression models emerge as a powerful

tool to analyze function invocation patterns across various levels of granularity in serverless com-

puting. Our proposed methodology employs these models to dissect and understand the intricate

dynamics of function invocation at the user, application, and function levels, each providing unique

insights into the serverless environment.

The function invocation counts derived from the Azure Functions dataset have significant value

beyond their numerical representation. These figures are a critical indicator of operational efficiency

and performance within a serverless architecture. As such, they are critical metrics that provide

insight into the operational rhythm of the system. Therefore, it is essential to carefully monitor and

analyze these metrics to optimize the performance of the serverless architecture for efficient and

effective operations. By applying multi-output regression models to these counts, we can predict

future invocation patterns and resource needs more accurately. This predictive capability is vital

for proactive resource allocation and efficient management of serverless architectures, as it helps

anticipate and mitigate potential bottlenecks and performance degradation.

The Azure Functions data set is rich and enables a comprehensive analysis at multiple levels:

user level (denoted as Dho in our model), application level (denoted as Dha in our model), and func-

tion level (denoted as Dhf
in our model). These levels correspond to different time series obtained

using Equations 26, 27, and 28, respectively. Every level of analysis is indispensable to develop a

comprehensive understanding of the serverless workload. Through the utilization of multi-output

regression models, we conduct a detailed analysis that captures the temporal dependencies and

patterns that are inherent in invocation data. This approach enables cloud providers and system

architects to make informed decisions about resource allocation, system scaling, and performance

optimization. Our proposed methodology provides a structured approach to dissecting the serverless

workload, emphasizing the adaptive and predictive aspects of modern cloud services.
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5.3.3 Evaluation Metrics

Evaluation metrics are crucial for quantifying the efficacy of predictive models. In this study,

we used MAE, MSE, and R2 outlined in Section 4.1.5.3. For multi-output regression problems,

the score of each metric is computed for each output separately, and an average over all outputs

is used to obtain a single performance measure. These metrics provide a multifaceted view of

model performance. They are critical in our evaluation analysis to ensure that our models are not

only accurate on average MAE but also sensitive to the magnitude of errors by examining MSE

and capable of explaining the variance in target output patterns by estimating R2. Scikit-learn offers

robust implementations for these metrics, providing standardized and efficient criteria for our model

evaluations and facilitating the reproducibility and comparability of our results.

5.3.4 Experimental Setup

In the context of our adaptive optimization framework, the selection of appropriate window

parameters is critical for an effective time-series analysis of serverless function invocations. The

window param ranges dictionary defines the range of values over which the window sliding

parameters will be optimized. Specifically, it includes:

• Window size (Wz): This parameter determines the length of each window or segment of the

time series data that will be considered for analysis. In our study, the window size is varied

among [30, 60, 90, 120] minutes, allowing us to understand how the choice of window size

impacts the model’s ability to capture relevant patterns in function invocations.

• Step size (S): This parameter specifies the step or displacement between consecutive win-

dows. A smaller step size means higher overlap between consecutive windows and more

fine-grained analysis, while a larger step size reduces the computational load at the expense

of granularity. Our step sizes are set at [1, 15, 30] minutes, ensuring a range from high overlap

to moderate overlap.

• Target window size (Wy): This refers to the size of the window to predict future values. It is

essential to determine how far ahead the model should forecast. We consider target window
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sizes of [30, 60] minutes to explore short-term predictions within the scope of the behavior

of serverless functions at each level.

By iterating over these ranges, the optimization Algorithm 5.5 systematically explores various

configurations of window sliding, assessing which combination best captures the temporal dynamics

of serverless function invocations while balancing the trade-off between computational efficiency

and predictive accuracy.

In our adaptive optimization framework, the data preparation phase transforms the raw time se-

ries data into a suitable format for multi-output regression modeling. The data prepare param

dictionary encapsulates the key parameters that guide this phase, ensuring that each data set is ap-

propriately processed before being fed into the model. Specifically, it includes:

• apply pca: The parameter is set to either [False, True], indicating whether PCA should be

applied or not. In this study, we examine both cases in which applying PCA can mitigate

the curse of dimensionality and improve the performance of the model by focusing on the

components that account for the most variance in the data.

• variance threshold: This parameter, set at 0.99, defines the amount of variance that needs

to be captured by the selected components in PCA. A high threshold like 0.99 means that

the model will attempt to retain the components that together explain 99% of the variance,

ensuring that most of the original information is preserved while still benefiting from reduced

feature space.

• test size: This parameter dictates the proportion of the data set to be reserved for testing.

Here, a value of 0.2 indicates that 20% of the data will be used as a test set while the re-

maining 80% will constitute the training set. This split is crucial for evaluating the model’s

performance and ensuring that it generalizes well to unseen data.

By adjusting these parameters, researchers and practitioners can fine-tune the data preparation

process to suit the specific needs and constraints of their analytical tasks. The data prepare param

dictionary therefore plays a vital role in setting up the data for subsequent modeling and analysis,

directly impacting the efficiency and effectiveness of the predictive models.
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Table 5.1: Detailed Parameters for Inherently Multi-Output Regression Models

Index Model Parameters

LR Linear Regression copy X: True, fit intercept: True, positive: False

KNN K-Neighbors Regressor
algorithm: auto, leaf size: 30, metric: minkowski, metric params: None,
n neighbors: 5, p: 2, weights: uniform

DT Decision Tree Regressor

ccp alpha: 0.0, criterion: squared error, max depth: None, max features:
None, max leaf nodes: None, min impurity decrease: 0.0,
min samples leaf: 1, min samples split: 2, min weight fraction leaf: 0.0,
random state: 123, splitter: best

RF Random Forest Regressor

bootstrap: True, ccp alpha: 0.0, criterion: squared error, max depth: None,
max features: 1.0, max leaf nodes: None, max samples: None,
min impurity decrease: 0.0, min samples leaf: 1, min samples split: 2,
min weight fraction leaf: 0.0, n estimators: 100,
oob score: False, random state: 123, warm start: False

ET Extra Trees Regressor

bootstrap: False, ccp alpha: 0.0, criterion: squared error, max depth: None,
max features: 1.0, max leaf nodes: None, max samples: None,
min impurity decrease: 0.0, min samples leaf: 1, min samples split: 2,
min weight fraction leaf: 0.0, n estimators: 100,
oob score: False, random state: 123, warm start: False

In our quest to identify the most effective windowing and data preparation configurations for

serverless time series, we have used the LR model from the Scikit-learn library as a foundational

modeling technique. LR model is inherently capable of multi-output regression, making it particu-

larly suited for our scenario where predicting multiple future invocation counts is necessary.

We have opted for the default configuration of the LR model provided by Scikit-learn. By

leveraging the simplicity and effectiveness of this model, we aim to dissect and understand the

relationship between the windowing parameters and the predictive accuracy of our models. This

approach allows us to systematically explore and optimize the window size, step size, target window

size, and data preparation configurations, ensuring that our final setup is well tuned to provide

accurate and timely predictions for function invocations in serverless computing environments.

Building on the best configuration identified in the preceding step, this study employs, in addi-

tion to LR, a suite of regression models for in-depth analysis, each initialized with its default settings

as specified by Scikit-learn (version 1.2.2). These models are inherently designed for multi-output

regression tasks, encompassing KNN, DTR, RFR, and ETR regressors. Each model has been care-

fully selected for its suitability to handle complex multidimensional output without further imple-

mentation, providing a robust analytical framework. The specific parameters and their respective
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default values for each model are meticulously documented in Table 5.1, providing a comprehensive

overview of the models’ configurations used in this study. This methodology guarantees a consistent

and adaptable analytical setting, facilitating accurate and reliable regression analysis.

5.3.5 Comparative Analysis of Window Sliding Parameters

This section delves into a comprehensive comparative analysis of window sliding parameters at

different levels of function invocation within serverless computing environments with and without

the application of dimensionality reduction. By dissecting the user, application, and function levels,

we understand how predictive modeling can be optimized across various aspects of serverless archi-

tecture. The use of LR in this comparison allows a straightforward interpretation of the relationship

between input features and predicted results, making it a suitable choice to understand the impact

of window sliding parameters on model performance. In addition, it reduces the computation costs

associated with more complex models.

The analysis is presented methodically through Tables 5.2, 5.3, and 5.4, each illustrating the

implications of employing PCA on the predictive precision. Furthermore, columns Pc and P ′c denote

the original and reduced counts of data points, respectively, illustrating the volume of data being

processed and the resulting reduction by removing the redantant patterns according to the given

window sliding parameters.

5.3.5.1 User-Level Analysis

The user level analysis, shown in Table 5.2, is critical for understanding how individual be-

havior impacts the invocation of serverless functions and thereby influences the overall system’s

performance. By examining the window sliding parameters in invocation time series data at the

User level, we aim to optimize predictive models that can accurately forecast user interactions with

serverless functions. The analysis is classified based on the application of PCA, a technique cru-

cial in managing the dimensionality of the data, thus affecting the complexity and efficiency of the

predictive model.

Without PCA (Table 5.2a): The model without PCA provides a baseline utilizing the full

spectrum of data dimensions. This approach offers a detailed view of user interactions but at a
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higher computational cost. The highest performing configuration, as indicated by the lowest MAE

value of 22.4001, is observed with a window size (Wz) of 120, a step size (S) of 1, and a target

window size (Wy) of 60. Furthermore, the volume of patterns that are processed (PC) of 19101628

and the resulting reduction (P ′c) of 7307047 with a reduction percentage of around 61.74% due to

the large number of redundant patterns. This outcome indicates that a finer temporal resolution and

a more extensive historical context lead to more accurate predictions at the user level. However, as

we move down the table, increasing S and decreasing Wz or Wy generally correspond to an increase

in MAE, suggesting a loss of critical information, which is detrimental to model performance.

With PCA (Table 5.2b): The PCA-applied model aims to reduce the computational load by

simplifying the data feature set while attempting to retain the most significant variance within the

data. The optimal configuration under PCA shows a MAE of 21.7611, achieved with a window size

(Wz) of 120, a step size (S) of 30, and a target window size (Wy) of 30. Also, the volume of pat-

terns that are processed (PC) of 666512 and the resulting reduction (P ′c) of 256037 with a reduction

percentage of around 61.74%. Interestingly, this configuration, despite the reduced dimensionality

and volume of the pattern, outperforms the best non-PCA model in terms of MAE, underscoring

the effectiveness of PCA in enhancing model performance by focusing on the most influential data

features and the characteristic uniqueness of the patterns. However, the trade-off between dimen-

sionality reduction and loss of detail is evident across various configurations, emphasizing the need

for a balanced approach in model construction and feature selection.

Implications of Findings: The detailed comparative analysis at the user level reveals several

important implications. First, the choice of window sliding parameters has a profound impact on

the predictive accuracy of the models, with larger window sizes generally providing more context

for prediction but requiring careful consideration of the step and target sizes to maintain model per-

formance. Second, applying PCA can significantly improve computational efficiency and, in some

configurations, even improve predictive precision by eliminating redundant information. However,

its application must be judicious, ensuring that the reduction in dimensionality does not overlook

critical behavioral patterns essential for accurate prediction. Lastly, the sorted results based on MAE

provide a clear hierarchy of the performance of the model, guiding the selection of the appropriate

configurations based on the specific needs for accuracy and computational resources.
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Table 5.2: Comparative Analysis of Window Sliding Parameters in Invocation Time Series Data at
User Level

(a) PCA = False

MAE Wz S Wy Pc P ′c

22.4001 120 1 60 19101628 7307047
22.6566 120 1 30 19556068 7043090
23.4433 120 30 30 666512 256037
23.6819 120 15 30 1317876 499528
23.7114 120 15 60 1287580 516113
24.1967 90 30 30 681660 244458
24.2066 90 1 60 19556068 7043090
24.6357 90 1 30 20010508 6669682
24.8298 90 15 60 1317876 499528
24.8914 90 30 60 666512 256037
24.9393 90 15 30 1348172 476038
25.4298 120 30 60 651364 264341
26.1004 60 1 60 20010508 6669682
26.1917 60 30 60 681660 244458
26.4095 60 15 60 1348172 476038
26.5360 60 30 30 696808 227051
26.9603 60 15 30 1378468 440733
27.7661 60 1 30 20464948 6119737
29.2018 30 15 60 1378468 440733
29.3698 30 30 60 696808 227051
30.0785 30 1 60 20464948 6119737
30.9767 30 15 30 1408764 390280
32.3219 30 30 30 711956 201494
34.1617 30 1 30 20919388 5384934

(b) PCA = True

MAE Wz S Wy Pc P ′c

21.7611 120 30 30 666512 256037
22.5365 120 15 60 1287580 516113
22.7309 120 15 30 1317876 499528
22.9182 90 30 30 681660 244458
23.2235 120 1 60 19101628 7307047
23.4465 90 30 60 666512 256037
23.5943 120 30 60 651364 264341
23.6823 120 1 30 19556068 7043090
23.7199 90 15 60 1317876 499528
24.1475 90 15 30 1348172 476038
24.9023 60 30 60 681660 244458
25.4551 90 1 60 19556068 7043090
25.5474 60 30 30 696808 227051
25.6770 60 15 60 1348172 476038
26.0935 90 1 30 20010508 6669682
26.5803 60 15 30 1378468 440733
27.7015 60 1 60 20010508 6669682
29.0088 30 30 60 696808 227051
29.3909 30 15 60 1378468 440733
29.7438 60 1 30 20464948 6119737
31.1230 30 1 60 20464948 6119737
31.3388 30 30 30 711956 201494
31.4411 30 15 30 1408764 390280
35.1279 30 1 30 20919388 5384934

Future Directions: Moving forward, further research could explore the dynamic adaptation of

window sliding parameters and PCA components based on user behavior patterns, considering seg-

mentation as a prior process like the work presented in [101], [107]. This process could lead to more

flexible and accurate predictive models capable of adapting to the evolving nature of user interac-

tions in serverless environments. Furthermore, investigating hybrid models that integrate multilevel

learning strategies and cost estimation techniques, such as those introduced in [115] and [122] re-

spectively, could provide novel avenues for enhancing the predictability and cost-effectiveness of

serverless computing systems at the user level.
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5.3.5.2 Application-Level Analysis

Table 5.3 shows a comprehensive comparative analysis of window sliding parameters at the ap-

plication level. The focus shifts to how applications comprising multiple functions interact within

the serverless environment, both with and without the application of dimensionality reduction. Ac-

cordingly, we can dissect and understand the collective behavior of functions as they interact within

specific applications. This level is crucial for understanding and optimizing resource allocation,

scalability, and overall performance of serverless systems.

Without PCA (Table 5.3a): The application-level analysis without PCA serves as a complete

representation of the complexity of all the data. The configuration with the highest performance in

terms of predictive precision is marked by a MAE of 18.4511, achieved with a window size (Wz) of

120, a step size (S) of 1, and a target window size (Wy) of 60. This configuration reflects that higher

data degrades computational efficiency. As the table progresses, the variations in Wz , S, and Wy

show the corresponding changes in the MAE, indicating the sensitivity of the model performance

to these parameters. In the best-performing configuration, the count of original data points (Pc) is

27700387, while the reduced data points (P ′c) is 9274343. This reduction shows that the windowing

approach is also highly efficient in managing the volume of data at the application level, reducing

the size by around 66.51%. This decrease in data points leads to a more streamlined prediction.

With PCA (Table 5.3b): When PCA is applied, the analysis progresses toward understanding

how dimensionality reduction affects predictive modeling at the application level. The most effec-

tive configuration results in a reduced MAE of 16.9978, indicating an improvement in precision.

This configuration is achieved with a window size (Wz) of 120, a step size (S) of 30, and a target

window size (Wy) of 30. The reduction in data volume is also notable, with PCA further reducing

the complexity of the data set while maintaining quality. The results indicate that PCA effectively

balances the need for computational efficiency with the requirement of accurate predictions at the

application level. In the most optimal setup, the number of original data points (Pc) is 944581,

whereas the reduced data points (P ′c) amount to 338099. This decrease demonstrates that the win-

dowing technique is also extremely effective in handling the amount of data at the application level

when PCA is applied, resulting in a reduction of approximately 64.20% in size.
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Table 5.3: Comparative Analysis of Window Sliding Parameters in Invocation Time Series Data at
Application Level

(a) PCA = False

MAE Wz S Wy Pc P ′c

18.4511 120 1 60 27700387 9274343
18.6181 120 15 30 1911129 635095
18.6752 120 30 60 944581 338099
18.7141 120 1 30 28359397 8892705
19.3863 120 15 60 1867195 659296
19.5960 120 30 30 966548 325965
19.6540 90 15 60 1911129 635095
20.0009 90 1 60 28359397 8892705
20.5056 90 1 30 29018407 8365574
20.6778 90 15 30 1955063 601542
20.7204 90 30 30 988515 309345
20.7650 90 30 60 966548 325965
21.2986 60 15 60 1955063 601542
21.6550 60 30 30 1010482 284899
21.7345 60 1 60 29018407 8365574
22.0113 60 30 60 988515 309345
22.7276 60 15 30 1998997 552107
23.0547 30 30 60 1010482 284899
23.0890 60 1 30 29677417 7608574
24.4084 30 15 60 1998997 552107
24.7596 30 1 60 29677417 7608574
26.9295 30 30 30 1032449 250048
27.1122 30 15 30 2042931 483687
28.6774 30 1 30 30336427 6624745

(b) PCA = True

MAE Wz S Wy Pc P ′c

16.9978 120 30 60 944581 338099
17.2195 120 15 30 1911129 635095
17.8888 120 30 30 966548 325965
18.1780 120 15 60 1867195 659296
18.7491 90 15 60 1911129 635095
19.0811 120 1 60 27700387 9274343
19.3624 90 30 60 966548 325965
19.4455 90 30 30 988515 309345
19.5242 120 1 30 28359397 8892705
19.7444 90 15 30 1955063 601542
20.6265 60 30 30 1010482 284899
20.6860 60 15 60 1955063 601542
20.7000 60 30 60 988515 309345
20.7488 90 1 60 28359397 8892705
21.4177 90 1 30 29018407 8365574
22.2539 60 15 30 1998997 552107
22.5325 30 30 60 1010482 284899
22.8589 60 1 60 29018407 8365574
24.5272 60 1 30 29677417 7608574
24.5407 30 15 60 1998997 552107
25.5793 30 1 60 29677417 7608574
26.4422 30 30 30 1032449 250048
27.3422 30 15 30 2042931 483687
29.3699 30 1 30 30336427 6624745

Implications of Findings: The comparative analysis at the application level underscores sev-

eral key points. First, the choice of window sliding parameters significantly influences predictive

performance, with larger windows providing more historical context but also requiring more com-

putational resources. Second, PCA’s role in reducing dimensionality is beneficial in terms of com-

putational efficiency and can lead to improved accuracy in certain configurations. However, the

delicate balance between data reduction and the preservation of essential information is crucial.

The results offer a guide for selecting the right configuration based on specific needs with respect to

accuracy and computational constraints.

Future Directions: Future research might explore adaptive window sliding and dimensionality

reduction techniques, perhaps exploring how these parameters can be dynamically adjusted based
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on changing patterns of application usage. Similarly to the user level, further investigation of hy-

brid and advanced modeling techniques could also provide more nuanced insights into predictive

accuracy and computational efficiency at the application level. Additionally, incorporating real-time

learning and update mechanisms into these models could improve their adaptability and responsive-

ness to evolving application behaviors and requirements.

Studying the sliding parameters of the window at the application level provides a thorough

understanding of how different configurations impact predictive modeling in serverless computing.

It provides a means to enhance these models, guaranteeing they are both feasible and effective in

their predictive abilities.

5.3.5.3 Function-Level Analysis

The function level represents the most granular aspect of serverless computing, focusing on in-

dividual function invocations. This level of analysis, shown in Table 5.4, is essential for fine-tuning

the performance of serverless systems at the most fundamental level. It is crucial to understand

and optimize the invocation patterns of individual functions, which are the fundamental units of

execution in serverless architectures. The comparative analysis includes scenarios with and without

the application of dimensionality reduction, underscored the sensitivity of function invocations to

windowing parameters, with distinct patterns emerging across different configurations.

Without PCA (Table 5.4a): At the function level, the non-PCA model delivers its best per-

formance with an MAE of 12.3496, utilizing a window size (Wz) of 120, step size (S) of 15, and

target window size (Wy) of 30. This setup indicates that, at the function level, a moderately sizeable

historical context with a more considerable step size effectively captures the necessary temporal

information for accurate predictions. The original (Pc) is 4037844 and the reduced data points (P ′c)

is 964653, which reflect the volume of processed data with a notable reduction around 76.10% in-

dicating the efficiency of the windowing parameters chosen to condense the data while preserving

essential information for prediction.

With PCA (Table 5.4b): By implementing PCA at the function level, the optimal window slid-

ing configuration improves the MAE to 11.7049. This performance is achieved with similar window

sliding parameters as the optimal non-PCA configuration, demonstrating that PCA can enhance the
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Table 5.4: Comparative Analysis of Window Sliding Parameters in Invocation Time Series Data at
Function Level

(a) PCA = False

MAE Wz S Wy Pc P ′c

12.3496 120 15 30 4037844 964653
12.5688 120 1 60 58525532 14108133
12.7044 120 1 30 59917892 13300193
13.1069 90 15 60 4037844 964653
13.4316 120 30 60 1995716 524678
13.5113 90 1 60 59917892 13300193
13.6413 120 15 60 3945020 1018527
13.8290 120 30 30 2042128 497655
14.2297 90 15 30 4130668 895434
14.3957 90 1 30 61310252 12259593
14.6203 60 15 60 4130668 895434
14.6787 90 30 60 2042128 497655
14.7083 90 30 30 2088540 462987
15.1948 60 30 60 2088540 462987
15.2487 60 1 60 61310252 12259593
15.7330 60 15 30 4223492 802729
16.2441 60 30 30 2134952 416190
16.6449 60 1 30 62702612 10892928
16.7448 30 15 60 4223492 802729
17.0246 30 30 60 2134952 416190
17.8540 30 1 60 62702612 10892928
19.2159 30 30 30 2181364 354307
19.5070 30 15 30 4316316 683458
21.3097 30 1 30 64094972 9220859

(b) PCA = True

MAE Wz S Wy Pc P ′c

11.7049 120 15 30 4037844 964653
12.1630 120 30 60 1995716 524678
12.6766 120 15 60 3945020 1018527
12.7933 120 30 30 2042128 497655
12.8108 90 15 60 4037844 964653
12.9151 120 1 60 58525532 14108133
13.1676 120 1 30 59917892 13300193
13.6337 90 30 60 2042128 497655
13.6620 90 30 30 2088540 462987
13.9057 90 15 30 4130668 895434
14.0573 90 1 60 59917892 13300193
14.2341 60 30 60 2088540 462987
14.4291 60 15 60 4130668 895434
15.0695 90 1 30 61310252 12259593
15.3295 60 30 30 2134952 416190
15.6768 60 15 30 4223492 802729
15.8668 60 1 60 61310252 12259593
16.4722 30 30 60 2134952 416190
16.6106 30 15 60 4223492 802729
17.4837 60 1 30 62702612 10892928
18.1948 30 1 60 62702612 10892928
18.7374 30 30 30 2181364 354307
19.2839 30 15 30 4316316 683458
21.6151 30 1 30 64094972 9220859

model’s predictive accuracy by concentrating on the most significant aspects of the data. The reduc-

tion in data volume is consistent with the non-PCA configuration, with PCA contributing to a more

manageable and efficient predictive modeling process while ensuring the quality of predictions is

improved.

Implications of Findings: The function-level comparative analysis sheds light on the impor-

tance of carefully selecting window sliding parameters to optimize predictive models in serverless

environments. It demonstrates that larger window sizes can provide more historical context for

predictions, but need to be balanced with the computational costs associated with processing more

extensive data. The application of PCA shows promise in reducing these computational demands

while maintaining or even enhancing predictive accuracy in certain configurations. However, it

also highlights the need to carefully consider the amount of dimensionality reduction to ensure that
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critical information is not lost.

Future Directions: Further research could explore adaptive and dynamic techniques for win-

dow sliding and dimensionality reduction at the function level, tailored to the unique characteristics

and usage patterns of individual serverless functions. Investigating the integration of real-time data

streams and incremental learning approaches could provide more accurate and up-to-date predic-

tions. Such advances would contribute to more responsive and efficient serverless architectures that

are capable of adapting to the evolving demands and behaviors of applications and users.

This function-level analysis is a critical component in understanding and optimizing serverless

computing systems. By providing a nuanced view of the impact of window sliding parameters and

dimensionality reduction techniques, this analysis contributes to the development of more sophisti-

cated and effective predictive models for serverless function invocations.

5.3.5.4 Comparative Summary

The detailed findings from these comparative analyzes provide a wealth of information on the

design and optimization of predictive models in serverless computing environments. At each level

of analysis, as shown in Figures 5.2 and 5.3, the interaction between the windowing parameters

and PCA highlights the multifaceted nature of predictive modeling, where the choice of parameters

significantly influences the effectiveness of the model. Furthermore, the variation in MAE across

different configurations sheds light on the inherent complexities of predicting serverless function

invocations, underscoring the need for tailored approaches that take into account the unique charac-

teristics of user, application, and function behaviors.

The heatmaps presented in Figure 5.2 provide a visual representation of the MAE for a LR

model across different levels of analysis (user, application, and function) with varying window sizes

(Wz), target sizes (Wy), and step sizes (S). The color gradients within the heatmaps range from

blue to red, indicating low to high MAE values, respectively.

At the User level, the heatmaps contrast the effects of window sliding parameters on the MAE

with and without PCA application. The heatmap without PCA shows that the lowest MAE is ob-

tained with a larger Wz and smaller step size, suggesting that capturing finer temporal resolutions is

crucial at this level. The application of PCA, as seen in the corresponding heatmap, generally results
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Figure 5.2: Comparative Heatmaps of Mean Absolute Error for Linear Regression Model: Effects
of Window Size, Target Size, and Step Size Across User, Application, and Function Levels With
and Without PCA.

in lower MAE values across all configurations, demonstrating the effectiveness of dimensionality

reduction in enhancing model performance by filtering out noise and less relevant features. For the

application level, the heatmap without PCA indicates that a larger historical context (larger Wz)

tends to improve prediction accuracy, as lower MAE values are observed. Upon applying PCA, the

heatmap shows an overall improvement in MAE, with the most significant reduction achieved with

a Wz of 120 and a step size of 30. This result highlights PCA’s role in distilling critical features

for improved predictive accuracy. The function level analysis heatmap without PCA suggests that a

balance between Wz and step size is key to accurate predictions, with the lowest MAE recorded for

an intermediate step size of 15. The introduction of PCA leads to an even lower range of MAE val-

ues, reinforcing the premise that dimensionality reduction, which focuses on preserving significant

variance, is beneficial for model accuracy at the function level.

Across all levels, the introduction of PCA consistently enhances model accuracy, as evidenced

by the cooler color tones in the heatmaps. Larger window sizes are typically associated with better

performance, indicating the value of extensive historical data for the predictive models. The step
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Figure 5.3: Comparison of Multi-Level Pattern Analysis using Linear Regression Model: Correla-
tion Between Raw and Filtered Pattern Counts, Mean Absolute Error, and Windowing Parameter
Variations, with and without PCA.

size needs to be optimized to avoid missing critical temporal patterns or failing to capture sufficient

data variability. The heatmaps effectively guide the selection of optimal window sliding parameters

for serverless computing predictive models. They emphasize the trade-off between the capture of

detailed temporal information and the computational gains achieved through dimensionality reduc-

tion techniques such as PCA.
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Figure 5.3 provides a comprehensive comparison of pattern analysis at multiple levels, high-

lighting the correlation between raw (Pc) and filtered (P ′c) pattern counts, MAE, and the variations

in windowing parameters with and without the application of PCA. A critical aspect of this analysis

is the emphasis on reducing pattern counts. The bar graphs illustrate the comparison between raw

pattern counts and filtered pattern counts after redundant patterns are removed. This reduction is

crucial as it directly influences the MAE, with a significant reduction in patterns often correlating

with improved predictive accuracy, as indicated by the line graphs showing the MAE trend.

At the user level, the graphs reveal that without PCA, while there is a substantial reduction

in pattern count, the MAE remains relatively high. With PCA, not only does the pattern count

reduction remain significant, but the MAE also decreases, underscoring PCA role in enhancing per-

formance by focusing on the most informative features. Similarly, application-level graphs demon-

strate a notable reduction in pattern count. It is observed that the application of PCA contributes to

a further reduction in MAE, indicating an efficient balance between data simplification and preser-

vation of predictive quality. At the function level, the reduction in pattern count is consistent with

the other levels, and the impact of PCA is again apparent, with a reduction in MAE, emphasizing

the effectiveness of PCA in yielding a concise yet powerful set of characteristics for prediction.

Line graphs showing window size, target size, and step size variations offer insight into how

different configurations affect the model. A larger window size often results in a lower MAE, but

the optimal configuration also depends on the appropriate combination of target size and step size.

The reduction in pattern count at all levels, particularly when PCA is applied, plays a significant

role in improving the predictive modeling process. This analysis underscores the importance of

careful parameter tuning and the effectiveness of dimensionality reduction techniques in optimizing

serverless computing predictive models.

5.3.6 Model Performance Evaluation

5.3.6.1 Learning Curves

Figure 5.4 presents the learning curves of the LR model’s performance at each analysis level.

These curves are plotted to compare the training and testing MAE, R2 score, and MSE against the
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Figure 5.4: Learning Curves of Linear Regression Model Performance at User, Application, and
Function Levels: Comparison of Training and Testing MAE, R2 Score, and MSE Against the Num-
ber of Patterns.

number of patterns used in the time series data. The time series data for each level has been prepared

based on the best-performing settings, which achieved the lowest MAE based on previous findings,

thus ensuring an optimized learning process.

The learning curves are indicative of the model’s ability to learn from a given number of patterns.

A decrease in MAE and MSE, along with an increase in the R2 score for both the training and the

test data sets as the number of patterns increases, suggests that the model effectively captures the

underlying trends and dynamics of the data. It is evident from the curves that as more data is
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provided, the model’s performance on the test set converges towards its performance on the training

set, which is a desirable trait indicating good generalization.

The windowing operation, an essential feature of time series preprocessing, has been used to

improve the learning process. By systematically selecting the best window configurations for each

level, the model is better able to capture the temporal dependencies and nuances within the data.

This operation improves the learning ability of the model by providing it with a structured format

of input data, which is particularly important for the regression models used in this study.

In summary, the learning curves underscore the importance of careful time series data prepa-

ration and the positive impact of the windowing operation on the model’s learning process. The

convergence of the training and testing curves as the number of patterns increases is a positive sign

that the model is able to generalize well to new data. This finding means that the model is not

overfitting to the training data and can make accurate predictions on unseen data.

5.3.6.2 Performance Comparison of Regression Models on Test Data

We present a detailed evaluation of various regression models on test data at the three distinct

levels. Table 5.5 displays the comparative performance metrics for each model, with a particular

emphasis on the best-performing settings based on the MAE.

At the User level, as shown in Table 5.5a, the KNN model outperforms the others with the lowest

MAE of 19.19, indicating its superior accuracy in capturing user behavior within the serverless

environment. The ETR and RFR models also show commendable performance, with only slight

differences in MAE, MSE, and R2, suggesting their robustness in handling user-level data. The

LR model, while not outperforming the ensemble methods, still maintains a competitive R2 score,

highlighting its effectiveness as a simpler alternative. The DTR model exhibits the highest MAE

and MSE, indicating a relative underperformance in this context.

Moving to the application level, as detailed in Table 5.5b, we observe a similar pattern with

KNN achieving the lowest MAE of 15.02. The ETR and RFR models closely follow, with marginal

differences in MAE and MSE values but comparable R2 scores. The LR model, despite its simplic-

ity, presents a reasonable MAE and R2, underscoring its utility in application-level predictions. The

DTR model, however, shows a notable decrease in performance, reflected by the highest MAE and
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Table 5.5: Evaluation of Regression Models on Test Data: Comparative Performance Metrics

(a) Level = User

Model MAE MSE R2

KNN 19.19 124893 0.9599
ET 19.83 102214 0.9663
RF 20.39 100046 0.9668
LR 21.76 118172 0.9615
DT 26.18 164078 0.9455

(b) Level = Application

Model MAE MSE R2

KNN 15.02 105949 0.9472
ET 15.97 104460 0.9477
RF 16.20 105512 0.9471
LR 17.00 107271 0.9466
DT 21.88 188880 0.9038

(c) Level = Function

Model MAE MSE R2

ET 9.71 41832 0.9615
KNN 9.89 53004 0.9519
RF 10.07 44069 0.9596
LR 11.70 48005 0.9558
DT 12.87 79606 0.9268

the lowest R2 score among the evaluated models.

At the Function level, Table 5.5c indicates that the ETR model secures the best MAE of 9.71,

closely followed by the KNN and RFR models. These models exhibit strong predictive capabilities,

as evidenced by their R2 scores exceeding 0.95. The LR model, while slightly lagging in MAE,

maintains a R2 score above 0.95, suggesting its adequacy for function-level prediction tasks. The

DTR model shows the largest discrepancy in MAE and the lowest R2 score, implying a less precise

fit to the function-level data compared to its counterparts.

For each level, the time series data is meticulously prepared based on the configuration that

achieved the lowest MAE in the comparative analysis of the window sliding parameters. This ap-

proach ensures that the models are evaluated on data that is optimized for their learning algorithms,

providing a fair and rigorous assessment of their predictive performance.

The evaluation of regression models on the test data demonstrates the varying effectiveness

of different modeling approaches at the user, application, and function levels. The use of best-

performing settings for data preparation has proven to be a decisive factor in enhancing model

accuracy, as indicated by the MAE across all levels. The results provide valuable information for

selecting appropriate models for serverless computing environments based on the specific require-

ments of each analytical level.

5.3.6.3 Evaluation of Regression Models Over Time

Table 5.6 provides an aggregated evaluation of the performance of different regressor models,

analyzing the mean score of key metrics over consecutive days. This longitudinal analysis assesses

the stability and reliability of the models at each analysis level.
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Table 5.6: Evaluation of Regressor Performance: Mean Score Analysis of Key Metrics Over Con-
secutive Days

(a) Level = User

Model MAE MSE R2

KNN 21.53 206950 0.9403
ET 21.86 205178 0.9408
LR 22.57 196447 0.9428
RF 23.21 222022 0.9361
DT 29.94 330151 0.9045

(b) Level = Application

Model MAE MSE R2

KNN 17.58 146096 0.9383
ET 18.13 142008 0.9401
LR 18.59 137825 0.9412
RF 19.27 156298 0.9343
DT 25.47 265250 0.8877

(c) Level = Function

Model MAE MSE R2

ET 11.99 85568 0.9401
KNN 12.07 87829 0.9386
RF 12.57 90116 0.9369
LR 12.85 82413 0.9418
DT 15.86 131258 0.9080

At the user level, Table 5.6a shows that the KNN model achieves the lowest mean MAE, indi-

cating its strength to consistently predict user behavior with minimal deviation. The ETR and LR

models closely follow, with slightly higher MAE values but better MSE performance, suggesting

their efficiency in minimizing error across predictions. The RFR model, while exhibiting a higher

MAE and MSE, still maintains a satisfactory R2 score. The DTR model, with the highest MAE and

MSE, shows the most significant variation in the predictions over time.

In the context of the application level, as depicted in Table 5.6b, the KNN model again presents

the lowest mean MAE, endorsing its robustness in application-level predictions. The ETR model

shows comparable performance with a slightly higher MAE but a lower MSE, while the LR model

scores the best in terms of R2, indicating a strong correlation with the observed data. The RFR

model records a modest increase in mean MAE and MSE, and the DTR model ranks last with the

highest mean errors scores, pointing to less consistency in its predictions.

For the function level, detailed in Table 5.6c, the ETR model achieves the lowest mean MAE,

reinforcing its effectiveness in function-level forecasting. KNN and RFR models also perform well,

maintaining mean MAE scores within a close range. The LR model, despite a slightly higher MAE,

attains the best R2 score, suggesting that its predictive accuracy is quite reliable. The DTR model,

as observed at other levels, has the highest mean MAE and MSE, indicating a broader variability in

its daily predictions.

This comparative performance analysis over consecutive days highlights the importance of

model selection based on consistent performance metrics. Although some models excel in certain

metrics, a comprehensive view of all scores is crucial for selecting a model that offers reliability and

consistency in a serverless computing environment.
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Figure 5.5: Daily Performance Trends of Various Regressors at User, Application, and Function
Levels: Comparative Analysis of MAE, R2 Score, and MSE Over a 12-Day Period.

5.3.6.4 Stability Analysis of Regression Models

Figure 5.5 illustrates the daily performance trends of various regression models over a 12 day

period, at the user, application, and function levels. This analysis provides insights into the consis-

tency and variability of model predictions over time, highlighting the reliability of each regression

approach in a dynamic serverless computing environment.

The MAE, R2 score, and MSE for each type of model (ETR, DTR, RFR, KNN, and LR) are
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plotted daily. Trends show the extent to which each model is able to maintain consistency of perfor-

mance on successive days. A stable MAE and a consistently high R2 score are desirable, indicating

that the model’s predictions are accurate and reliable over time. The MSE gives a sense of the pre-

diction error’s variance; lower values denote more precise predictions. For each level, the stability

of the models is crucial for ensuring accurate predictions of serverless function invocations, which

are integral to resource allocation and management within serverless architectures.

The comparative analysis of MAE, R2, and MSE reveals the stability of the daily performance

of the regressors, which informs the selection of the most robust model for each level of analysis.

It is evident that some models exhibit greater variability in their performance metrics, while others

maintain a more consistent trend. This detailed daily performance stability analysis is instrumen-

tal in understanding the temporal dynamics of the model predictions. The findings of this analysis

are critical for determining the drop performance threshold and, accordingly, inform the redevelop-

ment of the model with the recent data for more reliable and stable predictive models in serverless

computing environments.

Figure 5.6 presents a boxplot summary of the daily performance effectiveness of various re-

gressors and metrics over 12 days for each level. Boxplots are utilized to represent the distribution

of the performance metrics, providing insight into the median, interquartile range, and outliers of

each regressor’s performance over the observed period. The central line of each box represents the

median value, while the top and bottom edges indicate the 75th and 25th percentiles, respectively.

Outliers are depicted as individual points beyond the whiskers of the boxplots.

For each level, the boxplots convey the variability and central tendency in MAE, R2, and MSE

for each regressor. The distribution width signifies the stability of the model’s performance. The

narrower boxes suggest consistent performance, while the wider ones indicate variability over days.

The MAE and MSE boxplots help to understand the magnitude and variance of the error, while the

R2 boxplots indicate the consistency of the predictive accuracy of the model. The comparative size

of the boxes and the position of the median line provide an immediate visual cue about the model’s

performance over the examined days. These boxplot summaries are instrumental in evaluating the

daily performance efficacy of regressors. They enable a quick assessment of which models are

more stable and reliable over time, which is paramount for tasks requiring consistent predictive

144



Figure 5.6: Boxplot Summary of Daily Performance Efficacy of Various Regressors Over 12 Days:
Comparing MAE, R2 Score, and MSE Across User, Application, and Function Levels.

performance in a serverless computing environment. They provide a comprehensive overview of

the performance variations and stability of different regression models over consecutive days. This

graphical summary is essential for selecting the most appropriate model based on the specific needs

of user, application, and function levels within serverless architectures.

By synthesizing these insights, the study contributes to a deeper understanding of the dynamics

at play in serverless computing environments. It offers a set of empirically grounded recommen-

dations for practitioners looking to implement predictive models in such settings, emphasizing the

importance of customizing the model configuration to fit the specific needs and constraints of the
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environment. Furthermore, the findings lay a foundation for future research, suggesting areas for

further exploration, such as the development of adaptive models that can dynamically adjust their

configuration in response to changing patterns of usage or the integration of additional data sources

to enrich the predictive capability of the models. As serverless computing continues to evolve, the

insights derived from this comprehensive analysis will play a crucial role in guiding the develop-

ment of more sophisticated, efficient, and accurate predictive models. By continually refining these

models, we can better anticipate and respond to the demands of serverless environments, ultimately

leading to more robust, scalable, and user-responsive computing solutions.

5.4 Conclusion

This study has presented a comprehensive exploration into enhancing the predictability and ef-

ficiency of function invocations in serverless computing environments, and was submitted in [138].

Through a systematic approach employing multi-output regression models, windowing techniques,

and PCA for dimensionality reduction, we have provided valuable insights and methodologies that

push forward the capabilities of serverless computing.

(1) Our multilevel predictive modeling has demonstrated significant potential in understanding

and predicting function invocation patterns across user, application, and function levels. This

granular approach is pivotal for fine-tuning resource allocation and improving operational

efficiency in cloud environments.

(2) The detailed exploration of windowing techniques and the strategic application of PCA have

revealed the importance of optimizing data preprocessing and feature extraction in predic-

tive modeling. Our findings emphasize the balance between maintaining data integrity and

computational efficiency, a critical consideration in large-scale data environments.

(3) The development of a comparative analysis framework and the utilization of a real-world

cloud workload trace have allowed for a thorough evaluation of model performances. This

framework is instrumental in identifying optimal configurations and ensuring that the predic-

tive models are not only theoretically sound but also practically viable.
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(4) Furthermore, the assessment of temporal stability and performance variations of the models

over consecutive days contributes to the reliability and robustness of predictive systems in

serverless computing, addressing a significant challenge in the field.

(5) Lastly, our research has outlined several pathways for future work, encouraging continued

advancements in the predictive modeling of serverless computing workloads.

The contributions of this study are intended to serve as a foundation for future research and

practical applications in serverless computing. We advocate for continued exploration and innova-

tion in this domain, as the accurate prediction of function invocations is paramount in optimizing

cloud resources and enhancing service delivery. As serverless architectures evolve, so too must

the methodologies and tools designed to support them, ensuring that they remain efficient, cost-

effective, and responsive to the needs of diverse applications.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

This thesis represents a comprehensive investigation into the landscape of cloud computing,

with particular emphasis on developing and refining a methodological framework that integrates

advanced clustering and predictive modeling techniques. Throughout this extensive exploration,

crucial insights have been unearthed, and innovative strategies have been devised to enhance the

comprehension and management of cloud workloads and serverless computing environments.

In Chapter 3, we introduced advanced clustering techniques for the workload segmentation

process within cloud data centers, highlighting the unique attributes and suitability of different data

pipelines. Additionally, we presented an advanced concept of ensemble clustering that combines

multiple clustering methods incorporated in various data pipelines for a more comprehensive and

nuanced analysis of cloud workloads. This innovative strategy is particularly pertinent to address

the multifaceted challenges posed by the dynamic nature of cloud environments, ensuring more

efficient and effective monitoring and workload management.

In Chapter 4, we introduced various methodologies and innovations for single-output predictive

modeling within cloud environments. Initially, we presented an advanced multilevel learning model

incorporating anomaly, clustering, and ensemble learning methods to provide high-precision predic-

tion for CPU utilization in cloud data centers. Then, the economic aspects of cloud computing are

explored through a regression-based approach for proactive price predictive modeling, which helps
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navigate the complexities of cloud service pricing models. Finally, we explored the use of combined

imbalance and ensemble learning methods to improve load prediction in cloud computing systems, a

key factor in ensuring efficient resource management in dynamic cloud environments. Collectively,

we provide a better understanding of various predictive modeling methods in cloud data centers and

demonstrate their practical applications.

In Chapter 5, we further expanded the horizon of predictive modeling within the cloud en-

vironment by delving into multi-output prediction for serverless computing. Using multi-output

regression models, windowing techniques, and Principal Component Analysis (PCA) for dimen-

sionality reduction has offered invaluable insights into function invocation patterns at various levels

of analysis. This approach has improved predictive accuracy and emphasized the critical balance

between data integrity and computational efficiency, a cornerstone of large-scale data processing.

The research encompassed in this thesis yields substantial contributions to the field of cloud

computing. Specifically, it provides a robust foundation for both theoretical comprehension and

practical application with respect to optimizing prediction precision in various aspects within cloud

environments. Therefore, the findings presented in this thesis have immense value for professionals,

researchers, and decision makers operating within the cloud domain.

6.2 Future Work

Our forthcoming main task involves the application of a proposed methodological framework

that amalgamates advanced clustering and predictive modeling techniques in practical cloud envi-

ronments. The objective is to predict which actions and resource reconfigurations can be applied

proactively in operational management. Integrating this framework will enable the system to operate

with greater efficiency. However, in the future, several avenues for future research and development

can further augment the contributions of this thesis.

In the context of workload segmentation, a range of ensemble clustering techniques should be

investigated, specifically those that enable the fine-tuning of the preprocessing pipeline to accommo-

date the dynamic nature of cloud workloads. In addition, an in-depth analysis of the practicality of
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deploying the proposed clustering methodology across multiple cloud workloads could yield valu-

able insights into its comprehensive applicability and resilience. This examination would provide a

more nuanced understanding of the clustering approach’s potential to deliver robust and universal

solutions in various cloud environments.

In single-output predictive modeling, future work could improve the proposed models by us-

ing hybrid learning models considering various prediction aspects within the cloud data centers.

Enhancing model robustness and precision is critical to optimizing various cloud workloads. There-

fore, in future work, it is essential also to include diverse datasets from various cloud providers that

can cater to the complexities associated with the dynamic nature of cloud-based workloads.

In multi-output predictive modeling, there is a significant opportunity to expand the prediction

techniques to encompass a broader range of aspects within cloud environments. Investigating the

applicability of the proposed methodologies in different cloud settings beyond the function invoca-

tion in serverless computing would help assess their universal applicability and robustness.

Furthermore, continuous advancements in cloud computing technology necessitate ongoing re-

search to ensure that predictive models and clustering techniques remain efficient, cost-effective,

and responsive to the needs of various applications. It includes technological improvements and a

focus on enhancing the user experience and the economic aspects of cloud computing, such as cost

estimation and resource optimization. In conclusion, this thesis sets the stage for ongoing innova-

tion in cloud computing, encouraging continued exploration and development in this dynamic and

ever-important field. The methodologies and findings presented here are poised to significantly con-

tribute to optimizing cloud resources, ultimately leading to improved business results and customer

experiences in the cloud computing landscape.
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Springer International Publishing, 2022, pp. 75–90, ISBN: 978-3-031-15559-8.

[131] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada: Interactive data analytics on cold data

using serverless cloud infrastructure,” in Proceedings of the 2020 ACM SIGMOD Interna-

tional Conference on Management of Data, ser. SIGMOD ’20, Portland, OR, USA: Asso-

ciation for Computing Machinery, 2020, pp. 115–130, ISBN: 9781450367356. DOI: 10.

1145/3318464.3389758. [Online]. Available: https://doi.org/10.1145/

3318464.3389758.

[132] Y. Yuan, X. Shi, Z. Lei, X. Wang, and X. Zhao, “Smpi: Scalable serverless mpi computing,”

in 2022 IEEE International Performance, Computing, and Communications Conference

(IPCCC), Nov. 2022, pp. 275–282. DOI: 10.1109/IPCCC55026.2022.9894339.

[133] A. Luckow and S. Jha, “Performance characterization and modeling of serverless and hpc

streaming applications,” in 2019 IEEE International Conference on Big Data (Big Data),

Dec. 2019, pp. 5688–5696. DOI: 10.1109/BigData47090.2019.9006530.

[134] B. L. Dalmazo, J. P. Vilela, and M. Curado, “Online traffic prediction in the cloud: A dy-

namic window approach,” in 2014 International Conference on Future Internet of Things

and Cloud, IEEE, 2014, pp. 9–14. DOI: 10.1109/ficloud.2014.12.

[135] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on resource management

in serverless computing environments: Taxonomy and future directions,” Acm Computing

Surveys, vol. 54, pp. 1–36, 11s 2022. DOI: 10.1145/3510412.

[136] D. Senthil and G. Suseendran, “Efficient time series data classification using sliding window

technique based improved association rule mining with enhanced support vector machine,”

167

https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1109/IPCCC55026.2022.9894339
https://doi.org/10.1109/BigData47090.2019.9006530
https://doi.org/10.1109/ficloud.2014.12
https://doi.org/10.1145/3510412


International Journal of Engineering & Technology, vol. 7, no. 3.3, p. 218, 2018. DOI:

10.14419/ijet.v7i2.33.13890.

[137] M. Shahrad, R. Fonseca, I. Goiri, et al., “Serverless in the wild: Characterizing and optimiz-

ing the serverless workload at a large cloud provider,” in 2020 USENIX Annual Technical

Conference (USENIX ATC 20), USENIX Association, Jul. 2020, pp. 205–218, ISBN: 978-

1-939133-14-4. [Online]. Available: https://www.usenix.org/conference/

atc20/presentation/shahrad.

[138] M. Daraghmeh, A. Agarwal, and Y. Jararweh, “Optimizing serverless computing: A com-

parative analysis of multi-output regression models for predictive function invocations,”

Simulation Modelling Practice and Theory (In Review, Submitted in December 2023), 2024.

168

https://doi.org/10.14419/ijet.v7i2.33.13890
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Cloud Computing and the Quest for Efficiency: Overview
	Problem Statement
	Research Motivation
	Research Objectives
	Methodological Framework
	Research Contributions
	Clustering Techniques for Cloud Workload Management
	Single-Output Prediction for Cloud Computing
	Multi-Output Prediction in Serverless Computing

	Thesis Organization

	Background and Literature Review
	Segmentation Strategies in Cloud Workloads
	Conventional Clustering Methods
	Advanced Ensemble Clustering
	Summary

	Predictive Modeling for Cloud Resource Management
	Multilevel Learning-Based CPU Utilization Prediction
	Imbalance and Ensemble Methods in Cloud Load Prediction
	Summary

	Multi-Output Prediction in Serverless Computing
	Overview of Serverless Computing
	Function Invocation in Serverless Computing
	Use of Cloud Workload Traces for Predictive Analysis
	Multi-Output Prediction Models
	Summary


	Advanced Clustering Techniques in Cloud Workload Management
	Dynamic Workload Segmentation based on Multiple Data Pipelines
	Workload Clustering Framework
	Experimental Setup and Evaluation
	Conclusion

	Ensemble Clustering for Multi-Perspective Workload Analysis
	Proposed Ensemble Clustering Approach
	Experimental Setup and Evaluation
	Conclusion


	Enhanced Single-Output Predictive Modeling in Cloud Computing
	A Multilevel Learning Model for Predicting CPU Utilization in Cloud Data Centers
	Initial data preparation
	Detecting and identifying anomalies
	Data Clustering
	Ensemble-based Prediction
	Experimental Setup and Evaluation
	Conclusion

	Regression-Based Approach for Proactive Predictive Modeling of Efficient Cloud Cost Estimation
	Model Design
	Data Preparation
	VM Pricing Model
	Experimental Setup and Evaluation
	Conclusion

	Leveraging Imbalance and Ensemble Learning Methods for Improved Load Prediction in Cloud Computing Systems
	Host Load Characteristics
	Imbalance Learning for Load Prediction
	Ensemble Learning for Load Prediction
	Imbalance and Ensemble Learning based-Load Prediction
	Experimental Setup and Evaluation
	Conclusion


	Innovative Strategies in Multi-Output Predictive Modeling for Serverless Computing
	Introduction
	Methodological Framework
	Analyzing Function Invocation at Different Levels
	Adaptive Optimization Framework for Serverless Time Series Analysis

	Experimental Results and Analysis
	Azure Functions Workload
	Azure Functions Workload Analysis with Multi-Output Regression Models
	Evaluation Metrics
	Experimental Setup
	Comparative Analysis of Window Sliding Parameters
	Model Performance Evaluation

	Conclusion

	Conclusion and Future Work
	Concluding Remarks
	Future Work

	Bibliography



