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Abstract

QUIC Protocol : Resilience against flooding attacks and defense mechanism

Benjamin Teyssier

QUIC is a modern transport layer internet protocol designed to be more efficient and se-

cure than TCP. It has gained popularity quickly in recent years and has been adopted by a number

of prominent tech companies. Its efficiency comes from its handshake design. The server and the

client make both the transport layer acknowledgment and the TLS agreement during the same round

trip. However this process makes the packets heavy and requires more processing on the server-side

than TCP. This characteristic can be used as leverage by an attacker to compromise the computing

resources of its victim.

This thesis investigates the resilience of QUIC Protocol against handshake flood attacks and pro-

poses a detection mechanism (QUICShield). I conducted comprehensive experiments to evaluate

the resource consumptions of both the attacker and the target during incomplete handshake attacks,

including CPU, memory, and bandwidth. We compared the results against TCP Syn Cookies under

Syn flood attacks. The DDoS amplification factor was measured and analyzed based on the results.

This work also proposes a detection mechanism based on a Bloom filter combined with Gener-

alized Likelihood Ratio Cumulative Sum (GLR-CUSUM) to adapt to evolving attack patterns. It

was implemented and deployed against real attacks to evaluate its efficiency. We showed that the

QUIC Protocol design has a much larger DDoS amplification factor compared to the TCP, which

means QUIC is more vulnerable to handshake DDoS attacks. However the mechanism proposed is

accurate and efficient in terms of resources.
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Chapter 1

Introduction

1.1 Overview

Since the first major cyber attack on the Internet in 1988, cyber incidents have grown signifi-

cantly. One of the most common attacks is Distributed Denial of Service (DDoS) attacks [3]. DDoS

attacks can potentially overwhelm servers, rendering them unable to process legitimate requests,

resulting in significant economic and reputational damage to the service provider. One specific type

of DDoS attack, the QUIC-Flooding attack, has gained prominence due to the increasing popularity

of the QUIC protocol [4]. The emergence of the QUIC protocol represents a significant milestone

in Internet communication. It offers enhanced performance and reduced latency compared to the

traditionally used TCP protocol [5]. Its capability of facilitating secure and efficient data transmis-

sion across unreliable networks has attracted much attention from both academia and industry [6].

However, as with any innovative technology, it is imperative to scrutinize its potential vulnerabil-

ities. One such area that deserves rigorous investigation is the resilience against handshake flood

attacks [7]. The handshake flood attack is a type of Denial-of-Service (DoS) attack, which poses a

significant threat to network infrastructure [8]. The handshake flood attack exploits the handshake

mechanism present in many communication protocols, enabling attackers to amplify their traffic

and potentially trigger service outages and resource exhaustion. While the implications of hand-

shake flood attacks have been extensively studied in protocols such as the Domain Name System

(DNS) [9] and Network Time Protocol (NTP) [10], an evaluation of their impact within the QUIC
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protocol remains absent in the current body of literature. Given the growing use of QUIC including

many well-known tech companies such as Google and Amazon, this knowledge gap is important to

bridge. In this context, an empirical evaluation of the impact of such an attack is needed as well

as efficient defense mechanisms to tackle the growing number of cyber attacks. To address the

critical need for a thorough security assessment of the QUIC protocol, this thesis experimentally

explored QUIC’s resilience against handshake flood attacks. We constructed a realistic test-bed

with a QUIC server and a QUIC attacker client that generates spoofed handshaking requests. We

conducted exhaustive experiments to measure the resource consumption of both the attacker and

the targeted server during incomplete handshake attacks, containing CPU, memory, and bandwidth.

Our results reveal that the QUIC protocol design has a significantly larger DDoS amplification fac-

tor compared to TCP Syn Cookies, indicating a higher vulnerability to handshake DDoS attacks.

In contrast to previous studies [11, 12], we have identified the CPU resource of QUIC servers as

the most likely bottleneck during QUIC handshake flood attacks. In order to address this issue we

propose to develop an efficient change-detection-based defense mechanism. Existing research has

explored various techniques to address the problem of DDoS attacks [13]. One prominent approach

is using Bloom Filters for data storage and implementing the CUSUM (Cumulative Sum) algorithm

for change detection [14]. These methods have been successfully applied in detecting TCP SYN-

flooding attacks [15]. However, the traditional CUSUM algorithm requires prior knowledge of the

probability distribution of the system’s normal behavior and during an attack, which may not be ac-

curate or available [16]. We incorporate GLR-CUSUM (Generalized Likelihood Ratio CUSUM) to

increase the versatility of the mechanism. Additionally, the existing techniques can not be directly

applicable to QUIC-Flooding Attacks due to the differences in the packet structure and processing

requirements of the QUIC protocol.

1.2 Contributions

The major contributions of this thesis can be summarized as following:

• We investigate the QUIC protocol resource consumption during handshake flood attack
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• We compare the resource consumption of QUIC protocol with TCP Syn Cookies under hand-

shake flood attacks on real test-beds

• We measure the DDoS amplification factors of QUIC protocol and reveal a vulnerability of

the QUIC protocol design.

• In order to address this vulnerability, we introduce the design of QUICShield, a novel and tai-

lored detection mechanism designed to combat QUIC-Flooding DDoS attacks. QUICShield

utilizes a modified version of the Bloom Filter for efficient data storage. It incorporates the

GLR CUSUM algorithm for change detection, which overcomes the limitations of traditional

CUSUM algorithms.

• This research includes emulation experiments to assess the performances against real attacks

and measure the resource consumption of the algorithm.

1.3 Thesis Overview

This thesis is organized as follows:

• Chapter 2 presents the background on which this work is based, it also contains the related

works from previous research.

• Chapter 3 presents the experiments led to study servers’ behavior under QUIC handshake

flooding attacks.

• Chapter 4 describes the proposed defense mechanism against handshake flooding attacks.
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Chapter 2

Literature review

Section 2.1 provides the background explanation about QUIC Protocol and particularly its hand-

shake mechanism. A comprehensive review of the related works on QUIC Flooding attacks and

various defense mechanisms is presented in Section 2.2.

2.1 Background

QUIC is a revolutionary transport protocol initially designed by Google to enhance the per-

formance of web applications [17]. It achieves this performance improvement by modifying the

handshake process. It reduces the number of RTT (Round-trip Time) to establish a connection and

allows the client and server to exchange encrypted data very early in the connection process com-

pared to what could be done previously with TCP. It still uses TLS 1.3 [18] for the cryptographic

handshake. QUIC Protocol also provides better multiplexing to avoid head-of-line blocking. Pre-

viously, with TCP you could not process a packet if there was a problem with the transmission of

the previous one. The server accumulated packets until the missing one was sent again. In QUIC,

the multiplexing capability removes this restriction and speeds the transmission process up. QUIC

designers took into consideration the various problems caused by congestion during TCP transmis-

sions. The congestion control mechanism in QUIC is also standardized [19]. Some variants of TCP

included a decent congestion control mechanism which inspired the one in QUIC. However, differ-

ences in the nature of packets led to some mandatory modifications in the process. TCP actually
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had a lot of different variants proposed by academia and industry to solve the problems in its initial

design. However, the different needs and the lack of common standardization led to local compart-

mentalization of these variants. QUIC is trying to consider the needs, from which the TCP variants

originated, and create a new Transport protocol solving performance and security issues. Most of

these are solved during the handshake process which is described in Subsection 2.1.2.

2.1.1 Packet Structure

This subsection will describe the QUIC packet structure shown in Figure 2.1b and compare the

main differences with the packet structure of TCP shown on Figure 2.1a. QUIC packets are carried

on UDP datagrams and inherit some of UDP transport properties. For example, the packets do not

need to be ordered. In TCP you cannot receive and process a packet number n if you did not receive

packet number n − 1. This is called head-of-line blocking and causes serious congestion and loss

issues. QUIC combines this property and its own packet ordering mechanism to solve head-of-line

blocking without affecting performance. UDP is also stateless, the server does not store anything

about the client. QUIC uses this property to be stateless too during its handshake process. UDP is

in fact a very basic and lightweight transport protocol on top of the IP protocol, this characteristic

gave QUIC designers a lot of freedom for the architecture choices.

As shown on Figure 2.1b, the only fields in the UDP header are source and destination port, the

checksum to verify the integrity of the message against physical errors causing bit flipping and

the length of the packet. Note that the UDP checksum is not the only mechanism used to verify

the integrity as QUIC has its own Message Authentication Code to make sure the packet was not

modified. In the plaintext part of the header, few information is displayed such as connection ID

and packet number. In the flags section we can find information such as the version ID. The idea

is to limit the amount of information in the plaintext section to the minimum without affecting

performance. However, some information can save a considerable amount of time for the server.

For example if a client is sending a packet with a deprecated version, it would be a waste of time to

decrypt the packet. The server can directly send a version negotiation packet. In the encrypted part,

we can find different frames used for packet acknowledgment, packet ordering or multiplexing. An

important difference between TCP and QUIC packets is the moment from when the packets are

5



encrypted. In TCP the first packet to be encrypted is ChangeCipherSpec during the TLS handshake,

the TCP handshake and the first part of the TLS one are done in plaintext and the structure of Figure

2.1a is only applied afterwards.

(a) TCP SYN Cookie Packet with encryption

(b) QUIC Datagram or packet

Figure 2.1: QUIC and TCP Packet Structures

2.1.2 Handshake

This subsection will describe the QUIC handshake process, starting with the 1-RTT version

which can be seen in Figure 2.2a and then explaining the 0-RTT feature on Figure 2.2b.
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(a) 1-RTT Handshake (b) 0-RTT Handshake

Figure 2.2: QUIC Handshake

1-RTT

A particularity of QUIC compared to TCP is that clients can be authenticated before the crypto-

graphic handshake starts to defend against vulnerabilities linked to IP Spoofing. This option called

Address validation mechanism is usually disabled when the server receives a low number of re-

quests to increase the performance as it removes one RTT from the connection establishment phase.

Servers usually enable it when the load is increasing to make sure it only serves legitimate clients.

The server uses a token mechanism very similar to what we can find in TCP SYN-Cookie. In order

to compute this token, the server needs information on the client. The handshake starts with the

client sending an Inchoate CHLO to the server. The server will extract some information from the

header of this packet and create a token that will be used to identify the client later on. This token

should be created in a way that prevents the client from creating his own token. The technique used

in most of the implementations is using keyed hash functions on the client’s IP address and the

connection ID. The key is known by the server only which prevents the client from forging a token.

Unlike TCP SYN-Cookie, the token will be reused for future connection. Therefore, the client’s

port is generally not used to generate the token as it probably changes between two connections.

However, this method can change depending on the QUIC implementation.

The server then replies with a Retry Packet or with a NEW TOKEN packet containing the newly

created token, server’s certificate and its public key. The client extracts the token from the packet

and stores it. If the server wants to authorize future connection with this token, it is included in the
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NEW TOKEN frame, otherwise the Retry frame is used. In the case of long-term tokens, it will be

included in the packet by the client every time he wants to establish a connection with the server.

This token still has an expiration date after which the client will need to request a new one.

From there, the cryptographic handshake can start, it is based on two Diffie-Hellman key exchanges.

The ephemeral keys are used to encrypt the handshake and the potential early data. The long-term

keys are used to encrypt the communications once the handshake is finished. The client computes

the initial keys and its long-term public key. It then sends the Full CHLO packet encrypted with the

initial key. The client can also add early data encrypted with this initial key.

Once the server receives the Full CHLO, it verifies the token validity and computes the ephemeral

and long-term keys. If early data was sent by the client, it is decrypted and the request is processed.

Then the server replies with its long-term public key encrypted with the ephemeral key and the re-

sponse to the early data request encrypted with the long term key.

The client can now compute the long-term key to encrypt and decrypt the future messages. This

cryptographic process was formally verified by Zhang et al [1]. The details of the cryptographic

handshake is shown on Figure 2.3. The annotations used can be found in Table 2.1.

It is important to note that the server has to perform two Diffie-Hellman key computations, a public

key computation, a signature and an encryption when he receives a CHLO packet. These calcula-

tions are computation intensive and cause a load on the server side which is not present on the client

side at this point of the handshake. This asymmetry can be used by an attacker to leverage a CPU

amplification factor during the handshake process.

8



Figure 2.3: QUIC Detailled Cryptographic Handshake [1]

0-RTT

0-RTT Handshaking is a key feature of QUIC. It allows low latency exchanges between client

and server by using previous keys to send encrypted messages in the early stages of the handshake.

This feature provides significant performance improvement compared to what was known in TCP

before.

The concept behind the 0-RTT handshake is very similar to 1-RTT. The difference resides in the fact

that the client already has a token from a previous connection. In that case, he can send a new Full

CHLO to the server by including this token. The client can also join a request using the initial keys

computed in the previous exchanges. A new set of long-term keys will be used after the handshake.

The tokens given by the server have an expiration date. If the client sends a token which is not valid

anymore, the server will send a REJ packet containing a newly computed token for the client to

include in his packets.
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Annotation Meaning

CEPri Client’s ephemeral Diffie±Hellman private value

LPri Server’s long-term DH private value

SEPri Server’s ephemeral Diffie±Hellman private value

LPub Server’s long-term DH public value

g Primitive root

CEPub Client’s ephemeral Diffie±Hellman public value

SEPub Server’s ephemeral Diffie±Hellman public value

InitKC Initial key of client

InitKS Initial key of server

FSKC Forward-secure key of client

FSKS Forward-secure key of server

pkS Public signature key of the server

skS Private signature key of the server

{}skS {} is signed using the private signature key of the server

{}InitKC {} is encrypted using the initial key of client

{}InitKS {} is encrypted using the initial key of server

{}FSKS {} is encrypted using the forward-secure key of server

Table 2.1: Cryptographic Handshake annotations

Without address validation

However, in order to increase the performance of the exchanges a server usually decides not to

validate the address of its clients unless it is under load. In that case, the client sends a Full CHLO

with his chosen cipher suites, if the server supports these, he sends his certificate and all the material

necessary for the handshake. The process is in fact the same as a 0-RTT handshake without Token

verification.

TCP SYN COOKIE

TCP SYN-Cookies have been introduced by Bernstein [20] as a way to prevent TCP SYN-

Flooding attacks. It makes the handshaking process stateless which prevents the attacker from keep-

ing semi-open connections that would overwhelm the server’s. The attackers were using spoofed

IPs to maximize the number of connections without flooding their own traffic. Indeed, when the

server receives the packet with a spoofed IP, it will reply to this IP which is not the one of the
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attacker. Therefore, SYN-Cookies provides authentication. The challenge addressed by the mecha-

nism is to authenticate a client without storing information of his previous connections. It also has

to do so with limited resources in order to keep a decent computational intensity symmetry between

the client and the server. The idea is to compute a number (a cookie) based on several pieces of

information from the client’s incoming connection. This number has to be hard to guess for a client

so that a client cannot forge his own cookie. It also has to change so that a client cannot reuse a

cookie stored from a previous connection. The 32-bits cookie is added in the header as shown in

Figure 2.1a. The information chosen from the initial packet received is the source and destination

IP, the source and destination port, and the Initial Sequence Number from the client (ISNc). This

information is hashed with the lightweight Siphash [21] using two secret keys. The time is also a

part of the cookie to ensure that a too old connection will not be accepted anymore. A handshake

should be finished by the client in the next 64 seconds following the Server’s SYN-ACK response.

syncookie = H(s1, sa, sp, da, dp)+ISNc+T×224+(H(s2, sa, sd, da, dp, T ) mod 224)+MSSi

The notations are as follows :

• H : Siphash keyed hash function

• s1 : Server’s first secret key

• s2 : Server’s second secret key

• sa : Source address of the packet

• sp : Source port of the packet

• da : Destination address of the packet

• dp : Destination port of the packet

• ISNc : Initial Sequence Number from Client

• T : Timestamp

• MSSi : Maximum Segment Size
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T MSS Cookie

←−−−−−−−−→ ←−−−→ ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
5 bits 3 bits 24 bits

Table 2.2: SYN-Cookie Structure

The cookie is then added to the header following structure shown in Table 2.2

2.1.3 SYN-Flood Attacks

QUIC Handshake flooding attacks are very similar in terms of behavior to TCP SYN-Flooding

attacks. The attacker uses the properties of the protocol which requires a low amount of resources to

create the packet on the client and a higher amount on the server side. In TCP, the attacker will send

a lot of SYN packets. For each SYN packet, the server will allocate a TCB (Transmission Control

Block) in memory. This block will be used to remember information about the client and the session

associated. By sending a large amount of packets, the attacker will force the server to allocate more

memory than it can handle, creating a memory overflow. Under this condition, the server will be

overloaded and will not be able to respond to the requests of legitimate clients creating a DoS. The

attack scheme is shown on Figure 2.4. Most of the time, the attacker will use spoofed IPs to make

the detection harder for the victim. An attacker can also leverage a botnet to reach higher attack

rates.
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Figure 2.4: SYN-Flood Attack

2.1.4 QUIC Handshake Flooding Attack

QUIC Handshake Flooding Attack consists in sending a lot of Full CHLO packets to the server

in order to overwhelm its computation resources. Indeed, due to the cryptographic design of the

handshake and the asymmetry of computations, the attack can leverage a computation resource

amplification factor.

First, the attacker sends an Initial CHLO (previously Inchoate in older versions) to get a token from

the server. It is a mandatory step because the server will not proceed to the key computation if

the token is not valid. The token verification is the first step done on the server side to avoid IP

Spoofing. It saves a lot of resources because every packet without a valid token will be discarded

without further processing. Once the attacker receives the token in the REJ packet, he can start

sending Full CHLO at a high rate. The stateless characteristic of the protocol will force the server

to compute the keys for each new CHLO as it is not possible to store those.

It is interesting to note that the designers took into consideration the problem of IP Spoofing present
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in TCP SYN-Flooding. The address validation mechanism achieved with token verification prevents

an attacker from using spoofed random IPs. It reduces the possibilities of an attacker as he will have

to use botnets to avoid detection. Botnets are actually not using IP Spoofing, the number of bots

compensate for the need of various IPs to avoid detection and to achieve high attack rates.

Figure 2.5: QUIC Handshake Flooding Attack

2.2 Related works

2.2.1 Bloom Filter

Bloom filters are widely used in network management and security for detection purposes [2].

It is a probabilistic data structure designed to detect if an element is a member of a set. It is space-

efficient and does not allow false negatives, however the false positive rate can be high depending

on the parameters chosen.

Standard Bloom Filter consists in an array of bits of size m. In the beginning, all bits are set to

0. Then, the filter takes the elements xi of the set and hashes each of them k times. The image

of the hash function is the interval J0,m − 1K. Each time an element is hashed into an index, the

corresponding bit is set at 1. Therefore, each element is represented in the table by k bits set at 1.

If a bit is already set to 1 when an element is hashed into its index, it stays at 1. Then, to test the

membership of new elements yi, they are hashed k times; if every bit corresponding to the output

of the hash function is 1, the element is probably a member of the set. However if a bit is at 0,
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it is certain that the element is not part of the set. False positives are caused by the overlapping

of two elements in the table. Therefore, the more elements we add in the set, the higher the false

positive rate. On the contrary, choosing a larger table, i.e. increasing m, reduces overlapping and

false positives. Figure 2.6 shows how the mechanism works.

Figure 2.6: Standard Bloom Filter [2]

2.2.2 CUSUM

Cumulative sum control chart (CUSUM) is a sequential analysis technique used for change

detection monitoring. This statistical method is used in many different fields such as medicine,

signal processing or industrial logistics. It is based on known distributions of the monitored variable

and computes the cumulative likelihood ratio. The sum of these ratios on the different steps gives

the sequential aspect of the technique. Xie et al. work [22] provides a description of the standard

CUSUM method as well as the different extensions and generalization of the technique.

GLR-CUSUM is a particularly interesting generalization when you cannot make assumptions on

your data distribution. The global idea remains the same but you do not assume a known distribution

over your variable. In that case, you approach the real distribution using different sets of functions.

It increases the calculations necessary but makes the technique more versatile.

2.2.3 SYN-Flood Defense

SYN-Flood attacks can be defended by different methods which can be classified protocol level

or external. For instance, TCP-SYN Cookie and TCP-SYN Cache are modifications of the protocol
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implementation in order to limit or eliminate the threat. These methods are very effective but can

present drawbacks such as performance or compatibility issues. Indeed, when modifying a protocol

that constitutes the backbone of the whole internet, it is difficult to incite everyone to use it. Also,

only the servers have an interest in adopting such modifications, the incentives for the clients are

negligible. Therefore, external methods such as traffic filtering can be easier to implement and

deploy at large scale. Chen and Yeung proposed a statistical method [15] based on CUSUM in order

to detect high rates of TCP SYN packets. It also tackles the spoofing consideration and the impact

on the system.
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Chapter 3

Evaluation of QUIC resilience against

handshake flooding attack

The goal of this chapter is to provide an experimental evaluation of the resource consumption

under handshake flooding attack for both server and attacker. This way, the amplification factor is

easily calculated by dividing the amount of resources necessary on the server side by the one on

the attacker side. Three main resources are monitored : CPU usage, memory usage (RAM) and

bandwidth.

This chapter is organized as follows : we start by describing the experimental setup in place for the

measurements in section 3.1, then sections 3.2 to 3.4 discuss every monitored resource separately.

Section 3.5 presents similar experiments for different implementations of the QUIC protocol. Sec-

tion 3.6 shows how an attacker can optimize the amplification factor. The content of this chapter

was published as a paper [23] in conference CNSM 2023.

3.1 Experimental setup

The experiments were performed between two basic Linux devices, one acting as a client, the

other acting as the server as shown on Figure 3.1. One device was a Raspberry PI Model 3B having

1GB of RAM available and a Quad Core 1.2GHz CPU, the other was a laptop with 16GB of RAM

and Intel i7 1.8GHz CPU. The roles of server and client were reversed between every measurement
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to ensure no dependence on the hardware for our results. The measurements were made ten times

for each device and the average of both scenarios were taken. The 95% confidence interval was

also drawn on some figures to show the variation from one measurement to the other. Following

the same idea, the base resource usage of processes present on the machine should not influence the

measure. To that effect, the measures were conducted on the process running the server and client

to isolate the resource consumption.

The goal of these experiments is to evaluate the resilience of QUIC Protocol against handshaking

flooding attacks. We compare its resource consumption under attack with another protocol. TCP

being the most popular transport protocol, it is interesting to use it as a comparison. However, to

ensure a fair comparison in terms of resilience and resource usage, it was necessary to deploy the

stateless version : TCP SYN Cookies [24]. Then we estimated the amplification factor of both

protocols to assess the lever an attacker has on its victim. The different resources monitored were

the Memory Usage, CPU Usage and Bandwidth. Note that amplification factor is the ratio between

the resource consumption of the server to process the packets and the needs of the attacker to craft

those.

The implementation chosen to run the experiments in a first place was aioquic [25], a Python im-

plementation which provides a large range of API features. After finding the limitation resource,

we added two other implementations in order to strengthen our results and avoid implementation

biases. The additional implementations chosen were picoquic [26], a minimalist compliant C im-

plementation ; and msquic [27] which is Microsoft’s implementation of QUIC, it is written in C too.

All of these are abiding by the standard RFC 9000 [17]. The attack code is a modified version of

the different implementations presented above. It only contains the code to create a packet to be as

lightweight as possible. The TCP SYN Cookie code is implemented in Python to have a relevant

comparison with aioquic. It was written from scratch but follows the guidelines given in TCP SYN

Cookies Linux implementation.
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(a) First round of the experiment (b) Second round of the experiment

Figure 3.1: Experimental setup

3.2 CPU

In TCP SYN-Flooding, the attacker aimed at overwhelming the server’s storage. However, due

to the stateless characteristic of both QUIC and TCP SYN Cookie, the server does not store the

status of each connection request. Therefore the storage need is not impacted by the attack volume.

However, in order to verify the legitimacy of the incoming connection initialization requests, both

QUIC and TCP servers need to do some calculations as specified in Section 2.1.2. To measure

the CPU consumption of QUIC server, we increase the number of Client Hello packets from 1

packet/second to 50 packet/second and observe the CPU usage on the server side. The CPU usage

over time was also estimated to monitor the behavior of the server during an attack. The CPU

consumption was obtained with Linux built-in tools ps to measure the resources used by a specific

process :

$ ps −p $PID −o %cpu

The experiment was conducted multiple times and the result plotted is the mean of all the values. It

also contains the 95% confidence interval to show the variability from one row of experiment to the

other.
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3.2.1 Usage over time

We observed the resource consumption and the server behavior over time during handshake

attacks. This experiment was conducted to observe the CPU Usage over time during attacks at

different rates. An attack was started at different rates and the CPU percentage was taken every

second. This experiment was performed three times with the different rates to ensure a smooth

output. However, it was pretty stable and the results were very close from one round of measurement

to the other. The script used for the measurement can be found in Appendix D.1.

On the QUIC server-side of Figure 3.2(b), we can observe the increase of CPU presents inertia

before stabilizing. It also appears that higher rates create more inertia than lower ones. On the

QUIC client-side, as shown in Figure 3.2(a), a slight decrease happens in the first seconds. Then

the CPU usage is quickly stabilized to its final value which is also close to the one found previously.

The inertia is caused by the queue of packets. At first the server proceeds to the verifications needed

to process the packet. It checks the different values of the flags corresponding to the parameters

of the connection inside the header. It also needs to verify if the address was validated. Then it

starts preparing the Server Hello packet. During the first minutes it falls behind, it is the time for

the server to allocate more resources and process the different packets. This inertia can be a double-

edged characteristic for the system. It gives more time to a potential DDoS Detection system to

notice the attack and to potentially prevent further harm. However, this stack filling up also means

that potential clients might encounter additional delay during this period of time.

The experiment was performed under the same conditions for TCP SYN Cookie. The resource

consumption is instantly the one it stabilizes to. Both on the server-side and the client-side, we can

observe the same values around the beginning of the experiment as in Figure 3.2(c)(d). The CPU

usage is low compared to the one obtained with QUIC.

This stability is mostly explained by the low resource consumption. It never goes above 1.5% of the

total device capacity. The performance of this protocol is obviously a benefit and a key feature of

the SYN Cookies. In the rest of the experiments in this thesis, we use the stabilized resource usage

values to represent the usage on each attack volume.

20



Figure 3.2: CPU Usage over time in (aioquic and TCP Syn-cookies)

CPU Consumption

Figure 3.3(a) shows the average and confidence interval of additional CPU usage of the QUIC

server and attacker client when the attacker increases the attack volume. The x-axis corresponds to

the attack rate in packets per second. We can see that under the QUIC handshake flood attack, the

CPU consumption, for both the client and server, increases almost linearly with the attack volume.

The server’s CPU usage reaches its capacity when the attack volume is close to 50 packet/second.

Note that 50 packets per seconds is not the rate limit of the DDoS attack volume since attacker still

21



has a lot of room to increase its attack volume. However, 50 packets was the limit of our server as

it reaches 73% of CPU usage (almost 100% with the base usage). Higher values are not relevant

as the overloaded server causes noise in the measures. The experiment shows that during a QUIC-

Flooding attack, CPU is the bottleneck. During the QUIC handshake process, the client uses much

less CPU resources than the server. The script used for the measurement can be found in Appendix

D.2. The same script was then used for the different implementations.

Figure 3.3(b) was obtained by leading the same experiment as Figure 3.3(a) with the TCP SYN

Cookie protocol. First of all, it appears that the CPU consumption of sending/handling the same

number of TCP handshake requests is significantly lower than QUIC both for server and client. For

example, the TCP server only consumes less than 1% CPU resources compared to the 30% con-

sumed by QUIC server when attack volume is 20 packet/second. This is mainly due to the design

complexity of QUIC packets and verifications compared to TCP SYN Cookies. Actually TCP SYN

Cookie is very similar to usual TCP where the connection ID is just a verifiable hash instead of

being a fixed number stored on the server. On the other hand, QUIC packets have a lot of fields

that are used for verification purposes. The size of the packets and the verifications themselves are

costful in terms of resource consumption.
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Figure 3.3: QUIC and TCP SYN Cookie CPU Usage (aioquic implementation)

Amplification Factor

This experiment highlights the CPU amplification factor for both QUIC and TCP SYN Cookie.

The attacker crafts packets in the most economical way to ensure an optimal amplification. He does

not wait for the server responses and does not process those, he also does not close the handshake

as it would be useless resource usage.

The QUIC amplification factor plotted on Figure 3.4 (a) seems to stabilize around 4.6 meaning that

for every unit of computation needed by the attacker, the server will deploy 4.6 times more resources

to process the packets. This high amplification factor can be explained by multiple aspects of QUIC

design. First the server has to validate the parameters provided by the client. If not, the server
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might send a Retry Packet. Then the server has to craft the Handshake packet depending on the

information contained in the header of the client’s one. An amplification factor over 4 is potentially

a serious vulnerability. With the adequate infrastructure, an attacker can take down systems with

more than 4 times its computing power, reducing drastically the complexity and the cost of an

attack. The amplification factor of TCP SYN Cookie presented in Figure 3.4(b) is notably lower, it

stabilizes around 1.28 meaning the server has to do 28% more work than the client to process the

packet. It is mainly due to the design of the protocol. During the handshake, the server only has

to compute a hash based on information from the incoming packet and the time when it received

it. This hash will be the cookie sent back to the client to identify the connection without storing

any connection ID. Siphash [21] is the pseudorandom function used to hash this information. It was

designed specifically for TCP SYN Cookie with performance in mind to make sure the server is

able to process the incoming packets without overloading the computation resources.

This low amplification reduces the lever an attacker has on its victim. It means an attacker must

have at least 80% of its victim resources to ensure the success of its attack.
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Figure 3.4: QUIC and TCP SYN Cookie CPU Amplification Factor (aioquic implementation)

3.3 Memory

The second resource we measure is the memory usage. During this experiment, we apply the

same conditions as in the measure of CPU Amplification and CPU usage over time. The ps tool used

to get the CPU also allows monitoring memory so the same protocols were followed to optimize

relevance of the results and enhance comparability.

$ ps −p $PID −o %mem
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3.3.1 Usage over time

Even if it was established that memory would not be the bottleneck when the system reaches

stability, it is important to study memory over time to make sure there is no behavior that could be

a vulnerability for the server. For instance, an important memory peak caused by the attacker in a

short amount of time before reaching stability could be harmful to the system.

We can observe on Figure 3.5 that the memory follows the behavior of the CPU for the QUIC

protocol. There is inertia in the first seconds but the memory usage increases before reaching the

stabilized value. There is no resource consumption peak at the beginning of the attack. TCP SYN

Cookie was also plotted on this graph as a comparison but memory usage is so low that the measures

were not accurate on the client-side and on the server-side for rates under 50pps. The highest usage

reached is 0.06% of the device total capacity. The small jumps in the graphs can be explained by

the very low usage and the accuracy of the tool when the memory usage is below 1%.

These results confirm the fact that memory is less likely to be the bottleneck under handshake flood

attacks. It also highlights how low the memory usage for TCP SYN Cookie is.

26



Figure 3.5: Memory usage over time (aioquic implementation)

3.3.2 Memory Consumption

As shown in Figure 3.6, on the QUIC client-side, memory usage remains stable when the attack

rate increases. The confidence interval is very tight meaning the results obtained during the different

rounds of the experiment provided very similar results. The value is low around 0.1% of the device

total capacity. On the server-side, there is an increase in memory usage along with the attack rate.

The confidence interval is also close to the curve meaning the impact of this type of attack on

resources is relatively predictable. The highest value reached is below 2% which is low compared

to the CPU usage for a similar attack rate. Compared to CPU usage, the memory usage of QUIC

server is much lower and CPU is much more likely to be exhausted first under handshake flooding

attack.
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3.3.3 Memory usage and Amplification Factor

As shown in Figure 3.6, the memory amplification factor increases along with the attack rate

following the drift of the server memory usage reaching 8.6. It is worth noting that the amplification

factor may keep on increasing with the attack rate. However, since the CPU resources on the QUIC

server has already reached its capacity, a larger attack rate is not meaningful.

We can see that the server memory usage increases linearly with the number of packets because of

the asynchronous functions used to handle multiple packets and connections at a time. However

once the packets are processed the memory usage falls down to 0 as everything is dumped. Even if

the amplification reaches high values, these metrics are not very relevant considering the fact that

CPU is a bottleneck before memory could be an issue. In addition to that, it is easy to add memory

to an infrastructure but adding CPU is more difficult and certainly more costful.

Figure 3.6: QUIC Memory Usage and Amplification Factor (aioquic implementation)
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3.4 Bandwidth

TCP SYN Flooding could be a threat for the stateful TCP servers in terms of memory because

it stores the Sequence Number to verify connections. However, it can also be the target of attacks

on the bandwidth. This experiment was conducted to monitor the bandwidth usage under flooding

attacks with QUIC and TCP SYN Cookie. As shown in Figure 3.7, for both protocols, the incoming

and outgoing traffic are close. This is mainly due to the design of both protocols to ensure a low

bandwidth amplification factor with symmetrical sized packets.

Following the previous experiment protocols, we isolated the bandwidth of the process from the

base usage. We can observe a more significant bandwidth consumption for QUIC than for TCP

SYN Cookies. This can be explained by the numerous fields in a QUIC packet. As explained in

Section III, the QUIC Handshake contains the TLS one. The key exchange is done during the 1-RTT

handshake with the server certificate embedded in the Server Hello message.

The symmetrical aspect of these designs ensure a bandwidth amplification factor of 1. The client

sends a packet with some padding and the server has to send the exact same amount of data by

padding the packet as much as necessary. This feature slightly affects performance but significantly

reduces the vulnerabilities regarding bandwidth.
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Figure 3.7: Bandwidth usage comparison (aioquic implementation)

3.5 Other implementations

In order to solidate the results, we conducted the same experiment on multiple implementations.

It was to understand whether the problem is indeed coming from the QUIC design or it was from

the implementation we were using in the first experiment.

The first implementation used was aioquic, it is written in Python, therefore the code execution is

not very efficient. However, the cryptographic computations are done by a C library called in the

code to make the encryption and decryption processes faster. The cost of interpreting the code in

Python is higher, which explains the higher CPU usage for both Client and Server at a relatively low

attack rate.

The second implementation was conducted on quic-go [28], written in Golang. It is lower-level
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and more efficient than Python. In opposition to Python, it is compiled and not interpreted for higher

performances. The experiment process was the same as in Section 3.2.1. The laptop and the Rasp-

berry were interchanged between each row of the experiment and the attack rate was varying from

1 packet per second to the maximum amount until the server CPU reaches 100%. The increase in

CPU usage is approximately linear with the attack rate as shown on Figure 3.8.

As we can see on Figure 3.9, the attack volume is higher, it is due to the efficiency of the imple-

mentation. The amplification factor obtained is lower (∼2.9) but still significant enough to be a

vulnerability. This difference is mainly explained by two factors. First, the quic-go implementation

presents a more performant architecture. But also, as Go is a compiled language, there is no inter-

pretation cost like the one in Python.

The last implementation chosen was picoquic [26]. Written in C, this implementation is widely

used on the web. The C language is more efficient than Go and provides better performance. The

language itself is very efficient but the well designed code architecture also makes this implemen-

tation faster. It made it possible for our experiment to reach high attack rates such as 10000 packets

per second before reaching too high CPU as we can see on Figure 3.10.

The results in terms of amplification factor are centered around 2.2, see Figure 3.11.
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Figure 3.8: CPU consumption in quic-go

Figure 3.9: Amplification factor in quic-go
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Figure 3.10: CPU consumption in picoquic

Figure 3.11: Amplification factor in picoquic
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3.6 QUIC-Flooding with Early Data

Due to the 0-RTT feature of QUIC, an attacker may be able to use the Early Data packets to

increase the load on the server side. For example, the attacker can paste some random bytes in the

content without any encryption, and the server must decrypt the early data, which is more resource

intensive. We designed this experiment to examin how much the random early data effects the

amplification factor. This experiment was done with the aioquic implementation on a laptop, and it

was repeated 20 times. The attacker added random bytes in the early data packet to approximately

fill it to the maximum size of 1500 bytes. Figure 3.12 shows the result of this experiment. When the

attacker adds an Early Data packet, the average amplification factor is 4.9, with the 95% confidence

interval. In comparison, it is 4.0 for the basic attack. This increase is mainly due to the decryption

cost of the packet. The server also returns an error as he could not process the content of the payload.

As a conclusion, the attacker is able to further increase the CPU amplification of the attack by 22.5%

through random early data injection.
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Figure 3.12: Amplification factor with and without Early Data

3.7 Informal analysis of the attacker

The attacker aims at overwhelming the server’s resources. From the results of Section 3.2, we

saw that the CPU is the bottleneck during this attack. Therefore an attacker will try to increase the

CPU as much as possible for the server. A way to do that is to increase the amount of decryption

operations needed. An attacker will then use the early data feature of QUIC to add some decryption

during the handshake phase.

With slight modifications, some mechanisms which were designed to detect SYN-Flooding attacks

might be triggered by this type of attack. In order to prevent that, the attacker can send invalid FIN

packets to the server. However, the attacker cannot forge valid FIN packets without the encryption

keys calculated using the information contained in the SHLO.

An attacker could also want to use the first phase of the handshake when the token is computed as
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there is no address validation yet. It would allow him to use spoofed IPs and potentially increase

the attack volume. However this first phase was designed to be very efficient, it should not cost an

unreasonable amount of resources because the client is not authenticated. Therefore the calculations

are very similar to the ones in TCP SYN Cookies. The amplification is not high enough to be

interesting for an attacker to leverage.

3.8 Discussion

The experiments showed significant differences from one implementation to the other. First the

maximum attack rate is higher for implementations using a less efficient language. As expected,

aioquic using Python, can process considerably less requests on the server side than the implemen-

tations using lower level languages. Picoquic on the other hand is the most efficient implementation.

The raw CPU usage for an attack rate of 50 packets per second can be seen in Table 3.1.

Implementation Server CPU Usage (R=20) Server CPU Usage (R=50)

aioquic 31.5% 69.9%

quic-go 21.9% 24.1%

picoquic 2.1% 3.8%

Table 3.1: Implementations CPU usage comparison

In addition to the number of requests the server is able to process, the amplification factor is also

impacted by the efficiency of the implementation. As the server will have more operations to do than

the client, the efficiency of those is vital. In picoquic, the cryptographic computations for the Diffie-

Hellman keys are done in C inside the code directly, this very efficient way to proceed allows the

server to contain the amplification factor at 2.25. In quic-go the cryptographic operations are also

done in Go, the impact on the amplification factor is significant as it reaches 2.9. But for aioquic,

as the Python language is not powerful enough for cryptographic computations, the implementation

calls an external C library to do those. The calling of the external library and the communication

time between it and the main code also explains the performance issues. The results can be seen
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in Table 3.2. The different amplification factor curves can be explained by the base usage ratio.

In aioquic and picoquic the base usage amplification factor is low. Therefore when the attack rate

is low and the base usage is predominant, the amplification factor is lower. When the attack rate

increases, the base usage becomes less important than the attack usage and the amplification factor

converges to the one of the attack itself. In quic-go, base usage ratio is close to the amplification

factor of the attack explaining the approximately constant amplification factor on figure 3.9.

Implementation Max amplification factor Corresponding attack rate (packets per second) Language

aioquic 4.5 50 Python

quic-go 2.9 800 Golang

picoquic 2.25 8500 C

Table 3.2: Implementations amplification factor comparison
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Chapter 4

QUICShield : Handshake flooding

attack detection mechanism

The goal of this chapter is to design, implement and test a detection mechanism against Hand-

shake flooding attacks. It is organized as follows : Section 4.1 presents the challenges our mech-

anism has to address and briefly describes the solutions chosen, Section 4.2 details the design of

the different parts of the mechanism including storage and change-detection. The content of this

chapter was published as a paper in VCC Conference 2023 [29].

4.1 Objectives

The aim of this work is to develop an efficient change-detection based defense mechanism. Ex-

isting research has explored various techniques to address the problem of DDoS attacks [3]. Many

machine-learning based methods are designed but they are usually computation intensive and re-

quire a lot of training data in order to be accurate. However, QUIC is still recent and it is too soon

to have relevant datasets yet. That is why this work is a statistical approach, it is more lightweight

in terms of computation and storage. One prominent approach is using Bloom Filters for data stor-

age and implementing the CUSUM (Cumulative Sum) algorithm for change detection [4]. These

methods have been successfully applied in detecting TCP SYN-flooding attacks. However, the tra-

ditional CUSUM algorithm requires prior knowledge of the probability distributions of the system’s
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normal behavior and the one during an attack, which may not be accurate or available [30]. Addi-

tionally, the existing techniques can not be directly applicable to QUIC-Flooding Attacks due to the

differences in the packet structure and processing requirements of the QUIC protocol.

To overcome the limitations of existing methods, we propose a mechanism incorporating a mod-

ified Bloom Filter for efficient data storage and the Generalized Likelihood Ratio (GLR) CUSUM

algorithm for change detection [31]. Our method does not need any pre-existing information about

probability distributions since the GLR-CUSUM algorithm can adjust itself to the data it processes

by employing a set of exponential functions [32]. This special feature makes our QUICShield ap-

proach more versatile and resilient in identifying QUIC-Flooding Attacks in different situations

where IP addresses are spoofed.

The attacker can use CHLO and FIN (Finish) packets as they are both encrypted with a publicly

available key. However, to be valid, the FIN packet has to consider the Encrypted Extensions and

the certificate exchanged in the SHLO packet. Therefore, if the attacker sends randomly crafted

FIN packets, they will be seen as invalid for the server. However, even if the server rejects those

packets, the cryptographic calculations still have to be done. To be accurate, in QUIC there is not a

specific packet design for FIN, it is added as a flag into the first data packet. However, the concept

is the same and the mechanism works in the same way.

In this attack model, the attacker sends a lot of CHLO and invalid FIN packets to the server. He

can also send valid ones and start legitimate connections at any moment to mislead some defense

mechanisms. From the attacker’s perspective, the main difference with an SYN-Flooding attack is

the fact that an invalid FIN actually increases slightly the load on the server’s side. FIN packets are

sent mainly in order to avoid detection mechanisms. The attacker’s behavior is shown on Figure 4.1
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Figure 4.1: QUIC Handshake Flooding Attack

4.2 QUICShield Design

4.2.1 Storage structure

In order to detect DDoS attacks, some connection data has to be stored. It is important to do so

efficiently, which is why we opted for a modified Bloom Filter. The output of the filter is a vector v

of length m. It will be referred to as Bloom Table later in this paper. For each incoming packet, the

source IP address of the packet is hashed into a number corresponding to the index of the Bloom

table.

h :

{

J0; 232 − 1K→ J0;m− 1K,

a 7→ h(a)

However, the regular Bloom Filter is used to detect if an element is a part of a set, i.e. if the IP

address is already present in the table. The version we use hashes the packet’s source IP a into h(a)

and increments v at the index h(a). Therefore the cell’s value is not zero or one as in the usual one

but an integer corresponding to the number of times an IP was hashed into this index. Due to the

structure, some addresses are hashed into the same index; however, an address always increments

the same cell.

We distinguish between initial and final packets, namely CHLO and FIN packets, for QUIC. CHLO
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CHLO or Invalid FIN Packet

from 170.12.42.200

h(170.12.42.200) = x

v(x)←− v(x) + 1

Valid FIN Packet

from 128.28.42.137

h(128.28.42.137) = y

v(y)←− v(y)− 1

Figure 4.2: Bloom Table incrementation

packets increase the value of the cells, whereas valid FIN packets decrease them. During a QUIC-

Flooding attack (similar to SYN-flooding for TCP), an attacker sends numerous CHLO packets

without finalizing any handshake, causing the counters to increase. However, legitimate incomplete

handshakes exist, which is why we need to set a maximum value for each cell and reset the index if

it exceeds this limit. We also need to be cautious about crafted FIN packets. In TCP SYN-flooding,

the attacker overwhelms the server’s storage with sequence numbers, so he has no interest in send-

ing fake ACK packets as it would reduce the amplification factor of the attack for no gain. However,

in QUIC, the threat is inherent in the computations used to process and validate the packets, and

an attacker can overwhelm the server’s CPU or RAM. The server performs cryptographic computa-

tions on every packet to verify its validity. An attacker could therefore send CHLO packets and fake

FIN packets to double the server’s workload and appear legitimate in the Bloom Table. To avoid

this issue, instead of decrementing the counter for invalid FIN packets, it is incremented.

By using this structure, it is possible to mitigate an attack. If an attack is detected on one cell of the

Bloom Table, the defense would be to drop the packets coming from IPs that are hashed into the

index of this cell. Therefore it is important to choose m large enough to avoid too many collisions

as it would block a proportion 1
m

of clients.

To analyze this data structure’s space complexity, we assume it is implemented in C (which is the

case in our experiment). Every element of v is an int encoded on 4 bytes, so the space needed for

the table is 2m+2 bytes.

A forgetting factor α is introduced to make sure the table does not flood the memory of the

system and the past attacks have no incidence on the detection system. Every second, each cell of
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the table is flushed by a certain amount.

∀k ∈ J0;m− 1K, vt(k) = vt−1(k)× α

If α is high, the cells will keep most of their values. On the contrary, a small α will flush the table

faster. In addition to the impact on storage, these parameters affect the detection rates.

4.2.2 Change-detection mechanism

The change point detection mechanism [33] aims to discern the change in a variable’s dis-

tribution over time. Wei Chen and Dit-Yan Yeung [34] introduced the proof of concept for TCP

SYN-Flooding Attacks. However, they made the assumption that the probability distributions of the

variables in usual behavior and during an attack were known. This is sufficient for SYN-Flooding

Attacks because the packets crafted by the attackers are all the same and impact the Bloom Table

similarly. This assumption requires a certain amount of attack data to ensure the accuracy of the

probability distribution chosen. However large datasets of SYN-Flooding attacks allow the mecha-

nism to use an accurate distribution by knowing the behavior of the attackers.

Suppose Xk, k ∈ [0;m − 1] the sequence of independent random variables corresponding to the

value in each cell of the Bloom Table. Independence is ensured by the properties of the hash func-

tion used to fill it. Define f0 and fθ, respectively the probability density function of the cells before

and after the Change-Point, i.e. in the usual behavior of the system and during an attack. As the

exact probability distribution during an attack is not assumed to ensure more flexibility for new

attacks, it is approached by a one-parameter exponential family of functions in Θ.

∀x ∈ N, fθ(x) = 1− e−θx

The range of value for θ is chosen manually in line with the computing power of the machine the

algorithm runs on. The granularity between two values of theta also has to be selected carefully to

keep a good accuracy without doing useless calculations. If θ is chosen too small, it will increase

the false negative rate. On the contrary, if it is too high, the rate of false positives is going to be
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Figure 4.3: Probability of an attack based on cell value (with y = 500, p = 0.01, θ = 0.005)

elevated. Note that Θ ⊂ R+, in order to ensure ∀x ∈ N, fθ(x) ∈ [0; 1]. Under normal behavior,

the value of each cell is modeled by a binomial law of parameters y and p where y is the number

of packets hashed into the address of the cell and p the legitimate incomplete handshake rate, i.e.

legitimate incomplete handshakes over the total number of handshakes. Therefore at each step :

Let p ∈]0; 1[,

f0(x) =

(

y

x

)

px(1− p)y−x

The probabilities are shown on figure 4.3. When the counter in the cell is low, the system is likely

under normal behavior. The reason the counter is not at 0 exactly can be because of failed or ongoing

handshakes.

l(X) = sup
θ∈Θ

(log(fθ(X)/f0(X)))

is known in CUSUM as log-likelihood ratio. While the behavior of the system is normal, X likely

follows f0 so f0(X) > fθ(X) and l(X) < 0.

Sn =
m−1
∑

k=0

l(Xk)

If the probability density functions are accurate, Sn has a negative drift under usual behavior and a

positive one during an attack. n represents the step of calculation. If the time between two values of
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n is small, the system will be more reactive but it will compute more often and therefore use more

resources. On the contrary, if the time between two steps is larger, the system will be lighter but less

reactive. CUSUM detection compares the difference between Sn and its minimum to a threshold. It

can be summarized as :

Wn = Sn −min(Sn)

A characteristic of an efficient DDoS detection mechanism is the time complexity. If it requires

too many calculations, it risks overwhelming a server which is already under load because of the

attack. The interesting property of this mechanism is that it can be computed recursively. Using

GLR-CUSUM [33], the objective is to approach the real distribution during an attack by looking

for a supremum of Wn with θ ∈ Θ. However, this method which cannot be computed in recursive

time, is not desirable for our use. The window-limited approach consists in considering only a

relevant part of the function’s family set by choosing bounds for the parameter. Once the bounds

are determined, the granularity can be chosen. This method reduces significantly #Θ and therefore

the time needed for the calculations.

Algorithm 1 shows the calculations done at each timestep of the process.

4.3 Experimental results

We evaluated QUICShield on our implementation, it was written in C. In this section, we will

present the experimental setup and the evaluation results.

4.3.1 Experimental setup

To evaluate the effectiveness of our proposed mechanism, we implemented a QUIC server and

a QUIC client on our lab machines. Our QUIC server implementation is based on AIOQUIC [25].

We modified their QUIC client by adding the same DDoS attack function used in chapter 3. We

implemented QUICshield using the C language. A Python script is used to filter the incoming

packets and send the relevant packets (CHLO or FIN) to QUICShield. This method allows us to

emulate a real attack and test our algorithm in situations close to real-life deployment. In order to

evaluate the complexity of our solution, we run the QUIC server and QUICShield on a RaspBerry
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Algorithm 1 QUICShield process

v ← Array of integers of size m
n← 0
Sn ← 0
Wn ← 0
while System is active do

for each packet received since last timestep do

i← h(packet.address)
if packet.type is CHLO or invalid FIN then

v[i]← v[i] + 1
end if

if packet.type is valid FIN then

v[i]← v[i]− 1
end if

end for

for i in J0;m− 1K do

l← supθ∈Θ(log(fθ(v[i])/f0(v[i])))
Sn ← Sn + l

end for

Wn ← Sn −min(Sn)
for i in J0;m− 1K do

v[i]← v[i]× α
end for

n← n+ 1
end while
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PI machine and the QUIC attack client on a laptop.

We also use a DARPA dataset containing SYN-Flood attacks that we modified to convert it to

QUIC-Flood attacks in order to see how the system reacts to larger scale attacks.

(a) α = 0.98

(b) α = 0.99

(c) α = 0.995

Figure 4.4: Outputs of the DARPA dataset with different forgetting factor α
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4.3.2 Output under DDoS attack

We evaluate the effectiveness of QUICShield on DARPA DDoS data. Fig 4.4 shows Wn and

its derivative over time of the DARPA dataset under different α values. In this data set, an attack

is occurring at t = 7350s. A significant rise happens to Wn at this time. It is highlighted by

the bump on W ′

n. A threshold should be chosen to detect unreasonable high values of Wn. The

forgetting factor α impacts the time necessary for the system to return to normal after an attack.

We can observe that with high values of α, Wn is decreasing slower. However, too low values of

α will make the system insensitive to attacks as the maximum value of Wn might never exceed the

detection threshold chosen.

4.3.3 Selection of parameters

The maximum value of Wn is a function of α and the attack rate R. R is the number of attack

packets per second. If we model the value inside the cell as this following sequence :

Let α ∈]0; 1[, R ∈ N

u0 = 0 and ∀n ∈ N, un+1 = (un +R)× α

Let n ∈ N, this sequence being arithmetico-geometric, we obtain :

un = αn × (u0 −
αR

1− α
) +

αR

1− α

⇔ un =
αR

1− α
× (1− αn)

Therefore:

un+1 − un =
αR

1− α
× (1− αn+1)−

αR

1− α
× (1− αn)

⇔ un+1 − un =
αR

1− α
× (αn − αn+1)

As α < 1, αn < αn+1 and αR
1−α

> 0. Therefore :

un+1 − un > 0
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Hence (un) is increasing and :

sup
n∈N

un = lim
n→+∞

un =
αR

1− α

We can now compute the probability functions for this value :

∀θ ∈ Θ, fθ = 1− e−θ× αR

1−α

In the worst case scenario, during an attack, the server only receives attack packets at a rate R

and y = x. Two cases might happen; the attacker can use his own IP to launch the attack or he

can use botnet or spoofed IPs to avoid detection. Note that if the address validation mechanism is

enabled on the server side, the attacker will not be able to spoof IP addresses and will have to use

bots.

If he is using his own IP, the same cell is incremented for each packet received and the other cells

stay at 0, therefore :

Let α ∈]0; 1[, R ∈ N, p ∈]0; 1[

f0 =

( αR
1−α

αR
1−α

)

× p
αR

1−α × (1− p)
αR

1−α
−

αR

1−α

⇔ f0 = p
αR

1−α

Therefore, we get the maximum value possible for Wn:

Wmax unspoofed(α,R) = log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

However, if he is using spoofed IPs or botnets, by the properties of the hash functions, the cell index

incremented for each packet will follow a uniform distribution. The value inside each of the cell is

then αR
m(1−α)
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Therefore, for each cell we get :

f0 =

( αR
m(1−α)

αR
m(1−α)

)

× p
αR

m(1−α) × (1− p)
αR

m(1−α)
−

αR

m(1−α)

⇔ f0 = p
αR

m(1−α)

Then :

Wmax(α,R) = log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

As :

m log
1− e

−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

≤ log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

The proof can be found in Appendix C.1. The highest anomaly score is obtained when the attacker

is using unspoofed IP. It can also behave like this if the attacker is using a botnet and spoofing all

the source IPs to the same value.

To keep a low false positive rate from normal unfinished connections, we should choose a higher

R value (i.e. the maximum the system can handle without deterioration). Fig 4.5 represents the

maximum value of Wn depending on α for different attack rates. Regarding the α value, we should

choose the largest α (most sensitive one) so that Wn does not risk memory overflow under maximum

attack the system is going to face. For the threshold, we should set it at the value of Wn under the

minimum attack rate we want to detect.

Figure 4.5: Maximum value of Wn depending on α
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4.3.4 Behavior under different attack rates

In this experiment, we configure our attack client with different attack rates and α = 0.85. α

is chosen lower than in the previous experiment because R is higher compared to the attacks rates

from the DARPA dataset. Fig 4.6 shows the reaction of the mechanism under different attack rates.

There, an attack occurs for t ∈ [2000; 3000]. Wn stabilizes after a quick growth at the beginning

of the attack. It also decreases quickly once the attack is finished. The maximum value reached by

Wn reflects the attack rate and corresponds to the maximum value determined analytically in 4.3.3.

Figure 4.6: Reaction of the mechanism under different attack rates

4.3.5 Complexity analysis

In this subsection, we conduct an analysis on the computation and space complexity of QUIC-

Shield. The first step of the algorithm is formatting the packets. It only consists of simple operations

for every packet, therefore it has a complexity of O(R) where R is the attack rate. The next step is to

hash each packet. Insertion into a hash table is O(1) in time, therefore for R packets we have O(R)

time complexity. Since the table has a constant size, its space complexity is O(m). GLR CUSUM

computes each cell |Θ| times. Therefore the time complexity for one execution is O(m ∗ |Θ|). Note
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that this part does not depend on the number of packets received.

Figure 4.7 is obtained by measuring the CPU usage of an Aioquic server under two attack rates

(R=10 and R=20), and the consumption of various CUSUM and GLR-CUSUM settings. We ob-

serve that the resource consumption of the mechanism is low compared to the consumption of the

QUIC server. Also, GLR-CUSUM only slightly increases the CPU usage compared to conventional

CUSUM. As explained previously, the resource consumption of QUICShield increases slower than

that of the server.

Figure 4.7: Comparison of CPU load for various Θ under different attack rates
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Chapter 5

Conclusion

5.1 Work summary

This work mainly addresses the topic of QUIC-Flooding attack and proposes a mechanism to

detect those malicious acts.

The evaluation consists in measuring the resource consumption of both the attacker and the victim

during an attack. Multiple metrics are monitored such as CPU usage, RAM usage, and bandwidth

to observe the behavior of the system under attack. The experimental results show that the CPU is

the main bottleneck during QUIC-Flooding attack with an amplification factor varying from 2.2 to

4 depending on the implementation. It is relevant with the theoretical analysis of the attack as the

victims have to compute more cryptographic objects than the attacker. Memory usage amplification

is high but since the actual usage is very low, it does not represent a danger on the server side. Band-

width is symmetrical due to conception choices, therefore reflection attacks as we could observe in

SYN-Flooding are not possible with QUIC. Three implementations were tested : aioquic,picoquic

and quic-go, they were chosen because they are widely used and written in different languages.

The different implementations are performing differently due to the performance inherited from the

language used as well as from the code design and architecture.

This work introduces QUICShield, a mechanism that detects QUIC-Flooding attacks. It relies on a

modified Bloom Table for the storage and uses the GLR-CUSUM statistic method to detect anoma-

lies. Our theoretical analysis explains how the mechanism works in details and proves how it works
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in the worst case scenario. Both the simulated and emulated experiments show that it is able to de-

tect the incoming threats accurately. The resource consumption of the mechanism is low compared

to the one of the server itself. This is important to avoid adding unreasonable load on a server under

attack. We also explain how to choose the parameters of the mechanism appropriately.

5.2 Study limitations

This study’s experiments were run on common hardware such as laptops or small size servers.

Therefore, the maximum attack rate that was achieved is small compared to the one a real attack

would lead to damage large infrastructures. Larger servers may have more optimized hardware

chips that compute cryptographic operations more efficiently. This would reduce the amplification

factor and make it less interesting for an attacker as he would have to deploy more resources to lead

the attack successfully.

Also, even if the implementations pretend to be compliant with the multiple RFCs [17] [18] [19],

there is no official acknowledgement of this. The architecture of the code is complex and the size of

the code prevents checking for compliance easily. However, to ensure some universality, the imple-

mentations we experimented on provide some interoperability tests. If the different implementations

are able to communicate with one another without encountering errors, it probably means they abide

by the RFC.

5.3 Discussion and future work

In our experiments, CPU was the resource that was drained under QUIC Flooding Attack. It

is intuitive as the server needs a lot of computations to handle the packets according to the process

described in RFC9000 [17]. It could cause complete service disruption as the server would not be

able to process any other incoming packet and would not have enough resources available to run its

other processes. The memory also presents a high amplification factor but the usage is much lower

so that it is unlikely a threat for most of the systems. Moreover, adding more CPU typically costs

more than adding memory. The bandwidth use is not a problem with these stateless protocols as

they were designed with security in mind to ensure neutral amplification factor. In addition to that,

53



the stateless design of the QUIC protocol avoids the full backlog problem encountered during the

TCP SYN flood attack to stateful TCP servers.

The 0-RTT feature of QUIC is a good way to enhance the performance of the server as it signifi-

cantly reduces the amount of handshakes necessary. 0-RTT is always optional for the client and he

can always request a new handshake if he wants. Therefore it does not change the attacker perspec-

tive who can still lead the same attack. However, it allows the server to detect an attack more easily.

Indeed, a client repeating multiple complete 1-RTT handshake in a row while 0-RTT is available

would be suspicious. If a client has already done the handshake recently, he still has the certificate

and 1-RTT handshake would only represent a loss of performance and additional latency. Neverthe-

less, 0-RTT exposes the server to other vulnerabilities inherent to this feature.

Even though QUIC has multiple RFC documents [17] [18] [19] to provide guidelines, there are

multiple different implementations with very different architectures and designs. The results of our

experiments show that the efficiency of the process is very different in the variety of implementa-

tions An attacker can take down an infrastructure which has 4 times its own computing power. This

is a serious issue which was not present in TCP SYN Cookie. The resilience of TCP SYN Cookie

is mainly due to the simplicity of its design. The server only computes the cookie and compare it

to the one from the packet. There are no additional mechanisms. TCP SYN Cookie [24], on the

other hand seems to have only one legitimate version, the one of its designer written for Linux and

adapted for other systems. It makes the deployments of this protocols more homogeneous.

The QUICShield design allows a fast and accurate detection as verified in our previous experiments.

However, it highlighted the importance of assessing the attack rate expected and the setting of the

parameters. As a future work, evaluating the effectiveness of the mechanism with different families

of functions would increase its robustness and versatility. Although the detection is accurate in the

experiments we led, the limitation of the design at this point is that it does not include solutions for

mitigation. A mitigation solution based on the value inside the counters of the Bloom table could

be designed. Actually if an IP address is hashed into the index of a cell with a high counter, the

packet could be rejected. It would imply a false positive rate of 1
m

and inability to access the server

by these legitimate clients.

Even if the detection mechanism is performing well, the ideal solution would be on the protocol
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level. It would need some modifications in order to ensure additional computations on the client’s

side. The client would need to do as much computation as the server from the very beginning of the

handshake. It could be achieved at the same time as the address validation with some cryptographic

challenge response based on the value of the token for example. However, as the address validation

is not by default enabled, if such solutions are deployed, this mechanism would need to be deployed

more often. It would affect the performance, especially for resource-constrained clients. This trade-

off between performance and security would need to be evaluated.

We also noticed that there is a guideline on how to set the threshold that decides if the address

validation mechanism is enabled or not. It would definitely be interesting to have a good practice

analysis on how to set that threshold based on the server’s use and the tradeoff desired between

security and performance.
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Appendix A

List of Publications

Appendix A details the articles this work was published in.

• Benjamin Teyssier, Y A Joarder, and Carol Fung. ºAn Empirical Approach to Evaluate the

Resilience of QUIC Protocol Against Handshake Flood Attacks.º 2023 19th International

Conference on Network and Service Management (CNSM). IEEE, 2023.

• Benjamin Teyssier, Y A Joarder, and Carol Fung. ºQUICShield: A Rapid Detection Mecha-

nism Against QUIC-Flooding Attacksº. 2023 IEEE Virtual Conference on Communications

(VCC). IEEE, 2023.
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Appendix B

List of acronyms used

Appendix B details all the acronyms used in this work.

• IP : Internet Protocol

• UDP : User Datagram Protocol

• TCP : Transmission Control Protocol

• TLS : Transport Layer Security

• CPU : Central Processing Unit

• DDoS : Distributed Denial of Service

• CUSUM : Cumulative Sum

• GLR-CUSUM : Generalized Likelihood Ratio Cumulative Sum

• DNS : Domain Name System

• NTP : Network Time Protocol

• RTT : Round-Trip Time

• TCB : Transmission Control Block

• H : Siphash keyed hash function
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• s1 : Server’s first secret key

• s2 : Server’s second secret key

• sa : Source address of the packet

• sp : Source port of the packet

• da : Destination address of the packet

• dp : Destination port of the packet

• ISNc : Initial Sequence Number from Client

• T : Timestamp

• MSSi : Maximum Segment Size
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Appendix C

Mathematical proofs

C.1 Maximum value of Wn

Let m ∈ N
∗, θ ∈ Θ, α ∈]0; 1[, p ∈]0; 1[, R ∈ N

∗

We want to compare :

m log
1− e

−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

and

log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

We solve :

m log
1− e

−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

≥ log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

(1)

(1)⇔ m log
1− e

−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

− log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

≥ 0

⇔ log ((
1− e

−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

)m)− log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

≥ 0

⇔ log
(1− e

−max(θ)× α×R

m(1−α) )m

p
α×R

(1−α)

− log
1− e−max(θ)×α×R

1−α

p
α×R

1−α

≥ 0
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⇔ log
(1− e

−max(θ)× α×R

m(1−α) )m

1− e−max(θ)×α×R

1−α

≥ 0

⇔
(1− e

−max(θ)× α×R

m(1−α) )m

1− e−max(θ)×α×R

1−α

≥ 1 (2)

But we also have :

e
−max(θ)× α×R

m(1−α) ≥ e−max(θ)×α×R

1−α

⇔ 1− e
−max(θ)× α×R

m(1−α) ≤ 1− e−max(θ)×α×R

1−α

And :

1− e
−max(θ)× α×R

m(1−α) ∈]0; 1[

Therefore :

(1− e
−max(θ)× α×R

m(1−α) )m ≤ 1− e
−max(θ)× α×R

m(1−α)

Then :

(1− e
−max(θ)× α×R

m(1−α) )m ≤ 1− e−max(θ)×α×R

1−α

We then have :

∀R ∈ N
∗, m log

1− e
−max(θ)× α×R

m(1−α)

p
α×R

m(1−α)

≤ log
1− e−max(θ)×α×R

1−α

p
α×R

1−α
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Appendix D

Measurement scripts

D.1 Memory and CPU usage over time

In order to determine the range of rates we would lead the experiment on, we ran a first ex-

periment in which we increased the attack rate over time until the server was overloaded. Once the

server is at 100% of CPU usage, we determined it was the maximum attack rate for our measurment.

It is important to note that others processes are running on the device. Therefore the maximum CPU

in the figures is less than 100% because it only considers the usage of the QUIC process.

# ! / b i n / bash

f o r RATE in 1 10 20 50

do

SECONDS=0

python3 examples / h t t p 3 s e r v e r . py −− c e r t i f i c a t e t e s t s / s s l c e r t . pem \

−− p r i v a t e −key t e s t s / s s l k e y . pem −− p o r t 4242 & s r v p i d =( º $ ! º )

py thon3 examples / a m p a t t a c k . py − r $RATE & c l i p i d =( º $ ! º )

whi le [ $SECONDS − l t 180 ]

do

r e s u l t =$ ( d a t e +%H:%M:%S )

c p u c l i =$ ( ps −p $ c l i p i d −o %cpu )

c p u s r v =$ ( ps −p $ s r v p i d −o %cpu )
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r e s u l t +=º , º

r e s u l t += $ c p u c l i

r e s u l t +=º , º

r e s u l t += $ c p u s r v

echo $ r e s u l t

echo $ r e s u l t >> r e s u l t s / c p u t i m e / r e s u l t s c p u t i m e $ R A T E . csv

SECONDS+=1

s l e e p 1

done

p k i l l py thon3

done

D.2 Memory and CPU usage for different attack rates

# ! / b i n / bash

echo > r e s u l t s / r e s u l t s q u i c . c sv

f o r RATE in { 1 . . 5 0 . . 1 }

do

python3 examples / h t t p 3 s e r v e r . py −− c e r t i f i c a t e t e s t s / s s l c e r t . pem \

−− p r i v a t e −key t e s t s / s s l k e y . pem −− p o r t 4242 & s r v p i d =( º $ ! º )

py thon3 examples / a m p a t t a c k . py − r $RATE & c l i p i d =( º $ ! º )

s l e e p 10

r e s u l t =$ ( d a t e +%H:%M:%S )

c p u c l i =$ ( ps −p $ c l i p i d −o %cpu ,%mem | head −n 2 | t a i l −n 1)

c p u s r v =$ ( ps −p $ s r v p i d −o %cpu ,%mem | head −n 2 | t a i l −n 1)

r e s u l t +=º , º

r e s u l t += $ c p u c l i

r e s u l t +=º , º

r e s u l t += $ c p u s r v
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echo $ r e s u l t

echo $ r e s u l t >> r e s u l t s / r e s u l t s q u i c . c sv

k i l l −9 s r v p i d

k i l l −9 c l i p i d

done
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