
Domain Adaptation Methods for Sparse Coding Based

Non-Intrusive Load Monitoring

Skander Chouchene

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Quality Systems Engineering) at

Concordia University

MontrÂeal, QuÂebec, Canada

March 2024

© Skander Chouchene, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Skander Chouchene

Entitled: Domain Adaptation Methods for Sparse Coding Based Non-Intrusive

Load Monitoring

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair and Examiner
Dr. Amr Youssef

Examiner
Dr. Abdessamad Ben Hamza

Supervisor
Dr. Manar Amayri

Supervisor
Dr. Nizar Bouguila

Approved by
Dr. Chun Wang, Chair

Department of Concordia Institute for Information Systems Engi-

neering

2024
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Domain Adaptation Methods for Sparse Coding Based Non-Intrusive Load Monitoring

Skander Chouchene

Energy disaggregation, or Non-Intrusive Load Monitoring (NILM), is a technique that predicts

the consumption levels of individual appliances from only the main signal in the building. Various

methods have been proposed to solve this problem, including sparse coding (SC), which offers great

advantages due to its ability to capture complex patterns in data. However, a challenging aspect of

NILM is that data containing appliance-level information is scarce. Moreover, the houses that the

models are tested on might be from a different population than the training data, thus resulting in a

domain shift. Therefore, we need to develop approaches that are adapted to training data scarcity

through the use of transfer learning (TL), also known as domain adaptation. In this research work,

we explore domain adaptation approaches on SC models with the aim of discriminative energy

disaggregation (DD). We compare 4 methods that employ TL, two of which are deep architectures,

with 4 methods that do not employ it. In the second part of this thesis, we explore constraining

NILM domain adaptation to a privacy-preserving Federated Learning framework. In this case,

the NILM models are being trained in a framework that does not allow data to be shown to any

model outside of the building’s domain. This allows us to experiment with distributed methods in a

more realistic setting, where user data is omitted from any third party. For this task, we propose 4

weighted federated domain adaptation methods. We also experiment with weighting methods that

further protect the privacy of the user, resulting in a total of 12 approaches that we compared.

iii

Acknowledgments

I would like to thank my supervisor Dr. Nizar Bouguila for providing me with the chance to

embark on this research and for providing me with guidance and advice throughout the duration of

my Masters so that I remain on the right track.

I would also like to express my gratitude to my supervisor Dr. Manar Amayri for providing

helpful communication and a rich exchange of research ideas that led to the creation of these con-

tributions.

Thank you both for the encouragement and the academic support.

I would like to thank the Concordia professors whose lectures I attended and the colleagues who

I worked with for the valuable knowledge.

Finally, I would like to express my appreciation to my loved ones. I owe the most to my parents

whom without I would have never reached the place where I am at in my life. They gave up health

and wealth for their children and I hope I keep them proud and healthy. I owe my sister Sarra for

her encouragement, her care and her levelheadedness. I owe my girlfriend Sara for her love, her

affection and for being the best partner in life. I owe my Montreal friends and my Mahdia’s home

base for all the wonderful moments we have passed together and for loving me as I am. I thank God

everyday for your existence.

I am heading somewhere, I do not know what it is but I am excited.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background . 1

1.2 Non-Intrusive Load Monitoring . 2

1.3 Domain Adaptation . 3

1.4 Sparse coding models . 3

1.4.1 Sparse coding . 4

1.4.2 Deep sparse coding . 5

1.5 Contributions . 6

1.6 Thesis Overview . 7

2 Sparse Coding-Based Transfer Learning for Energy Disaggregation 8

2.1 Introduction . 8

2.2 Sparse Coding and Energy Disaggregation . 10

2.2.1 Discriminative Disaggregation using Sparse Coding 10

2.2.2 Adapting Deep SC to NILM data . 11

2.2.3 Variational Sparse Coding for NILM . 12

2.3 Transfer Learning for Sparse Coding . 13

2.3.1 Sparse Coding the Source, Disaggregating the Target 13

v

2.3.2 Transfer Sparse Coding . 14

2.3.3 Transfer Learning for Deep Sparse Coding Architectures 16

2.4 Experimental Setup . 18

2.4.1 Datasets . 18

2.4.2 Preprocessing REFIT . 19

2.4.3 Domain Split Criteria for REFIT houses 19

2.4.4 Preprocessing IRISE . 20

2.4.5 Metrics . 20

2.5 Discussion . 21

2.5.1 Domain Adaptation between REFIT houses 22

2.5.2 Domain Adaptation between REFIT and IRISE 31

3 Weighted Federated Domain Adaptation Methods for Non-Intrusive Load Monitoring 35

3.1 Introduction . 35

3.2 Related Works . 37

3.2.1 Federated Learning in NILM . 37

3.2.2 Federated Domain Adaptation . 38

3.3 Theoretical Background . 39

3.3.1 Federated Learning . 39

3.3.2 Federated Domain Adaptation through weighting 40

3.3.3 Auto-weighting from raw data and from learned representations 45

3.3.4 A summary of all methods used . 46

3.4 Experimental Setup . 46

3.4.1 Datasets . 46

3.4.2 Evaluation Metrics . 46

3.5 Results and Discussion . 47

3.5.1 Overall performance . 48

3.5.2 Appliance-level performance . 50

3.5.3 Sensitivity to sampling frequency . 53

vi

4 Conclusion 57

Appendix A Derivation of the algorithm to solve TSC 60

Appendix B REFIT and Domain Split Criteria 63

Bibliography 65

vii

List of Figures

Figure 2.1 (a) SC step . 12

Figure 2.2 (b) DD step . 12

Figure 2.3 Deep Sparse Coding. 12

Figure 2.4 Spike and Slab distribution. 13

Figure 2.5 Transfer learning for deep networks. 16

Figure 2.6 Non-deep models . 23

Figure 2.7 Deep models . 23

Figure 2.8 EACC distributions. 23

Figure 2.9 Non-deep models . 24

Figure 2.10 Deep models . 24

Figure 2.11 EACC ̸=0 distributions. 24

Figure 2.12 Real and Predicted consumption percentage, REFIT house 6 week 31. . . . 25

Figure 2.13 (a) REFIT house 11, week 0 . 26

Figure 2.14 (b) REFIT house 1, week 6 . 26

Figure 2.15 Real and predicted aggregate signal, TSC+DD method. 26

Figure 2.16 (a) computer tv . 27

Figure 2.17 (b) fridge . 27

Figure 2.18 (c) kitchen appliances . 27

Figure 2.19 (d) washing drying . 27

Figure 2.20 Real and predicted signals of appliance groups, REFIT house 6 week 8. . . 27

Figure 2.21 Real vs predicted noise, REFIT house 1 week 7, TSC+DD method. 29

viii

Figure 2.22 (a) SC+DD . 30

Figure 2.23 (b) SC source, DD target . 30

Figure 2.24 (c) SC target, DD target . 30

Figure 2.25 (d) TSC+DD . 30

Figure 2.26 Basis functions for fridge, week 9. 30

Figure 2.27 Real and predicted aggregate signal for IRISE house 21, week 8, TSC+DD

method. 33

Figure 2.28 (a) washing drying . 33

Figure 2.29 (b) fridge . 33

Figure 2.30 Real and predicted signals of appliance groups for IRISE house 21, week 8,

TSC+DD method. 33

Figure 2.31 Real vs predicted noise, IRISE house 21, week 8, TSC+DD method. 34

Figure 3.1 Federated Learning framework . 40

Figure 3.2 Convergence plots for IRISE house 9. 48

Figure 3.3 Real consumption plot compared to FedAvg and FedkNN autoenc for house

21, week 0 . 53

Figure A.1 F obj . 62

Figure A.2 MMD + GL . 62

Figure A.3 TSC objective function convergence, week 0, fridge. 62

ix

List of Tables

Table 2.1 Model acronyms. 17

Table 2.2 Models by their characteristics. 17

Table 2.3 Signals used in each step of the models. 18

Table 2.4 Houses in the REFIT data splits. 20

Table 2.5 Disaggregation Accuracy per method and model. 22

Table 2.6 Non-Zero Disaggregation Accuracy per method and model. 22

Table 2.7 NRMSE by model. 24

Table 2.8 Accuracy metrics per model for REFIT&IRISE. 31

Table 2.9 NRMSE by model for REFIT&IRISE. 32

Table 3.1 Methods and their specifications . 46

Table 3.2 EACC scores for different methods . 49

Table 3.3 Run times for different methods . 50

Table 3.4 On-Off Accuracy per method and appliance 51

Table 3.5 NRMSE per method and appliance . 52

Table 3.6 On-Off Accuracy per method and appliance - Data sampled every 30 minutes 54

Table 3.7 NRMSE per method and appliance - Data sampled every 30 minutes 55

Table 3.8 On-Off Accuracy per method and appliance - Data sampled every 10 minutes 55

Table 3.9 NRMSE per method and appliance - Data sampled every 10 minutes 56

Table B.1 REFIT House Information. 64

x

Chapter 1

Introduction

1.1 Background

The energy sector is crucial for worldwide industry and economy. Due to the inherent limita-

tions in available energy generation resources, along with current climate changes, the need arises

for well-maintained energy allocation and consumption. Energy consumption prediction is a com-

plex domain that has been rapidly growing in order to keep up with the demand for good energy

management. The ability to obtain trustworthy predictions for energy levels allows for control of

energy and adequate redistribution, as well as visible savings both for the providers of electrical

energy and the users [1].

There are many challenges that accompany energy prediction tasks. In fact, the prediction of

energy consumption levels in real-life settings will run into problems such as data scarcity, inability

to access all possible appliances, and the possibility of infringement of user privacy. A theoretical

approach burdened by so many assumptions can only function up to a certain level of performance

where it can only perform well when a perfect simulated electrical signal is introduced. However,

we want to use energy prediction approaches with as many real-life restrictions as possible. These

restrictions stemming from the challenges mentioned above can be summarized in two major prob-

lems: Domain discrepancy and distributed (or federated) learning.

Domain discrepancy stems from the fact that consumption patterns can differ significantly based

1

on many factors such as geographic location, types of appliances, and even user habits. This dis-

crepancy can pose a threat to the accuracy of prediction especially when there is not enough data,

or when we have datasets that differ in quality and want to use as much information as possible

without biasing our predictions. Distributed learning is sometimes needed because such large scale

experiments cannot be made within one computational node. Pooling data together from multiple

buildings into one server and applying direct transformations on it is not evident. The process can

be costly, complicated and non-compliant with privacy guidelines.

This work is a combination of two research articles, we focus on these two problems related to

energy prediction: Domain discrepancy and distributed learning. We focus on one important energy

prediction task: Non-Intrusive Load Monitoring (NILM), or energy disaggregation. NILM is the

task of predicting the consumption of one appliance (or a group of appliances) based on the total

consumption signal only. We will explore methods of domain adaptation for NILM. We focus on

sparse coding methods which are adapted to the task. We compare methods that minimize stark

differences between datasets. In a second step, we introduce the constraint of user privacy which

lead us to work with federated learning techniques.

In the rest of this chapter, we introduce the main concepts of this work: NILM, domain adapta-

tion and sparse coding; both regular and deep sparse coding. We will introduce federated learning

in Chapter 3. In this chapter, we also summarize the contributions of this work and present an

overview of the thesis.

1.2 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) is the prediction of appliance-level consumption by

looking at the aggregate signal. It is a disaggregation task, where one component of the signal is

inferred from the sum of all signals. In a real-life setting, the aggregate signal contains noise as

well. The label ºnon-intrusiveº comes from the fact that it is not necessary to measure anything

other than what the main energy meter is showing.

2

1.3 Domain Adaptation

Domain Adaptation [2] (or Domain Transfer) is a TL technique that aims to minimize Domain

Shift [3]. Domain Shift occurs when the training data and testing data of an algorithm have the same

feature space but come from different distributions (or domains). This Domain Shift might hinder

the performance of the algorithm, especially when the target domain samples do not have as much

extensive information to be used in a proper training process. In problems related to energy, there

are factors that can lead to domain shift. Data procurement is oftentimes a complicated process

due to privacy issues and operation costs. Moreover, each building has a set of characteristics that

differentiate it from other buildings. This prevents the creation of a dataset that is both prolific and

homogeneous. Therefore, domain shift is relevant to problems related to energy.

Assume we have two datasets that have the same feature space, coming from two different

domains; a Source Domain DS and a Target Domain DT . The training set is composed mostly of

source data. The testing set is composed mostly or entirely of target data. Domain adaptation makes

use of a subset from the target domain to transfer knowledge to the model.

We need domain adaptation in NILM because sometimes we do not have enough data to train

a good model. Therefore, we have to resort to supplementing with other more prolific datasets.

Which, despite their usefulness in terms of providing more information on consumption patterns,

can induce a domain shift with the smaller dataset. In addition, we might want to test NILM models

in new environments where we have a few observations that can help with training. Thus, we might

want to minimize the shift resulting between the original training set and the few observations from

the new target dataset. This is a plausible real-life situation in NILM.

1.4 Sparse coding models

In this section we introduce and formulate the base models upon which we build on in this work.

Sparse coding (SC) will be used only in the first chapter. In both chapters, we will use Deep sparse

coding (DSC).

3

1.4.1 Sparse coding

SC is a single channel source separation approach [4, 5, 6], based on matrix factorization [7].

Consider a dataset X = (x1, ..., xN) ∈ R
F×N where xi is the feature vector of the ith instance.

The dataset contains N samples with F number of features. In our case, the samples will be house

signals, the features will be temporal variables (timestamps of fixed frequency).

SC factorizes X into a product of a basis function (dictionary matrix) B and sparse (activation)

matrix A, B ∈ R
F×H , A ∈ R

H×N , H being the number of hidden representations to be learnt.

The sparsity of the matrix A is ensured by an l1 norm [8] controlled by a regularization parameter

λ called sparsity penalty. SC can be expressed as follows:

min
B,A

{

||X −BA||2F + λ
N
∑

k=1

||ak||1

}

= min
B,A

F (X,B,A)

s.t.||bj ||
2
2 ≤ 1, j = 1, .., H

(1)

The sparsity penalty is applied to each column ak of the matrix A. The constraint applied on the

columns bj of the basis matrix B is a l2 norm designed to prevent the basis matrix elements from

exploding.

A popular variety of SC is Non-Negative SC (NNSC), it includes the constraint

bij > 0, i = 1, .., F ; j = 1, .., H (2)

NNSC is more stable in convergence than unconstrained SC, therefore, we will extensively use

NNSC in our work.

Solving NNSC

Kolter et al. [9] suggested an approach to solve SC problems based on the Feature Sign Search

Algorithm. A simpler and more efficient algorithm (see Algorithm 1) was developed by P. Hoyer

[10], based on a custom update rule for the Sparse Matrix A.

4

Algorithm 1 Algorithm for NNSC.

Input: data points for each individual source Xi ∈ R
T×m, i =

1, ..., k, regularization parameter λ ∈ R, learning rate µ ∈ R.

1: Initialize B0 and A0 to random strictly positive matrices of appropriate dimensions, and rescale

each column of B0 to unit norm. Set t = 0.

2: repeat

3: B′ ← Bt − µ(BtAt −X)(At)T

4: Set any negative values in B′ to zero

5: Rescale each column of B′ to unit norm, and then set Bt+1 = B′

6: At+1 ← At ⊙

(

(Bt+1)TX

(Bt+1)TBt+1At + λ

)

7: Increment t

8: until convergence

1.4.2 Deep sparse coding

For our work we chose Deep Sparse Coding (DSC) to disaggregate each appliance signal. A

DSC model can have different architectures [11, 12]. These architectures aim to generate data

representations capable of capturing patterns within data while maintaining sparsity.

For our work, we chose to implement a sparse auto-encoder. The model learns two functions;

the first function, called encoder, encodes the aggregate signal and outputs a sparsely coded repre-

sentation. The second function is a decoder which outputs a signal that approximates the appliance

signal. Therefore, each appliance will have its own corresponding DSC model instance with its own

parameters.

The model learns the encoder and decoder functions by solving the following problem:

Total Loss = ∥fdec(fenc(X))− Y ∥2 + λ · ∥fenc(X)∥1 (3)

In the equation above, X corresponds to the aggregate signal. Y is the appliance signal. fenc is the

encoder function, fdec is the decoder function. The first term is the reconstruction term. It aims to

learn the parameters of the model function so that the decoded signal fdec(fenc(X)) resembles the

5

appliance signal Y . The second term is the sparsity term, it imposes sparsity on the learned encoder

representation. The point of sparsity is to first regularize the learning process and avoid overfitting.

It also brings out patterns within data [12]. The sparsity penalty λ controls the level of sparsity in

the encoded layer of the network.

We chose the f function to be a convolution, and g to be a transpose convolution (deconvolu-

tion) which brings the encoded representation back to its original dimensionality. The reason behind

choosing a convolution as the encoder is that convolutions are really good at capturing spatial pat-

terns especially in images [13], therefore they are adequate for representing the high level features

in consumption signals.

1.5 Contributions

This research has several contributions, listed as follows:

• Sparse Coding-Based Transfer Learning for Energy Disaggregation: In this research,

four TL based methods are tested. One method is called Transfer Sparse Coding ºTSCº. The

method uses a sparse coding technique that incorporates two domain discrepancy measures;

Maximum Mean Discrepancy ºMMDº and Graph Laplacian Regularization ºGLº. This is

the first implementation of this method in NILM. We also proposed different approaches

of applying sparse coding by introducing the target data at different stages of the training

process. We also tested on multiple domain shifts. The first domain shift is within the source

data REFIT only. We split the data based on multiple domain shift criteria resulting in domain

with relatively small shifts based on differences within the REFIT data itself. Then we test

domain adaptation on a greater domain shift by adaptation between REFIT and IRISE datasets

which contain more discrepancies than just within REFIT.

• Weighted Federated Domain Adaptation Methods for Non-Intrusive Load Monitoring:

In this research, we add the constraint of user privacy to NILM domain adaptation. The model

housed within a central server cannot access the data of each house, only certain parameters

that do not compromise user privacy. We propose 4 weighted domain adaptation methods to

tackle this constraint along with the domain adaptation task. We apply the FedDA method

6

[14] to a real-life energy consumption dataset. We propose a FedRBF method that computes

local model weights based on their RBF similarity. We also propose a federated Maximum

Mean Discrepancy (MMD) method that is simpler than the available methods in the literature.

Finally, we propose a method called FedkNN based on k-Nearest Neighbors which exploits

the geometric properties of data domains to determine the weights. Throughout different

weight estimation schemes, we estimate the local model weights based on the learned data

representation obtained through training the data locally. A similar method was applied before

in [15] but it was applied at once in a concatenated source domain data but never in the case

of totally distributed data in which all samples are trained on their own. We also experiment

with the re-estimation of sample contributions after each training round.

1.6 Thesis Overview

• In chapter 1, we introduce the task of domain adaptation in NILM. We explain domain adap-

tation and introduce the base models that will be further developed in this work: sparse coding

and deep sparse coding. We also outline the contributions of this work.

• In chapter 2, we propose methods of domain adpatation using sparse coding in NILM.

• In chapter 3, we present federated learning and propose methods of weighted domain adapta-

tion applied to deep sparse coding that operate within a federated learning framework.

• In conclusion, we briefly summarize our contributions.

7

Chapter 2

Sparse Coding-Based Transfer Learning

for Energy Disaggregation

2.1 Introduction

Energy is a sector that is crucial in the modern world. It is estimated that electricity consump-

tion will increase by 50% from 2021 to 2040 [16]. With such growth, it is important to gain a better

understanding of the energy consumption behaviours and characteristics. This allows for the opti-

mization of energy consumption, which helps curb inefficient energy usage and leads to significant

energy savings [1].

An important aspect of energy consumption analysis is energy disaggregation. The process aims

to bypass the costly and invasive load monitoring process [17] by extracting individual appliance

consumption based on the aggregate consumption of the building [18]. This method provides a

prediction of appliance-level behaviour without having to measure the appliance directly, thus the

ºnon-intrusiveº label.

Many machine learning algorithms have been applied for the purpose of NILM. A special em-

phasis was put on methods that extract hidden features within the data. Akbar et al. applied two

methods leveraging deep temporal convolutional networks in [19] and [20] and applied them on

NILM data to leverage the ability of convolutional networks to extract complex patterns in the data.

Sparse coding has been one of the algorithms applied for the purpose of extracting complex features

8

in the data. Thanks to the high level features created by the factorization in SC, researchers were

able to map complex energy consumption features to higher dimensions. Kolter et al. [9] developed

a two-step approach that applies SC to DD, called DDSC, and found that it improves on regular SC.

Elhamifar & Sastry [21] proposed a technique that represents appliance consumption patterns using

dynamical systems and uses those patterns to create dictionaries that are used for DDSC. Singh

& Majumdar [22] developed an approach based on SC that uses less training samples. Singh &

Majumdar [23] also proposed a deep network based on SC and showed that it outperforms DDSC.

Along with regular Sparse Coding, the rise of deep learning models in NILM [24, 25, 26] has

allowed for further extension of SC to the learning of deeper sparse representations of energy con-

sumption data. Singh & Majumdar [23] applied a variation of SC in a neural network framework

on REDD and Pecan Street datasets, showing that their proposed model performs better than the

state-of-the-art models. Overall, the application of SC in energy disaggregation based algorithms

has been promising.

A particular challenge of NILM is the scarcity of appliance-level data required to train any

model [27]; the access to aggregate-level consumption is easier than appliance-level data. This

scarcity will result in a training domain that has a shift with the testing house domain, since the

subset of houses that has extensive data is smaller and most likely different than any new house

that will be introduced. In this context, we believe TL has the potential to provide further learning

opportunities for the models. In fact, D’Incecco & Squartini [28] tested appliance TL and cross-

domain TL on energy disaggregation datasets and provided a possible improvement of the model’s

performance. Nevertheless, the addition of TL to NILM models is still a new direction in NILM,

with the notable applications being only to deep neural networks [4]. In fact, [29] argues that the

transferability of the models used in NILM for real deployments remains a challenge in the field.

In this chapter, we will propose SC based methods that are applied to NILM with domain adap-

tation being used to address the discrepancies between datasets.

9

2.2 Sparse Coding and Energy Disaggregation

After having indtroduced SC and DSC in the first chapter1.4. In this section, we will then detail

how we adapt SC to energy disaggregation. After that, we will introduce two deep learning models

based on DSC.

2.2.1 Discriminative Disaggregation using Sparse Coding

Kolter et al. [9] argue that the problem of using SC alone in energy disaggregation is that the

bases are trained to best represent the appliance-level signals alone. The basis functions are not

trained to minimize the gap between the predicted and the real aggregate signal. The aggregate

signal is not equal to the sum of the provided appliance signals, for a multitude of reasons including

unavailable appliance data and noise. Therefore, we need more training based on the aggregate

signal to produce basis functions and activations that are better suited for the disaggregation task.

To produce basis functions and activations that are suited for disaggregation, we need to repre-

sent appliance signals whose sum is as close to the aggregate signal as possible.

Disaggregation Objective

After applying SC to find Ai and Bi for each of the appliance classes, we can disaggregate a

new aggregate signal without having to include its appliance signals. We concatenate the bases and

activations, and solve the following optimization problem:

min
B1:k,A1:k≥0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

X̄ − [B1...Bk]

A1

.

.

.

Ak

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

F

+ λ
∑

i,p,q

(Ai)pq

or

min
B1:k,A1:k≥0

F (X̄, B1:k, A1:k)

(4)

10

A1:k is shorthand for A1, ..., Ak, the vertically stacked activation matrix. Similarly, B1:k is the hori-

zontally stacked basis matrix. We also abbreviate the optimization objective function as F (X̄, B
1:k,A1:k).

We then predict the ith appliance of the signal to be X̂i = BiÂi

Solving DDSC

According to Kolter et al. [9], we can solve the DD step using the following iterative algorithm:

Algorithm 2 Algorithm for DD.

Input: Aggregate signal , SC output (Ai, Bi), i = 1, ..., k, learning rate α ∈ R

DD training:

1: SetA∗
1:k ← A1:k, B̃1:k ← B1:k

2: repeat

3: Â1:k ←A1:k≥0 F (X̄, B̃1:k, A1:k)

4: B̃ ← B̃ − α
((

X̄ − B̃Â
)

ÂT −
(

X̄ − B̃A∗
)

(A∗)T
)

5: ∀i, j, bji ←
[

bji

]

+
/||bji ||2

6: until convergence

Given aggregated test examples X̄ ′:

6: Â′
1:k ←A1:k≥0 F (X̄ ′, B̃1:k, A1:k)

7: Predict X̂ ′
i = BiÂ

′
i

The algorithm is based on structured prediction methods [30]. It alternates between the optimization

of the stacked bases and activations. The optimization of A1:k aims to obtain the activations that

best suit the current bases. The optimization of B1:k uses a structured perceptron algorithm [31],

followed by the rescaling of the matrix and the application of a positivity constraint.

2.2.2 Adapting Deep SC to NILM data

To adapt Deep SC to DD, we proceed in two steps:

• SC step: We input the appliance signal and train the model to output the same appliance

signal.

• DD step: After having obtained sparse representations of the appliance signal at the encoder

11

output level of the model, we transfer the model weights to a new model, we freeze the

encoder layers and try to recreate the appliance signal using the aggregate signal.

This adaptation is shown in Fig. 2.3.

Figure 2.1: (a) SC step

Figure 2.2: (b) DD step

Figure 2.3: Deep Sparse Coding.

2.2.3 Variational Sparse Coding for NILM

Similar to DSC, Variational Sparse Coding (VSC) is based on an auto-encoder. The difference

is that the coded information from the encoder output is sampled from a spike-and-slab distribution

[32]. A spike-and-slab distribution, as seen in Fig.2.4 is defined using two variables; a binary spike

variable and a continuous slab variable [33]. The spike variable is either one or zero and the slab

12

variable has a distribution which is either a Gaussian or a Delta function centered at zero, condi-

tioned on whether the spike variable is one or zero respectively. The point behind this distribution is

that it enforces sparsity. The spike aspect of the distribution will tend to place most of the instances

around zero.

Figure 2.4: Spike and Slab distribution.

2.3 Transfer Learning for Sparse Coding

In this section, we will detail the TL processes and components that will be added to the models

mentioned in Section II. We will begin by introducing Domain Adaptation.

2.3.1 Sparse Coding the Source, Disaggregating the Target

The first TL method we suggested was to perform SC only on the source data, therefore obtain-

ing basis functions that only represent appliance-level data from the source domain. In a second

step, we use only the aggregate signal from a subset from the target domain.

The rationale behind this approach in our context is the assumption that houses from the target

domain do not have extensive appliance-level data. Therefore we will only be using the more

accessible aggregate signal to perform the basis adjustment so that it matches target domain data.

Going forward, we will abbreviate this method to ºSC source, DD targetº.

13

2.3.2 Transfer Sparse Coding

Transfer Sparse Coding (TSC) [34] is an approach that is trained on a mixture of source and

target data. TSC uses additional terms to penalize distribution shift. In our case, we use Maximum

Mean Discrepancy (MMD) and Graph Laplacian Regularization (GL).

Maximum Mean Discrepancy

MMD calculates the distance between the instance means of the sparse code representations

from the domains DS and DT [35]. The minimization of MMD implies the minimization of the

distance between the distributions. The MMD formula is shown as follows:

MMD = ||
1

NS

NS
∑

i=1

ai −
1

NT

NT
∑

j=1

aj ||
2
2 = Tr(ASAT) (5)

Where NS is the number of samples from the source domain and NT is the number of samples from

the target domain.

The S matrix is defined as:

Sij =

1
N2

S

if ai, aj ∈ DS

1
N2

T

if ai, aj ∈ DT

− 1
NSNT

otherwise

(6)

Graph Laplacian Regularization

GL [36] conserves the essential geometric properties of the data distribution from both domains.

In simpler terms, samples that were geometrically close in the initial space will remain close after

encoding them. To define the GL term, we start by defining the k-Nearest Neighbor Graph matrix

K of dimensions (NS +NT)x(NS +NT), where each element:

kij =

1 if ai is k-nearest neighbor of aj

0 otherwise

(7)

14

We also define:

L = diag(l1, .., lNS+NT
) (8)

where li =
∑NS+NT

j=1 kij The GL matrix is defined as U = L−K, the GL penalty term is:

GL = Tr(AUAT) (9)

TSC objective

Combining both MMD and GL, we are able to create a regularization term S̃ = αS + βU ,

where α and β are hyperparameters that determine the weight of each penalty.

Tr(AS̃AT) = Tr(A(αS + βU)AT) (10)

Finally, the TSC objective function is as follows:

min
B,A

{

||X −BA||2F + λ

N
∑

k=1

||ak||1 + Tr(AS̃AT)

}

or

min
B,A

Ftsc(X,B,A)

s.t.||bj ||
2 ≤ 1, j = 1, .., H

(11)

Solving TSC

We propose a heuristic extension to the algorithm proposed by Hoyer [10] to be able to solve

TSC problems. The formulation and convergence of the new heuristic are provided in Appendix A.

The heuristic algorithm for solving Non-Negative TSC (NNTSC) is shown below:

15

Algorithm 3 Algorithm for NNTSC.

1: Initialize B0 and A0 to random strictly positive matrices of appropriate dimensions, and rescale

each column of B0 to unit norm. Set t = 0.

2: repeat

3: B′ ← Bt − µ(BtAt −X)(At)T

4: Set any negative values in B′ to zero

5: Rescale each column of B′ to unit norm, and then set Bt+1 = B′

6: At+1 ← At ⊙

(Bt+1)TX

(Bt+1)TBt+1At + λ+A
(

S̃ + S̃T
)

7: Increment t

8: until convergence

2.3.3 Transfer Learning for Deep Sparse Coding Architectures

For the deep learning models, we will apply TL by initially training the model on the source

data, then we will freeze the first layer of the encoder and further train on the target data. Thus, we

obtain two additional models; Transfer Deep Spare Coding (TDSC) and Transfer Variational Sparse

Coding (TVSC).

Figure 2.5: Transfer learning for deep networks.

To summarize, we will use 4 non-deep models and 4 deep learning models, which we present

16

in Table 2.1

Description Model

NNSC+DD on a mix of source and target SC+DD

NN-TSC+DD on a mix of source and target TSC+DD / Transfer SC+DD

SC on source, TL by applying DD to target SC source, DD target

NNSC+DD on target only SC target, DD target

Deep SC DSC

Transfer Deep SC TDSC

Variational SC VSC

Transfer Variational SC TVSC

Table 2.1: Model acronyms.

We show the categorization of these models in Table 2.2.

No TL TL

Non-deep

model

ºSC target, DD targetº ºSC source, DD targetº

SC+DD TSC+DD

Deep learning

model

DSC, VSC TDSC, TVSC

Table 2.2: Models by their characteristics.

Finally, Table 2.3 contains the signals used in each step of the TL models.

17

Non-deep Model SC step DD step

TSC+DD Appliance signals, all data Aggregate signal, all data

SC source, DD target Appliance signals, source

data

Aggregate signal, target

data

TDSC Appliance & aggregate

signals from source THEN

appliance & aggregate

signals from target

Appliance & aggregate

signals from target

TVSC Appliance & aggregate

signals from source THEN

appliance & aggregate

signals from target

Appliance & aggregate

signals from target

Table 2.3: Signals used in each step of the models.

2.4 Experimental Setup

2.4.1 Datasets

For this work, we used the REFIT dataset, which was collected from 20 houses from the Lough-

borough region in England, between 2013 and 2015 [37]. We also used IRISE [38] dataset in a

second step.

We aim to test TL on two different domain setups. The first setup is using only REFIT data. We

split the houses into a source and target domain based on certain criteria that differentiate the houses,

then we test the transferability of SC from REFIT source houses to REFIT target houses. Secondly,

we test the transferability of the model from REFIT houses to IRISE houses. In this second case,

the REFIT dataset is the source domain, the IRISE dataset is the target domain. This two framework

approach was used in [39] to compare domain adaptation within and across datasets.

Due to the low number of houses, we only split the data into a train and test set only. The

training set contains either source houses or target houses a mix of both, the testing set is solely

18

made of target houses. We will fine tune the models to provide the best result for the test set.

2.4.2 Preprocessing REFIT

We processed the REFIT dataset to produce a form that is suitable for our task. We began by

removing the houses that did not have as many appliances in common with the others. This reduced

the number of houses from 20 to 18. Then, we took the first reading of each hour and kept only the

timestamps that are shared between the houses. This leaves us with a total of 35 total weeks that

exist between June 2014 and May 2015.

The next step is to group similar appliances together. Based on the information provided by the

REFIT documentation, we created four appliance categories:

• Fridge: Refrigerator, freezer, Chest freezer...

• computer tv: Desktop computer, TV setup, Computer monitor...

• kitchen appliances: Dehumidifier, Toaster...

• washing drying: Washer, Dryer, Dishwasher...

By the end of the preprocessing step, we have 35 different datasets, each representing one week

of consumption. For each week, we have the same 18 houses with 168 timestamps each. Each

timestamp is the first reading of each hour in the week. Each weekly dataset has one aggregate data

matrix and several appliance consumption matrices. Each matrix contains consumption for a set

of houses taken from the source and target domains. Due to the costly computational needs of the

models, we will perform hyperparameter optimization on a small set of potential values for each

parameter.

We split REFIT houses into source and target domains based om three criteria.

2.4.3 Domain Split Criteria for REFIT houses

To explore TL effects on REFIT houses, we need to perform a split based on differences between

the houses. We chose three different criteria:

• Clusters based on consumption

19

Criterion

\Data split

source houses target houses -

train

target houses - test

Consumption

clustering
21,3,10,5,7, 2,15,18,19,4 21,1,11,6,17

16,8,9

Total owned
appliances

2,3,7,9,11, 1,4,5,6 8,10,16,18,20

15,17,19,21

House
occupancy

1,3,4,6,8,9,11, 2,5,7,10 16,17,19,21

15,18,20

Table 2.4: Houses in the REFIT data splits.

• Total owned appliances in the house, regardless of whether they figure in the data [37]

• House occupancy: Number of people living in the house [37]

We show the houses in the different datasets in Table 2.4. We also further explain the domain

split criteria in Appendix B.

2.4.4 Preprocessing IRISE

The IRISE dataset contains data for 15 houses from January 1998 to April 1999, which totals

46 weeks in common between all houses in the dataset. We first filter the IRISE timestamps to only

show hourly consumption, similar to REFIT. Then we only keep the houses with the most common

appliance categories with as many REFIT houses as possible. We end up with 7 houses that contains

appliances that pertain to the following groups: Fridge, Washer Dryers, TV and Kitchen Appliances.

As previously mentioned, we will test the models on the REFIT dataset houses only, to explore

the effect of TL when the domain shift is relatively small. Then we will apply TL from REFIT

houses to IRISE houses, to explore the effect of TL when the domain shift is significant.

2.4.5 Metrics

The main metric used to measure the performance of a disaggregation model is the Disaggre-

gation Accuracy [40]. This metric is originally referred to as ºtotal energy correctly assignedº, or

ºEstimation Accuracyº (EACC) [4] defined as:

EAcc = 1−

∑T
t=1

∑n
i=1 |ŷ

(i)
t − y

(i)
t |

2
∑T

t=1 ȳt
(12)

20

ŷ
(i)
t is the predicted signal of the ith appliance group at time t. In the denominator, the aggregate

signal is accounted for twice to match the double counting of the errors by the absolute value in the

numerator.

Despite the total energy correctly assigned EACC being a good metric, it encounters a problem

with appliances that are mostly off. If a model outputs a null signal all the time, the EACC will be

an overestimation of the true performance of the model.

A new metric that we propose is Non-Zero Disaggregation Accuracy (EACC ̸=0). This metric

has the same formula of the accuracy mentioned above, but we only apply it for timestamps where

the appliance signal is non-zero. This constraint will eliminate the overestimation of disaggrega-

tion accuracy. It will also indicate the performance of the disaggregation model strictly when the

appliance is working.

EACC ̸=0 = 1−

∑T
t=1

∑n
i=1

(

|ŷ
(i)
t − y

(i)
t | if y

(i)
t ̸= 0 else 0

)

2
∑T

t=1 ȳt
(13)

Another metric that we will use is Normalized Root Mean Squared Error (NRMSE) to measure

the performance of the model for each appliance group. NRMSE compares the error between the

real and the disaggregated signals to the scale of the real signal.

NRMSE =

√

1
n

∑n
i=1(yi − ŷi)2

∥y∥2
(14)

2.5 Discussion

In this section, we will present the results of all the models presented in sections II and III. We

will start by viewing their performance metrics. Then, we will delve deeper into the qualitative

aspect behind their performance. We start with testing TL on REFIT data houses only, then we test

for the case of TL between REFIT and IRISE datasets.

21

2.5.1 Domain Adaptation between REFIT houses

Model accuracies and errors

Using the accuracy, averaged out over all testing houses and all weeks, we obtain the results in

table 2.5.

Model\Method Consumption clustering Total Owned Appliances Occupancy

SC+DD 49.5% 52% 49.3%

SC source, DD target 54.8% 53.4% 53.7%

SC target, DD target 53.6% 53.9% 53.8%

TSC+DD 50.1% 51.7% 49.1%

DSC 81.5% 79.6% 84.0%

Transfer DSC 81.5% 79.6% 84.0%

VSC 81.4% 79.6% 84.0%

Transfer VSC 67.8% 76.0% 74.8%

Table 2.5: Disaggregation Accuracy per method and model.

Model\Method Consumption clustering Total Owned Appliances Occupancy

SC+DD 70.5% 69% 60.3%

SC source, DD target 71.2% 68.7% 60.3%

SC target, DD target 70.4% 68.9% 62.3%

TSC+DD 70.3% 69.2% 60.2%

DSC 81.6% 79.6% 67.3%

Transfer DSC 81.6% 79.6% 67.3%

VSC 81.6% 79.6% 67.3%

Transfer VSC 75.8% 78.6% 64.8%

Table 2.6: Non-Zero Disaggregation Accuracy per method and model.

Looking at EACC averages in table 2.5, we can see a clear divide between deep learning SC

models and the regular non-deep architectures. This divide can be attributed to the complex power

of deep learning. However, as we mentioned in Section 2.4.5 the EACC metric might be misleading.

Since a model that always outputs zero will have a strangely high accuracy. Looking at the EACCe ̸=0

in table 2.6, we see that the deep learning models still perform better than the non-deep models.

However, the gap is smaller.

Due to the accuracy divide between non-deep and deep models, we will analyse each group of

models on its own. We will compare each non-deep model only to non-deep models, idem for deep

models.

22

We now look at the effect of TL. For the non-deep models, we can see that employing TL, seen

in ºSC source, DD targetº and TSC+DD, yields similar results to models where transfer was not

employed (SC+DD and ºSC target, DD targetº). This calls into question the need for Transfer SC.

In the case of ºSC source, DD targetº, the model performs better than all other non-deep models.

This shows that employing the target data in the DD step improves the model’s performance.

For deep learning models, we can see that their performances are similar as well. The only ex-

ception is TVSC which always have a lower average EACC . The accuracy is not improved using the

EACC ̸=0 metric, meaning that the performance of deep learning models is consistent regardless of

the appliance state. The only exception is found when looking at the data split by the ºOccupancyº

criterion.

When it comes to domain split criteria, ºConsumption Clusteringº provides the best EACC ̸=0

in almost all of the cases. While for data split based on number of occupants, we have the worst

EACC ̸=0 while also having a misleading higher deep learning EACC in table 2.5.

Therefore we will continue onward with ºConsumption Clusteringº as the best possible criterion

for domain split.

Figure 2.6: Non-deep models Figure 2.7: Deep models

Figure 2.8: EACC distributions.

Other than the average accuracy, we can also take a look at the distribution of accuracy through-

out the 35 weeks. As we can see in Fig. 2.8 and Fig. 2.11, there is a big overlap between the

non-deep models (respectively for deep models between each other). This means that the perfor-

mance is similar not only on an average level; it suggests that there is a statistical significance to

the similarity of performance between the non-deep models. Also, we can see that for each model,

23

Figure 2.9: Non-deep models Figure 2.10: Deep models

Figure 2.11: EACC ̸=0 distributions.

each week’s accuracy does not fall far from the average.

For the deep models, the results between DSC, TDSC and VSC are so similar that their distribu-

tions are indistinguishable in the plot. The only exception to this is TVSC where in some weeks the

accuracy is significantly lower than average, which in itself explains the low EACC average found

in table 2.5.

We also take a look at more particular appliance-level performance by displaying the NRMSE

of the models.

Model\Appliance Group fridge washing drying computer tv kitchen appliances

SC+DD 8.9% 7.1% 6.2% 5.5%

SC source, DD target 8.4% 6.6% 7.8% 5.3%

SC target, DD target 8.1% 6.5% 6.5% 5.6%

TSC+DD 8.5% 6.9% 7.7% 5.4%

DSC 4.0% 4.6% 3.9% 4.1%

Transfer DSC 4.0% 4.6% 3.9% 4.1%

VSC 4.0% 4.6% 3.9% 4.1%

Transfer VSC 4.0% 4.6% 4.5% 4.2%

Table 2.7: NRMSE by model.

We see that the models yield a predicted signal with a very low error rate compared to the signal

itself, between 3.9% and 8.9%. For non-deep models, the result differs based on the appliance

category. For all the categories except for ºkitchen appliancesº, ºSC target, DD targetº yields the

lowest error. For deep models, we see that the alternation of the methods does not seem to drastically

change the NRMSE. However, TVSC performs worse for the category ºcomputer tvº. The lower

accuracy illustrated in the Tables 2.5 and 2.6 are due to worse performance in that category.

24

Figure 2.12: Real and Predicted consumption percentage, REFIT house 6 week 31.

We also experimented with changing the size of the target data. But due to the small sample

size, we did not obtain drastically different results. With a bigger dataset that has more harmonized

house consumption data, we might be able to observe relevant results.

Consumption composition

Consumption pie charts offer a high-level look at the performance of the models. We compare

the non-deep models to the real consumption portions. We can see from Fig. 2.12 that the best

models overall are SC+DD and TSC+DD. This can be due to the usage of both source and target

data in both the SC step and the DD step. Using only target data to perform the DD step causes the

model to underestimate appliance consumption percentage. Thus, we obtain the overestimation of

the noise as well.

In this subsection, we evaluated the models on an aggregate level. We saw how adequate the

signal reconstruction was, based on EACC , EACC ̸=0, and NRMSE. We found that there is a

divide between non-deep models and deep-models. Within each group of models, we found a

similar performance. For non-deep models, SC+DD and TSC+DD performed similarly. This calls

into question the benefit of using of the TL components in SC (MMD+GL). ºSC source, DD targetº

is the best non-deep model, which implies that using the target data only for the DD step yields

better adjusted representations. For deep learning models, we also found a similar performance.

25

We also looked at the overall consumption percentages, represented by pie charts, and found

that including more data gives a better idea about the overall consumption for test houses.

Due to the abundance of models, we will henceforth only focus on non-deep models, due to

their better explainability. All the plots for all the models are shared in our GitHub repository.

Re-creation of signals

Since the non-deep models are similar, for the plots that will follow, we will focus extensively on

one TL model, TSC+DD; where we used Transfer SC to extract sparse representations of data that

are also minimize the domain shift and then we applied the DD step on the those representations.

We will see the effect of using a TL component on a SC model.

Figure 2.13: (a) REFIT house 11, week 0

Figure 2.14: (b) REFIT house 1, week 6

Figure 2.15: Real and predicted aggregate signal, TSC+DD method.

We start by looking at how well the model is able to recreate the original aggregate signal. In

Fig. 2.15, we show a comparison between the real and predicted aggregate signal for two different

houses in Week 6. We can see that for House 11, the model was able to recreate many behaviours

of the signal. It seems to follow the general trends of the signal. However, for House 1, it seems

to fail most of the time, and it produces a signal that cannot replicate the instantaneous peaks of

26

the original one. This suggests that the model might have a problem when it comes to sporadic and

rough signal changes.

Figure 2.16: (a) computer tv

Figure 2.17: (b) fridge

Figure 2.18: (c) kitchen appliances

Figure 2.19: (d) washing drying

Figure 2.20: Real and predicted signals of appliance groups, REFIT house 6 week 8.

To explore this further, we look at how well the model is able to recreate the appliance-group

signals. In Fig. 2.20, we show 4 plots for the same house House 6 for Week 8. We can see that the

model was able to recreate ºcomputer tvº signal quite well, while for ºkitchen appliancesº, where

27

the signal is mostly stagnant with rare rough peaks, the model fails. This behaviour confirms the

assumption that was made in the previous paragraph about the aggregate signal, where the model

was able to recreate signals that had recurrent and obvious patterns better than the signals that were

sporadic.

The justification behind this might be the fact that having few and far between signals will not

provide the model with enough information to capture the behaviour of the signal. We can also look

at the predictions for ºwashing dryingº which behave in a similar way to ºkitchen appliancesº. Due

to the sporadic nature of this category (washers, dryers and dishwashers are rarely used compared

to other appliances), the model suffers when trying to predict their behaviour.

For ºfridgeº, the model seems to follow the general noisy trend of the signal. However, it seems

like this noisy nature negatively affects the model.

This particular weakness of the model might be due to not using the temporal patterns of the

signals. This can be addressed in a future work by combining SC approaches with Pattern Matching

(PM) methods [4] such as Dynamic Time Warping (DTW) [41] and Minimum Variance Matching

(MVM) [41]. PM approaches add of a component that aligns the predicted appliance signal patterns

with the aggregate signal, resulting in better fit sparse representations of appliances. We can also

apply an auto-regressive correction to the sparse codes using the original signal, so that the sparse

codes also represent the temporal dependencies within the signal.

Another signal that can be of interest is the noise signal; the remainder of the aggregate signal

that remains unclassified. We also plot the predicted noise vs. the real noise. We can see in

Fig. 2.21 that the model accurately predicts the noise signal. There are just a few incorrect peaks,

these are likely due to the algorithm missing a few once-in-a-while signals like a washing machine.

Nevertheless, this accurate noise representation implies the success of the DD step, which further

aligns the basis functions and their activations to represent the appliance-group signals in the context

of an aggregate signal.

In this subsection, we explored how the non-deep models recreate the original aggregate signal,

the appliance signals and the noise signal. Since the models were similar in accuracy, we decided

to show only TSC+DD as an example. We found that the model performed better with signals that

have a more continual pattern of consumption. The model performs worse with appliance groups

28

Figure 2.21: Real vs predicted noise, REFIT house 1 week 7, TSC+DD method.

like ºkitchen appliancesº and ºwashing dryingº that work once in a while. Overall, the model was

somewhat successful in recreating the signals.

Learned dictionary matrices

To further explore the performance of the TL component, we plot the basis matrices produced

by each model. The basis functions give an idea on the consumption. They also allow us to observe

the relationships between the features and the hidden features.

In Fig. 2.26, we plot the transpose basis functions for the ºfridgeº category, Week 9. We chose

fridge because fridges and freezers have continuous consumption patterns which results in readable

basis matrices. The basis functions are extracted after the final DD step. We can see that the basis

functions are quite similar, except for ºSC source, DD targetº. The consumption patterns around

the 60th and 150th timestamps are well recreated by all models except for ºSC source, DD targetº.

This implies that it is important to introduce target data earlier in the process; in the SC step for

each appliance group.

Despite having a badly adjusted basis, ºSC source, DD targetº recreates the signal the best, as

seen with its high accuracy in Section 2.5.1, due to a good adjustment that creates activations suited

for disaggregation in the DD step, more so than good bases.

The basis function similarity between a regular SC model with a mixed source and target data in

(a) to the TSC basis implies that both models learn almost the same basis functions. This conforms

to the equations of the model in Section 2.3.2. The additional MMD+GL regularization of the TSC

model is applied to the activations. Therefore, Regular SC and TSC will differ mostly in their activa-

tions. The basis functions of SC and TSC are only slightly different, since they depend on the sparse

29

activations. Therefore, they are indirectly affected by the additional MMD+GL regularization.

Figure 2.22: (a) SC+DD

Figure 2.23: (b) SC source, DD target

Figure 2.24: (c) SC target, DD target

Figure 2.25: (d) TSC+DD

Figure 2.26: Basis functions for fridge, week 9.

In this subsection, we visualized the basis functions for all four non-deep models for the category

ºfridgeº. We found that all the models have similar bases except for ºSC source, DD targetº, which

seems to not capture some important consumption patterns. We came to two conclusions:

• The ºSC source, DD targetº model does not recreate good basis functions, it recreates good

30

Model \Metric EACC EACC ̸=0

SC+DD %50.5 %78.9

SC source, DD target %54.1 %80.7

SC target, DD target %49.3 %78.3

TSC+DD %51.4 %79.6

DSC %88.2 %70.7

Transfer DSC %88.2 %70.7

VSC %88.3 %70.7

Transfer VSC %84.2 %70.4

Table 2.8: Accuracy metrics per model for REFIT&IRISE.

sparse activations that are well suited for the disaggregation task. That’s why it was able to

recreate the signals.

• SC+DD and TSC+DD have similar basis functions despite the different objective functions.

This is due to the fact that the domain shift penalty is applied to the activations, not the bases.

The basis are only slightly adjusted since they are dependent on the activations.

2.5.2 Domain Adaptation between REFIT and IRISE

After having tested the effect of TL for SC models on domains that are derived solely from the

REFIT dataset, we now explore the effect of TL for a larger domain shift by transferring the model

knowledge from all the houses in the REFIT dataset, to the houses in the IRISE dataset.

Model accuracies and errors

Similar to the REFIT only case, we have mulitple weekly datasets. Therefore, we will obtain

a distribution of weekly accuracies which we can average out to obtain the average disaggregation

accuracy. We use the first 34 weeks of IRISE so that each week of IRISE data has an equivalent

weekly dataset from REFIT.

In Table 2.8, we present the EACC and EACC ̸=0 for all models. For non-deep models, we can

see that in terms of EACC , the ºSC source, DD targetº model performs the best. This implies that

training the model on the more prolific source data then extending to the target domain provides

31

Model\Metric fridge washing drying

SC+DD 9.8% 12.3%

SC source, DD target 14.1% 10.7%

SC target, DD target 23.7% 11.7%

TSC+DD 11.4% 12.7%

Table 2.9: NRMSE by model for REFIT&IRISE.

the best overall accuracy. We can also see when comparing EACC for ºSC+DDº and ºTSC+DDº

that using TL improves the model’s performance. ºSC target, DD targetº performs slightly worst,

meaning that some information from the source domain is needed to expand the training set and

provide more patterns of behaviour for the test target data. A similar observation can be found when

looking at EACC ̸=0, where ºSC source, DD targetº performs the best, ºTSC+DDº improves on

ºTSC+DDº, and ºSC target, DD targetº is behind them all. This confirms that the incorporation of

sourcef data improves performance.

Looking at the deep models, we see that similar to the previous set of experiments, the perfor-

mance metrics are similar to each other except for the under-performing Transfer VSC. However,

with the EACC ̸=0, the deep models provide weaker results. This can be explained by the propensity

of the deep models to default to the null values especially with sparse sporadic signals. Then the

smoother representation means that the deep models give more conservative values to the signal’s

amplitude when the device is working, thus providing a lower EACC ̸=0.

From now on, we will continue the analysis only with the non-deep models.

Table 2.9 shows the NRMSE for the non-deep models on tested on IRISE. We can see that all

four models are similar. They produce signals with low error rates.

Re-creation of signals

Due to the similarity of the models, and to simplify the analysis, we will only look at the plots

for ºTSC+DDº, since it is the main model of this work. Fig. 2.27 contains the real and predicted

aggregate signal for house @1 in the IRISE dataset. We can see that the model is able to follow the

general trends in the signal.

We look at the predicted appliance signals in Fig. 2.30. We retain the same observations from

32

Figure 2.27: Real and predicted aggregate signal for IRISE house 21, week 8, TSC+DD method.

Figure 2.28: (a) washing drying

Figure 2.29: (b) fridge

Figure 2.30: Real and predicted signals of appliance groups for IRISE house 21, week 8, TSC+DD

method.

the REFIT only TL. The sporadic nature of washing and drying appliances prevents the model from

predicting the energy surges corresponding to the consumption of the appliance. As for ºfridgeº,

the model presents a noisy nature similar to how the real signal works. However, the model overes-

timates the amplitude of the signal and is unable to provide the same levels of consumption as the

original signal.

We look at the noise signal in Fig. 2.31, the noise signal is the remainder of the appliances not

accounted for in this analysis, plus the real noise. Despite the model not being able to recreate the

original signals adequately, it is able to predict the noise signal with a good fit. Which suggests the

possibility that the model might be able to work well with other appliances.

In this second part of the analysis section, we explored the effect of transferring knowledge of

33

Figure 2.31: Real vs predicted noise, IRISE house 21, week 8, TSC+DD method.

SC models on a larger domain shift, from REFIT houses to IRISE houses. We found despite the

larger domain shift, the models that incorporate a mform of domain adaptation perform bettr than

target-only training. We also found that TL models perform similarly to the regular DDSC model.

The models were not able to recreate the original appliance signals as well as they did for the smaller

shift. However, they were able to recreate the aggregate and noise signals adequately.

34

Chapter 3

Weighted Federated Domain Adaptation

Methods for Non-Intrusive Load

Monitoring

3.1 Introduction

There has been development of energy consumption prediction procedures that has shown in-

sight into consumption patterns which leads to a better understanding of the energy consumption

behavior of residential dwellings and industrial units. It also helps limit inefficient energy usage,

which leads to significant energy savings [42]. This is especially important in the context of the

current struggle for efficient energy usage given possible energy production crises.

A staple of energy prediction fields is Non-Intrusive Load Monitoring (NILM). As the name

suggests, this procedure implies the inference of appliance consumption levels and patterns based

on the main signal [18]. NILM is a disaggregation problem, it entails the prediction of several

signals based only on their aggregate. Other than the complexity of the disaggregation problem

itself, NILM presents other challenges including data scarcity and significant differences in the

appliances used and in consumption patterns [27].

35

Due to the complexity of NILM, researchers have resorted to the more robust methods of ma-

chine learning through the use of deep neural network based methods to solve NILM. A plethora of

models have been implemented to exploit the spatial and temporal patterns within the consumption

signals. However, the effectiveness of deep learning models is countered by their need for data

which cannot always be sufficient or pertinent for the task, which also exposes users to privacy

risks[43]. From there the need arises for models that generalize better for as little labeled data as

possible, with the knowledge that combining different datasets will probably produce strong dis-

crepancies in consumption patterns and in the models of appliances. To mitigate the performance

degradation coming from this domain discrepancy we use domain adaptation, which constitutes an

important aspect of the NILM problem. Domain adaptation allows the training of models on differ-

ent datasets while reducing the domain discrepancy between them, allowing the model to ingest as

much data as possible while generalizing well [44].

Another challenge with NILM is the locations of the buildings that provide data and the pos-

sible laws that restrict the breach of their users privacy [45]. This restriction creates the necessity

to perform the entirety of the NILM process in a distributed manner. All of the buildings or the

majority of them need to have a local training process and only share information that does not

allow any ill-intentioned party to exploit the private consumption data of the users [46, 47]. Feder-

ated Learning (FL) [47] is a novel and rapidly expanding field of machine learning that allows the

distributed training of models in a way that preserves privacy and allows the local models present in

the buildings to communicate with a central general model that generalizes over all the data while

interacting with the least possible amount of user data. The only cost of federated learning is a loss

of information due to local training. Depending on this loss, we can choose to accept or discard the

federated pipeline based on how much performance is lost.

The different challenges mentioned above have been tackled separately in previous research.

However, the combination of all of these challenges has not been properly explored. The application

of domain adaptation usually requires access to the datasets coming from different domains. This is

restricted in federated learning. Under federated learning, domain adaptation can only be performed

using either the accessible data or using the information that federated learning has access to. This

is called Federated Domain Adaptation and is usually done by adjusting the contributions (weights)

36

of local models to achieve the best performance while minimizing the effect of domain shifts.

In this context, we aim to disaggregate appliance consumption in a mix of datasets coming from

different domains while still preserving privacy through the use of federated learning. We use Deep

Sparse Coding as the model that does the disaggregation. We compare four different methods of

federated domain adaptation: FedDA based on a measure of distance between samples, FedRBF

based on the RBF kernel function, FedMMD based on the MMD discrepancy between source and

target domains and FedkNN based on the kNN connectivity matrix. We apply these methods on

NILM data under different sampling rates. We also experiment with different weight origins to test

whether the local models hold the same information as the raw data regarding the domain shift.

3.2 Related Works

As we previously mentioned, most works attempted to tackle the problems of domain adaptation

and federated learning in NILM separately. There have been research attempts to reconcile federated

learning and domain adaptation in general, however few have attempted to do so in the context of

energy disaggregation.

3.2.1 Federated Learning in NILM

Despite the recent emergence of federated learning, multiple works have explored this field.

The term Federated Learning was coined in the seminal work of McMahan et al [47]. In the NILM

domain, FL was applied by Li et al [48] who used the federated averaging (FedAvg) on NILM

data by distributing a Seq2Point algorithm to create the DFNILM model. The model achieved

similar results to state-of-the-art models, only resulting in a minor loss in performance. The model’s

transferability was also tested. Dai et al [49] applied FedAvg on a proposed auto-encoder and

achieved similar results to bulk training of data. Our work[50] applied Federated Sparse Coding

on NILM data by aggregating locally learnt dictionary matrices. Zhang et al [27] formulated a

FL paradigm that is suitable for NILM applications at the Edge called FedNILM. FedNILM is

able to preserve user privacy and also compress the models efficiently, and was also applied on a

Seq2Point model. We also note that in the FedNILM work, domain adaptation was applied using

37

Correlation Alignment and the transfer learning procedure of retraining some layers of the local

models. Transfer learning was able to minimize the performance degradation coming from the

domain shift.

3.2.2 Federated Domain Adaptation

Aside from [27] and [48] to a lesser degree, there does not seem to be many works that tackled

domain adaptation in NILM. In this work, we draw inspiration from multiple papers that reconciled

federated learning and domain adaptation in other domains. Auto-weighted federated methods were

developed by Jiang et al [14]. From their work, we broaden the scope of the FedDA methods which

is simply a weighted sum of local client updates. We also use the auto-weighting method for FedDA

which provides the weights based on the input data. Other methods to obtain weights for local model

contributions can be drawn from the methods that are used to minimize domain shift in the first

place. The authors of the FedMMD paper [51] used Maximum Mean Discrepancy [35] (MMD)

to weigh client updates based on their MMD-based discrepancy measures. Their pipeline starts

with MMD computation, then some local updates are discarded if they have a high discrepancy

with the others and weights are calculated using the entropy weight method. In our work, we will

use two details from that paper. We use the RBF kernel in a federated pipeline to compare inter-

sample similarity. We also apply MMD in a simpler distributed manner to obtain one measure of

discrepancy to generalize over samples. Another approach that we utilize was presented in Yang et

al [15] and involved clustering similar clients based on locally learned representations to mitigate

problems arising from skewed non-IID data. The approach of learning weights through local models

instead of the raw data provides an additional layer of data protection. For each of the methods that

we apply in our work, we will also use weights that are learned from the local data using the sparse

auto-encoder model residing within each client.

38

3.3 Theoretical Background

3.3.1 Federated Learning

Federated Learning is a distributed learning technique. It decentralizes the training process so

that the models are trained locally using private user data and that the information shared outside

of the local environment does not compromise user privacy. The only cost of this technique is a

potential small loss of performance that we can accept as a price of privacy. Other than privacy

protection, FL is also cost-efficient and presents a parallel training process that saves time.

In the FL framework, a central server learns a general model from several clients. The server

initializes, aggregates and sends parameters related to distributed models that reside within their

respective clients. Each client never shares its own data. It trains a local model and only communi-

cates the model parameters with the server, thus preserving data privacy. In our work, each building

or house is considered a client. When training happens within the digital confines of each building,

consumption data does not get compromised. A standard FL pipeline follows the steps below:

(1) The central server initializes model parameters.

(2) The central server sends a version of the current model to each client.

(3) In each client, the local model is trained on the local data.

(4) The learned parameters of each local model are sent back to the central server.

(5) The central server aggregates local model parameters and sends the updated model back to

each house.

The process from 2) to 5) is repeated until a number of training rounds or a convergence criterion

is reached. A FL scheme can be seen in Fig3.1.

39

Figure 3.1: Federated Learning framework

The most popular FL model is FedAvg [47], which averages out local model parameters. We

will be using FedAvg as a benchmark since it treats all local contributions equally, and does not take

domain shifts into account.

FedAvg model is outlined in Algorithm4.

Algorithm 4 FedAvg Algorithm

(1) Initialize local model parameters wj
∗,0 for each appliance j ∈ {1, .., k}

(2) for t ≥ 0

(a) Server sends wj
∗,t to all clients

(b) for each client i ∈ {1, .., Nclients} do

i. Client update: Client i trains DSC on local dataset Di, obtaining local model

weights w.

ii. Client i sends back local parameters wj
i,t

(c) Server averages out the local model parameters for each layer: wj
∗,t+1 =

∑Nclients

i=1 wj
i,t

(3) Until t = Tmax or other convergence criterion

3.3.2 Federated Domain Adaptation through weighting

Suppose we have two data domains, a source domain DS in which we have a prolific training

data, and a target domain DT in which we have significantly less samples. There can be a significant

domain shift between both data domains, especially in NILM if the source domain houses are from a

40

different geographic or temporal context compared to the target houses. We want to perform domain

adaptation on a mixture of source and target data so that the model learns the disaggregation task

well and can still generalize to the target domain quite well despite the data scarcity.

To perform discrepancy-based domain adaptation, we need access to data. Since federated

techniques partially or totally limit access to the training data, it is necessary to find an alternative

adaptation method. The most obvious technique is to assign different weights to the client updates

so that samples with considerable domain shift have less contribution than the samples which are

closer to the target domain. In the following methods, we explore different approaches to weighting

the local updates.

Therefore, all the methods suggested below are weighted variations of FL, the only difference

is the addition of a weight estimation step and changing the aggregation step (2.c. in Algorithm4)

to:

wj
∗,t+1 =

Nclients
∑

i=1

αj
i · w

j
i,t (15)

where αj
i is the weight assigned to the client update coming from client i for the j-th appliance

training process. For simplicity, we will remove the j appliance index in the equations below.

FedDA

FedDA was introduced in [14] in the context of distributed source data and concatenated target

data. Meaning that we have the possibility to train the target data jointly while the source data

samples are each assigned to a model. We take the same method with more stringent assumptions.

We assume that we cannot access the target data jointly. All samples are alone in their training

process. Also, since we are going to test on the target domain, we ignore the balance within the

source domain. Under our assumptions, FedDA becomes the simple weighted FL in Eq15. The

detail that we used from [14] is the estimation of the weights of FedDA, where they estimated the

weights based on a measure of distance between the source and target domains. We adapt the weight

estimation to our work so that for each client data i:

βi =
σ2(D̂T)

d2(Xi, DT) + σ2(D̂T)
(16)

41

σ2(D̂T) refers to the variance within the sampled data from the target domain. d2(Xi, DT) is the

distance from the local data of client i to the target domain, and is simply the average of the distance

between the sample Xi and all target domain samples. This means that the target domain clients

will also have this measure of distance to the target domain. The value of βi is determined based

on how far the local data is from the target domain, compared to the variance of the target domain

data. For a perfect target domain sample data, βi = 1. We chose to use the Euclidean distance. The

equation becomes:

βi =
σ2(D̂T)

1
|DT |

∑

XT
j∈DT

∥Xi −XT
j∥2 + σ2(D̂T)

(17)

To obtain the weights αi, we divide each βi by the sum of all βi.

αi =
βi

∑Nc

i=1 βi
(18)

FedRBF

The Radial Basis Function [52] kernel is a kernel function that computes similarity between

datasets. The RBF between two data vectors Xi and Xj is defined as follows:

k(Xi, Xj) = exp

(

−
∥Xi −Xj∥

2

2σ2

)

(19)

we replace 1
2σ2 by γ

k(Xi, Xj) = exp
(

−γ∥Xi −Xj∥
2
)

(20)

γ controls the smoothness of the broadness of the function.

To create weights from the RBF function, we start by creating a similarity matrix M that con-

tains the pairwise similarity between the data of each pair of houses.

Mij = k(Xi, Xj) (21)

Then we isolate the sub-matrix containing only the target domain rows, which represents the simi-

larities between all samples and target domain samples. Then we average out each column to obtain

42

the average similarity of each sample to the target domain samples.

M̄i =
1

Ntarget

∑

XTj∈DT

k(Xi, XTj) (22)

Finally to obtain the weight of each client, we normalize by dividing the average similarity by

the sum of all average similarities.

αRBF
i =

M̄i
∑Nclients

i=1 M̄i

(23)

FedMMD

FedMMD was initially suggested in [51]. We found that implementation to be overlong and

takes too many steps to discard some training clients. We suggest a simpler implementation that uses

only one value of MMD to determine all weights. MMD is a method that measures the discrepancy

between two domains. For the source domain DS and the target domain DT , MMD learns a function

f from a set F of continuous functions in the sample space such as:

MMD(F , DS , DT) = sup
f∈F

(
1

|DS |

|DS |
∑

i=1

f(xSi)

−
1

|DT |

|DT |
∑

j=1

f(xTj))

(24)

An unbiased empirical estimator for MMD is:

MMD2
k(DS , DT) =

1

n(n− 1)

n
∑

i=1

n
∑

j=1,j ̸=i

k(xi, xj)

+
1

m(m− 1)

m
∑

i=1

m
∑

j=1,j ̸=i

k(xT i, xTj)

−
2

nm

n
∑

i=1

m
∑

j=1

k(xi, xTj)

(25)

n is the size of the source domain sampled data, m is the size of the target domain sampled data.xi

and xT i are samples drawn from DS sampled data and DT sampled data respectively. k is a kernel

43

function used to measure the similarity between samples. The most common choice for k is the

RBF kernel.

We apply MMD in a federated manner. We simply compute the MMD between the source and

target domains using the available data, then we assign an MMD based similarity measure:

MMMD
i =

MMD if Xi in source domain

1 otherwise

(26)

This allows the target domain samples to have a higher contribution than the source samples, which

are penalized by their MMD discrepancy measure. Finally, we normalize to obtain the weights:

αMMD
i =

MMMD
i

∑Nclients

i=1 MMMD
i

(27)

FedkNN

Another popular domain adaptation method that used k-Nearest Neighbor (kNN) similarity is

the Graph Laplacian regularization [36] (GL). It treats the data points as graph nodes and preserves

the geometric properties of the data. The GL matrix is constructed from the connectivity matrix of

the kNN graph.

For our work, we do not need to use the whole definition of GL, since we only want to com-

pute kNN based similarity between single sample data instances. Therefore, we only use the kNN

connectivity matrix which is defined as follows:

kij =

1 if Xi is k-nearest neighbor of Xj

0 otherwise

(28)

From the K matrix, we extract the rows that contain target domain instances. The extracted sub-

matrix KT describes the connectivity between the target domain points with all data points. Then

we average out the column vectors to obtain an average kNN coefficient describing the closeness of

44

the target domain with all data samples including points from the target domain itself.

M̄kNN
i =

1

Ntarget

∑

j is in target

kij (29)

Finally, we divide each element by the sum of all elements to normalize the weights:

αkNN
i =

M̄kNN
i

∑Nclients

i=1 M̄kNN
i

(30)

We call this method FedkNN.

3.3.3 Auto-weighting from raw data and from learned representations

In the methods suggested above, the initial local model weights are estimated using the raw

data. This can be considered as a breach of user privacy. And can only be accepted if we are

training a FL prototype before scaling it. Therefore, we need to look for other methods of weight

estimation without accessing the local data. Yang et al [15] used locally learned data to cluster

clients and create multiple personalized central models. We will use the same approach. However,

instead of clustering and creating a model for each cluster, we will simply use the locally learned

data representations to extract the client weights. We estimate the weights by passing each local

data to a DSC model, then extracting the encoded representation and using it as an input for FedDA,

FedRBF and FedkNN. Eventually, for each method we will experiment with three approaches:

(1) From raw data: One-time estimation of weights before the FL pipeline using the raw data.

(2) From auto-encoder: One-time estimation of weights before the FL pipeline using the locally

encoded representations. This approach will tell if we can substitute the raw data weight

estimation and migrate to a robust fully private framework.

(3) Re-weighted from auto-encoder: Re-estimation of the weights after each FL round using the

encoded representations of the local DSC models. This approach will tell if the FL pipeline

improves the domain adaptation process the more it learns.

45

Table 3.1: Methods and their specifications
Method Domain Usage Weight Estimation Re-weighted every FL round

Source Target

FedAvg ✓ ✓ no weight estimation ×
Fed target only × ✓ no weight estimation ×
Fed source only ✓ × no weight estimation ×
FedDA ✓ ✓ using raw data ×
FedDA autoenc ✓ ✓ using DSC’s encoder ×
FedDA autoenc reweight ✓ ✓ using DSC’s encoder ✓

FedRBF ✓ ✓ using raw data ×
FedRBF autoenc ✓ ✓ using DSC’s encoder ×
FedRBF autoenc reweight ✓ ✓ using DSC’s encoder ✓

FedMMD ✓ ✓ using raw data ×
FedMMD autoenc ✓ ✓ using DSC’s encoder ×
FedMMD autoenc reweight ✓ ✓ using DSC’s encoder ✓

FedkNN ✓ ✓ using raw data ×
FedkNN autoenc ✓ ✓ using DSC’s encoder ×
FedkNN autoenc reweight ✓ ✓ using DSC’s encoder ✓

3.3.4 A summary of all methods used

We will compare the suggested methods FedDA, FedRBF and FedkNN with FedAvg to explore

the effects of domain shift-based weighting on FL performance for the DSC model. For each of

the three proposed methods, we run the three approaches for weighting; from raw data, from auto-

encoder and re-weighted from auto-encoder. We also train using only the source data and only the

target data to showcase the benefits of domain adaptation. Eventually, we end up with 15 methods

that are listed in Table 3.1.

3.4 Experimental Setup

3.4.1 Datasets

We used the same datasets in this work: REFIT for source data and IRISE for target data. We

did not split REFIT. We simply trained on REFIT and a subset of IRISE. We tested on IRISE

3.4.2 Evaluation Metrics

We will measure the performance of the methods in two steps; general overview (aggregate

level) and appliance level. For aggregate level performance, we use the disaggregation accuracy

46

EAcc from chapter 22.4.5. For appliance level performance, we will use NRMSE also defined in

chapter 2. We also calculate how well the methods perform for both On-Off state detection as well

as value prediction. To evaluate the On-Off state performance, we turn the real and predicted signals

into binary representations of the state of the appliance (0 for ºoffº, 1 for ºonº). Then we measure

the accuracy between the predicted states and the real states.

On-Off Accuracy =
1

n

T
∑

t=1

δ(1
y
(i)
t

,1
ŷ
(i)
t

) (31)

1
y
(i)
t

is the indicator function which converts the signal to a binary On-Off sequence. δ is an indica-

tor function that returns 1 if the predicted and real state are equal at time t.

3.5 Results and Discussion

In this section, we showcase the results of the methods and approaches used in this work and

elaborate on them. We implemented the FL pipeline and methods using PyTorch on an M1-chip

MacBook. Due to the heavy computational load related to the distributed training process on

one machine, we opted to choose standard values for the hyperparameters of the DSC model. A

one layer convolution of 265 output dimensions. We also set the sparsity λ = 0.1 and the RBF

kernel parameter γ = 10−5 for MMD and raw data FedRBF. As for FedRBF autoenc and Fe-

dRBF autoenc reweight we set γ = 10−1 as we noticed that the RBF was less sensitive to the

variation in the individual learned data.

All the local models achieve convergence. Fig 3.2 illustrates the evolution of the elements of

the cost function of the local model of the fridge appliances for house 9 of the IRISE dataset. The

reconstruction term decreases until stagnating after the 60th epoch. The sparsity term initially spikes

then starts decreasing until reaching a constant and low decrease rate around the 60th epoch. This

behavior is present in the majority of the convergence plots. Training more than 60 epochs does not

seem to greatly affect the local model learning and can theoretically lead to overfitting. Therefore,

we limit the training to 60 epochs.

The results and discussion are primarily presented for data sampled at a one sample per hour

47

(a)

(b)

Figure 3.2: Convergence plots for IRISE house 9. (a) Reconstruction (b) Sparsity.

rate. Later on, we will test on data sampled every 30 minutes and every 10 minutes.

3.5.1 Overall performance

In Table 3.2 we list the average EACC for all the methods and weight estimation approaches

over the first 10 weeks of data. To begin with, source-only training yields an EACC of 79%, lower

than all other methods, which simply proves that using the source data on its own is not as good in

generalizing to the target domain. The addition of samples from the target data improves training.

48

Almost all the domain adaptation methods perform better than FedAvg. This confirms that some

local updates have better contributions than others in generalizing the federated model to the target

domain.

Target-only training results in an EACC of 87.98% accuracy which is better than FedAvg. How-

ever, 9 out of 12 of the proposed methods perform similarly to or better than the target-only federated

training. This proves that a proper weighted adaptation scheme which contains contributions from

both the target and source domains is a better approach than just using the limited target data. There

is information in the source domain that was not provided by the target samples.

Table 3.2: EACC scores for different methods

Method Accuracy

FedAvg 83.08%

Fed target only 87.98%

Fed source only 79.04%

FedDA 88.86%

FedDA autoenc 88.06%

FedDA autoenc reweight 88.14%

FedRBF 88.69%

FedRBF autoenc 88.27%

FedRBF autoenc reweight 82.99%

FedMMD 86.16%

FedMMD autoenc 88.06%

FedMMD autoenc reweight 88.03%

FedkNN 88.73%

FedkNN autoenc 88.63%

FedkNN autoenc reweight 88.60%

Within the suggested methods themselves, we notice that the FedDA method on raw data per-

forms the best, with EACC = 88.86%. On raw data, the EACC is similar between FedDA, FedRBF

and FedkNN. While FedMMD yields a slightly lower accuracy of 86.16%. This might be due to

the equal weighting of raw data samples. When the weights are estimated from the encoder layer,

we notice a negligible decrease in performance for FedDA, FedRBF and FedkNN, and they still

perform better than target-only training. This implies that these methods can be fully distributed

with no central access to local data to estimate the weights, and this will result in a negligible loss

of information. FedMMD is the only method that improves through the usage of encoded data. The

encoder representation computes a discrepancy that is more representative of the target domain than

49

the raw data.

The re-weighting process does not seem to affect the overall performance in a visible way except

for FedRBF which declines to reach a similar accuracy to FedAvg.

Table 3.3 shows the average processing times of the entire FL pipeline of each of the differ-

ent methods over the first 10 weeks. It shows that they all take roughly the same time to fin-

ish the training process. The maximum time cost of substituting FedAvg is obtained by choosing

ºFedDA autoenc reweightº which only costs 6.71 seconds, a 11.9% loss in time.

Table 3.3: Run times for different methods
Method Run time (s)

FedAvg 56.36

Fed target only 57.08

Fed source only 57.15

FedDA 57.39

FedDA autoenc 62.46

FedDA autoenc reweight 63.07

FedRBF 57.21

FedRBF autoenc 57.28

FedRBF autoenc reweight 57.25

FedMMD 57.54

FedMMD autoenc 57.68

FedMMD autoenc reweight 57.49

FedkNN 57.55

FedkNN autoenc 57.52

FedkNN autoenc reweight 57.68

3.5.2 Appliance-level performance

Due to the different consumption patterns between appliances, the aggregate performance can

obscure potential performance issues. Appliances with highly learnable patterns can offset the per-

formance degradation that comes from appliances with patterns that are harder to capture. It is

necessary to look at the performance of the appliance-level models.

Table 3.4 contains the On-Off Accuracy for all the methods and appliances averaged over the

first 10 weeks of data. Looking at the On-Off accuracy, the first observation is that FedAvg per-

forms better that source only training, which confirms that using only the source data is not enough

to express all the information coming from the target domain. However, using only target samples

50

results in a worse On-Off state classification compared to FedAvg for all appliances except for a

slight improvement for TV. The methods that we suggested do not seem to drastically improve the

On-Off state classification compared to FedAvg. Our methods perform similarly to FedAvg and do

not result in significant increases in On-Off accuracy. The highest on-off accuracy increase com-

pared to FedAvg is by 1%, achieved by FedkNN autoenc reweight for washing-drying appliances.

Thus, it seems like using federated domain adaptation does not drastically improve On-Off state

performance.

Table 3.4: On-Off Accuracy per method and appliance
On-Off Accuracy

Method
Appliance TV fridge

kitchen

appliances
washing-drying

FedAvg 58.07% 65.16% 89.55% 94.21%

Fed target only 58.11% 64.33% 85.86% 91.35%

Fed source only 55.24% 64.93% 89.40% 93.44%

FedDA 57.44% 64.30% 87.14% 94.72%

FedDA autoenc 57.29% 64.93% 84.11% 94.15%

FedDA autoenc reweight 56.28% 62.60% 88.48% 95.07%

FedRBF 55.71% 64.18% 87.44% 93.91%

FedRBF autoenc 57.59% 65.04% 88.01% 93.65%

FedRBF autoenc reweight 57.62% 65.13% 88.87% 94.36%

FedMMD 57.89% 65.25% 88.51% 92.93%

FedMMD autoenc 58.51% 64.51% 86.28% 92.63%

FedMMD autoenc reweight 58.07% 64.57% 86.25% 92.46%

FedkNN 56.88% 63.56% 88.98% 94.18%

FedkNN autoenc 58.02% 63.50% 88.98% 94.20%

FedkNN autoenc reweight 56.37% 63.11% 87.35% 95.22%

We look at the appliance-level signal value prediction performance using Table 3.5. For Fridge

and TV, the usage of domain adaptation through weighting lowers the error percentage for most of

the methods. The best performing method is for TV is FedkNN autoenc with 6.28% error rate. For

Fridge, FedRBF achieves the lowest error rate of 6.07%. However, most of our suggested methods

yield results within the 6% to 7% range. For FedRBF autoenc reweight, the error rate is at the

levelof FedAvg, which leads to the lower disaggregation for accuracy FedRBF autoenc reweight.

For kitchen appliances and washing-drying appliances, the suggested methods only result in a

negligible decrease in NRMSE. The best method for kitchen appliances is FedRBF with an error

rate of 7.70%. For washing-drying appliances, FedkNN produces the lowest NRMSE at 7.77%.

Despite the smaller improvement for these less used appliances, our methods still perform better

51

Table 3.5: NRMSE per method and appliance
NRMSE

Method
Appliance TV fridge

kitchen

appliances
washing-drying

FedAvg 10.36% 12.47% 7.73% 8.72%

Fed target only 6.44% 6.15% 8.67% 9.35%

Fed source only 14.99% 16.57% 7.82% 10.54%

FedDA 6.32% 6.11% 7.71% 7.78%

FedDA autoenc 6.46% 7.04% 7.72% 7.85%

FedDA autoenc reweight 6.69% 6.70% 8.18% 8.11%

FedRBF 6.50% 6.07% 7.70% 8.09%

FedRBF autoenc 6.64% 6.56% 7.71% 7.99%

FedRBF autoenc reweight 6.53% 6.17% 8.51% 7.95%

FedMMD 8.73% 8.38% 7.89% 8.48%

FedMMD autoenc 6.32% 6.38% 8.27% 9.21%

FedMMD autoenc reweight 6.30% 6.17% 8.51% 9.22%

FedkNN 6.34% 6.36% 7.71% 7.77%

FedkNN autoenc 6.28% 6.50% 7.72% 8.12%

FedkNN autoenc reweight 6.53% 6.55% 7.73% 7.82%

than target-only training.

Compared to the On-Off state, we observe that the use of domain adaptation methods improves

the value prediction by lowering the error rate. Therefore, we conclude that the state of the appliance

can be obtained from either domains. Meanwhile, target domain samples contribute to scaling the

predicted signal to the consumption levels of the target domain.

We look at the signal plots of the method that yields the best accuracy while using encoder

estimated weights; FedkNN autoenc. Fig 3.3 compares appliance plots between FedAvg and Fed-

kNN autoenc for the test house 21 during week 0. To maintain the clarity of the figure, we only

show the first 50 timestamps. FedkNN autoenc performs better than FedAvg with Fridge and TV

consumption signals. FedkNN autoenc has a good fit to the patterns of the signal and has a com-

parable scale to the amplitude of the signal. While FedAvg seems to overestimate the value of the

signal peaks. However, for kitchen appliances and washing and drying appliances, both methods

generally fail to capture the signal and mostly default to an off signal. For these appliances, the

signal’s sporadic nature does not offer much training data to the local models.

The signal plots confirm the results in Tables 3.4 and 3.5. The plots also suggest that the low

NRMSE for kitchen appliances and washing-drying appliances is deceptively low; the appliances

are not working most of the time, which influences the sparse DSC model to produce a null signal

52

most of the time.

(a) Fridge (b) TV

(c) Kitchen Appliances (d) Washing-drying

Figure 3.3: Real consumption plot compared to FedAvg and FedkNN autoenc for house 21, week 0

3.5.3 Sensitivity to sampling frequency

Sampling the data at a higher rate provides more data points. However, it also introduces noise.

We test our methods against a higher sampling rate. Tables 3.6 and 3.7 contain the appliance-level

On-Off accuracy and NRMSE for methods applied on data sampled every 30 minutes. The general

conclusion remains the same: Domain adaptation methods do not affect the On-Off state metrics

compared to FedAvg yet they have a more noticeable effect on the exact values of the signal. The

contribution from target domain samples is more visible in the amplitude. In addition, the improve-

ment is also more noticeable for TV and Fridge and negligible for sporadic appliances. We also

notice that the error is generally lower for the higher sample rate. For example, the NRMSE for

FedRBF applied to Fridge drops from 6.07% to 4.24%. We also notice that reweighting the con-

tributions does not visibly improve the performance. Therefore, reweighting remains unnecessary

even for a higher sampling rate. Similarly to the 1-hour data, reweighting FedRBF causes a decline

53

Table 3.6: On-Off Accuracy per method and appliance - Data sampled every 30 minutes

On-Off Accuracy

Method

Appliance
TV fridge

kitchen

appliances
washing-drying

FedAvg 55.93% 65.23% 89.46% 94.25%

Fed target only 58.57% 64.43% 85.93% 92.15%

Fed source only 51.47% 64.65% 88.88% 93.37%

FedDA 57.94% 64.56% 88.94% 94.86%

FedDA autoenc 57.25% 65.29% 88.74% 94.53%

FedDA autoenc reweight 55.75% 62.22% 88.67% 95.04%

FedMMD 56.78% 65.08% 88.40% 93.77%

FedMMD autoenc 58.74% 64.74% 86.90% 92.98%

FedMMD autoenc reweight 58.58% 64.80% 86.60% 92.60%

FedRBF 56.58% 64.75% 88.16% 93.10%

FedRBF autoenc 57.17% 64.89% 87.97% 93.46%

FedRBF autoenc reweight 55.72% 65.17% 87.95% 94.75%

FedkNN 56.95% 64.02% 82.66% 94.10%

FedkNN autoenc 58.68% 63.73% 85.48% 94.52%

FedkNN autoenc reweight 56.53% 63.47% 88.74% 94.77%

in performance for TV and Fridge and increases the NRMSE to the level of FedAvg.

A more granular data was obtained by sampling data every 10 minutes. The results are shown in

Tables 3.8 and 3.9. The same observations are present; on-off accuracy is not improved by domain

adaptation, the target domain samples mainly influence the amplitude of the signal. We also notice

that NRMSE decreases further. For example, the NRMSE for FedRBF applied to Fridge drops from

4.24% to 2.62%. This behaviour is present for all methods and all appliances.

54

Table 3.7: NRMSE per method and appliance - Data sampled every 30 minutes

NRMSE

Method

Appliance
TV fridge

kitchen

appliances
washing-drying

FedAvg 6.97% 8.25% 5.46% 5.88%

Fed target only 4.46% 4.27% 5.96% 5.86%

Fed source only 10.80% 11.11% 5.63% 6.60%

FedDA 4.47% 4.27% 5.45% 5.47%

FedDA autoenc 4.51% 4.95% 5.45% 5.51%

FedDA autoenc reweight 4.69% 4.58% 6.04% 5.57%

FedMMD 5.40% 4.79% 5.52% 5.62%

FedMMD autoenc 4.47% 4.46% 5.70% 5.70%

FedMMD autoenc reweight 4.47% 4.31% 5.86% 5.92%

FedRBF 4.52% 4.24% 5.47% 5.60%

FedRBF autoenc 4.59% 4.55% 5.50% 5.59%

FedRBF autoenc reweight 7.01% 8.47% 5.46% 5.48%

FedkNN 4.52% 4.52% 5.46% 5.51%

FedkNN autoenc 4.43% 4.70% 5.49% 5.52%

FedkNN autoenc reweight 4.64% 4.56% 5.46% 5.51%

Table 3.8: On-Off Accuracy per method and appliance - Data sampled every 10 minutes

On-Off Accuracy

Method

Appliance
TV fridge

kitchen

appliances
washing-drying

FedAvg 57.13% 64.55% 89.36% 93.95%

Fed target only 58.52% 62.73% 86.29% 92.66%

Fed source only 54.81% 63.79% 88.47% 94.83%

FedDA 57.50% 64.19% 89.34% 94.67%

FedDA autoenc 58.49% 65.48% 88.86% 95.11%

FedDA autoenc reweight 55.84% 62.60% 88.85% 94.98%

FedMMD 58.65% 62.29% 88.59% 93.36%

FedMMD autoenc 58.67% 62.68% 87.73% 93.71%

FedMMD autoenc reweight 58.64% 63.15% 86.81% 93.01%

FedRBF 57.95% 62.84% 87.36% 92.66%

FedRBF autoenc 58.29% 64.43% 87.27% 92.55%

FedRBF autoenc reweight 57.10% 64.28% 89.66% 95.01%

FedkNN 56.96% 64.19% 89.23% 94.50%

FedkNN autoenc 58.39% 64.52% 86.59% 94.48%

FedkNN autoenc reweight 56.80% 63.43% 89.43% 95.06%

55

Table 3.9: NRMSE per method and appliance - Data sampled every 10 minutes

NRMSE

Method

Appliance
TV fridge

kitchen

appliances
washing-drying

FedAvg 4.06% 4.47% 3.31% 3.34%

Fed target only 2.81% 2.62% 3.58% 3.32%

Fed source only 5.93% 6.08% 3.53% 3.31%

FedDA 2.62% 2.62% 3.16% 3.18%

FedDA autoenc 2.73% 3.13% 3.16% 3.16%

FedDA autoenc reweight 2.70% 3.77% 3.62% 3.21%

FedMMD 2.89% 2.61% 3.22% 3.28%

FedMMD autoenc 2.77% 2.72% 3.43% 3.26%

FedMMD autoenc reweight 2.74% 2.65% 3.51% 3.35%

FedRBF 2.70% 2.62% 3.28% 3.33%

FedRBF autoenc 2.73% 2.77% 3.30% 3.35%

FedRBF autoenc reweight 4.04% 4.59% 3.15% 3.16%

FedkNN 2.64% 2.71% 3.17% 3.19%

FedkNN autoenc 2.76% 2.99% 3.25% 3.20%

FedkNN autoenc reweight 2.65% 2.92% 3.20% 3.18%

56

Chapter 4

Conclusion

In this thesis, we explored several sparse coding based domain adaptation approaches for the

task of Non-Intrusive Load Monitoring.

In a first step, we presented 8 sparse coding methods: SC+DD, TSC+DD, ºSC source, DD

targetº, ºSC target, DD targetº, DSC, TDSC, VSC and TVSC. We tested the models on two different

data frameworks, the first includes houses from the REFIT dataset that we split into source and target

domains based on several criteria. The second framework isolates REFIT houses into the source

domain and IRISE houses into the target domain. To evaluate the models, we used Disaggregation

Accuracy EACC , Non-Zero Disaggregation Accuracy EACC ̸=0, as well as NRMSE. We found that

transfer learning methods performs similarly to the regular models. We also looked at how the non-

deep models recreate the original appliance signals. For the small domain shift within the REFIT

dataset only, the models are able to predict the original signals adequately. However, they seem

to suffer when predicting appliance categories of sporadic nature like ºwashing dryingº. We also

looked at the basis functions of the non-deep models. We discovered that the methods have similar

basis functions, therefore similar representations of the underlying consumption patterns. When

testing transferability on a greater domain shift between REFIT and IRISE houses, the models tend

to suffer. They are not as good in recreating the original appliance signals. This can be attributed to

the large difference between IRISE and REFIT.

Overall, the results showed that using transfer learning is not imperative when it comes to sparse

coding models for energy disaggregation. Since the overall performance is not drastically improved

57

due to TL. Nevertheless, there are benefits that can be drawn from the usage of TL for SC models.

Applying a method like ºSC source, DD targetº helps create activations that are better adjusted for

the houses in the target domain. Our models are limited in that they do not use the temporal patterns

of the signals. This can be addressed in a future work that combines SC methods with elastic

matching PM models [41] or with a time-series component, such as an auto-regressive correction

for the sparse code. This work can benefit from having a bigger target dataset with more houses

with common consumption time windows, which allows for better domain adaptation. Having more

houses will also allow us to test the effects of target domain sample size variation on the efficacy of

transfer learning. The challenge of such dataset is the need to have similar appliances between all

of the houses and a large common window of measurement. We can also experiment with different

regularization techniques for TSC such as Correlation Alignment. Further analysis and feature

selection can be conducted based on the temporal parameters such as seasons, working hours and

seasons like what has been suggested in [53].

In the second part of the thesis, we applied weighting-based federated domain adaptation meth-

ods for the task of distributed energy disaggregation. To address the domain shift issue in a privacy

preserving environment, we aggregated the local models from each building with custom weights

based on different weight estimation methods that take into consideration the discrepancies between

data domains. We used the previously defined estimation method of FedDA. We also suggested a

simpler implementation of FedMMD using one MMD measure, along with a new FedRBF method

based on the RBF kernel function and a new FedkNN method based on the kNN connectivity ma-

trix. We also changed each method’s estimation inputs to use either the raw data or a locally learned

representation from the locally used Deep Sparse Coding model. We also experimented with the

re-estimation of the locally learned encoder output weights after every round of the federated learn-

ing training. We compared all the suggested methods with FedAvg, source-only federated training

and target-only federated training. We used two popular NILM datasets IRISE and REFIT, which

we preprocessed based on three different sampling rates. We found that the suggested methods out-

perform the three benchmark methods in overall accuracy, which shows that the different weighting

schemes can improve the performance of a FL framework in the presence of a domain shift. We also

observed that the methods result in a lower prediction error for appliances that are more likely to be

58

turned on such as fridge and TV. We also found that the weight estimation from the locally learned

representations perform similarly to their raw data estimation counterparts. Therefore, we can per-

form federated learning while keeping the data hidden within the client at all times, thus enforcing

user privacy. Our methods also resulted in a similar training time to the benchmark methods, thus

not costing more computationally. In the future, we can explore more kernel functions to compute

the similarities between client data.

To ensure the availability and reproducibility of this work and any potential future work that

builds on this, we provide all the code involved in this work in two GitHub repositories [54, 55].

59

Appendix A

Derivation of the algorithm to solve TSC

This proof will follow the proof given in [10] for the algorithm that solves the NNSC objective.

Hoyer followed Ref[56] to prove that the SC objective function in Equation 1 is nonincreasing

under the update rule:

At+1 = At ⊙

(

(Bt+1)TX

(Bt+1)TBt+1At + λ

)

(32)

To prove this, we name define an auxiliary function G(a, at) with the properties that G(a, a) =

F (a) and G(a, at) ≥ F (a). Where at will represent a column vector of an activation matrix At at

an iteration t.

If we define

at+1 =a G(a, at) (33)

This is guaranteed not to increase the objective function F, since

F (at+1) ≤ G(at+1, at) ≤ G(at, at) ≤ F (at) (34)

We need to choose the function G that satisfies G(a, a) = F (a) and G(a, at) ≥ F (a).

The initial proof defined G as

G(a, at) = F (at) + (a− at)T∇F (at) +
1

2
(a− at)TK(at)(a− at) (35)

60

where the diagonal matrix K(at) is defined as

Kij(a
t) = δij

(

BTBat
)

i
+ λ

At
i

(36)

The first property G(a, a) = F (a) is obvious. So we write

F (a) = F (at) + (a− at)T∇F (at) +
1

2
(a− at)T

(

BTB
)

(a− at) (37)

The second property G(a, at) ≥ F (a) is satisfied if

0 ≤ (a− at)T
[

K(at)−BTB
]

(a− at) (38)

Lee and Seung[56] proved this positive semidefiniteness for λ = 0, and Hoyer proved it for

λ > 0

To adapt this approach to TSC, we need to find a matrix K that maintains the positive semidef-

initeness in 38 for the case of the TSC objective. For TSC, we denoted the TSC objective in

Equation 11 as Ftsc. We define Gtsc(a, a
t) with the properties that Gtsc(a, a) = Ftsc(a) and

Gtsc(a, a
t) ≥ Ftsc(a).

Gtsc(a, a
t) = Ftsc(a

t) + (a− at)T∇Ftsc(a
t)

+
1

2
(a− at)TK(at)(a− at)

(39)

We know that the gradient of the MMD+GL component is

∇Tr(AS̃AT) = A
(

S̃ + S̃T
)

(40)

Therefore we define K(at) such as

Kij(a
t) = δij

(

BTBat
)

i
+ λ

At
i

+A
(

S̃ + S̃T
)

(41)

61

The second property is only satisfied if

0 ≤ (a− at)T
[

K(at)−BTB
]

(a− at) (42)

which is only satisfied if λ + A
(

S̃ + S̃T
)

≥ 0. To do that, we zero out all negative elements of
(

S̃ + S̃T
)

. Although this might hinder the regularization, there will still be a penalty applied to

domain shift. We will show that this heuristic approach decreases the the transfer component in the

convergence figures below.

What is left is to show that the update rule for A in 3 selects the minimum of Gtsc. We take the

gradient and equate it to zero.

a = a
t −K

−1
(

a
t
)

(

A
T
Aa

t −A
T
x+ λc+A

(

S̃ + S̃T
))

= a
t −

(

a
t · /

(

A
T
Aa

t + λc
))

· ∗
(

A
T
Aa

t −A
T
x+ λc+A

(

S̃ + S̃T
))

= a
t · ∗

(

A
T
x
)

· /
(

A
T
Aa

t + λc+A
(

S̃ + S̃T
)))

(43)

This algorithm minimizes both the SC objective and the transfer learning component, as seen in

Fig. A.3.

Figure A.1: F obj Figure A.2: MMD + GL

Figure A.3: TSC objective function convergence, week 0, fridge.

62

Appendix B

REFIT and Domain Split Criteria

The houses in REFIT data have the following traits in Table B.1.

To divide houses based on occupancy, we split:

• Source: Houses that have less than 3 occupants.

• Target: Houses that have 3 or more occupants.

To divide houses based on total owned appliances, we split:

• Source: Houses that have less than 30 total appliances.

• Target: Houses that have 30 total appliances or more.

To divide houses based on consumption clustering. we compute the temporal average consump-

tion of each appliance and aggregate signal of each house. We create a new matrix by concatenating

all average house consumption data. The matrix we obtain is an element of R
N×K+1, N is the

number of houses (samples), and K is the number of appliances, we have K+1 feature to represent

appliances and the aggregate signal. Each cell in the matrix contains the average consumption of

an appliance (or aggregate signal) for a certain house. Then, we apply K-Means clustering[57] to

create two clusters of houses which we define as source and target domains.

63

House Occupancy Construction Year Appliances

Owned

Type Size

1 2 1975-1980 35 Detached 4 bed

2 4 - 15 Semi-

detached

3 bed

3 2 1988 27 Detached 3 bed

4 2 1850-1899 33 Detached 4 bed

5 4 1878 44 Mid-terrace 4 bed

6 2 2005 49 Detached 4 bed

7 4 1965-1974 25 Detached 3 bed

8 2 1966 35 Detached 2 bed

9 2 1919-1944 24 Detached 3 bed

10 4 1919-1944 31 Detached 3 bed

11 1 1945-1964 25 Detached 3 bed

12 3 1991-1995 26 Detached 3 bed

13 4 post 2002 28 Detached 4 bed

15 1 1965-1974 19 Semi-

detached

3 bed

16 6 1981-1990 48 Detached 5 bed

17 3 mid 60s 22 Detached 3 bed

18 2 1965-1974 34 Detached 3 bed

19 4 1945-1964 26 Semi-

detached

3 bed

20 2 1965-1974 39 Detached 3 bed

21 4 1981-1990 23 Detached 3 bed

Table B.1: REFIT House Information.

64

Bibliography

[1] S. Mari, G. Bucci, F. Ciancetta, E. Fiorucci, and A. Fioravanti, ªA review of non-intrusive load

monitoring applications in industrial and residential contexts,º Energies, vol. 15, no. 23, 2022.

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Vaughan, ªA theory of

learning from different domains,º Machine Learning, vol. 79, pp. 151±175, 05 2010.

[3] B. Sun, J. Feng, and K. Saenko, ªReturn of frustratingly easy domain adaptation,º Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 30, 11 2015.

[4] P. A. Schirmer and I. Mporas, ªNon-intrusive load monitoring: A review,º IEEE Transactions

on Smart Grid, vol. 14, no. 1, pp. 769±784, 2023.

[5] M. N. Schmidt, J. Larsen, and F.-T. Hsiao, ªWind noise reduction using non-negative sparse

coding,º in 2007 IEEE Workshop on Machine Learning for Signal Processing, pp. 431±436,

2007.

[6] M. Schmidt and R. Olsson, ªSingle-channel speech separation using sparse non-negative ma-

trix factorization,º 09 2006.

[7] A. Rahimpour, H. Qi, D. Fugate, and T. Kuruganti, ªNon-intrusive energy disaggregation us-

ing non-negative matrix factorization with sum-to-k constraint,º IEEE Transactions on Power

Systems, vol. 32, no. 6, pp. 4430±4441, 2017.

[8] D. L. Donoho, ªFor most large underdetermined systems of linear equations the minimal ⋖1-

norm solution is also the sparsest solution,º Communications on Pure and Applied Mathemat-

ics, vol. 59, no. 6, pp. 797±829, 2006.

65

[9] J. Kolter, S. Batra, and A. Ng, ªEnergy disaggregation via discriminative sparse coding,º in Ad-

vances in Neural Information Processing Systems (J. Lafferty, C. Williams, J. Shawe-Taylor,

R. Zemel, and A. Culotta, eds.), Curran Associates, Inc.

[10] P. Hoyer, ªNon-negative sparse coding,º in Proceedings of the 12th IEEE Workshop on Neural

Networks for Signal Processing, pp. 557±565, 2002.

[11] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, ªContractive auto-encoders: Explicit

invariance during feature extraction,º in Proceedings of the 28th International Conference on

International Conference on Machine Learning, ICML’11, (Madison, WI, USA), p. 833±840,

Omnipress, 2011.

[12] M. a. Ranzato, C. Poultney, S. Chopra, and Y. Cun, ªEfficient learning of sparse representa-

tions with an energy-based model,º in Advances in Neural Information Processing Systems

(B. SchÈolkopf, J. Platt, and T. Hoffman, eds.), vol. 19, MIT Press, 2006.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ªImagenet classification with deep convolu-

tional neural networks,º in Advances in Neural Information Processing Systems (F. Pereira,

C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[14] E. Jiang, Y. J. Zhang, and O. Koyejo, ªFederated auto-weighted domain adaptation,º preprint

arXiv:2302.05049, 2023.

[15] L. Yang, J. Huang, W. Lin, and J. Cao, ªPersonalized federated learning on non-iid data via

group-based meta-learning,º ACM Trans. Knowl. Discov. Data, vol. 17, mar 2023.

[16] Canadian Association of Petroleum Producers (CAPP), ªWorld energy needs,º [n.d.].

[17] E. Azizi, M. T. H. Beheshti, and S. Bolouki, ªQuantification of disaggregation difficulty with

respect to the number of smart meters,º IEEE Transactions on Smart Grid, vol. 13, no. 1,

pp. 516±525, 2022.

[18] G. Hart, ªNonintrusive appliance load monitoring,º Proceedings of the IEEE, vol. 80, no. 12,

pp. 1870±1891, 1992.

66

[19] M. K. Akbar, M. Amayri, and N. Bouguila, ªDeep learning based solution for appliance op-

erational state detection and power estimation in non-intrusive load monitoring,º in Advances

and Trends in Artificial Intelligence. Theory and Applications: 36th International Conference

on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE

2023, Shanghai, China, July 19±22, 2023, Proceedings, Part II, (Berlin, Heidelberg), p. 59±65,

Springer-Verlag, 2023.

[20] M. K. Akbar, M. Amayri, and N. Bouguila, ªA novel non-intrusive load monitoring technique

using semi-supervised deep learning framework for smart grid,º Building Simulation, vol. 17,

pp. 441±457, 03 2024.

[21] E. Elhamifar and S. Sastry, ªEnergy disaggregation via learning ’powerlets’ and sparse

coding,º in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,

AAAI’15, p. 629±635, AAAI Press, 2015.

[22] S. Singh and A. Majumdar, ªAnalysis co-sparse coding for energy disaggregation,º IEEE

Transactions on Smart Grid, vol. 10, no. 1, pp. 462±470, 2019.

[23] S. Singh and A. Majumdar, ªDeep sparse coding for non±intrusive load monitoring,º IEEE

Transactions on Smart Grid, vol. 9, no. 5, pp. 4669±4678, 2018.

[24] Z. Zhou, Y. Xiang, H. Xu, Y. Wang, and D. Shi, ªUnsupervised learning for non-intrusive load

monitoring in smart grid based on spiking deep neural network,º Journal of Modern Power

Systems and Clean Energy, vol. 10, no. 3, pp. 606±616, 2022.

[25] J. Edmonds and Z. S. Abdallah, ªImg-nilm: A deep learning nilm approach using energy

heatmaps,º in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, SAC

’23, (New York, NY, USA), p. 1151±1153, Association for Computing Machinery, 2023.

[26] P. Huber, A. Calatroni, A. Rumsch, and A. Paice, ªReview on deep neural networks applied to

low-frequency nilm,º Energies, vol. 14, no. 9, 2021.

[27] Y. Zhang, G. Tang, Q. Huang, Y. Wang, X. Wang, and J. Lou, ªFednilm: Applying federated

learning to nilm applications at the edge,º 2021.

67

[28] M. D’Incecco, S. Squartini, and M. Zhong, ªTransfer learning for non-intrusive load monitor-

ing,º IEEE Transactions on Smart Grid, vol. PP, pp. 1±1, 08 2019.

[29] H. Bousbiat, Y. Himeur, I. Varlamis, F. Bensaali, and A. Amira, ªNeural load disaggregation:

Meta-analysis, federated learning and beyond,º Energies, vol. 16, no. 2, 2023.

[30] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, ªLearning structured prediction mod-

els: A large margin approach,º in Proceedings of the 22nd International Conference on Ma-

chine Learning, ICML ’05, (New York, NY, USA), p. 896±903, Association for Computing

Machinery, 2005.

[31] M. Collins, ªDiscriminative training methods for hidden Markov models: Theory and ex-

periments with perceptron algorithms,º in Proceedings of the 2002 Conference on Empirical

Methods in Natural Language Processing (EMNLP 2002), pp. 1±8, Association for Computa-

tional Linguistics, July 2002.

[32] K. Fallah and C. J. Rozell, ªVariational sparse coding with learned thresholding,º in Proceed-

ings of the 39th International Conference on Machine Learning (K. Chaudhuri, S. Jegelka,

L. Song, C. Szepesvari, G. Niu, and S. Sabato, eds.), vol. 162 of Proceedings of Machine

Learning Research, pp. 6034±6058, PMLR, 17±23 Jul 2022.

[33] H. Ishwaran and J. S. Rao, ªSpike and slab variable selection: Frequentist and Bayesian strate-

gies,º The Annals of Statistics, vol. 33, no. 2, pp. 730 ± 773, 2005.

[34] M. Long, G. Ding, J. Wang, J. Sun, Y. Guo, and P. S. Yu, ªTransfer sparse coding for robust

image representation,º in 2013 IEEE Conference on Computer Vision and Pattern Recognition,

pp. 407±414, 2013.

[35] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. SchÈolkopf, and A. Smola, ªA kernel two-sample

test,º Journal of Machine Learning Research, vol. 13, no. 25, pp. 723±773, 2012.

[36] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, ªGraph regularized sparse

coding for image representation,º IEEE Transactions on Image Processing, vol. 20, no. 5,

pp. 1327±1336, 2011.

68

[37] D. Murray, L. Stankovic, and V. Stankovic, ªAn electrical load measurements dataset of

united kingdom households from a two-year longitudinal study,º Scientific Data, vol. 4, no. 1,

p. 160122, 2017.

[38] K. Basu, Classification Techniques for Non-intrusive Load Monitoring and Prediction of Res-

idential Loads. PhD thesis, 11 2014.

[39] J. Lin, J. Ma, J. Zhu, and H. Liang, ªDeep domain adaptation for non-intrusive load monitoring

based on a knowledge transfer learning network,º IEEE Transactions on Smart Grid, vol. 13,

no. 1, pp. 280±292, 2022.

[40] J. Kolter and M. Johnson, ªRedd: A public data set for energy disaggregation research,º Artif.

Intell., vol. 25, 01 2011.

[41] P. A. Schirmer, I. Mporas, and M. Paraskevas, ªEnergy disaggregation using elastic matching

algorithms,º Entropy, vol. 22, no. 1, 2020.

[42] K. Carrie Armel, A. Gupta, G. Shrimali, and A. Albert, ªIs disaggregation the holy grail of

energy efficiency? the case of electricity,º Energy Policy, vol. 52, pp. 213±234, 2013. Special

Section: Transition Pathways to a Low Carbon Economy.

[43] M. K. Akbar, M. Amayri, N. Bouguila, F. Wurtz, and B. Delinchant, ªAssessing the effective-

ness of supervised and semi-supervised nilm approaches in an industrial context,º in Proceed-

ings of the 2023 6th International Conference on Computational Intelligence and Intelligent

Systems, CIIS ’23, (New York, NY, USA), p. 7±13, Association for Computing Machinery,

2024.

[44] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. S. Yu, ªGeneral-

izing to unseen domains: A survey on domain generalization,º 2022.

[45] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, ªA survey on federated

learning systems: Vision, hype and reality for data privacy and protection,º IEEE Transactions

on Knowledge & Data Engineering, vol. 35, no. 04, pp. 3347±3366, 2023.

69

[46] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,

A. Segal, and K. Seth, ªPractical secure aggregation for privacy-preserving machine learning,º

in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Se-

curity, CCS ’17, (New York, NY, USA), p. 1175±1191, Association for Computing Machinery,

2017.

[47] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, ªCommunication-

efficient learning of deep networks from decentralized data,º in International Conference on

Artificial Intelligence and Statistics, 2016.

[48] Q. Li, J. Ye, W. Song, and Z. Tse, ªEnergy disaggregation with federated and transfer learn-

ing,º in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pp. 698±703, 2021.

[49] S. Dai, F. Meng, Q. Wang, and X. Chen, ªFederatednilm: A distributed and privacy-preserving

framework for non-intrusive load monitoring based on federated deep learning,º in 2023 In-

ternational Joint Conference on Neural Networks (IJCNN), pp. 01±08, 2023.

[50] S. Chouchene, M. Amayri, and N. Bouguila, ªFederated learning based sparse coding for non-

intrusive load monitoring,º in Proceedings of the IEEE International Conference on Human-

Machine Systems (IEEE ICHMS), 2024, forthcoming.

[51] K. Hu, Y. Li, S. Zhang, J. Wu, S. Gong, S. Jiang, and L. Weng, ªFedmmd: A federated

weighting algorithm considering non-iid and local model deviation,º Expert Systems with Ap-

plications, vol. 237, p. 121463, 2024.

[52] J.-P. Vert, K. Tsuda, and B. SchÈolkopf, ªA Primer on Kernel Methods,º in Kernel Methods in

Computational Biology, The MIT Press, 07 2004.

[53] M. K. Akbar, M. Amayri, N. Bouguila, B. Delinchant, and F. Wurtz, ªEvaluation of regression

models and bayes-ensemble regressor technique for non-intrusive load monitoring,º Sustain-

able Energy, Grids and Networks, vol. 38, p. 101294, 2024.

[54] S. Chouchene, ªNILM Transfer Sparse Coding.º https://github.com/skalexch/

NILM_Transfer_Sparse_Coding.

70

[55] S. Chouchene, ªFedDomainAdaptation.º https://github.com/skalexch/

FedDomainAdaptation.

[56] D. Lee and H. S. Seung, ªAlgorithms for non-negative matrix factorization,º in Advances in

Neural Information Processing Systems (T. Leen, T. Dietterich, and V. Tresp, eds.), vol. 13,

MIT Press, 2000.

[57] J. MacQueen, ªClassification and analysis of multivariate observations,º in 5th Berkeley Symp.

Math. Statist. Probability, pp. 281±297, University of California Los Angeles LA USA, 1967.

71

	List of Figures
	List of Tables
	Introduction
	Background
	Non-Intrusive Load Monitoring
	Domain Adaptation
	Sparse coding models
	Sparse coding
	Deep sparse coding

	Contributions
	Thesis Overview

	Sparse Coding-Based Transfer Learning for Energy Disaggregation
	Introduction
	Sparse Coding and Energy Disaggregation
	Discriminative Disaggregation using Sparse Coding
	Adapting Deep SC to NILM data
	Variational Sparse Coding for NILM

	Transfer Learning for Sparse Coding
	Sparse Coding the Source, Disaggregating the Target
	Transfer Sparse Coding
	Transfer Learning for Deep Sparse Coding Architectures

	Experimental Setup
	Datasets
	Preprocessing REFIT
	Domain Split Criteria for REFIT houses
	Preprocessing IRISE
	Metrics

	Discussion
	Domain Adaptation between REFIT houses
	Domain Adaptation between REFIT and IRISE

	Weighted Federated Domain Adaptation Methods for Non-Intrusive Load Monitoring
	Introduction
	Related Works
	Federated Learning in NILM
	Federated Domain Adaptation

	Theoretical Background
	Federated Learning
	Federated Domain Adaptation through weighting
	Auto-weighting from raw data and from learned representations
	A summary of all methods used

	Experimental Setup
	Datasets
	Evaluation Metrics

	Results and Discussion
	Overall performance
	Appliance-level performance
	Sensitivity to sampling frequency

	Conclusion
	Appendix Derivation of the algorithm to solve TSC
	Appendix REFIT and Domain Split Criteria
	Bibliography

